Etd

Interactive Training System for Medical Ultrasound

Public

Downloadable Content

open in viewer

Ultrasound is an effective imaging modality because it is safe, unobtrusive and portable. However, it is also very operator-dependent and significant skill is required to capture quality images and properly detect abnormalities. Training is an important part of ultrasound, but the limited availability of training courses presents a significant hindrance to the use of ultrasound being used in additional settings. The goal of this work was to design and implement an interactive training system to help train and evaluate sonographers. The Interactive Training System for Medical Ultrasound is an inexpensive, software-based training system in which the trainee scans a lifelike manikin with a sham transducer containing a 6 degree of freedom tracking sensor. The observed ultrasound image is generated from a pre-stored 3D image volume and is controlled interactively by the sham transducer's position and orientation. Based on the selected 3D volume, the manikin may represent normal anatomy, exhibit a specific trauma or present a given physical condition. The training system provides a realistic scanning experience by providing an interactive real-time display with adjustable image parameters such as scan depth, gain, and time gain compensation. A representative hardware interface has been developed including a lifelike manikin and convincing sham transducers, along with a touch screen user interface. Methods of capturing 3D ultrasound image volumes and stitching together multiple volumes have been evaluated. System performance was analyzed and an initial clinical evaluation was performed. This thesis presents a complete prototype training system with advanced simulation and learning assessment features. The ultrasound training system can provide cost-effective and convenient training of physicians and sonographers. This system is an innovative approach to training and is a powerful tool for training sonographers in recognizing a wide variety of medical conditions.

Creator
Contributors
Degree
Unit
Publisher
Language
  • English
Identifier
  • etd-021709-121801
Keyword
Advisor
Committee
Defense date
Year
  • 2009
Date created
  • 2009-02-17
Resource type
Rights statement

Relations

In Collection:

Items

Items

Permanent link to this page: https://digital.wpi.edu/show/z029p4850