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Abstract

Connecticut Children’s Medical Center (CCMC) is a non-profit medical organization
specializing in children’s care. CCMC asked the MQP team to demonstrate the value of
predictive analytics. The team developed a model that improved CCMC'’s forecasting accuracy
for 88% of their metrics, an inventory demand model that expanded COVID testing, and an
optimization model for behavioral health staffing that could save $1mil+/year. Adopting the
team's models has highlighted the potential impact of further predictive modeling and industrial

engineering work at CCMC.
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1.0 Introduction

Connecticut Children’s Medical Center (CCMC) is a non-profit medical organization
located in Hartford, Connecticut, specializing in children’s care. Its mission is to improve access
to children’s healthcare (Connecticut Children's, 2021). CCMC has various locations scattered
around Connecticut, western Massachusetts and eastern New York. The Hartford location is the
core of the CCMC health network, with typical hospital operations such as Inpatient, Outpatient,
Surgery, and the Emergency Department. They also have a specialty group known as

Connecticut Children’s Specialty Group (CCSG), where patients meet a specific physician.

Recently, the COVID-19 pandemic had significant impacts on all healthcare
organizations. CCMC has not escaped that. Operating under the many implications of the
pandemic has provided various new challenges for the hospital. The project sponsor’s overall
goal was to use this project to highlight the need for and the importance of predictive forecasting
and industrial engineering work at CCMC. Several specific areas of focus were identified for the

project.

The first area of focus was forecasting. The unprecedented fluctuations of revenue during
the COVID pandemic motivated the organization to use demand predictions when making
senior-level decisions. The pandemic acted as a catalyst for developing a more robust forecasting
system for predicting patient volumes. The team developed an automated forecasting system that

improved the accuracy of the current system.

The hospital's operations and resources were also significantly impacted by the
pandemic. Infection prevention measures strained staffing, space, and personal protective
equipment (PPE) within the hospital. However, if the patient tests negative for Coronavirus, Flu,
and RSV, the patient can be treated without such prevention measures. A new rapid test called
the “Lab in a Tube” (LIAT) test was a critical new asset for CCMC to streamline this testing
process, but they only had a specific government rationed supply of these tests. By developing an
inventory model for the LIAT tests, the hospital could maximize the number of patients who
could take a LIAT test without risking a stock out. Better yet, patients who took a LIAT test
received results within 20 minutes, significantly improving the speed and quality of care. The



LIAT inventory model helped aid the decision-making process for the management of these
LIAT tests.

Finally, the behavioral health unit has been continually growing for several years, and the
pandemics’ impacts have caused additional challenges. There is limited staffing between patient
care partners (PCPs), patient care assistants (PCAs), and registered nurses (RNs). Figuring out
how to optimally staff the complex behavioral health units was challenging as it was unclear
whether the shift in demand was temporary or permanent. Leadership and hiring managers need
to determine the optimal staff levels, and operations staff must know how to serve the patients
best given their current staffing. Both of these challenges are handled with limited analytical
support. The team’s objective was to create an optimization model that could help identify

challenges, compare scenarios, and propose optimal behavioral health staffing solutions.

Throughout the project, the team was able to work with experts from two different
departments to tackle these objectives. One team was the Continuous Improvement team, which
served as the bridge between analytics and operations. Several experts on this team aided the
project by gathering data, answering questions, and providing critical insight to project
objectives and methodologies to ensure deliverables fit well with the framework of the current
operations at CCMC. The other team was the Enterprise Analytics team composed of analysts
and computer scientists who use data and modeling to develop analytical strategies and business
decisions. This team was instrumental in getting access to data sources to fuel analytical
solutions and vetting analytical tools and processes to ensure they fit within the enterprise system
at CCMC. Both teams were highly attentive to the project goals and provided immense support

in shaping the project deliverables.



2.0 Background

The following section describes the COVID-19 virus and how it presented operational
challenges to medical facilities, forcing the facilities to forecast its surge. Additionally, there is
background information on modeling variability in hospital capacity and how it can lead to
operational challenges. The third part of this section talks about hospital staffing during COVID-
19 and how it has changed some staff's working patterns. After that, the focus shifts to current
analytics and forecasting methods at CCMC, followed by descriptions of how the team
researched the ARIMA model, its parameters, its implementation, and its limitations. Next, a
section related to the background of the LIAT testing scenario and its challenges. Finally, the last
section describes optimization models and the framework of the behavioral health staffing
optimization problem. All of this background research and detail was critical to understanding

and developing methodologies and results.

2.1 COVID-19

The novel COVID-19 virus that has caused the global 2020 Coronavirus Pandemic is a
member of a larger body of viruses labeled ‘Coronaviruses.” They are characterized by crown-
like spikes on their surface. Coronaviruses have four main subgroups, known as Alpha, Beta,
Gamma, and Delta. Human coronaviruses were first identified in the mid-1960s. The seven
coronaviruses that can infect people are: Common human coronaviruses: 229E (alpha
coronavirus), NL63 (alpha coronavirus), OC43 (beta coronavirus), HKU1 (beta coronavirus).
Other human coronaviruses: MERS-CoV (the beta coronavirus that causes Middle East
Respiratory Syndrome, or MERS), SARS-CoV (the beta coronavirus that causes severe acute
respiratory syndrome, or SARS), SARS-CoV-2 (the beta novel coronavirus that causes
coronavirus disease 2019, or COVID-19), (Coronavirus, 2020). The 2020 COVID pandemic
acted as a catalyst for most of the work that occurred during this project. It forced the CCMC
organization to scrutinize forecasting and resource efficiency due to the pandemic's new
regulations and practices. Though this team did not perform any direct Coronavirus infection or
associated death forecasting, it was essential to understand the pandemic's current and future
impacts on operations and leadership decision-making in the team’s analysis. Without the

Coronavirus pandemic, the project would most likely not have had the same motivation.



2.2 Modeling Variability in Hospital Capacity

Connecticut Children Medical Center and other medical facilities generally face
challenges in determining bed capacities because of the variability in the number and type of
patients who frequent those facilities each day. Determining required bed capacity gives the
medical facilities the opportunity to plan their staffing requirements resulting in efficient
operational processes and a higher medical service level. This section describes a peer-reviewed
journal article by Mackay (2005) evaluating a stochastic version of the Harrison—Millard
simulation model that was developed using 1-year data of the year 1999 from a hospital in
Adelaide, Australia, to understand the variability in demand in the number of patients for both
elective and emergency visits. A Poisson distribution was used for patients’ admissions since
independent events are occurring within intervals of time. A chi-squared test rejects this
hypothesis because there is a significant difference in the number of patients’ arrival by different

days of the week.

Another effect presented in the model is seasonality because hospital admission rates
increase dramatically during a flu season compared to any other time of the year. Therefore, the
best possible way to model this was to run each day of the week separately (Monday-Sunday).
The model faced a challenge regarding the discharge process because the patient's length of stay
depends on the patient's condition and the stages/ departments that he has to go through. The
researchers found that it is best to use exponential distribution to fit the occupancy times, as
shown in Table 1(Mackay, 2005).



Table 1: Occupancy Times in Hospital Mackay Example

Current length of stay. i.e. days in hospital since admission
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The rows represent specific dates of the week, whereas the columns represent the length
of stay. The body of the table shows the number of bed occupants for that day for each length of
stay. Most models assume constant admissions on different days of the week, which is not the
case in real life.

The paper also discussed the effect of the size of patient volumes. For example, suppose
the number of COVID cases increases. This will affect the mean arrival of each day of the week
but will keep some departments' discharge process the same. The model allowed the exploration
of variability in the arrival rate and time spent at the hospital and prepared the hospital to allocate
more resources were needed as demand grows during a specific time of the year; thus, increasing
the efficiency of hospitals operations. The ability to understand and model variability as
described in this research was a critical aspect of the project, especially due to the increased

variability that impacts of the Coronavirus pandemic brought.
2.3 Hospital Staffing During COVID-19

One of the challenges that Coronavirus poses to healthcare is staffing availability. Some
staff may get infected with the virus. Others may have to self-isolate themselves due to an
infected family member. The unavailability of some staff may lead to several challenges in the
hospital’s operations. A group of doctors in England developed a model to simulate staffing
status under different infection rates. (Schooling et al., 2020). The model considers the number
of staff in a hospital, their working pattern, and the number of areas they need to cover. Infection

rate percentage can be entered daily. The graphs below represent the percentage of staff at risk of
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not being available during a specific day for two different departments. As shown in Figure 1,

there is an extra daily risk percentage for being off work due to infection in various hospital

departments.
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Figure 1: Graphs for percentage of staff at risk based on model created by doctors in England (Schooling et al, 2020)

Variability in staffing was particularly critical to understand the behavioral health staffing
optimization problem of this project. Variability brought on by the pandemic only increased
impacts in staffing availability and high turnover rates in critical positions at the hospital.
Accounting for this variability and understanding how it affects staffing was a core aspect to

analyzing the behavioral health staffing challenge.

2.4 Analytics and Forecasting at CCMC

The Enterprise Analytics team at CCMC has been collecting data on ten metrics. These
metrics provide an overview of the hospital’s operations. Table 2 presents these metrics and their

associated descriptions. The reader is advised to reference this table when needed, as we will use

these metrics without explanation.

Table 2: Current Volumes at CCMC with Descriptions

Volume Description




IP Census Days

Any inpatients who are admitted or discharged

NICU, PICU & MS 8 IP
Census Days

Number of patients who are newborns and ones who receive pediatric
intensive care

All Other IP Census Days

Sum of inpatient service days

Total Discharges

Number of patients leaving the hospital after receiving care

ED Visits

Number of patients who receive care in the emergency department

Clinical Support Appointments

Number of appointments scheduled with a physician or with other health
professional

CCSG Appointments

Number of appointments scheduled with the specialized group at CC

Total Appointments

Total number of appointments during the given period

Surgeries

Number of surgeries scheduled

Behavioral Health

Number of patients admitted as behavioral health patients

CCMC’s management team has been forecasting these metrics since April 2020, 2

months after the first spike in COVID-19 cases in March. The impacts of the Coronavirus

brought new attention to the importance of sound, data-based decision making. In an effort to

prepare the hospital for a resurgence in the COVID-19 virus, CCMC identified 3 different

scenarios: Slow (0-3 COVID patients), moderate (3-9 COVID patients), and fast (9-24 COVID

patients), each with their own impacts on expected patient volumes. Some outputs of these

forecasts can be seen in figure 1 below.
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Figure 2: Current Modelling Outputs at CCMC
These graphs show the expected impact on patient volumes based on the CCMC

Analytics team's manual forecasts. To generate these forecasts, an analyst takes the following
steps every month:

1. Manually queries and saves data for metrics of interest

2. Takes 2 standard deviations of last year’s data to generate the forecast's upper and
lower bounds.

3. Manually estimates the forecast for each scenario, attempting to match trends in
the data

4. Manually adjusts the forecast based on market research data

CCMC’s current forecasting system requires up to 16 hours a week to complete steps 1-3.
Therefore, this project's forecasting objectives were to create a robust forecasting methodology
that could predict these metrics with greater accuracy and less manual work. This would allow
analysts to spend more time making educating decision-makers and less time creating the
forecasts.



2.5 ARIMA Forecasting Method

ARIMA stands for Autoregressive Integrated Moving Average. For data to be fit with an
ARIMA forecast, it must meet three assumptions. First of all, the data is cyclical in nature. The
data should have some trend that is dependent on time which is different from seasonality. For
example, if every month, there is a slight increase in ED visits, and then it drops off. Secondly,
there is a dependency that exists between observations and the residual error. For example, if
tomorrow there is 500 times the number of ED visits as there were today. The error would also
increase by an amount that is relatively proportional to the quick increase in ED visits. Thirdly,
there is a dependency between observation and some number of lagged observations. For
example, ED visits volume for today is dependent on ED visits in the past. In other words, “The
ARIMA model is a filter that tries to separate the signal, such as some consistent variation in ED
visits or some trend in the data, from random error known as noise. The signal is then taken and

extrapolated in the future into a forecast” (Michael Kane, 2020).

However, what happens when data does not meet all three of these assumptions? The
beauty of ARIMA is that when implemented appropriately if data does not meet one of these
assumptions, the model simplifies itself to the more appropriate model. For instance, a plain
Moving Average may fit better than a full ARIMA model for some data. In that case, the model
simply adapts to fit the simpler form.

To implement ARIMA, there are three parameters to consider: P, D, and Q. Each
parameter relates to the three assumptions mentioned previously. The first of these variables, P,
is representative of the number of lagged observations. For ED visits, for instance, P is
determined by graphing the partial autocorrelation of ED visits and checking how many data
points exist outside of the 95% confidence interval. The graph below shows 1 data point outside

the confidence interval of ED visits data set: therefore p=1.
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Figure 3: ARIMA Parameter P Calculation Graph for ED Visits

Second, D is equal to the number of times the row observations are different to make the
data stationary. D is determined for ED visits and other volumes by graphing the autocorrelation
using first-order and second-order differencing. The first order differencing of ED visits shows 1
data point outside the 95% confidence interval in Figure 4. The second-order differencing shows
2 data points outside the 95% confidence interval; therefore, the data is differenced 1 time only.
Another way to find d is using the ADF Test for Stationary Data. If the test results in p-value >
0.01, the data must be differenced.
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Figure 4: ARIMA Parameter D Calculation Graphs for ED Visits

Finally, q is the number of lagged forecast errors. For g, graph the autocorrelation with no
differencing. The graph of ED visits below shows 1 data point outside the confidence interval for
lagged errors: therefore g=1.
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Figure 5: ARIMA Parameter Q Calculation Graph for ED Visits

Therefore, for ED visits, the parameters are (1,1,1).
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Each instance of the ARIMA model puts out an ARIMA formula used for forecasting as

well. For ED visits of parameter (1,1,1), ARIMA produced the following forecast formula:

Y(t) =+ Y{t—1) + $(Y{t—1) - Y(t—2)) — Beft — 1)

where Phi is the autoregressive coefficient, theta is the lagged forecast error, and e(t-1) is the
error at period t-1. The formula is changed automatically as the parameter of the volume
changes. The other volumes' parameters can be found in accuracy table 4 using the ARIMA tool
at the results section.

Even though ARIMA is a suitable forecasting technique where trend and variation exist,
it does have some limitations. One of them is the fact that CCMC has only a few years of data,
whereas more data could be more valuable for the ARIMA model. Another limitation of ARIMA
is implementing it correctly can require large amounts of computer resources to train the model
and identify the best P, D, and Q values. Lastly, while the model can be effective in capturing
seasonality and the overall trend, it can fall short in forecasting values that fall significantly

outside the norm.

2.6 LIAT Testing

Due to the pandemic's impacts, CCMC must administer tests to four categories of
patients for COVID, the Flu, and RSV. These categories are admitted patients (a patient who
needs to stay overnight), behavioral health patients, urgent surgeries, and transfers from other
hospitals or CCSG clinics. Until these tests come back negative, these patients are treated as if
they have one of the three viruses, which puts a strain on staffing, space, delay in care and
Personal Protective Equipment (PPE) requirements.

A new development that has benefited CCMC testing capacity is the “lab in a tube”
(LIAT) testing capabilities. These tests can be run through analyzers that return results in 20
minutes. CCMC has two of these analyzers and each week they are supplied with 200 LIAT test
kits that they can stockpile if not used. By applying the LIAT tests, CCMC can get results

quickly and therefore care for patients very quickly without having to hold them in containment
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areas for up to a day while they wait for test results from another lab which would take 12-60

hours from sample collection.

With this new capability CCMC needed to understand what their usage of the tests would
look like so that they could properly plan for testing of the key patient groups. They needed a
model that would allow them to understand what their current inventory for LIAT tests was,
what the expected supply was going to be, what the patient demand was going to be, and what
the long-term inventory burndown for demand would look like. A model that gave them this
information would allow the LIAT planning team to be able to determine what patient groups
could and should be eligible for these tests. The four patient groups listed above were the
primary focus, but were the volumes of those patient groups going to be above or below the
supply volume? If there was not enough supply, they needed to know as soon as possible so they
could restrict the patient groups even more to only those who critically need a test. If there was
excess supply, it would give the hospital an opportunity to expand the testing to other patient
groups and improve their patient experience as well. A forecasting model was required to answer

these questions.

2.7 Optimization Problems

Optimization problems are ideal for determining the best solution to a problem based on
given constraints. As is described by Boyd and Vandenberghe, “the notation [for an optimization
problem is to] minimize fO(x) subject to fi(x) <0,i=1,...,mhi(x)=0,i=1, ..., p to describe
the problem of finding an x that minimizes f0(x) among all x that satisfy the conditions fi(x) <0,
i=1,...,mandhi(x)=0,i=1,...,p(Boyd etal, 2004). The key characteristics of an
optimization problem are an objective function, decision variables, and constraints. The objective
function is an equation representing the outcome of the problem and is the target for
optimization. This objective can either be maximized or minimized. Optimization problems are
ideal for determining the best solution to a problem based on given constraints. As is described
by Boyd and Vandenberghe, “the notation [for an optimization problem is to] minimize f0(x)
subjectto fi(x) <0,1i=1,...,mhi(x)=0,1=1, ..., pto describe the problem of finding an x
that minimizes f0(x) among all x that satisfy the conditions fi(x) <0,i=1, ..., m, and hi(x) =0,

i=1,...,p (Boydetal, 2004). The key characteristics of an optimization problem are an
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objective function, decision variables, and constraints. The objective function is an equation that
represents the outcome of the problem and is the target for optimization. This objective can
either be maximized, minimized, or set to achieve a targeted value. The decision variables
represent the variables of the optimization problem that can be changed and altered to affect the
objective function. This changing of the decision variables is the action taken to attempt to meet
the optimized form of the objective function. Constraints are also common assets of an objective
function. They specify certain rules about the optimization problem. The domain of the
optimization function is representative of the set of points for which the objective and all
constraints are defined. Optimization problems can be solved by a variety of different software

or through manual manipulation.

Excel Solver is a common software used for solving optimization problems. It is a free
add-in to Microsoft Excel. The Excel Solver engine takes in all the variables listed above. The
user can set an objective function, decision variables, and constraints described in the “Define
and solve a problem using Solver” pages of the Microsoft support website (Define and solve a
problem by using solver, n.d.). The Solver engine choices are Simplex LP, GRG Nonlinear, and
Evolutionary. Simplex LP is built to solve problems that are linear, GRG nonlinear is built to
solve problems that are smooth and nonlinear, and Evolutionary is built to solve non-smooth
problems. The linearity and smoothness of a particular problem are defined by the degree of the
objective function and its constraints. Solver uses these engines to cycle through permutations of

the decision variables in order to optimize the objective function within the domain of the model.

2.8 Behavioral Health Staffing Optimization

Within CCMC, care for behavioral health patients is becoming an increasingly critical
area of focus. Volumes for behavioral health patients continue to grow rapidly within the
hospital, and staffing is becoming increasingly difficult. The Coronavirus pandemic has further
exacerbated this. One of the key elements driving this challenge for the behavioral health units is
patient care partners (PCPs). PCPs are staff members at CCMC whose specific role is to sit with
behavioral health patients who have a certain level of acuity and require a constant monitor. PCP
requirements per patient vary based on the patient's acuity. Some patients require 2 PCPs, while

other patients may share a PCP due to having only specific time-oriented needs. The PCP
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profession can be quite mentally taxing, and the turnover rate is relatively high. As a result, it can
be challenging for the hospital to maintain the required number of PCPs staffed to meet the

continually growing behavioral health needs.

To meet these growing needs, other staff within the hospital are often required to cover
these PCP roles. The most common candidates for this are patient care assistants (PCAs) and
registered nurses (RNs), who have other duties they need to fulfill. They are also more expensive
than a PCP, so having them do PCP work is not an efficient use of hospital funds. Overall, this
phenomenon has led to challenges in meeting bedside coverage goals, represented as the
percentage of behavioral health patients receiving the PCP care they require. This issue presented

a great opportunity for optimization methodologies to answer two key questions:

1) “What is the optimal staffing required to meet behavioral health patient sitting needs

across all shifts?”

2) “What is the minimum shortage of patient sitters that can be optimally achieved given

the current staffing model?”

The audience for question 1 is leadership and management who are responsible for hiring and
managing behavioral health staff. Question 2’s audience is the operations floor who are

responsible for ensuring the highest bedside coverage based on the current available resources.

At CCMC, the staffing schedule is split into six time blocks of four hours each starting at
0300 hours. Staffing is also split amongst five key departments which are the ED, MS6, MS7,
MS8, and PICU departments. The models will both aim to answer the above listed questions
across the time blocks and departments listed in a way that is dynamic to adapt to hospital

operations changes and needs.
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3.0 Methodology

The following section describes the methodologies the team used to produce the
deliverables of the project. First, the ARIMA methodology was selected as a best practice for
predictive modeling of 10 key hospital variables. Additionally, a section is dedicated to creating
the LIAT demand model using excel inventory modeling techniques. The final subsection reports
on the optimization methodology of excel solver and how it was used to develop models to
optimize behavioral health staffing resources. Each methodology was critical to developing the

project's deliverables in a way that was repeatable and achieved best practices of data analytics.

3.1 ARIMA Model

To construct the forecast model, we first had to assess the problem and investigate the
CCMC’s current forecasting methods. After looking at 3 years of data for each metric, we found
that the data was generally stable (excluding COVID-19 timeframe), with a fair amount of
variation that seemed to be unexpected, making it a good candidate for ARIMA. Similarly, the

current forecasting process was time consuming, error prone, and did not utilize statistics.

We chose to use ARIMA as our intended forecasting technique. It was bound in statistics
yet was flexible enough to conform to any data we provided it. The benefits of other simpler
forecasting techniques, like an exponential smoothing model, are captured in ARIMA. Better yet,

there is an open-source ARIMA library in Python 3, making it straightforward to implement.

Once we identified that we would use ARIMA as our forecasting technique, we needed to
learn ARIMA in Python 3. We made our first ARIMA model using sample data, following the
guidance of Jason Brownlee, a professional Machine Learning developer with a PhD in Artificial
Intelligence (Brownlee, 2020). Once we were confident that ARIMA would work for our
intended purposes, we created the ARIMA model for CCMC. The model is adaptive as it can
produce a forecast of any length with any time series data input. The model also implements
proper machine learning principles like hierarchical cross validation to prevent overfitting. Once
the model was developed, we ran it on the CCMC data. To ensure that the model was working
well, we compared the model’s error to CCMC’s manual forecast error. Generally, across all 10

metrics we had a more accurate model.
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With an accurate and successful model, it was time to implement it. We worked with two
data engineers at CCMC to develop a process that would gather the data, create the forecasts, and
distribute them to the analyst. An ETL server would best suit the model’s needs. After
conversations with the analyst, we decided upon the final format for the forecasts and a

distribution method.

3.2 LIAT Inventory Model

The questions that CCMC sought to answer for this project were how many of the LIAT
tests to use and when. To answer these questions, the team used excel modeling, modifying
historical data for COVID impact, and including variation based on standard deviation. The team
identified the patient groups that were candidates for the LIAT tests with help from the experts at
CCMC running the LIAT project. Then, historical data was pulled for these patient groups. This
historical data is very cyclical in nature, so forecasts were based on the previous year’s data with
modifying values based on market conditions. The modified percentages to be applied to each of
the patient groups was gathered from current volumes compared to past years volumes and

expert opinions from leading doctors and data analysts at CCMC.

Once modifiers were applied to the historical data, it yielded a predicted forecast for
LIAT usage if the selected patient groups were given tests. However, variation has a significant
role in this model. To account for this, the team also developed an upper and lower bound
forecast, representative of two standard deviations above and below the mean forecast. This
standard deviation was calculated based on the sum of squared errors between the actual volume
of patients and the predicted volume. The net result was three weekly forecast lines showing the
predicted demand and upper and lower bounds of that predicted demand for LIAT usage.

The team also worked with the supply chain team to gather data on the current volume of
LIAT tests as well as the supply rate. The current volume at the start of LIAT usage was 2560
LIAT tests with a supply receive rate of 200 tests per week by government ration. This data was
the final piece of the puzzle that was used to create a complete inventory model. The team was
able to compare the predicted demand for LIAT with the supply arrival to predict what the

inventory for the LIAT tests will be for as long as the supply remains at the 200 per week value.
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Predicting out through the month of February 2021 was the first key target so that Connecticut
Children's management teams could understand if they needed to be more conservative with the
tests or if they could open use of them to different patient groups. Further forecasting occurred
beyond that point using the same methodology and adjusting the inputs based on additional

patient groups and changing supply.

3.3 Behavioral Health Staffing Optimization Model

The two main questions that CCMC needed answering for this sub-project were “What is
the optimal staffing required to meet behavioral health patient sitting requirements across all
shifts?”” and “What is the minimum shortage of patient sitters that can be optimally achieved
given the current staffing model?” The chosen methodology to answer these questions was using
Excel Solver optimization models. Each of these questions required its own model, but the
models shared many input sources and assumptions. The first key input source that had to be
gathered with the help of the continuous improvement expert for behavioral health was the
average requirements for behavioral health patient care partners by shift and by department. As
was described in the background, the hospital shifts are set up in 4-hour time blocks, and there
are 5 key departments to focus on. A spreadsheet that is updated daily by the charge RN for each
department and shift lists the PCP historical requirements and serves as the first key input. The
data from this spreadsheet is organized and displayed in a dynamic pivot table. The rows
represent average PCP requirements per time block, whereas the columns represent the

department. This input data is then pulled into each of the models.

Month (Al -
Grid Type (Al -

Average of 1:1 Sits Required Column Labels | -1

Row Labels - |ED MS6& ms7 Ms8 PICU Grand Total

0300-0700 3.983108108 3.044701987 1870431894 1.102040816 0.4 2097090663
0700-1100 4124550164 4849673203 1898360656 1.118243243 0425087108 2517678452
110:0-1500 4113861386 4.849673205 1861386139 0.993197279 0403508772 2482562039
1500- 1900 4240024002 4866448511 152384106 0996621622 0.409961686 25609258
1900-2300 4085808581 4.68627451 18125 1067567568 0.363636364 2467752885
2300-0300 4052459016 3.050524675 1862745098 1.101351351 0.3937282323 2.120173103
Grand Total 4.100550964 4.226158038 1.871499176 1.063205418 0.399640503 2.373934022
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Figure 6: Average PCP Requirements in each Department

Model 1: What is the optimal staffing required to meet behavioral health patient sitting

needs across all shifts?

Along with the inputs for the sitter requirements pivot table, this model takes inputs of
costs per shift for PCPs, PCAs, and RNs. These values were determined using job descriptions
from CCMC. Inputs for the maximum achievable number of hires for each staffing type by shift
are also included. These are critical due to the high turnover of PCPs and the difficulty of hiring
them at the quantity the hospital may need. The final inputs for this model are the bedside
coverage targets by time block. Currently, those targets are set to 100%. All of these inputs are
dynamic in the model and can be changed at any time to either run different scenarios or match

impacts of change within the hospital.

Model 2: What is the minimum shortage of patient sitters that can be optimally achieved

given the current staffing model?

Like the first model, this model also pulls the sitter requirement inputs from the pivot
table. In addition to that, inputs for the current available staffing by time block are required. The
decision variables for this model are the staffing allocations by time block and by department.
These decision variables of staffing allocations then have the current staffing availability by their
respective department and time block subtracted from them. This yields a value representing the
number of PCPs short during that time block and in that department in order to meet bedside

coverage needs.

Both of these models run on the Simplex LP solver engine through the free excel solver
add-in. One of the key aspects of the models that were critical to this methodology is the ability
to alter inputs and/or change data sources and rerun the model with ease. The hospital
environment, especially in the behavioral health floors, is constantly changing, and these
modeling methodologies need to be able to adapt to those changes. For this reason, all inputs are
dynamic and do not require any changing of the solver model when altered. The models can
simply be rerun with the new inputs and will give the new solution. Additionally, it is important
to note that both models do have the possibility of infeasibility. This is a reasonable output for

either of them, and it indicates that with the current loaded staffing and/or bedside coverage
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goals, the constraints cannot be met. Therefore either staffing resources should be raised, or

bedside coverage goals should be lowered.
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4.0 Results

This section discusses the outcomes of the ARIMA Forecast, LIAT Testing Model, and
the Staffing Optimization Model. In short, the ARIMA model proved to be accurate and
dependable when we tested it with a wide range of data over different time periods,
outperforming CCMC’s manual forecasts in 90% of the tested metrics. The LIAT Testing Model
successfully predicted the inventory of the LIAT tests, increasing the speed and quality of care at
CCMC. The Behavioral Health Staffing Optimization Model was able to determine the cost
impacts and optimal staffing allocations in order to meet bedside coverage goals or behavioral

health patients.

4.1 ARIMA Results

The ARIMA model that the team developed produces a forecast each time the model is
run for a variable. This section of the paper will share how and why the model was developed,
including sample code. The length of the forecast, i.e., the number of time units that the model
predicts a value, is specified by the end-user of the model. The end-user can even request that the

model makes multiple forecasts, each of different lengths if they wish to do so.

The ARIMA Model was tested on the ten metrics that CCMC forecasts. The results of the
ARIMA forecasting can be summarized in Table 3. The parameters of the volumes were
calculated automatically by testing every combination for the lowest amount of error on the most
recent 20% of data. For instance, for ED visits, the best optimal parameter was (1,1,1), since
these parameters produced a forecast that minimized the error over the most recent 20% of data
available. The accuracy was determined by calculating the Normalized Root Mean Squared Error
(NRMSE). For more information, see Figure 9. For instance, ED Visits had 5%, 6%, and 14%
NRMSE corresponding to 4, 6, and 12 weeks of forecasting, respectively. As shown in Table 3,

the NRMSE traditionally increases over time.
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Table 3: ARIMA NRMSE Extended Forecasts and Parameters

Volumes ~ |Parameters |4 Week Forecast| ~ 6 Week Forecast| v | 12 Week Forecast =
IP Census Days 10,1,1 4% 5% 7%
MICU, PICU & MS B IP Census Days 0,0,1 6% 6% 6%
All Other IP Census Days 8,1,2 1% 10% 159
Total Discharges 0,2,1 11% 9% 13%
ED Visits 1,1,1 5% 6% 14%
Clinical Support Appointments 6,0,1 9% 10% 15%
CCSG Appointments 4,1,2 9% 11% 14%
Total Appts 6,2,0 10% 9% 14%
Surgeries 6,0,0 138% 19% 22%
Behavioural Health 18% 15% 18%

To ensure that the ARIMA Model would have a positive impact on CCMC’s operations,
it was tested against CCMC’s manual forecasting technique, covered in section 2.4. Table 4
compares the accuracy of CCMC’s forecast and the ARIMA model. The cells highlighted in
green show a smaller NRMSE compared to CCMC. The cells highlighted in yellow represent a
margin of error similar to CCMC NRMSE. However, the red cell shows that the ARIMA model
was less accurate than CCMC for the Surgeries category. Overall, the ARIMA NRMSE was
lower than 90% of Connecticut Children’s forecast method’s NRMSE:s.

Table 4: ARIMA NRMSE Compared to Current State at CC. January 2021.

CC Pradiction Accuracy Update (just July 2020 and August 2020) ARIMA MEMSE, 3 Week Forecast Grest Dats Quality

IP Cansus Days 9%
MICU, PICU & MS 8 IP Census Day %
Al Other IP Census Days 14%
Tatal Dischargss 12%

ED Visits 13%
Clinical Support Appaintments %
CC5G Appointments 15%

Total Appts 16%
Surgeries 15%
Smaller RMSE Relatively similar NRMSE Greater NRMSE

The rest of section 4.1 will cover the basic functionality of the ARIMA model. For
demonstration purposes, the model was set to produce forecasts for 4, 6, and 12 weeks for the 1P
Census Days data point. Firstly, when an end-user has identified data that they would like to
forecast, it is important to get a feel for the data. Graphing the data and exploring its
characteristics is necessary. Figure 7 explores the data visually and prints out the date of each
data point.



print(series.head())

date = series.index

print(date)

datelist = []

datelist.append(date.strftime( '%m/%d/%Y").tolist())

print(datelist[@])
datelistl = datelist[@]
series.plot()
plt.show()

Figure 7: Look at the data: Grid Search Arima Parameterization.py

Now that the data is verified, it is time to identify the best P, D, and Q values for the
ARIMA model to fit the data. As explored in section 2.4, those values can be manually
identified. Manually identifying the P, D, and Q values is an important exercise. It teaches the
user a lot about the data and how ARIMA will make its forecasts. However, it is tedious and
manual. To speed up and improve the accuracy of the process, we have developed the Grid
Search Arima Parameterization.py script that automatically identifies the best P, D, and Q values

using a technique known as grid searching.

This evaluate_models function in Figure 8 from the Grid Search Arima
Parameterization.py script takes a range of P, D, and Q values and a dataset as an input. The
function will test each different combination of the P, D, and Q values. Whichever combination

best fits the dataset will be returned as an output of this function.

22



def evaluate_models(dataset, p_values, d_values, g_values):
dataset = dataset.astype('float32')
best _score, best cfg = float("inf"), None
for p in p_values:
for d in d_values:
for q in g_values:
order = (p,d,q)
try:
mse = evaluate_arima_model(dataset, order)
if mse < best_score:
best_score, best_cfg = mse, order
print('ARIMA%s MSE=%.3f' % (order,mse))
except:
continue
print('Best ARIMA%s MSE=%.3f' % (best_cfg, best_score))
return(best_cfg)

Figure 8:evaluate_models function: Grid Search Arima Parameterization.py

Calculating the error of the model is an important part of testing this model, identifying
the best P, D, and Q values, as well as trusting the model’s forecast. The model’s error is
calculated using an error calculation known as the Normalized Root Mean Squared Error
(NRMSE). This calculation takes the square root of the mean squared error of the actual versus
predicted values of the testing dataset and then normalizes that value with the mean of the whole

dataset.

error = (sqrt(mean_squared_error(testl, predictionsl)))/(s.mean(X))

Figure 9: Normalized Mean Squared Error formula:

Once the user has explored the data, found the best P, D, and Q values, and the error
calculation, it is time to evaluate the ARIMA model on the current data and develop a forecast.
To evaluate the ARIMA model, the data is first split into a training and a testing set. The training
set of data ARIMA will use as historical data. The model will fit the ARIMA model specified by
P, D, and Q to this historical training data. The model selects the oldest 80% of the input data as
the training data.

The testing set of data allows the user to evaluate how well the model’s forecasts will

have performed if it were making forecasts over that time period. The testing set of data is the
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most recent 20% of the input data. The model uses a for loop to cycle through the test set of data.
For the sake of example, assume a forecasting length of 4 weeks, where weeks is the unit of
time. First, the model is defined using the P, D, and Q parameters, and then it is fitted to the
training set of data. Next, a 4-week forecast is created. In the next iteration of the for loop, the
model is again fit to the training set of data, plus the first four weeks of the testing set of data. A
4-week forecast is created again, and the for loop repeats in this fashion till the end of the

training set. See the evaluate models function in Figure 10.
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forecast = z

historyl = [x for x in traini]

predictionsl = list()

for tl in range(len(testl)//forecast):

for 11 in range(forecast-1):

if len(testl)/forecast != len(testl)//forecast:
testl.pop()

if t1==0:
modell = ARIMA(trainl, order=orderlist)
model fitl = modell.fit(disp=0)
outputl = model fitl.forecast(forecast)

yhatl = outputl[o]

yhatl = yhatl.tolist()

predictionsl.extend(yhatl)

obsl = testl[tl:tl+forecast:1]

historyl.extend(obs1)




modell = ARIMA(historyl, order=orderlist)
model fitl = modell.fit(disp=9)
outputl = model fitl.forecast(forecast)

yhatl = outputl[@]
yhatl = yhatl.tolist()

predictionsl.extend(yhatl)

obsl = testl[(tl*forecast):(tl*forecast)+forecast:1]

historyl.extend(obsl)

error = (sqrt(mean_squared _error(testl, predictionsl))) (s.mean(X))

Figure 10: Evaluate Models function: ARIMA Forecast.py

Each forecast is outputted as a CSV file. The file contains the actual values, predicted

values, and their percent difference for the variable over the test subset of data (most recent 20%
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of data). The predicted values of the variable over the forecast duration, as well as 60%, 70%,

80%, and 90% confidence interval values, are supplied as an output as well. See Figure 11 for

the 12-week forecast of IP Census Days.

A

1

2 0
3 1
29 27
30 28
E) 29
32 30
33 31
34 32
35 33
36 34
37 35
38 36
39 37
40 38
41 39
42 40
43 41
44 42
45 43

B
Date

6/20/2020
6/27/2020
12/26/2020
1/2/2021
1/9/2021
1/16/2021
1/23/2021

C
Actual
768
770
628
689
779
B84
816

D

E

E

G

H

)

K

L

M

Predictions Percent Difference Lower 60% Cl Upper 60% Cl Lower 70% Cl Upper 70% Cl Lower B0% Cl Upper 80% Cl Lower 90% Cl Upper 90% CI

784778072
779.31B655
788608157
665.980239
710.799358

74541743
836.255169
886.872936
886.693833
861.161354
873.594567
873.125865
854.376766
830.306863
807.688271
806.205969
800.065039
796.744134
792.389501

0.021846448
0.01210214%
0.255745473

-0.033410393
-0.087548962
-0.156767614
-0.087053308

8457217104
834.5136506
B03.2771565
812.4598009
808.7388514
787.1604191
762.0000214
737.9744105
736.0B05006
729.8B49684
726.5265938
722.1296549

928.0241611
938.8740148
919.0455524
9347293337
9375128789
9215931121

B98.613705
877.4021308
876.3314382
870.2531087
866.9616738
862.6493465

836.1863341
8224353743
789.8785575
798.3087848
793.8350295
771.6016845
746.1B8B672
7218375702
719.8483843
713.6392875
710.2731656

705.866434

9375455373
9509522911
9324441513
948.8803498
9524167008
937.1518466
51442485592

893.538971
8925635545
886.4987896
8832151021
8789125674

8242112357
B07.2381448
773.0200606
780.5035752
775.0826184
752.0252437
726.2948248
701.5337405
699.4246755
693.1985113
689.8226414
685.4035885

945 5346357
966.1495206
94593026483
966.6855594

971.169112
956.7282874
9343185016
913.8428008
9129872633
906.9395658
903.6656262
8993754129

B06.4475145
784.7135613
748.0332285
754.1135725
747.2887202
723.0100095
696.8088572
671.4404062
669.1536624
662.9022018

659.511884

655.074569

967.298357
988.6741041
974.2894804
993.0755621
998.9630101
985.7435217
963.8048692

943.936135
943.2582764
937.2358753
933.9763836
929.7044324

Figure 11: ARIMA CSV 12 Week Forecast Output - Total IP Census Days. Dates 7/4/2020 to 12/19/2020 hidden

With this CSV output, an analyst can easily make a very informative graph, displaying

the model’s predictions, actual values and forecast with confidence intervals over time. The

current forecasting efforts at CCMC use a similar graphing format to the one displayed below.

This illustration would be the primary means of sharing the forecast with senior leaders and

management. All other graphs for each metric have been placed in Appendix A.
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Figure 12: ARIMA Graph Output - IP Census Days

Lastly, the forecast error for the specified forecast lengths is outputted as a .csv file. This
allows the analyst to understand the reliability of the forecast as its length increases. See Figure
13:

A B C D
1 Varible Normalized Root Mean Squared Error Forecasted Weeks
2 0 IP_Census.csv 0.08326091 -
3 1 IP_Census.csv 0.053729995 6
4 2 IP_Census.csv 0.044751272 12

Figure 13: Error Output - IP Census Days

From this error output, we see that the NRMSE actually decreases as the forecast length
increases. This is not expected, as we would assume that the error would increase as the length
increases. This indicates that the IP Census Day’s variability is easier to model with ARIMA in

12-week slices than with 4-week slices.

4.1 LIAT Inventory Model

The LIAT test model was created to help understand the forecasted usage of LIAT tests
and what timing and patient groups would be applicable for usage. As described in Chapter 3 of
this report, the data inputs were collected through available dashboards and communication with
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the supply chain team. Historical data on the volume of inpatients, ED direct admits, behavioral

health, and urgent OR patients for the past three years were used as the baseline for the model.
These historical values were multiplied by modifying values based on expert research to
determine forecasted demand. The team then calculated the standard deviation of this forecast

and created additional forecasts for high and low demand scenarios based on that. The high

demand scenario was representative of 2 standard deviations above the forecasted values, and the

low demand scenario was representative of 2 standard deviations below. Figure 14 shows the

model results.

Weekly Demand and Supply

High

Forecast

Low

— LI

11/1/2020  12/1/2020 1/1/2021 2/1/2021 3/1/2021 4/1/2021 5712021 6/1/2021 7/1f2021 Bf1/2021 9/1/2021

Figure 14: LIAT Model Demand Output

The yellow line Figure 14 is representative of the 200 weekly units of supply that the
hospital receives. The orange is the base forecast calculated by the model. The gray line is two
standard deviations below that forecast, and the blue line is two standard deviations above that
forecast. The green line shows the actual LIAT usage each week. This graph was a promising
sign for the team because it demonstrated that LIAT usage was occurring within the bounds of

our forecast and commonly centered around the average forecast (orange line). Additionally, it

100 Suppty

showed that aside from potentially a few weeks in the peak of January and February, the hospital

is expected to use less than the 200 per week ration of LIAT tests.

A secondary output of the analysis was graphs of the LIAT inventory level. The LIAT
inventory started at 2,560 during the week of 11/15/20, when the first LIAT tests were given.

From there, the model creates three graphs, one for each demand scenario, that show the LIAT

inventory over time. These graphs can be seen in Figures 15-17 and are labeled for the demand

scenario they represent (high medium, or low).
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Figure 15: LIAT Model High Demand Inventory Forecast

LIAT Inventory - Forecast Demand

2000
1000

0
R S AT A A A A O g
A N

oL STV

Figure 16: LIAT Model Medium Demand Inventory Forecast



LIAT Inventory - Low Demand

Figure 17: LIAT Model Low Demand Inventory Forecast

In all three graphs, the LIAT inventory eventually is increasing, and even in the high
demand scenario, it never dips below 2000 available tests. This information allowed the LIAT
team at Connecticut Children’s to expand LIAT tests to a larger audience of patient groups. They
are currently analyzing which patient groups they can expand to and what those expansion
volumes look like. The model can be adjusted dynamically to show the impact that adding
certain patient groups has and to verify that the added patient groups will not deplete inventory

volumes.

4.3 Behavioral Health Staffing Optimization Model

Deliverables for the behavioral health staffing portion of the project were based around
two staffing optimization models, each with its own distinct audience. Both models used data
inputs from the RN Acuity live spreadsheet the hospital uses for staffing behavioral health units
and excel solver optimization to produce optimal staffing requirements and allocations, as is
described in Chapter 3. The first version of the model was geared toward leadership and staffing
managers. The main question the model aimed to answer was “What is the optimal number of
staffed PCPs, PCAs, and RNs required to meet behavioral health patient sitting needs across all
shifts?”” The objective function was created and is described as the sum product of staffing costs
and the staffing quantities used across the shifts. This objective function is minimized by the
excel solver model by changing the decision variables. The decision variables are the staffing
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requirements by staffing type, labeled as Max Staffing by Shifts. The following constraints were

set on the model:

e Decision variables (staffing numbers) cannot be greater than the maximum

achievable staffing for each staffing type and time block

e Decision variables (staffing numbers) must be positive whole numbers

e Bedside coverage (calculated as the total staff divided by the total sitter

requirements) must be above the bedside coverage targets for each time block

The solver model is then run and changes the decision variables of staffing requirements to reach

the minimum staffing cost that would still meet all constraints set by the model.

The modeled solution for minimum cost for the average weekday scenario for a recent

month can be seen in Figure 18. Gray highlighted cells represent outputs and blue highlighted

cells represent inputs.

Model Goal - This model attempts to show the minimum staffing cost required to meet 85% compliance to bedside based on various staffing constraints |

Constraints

Staff are whole numbers

Staff are >0

Max Staffing by Shift

PCPs PCP Double PCA Extra RM Extra

2 1 9 8

3 1 ] 8

3 1 9 8

4 1 8 8

5 1 ] 8

2 1 8 8

1% & 50 48|

Bedside Coverage

100.89% = 100%
101.93% = 100%
100.02% = 100%
100.59% = 100%
101.35% = 100%
103.59% = 100%

Objective Objective Cost Inputs

Staffing Cost | 510,976.00 PCP PCP Double PCA Cost RN Cost

72 144 76 128|

Decisions - Staffing Required
Black PCPs PCP Double PCA Extra RN Extra
0700-1100 2 1 9 B2
1100-1500 3 1 B B
1500-1900 3 1] 9 B
1900-2300 4 1] 8 8
2300-0300 5 1] B 4
0300-0700 2 1 B B
Sum 15 3 50 42]
Avg Requirements

Block ED MSE MS7 MS2 PICU PCPs
0700-1100 6.1 6.7 43 26 02 19.8|
1100-1500 6.1 6.7 42 25 02 19 6|
1500-1900 6.4 6.8 42 24 0.3 20.0|
1900-2300 6.3 6.9 41 23 0.3 199
2300-0300 6.1 3.8 42 25 0.2 16.8|
0300-0700 5.8 3.7 4.2 25 0.2 16.4
Sum 36.8 346 25.1 147 13 1125
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Figure 18: Average Weekday Costs Recent Month

As can be seen in Figure 18, the optimal solution where all bedside needs are met yields a
staffing cost of $10,976 per weekday. The gray matrix shows the optimal staffing requirements
based on the hiring constraints. There are also slicers in the model for the month, grid type
(weekend or weekday), and the actual dates. These slicers control the pivot table that pulls
average sitter requirements and can be dynamically adjusted to rerun the solver problem with

different input values. They are shown here in Figure 19.

T
[ Jun ][ Aug ][ Sep ][ ot ] o
[ Nov ][ Dec ]

¥ O O
Date
All Periods DAYS
AN 2021
4 . 4 - O
4 [
O O O

Figure 19: Input Slicer Filters

This solution above focuses on meeting the average sitter requirements on weekdays.
Figure 20 below shows the same scenario but for sitter requirements on weekends, resulting in a
staffing cost of $11,088 per weekend day.
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| Maodel Goal - This model attempts to show the minimum staffing cost required to meet 85% compliance to bedside based on various staffing constraints |

Objective Ohbjective Cost Inputs

Staffing Cost | 511 028 00 PCP PCP Double PCA Cost EN Cost

72 144 76 128|

Decisions - Staffing Required
Block PCPs PCP Double PCA Extra RN Extra
0700-1100 2 1 9 B
1100-1500 ] 1 B B
1500-1900 3 1] 9 B
1900-2300 4 1] 8 7
2300-0300 5 ] 2 5
0300-0700 2 1] 2 B
Sum 19 2 50 44
Avg Requirements

Block ED MSE MS7 MS8 PICU PCP=
0700-1100 E.E.l 6.7 4.0 2.1 0.5 19.9)
1100-1500 6.6 6.6 40 21 0.5 19.8|
1500-1900 70 5.8 432 16 0.2 19 8|
1500-2300 6.6 5.4 43 23 0.1 18.7]
2300-0300 6.8 4.0 4.0 2.3 0.3 17.4]
0300-0700 6.6 41 40 23 0.3 17.3
Sum 40.1 32.6 24.5 13.8 19 112.9]

Constraints

Staff are whole numbers
staff are >0

Max Staffing by Shift

PCPs PCP Double PCA Extra RN Extra

2 1 9 8

3 1 -] 8

3 1 9 8

4 1 g 8

5 1 g 8

2 1 ] 8

19 3 50 48]

Bedside Coverage

100.45% = 100%
100.90% = 100%
101.19% »= 100%
101.45% = 100%
103.67% = 100%
103.98% = 100%

Figure 20: Average Weekend Costs Recent Month

These scenario model outputs showing average weekday and weekend requirements will

allow CCMC to determine where they should focus on hiring needs. With that being said, there

are hundreds of combinations of inputs that could be altered to produce many different results

and outputs. That fluidity is a key aspect of the model as a whole and allows for comparing

different scenarios. One such comparison that the team performed for CCMC was to look at the

cost impact of being able to fully hire patient care partners so that no extra PCAs, RNs, or

double-time PCPs need to be pulled away from their roles to sit with patients. The results of that

scenario for weekdays and weekends can be seen in Figure 21 and Figure 22.

34



Maodel Goal - This model attempts to show the minimum staffing cost required to meet 85% compliance to bedside based on various staffing constraints |

Constraints

Staff are whole numbers
Staff are >0

Max Staffing by Shift

Objective Objective Cost Inputs

Staffing Cost 5 8208.00 PCP PCP Double PCA Cost RN Cost

72 144 76 128

Decisions - Staffing Required
Block PCPs PCP Double PCA Extra RN Extra
0700-1100 20 o 1] 0
1100-1500 20 o 1] 0
1500-1900 ZD.I 1] 1] 1]
1900-2300 20 1] 1] 1]
2300-0300 17 1] 1] 0
0300-0700 17 0 0 0
Sum 114 0 0 0
Avg Requirements

Block ED M36 M7 M5B PICU PLCPs
0700-1100 6.1 6.7 43 26 0.2 19.8
1100-1500 6.1 6.7 42 25 0.2 13.6
1500-1900 6.4 6.8 42 24 0.3 20.0
1900-2300 6.3 6.9 41 2.3 0.3 15.9
2300-0300 6.1 38 42 25 0.2 16.8
0300-0700 5.8 3.7 42 2.5 0.2 16.4
Sum 36.8 346 25.1 147 13 1125

PCPs PCP Double PCA Extra RN Extra

30 1 9 B

30 1 ] B

30 1 9 B

30 1 ] B

30 1 ] B

30 1 B B

180 & 50 48|

Bedside Coverage

100.89% = 100%
101.93% = 100%
100.02% = 100%
100.59% = 100%
101.35% = 100%
103.5%% = 100%

Figure 21: Average Weekday Costs Recent Month with all PCPs
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| Model Goal - This model attempts to show the minimum staffing cost required to meet 85% compliance to bedside based on various staffing constraints |

Objective Objective Cost Inputs Constraints
Staffing Cost | & B,280.00 PCP PCP Double PCA Cost RN Cost Staff are whole numbers
72 144 76 128] Staff are =0
Decisions - Staffing Required Max Staffing by Shift
Black PCPs PCP Double PCA Extra RN Extra PCPs PCP Double PCA Extra RN Extra
0700-1100 20 0 0 0 30 1 9 B
1100-1500 20 Dl D.l 0 30 1 ] B
1500-1900 20 0 0 0 30 1 9 B
1900-2300 19 0 0 0 30 1 ] B
2300-0300 1B 0 0 0 30 1 8 B
0300-0700 18 0 0 0 30 1 8 B|
sum 115 0 0 0 120 6 50 48]
Avg Requirements
Block ED MSE MS7 MS2 PICU PCPs Bedside Coverage
0700-1100 6.6 67 40 21 0.5 199 100.45% == 100%
1100-1500 6.6 6.6 40 2.1 0.5 19.8 100.90% = 100%
1500-1900 7.0 5.8 42 26 0.2 128 101.19% == 100%
1900-2300 6.6 5.4 43 23 0.1 18.7 101.45% »= 100%
2300-0300 6.8 4.0 40 2.3 0.3 174 103.67% = 100%
0300-0700 6.6 41 4.0 2.3 0.3 17.3 103.98% = 100%
Sum 40.1 32.6 245 13.8 15 1129

Figure 22: Average Weekend Costs Recent Month with all PCPs

For weekdays, the total cost per day is reduced from $10,976 to $8,208, which is a total
savings of $2,768 per day, translating to roughly $719,680 per year. For weekend requirements,
the cost is reduced from $11,088 to $8,280, which is a total of $2,808 per day, translating to
$292,032 per year. Therefore, the total cost savings for fully hiring PCPs and avoiding the use of
PCAs or RNs would accumulate to $1,011,712 per year. This cost savings assume that PCAs,
RNs, and double-time PCPs are treated as an additional cost when in actuality, they are
performing these duties on top of their usual roles. For that reason, a change like this would not
save CCMC that much money directly but rather free up that many dollars’ worth of resources to
return to performing the responsibilities they were hired for. Additionally, these hiring volumes
are unrealistic given the high turnover rate for PCPs. In that sense, the cost association provided
is an example of what potential savings could be in an ideal state, but several other factors and
analyses would be required to perform an in-depth and accurate cost analysis.

This is an example of just one type of scenario analysis that can be performed with this
model. Different scenarios that could be run include (but are not limited to) changing bedside
coverage targets, changing sitter requirements based on forecasted growth, or applying weights
to the different time blocks based on typical volumes. All of these could be dynamically changed
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and rerun with the solver model without having to make any development changes to the model
itself.

The second version of the model focuses on the question, “What is the minimum shortage
of patient sitters that can be optimally achieved given the current staffing model?” The results
from this model are meant to be used on a daily basis. As described in the methodology, the
model takes in the sitter requirements and staffing constraints and assigns staff to departments in
order to achieve the minimum staffing shortage while applying volume-based weighting. The use
case for this model is therefore focused on operations rather than leadership and hiring managers.
The objective function in this model is a minimization of the weighted shortages by department
and time block. It is calculated as the sum of squares for all shortages by department. The solver
model optimizes that value by adjusting staffing allocation decision variables labeled “Decisions

- Staffing Required.” The model constraints are as follows.

e The sum of staffing by time block must not exceed the user constraint of available
staffing for that time block

e All shortages are greater than or equal to 0 (no negative shortages)

e All staffing allocations must be whole numbers greater than or equal to 0

Output based on sample data from a recently given day can be seen in Figure 23.
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| Maodel Goal - This model attempts to show the optimal staffing allocation to minimize the weighted shortage of PCPs by department |

Ohjective Constraints
sumsq Weighted Short 103.00
Actual Short 47| Short>=0 0
Decisions - Suggested Staffing Allocation Available Staffing by Shift
Block ED MSE MS7 MSEB PICU PCPs Sum PCPs PCA Extra RN Extra
0700-1100 2 5 L] o 0 7= 7 5 2 0
1100-1500 3 5 0 0 0 Bl= B & 2 0
1500-1900 1 5 1 o 0 7= 7 5 2 0 [
1900-2300 2 4 1 1 0 Bl= B & 2 0
2300-0300 4 2 2 2 0 101= 10| B 2 0
0300-0700 4 2 1 1 0 Bl= B i) 2 0
Sum 16 23 5 4 0 48] 48] 36 12 0
# PCPs Short PCP Requirements
Block ED MS6 M57 M58 PICU Total Block ED MS6 M57 MSE PICU |PCPs
0700-1100 3 3 3 2 0 11] |0700-1100 5 B 3 2 0 18|
1100-1500 2 3 3 2 0 10] |11100-1500 5 B 3 2 0 18|
1500-1900 2 1 2 2 0 71 11500-1900 3 & 3 2 0] 14
1900-2300 2 2 2 1 0 7| |1900-2300 4 ] 3 2 0 15
2300-0300 1 2 1 1 0 5| |12300-0300 5 4 3 3 0] 15
0300-0700 1 2 2 2 0 7| |0300-0700 5 4 3 3 0 15
Aye 11 13 13 10 0 47] |5um 27 36 18 14 0 95

Figure 23: Staff Shortage Optimization Output for a Given Day

As can be seen in Figure 23, the minimum sum of squares for shortages with the given

constraints on staffing and sitter requirements was 103, with the actual shortage being 47 PCPs.

This value was achieved by the staffing allocations matrix shown in gray. Additionally, the

shortages by department and by time block are shown in the #PCPs Short matrix. They are

conditionally formatted where green represents no shortages, yellow represents a shortage of 1,

and red represents any shortage greater than 1. This kind of analysis could be replicated for

multiple days or over the data set as an average as well. It allows for CCMC to see where their

resources should be allocated in order to match patient volumes and what the shortages for each

area are. The data from each day could also be manually saved and analyzed separately to

examine typical shortages over an extended period of time.
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5.0 Recommendations

The recommendations section discusses the recommendations that the team made to
CCMC in regard to ARIMA forecasting, LIAT testing, and behavioral health staffing. In short,
the ARIMA forecast recommendations relate to a proposed implementation plan and process
flow for the ARIMA demand forecasts. The LIAT testing recommendations involve expanding
the eligible patient groups for testing and looking to use this model as a template for future
inventory and demand challenges that are similar in nature. The behavioral health staffing
recommendations involve further expansion of the prototyped optimization models in order to

dig deeper into optimizing behavioral health staffing to meet patient needs at a minimum cost.

5.1 ARIMA Demand Forecasting

At the time of writing, the ARIMA model has been developed, tested, and approved by
the Enterprise Analytics Team as an accurate forecasting method. However, it currently consists
of two python scripts and a handful of SQL queries, which still require some manual effort to run
(2 hours a forecasting cycle). We would recommend that an end-to-end forecasting system is
implemented, requiring limited human interaction to run the ARIMA model. In this section, we
present the end-to-end system that we have prototyped, as well as include some implementation
steps. We believe the recommendations that follow in this section are well worth Connecticut

Children’s Enterprise Analytics Team’s time and energy.

In the first phase of the model’s use, we recommend only using it on the ten variables that
we developed the model for. This will provide a small subset of data to test the implementation's
functionality. In order for the model to provide value to CC, the system should run the model
automatically on a specified interval. The system will have a primary end-user, denoted as an
analyst, as well as a model maintainer. The analyst will provide the inputs as needed, and the
model maintainer will implement the system and fix any issues that arise. For a full description
of the responsibilities of both the analyst and the model maintainer, see Appendix A. Figure 24
illustrates the business process and information flow for the implemented system. Note the
ARIMA Model is denoted as ‘Model.’
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Figure 24: Integrating the Model into CCMC Processes
Data to forecast: the data of interest. Also commonly referred to as a variable.
Forecast Length: number of units of time that a value is predicted.

Forecast Interval: the frequency that a new forecast is generated.
Frequency of re-training: how often the model’s re-parameterized

For each data .csv (data value we want to forecast) there will be a separate ETL script and
SQL Query/View. The analyst will decide the forecast length, forecast interval, and frequency of
re-training for that data .csv. The ETL job will first run the Grid Search ARIMA
Parameterization.py with the data .csv and forecast length as inputs. Once this script has run, the
output is a .csv with the best P, D, and Q values. Then, the ARIMA Forecast.py script should be
run, with the P, D, and Q values, data .csv, and range of forecast length as inputs. This will

output .csvs for each forecast length containing the forecast.

Once the model has output a forecast, we believe that the analyst should then modify the
forecast as they see fit. After all, the ARIMA model does have its limitations. The model only
knows what has happened in the past and uses that information to predict the future. Connecticut
Children's Enterprise Analytics department currently gets market research information from
external sources, as well as information from healthcare experts, about potential health care
trends in the future. After extensive conversations with an analyst and manager in the Enterprise
Analytics Department, the team believes that the health care trends should be included in the
forecast. Since they would be impossible to integrate into the model, the analyst would be

responsible for adjusting the forecast using the external healthcare trend information.

However, modifying the forecast does make it more difficult to track the error of the

forecast over time. The current system tracks the error of the model each time the model is run.
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Tracking the model’s error over time should be done by the system. Similarly, tracking the
forecast’s error after the analyst has adjusted it should also be done by the system to give the

analyst an understanding of the impact of their forecast adjustments.

As shown in section 4.1, the output of the model can be graphed to share with others.
Visualizing the forecast is a very important step, as raw numbers do not convey much for regular
audiences. If possible, we believe that the visualization could also be automated and published in
a Business Intelligence report. This would allow the model to be viewed more frequently by

more Connecticut Children's personnel.

There is quite some debate as to whether or not the Grid Search ARIMA
Parameterization.py should be run each time a new forecast is produced, or if the P, D, and Q
values should be saved and reused until the error of the forecasts degrades a substantial amount.
Since the Grid Search ARIMA Parameterization.py uses the most recent 20% of data to identify
the best P, D, and Q values, it would be sensible to re-parameterize each time. However, the Grid
Search ARIMA Parameterization.py script uses a lot of memory and performance, so it may not
be feasible to run it often. Hence, this debate will continue, but the error should be monitored,

and re-parameterization should occur as often as possible.

5.2 LIAT Inventory

Based on the results of the LIAT inventory model, the team has several
recommendations. The first recommendation was made with the LIAT inventory management
team. Since there were plenty of available LIAT tests and inventory did not appear to be at risk
in either the short or long term, the team was able to recommend expansion to additional patient
groups. Expanding to other patient groups will allow the hospital to process some patients more
rapidly and with fewer restrictions due to the quick LIAT results. This allows for more available
space and fewer staffing requirements in order to process patients. Currently, the LIAT
management team is analyzing which patient groups are best to expand to base on need and

volume, and they can use the current model to aid their analysis.

Additionally, the modeling process using this methodology provides a good foundation

for future modeling efforts. In the future, situations like LIAT testing can now be analyzed using
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similar forecasting techniques and models. This can be especially applicable for different types
of PPE or other inventory challenges within the hospital. The LIAT model could even be used as
a template and would likely require only slight modifications to adapt to a different scenario. The
key recommendation this team can make is to continue modeling in a dynamic and automated
way similar to the LIAT model. The flexibility of this type of modeling provides is critical for

scenario analysis in the ever-changing environment of healthcare.

5.3 Behavioral Health Staffing Optimization

There are several key recommendations for the behavioral health staffing model that the
team developed as well. The first, and broadest, is that analysis efforts like this need to be
expanded further for behavioral health. The patient volumes continue to grow. Staffing and space
requirements need to match that growth where possible. Where that isn’t possible, further
analysis and continuous improvement efforts will be critical for the shortages. Specifically, the
results from the first version of the model provide a clear recommendation that hiring sitters to
meet demand has the potential to be a critical cost savings effort for the hospital, with potential
yearly savings of about $1,011,712. It also ensures PCAs, and RNs are able to perform their
normal responsibilities without needing to fill in as PCPs. They also should carefully examine
their current staffing compared to what the optimized staffing should be in order to potentially
shift resources where needed. This could be especially beneficial when looking at weekday vs.
weekend inputs. Further examinations and scenarios related to other factors such as PCP

employee turnover rate could also be very beneficial to optimizing behavioral health costs.

On the operations side, the team recommends that continuous improvement experts in
behavioral health begin to use the model to support operational analysis. They can use the model
on a daily basis to determine the optimal allocation of PCP resources based on patient volume.
This would allow them to prove the resources are being split as fairly as possible between each
department. They can also use this model to analyze the shortages over a longer period of time to

examine where the most common gaps are and identify potential solutions.

Finally, a complete and thorough implementation of these models would be an extremely

beneficial future project. They are set up to be used for running scenarios and prototyping to aid
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in decision-making. However, if they could be fully integrated into the leadership and operations
decision-making processes, they could make significant impacts on many decisions. Having a
resource comfortable in the use of excel solver to make more complex changes to the model
would be an extremely valuable asset to both the leadership and floor operations teams. These
efforts would be a great opportunity for a future capstone project for other students from

Worcester Polytechnic Institute or another academic organization.
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6.0 Conclusion

The project team developed analytical tools in three major areas for CCMC: Demand
Forecasting, LIAT Testing Inventory, and Behavioral Health Staffing. The ARIMA Demand
Forecasting provided CC with a fully automated forecasting system. Alongside data enterprise
experts at CCMC, the team developed and documented a forecasting methodology for ten key
metrics. The model uses the ARIMA methodology to provide weekly forecast volumes for a
given data value. The outputs are .csv files which can be adjusted by data analysts and experts
based on market trends and other information before being put into graphical displays. Different
forecast ranges based on confidence intervals are included as well to capture the impact of
variability. Overall, the ARIMA methodology and modeling that the team has been able to
provide will serve as a baseline for data analysts for reporting variable forecasts, providing
significant time savings from the manual process they were using prior. The effort itself is

expandable to other variables if the need arises.

For LIAT testing, the team was able to provide a forecasting model that could predict
patient volumes and compare them to the supply and inventory of LIAT Tests. The model uses a
fixed, rationed supply of tests and patient volumes from the four patient groups currently
receiving the tests. The model results showed that the patient volumes consistently stayed below
the supply of 200 LIAT tests per week. Given the preliminary stockpile of inventory and demand
for tests being below weekly supply, the team recommended that LIAT tests extend to additional
patient groups. The CCMC LIAT team is currently using the model to analyze which groups that
tests should and can be expanded to without depleting inventory. LIAT testing will eventually
become much less of a critical factor in the hospital, so the model itself will not require long-
term automation or implementation. It can be used as a template to expand to other resouces such
as PPE.

The behavioral health staffing optimization model provided critical insights into the
current state of staffing Patient Care Partners (PCPs) in the behavioral health units of CCMC.
PCPs sit with behavioral health patients to ensure safety and proper care. The solver optimization
models aimed to answer two questions. The first was “What is the optimal number of staffed

PCPs, PCAs, and RNs required to meet behavioral health patient sitting needs across all shifts?”
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The team was able to use the model to provide recommendations for the optimal staffing of PCPs
and show the cost impacts of using other roles such as PCAs and RNs to cover typical PCP
duties. The second question the models aimed to answer was “What is the minimum shortage of
patient sitters that can be optimally achieved given the current staffing model?”” The team built a
model that answers this question by taking inputs for current staffing and showing the optimal
allocation of those resources to various departments. This model could be implemented and
automatically tied to the live PCP requirements spreadsheet and used as a daily planning tool for
the behavioral health floors. That implementation process is outside the project scope but could

be a valuable future project.

Overall, the analytical and modeling efforts in all three of these areas highlighted the
value of industrial engineering and analytical tools in making decisions within the hospital. In all
three areas, the models produced outputs that impacted choices made within the hospital.
Additionally, the project was able to show several of the opportunities that exist within CCMC
for this type of work. This project team merely scratched the surface of the current analytics
technology. Full-time industrial engineers or comparable full-time equivalents could
significantly impact these projects and expand their impact. Being able to make decisions based
on automated analytical tools like the ones in this project will continue to positively impact the

hospital and its quality of care it can provide to its patients.
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7.0 Appendices

7.1 Appendix A - ARIMA Python Scripts

Grid Search ARIMA Parameterization.py

import pandas as pd

import statistics as s

from pandas import read csv

from datetime import datetime

from pandas import DataFrame




pandas import DatetimeIndex

statsmodels.tsa.arima_model import ARIMA

matplotlib import pyplot as plt
sklearn.metrics import mean_squared_error
pandas.plotting import autocorrelation_plot

from math import sqrt

import numpy as np

import csv

import warnings as warnings

from statsmodels.tsa.stattools import adfuller

from statsmodels.graphics.tsaplots import plot_acf, plot pacf

from datetime import date as d




def evaluate arima_model(X, arima_order):
X = series.values

size = int(len(series)*

train, test = X[9:size], X[size:len(X)]

test = test.tolist()

history = [x for x in train]

predictions = 1list()

forecast =

for t in range(len(test)//forecast):

for o in range(forecast-1):




if len(test)/forecast != len(test)//forecast:
test.pop()

if t==0:
model = ARIMA(train, order=arima_order)
model fit = model.fit(disp=0)
output = model fit.forecast(forecast)

yhat = output[@]

yhat = yhat.tolist()

predictions.extend(yhat)

obs = test[t:t+forecast:1]

history.extend(obs)

model = ARIMA(history, order=arima_order)
model fit = model.fit(disp=0)
output = model fit.forecast(forecast)

yhat = output[@]
yhat = yhat.tolist()




predictions.extend(yhat)

obs = test[(t*forecast):(t*forecast)+forecast:1]

history.extend(obs)

error = (sqrt(mean_squared_error(test,
predictions)))/(s.mean(X))
return error

def evaluate models(dataset, p_values, d_values, gq_values):
dataset = dataset.astype('float32')
best _score, best_cfg = float("inf"), None
for p in p_values:
for d in d_values:
for g in q_values:
order = (p,d,q)
try:
mse = evaluate_arima_model(dataset, order)
if mse < best_score:
best score, best cfg = mse, order
print('ARIMA%s MSE=%.3f' % (order,mse))
except:
continue
print('Best ARIMA%s MSE=%.3f' % (best_cfg, best score))
return(best_cfg)

def parser(x):




return datetime.strptime(x, '%m/%d/%Y")

csvs = 'G:\\WPIMQP2020\\ARIMAModels\\ARIMANEW 1 25
2021\\IP_Census.csv'

errorlist = []
variablenamelist = []
orderlist = []

variablesplit = csvs.split('\\")
variablename = variablesplit[-1]

variablenamelist.append(variablename)
series = pd.read_csv(csvs, parse_dates=[9], index_col=0,
squeeze=True, date_parser=parser)

print(series.head())

date = series.index

print(date)

datelist = []
datelist.append(date.strftime('%m/%d/%Y").tolist())
print(datelist[@])

datelistl = datelist[©]

series.plot()

plt.show()




p_ValueS [ > > ) > ) >

d_values = range(9, 3)

g_values = range(9, 3)

warnings.filterwarnings("ignore")

bestorder = evaluate_models(series.values, p_values, d_values,
g_values)

print(bestorder)

orderlist.append(bestorder)




path = "H:\\'

print(variablenamelist)

print(orderlist)

pandaerrorlist = pd.DataFrame({'Varible': variablenamelist, 'P, D,
Q': orderlist})

print(pandaerrorlist)

elfilename = 'bestparametersanderror' + str(d.today()) + variablename
print(path+elfilename)

pandaerrorlist.to_csv(path+elfilename)

ARIMA Forecast.py

import pandas as pd




import statistics as s

pandas import read _csv

datetime import datetime

pandas import DataFrame

pandas import DatetimeIndex

statsmodels.tsa.arima_model import ARIMA

matplotlib import pyplot as plt
sklearn.metrics import mean_squared_error
pandas.plotting import autocorrelation_plot

from math import sqrt

import numpy as np

import csv

import warnings as warnings




from statsmodels.tsa.stattools import adfuller
from statsmodels.graphics.tsaplots import plot_acf, plot pacf

from datetime import date as d

def evaluate arima_model(X, arima_order):
= series.values

size = int(len(series)*

train, test = X[9:size], X[size:len(X)]

test = test.tolist()
history = [x for x in train]

predictions = list()




forecast =

for t in range(len(test)//forecast):

for o in range(forecast-1):
if len(test)/forecast != len(test)//forecast:
test.pop()

if t==0:
model = ARIMA(train, order=arima_order)
model fit = model.fit(disp=0)
output = model fit.forecast(forecast)

yhat = output[@]

yhat = yhat.tolist()

predictions.extend(yhat)

obs = test[t:t+forecast:1]

history.extend(obs)




model = ARIMA(history, order=arima_order)
model fit = model.fit(disp=0)
output = model fit.forecast(forecast)

yhat = output[@]
yhat = yhat.tolist()

predictions.extend(yhat)

obs = test[(t*forecast):(t*forecast)+forecast:1]

history.extend(obs)

error = (sqgrt(mean_squared_error(test,
predictions)))/(s.mean(X))
return error

def evaluate models(dataset, p_values, d_values, gq_values):
dataset = dataset.astype('float32')
best score, best_cfg = float("inf"), None
for p in p_values:
for d in d_values:
for g in q_values:




order = (p,d,q)
try:
mse = evaluate_arima_model(dataset, order)
if mse < best_score:
best _score, best cfg = mse, order
print('ARIMA%s MSE=%.3f' % (order,mse))
except:
continue
print('Best ARIMA%s MSE=%.3f' % (best_cfg, best _score))
return(best_cfg)

def parser(x):
return datetime.strptime(x, "%m/%d/%Y")
csvs = "G:\\WPIMQP2020\\ARIMAModels\\ARIMANEW 1 25

2021\\IP Census.csv'

errorlist = []
variablenamelist = []

orderlist = []

variablesplit = csvs.split('\\")
variablename = variablesplit[-1]

variablenamelist.append(variablename)
series = pd.read_csv(csvs, parse_dates=[9], index_col=0,
squeeze=True, date_parser=parser)

print(series.head())

date = series.index

print(date)

datelist = []
datelist.append(date.strftime('%m/%d/%Y").tolist())
print(datelist[@])

datelistl = datelist[©]

series.plot()

plt.show()




p_values [0, 1, 2, 4, 6, 8,

d_values = range(9, 3)

g_values = range(9, 3)

warnings.filterwarnings("ignore™")

bestorder = evaluate_models(series.values, p_values, d_values,




g_values)
print(bestorder)
orderlist.append(bestorder)

path = "H:\\'

print(variablenamelist)

print(orderlist)

pandaerrorlist = pd.DataFrame({'Varible': variablenamelist, 'P, D,
Q': orderlist})

print(pandaerrorlist)

elfilename = 'bestparametersanderror' + str(d.today()) + variablename
print(path+elfilename)

pandaerrorlist.to_csv(path+elfilename)
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7.2 Appendix B - ARIMA Job Descriptions

The ARIMA Forecasting Model developed by the 2020/2021 WPI1 MQP team has two
primary actors: 1) Model Maintainer 2) Analyst. It is completely possible that one person will
satisfy the responsibilities of both actors. However, that is not necessary.

Model Maintainer: 4 hours/forecast cycle

Required Skills:

Working knowledge with Python 3 programming language.
Intermediate knowledge with SQL Queries and ETL Scripting
Working knowledge of the CC data warehouse and databases
Basics of Machine Learning and Statistics

Recommended Skills (can be easily learned/taught)

e ARIMA in Python
o https://www.statsmodels.org/devel/generated/statsmodels.tsa.arima_model
ARIMA.html
o https://machinelearningmastery.com/arima-for-time-series-forecasting-
with-python/
o https://www.datacamp.com/courses/arima-models-in-python
e Strong quantitative analytical skills

Commitment;:

We estimate that it will take 10 hours for the model maintainer to ramp up and
learn the model. The system, as-is of March 2021, will require at most 2 hours of model
maintenance per forecast cycle. In other words, if the forecasts are generated monthly, the
model maintainer will have 2 hours of work per month. The 2 hours would most likely be
spent fixing any bugs that come up, adjusting the ETL Job/SQL Queries if the data
cataloging changes, and investigating data sources as needed. These actions would be

conducted at request of the analyst.

If the model were to be expanded to other forecast variables, the model
maintainer’s commitment would increase linearly. If the model were to be modified to fit
a new use case, the model maintainer would be the one to make the necessary

modifications.
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Analyst:
Required Skills:

e Strong quantitative analytics

e Critical thinking and stakeholder management

e Ability to break down and communicate complex ideas and influence senior
leaders.

e Basic Excel data visualization

Recommended Skills (Can be taught):

e Time-Series Machine Learning basics
e Experience in the data enterprising team

Commitment:

Similar to the model developer, the analyst will need to ramp up to the role. This
will take anywhere from 5-20 hours, depending on their familiarity with forecasting,
statistics, and the organization.

Once they are ramped up, it will take 1 hour every forecasting cycle to prepare
visualizations for the 10 variables the as-is system forecasts. It will take another 1-3
hours to adjust the forecast output to account for information that is not captured in time-
series forecasting (i.e. market research, information from senior leaders, health care
trends). An additional 1 hour/forecast cycle should be reserved for investigating
unexpected increases/decreases in error. The analyst could then spend anywhere from 0-
10 hours a forecasting cycle communicating the forecasts to senior leaders. This will be
at the discretion of Renee Blanchard, Director of Enterprise Analytics. It is important to
note that many of these activities could already be the responsibility of a CC employee
that is close to the data enterprising team.
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7.3 Appendix C - ARIMA Forecast Graphs
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Figure A-1: ARIMA Forecast All Other IP Census Days
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Figure A-2: ARIMA Forecast Behavioral Health
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Figure A-4: ARIMA Forecast IP Census Days
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Figure A-6: ARIMA Forecast ED Visits
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7.4 Appendix D - LIAT Testing Model

FY2020 Historical FY 2021 Predictions
Inpatients Behavioral Health ED OP Admissions Urgent OR Total FY 2020  |% Change 2020-2021 Forecast Upper Lower
12/9/2019 - 12/15/2018 |76 89 20 8 -SUM(B13:E13) |0.8 =112+7 |=F13*G13 =J13+2*$P$4 =)13-2*$P34
12/16/2019 - 12/22/2019 |86 59 5 22 =SUM(B14:E14) |0.8 =113+7 |=F14*G14 =J14+2*$P$4 =)14-2*5P34
12/23/2019 - 12/29/2019 |38 51 7 5 =SUM(B15:E15) |0.8 =114+7 |=F15*G15 =11542°5P$4 =J15-2°3P%4
12/30/2019 - 1/5/2020 |81 55 8 21 =SUM(B16:E16) |0.8 =115+7 |=F16*G16 =116+2°5P$4 =J16-2°5PS4
1/6/2020- 1/12/2020 84 94 16 1 =5UM(B17:E17) |0.8 =116+7 [=F17*G17 =J17+2*5P$4 =)17-275P54
1/13/2020 - 1/19/2020 100 72 17 12 =SUM(B18:E18) |0.8 =I17+7 |=F18*G18 =J18+2%5P54 =J18-2°5P34
1/20/2020 - 1/26/2020 98 77 6 g =SUM(B19:E19) |0.8 =118+7 [=F19*G19 =J19+2*5P54 =J19-2%5PS4
1/27/2020 - 2/2/2020 89 107 20 17 =SUM(B20:E20) |0.8 =119+7 |=F20*G20 =J20+2*$P$4 =120-2*$P34
2/3/2020 - 2/9/2020 36 105 23 4 =sUM(B21:E21) |0.8 =120+7 |=F21*G21 =121+2*$P$4 =)21-2*$P34
2/10/2020 - 2/16/2020 |78 84 22 6 =sUM(B22:E22) |0.9 =121+7 |=F22*G22 =122+2*$P$A =122-2%5P34
2/17/2020- 2/23/2020 |73 82 13 5 =SUM(B23:E23) |0.9 =122+7 |=F23*G23 =12342°5P$4 =J23-2%3P34
2/24/2020 - 3/1/2020 72 82 16 7 =SUM(B24:E24) |1 =123+7 |=F24*G24 =12442°5P$4 =J24-2%3P3%4
3/2/2020- 3/8/2020 63 91 7 21 =5UM(B25:E25) |1 =124+7 |=F25*G25 =J25+2*5PS4 =)25-275P54
3/9/2020 - 3/15/2020 53 95 10 4 =SUM(B26:E26) |1 =I25+7 |=F26*G26 =126+27$P$4 =126-27SP34
3/16/2020 - 3/22/2020 |39 37 2 =SUM(B27:E27) |1.8 =I26+7 |=F27*G27 SI27+2*$P$A =127-2%5P34
3/23/2020 - 3/29/2020 |28 39 9 5 =SUM(B28:E28) |1.8 =I27+7 |=F28*G28 =J28+2*$P$4 =)28-2*SP34
3/30/2020 - 4/5/2020 31 27 9 2 =SUM(B29:E29) |1.8 =128+7 |=F29*G29 =129+2*$P$4 =)29-2*$P34
4/6/2020 - 4/12/2020 25 29 12 =SUM(B30:E30) [1.8 =129+7 |=F30*G30 =J30+2*$P$4 =)30-2*5P34
4/13/2020 - 4/19/2020 |35 36 14 3 =SUM(B31:E31) |15 =130+7 |=F31*G31 =13142°5P$4 =J31-2°3P34
4/20/2020 - 4/26/2020 |34 36 14 =SUM(B32:E32) |L.5 =131+7 |=F32*G32 =13242°5P$4 =J32-2°3P3%4
4/27/2020 - 5/3/2020 37 37 16 1 =5UM(B33:E33) |15 =132+7 [=F33*G33 =J33+2*5P$4 =133-275P54
5/4/2020-5/10/2020 |28 a2 27 2 =SUM(B34:E34) |1.5 =I33+7 |=F34°G34 =13442%5P%4 =J34-2%$P34
s/11/anan - sf17inon 532 a7 75 A —<rinare2s-£281 11 —124+7 |-F25%n28 —12547%¢D8A  —125.7%QD%A
Figure D-1: Demand Sheet Formulas

- Demand supply| Actual - Irjventory IStartingInven‘tory 2160

High Forecast Low High Medium Low
44136 |0 0 0 200 0 =5052+5F54-C4 =508$2+5F54-D4 =5052+5F$4-E4
44143 |0 o o 200 o =I445F5-C5 =J4+5F5-D5 =K4+5F5-E5
44150 |=Demand!K10 =DemandlJ10 =Demand!L10 200 154 =I5+5F6-C6 =I5+5F6-D6 =K5+5F6-E6
44157 |=Demand!K11 =Demand!lJ11 =Demand!L11 200 125 =I6+5F7-C7 =JG+SF7-D7 =K6+SF7-E7
44164 |=Demand!K12 =Demand!lJ12 =Demand!L12 200 148 =I7+5F8-C8 =J7+5F8-D8 =K7+5F8-E8
44171 |=Demand!K13 =DemandlJ13 =Demand!L13 200 142 =I8+5F3-C9 =I8+5F9-D9 =K8+5F9-E9
44178 |=Demand!K14 =Demandljl4 =Demand!L14 200 148 =I9+5F10-C10  =J9+5F10-D10  =K9+5F10-E10
44185 |=Demand!K15 =Demandl15 =Demand!L15 200 100 =I10+5F11-C11  =J10+5F11-D11  =K1045F11-E11
44192 |=Demand!K16 =DemandlJ16 =Demand!L16 200 127 =I11+5F12-C12  =J11+5F12-D12 =K11+5F12-E12
44199 |=Demand!K17 =Demand!l)17 =Demand!L17 200 145 =112+3F13-C13  =J12+3F13-D13 =K12+5F13-E13
44206 |=-Demand!K18 =Demand!J18 =Demand!L18 200 150 =113+5F14-C14 =J13+5F14-D14 =K13+5F14-E14
44213 |=Demand!K19 =DemandlJ19 =Demand!L19 200 148 =I14+5F15-C15 =J14+5F15-D15 =K14+5F15-E15
44220 |=Demand!K20 =Demandlj20 =Demand!L20 200 145 =I15+5F16-C16 =J15+5F16-D16 =K15+5F16-E16
44237 |=Demand!K21 =Demand!lj21 =Demand!L21 200 151 =I16+5F17-C17 =J16+5F17-D17 =K16+5F17-E17
44234 |=Demand!K22 =Demandlj22 =Demand!L22 200 147 =I17+5F18-C18 =J17+5F18-D18 =K17+5F18-E18
44241 |=Demand!K23 =Demandlj23 =Demand!L23 200 141 =I18+5F19-C19  =J18+5F19-D19 =K18+5F19-E19
44248 |=Demand!K24 =Demand!l)24 =Demand!L24 200 200 =119+8F20-C20 =J19+3F20-D20 =K19+5F20-E20
44255 |=Demand!K25 =Demandlj25 =Demand!L25 200 173 =I20+45F21-C21  =120+5F21-D21  =K2045F21-E21
44262 |=Demand!K26 =Demandlj26 =Demand!L26 200 =I21+5F22-C22  =121+5F22-D22  =K21+45F22-E22
44269 |=Demand!K27 =Demandl27 =Demand!L27 200 =122+3F23-C23 =J22+3F23-D23 =K22+5F23-E23
44276 |=-Demand!K28 =Demand!28 =Demand!L28 200 =123+5F24-C24 =123+5F24-D24 =K23+5F24-E24

Flgure D-2: Model Sheet Calculation Formulas
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7.5 Appendix E - Behavioral Health Optimization Models

Model Goal - This model attempts to show the minimum staffing cost required to meet 85 compliance to bedside based on

| Dbjective | DObjective Cost Inputs
| Staffing Cost =SUMPRODUCTICTFFIT.ET:HTI | FCP PLCP Double PCA Cast RM Cost
=153"4 =E7'Z =134 =324
Decisions - Staffing Required
Elock FPLCP= PLCP Double PCA Eutra Fil Exutra
0700-100 20 1} 1} 1}
100-1500 20 0 0 0
1500-1300 20 |0 0 0
1300-2300 20 1} 0 0
2300-0300 17 1} 1} 1}
0300-0700 17 0 0 0
Sum =SUMICT:C18) =SUMIDT:016) =SUMETLETE]  =SUMIF11F1E)
Avg Requirements
Elock ED MSE MS7 M3 PICL PCP=
0700-100 =GETPIVOTOATAL" Average of 1.15its Required”, Sitter Req$8%2,"Dept” C$21, " Timeblock” $622)  =GETPIVOTDAT =GETPIVOTOATE =GETPIVOTOATAI =GETPIVOTDAT, =SUMICZ2:G22)
100-1500 =GETPIVOTOATA[" fverage of 1.15its Required”, Sitter Req$84$2,"Dept”,C$21, Timeblock”, $623)  =GETPWOTDAT =GETPVOTOATE =GETPIVOTOATAI =GETPIMVOTDAT, =SUM[C23:G23)
1500-1300 =GETPIVOTOATAL" Average of 1.15its Required”, Sitter Req$84$2,"Dept” C$21, Timeblock” $624)  =GETPWOTDAT =GETPIVOTOATE =GETPIVOTOATAI =GETPIVOTDAT, =SUMIC24:G24)
1300-2300 =GETPIVOTOATAL" Average of 1.15its Required”, Sitter Req$84$2,"Dept” C$21, Timeblock” $625)  =GETPVOTDAT =GETPIVOTOATE =GETPIVOTOATAI =GETPIVOTDAT, =SUMIC25:G25)
2300-0300 =GETPIVOTOATAL" Average of 1.15its Required”, Sitter Req$84$2,"Dept” C$21, Timeblock” $626)  =GETPWOTDAT =GETPIVOTOATE =GETPIVOTOATAI =GETPIVOTDAT, = SUMICZ6:G26)
0300-0700 =GETPIVOTOATAL" Sverage of 1:15its Required”, Sitter Req!$84$2,"Dept”.C$21, Timeblock” $627)  =GETPWOTOAT =GETPIVOTOATE =GETPIVOTOATAI =GETPIVOTDAT, =SUMICZ7:G27]
Sum =SUMICZ2:C27) =SUMID2Z:027 =SUMIEZZ:E2Y) =SUMIFZ2:F27)  =SUMIGZ2:GZ7) =SUMHZ2:H27)

Figure E-1: Model 1 Formulas Displayed — Decisions

various staffing constraints

Constraints
Sitalf are whale rumbers
Staff are > 0
=1 Statfing by Shifr
PCPs PCP Double PCA Extra B Extra
30 1 3 g
30 1 g g
30 1 3 g
30 1 g g
30 1 g g
30 1 il 5]
=SUMIITT:J16) =SLMEITKE) =SUMILTTL1E) = SLMMILMM1E)
EBedside Coverage

=SUMICTEF1IHZ2 »= 1
=SUMICIZ:-F120iH23 »= 1
=SUMICI3:F13nH24 »= 1
=SUMIC1:F14uH25 »= 1
=SUMICIS:F1SNH2E »= 1
=SUMICTE:FIENHET 3= 1

Figure E-2: Model 1 Formulas Displayed - Constraints
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Sohver Parameters

Set Objective: 556

To: () Max (® Min () Value Of: 0

By Changing Variable Cells:
SCST1:5F516

Subject to the Constraints:

SCS11:5F516 == 5J511:5M516
SC511:5F516 = integer
SES11:5ES16 <= SLS11:5L816
SF511:5F516 <= SMST11:5M516
5)522:5)527 == 5L822:5L527

Make Unconstrained Variables Non-Megative

Select a Solving Simplex LP bl

Method:

Solving Method

L]
it

L |
il

Add

Change

Delete

Beset All

Load/5ave

Options

Select the GRG Monlinear engine for Solver Problems that are smooth nonlinear, Select the LP
Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver

problems that are non-smooth.

Help Solve

Close

Figure E-3: Model 1 Solver Parameters
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Objective
Sumsg Weighted Short =SUMSQICE0.
Actual Short =SUMIC20: G235,

Model Goal - This model attempts to show the optimal staffing allocation to minimize the weighted shonage of PCPs b

Decisions - Suggested Staffing Allocation

Block ED MSE MST M3 PICL PCPs
0vo0-1of 2 5 1} 1} o =5UMICI0:.G10) | =
M0-1500] 3 5 1} 1} o =SUMICTEGT |=
1500-13004 1 5 1 1} o =5UMICT2:G12) | =
1300-2300 2 4 1 1 o =SUMIC15:G13) | =
2300-0304 4 2 2 2 o =5UMICI:G1d) | =
0300-070y 4 Z 1 1 1] =SUMICTS:G15] | =
Sum =SUMICT0:C15) =SUMIOA0:015)_ =SUMIET0:E1S] = SUMIFA0:F1S) = SUMIGT0:G15)| = SUMH10:H15]
# PCPs Short

Block ED M6 MST M53 PICL Total
0700-1100y =C30-C10 =030-010 =E30-E10 =F30-F10 =GE30-G10 =SUMICZ0:G20
M00-1500] =C31-C1 =03-0M =E31-ET =F31-F11 =G31-G1 =5UMICZ1G21)
1500-1300y =C32-C12 =032-012 =E32-E12 =F32-Fiz =G32-G12 =SUMICZZ:G22,
1300-2300 =C33-C13 =033-013 =E33-E13 =F33-F13 =G33-G13 =SUMIC23.G23
2300-0304 =C34-C4 =034-014 =E34-E14 =F3d-F1d4 =G34-G14 =SUMICZd: G524
0300-070y =C35-C15 =035-015 =E35-E15 =F35-F15 =G35-G15 =SUMICES:G25)
| fwg =SUMICZ0:C25] =SUMID20:025) =SUMEZ0:E25) = SUMIF20:F25) = SUMIG20: 525 = SUMIC2E: G2

PCP Requirements
Block ED MSE MST M55 PICLI PCP=
0700-1100Y = IFERRORIGETPIVOTOAT A" Average of 1:15itz Required”,'Sitter Req #6542, "Dept”.C#23,"Timeblock” #B630).0]1  =IFERRORIGETF =IFERRORIGET! =IFERROR[GET =IFERRORIGETI =SUMIC30:530)
T00-1500| =IFERRORIGETPIVOTOATA" Average of 1:15itz Required", Sitter Req1$642,"Dept”,C$23, " Timeblock” $B8311.0)  =IFERRORIGETF =IFERRORIGET! =IFERROR(GET =IFERRORIGETE=SUMIC31.G31)
1500-1300 = IFERRORIGETPIVOTOATA("Average of 1:15itz Required”,'Sitter Req$642,"Dept”. C#23, " Timeblock” #632).0]  =IFERRORIGETF =IFERRORIGET! =IFERROR(GET =IFERRORIGET] =SUMIC32:G32)
1300-2300 =IFERRORIGETPIVOTDATA(" Average of 1:1S5its Required",'Sitter Req $B42 "Dept" | " #B33).0) =IFERROR(GETF =IFERRORIGET| =IFERROR(GET =IFERROR(GETI =SUM[C33: G33))
2300-0304 =IFERRORIGETPIVOTOAT A" Average of 1:1Sitz Required”, Sitter Req #6542, Dept” "4B34).00  =IFERRORIGETF =IFERRORIGET! =IFERRORIGET =IFERRORIGET] = SUMIC34:534)
0300-0704 =IFERRORIGETPIVOTOATAl" Average of 1:15its Required”,'Sitter Req$542."Dept”. C#23,"Timeblock” $535).0]1 _ =IFERRORIGETF =IFERRORIGET| =IFERRORIGET =IFERRORIGETI = SUMIC35:535)
Sum =SUMIC30:C35] =5UMID30:035) =SUMIES0:ESS) =SUMIF30:F35] = SUMIG30: G35 = SUMH30:H35)

Figure E-4: Model 2 Formulas Displayed — Decisions
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rortage of PCPs by deparntment
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=SUMICT3G13) | = | =SUMKIEMT3E] 5] z2 ]
=SUMIC14:G14) | = | =SUMK14:M14] g 2 ]
=SUMICIS:G15) | = |=SUMKIS:MIS] 5] 2 ]
[ =SUMIHT0:H15) =SUM10:J15) = SLIME0: 5] =3SUMIL10:L1S) =3SUMM10:M15]

——————

Figure E-5: Model 2 Formulas Displayed — Constraints
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Simplex engine for linear Solver Problems, and select the Evolutionary engine for Solver
problems that are non-smooth,

Figure E-6: Model 2 Solver Parameters

7.5 Appendix F — Project Reflection

The design phases of this project were split among three deliverables. The team created
an ARIMA forecasting model, defined as a forecasting process improvement, a LIAT model,
defined as an inventory forecasting model, and a Behavioral Health Staffing model, defined as an
optimization model. Each of these model’s opportunities was separately identified. For the
ARIMA model, the team was initially tasked with forecasting the impact of a wave two surge of
COVID patients. Given the limited information or data to use for this effort, the team identified
new opportunities to design a better forecasting system for the metrics CCMC already forecasts
and reports. The team identified best practices in the machine learning field and created a

forecasting model using the ARIMA methodology. Working closely with experts at CCMC, the
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team developed specific requirements for the model and adapted the design process to meet these
requirements. Examples of this include building various confidence intervals and retraining the
model using grid search parameterization. The team field-tested the model with historical data
from CCMC and worked in an agile environment with data analysts at CCMC to receive their

constant feedback and adapt to new changes and requirements.

For the LIAT model, opportunities were given to the project team in the form of a
specific directed task from the sponsor. In addition to this sponsor request for an inventory model
for LIAT tests, the team identified opportunities to use existing modeling practices at CCMC as a
baseline for the model and expand on them in a way that met the requirements of determining
LIAT inventory burndown rates. Requirements were determined through weekly meetings with
the LIAT management and analytics teams at CCMC. Both teams were consulted regularly in a
cyclical format to ensure the final deliverables met their expectations. The team also developed a
way to test model solutions by tracking actual data compared to the model predictions. Updating
the model with live data increased confidence in the model so that experts could safely use it to

influence LIAT management decisions.

Finally, the behavioral health optimization modeling opportunities also came from a
project sponsor request. This request was a broad one, asking the team to apply their knowledge
to help the behavioral health teams within CCMC. The team held several meetings with
continuous improvement experts and data analysts to determine what opportunities and
requirements existed for a project in the hospital's behavioral health section. These meetings
allowed the team to assess our optimization methodology, focusing on staffing of patient care
partners (PCPs). The team worked with model end-users and accurate hospital data to verify the
model's validity and test different solutions. These meetings were held weekly, and frequent

updates to the model were critical to its success as a decision-making tool.

Another critical factor of the project design was considering various constraints. The
most prominent of these constraints were the health, safety, economic and political constraints
that were introduced because of the COVID-19 pandemic. This pandemic was the catalyst for the
project and was a significant factor in the team’s design process in all project phases. For the
ARIMA forecasting, the team needed to consider the patient volume impact that COVID had on

the hospital’s historical volumes used for modeling and ensure that the model appropriately

74



responded to unpredictable events. For the LIAT tests, considering the political constraints of
rationed LIAT tests and health and safety constraints of achieving proper patient care during a
pandemic was very important. For behavioral health, economic constraints on availability to hire
staff and turnover rates were essential considerations. Additionally, political constraints in
government aid for behavioral health were important considerations to evaluate the model’s long
term impacts. Overall, the team identified and handled constraints on a case-by-case basis for
each model. The success of the models meant accounting for and incorporating all these

constraints.

Additionally, the project team learned a vast amount of new information throughout the
project. The first grouping of this information was a general understanding of the healthcare
industry. Much of the first few weeks of the project were spent trying to understand the
healthcare industry's inner workings as it was a new field for all team members. By the end of
the project, the team communicated effectively with the CCMC teams and had a workable
knowledge of the hospital operations. Additionally, the team learned a significant amount of
technical information about ARIMA modeling in Python. While each team member had used
Python before, developing an ARIMA model on the scale produced by this project was new
territory none of the team had experienced in academic practice. Finally, the team learned a lot
about data analytics and continuous improvement in healthcare. The industry has always been
focused on meeting patient needs. It is often difficult to gather resources to apply analytics and
forecasting in the same way that manufacturing industries can. The team learned a lot about
using analytical practices in healthcare, translating to many other industries as they begin to
adopt continuous improvement and predictive analytics. These are all skills that, as students,

would have been very difficult to learn outside of this capstone project.

Finally, to complete this project, this team had to work together efficiently and
effectively. Each team member worked very well with each other. Respect and hard work were
never an issue. One of the keys to that success was our organized and systematic approach to
communication and project planning. The team used a software program called Trello to manage
all our tasks and objectives throughout the project. The software allowed us to have one standing
location for all objectives and communicate priorities, due dates, questions, and concerns. The

software allowed us to work effectively together in an almost entirely remote setting, a critical
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factor in the COVID impacted the world. We also met regularly and communicated openly. Each
team member's ability to both provide and take constructive criticism and use it to improve
project success is a very commendable attribute. Meeting with the project advisor, project
sponsor, and subject matter experts at CCMC frequently allowed the team to communicate
challenges and develop solutions in a collaborative and fast-paced environment. All this together

allowed the team to perform as an effective, cohesive unit.

76



References

Boyd, S. P., & Vandenberghe, L. (2004). Convex Optimization. Retrieved January 16,
2021, from https://web.stanford.edu/~boyd/cvxbook/bv cvxbook.pdf#page=143

Brownlee, J. (2020, August 20). SMOTE for Imbalanced Classification with Python.
Retrieved from https://machinelearningmastery.com/smote-oversampling-for-imbalanced-
classification/

Brownlee, J. (2020, December 09). How to create an arima model for time series
forecasting in python. Retrieved from https://machinelearningmastery.com/arima-for-time-
series-forecasting-with-python/

Connecticut children's. (n.d.). Retrieved from https://www.connecticutchildrens.org/

Coronavirus. (2020, February 15). Retrieved October 08, 2020, from
https://www.cdc.gov/coronavirus/types.html

Da'ar, O. B., & Ahmed, A. E. (2018). Underlying trend, seasonality, prediction,
forecasting and the contribution of risk factors: an analysis of globally reported cases of Middle
East Respiratory Syndrome Coronavirus. Epidemiology and infection, 146(11), 1343-1349.
https://doi.org/10.1017/S0950268818001541

Define and solve a problem by using solver. (n.d.). Retrieved January 16, 2021, from
https://support.microsoft.com/en-us/office/define-and-solve-a-problem-by-using-solver-
5d1a388f-079d-43ac-a7eb-f63e45925040

Mackay, M. (2005, June). Modelling Variability in Hospital Bed Occupancy. Retrieved
from https://link.springer.com/content/pdf/10.1007/s10729-005-4142-8.pdf

Nau, R. (2014, December 13). The mathematical structure of ARIMA models. Retrieved
from http://people.duke.edu/~rnau/Mathematical structure of ARIMA models--
Robert Nau.pdf

NOAA National Centers for Environmental Information State Climate Summaries. (n.d.).
Retrieved October 08, 2020, from https://statesummaries.ncics.org/chapter/ct/

Pica, N., & Bouvier, N. M. (2012). Environmental factors affecting the transmission of
respiratory viruses. Current Opinion in Virology, 2(1), 90-95. doi:10.1016/j.coviro.2011.12.003

Pilgrim, T. (2020, August 06). Localised coronavirus simulations predict second wave in
‘almost all cases'. Retrieved October, from https://medicalxpress.com/news/2020-08-localised-
coronavirus-simulations-cases.html

77


https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf#page=143
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/
https://www.connecticutchildrens.org/
https://www.cdc.gov/coronavirus/types.html
https://doi.org/10.1017/S0950268818001541
https://support.microsoft.com/en-us/office/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040
https://support.microsoft.com/en-us/office/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040
https://link.springer.com/content/pdf/10.1007/s10729-005-4142-8.pdf
http://people.duke.edu/~rnau/Mathematical_structure_of_ARIMA_models--Robert_Nau.pdf
http://people.duke.edu/~rnau/Mathematical_structure_of_ARIMA_models--Robert_Nau.pdf
https://statesummaries.ncics.org/chapter/ct/
https://medicalxpress.com/news/2020-08-localised-coronavirus-simulations-cases.html
https://medicalxpress.com/news/2020-08-localised-coronavirus-simulations-cases.html

Schooling, C. N., Gyenge, N., Kadirkamanathan, V., & Alix, J. J. (2020, April 17).
Forecasting Hospital Staff Availability During The COVID-19 Epidemic. Retrieved from
https://www.medrxiv.org/content/10.1101/2020.04.15.20066019v1.full.pdf

3-Step Process for Predictive Analytics Forecasting. (2020, April 27). Retrieved October
09, 2020, from https://www.zencos.com/blog/advanced-analytics-model-guide-forecasting/

Weather. (n.d.). Retrieved October 08, 2020, from
https://www.universaltraveller.com.au/destinations/middle-east/weather

78


https://www.medrxiv.org/content/10.1101/2020.04.15.20066019v1.full.pdf
https://www.zencos.com/blog/advanced-analytics-model-guide-forecasting/
https://www.universaltraveller.com.au/destinations/middle-east/weather

