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1. Abstract 

Advanced ceramics are widely used in aerospace, automotive, electronic, laboratory 

equipment, and other industries. To achieve the geometric complexity and desirable properties 

that are difficult to obtain by conventional manufacturing methods, ceramic additive 

manufacturing (AM) methods have been studied intensively in recent years. However, in-

process control with feedback is not currently implemented in any commercially available 

ceramic three-dimensional (3D) printer. Robocasting is one of the most widely utilized AM 

processes for various ceramic materials at a low cost. This study employed robocasting as an 

example of implementing an in-process control with a feedback loop in a ceramic AM process. 

In this research, the material parameters, process parameters, machine parameters, and their 

influences on quality parameters were investigated. The key parameters of the ceramic 

robocasting process were identified. The relationships among the functional requirements, 

design parameters, and process variables in the robocasting process were analyzed using 

Axiomatic Design (AD) theory. A database of the relationships among pressure, extrusion, and 

the quality of the printed green part was established. An artificial neural network (ANN) model 

was created based on the established database. Machine learning-enabled closed-loop control 

was integrated into the current robocasting process to improve the quality of the printed green 

parts. Finally, the improvement was validated by comparing the quality of the prints in both 

controlled operations and uncontrolled operations. 
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3. Introduction 

3.1 Motivation 

Additive manufacturing (AM) techniques have been applied to fabricate ceramic material. 

Compared with conventional subtracting processes, AM techniques have the advantage of 

building finished parts in successive layers [1]. Ceramic AM methods have the flexibility of 

producing complex geometries, which are hard to replicate using conventional methods. Figure 

1 shows several examples of additively manufactured ceramic parts: (a) powder-based artwork 

model, “The Flower” [2]; (b) freeform-shaped alumina part obtained with indirect selective 

laser sintering [3]; and (c) lattice structure constructed by robocasting technology [4].  

 

Figure 1 Examples of 3D printed products[2-4]. 

 

According to the Web of Science, there has been a notable increase in the number of studies 

in the ceramic AM field over the past 25 years, as shown in Figure 2. Figure 3 shows the 

forecasted growth in the ceramic AM market size according to a study by SmarTech Markets 

[5]. The study predicted that the ceramic AM market would grow to 3,678 million US dollars 

by the end of 2028, which is approximately 12 times the current ceramic AM market of 268 

million US dollars. [6].  
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Figure 2 Number of research papers on ceramic AM from 1993 to 2020.  

 

 

Figure 3 Ceramic AM market forecast from 2017 to 2028 [6]. 

 

The ceramic AM methods can be categorized as either selective deposition methods or 

selective binding methods. Figure 4 summarizes various AM methods for ceramics, including 

the date of invention.  
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Figure 4 AM methods. 

 

Aside from advantages, there remain some limitations of ceramic AM methods. Most of 

the ceramic AM processes listed in Figure 4 are open-loop systems [7]; thus, in-process errors 

are not corrected during AM operations. Since AM methods build final products layer by layer, 

biases produced by each individual layer accumulate and contribute to the inaccuracy of the 

final product. As a result, accumulated inaccuracies causes a lower dimensional quality of 

additively manufactured parts than conventional green machined products. Table 1 summarizes 

the accuracies of different ceramic manufacturing technologies. Conventional green machining 

processes are comparable to CNC machining processes, which are closed-loop systems[8]. An 

in-process control/feedback system is needed to improve the dimensional accuracy of the three-

dimensional (3D) printed part by achieving accurate control of the processing parameters.  
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Table 1 Accuracies of different ceramic manufacturing technologies. 

Techniques 

Selective 

Laser 

Melting 

Freeform 

Extrusion 

Laminated 

Object 

Manufacturing 

Green 

Machining 

Accuracy 
0.43–40 μm 

[9, 10] 
60 μm [11] 50 μm [12] 

12 μm 

[13] 

 

Robocasting is one of the most widely used additive manufacturing techniques, as it can 

be applied to various ceramic-based materials at a low cost. As shown in Figure 5, according 

to the data from the Web of Science, robocasting attracts the most attention among all the 

techniques identified in Figure 4. The fused filament fabrication, gas metal arc welding-based 

3D printing, and robocasting methods share similar mechanics but can be applied to different 

kinds of materials. Researchers conducted studies to analyze printable materials, investigated 

the performance of printed products, and improved the drying mechanisms of the ceramic 

slurry. However, there remain difficulties in improving the geometric accuracies of products 

that were fabricated by the current robocasting process.  

  

Figure 5 Number of publications between 1970 and 2020 in the ceramic additive 

manufacturing field. 

 

One of the most significant difficulties is the lack of feedback and desired real-time control 
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to ensure print quality during the current manufacturing process flow. The current robocasting 

process flow is an open-loop system that does not have any sensors or feedback, as shown in 

Figure 6. In the current robocasting process, a designed CAD model is sent to a slicing software, 

which generates the printing commands in G-code (RS-274) format. Motions, extrusions, 

temperature control, and tool information are stored inside the G-code and passed to a control 

unit, such as a programmable logic controller (PLC). G-code is loaded into the memory of the 

controller. Each line of the G-code is decoded by the interpreter, which builds an internal 

representation and then changes the internal state or calls for one or more canonical machining 

functions [14]. The G-code is interpreted in a line-by-line manner. The PLC then 

accommodates these canonical machining functions via machine settings to control each 

stepper motor's rotary motions. These rotary motions are converted to linear movements by 

mechanical components, such as gears or pulleys. In an open-loop system, the process follows 

a linear pattern: once the G-Code is defined and sent to the printer, any disturbances generated 

during the process cannot be corrected or compensated. In this research, a modified closed-

loop process is shown in Figure 7. A loadcell was integrated into the original system as an 

example to monitor the in-process status. Instead of generating G-code before the start of the 

print, the G-code was sorted by path. The G-code for a subsequent path was generated based 

on the real-time status and control algorithm.  

 

 

Figure 6 Current robocasting process flow. 
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Figure 7 Novel robocasting process. 

 

To implement the feedback loop, the process parameters need to be optimized according 

to shear-thinning slurry rheology. In conventional process control technology, such as the 

proportional–integral–derivative (PID) controller, a well-developed accurate dynamic model 

of the process is the key to realizing feedback control [15]. Since the extrusion process has a 

complex dynamic model, the transfer function is hard to formulate in the robocasting process. 

The development of the artificial neural network (ANN), which is a data-driven decision-

making approach, provides a chance to by-pass the complex dynamic physics equations and 

map the real-time status into control actions by experience [16].  

This study used robocasting as an example of implementing and validating the need for an 

in-process control/feedback loop in the ceramic additive manufacturing process. Critical 

parameters for ceramic robocasting were identified. The relationships among the functional 

requirements, design parameters, and process variables in the robocasting process were 

analyzed by the Axiomatic Design (AD) theory. A database of the relationships among these 

parameters and the quality of the printed part was established. Finally, a closed-loop 

robocasting process was implemented, and its effectiveness in improving the printing quality 

was validated experimentally. The approach to integrating the closed-loop control into the 

robocasting process can be generalized to other printing techniques with similar mechanics. 
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4 Literature Review 

4.1  Ceramic Additive Manufacturing Methods: Mechanical and Control 

Systems 

4.1.1 Selective Deposition Methods  

Selective deposition methods stack materials in the order of either lines or planes, and a 

heat source or binder is employed during the printing process. Robocasting is one of the 

selective deposition methods; it is reviewed separately in chapter 4.2. Laminated object 

manufacturing (LOM) is another selective deposition method. The materials that are utilized 

in these processes are commonly in filament, sheet, or paste form.  

Newman et al. and Mathewson et al. carried out research on the LOM method and 

concluded that the accuracy of this method was 50 μm [17, 18]. Figure 8 expresses the 

fabrication process of the LOM methods, in which raw material is transformed into a thin sheet 

and then stacked, bound, and cut layer by layer.  

 

 

Figure 8 LOM process [19]. 
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Figure 9 View of a cut-off-the stack LOM [20]. 

 

Although the effects of pressure, layers, and dwell time on lamination have been well 

investigated, almost all of the control systems of the selective deposition printers are still open-

loop systems. Feygin et al. discovered that the load signal produced by the load cell is the only 

feedback in the LOM method [20]. The loadcell is unit 141 in Figure 9. The layer height, dwell 

time, and deflection were not measured during the process to control the accuracy of the print. 

 

4.1.2 Selective Binding Methods  

Selective binding methods usually use a powder bed or a tank of liquefied light-curable 

polymers without the need for stacking. There is always some type of external energy, such as 

heat or ultraviolet (UV) light from a laser beam, which is involved in the fabrication process. 

Stereolithography (SLA), laser sintering, and 3 Dimension printing are examples of selective 

binding printers.  

Figure 10 shows a diagram of a SLA printer. SLA printers consist of a z-level adjustable 

platform, which can be dipped into a tank of liquid photopolymerizable material with a light 

source that is movable in the XY plane. The workspace for the SLA method is the contact 

surface of the liquid and platform. After the bottom surface is cured, the platform moves one 

step toward the z-positive direction. Paul et al. discovered that 70% of the printed dimension 

deviations are within the range of ±5 mils, which is approximately ±100 μm [21]. The current 
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control loop of the SLA printer is a linear loop, as shown in Figure 11. There is no feedback 

control or control signal in the current SLA printers, as noted by Leyden et al. [22]. 

 

Figure 10 Mechanism of a SLA printer [20]. 

 

Figure 11 Illustration of  an SLA [22]. 

 

Figure 12 shows the mechanism of a selective laser sintering printer. During the 

manufacturing process, external energy, such as the heat from the laser, is applied to powders 

to melt and join them together [23]. The early approach of selective laser sintering printers 
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contains two z-level adjustable platforms. One of the platforms is raised in the z-positive 

direction to provide powders for printing (the vendor), while the other is lowered in the z-

negative direction to act as the printing space. A roller is used to transfer powders between the 

platforms.  

There are two kinds of control loops for selective laser sintering printers. The first control 

loop follows an open-loop path with no feedback control signal. Lakshminarayan et al. 

successfully sintered alumina powders with a diameter of 44 μm in 1992. The focus of the laser 

beam diameter was 500 μm [24, 25]. Ullmann et al. used a micro selective laser sintering (micro 

SLS) process with a fine laser lens that had a focus with a minimum radius of 7 μm to produce 

alumina-feldspar, alumina-silica, feldspar, and silicon/silicon carbide/carbon (Si-SiC-C) 

products [5, 26-29]. Maruo et al. discovered that the accuracy of an open-loop selective laser 

melting ceramic printer was approximately 40 μm [10]. The second control loop contained 

position feedback [23]. Forderhase et al. suggested several ways to keep track of the printer's 

linear displacement, such as determining the displacement by referencing the current position 

compared to its starting position or monitoring the level of the powder using a capacitive or 

ultrasonic proximity switch. The upward and downward displacement of piston 61, as shown 

in Figure 13, can be measured relative to the actual surface of the powder [30]. By adopting 

the feedback control loop into the printer, the accuracy of the print can be considered similar 

to the resolution of the laser spot, which have a minimum diameter of 0.43 μm [10]. 

 

 

Figure 12 Mechanism of a selective laser sintering printer [20]. 
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Figure 13 Exploded view diagram of the dual piston powder delivery system of a 

selective laser melting print [30]. 

 

The mechanism of the 3 Dimension printing method is similar to the mechanism of the 

selective laser sintering method, as shown in Figure 14. It also has two z-level adjustable 

platforms: one serves as the printing platform, and the other platform stores the powder. A roller 

is used to transfer the powders between the platforms. The binding mechanism between these 

two methods is different. The laser sintering method uses heat from a laser beam to melt 

powders and bind them together, while 3 Dimension printing methods use liquid binders as ink 

to combine powders into a solid body. 

 

Figure 14 Mechanism of 3 Dimension printing [12]. 
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3 Dimension printing methods have demonstrated high capability in fabricating ceramic 

material [12, 31-34] and flexibility when combined with other methods. Tang et al. combined 

the 3 Dimension printing method with SLA technology. They developed a new method, laser 

fusion, to produce ultrathin layers in 2006 [35]. Figure 15 shows the process of ceramic laser 

fusion, which is a 3 Dimension printing method. The ceramic powder in the conventional 3 

Dimension printing method was replaced by a slurry, which contains ceramic powder and light-

curable resin. The designed shape was cured by exposing the slurry under UV light.  

 

Figure 15 Process of ceramic laser fusion [33]. 

 

Figure 16 shows that it is difficult for 3 Dimension printing methods to produce complex 

geometries; extra material was observed on the fabricated parts. Figure 16 shows some turbines, 

with a 400 um blade, that are produced by different inkjet 3D printers: a) Solidscape T76, with 

an in-plane resolution of 5 μm and a layer thickness of 12.7 μm; b) 3D System ProJet HD 3000 

plus, with an in-plane resolution of 34 μm and a layer thickness of 16 μm; and c) Objet Eden 

260 V 3D printer, with an in-plane resolution of 42 μm and a layer thickness of 16 μm [37]. 

 

Figure 16 Products of 3D printing technology [36]. 
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4.2  Ceramic Robocasting  

The robocasting method was the first-generation extrusion ceramic 3D printing technology 

that was applied to various kinds of ceramic-based material [38]. Cesarano et al. developed this 

technique in Sandia National Laboratories in 1988. In this process, a ceramic slurry was 

extruded onto a platform, which contained a heat source to dry the deposited slurry and 

maintain the shape of the printed part. The slurry used in Cesarano’s experiment contained 50 % 

to 65 % volume fraction of ceramic powder and 1 % organic additives; the remainder 

comprised volatile solvent. The nozzle of the printer ranged from 30 nm to 2000 nm, and the 

printer had a maximum speed of 150 mm/s. As the raw material was in slurry form, the part 

produced by this technique might have experienced deformation during the drying process. 

Figure 17 shows examples of the final product produced by the robocasting method [39].  

 

Figure 17 Part fabricated by robocasting [35]. 

 

Hilmas et al. from Missouri University of Science and Technology modified the 

robocasting technique in 2006 by developing a new method: freeze freeform extrusion. Instead 

of using a heated platform to dry the printed part, they freeze-dried the printed part at -16 °C 

to avoid the deformation caused by the drying process [40]. Figure 18 shows the final product 

printed by the Hilmas method. This method ensured a fast forming rate of the extruded part to 

avoid collapse during the conventional drying process.  
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Figure 18 Cylinder and solid cone fabricated using the Hilmas method [36]. 

 

Scheithauer et al. improved the binder for the robocasting method in 2015, as shown in 

Figure 19. They combined thermoplastic, which has a low melting temperature and viscosity, 

with ceramic powder and transformed them into a slurry. During the printing process, a steady 

heat source was added to the cylinder to avoid solidification of the inside slurry. In their 

research, Scheithauer et al. employed a process similar to the robocasting method, but their 

platform was air-dried without heating or freezing [41]. 

 

Figure 19 Scheithauer et al.’s thermoplastic extrusion method [37]. 
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Peng et al. combined the freeform extrusion method with a laser subtractive process and 

successfully produced an embedded microchannel with a bulk density of 94 %. They have 

successfully produced thin channels with a wall thickness of 60 μm and no obvious defect after 

sintering [11]. 

A variety of ceramic materials can be utilized in the robocasting method. As of 2018, 

researchers had successfully produced ZrO2, ZrB2, Al2O2, SiC, Si3N4, BaTiO3, PMN, Si3N4 −

W, HA, TCP, and 6P53B glass [39, 42-57].  

Although the influence of ink parameters (solid content, particle size, and viscosity) and 

extrusion parameters (extrusion rate, nozzle travel speed, and the distance between the nozzle 

and the previously deposited layers) have been well examined by researchers, there is no 

evidence of the integration of feedback signals into these processes. 
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4.3  Axiomatic Design Theory 

The relationships among the functional requirements, design parameters, and process 

variables in the ceramic robocasting process can be analyzed using the Axiomatic Design(AD) 

theory. AD is a theory and method that was developed by Suh [58]. It hypothesizes that good 

designs comply with two axioms: independence, which refers to “Axiom 1: Maintain[ing] the 

independence of functional requirements (FRs)”; and information, which refers to “Axiom 2: 

Minimize[s] the information content” [59]. AD can be applied to design products, as well as 

manufacturing processes and systems [58]. AD can be employed as a systematic tool to 

demonstrate and analyze the current ceramic robocasting process. The materials, process 

parameters, machine parameters, and their influence on quality parameters can be identified by 

analyzing the relationships among the functional requirements, design parameters, and process 

variables. Four design domains can be involved: customer (knowing what is valued and 

containing customer and stakeholder needs, known as CNs), functional (knowing what it does 

and containing functional requirements, known as FRs), physical (knowing what it looks like 

and containing design parameters, known as DPs), and process (knowing how it is made and 

containing process variables, known as PVs). FRs, DPs, and PVs are to be developed in top-

down, parallel hierarchies of abstraction, from high levels that define more abstract concepts 

as major branches to detailed (“leaf”) levels by zigzagging. These hierarchies are shown in 

Figure 20 [59].  

 

 
Figure 20 Top-down structure and relationships among domains [59].  

 

CNs initiate value chains that link through FRs, DPs, and PVs. FRs are developed from 

CNs to define the objectives of design problems in technical terms. They are desired functions 

that satisfy CNs. Design solutions can be no better than their FRs [58]. At each level in their 

hierarchies of abstraction, FRs should be developed in solution neutral environments, i.e., 
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before solutions are sought, DPs for FRs, and PVs for DPs. If it is difficult to find several 

candidate DPs to fulfill an FR, then that FR might not be sufficiently solution neutral, perhaps 

because it has too much physical content and is too close to the DPs. In these cases, solution 

spaces could be unnecessarily restrictive, impeding creativity. Such FRs should be moved away 

from the physical domain and closer to the customer domain [60]. Constraints can eliminate 

some candidate DPs. Suh’s first axiom can eliminate others candidate DPs. The remaining DPs 

are ranked for information content using Suh’s second axiom. 

Most literature on AD focuses on just FRs and DPs as well as their accompanying 

functional-physical relations for new products. These relations can be expressed in design 

matrices to check their compliance with Axiom 1 [61]. Few authors apply AD to manufacturing 

processes.  

Sometimes new manufacturing processes must be created; for example, photolithography 

was created for processing integrated circuits in the 1950s and 60s. Manufacturing processes 

can also be considered products and be developed with FRs and DPs. As with additive 

manufacturing, these products function to enable the production of many new components for 

consumer products and manufacturing tools [30]. Concepts for new manufacturing processes 

can arise during product development or possibly from re-engineering existing processes. To 

realize these new concepts, new knowledge is required. This acquisition of knowledge is 

relevant to aspects of concept-knowledge (C-K) theory [62], which is an aspect of design that 

is not directly addressed in AD; it is less about generating details of new concepts for creative 

design solutions and more about selecting design solutions. AD does, however, produce novel 

integrated designs and can reveal the need for novel-detailed elements to comply with the 

axioms. 

New processes can be developed with new products by zigzagging from FRs to DPs, then 

from DPs to new PVs. In this way, “value [additions for CNs] should be satisfied by FRs and 

fulfilled by DPs, then produced by PVs” [63]. Design and process matrices are developed 

sequentially in each branch and at each level of the hierarchies of abstraction. Alternatively, 

new CNs can be defined for new processes, which can be developed independently of specific 

consumer products. 

During zigzagging decompositions, candidate DPs should be checked against any 

constraints, such as cost. In addition, constraints may arise from the first canon of engineering 

ethics: “hold paramount the safety, health, and welfare of the public.” Logically, sustainability 

is implied by this statement.  

The imposition of new constraints, such as sustainability, can be one motivation for re-
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engineering. Constraints and Axiom 1 can eliminate some candidate design solutions. Suh’s 

second Axiom (minimizing information) can be  to find the best of the remaining candidate 

solutions.  

Compliance with Suh’s first Axiom (independence) can be checked next. Axiom 1 is also 

applied to FR development in decompositions. Child FRs must be collectively exhaustive (CE) 

with parent FRs and mutually exclusive (ME) with each other [64]. The lack of mutual 

exclusivity among FRs could result in coupled solutions no matter which DPs are selected. 

Information content can be related to the probability of fulfilling FRs, optimization criteria 

(OCs) and selection criteria (SCs), as well as avoiding constraints [65]. 

For many existing design solutions, CNs and FRs may never have been adequately 

articulated. The FRs for an existing design can be developed by a process of surmising or 

interpolation between existing DPs and CNs. This supposes that DPs are known, as they could 

be determined by dissecting existing artifacts. CNs can be imagined by considering the needs 

of users and stakeholders. Articulating CNs can also suggest new FRs for re-engineering.  

Some coupled designs can be decoupled, which eliminates imaginary complexity, by 

manipulating the design matrix of newly developed FRs and existing DPs. Imaginary 

complexity occurs when design solutions appear to be coupled, although they can be decoupled 

by rearranging their design matrices to be triangular [66]. In these decoupled designs, there 

would be specific orders of adjustment of DPs whereby all FRs can be brought into tolerance 

without iterating. There can be more than one such order of adjustment if a design or process 

matrix is not fully triangular. To apply this process to existing design solutions, FRs must be 

developed if they are not already stated. Relations with DPs should be established via design 

equations, as in FRi=f (DPi, DPj, DPk…), including all FRs in each level in each branch of the 

design decomposition. Design matrices show the relations between FRs and DPs, including 

unwanted coupling. Design matrices indicate whether the adjustment of DPs is needed to 

satisfy FRs, without unproductive, unnecessary iterations. This same procedure can be applied 

to DPs, PVs, and process matrices, although when designing a process, DPs are inputs for the 

design process. Unlike FRs, these are generally specified in the product designs.  

Sometimes a specific FR will be influenced by multiple DPs; however, the design can still 

be considered uncoupled. Additional judgment should be considered. Tolerances on the FRs 

impact the independence and the degree to which Suh’s Axiom 1 can be satisfied [67]. For any 

given FR, its chosen DP should be treated as its principal design parameter. Other DPs could 

influence that FR in a minor way. If an FR is influenced by its principle DP and multiple minor 

DPs, tolerances on FRs can determine whether this design is coupled. If the tolerances are 
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greater than the influences produced by minor DPs, designs are uncoupled; otherwise, they are 

coupled. FR tolerances might be assigned by designers; they might be within three standard 

deviations of the FR in the current production. The regularity (R) and semangularity (S) of the 

FRs, which quantify the degree of coupling, can also be used to determine the independence 

(Suh’s Axiom 1) [67]. When R and S are unity (1), designs are uncoupled; when R and S are 0, 

designs are fully coupled. 
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4.4  Control System Engineering and Control Systems in Ceramic Additive 

Manufacturing 

Based on the research of Norbert Wiener, the control system has a more extended history 

than humanity, as it exists in all aspects of the world, ranging from animals to machines [68]. 

By definition, a control system “consists of subsystems and processes (or plants) assembled to 

obtain a desired output and output with desired performance, given a specified input” [69]. It 

is well known that, in the manufacturing process, a control system can be used to achieve power 

amplification, remote adjustment, and compensation for disturbance. The control system can 

be divided into two main categories: the open-loop system and the closed-loop system, as 

shown in Figure 21. In the open-loop system, the process follows a linear pattern: once the 

system is defined, any disturbances generated during the process cannot be canceled or taken 

into consideration. In the closed-loop system, disturbances can be compensated by sending the 

measured in-process signal back through a feedback path for comparison and adjustments [69]. 

With the in-process adjustments, the closed-loop system regularly demonstrates higher 

accuracy than the open-loop system. Figure 21 can be further developed into a block diagram, 

as shown in Figure 22. 𝑅(𝑠)  represents the reference target (or input) of the system, E(s) 

represents the error in the system, 𝐺(𝑠)  is the forward transfer function, and 𝐻(𝑠)  is the 

feedback transfer function. The transfer function for open-loop systems and closed-loop 

systems can be expressed by equations (1–4) . 

𝐸(𝑠)𝑂 = 𝑅(𝑠)𝑜 − 𝐶(𝑠)𝑜  (1) 

𝐸(𝑠)𝑐 = 𝑅(𝑠)𝑐 − 𝐶(𝑠)𝑐  (2) 

                                                    𝐶(𝑠)𝑜 = 𝑅(𝑠)𝑜 ∗ 𝐺(𝑠)  (3) 

𝐶(𝑠)𝑐 = (𝑅(𝑠)𝑐 − 𝐻(𝑠) ∗ 𝐶(𝑠)𝑐) ∗ 𝐺(𝑠)  (4) 

where 𝑜 represents the open-loop system, and 𝑐 represents the closed-loop system. By 

combining these equations, the error for open-loop systems and closed-loop systems can be 

defined as 

𝐸(𝑠)𝑂 = 𝑅(𝑠)𝑜(1 − 𝐺(𝑠))  (5) 

𝐸(𝑠)𝑐 = 𝑅(𝑠)𝑐(1 −
𝐺(𝑠)

1 + 𝐻(𝑠) ∗ 𝐺(𝑠)
)  (6) 

By comparing equations (5–6), it can be concluded that a closed-loop system may perform 

better when the feedback transfer function's output is negative feedback. 
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Figure 21 Block diagrams of control systems: (a) open-loop system and (b) closed-loop 

system [69]. 

 

Figure 22 Block diagrams of control systems: (a) open-loop system and (b) closed-loop 

system [69]. 

 

4.4.1 Proportional–Integral–Derivative Controller 

The PID controller is a prevalent and well-developed closed-loop control strategy due to 

its simple architecture and easy adjustment [70]. The PID controller's engineering application 

history can be traced back to the 1930s [71].  

PID control governs output by using proportional, integral, and derivative calculations to 

regulate errors between input and output, as expressed by equation (7) [72]: 
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𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐾𝑝 ∗ 𝑒(𝑡) + 𝐾𝑖 ∗ ∫ 𝑒(𝑡)
𝑡

0
+ 𝐾𝑑 ∗

𝑑𝑒

𝑑𝑡
 (7) 

where 𝐾𝑝 ∗ 𝑒(𝑡)  is the proportional controller term, 𝐾𝑖 ∗ ∫ 𝑒(𝑡)
𝑡

0
   is the integral 

controller term, and 𝐾𝑑 ∗
𝑑𝑒

𝑑𝑡
  is the derivative term. The proportional term accelerates the 

response of the system. The integral term increases the system response speed but produces 

oscillations. The derivative reduces oscillations [72]. 

The conventional PID controller has been successfully applied by the industry for almost 

a century; however, this control method still has some disadvantages. First, this method 

requires a well-developed accurate dynamic model of the controlled process, which is the key 

to creating the feedback control loop [15]. Second, the conventional PID controller is usually 

only suitable for a single-input single-output system. Conventional PID and PID-like control 

schemes are not flexible in addressing a single-input multiple-outputs system. PID control logic 

is not flexible in handling systems in which uncertain factors exist, such as modeling errors 

and external disturbances [70]. 
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4.4.2 Artificial Neural Network 

The artificial neural network, which is a data-driven decision-making approach, provides 

the chance to bypass the complex physics equations and map the real-time status into control 

actions via experience [16]. 

A schematic drawing of the ANN model structure is shown in Figure 23. The ANN 

commonly contains one input layer, one output layer, and several hidden layers. Nodes, which 

are inspired by neurons in the brain, are significant components of an ANN. Arrows connect 

these nodes and also point out the direction of the data flow. The relationships among inputs, 

outputs, and nodes can be expressed as shown in equations (8–11):  

 

Figure 23 Schematic of the artificial neural network. 

 

𝑎1,𝑗 = f(∑(𝑤1,𝑖 ∗ 𝑥𝑖)

3

𝑖=0

+ 𝑏1)(8) 

𝑎2,𝑗 = f(∑(𝑤2,𝑗 ∗ 𝑎1,𝑗) + 𝑏2)

3

𝑗=0

(9) 

𝑂1 = f(∑(𝑤3,𝑘 ∗ 𝑎2,𝑘) + 𝑏3)

4

𝑘=0

(10) 

𝐸𝑘 =
1

2
∑(𝑦𝑖 − 𝑂𝐼)2  (11) 

where 𝑥  and 𝑦  represent the real inputs and outputs, respectively; 𝑂  represents the 

outputs layer; 𝑤 is the weight assigned to the neurons; 𝑏 is the bias of the layer; and 𝐸𝑘 is 
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the standard error. The function (f) is the activation function (AF), which regulates the output 

in given input conditions. Nwankpa et al. have reviewed the performance of 21 types of 

activation functions that were developed before 2018 and mentioned that each activation 

function has advantages and disadvantages [73]. They also stated that most of the latest 

activation functions had rarely been applied in practice. In contrast, current practices are more 

dependent on the well- developed activation functions. Thus, in this review, only the most 

wildly used activation functions are listed and compared. 

The sigmoid function is a nonlinear function that is widely used in feedforward neural 

networks. The Sigmoid function is a smooth function that is convenient for derivation; the 

output of this function is between (0, 1) to ensure an accurate data amplitude. The disadvantage 

of this function is that it does not have a zero-centered output, which will affect the gradient's 

result and efficiency [73]. 

The hyperbolic tangent function (Tanh) performs better in the multilayer network than the 

sigmoid function by producing a zero-centered output. The disadvantage is that this function 

may come across the vanishing gradient problem [73]. 

The rectifier neural networks (rectified linear unit, ReLU) method is advantageous 

regarding the gradient propagation property [74], which renders this function less likely to 

become saturated than other functions. A smooth version of ReLU is referred to as the softplus 

function. This function can improve deep learning network performance due to the advantage 

of nonzero gradient properties that provide enhancement [73]. 

Figure 24 summarizes the equations and graphs of the sigmoid, tanh, ReLu, and softplus 

functions.  

 

Figure 24 Equation and graphs of commonly used activation functions. 
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Aside from activation functions, the optimization model also has an essential role in the 

ANN. ANN algorithms aim to build an optimization model and weight each parameter in the 

objective function using the provided datasets. Sun et al. completed a comprehensive review 

of all optimization methods that were developed before 2019 [75]. Figure 25 shows a 

summarized comparison of different optimization methods by Sun et al. [75]. Since the focus 

of this research is to identify a feasibility analysis of machine learning-enabled closed-loop 

control in the ceramic AM method instead of distinguishing the best optimization method, only 

one of these optimization methods was chosen to carry out the research.  

As the artificial neural network method can build empirical models based on collected 

historical data, the output can be predicted without a well-constructed physical model. These 

predicted results can also be treated as the input (replacing the conventional controller) to 

optimize the operation and improve the product quality. 
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Figure 25 Summary of first-order optimization methods [75]. 
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5 Methodology 

This study follows the research plan laid out in Figure 26. Several sets of operations with 

various materials, machines, and processing parameters are pre-defined. The processing 

parameters of these operations were collected by using simulation and experiment methods and 

converted into a database. A machine learning model was constructed and trained based on the 

database. After the first path of the part was printed, a set of feedback signals was collected 

and analyzed. The printing command for the next path was generated based on the feedback 

and machine learning model. 

 

 

Figure 26 Flow diagram of the research plan. 

 

This research contains the following three parts: 

Part 1: Define the material, process, and machine parameters that are involved in the 

robocasting process and determine the quality parameters for the as-printed parts. Establish the 

relationships between the process parameters and the quality parameters. Investigate the 

influence of each individual material, process, and machine parameter on the quality 

parameters. Identify the intermediate parameters that serve as a control or measurement signal.  

Part 1.1: Redesign the extruder of the 3D printer and calibrate the extruding rate of the 

remodeled extruder to improve the resolution of the print from 3 mm to 0.84 mm. Analyze the 

mechanism of the robocasting 3D printer to determine the key machine parameters. 

Part 1.2: Identify the parameters that are involved in the robocasting process from slurry 

preparation to the printing process. Determine the quality indicators of the as-printed parts. 

These indicators should be identical to the quality measurements of the machined parts. 

Part 1.3: Identify the intermediate parameters during the fabrication process. These 

parameters are correlated with the input parameters (material, machine, and process parameters) 

and the output parameters (quality measurements). The intermediate parameters serve as a 

feedback signal during the printing process.  
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Part 1.4: Evaluate the influence of each material, machine, and process parameter on the 

intermediate parameters. Investigate the impact of the intermediate parameters on the quality 

parameters. Analyze the current robocasting process using Axiomatic Design theory. These 

relationships are specified by the literature review and designed experiments. Collect these data 

for the database in Part 2.  

Part 2: Create a database for the robocasting process. Build a model that can describe the 

process–quality relationship of the ceramic robocasting method.  

Part 2.1: Construct a model based on the collected data in Part 1.4 for the robocasting 

process. A “process parameter–intermediate parameter–quality parameter” database is 

generated. This database serves as a guideline to optimize the robocasting process. A machine 

learning software package is used as a tool for control and optimization. 

Part 3: Integrate closed-loop control into the robocasting process based on the created 

database. Validate the developed closed-loop control using experimental data. 

Part 3.1: Integrate sensors into the robocasting system. Modify the conventional open-

loop process to a closed-loop process, as shown in Figure 24. Instead of generating G-code 

before the start of the print, the G-code is sorted into paths. The G-code for the next path is 

generated based on the in-process signal and real-time feedback signal.  

Part 3.2: Record and compare the pressure history of the print of the original process and 

controlled process. Examine the quality of the models that are produced by the open-loop 

process and machine learning-enabled closed-loop control process. 
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6 Results 

6.1  Model of the Extruder Unit of Robocasting  

The robocasting printer that is used in this study is the 3D PotterBot 7 (3D Potter, Inc., 

Florida) with a modified extruding unit, as shown in Figure 27. The printer is controlled by a 

Smoothieboard microprocessor that is loaded with Smoothieware firmware. The printer's 

original make contains a cylinder with a diameter of 3 inches and a nozzle with a diameter of 

3 mm. We remodeled the printer to integrate the sensor into the system and improve the 

resolution of the print. The upper cylinder was applied to attach the extruder unit to the machine 

frame, as shown in Figure 27 and Figure 28. A commercial 10 cc syringe (10cc, Global Easy 

Gide, China) with a 0.84 mm (18 g, GMS, China) needle was attached to the lower cylinder. 

Two pistons were connected to the back of the plunger to transfer linear motions from the ball 

thread to the ceramic slurry. A 50-kg button loadcell (CZL204E, Phidgets, Canada) was 

attached between two pistons to monitor the ceramic slurry pressure change. An Arduino Uno 

microcontroller board (A000066, Arduino, Massachusetts) and the HX711 24-Bit Analog-to-

Digital Converter (Avia, China) were programmed to collect data from the button loadcell at a 

sampling rate of 10 Hz. The pressure change is calculated based on the loadcell sensor reading 

over the plunger area. As the plunger area is a constant in this study, the reading of the loadcell 

was utilized as a measure of pressure. 

 

Figure 27 Schematic of the ceramic robocasting machine with a customized extruding 

unit [76]. 
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Figure 28 Model of the extruder unit of the robocasting system. 
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6.2  Model of Design Patterns for This Research  

Three design patterns were employed in this research.  

Design pattern #1 is shown in Figure 29. This pattern was printed at different travel speed-

extrusion speed combinations, while the travel speed is fixed at 1200 mm/min. The travel speed 

is defined as the speed of linear motion in the X, Y, and Z directions, while the extrusion speed 

describes the rate of slurry extruded out of the nozzle. The pattern contains 11 paths; each path 

has a length of 20 mm with a 2-mm gap between nearby tracks. The model was printed starting 

from the green dot to the red dot, while the orange dots comprised the extruding point. The 

total travel distance between the starting point and the ending point was 240 mm, while the 

distance between two neighboring extruding points was 20 mm. The nozzle of the extruder was 

an industrial needle with a diameter of 0.84 mm; so the ideal cross-sectional profile of the 

printed filament should be a circular shape with a diameter of 0.84 mm and a cross-sectional 

area of 0.54 𝑚𝑚2. However, since the slurry employed in this study was a fluid, the cross-

sectional shape will eventually be transformed into an arched shape. This pattern was the basic 

component of design patterns #2 and #3; it was used to test the influence of the travel-extrusion 

speed combinations.  

 

Figure 29 Schematic of design pattern #1 for testing the influence of different speed 

combinations. Units in mm. 

 

Design pictures and specified geometries of design pattern #2 are shown in Figure 30. The 

pattern is a stack-up of two design pattern #1 layers. Each layer was printed in the length 

direction first, followed by the width direction. As shown in Figure 30, image b), eight two-

layer lattice patterns were printed layer by layer. The lower layer (shown in white) was printed 

from the left side to the right side (from model #8 to model #1), and then the upper layer (shown 

in red), which is orthogonal to the lower layer, was printed from the right side to the left side 

(from model #1 to model #8). As these two layers were printed in the reverse direction, the 

interval time between two layers for a specific model increases 24 seconds from the right side 

to the left side (from model #1 to model #8). To ensure that the height difference between two 
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printed models is only a result of different layover times between layers, the extrusion speed 

and travel speed was kept constant at 1200 mm/min. This pattern is applied to study the 

deflection and deformations between layers. 

 
Figure 30 Schematic of the experiment for testing the height between the upper layer and 

the lower layer. 

 

Design pattern #3 is shown in Figure 31. This pattern contains nine individual single-layer 

models, which are built up by 11 tracks. The distance between each model is 10 mm. This 

pattern is used to construct and verify the efficiency of the closed-loop control modification. 

 

Figure 31 Schematic of the pattern designed for closed-loop control construction and 

verification. Units in mm.   
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6.3  Defining the Parameters in Robocasting Technology and Characterizing Their 

Relationships  

The relationships among the machine, material, and process parameters have been 

carefully investigated, and the established relationship that was used to guide this project is 

summarized in Figure 32. The data that represents these relationships were collected in 

experiments that are discussed in this chapter.  

 

Figure 32 Relationships among machines, materials, and process parameters with quality 

parameters. 
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Figure 33 Schematic of the overall approach proposed in the current project to establish 

the relationships among processes, intermediate values, and quality parameters. 

 

Figure 33 is a comprehensive machine learning path to determine the correlation 

mentioned in Chapter 5. The inputs of the machine learning include material information, such 

as density and viscosity, and process information, such as travel speed, printing speed, feed 

rate, and layer height. These parameters are actual variables that can be adjusted and are 

comparable to the process parameters of the conventional machining operations. The 

intermediate values contain the deformation (of the lower layer), deflection (of the higher layer), 

pressure (of the piston and nozzle), and shear rate (at the nozzle). These parameters are treated 

as in-process measurements for closed-loop control. The simulation output includes quality 

parameters, such as the height, length, width, and weight of the as-printed part, compared to 

the targeted dimensions. The prediction includes information such as porosity and volume 

fraction. Furthermore, this model can be used to optimize the robocasting process parameters 

by weighing and combining these predictions. 

In this research, the relationships among the pressure, length of extrusion, and width of the 

printed green part were analyzed to prove the feasibility of machine learning-enabled closed-

loop control in the robocasting process. The collected starting and ending pressure were utilized 

as inputs for training the machine learning model, while the length of extrusion was the output 

for training the model. After the machine learning model was trained, the desired length of the 

extrusion was predicted based on the in-process pressure and targeted pressure. The 

dimensional quality of the printed pattern was improved by adopting the machine-learning-

enabled closed-loop control. 
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6.4 Material Parameters 

Material parameters of the robocasting process include the characteristics of the solvent, 

dispersant, and solution, which influence the density, viscosity, and deformation of the ceramic 

slurry. 

6.4.1 Density of the Slurry 

The density of the slurry is determined by the density of the solvent (𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡), density of 

the dispersant (𝜌𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑛𝑡) , density of the solute (𝜌𝑠𝑜𝑙𝑢𝑡𝑒 ), volume fraction of the solvent 

( 𝑉𝑜𝑙%𝑆𝑜𝑙𝑢𝑡𝑒) , and weight fraction of the thickening agent inside the solute 

( 𝑊𝑡%thickening agent 𝑡) . 𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡  represents the volume of the solvent, while 𝑉𝑠𝑜𝑙𝑢𝑡𝑒 

represents the volume of the solute. The following equations were used to calculate the density 

of the slurry [77]: 

𝜌𝑠𝑙𝑢𝑟𝑟𝑦 =
𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ∗ 𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡 ∗ (1 + 𝑊𝑡%𝑡ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 𝑎𝑔𝑒𝑛𝑡) + 𝜌𝑠𝑜𝑙𝑢𝑒 ∗ 𝑉𝑠𝑜𝑙𝑢𝑡𝑒

𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡 + 𝑉𝑠𝑜𝑙𝑢𝑡𝑒
         (12) 

𝑉𝑜𝑙%𝑆𝑜𝑙𝑢𝑡𝑒 =
𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑉𝑠𝑜𝑙𝑣𝑒𝑛𝑡 + 𝑉𝑠𝑜𝑙𝑢𝑡𝑒
             (13) 

 

6.4.2 Viscosity of the Slurry 

The viscosity of the slurry is based on the density of the solvent (𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡), density of the 

dispersant (𝜌𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑛𝑡) , density of the solute ( 𝜌𝑠𝑜𝑙𝑢𝑡𝑒 ), volume fraction of the solvent 

( 𝑉𝑜𝑙%𝑆𝑜𝑙𝑢𝑡𝑒) , and weight fraction of the dispersant inside the solute ( 𝑊𝑡%𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑛𝑡) . 

According to the literature, the slurry for the robocasting process should be a thixotropic 

Herschel–Bulkley fluid, which allows the extrusion to be self-adjusted with delay [78-80]. The 

following experiment was designed to measure the apparent viscosity. The ceramic powder 

used in these experiments was aluminum oxide powder (1–2 μm, US Research Nanomaterials, 

Inc., TX), the thickening agent was polyethylene glycol powder (poly(ethylene) oxide, PEO; 

600,000 Mv, Sigma-Aldrich, MO), and the solvent was deionized (DI) water. The recipes for 

different samples are shown in Table 2. 

.  
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Table 2 Slurries with different aluminum oxide and PEO concentrations. 

 

 

Aluminum oxide powder was characterized by scanning electron microscopy (SEM). 

Image-J software was used to analyze the SEM images. The size distribution is shown in Figure 

34. The statistical results shows some large particles inside the powder sample; these particles 

may cause the nozzle to become clogged. As the nozzle diameter is 840 μm, a 20 μm sieve was 

used to ensure that the powder's size falls within an acceptable range. The thickening agent was 

added to DI water at room temperature (25 °C), and then this solution was stirred with a 

magnetic stirrer mixer (Standard Magnetic Stirrers, 120V, VWR, PA) at 1600 rpm for 12 hours. 

A jar mill mixer (#253TUM, Covington-Engineering, ID) was used to mix the slurry at 515 

rpm for 24 hours. The apparent viscosity of the prepared slurry was tested by a rheometer 

(MCR 302, Anton-Paar, Graz, Austria) with a PP-25 test plate. A schematic of the test process 

is shown in Figure 35 
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Figure 34 Particle diameter distribution. 

 

Figure 35 Demonstration of the test process: a) Anton-Paar MCR 302 Rheometer, b) PP-

25 test plate, and c) ceramic slurry used in the test. 

 

Figure 36. Rheological properties of slurries with different concentrations. 
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The test results show that the viscosity increases with an increase in the solute volume 

fraction and thickening agent weight fraction, which is similar to the conclusion in literature 

[81, 82]. 

In this study, the variable is a process parameter; so the recipe for slurry should be specified, 

as shown in Table 3. As the slurry used in the ceramic robocasting process commonly exhibits 

a shear-thinning property, its viscosity decreases with an increase in the processing pressure, 

which allows the extrusion to be self-adjusted with delay [78-80]. The appearance viscosity 

increases with the increase in the solute volume fraction and thickening agent weight fraction 

[81, 82]. The viscosity of the slurry is based on the density of the solvent (𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡), density of 

the dispersant (𝜌𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑛𝑡) , density of the solute (𝜌𝑠𝑜𝑙𝑢𝑡𝑒 ), volume fraction of the solvent 

(𝑉𝑜𝑙. %𝑆𝑜𝑙𝑢𝑡𝑒), and weight fraction of the dispersant inside the solute (𝑊𝑡. %𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑎𝑛𝑡). The 

pH and ionic strength also contribute to the viscosity of the slurry [81, 82].. 

 

Table 3 Recipe for the slurry used in this study. 

Ceramic Powder  Ceramic Vol. % 
Thickening 

agent 
Wt. % Solvent  

2um Alumina 20 
Polyethylene 

oxide 
5 DI Water 

 

The relationship between the shear rate and the viscosity of the Herschel–Bulkley fluid 

can be described as [83] 

𝜏 = 𝜏𝑦 + 𝐾𝛾̇𝑛 (5) 

where 𝜏 is the shear stress, 𝜏𝑦 is the yield point, 𝑛 is the shear-thinning exponent, 𝐾 

is the viscosity parameter, and 𝛾̇  is the shear rate. These parameters were employed to 

calculate the pressure on the extruder. 

Four repeated tests were carried out to test and verify the slurry's rheological properties. 

The acquired appearance viscosity has a similar range and trend to those described in the 

references [81, 84]. The data in Table 4 include a set of rheological properties for the tested 

ceramic slurry. The shear rate, shear stress, and viscosity were acquired by the rheometer. 

𝜏𝑦, 𝐾,  and  𝛾̇ were fitted using the measured appearance viscosity shown in Figure 38. The 

fitted shear stress is also included in Table 4.  



47 
 

 

Figure 37 Appearance viscosity curve for slurries with 20 % solute volume fraction and 

5 % thickening agent weight fraction. 

 

Table 4 Rheological properties of the ceramic slurry: shear rate, measured shear stress, 

viscosity, and fitted shear stress. 

Shear Rate Shear Stress Viscosity Fitted Shear Stress 

[1/s] [Pa] [mPa·s] [Pa] 

0.1 88.347 883000 107.02421 

0.158 102.41 646000 124.74351 

0.251 122.63 488000 145.66128 

0.398 145.64 366000 169.98082 

0.631 177.31 281000 198.3511 

1 212.64 213000 231.4251 

1.58 260.39 164000 269.74063 

2.51 316.61 126000 314.97243 

3.98 379.69 95388 367.56009 

6.31 443.31 70273 428.90689 

10 530.8 53093 500.42486 

15.8 617.86 38996 583.2769 

25.1 709.68 28259 681.08445 

39.8 785.19 19727 794.798 

63.1 929.57 14735 927.452 

100 1047.9 10479 1082.09974 
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Figure 38 Tested and fitted shear stress–shear rate curve. 
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6.5 Printer Parameters 

The printer parameters of the robocasting process include parameters for the extruder and 

parameters for the motor. The parameter for the extruder has been explained in Chapter 6.1. 

Motors are controlled by the G-code interpreter in the PLC unit. Ball threads, belts, and gears 

are used to convert rotary motions (from the motor) to linear movements (of the printing bed, 

nozzle, and extruder), such as travel speed and extrusion speed, by adjusting the coefficients. 

These coefficients are configurations in the PLC setting code. An example of these 

configurations are shown: 

#define DEFAULT_AXIS_STEPS_PER_UNIT (200, 200, 3274, 300) 

This line of code defines the axis steps per unit (steps/mm). The coefficients “200, 200, 

3274, and 300” indicate the required operation of stepper motors to execute a 1 mm linear 

motion. The motors, which control the X-axis, Y-axis, and Z-axis, need to rotate 200 steps, 200 

steps and 3274 steps, respectively, and the extruder needs to rotate 300 steps. 

The coefficients for the X-axis, Y-axis, and Z-axis in this study were obtained using the 

factory setup. In contrast, the coefficient for the extruder was calibrated based on the model of 

the new extruder in section 6.1. Table 5 was generated based on the assumption that the ceramic 

slurry is a noncompressible viscous fluid for which the volume for a given mass is constant 

during the printing process. The parameters in Table 5 were applied to calibrate the coefficient 

for the extruder. Calibration was based on the actual print to acquire accurate coefficients.  

 

Table 5 Coefficient for calibrating the extruder. 

Original Extrusion 

Amount (mm) 

Degree Pre-

Revolution 

Linear Distance at Ball 

Thread (mm) 

950 360 2.5 

Cylinder diameter (mm)   Outlet diameter(mm) 

14.37   2.5 

Inlet area (mm^2)   Outlet area (mm^2) 

162.10007   4.90625 

Inlet/outlet area 33.039504   

Extrusion length (mm) 

Linear movement at 

ball thread (mm)   

1 0.0026316   

Extrusion length (mm) 

Linear movement 

out of nozzle (mm) Factor 

1 0.0869461 0.0302668 

To achieve real E 1, use 

this factor multiplied by 

the distance change  

This factor is 1/(linear 

movement out of nozzle) 

    11.501383 
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6.6 Process Parameters 

Process parameters of the robocasting process include the feed rate (mm/min), travel 

distance (mm), spindle speed (rpm), extrusion length (mm), and layer height (mm). These 

parameters are defined in the G-code and are comparable to the processing variables of the 

conventional machining process. Once the recipe of the slurry is defined, the rheology 

properties of the slurry are fixed. The processing parameters are the actual parameters to be 

controlled and modified.  

6.6.1 Extrusion Speed and Travel Speed  

The processing variables are defined and stored as printing commands in G-code (RS-274) 

format. The travel speed is directly defined inside a single line of code, while the travel distance, 

extrusion distance, and extrusion speed can be calculated between neighboring lines. An 

example of the G-code is shown as follows: 

N0001 G1 X24.496 Y-7 E26.3670 F1200 

N0002 G1 X24.496 Y7 E39.0921 

In these two lines of G-code, a linear distance between the point (24.496, 7) and the point 

(24.496, -7) can be calculated by using the Pythagorean theorem, which is 14 mm in this case. 

F1200 specifies that the feed rate is 1200 mm/min (20 mm/s). These two parameters can be 

used to calculate the interval time as 0.7 s. The difference between the two E values is the 

length of the slurry extruded out of the nozzle between the interval time. The extrusion speed 

is calculated by the length of the extrusion and interval time. In this case, the extrusion speed 

is 1089.6 mm/min (18.16 mm/s), which is slower than the travel speed (1200 mm/min). These 

relations are expressed by equations (14–18): 

𝐷 = √(𝑋2−𝑋1)2 + (𝑌2−𝑌1)22
 (14) 

𝐿𝐸 = (𝐸2−𝐸1) (15) 

𝑇𝑇𝑟𝑎𝑣𝑒𝑙 =
𝐷

𝐹𝑒𝑒𝑑𝑟𝑎𝑡𝑒
 (16) 

𝑉𝐸𝑥𝑡𝑟𝑢𝑑𝑒 =
𝐿𝐸

𝑇𝑇𝑟𝑎𝑣𝑒𝑙
 (17) 

𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 =
𝐿𝐸

𝐷
 (18) 

where D is the linear travel distance between the neighboring line of G-code; 

𝑋1 , 𝑌1, 𝑎𝑛𝑑 𝐸1  are positions of the destination in the first line of code; 𝑋2 , 𝑌2, 𝑎𝑛𝑑 𝐸2  are 

positions of the destination in the second line of code; 𝐿𝐸 is the length of extrusion; 𝑇𝑇𝑟𝑎𝑣𝑒𝑙 is 

the interval time of travel; 𝑉𝐸𝑥𝑡𝑟𝑢𝑑𝑒 is the extrusion speed; and 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 is the multiplier of 

the extrusion length over distance, which represents different travel and extrusion speed 
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combinations.  

Twenty-seven copies of design pattern #1, as shown in Figure 29, were printed at different 

travel-extrusion speed combinations; the travel speed was fixed at 1200 mm/min based on the 

recommendation from the manufacturer. These 27 patterns were printed in a row, and 200 mm 

slurry was extruded from the nozzle at 1200 mm/min before printing the first pattern to ensure 

a constant flow during the print. The printed patterns were measured by noncontact, 3D, surface 

metrology confocal microscopy (Sensofar, Barcelona).  

 

Figure 39 Samples printed at different extrusion speeds with a travel speed of 1200 

mm/min 

 

As shown in Figure 39, one data point for each track was collected; thus, 11 data points 

were collected for each pattern. The average height, width, length, and cross-sectional area of 

the printed filament were analyzed; the results are listed in Table 6. The volume of each path 

was also calculated by the average length and the cross-sectional area. With an increase in the 

extrusion speed, the height, width, length, and volume also increase. However, when the 

extrusion speed exceeded 2760 mm/min, 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 = 2.3 , and the two neighboring paths 

started to merge and overlap, which causes the measured width to become inaccurate. These 

experiments show that the optimal 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒  was between 1.2 and 1.7, which was 

1440 mm/min

1200 mm/min
 and 

2040 mm/min

1200 mm/min
.  
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Figure 40 Printed filament measured by noncontact, 3D, surface metrology confocal 

microscopy 

 

Table 6 Average height, width, length, cross-sectional area, and calculated volume of the 

printed filament 

Travel speed 

(mm/min) 

Extrusion 

speed 

(mm/min) 

Height 

(mm) 

Width (base) 

(mm) 

Cross-

sectional 

area 

(mm^2) 

Length 

(mm) 

Volume 

(mm^3) 

1200 1200 0.6674  0.9136  0.3512  20.4409  7.1778  

1200 1320 0.7023  0.8846  0.4610  20.4855  9.4442  

1200 1440 0.5668  1.0074  0.5212  20.8475  10.8655  

1200 1560 0.6091  1.0585  0.5512  21.1240  11.6431  

1200 1680 0.5774  1.1868  0.6190  21.1222  13.0748  

1200 1800 0.6058  1.2337  0.6657  20.9952  13.9756  

1200 1920 0.6003  1.4035  0.7454  21.1175  15.7411  

1200 2040 0.5582  1.5097  0.7861  21.5004  16.9016  

1200 2160 0.5542  1.5649  0.8363  21.6249  18.0854  

1200 2400 0.5973  1.6726  0.8642  21.4811  18.5641  

1200 2520 0.6037  1.7140  0.8836  21.6954  19.1694  

1200 2640 0.6484  1.7140  0.8247  21.9175  18.0750  

1200 2760 0.6638  1.8906  1.0077  22.8479  23.0247  

1200 2880 0.8084  1.4932  0.7228  21.7737  15.7381  

1200 3000 0.7135  1.8409  0.9117  21.6647  19.7519  

1200 3120 0.7117  1.6118  0.8272  21.8654  18.0869  

1200 3240 0.7400  1.8920  1.0069  21.8875  22.0385  

1200 3360 0.6951  1.8244  1.1220  22.2073  24.9176  

1200 3600 1.1257  1.8078  0.9073  22.2267  20.1657  

1200 3720 0.6555  1.9237  1.0540  23.2124  24.4663  

1200 3840 0.7258   -   -  23.4535    

1200 3960 1.6885   -   -  23.8739    
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1200 4080 0.8466   -   -  22.0064    

1200 4200 0.9101   -   -  22.3968    

1200 4320 1.4101   -   -  22.8509    

1200 4440 1.2723   -   -  24.8811    

1200 4560    -   -  25.8299    
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6.7 Intermediate Parameters 

The intermediate values contain the deformation (of the lower layer), deflection (of the 

higher layer), pressure (of the piston and nozzle), and shear rate (at the nozzle). These 

parameters can be treated as in-process measurements and feedback signals for the closed-loop 

control system. 

 

6.7.1 Deformation and Deflection of the Printed Part 

The deformation and deflection of the printed part are influenced by the deflection of the 

upper layer and deformation of the lower layer.  

The upper layer's deflection has been investigated by the research team from the University 

of Illinois at Urbana-Champaign and Sandia National Laboratories. Lewis et al. discovered that 

the upper layer's deflection can be modeled as a simply supported beam with a distributed load, 

as shown in Figure 41 [79]. The maximum deflection (𝑍𝑚𝑎𝑥) can be calculated based on the 

deflection formulas for the simply supported beam with a uniformly distributed load by 

equations (19–21): 

𝑍𝑚𝑎𝑥 =
−5𝑤𝑙4

384𝐸𝐼
 (19) 

𝑤 =
1

4
∗ 𝜋 ∗ 𝐷𝑠𝑙𝑢𝑟𝑟𝑦

2 ∗ 𝜌𝑠𝑙𝑢𝑟𝑟𝑦 ∗ 𝑔 (20) 

𝐼 =
𝜋∗𝐷𝑠𝑙𝑢𝑟𝑟𝑦

4

64
 (21) 

where w is the distributed load, E is Young’s modulus, 𝐷𝑠𝑙𝑢𝑟𝑟𝑦  is the diameter of the 

printed slurry, I is the moment of inertia, and g is the gravitational constant.  

However, there are some limitations when using equations (19–21). The slurry must 

exhibit a well-controlled viscoelastic response, and the volume fraction must be high enough 

(greater than 50%) to resist compressive stresses that arise from capillary tension [79]. If the 

slurry has a low volume fraction or exhibits an elastic response, the surface tension will appear 

to influence the deflection and cannot be disregarded [85]. The slurry used in the robocasting 

process is a soft material; thus, the printed tracks cannot be merely treated as a beam. However, 

these equations can still be employed for approximation. More factors could be adopted to 

improve the accuracy of the deflection model. 
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Figure 41 Schematic for the deflection (z) of the upper layer.  

 

The lower layer's deformation is influenced by viscosity, types of solution, load added to 

the lower layer, and Young’s modulus. The following experiment was designed to test the 

height between point a and point b in Figure 41.  

The printed design pattern #2 was measured by noncontact, 3D, surface metrology 

confocal microscopy (Sensofar, Barcelona). As shown in Figure 42, 11 data points were 

collected for each pattern. The mean and standard deviation for each pattern were analyzed and 

shown in Figure 43. The results show that with the increase in the layover time between the 

layers, the height from the top of the upper layer to the bottom of the lower layer will decrease. 

 
Figure 42 Sample measured by noncontact, 3D, surface metrology confocal microscopy 

 

Table 7 Mean and standard deviation of height difference for different layover times 

Time between layers (s) Average height (um) Standard deviation (um) 
0 998.2827273 48.47541131 
24 1057.918182 25.86293944 
48 1066.309091 29.88690197 
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72 1065.809091 28.37500501 
96 1082.063636 33.04252632 

120 1099.672727 28.35814137 
144 1121.081818 24.86020186 
168 1107.7 26.64695105 

 

 

 
Figure 43 Height difference (um) vs. different layover times (s) 

 

6.7.2 Dynamic Model of Extrusion Process 

As shown in Figure 44, the pressure and shear rate during the printing process was 

described as a capillary extrusion model. The shear stress (𝜏𝑤), shear rate (𝛾̇𝑤), volumetric 

flow rate (Q), and pressure drop  (∆𝑃) between the plunger and the nozzle can be calculated 

based on equations (22-28) [86-88]: 

Q= ∆𝑉 =
𝑉𝑠

𝛽
∗

𝑑𝑃𝑝

𝑑𝑡
= 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 (22) 
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𝑃𝑝 =
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑜𝑟𝑐𝑒

𝜋∗𝑅𝑠
2  (23) 

𝑉𝑖𝑛 = 𝑑𝑆 ∗ 𝜋 ∗ 𝑅𝑠
2 (24) 

𝑉𝑜𝑢𝑡 =  𝜋 ∗ 𝑅𝑛
3 ∗ 𝑛 (

−𝜏𝑤

𝑚
)

1

𝑛
∗ (1 − ∅)

𝑛+1

𝑛 ∗ [
1−∅2

3𝑛+1
+

2∅∗(1−∅)

2𝑛+1
+

∅2

𝑛+1
] for ∅ ≤ 1 

𝑉𝑜𝑢𝑡 = 0 for ∅ > 1 (25) 

∅ =
𝜏𝑦

𝜏𝑤
 (26) 

𝜏𝑤 = (−
𝑃𝑜

𝑙𝑛
) ∗

𝑅𝑛

2
 (27) 

∆P = 𝑃𝑝 − 𝑃𝑜 = [
∆𝑉

𝜋∗𝑅s
3 ∗ (

3𝑛+1

𝑛
)]

𝑛
∗ (

2(𝑙𝑠)∗𝐾
𝑅𝑠

) + [
∆𝑉

𝜋∗𝑅n
3 ∗ (

3𝑛+1

𝑛
)]

𝑛
∗ (

2𝑙𝑛∗𝐾
𝑅𝑛

) (28) 

 

where 𝑙𝑠 is the length of the syringe, 𝑙𝑛 is the length of the nozzle, 𝑃𝑝 is the pressure 

on the plunger, 𝑑𝑆  is the plunger displacement, 𝑅𝑠  is the radius of the plunger, 𝑅𝑛   is the 

radius of the nozzle, n is the shear-thinning exponent, 𝜏𝑦 is the yield stress in the Herschel–

Bulkley fluid, K is the viscosity parameter in the Herschel–Bulkley fluid, and  𝛽 is the bulk 

modulus of the slurry.  

 

Figure 44 Schematic of the dynamic model of the extrusion process 
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6.8 Ceramic Robocasting Process Analyzed by the Axiomatic Design Theory 

6.8.1 Current Decomposition 

The current ceramic robocasting process was decomposed following a Cartesian theme 

into X, Y, and Z directions in the first level of the decomposition, as shown in the green 

background in Table 8. This decomposition theme is collectively exhaustive, covers all three 

Cartesian directions, and mutually exclusive (CEME) because they are orthogonal. The zeroth-

level process variable (PV0) includes motions in the X, Y, and Z directions, and child process 

variables in the ceramic robocasting process were governed by the controller, such as a 

computer or a microcontroller.  

Table 8 Current decomposition 

 
 

6.8.2 Relations Among FRs, DPs, and PVs 

In this study, functional requirements explain the functions to be accomplished, the  

design parameters represent the factors to fulfill the requirements, and the process variables are 

actual actions to modify the design parameters. As FR1, FR2, and FR3 require dimensional 
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accuracy in the Z, Y, and X directions, they share a similar decomposition structure. In this 

section, relations among the FRs, DPs, and PVs for the height direction (Z-direction) were 

explained and decomposed as an example for analyzing the whole ceramic robocasting process.  

FR1  Maintain the correct height of the product 

DP1 Bias in the Z direction between the printed part and the designed model  

PV1 Extrude the slurry/ feed in the Z direction/ choose the material 

To maintain the correct height of the product, the height difference (∆𝑍)  between the 

printed parts and the designed model should be measured and minimized. The governing 

equation for ∆𝑍 height difference was expressed by Equation (29): 

∆𝑍 = ∆𝑍𝐿𝑎𝑦𝑒𝑟 + ∆𝑍𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (29) 

 where ∆𝑍𝐿𝑎𝑦𝑒𝑟 is the bias of each printed layer, and ∆𝑍𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the bias caused by 

the interaction between the layers. Both the property of the material and the motions in the Z 

direction contribute to the height difference. The overall decomposition for this FR is based on 

this principle. The assigned metrics for FR1, DP1, PV1, and their children are shown in Table 

9. 

 

Table 9 Assigned metrics for FR1, DP1, PV1 and their children 

 
 

FR1.1  Manage the change in height caused by plastic deformation of the printed 

signal layer 

DP1.1  Evaporation shrinkage fraction/extrusion-travel speed pair 

PV1.1  Adjust the extrusion speed/ table speed/ and viscosity 

Ceramic robocasting is an additive manufacturing method that builds the product layer by 

layer. For each layer, there naturally exists a designed height and an as-printed height. The 
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difference between the printed layer and the design layer (∆𝑍𝐿𝑎𝑦𝑒𝑟) is caused by the drying 

mechanism and rheological property of the prepared slurry. The solvent content (PV) for each 

printed track will dry out, which causes deformation of the height and shape of each printed 

track. The extrusion-travel speed pair also influences the deformation of the width, height, and 

cross-sectional shape of the printed single layer. As the extrusion speed increases, the height, 

width, length, and volume also increase. A detailed study was presented in chapter 6.6.1. 

Aside from the extrusion speed, the material property of the slurry has an impact on the 

height of the printed layer. The raw material used in the ceramic robocasting process was 

ceramic slurry, which was produced by combining solvent, solute, and thickening agent. The 

viscosity of the slurry influences the shape of the printed track. To manage the change in height 

caused by the plastic deformation of the printed signal layer (FR), a proper evaporation 

percentage (DP) should be ensured. It should be noted that, currently, there are two choices for 

DP1.1: 1) evaporation shrinkage fraction and 2) extrusion-travel speed pair. For a good design, 

only one DP should be used to fulfill a certain FR, and this DP should be produced by a single 

PV. If there are multiple choices of DP to fulfill an FR, only one DP should be a variable, while 

the other DPs should be constrained or set as constants. The material properties for a specific 

printing operation can be treated as a constant; however, they are variables for the whole 

robocasting system. The current robocasting process's material properties cannot be 

constrained or set as constants, which leads to a single FR being fulfilled by two DPs, and 

consequently, produces couplings in the system. These couplings are discussed in section 6.8.4. 

FR1.2  Manage the accumulated height of two neighboring layers 

DP1.2  Influence of contact between layers  

PV1.2  Print in the Z direction 

When an upper layer was deposited onto a lower layer, two neighboring layers interacted 

to produce deviations in the height direction (∆𝑍𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛). These deviations are derived from 

both the upper layer and the lower layers; so FR1.2 can be decomposed into two children-level 

functional requirements accordingly. 

FR1.2.1  Control the change in height caused by the deflection of the upper layer due 

to gravity 

DP1.2.1  Density of the slurry/gap between neighboring tracks/inertia 

PV1.2.1  Adjust the solvent volume percentage/gaping distance and cross-section 

The upper layer's deflection has been investigated by the research team from the University 

of Illinois at Urbana-Champaign and Sandia National Laboratories. Lewis et al. discovered that 
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the deflection of the upper layer can be modeled as a simply supported beam with a distributed 

load, as shown in Figure 41.  

The maximum deflection (𝑍𝑚𝑎𝑥) was calculated based on the deflection formulas for the 

simply supported beam with a uniformly distributed load, as shown in chapter 6.2.1. 

In this case, the functional requirement to control the change in height caused by the 

deflection of the upper layer due to gravity was fulfilled by three separate design parameters, 

and each design parameter was produced by its process variables.  

FR1.2.2  Control the change in height caused by the deformation of the lower layer 

DP1.2.2  Mass of the deposited upper track/contact area/viscosity of the slurry 

PV1.2.2  Adjust the extrusion speed/ travel speed/nozzle geometry/ and choose an 

appropriate material recipe 

The lower layer's deformation has a similar mechanism as the plastic deformation of the 

single track without deformation, as explained in FR1.1. However, the mass added to the lower 

layer, which accelerates the deformation of the lower layer also needs to be considered. 

FR1.2.3  Maintain the correct number of layers 

DP1.2.3  Number of layers 

PV1.2.3  Feed in the Z direction 

The number of layers influences the overall height of the printed part. When the height of 

each layer and the accumulated height of the neighbor layers change, the number should be 

adjusted. The governing equation for the number change in layers can be expressed by Equation 

(30): 

𝑁𝑛𝑒𝑤 𝐿𝑎𝑦𝑒𝑟 = 𝑁𝐷𝑒𝑠𝑖𝑔𝑛𝑒𝑑 𝐿𝑎𝑦𝑒𝑟 + ∆𝑁𝐿𝑎𝑦𝑒𝑟 + ∆𝑁𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (30) 

 

where 𝑁𝑛𝑒𝑤 𝐿𝑎𝑦𝑒𝑟 is the number of layers to maintain the correct height of the printed part, 

𝑁𝐷𝑒𝑠𝑖𝑔𝑛𝑒𝑑 𝐿𝑎𝑦𝑒𝑟  is the number of layers from the original design, ∆𝑁𝐿𝑎𝑦𝑒𝑟  is the adjusted 

number of layers caused by the change in height of each layer, and ∆𝑁𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  is the 

adjusted number of layers caused by the change in height between layers. 

FR2   Ensure that the length of print is the same as the targeted model 

DP2  Bias in the Y direction between the printed part and the designed model 

PV2  Extrude the slurry/ feed in the Y direction/ and choose the material 

FR3   Ensure that the width of print is the same as the targeted model 

DP3  Bias in the X direction between the printed part and the designed model 

PV3  Extrude the slurry/ feed in the X direction/ choose the material 

FR2 and FR3 were analyzed by a similar approach. The factors that influence the length 
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difference (∆𝐿) and the width difference (∆𝑊) are expressed by equation (31) and equation 

(32), respectively: 

∆𝐿 = ∆𝐿𝐿𝑎𝑦𝑒𝑟 + ∆𝐿𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (31) 

∆𝑊 = ∆𝑊𝐿𝑎𝑦𝑒𝑟 + ∆𝑊𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (32) 

 where ∆𝐿𝐿𝑎𝑦𝑒𝑟 and ∆𝑊𝐿𝑎𝑦𝑒𝑟 are the bias of each printed layer in length and width, and 

∆𝐿𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  and ∆𝑊𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  are caused by the interaction between the layers.    The 

detailed decomposition also follows a similar approach to the decomposition in the height (Z) 

direction. 

 

6.8.3 Design Matrix 

The FR-DP design matrix was generated by Acclaro DFSSV software, as shown in Figure 

45. A detailed analysis of the matrices is provided in section 6.8.4. 

 

Figure 45 FR-DP design matrix 

 

6.8.4 Coupling 

Suh et al. mentioned that the FR-DP matrix could help researchers analyze the design. If 

the FR-DP matrix is diagonal, the design is uncoupled. If the matrix can be listed as or 
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converted to a lower triangular matrix, the design is decoupled. If the matrix does not exhibit 

either a diagonal shape or a lower triangular shape, the design is coupled [59]. As Axiom I 

requires the maintenance of independence, an uncoupled design is always more desirable than 

a decoupled design, while a coupled design should be avoided. The current ceramic robocasting 

process is a coupled design, as shown in Figure 45, which is a violation of Axiom I.  

There are several off-diagonal interactions in the right upper triangle of the current FR-DP 

matrix, as shown in Figure 45. There are two types of interactions among these couples. An 

example of each type is analyzed in this chapter.  

 

6.8.4.1 FR-DP Coupling Produced by Material Properties 

FR1.1  Manage the change in height caused by the drying mechanism of the printed 

signal layer 

DP1.2.1  Density of the slurry/gap between neighbor tracks and inertia 

As explained in chapter 6.8.2, FR1.1 is influenced by both the evaporation shrinkage 

fraction and the extrusion-travel speed pair. DP 1.2.1, the density of the slurry, and the gap 

between neighboring tracks and inertia are designed to control the change in height caused by 

the deflection of the upper layer due to gravity. The slurry density and evaporation shrinkage 

fraction are both influenced by the choice of solvent and its volume percentage. Thus, they are 

naturally coupled with each other. 

 

6.8.4.2 FR-DP Coupling for Redundant Control of the Different Directions of Print 

FR2.1.2  Control the change in length caused by extrusion for a printed single track 

DP3.1.2  Extruded volume/cross-sectional area of the printed layer/evaporation 

fraction 

DP3.1.2 fulfills FR3.1.2, which requires maintaining the change in width caused by 

extrusion for a printed single track. FR2.1.2 shares the same equation as FR3.1.2, and the only 

difference is that FR2.1.2 is for the change in length, resulting in these two FRs sharing the 

same design requirement and being redundant to each other. 

 

6.8.4.3 Discussion on DP-PV Coupling  

Different from the well-studied FR-DP matrix and coupling, the DP-PV matrix and 

couplings have rarely been mentioned by researchers. In this study, the method for analyzing 

the FR-DP matrix was adopted to explain the couplings and interactions in the DP-PV matrix. 

If DP-PV is diagonal, then the manufacturing process is uncoupled. If the matrix can be listed 
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or converted into a lower triangular shape, the manufacturing process is decoupled. Any other 

forms of the matrix will contribute to a coupled process. In the current design of the ceramic 

robocasting process, the DP-PV matrix shows a heavily coupled pattern, which is because the 

material property of the slurry for the whole system is a variable. Simultaneously, the design 

parameters are fulfilled by the correct material property. Thus, these properties are correlated. 

An example is listed as follows: 

DP1.1  Evaporation shrinkage fraction/extrusion-travel speed pair 

PV2.2.1  Density of the slurry/gap between neighboring tracks and inertia 

DP1.1 is used to manage the change in height caused by the drying mechanism of the 

printed single layer. FR1.1 can be fulfilled by adjusting the solvent type, volume percentage, 

print volume, and travel speed, which was expressed in PV1.1. When the solvent type and 

volume percentage are changed, the slurry density is also changed, resulting in the coupling of 

DP1.1 and PV2.2.1. 

 

6.8.5 Axiom II: Minimize the Information Content of the Design 

Axiom II of the Axiomatic design theory requires the minimization of the information 

content. Each FR-DP pair is regarded as a one-dimensional solution space. Suh mentioned that 

Axiom II should be applied to a system or design that satisfied Axiom I [59]. The whole 

system/design is a combination of multiple solution spaces, and the probability of success is 

calculated based on equations (33–34) [67]: 

𝐼 = ln (
1

𝑝
) (33) 

𝑃 =
1

𝑒𝐼
 (34) 

where I represents the information contents; in this case, I is equal to the FR-DP pairs, 

while P is the probability of success. The number of FR-DP pairs, I, should be minimized to 

increase the probability of success. The current ceramic robocasting process does not satisfy 

Axiom I, however, equations (33) and (34) can still be applied to express the correct change in 

the probability of success by the trend. 

 

6.8.6 Physical Integration 

The physical integration matrixes are shown in Figure 46. The DPs were decomposed into 

each level to analyze their interrelationships. 
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Figure 46 DP-DP interactions for the current robocasting process 

 

The physical integration matrix is different from the FR-DP matrix in section 6.8.3. In this 

specific case, the lower triangle (in the yellow background) and upper triangle (in the pink 

background) of the DP-DP matrix are symmetrical about the diagonal. This fully coupled DP-

DP relationship in the current robocasting process occurs because most of the actions to print 

the part are operated by the same printer, and these actions physically interact with each other. 

 

6.8.7 Discussion 

The material properties in the current decomposition of the ceramic robocasting process 

were treated as process variables, which leads to the contradiction with the AD theory and 

heavily coupled FR-DP and DP-PV matrices. The deflection model in this study was based on 

adapting the deflection equation for the simply supported beam [79]. To properly apply the 

beam deflection equation, the material of the beam should obey Hooke’s law [89]. However, 

the ceramic slurry used in the robocasting process is a soft material; hence, the printed filament 

cannot be merely treated as a beam. The beam deflection equations can be utilized for 

approximation, but more factors should be adopted to accurately represent the deflection model.  

The deformation of the printed pattern in the length and width shares a similar mathematic 

model, which leads to coupling. A new nozzle, printing mechanism, or printing strategy needs 

to be developed to increase the probability of success as they can separate the coupled process. 

Thus, Axiom I will also be fulfilled, as it requires maintaining the independence of the FRs.  

Another possible approach to decoupling the current manufacturing process is to introduce 
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constraints to limit the material properties. This approach can be achieved by integrating 

closed-loop control into the current system and setting up a database that describes the relations 

between the material properties and the process variables. For example, when attempting to 

control the deflection of the upper layer of the print, the material property can be treated as a 

constant if introducing a deflection-extrusion closed-loop control. Current material properties 

are converted from variables into constants, and deflection is only a function of the shape of 

the nozzle. This approach can turn the current coupled design into a decoupled design as the 

current ceramic robocasting process is a coupled system, which leads to a complex physical 

model.  

The conventional closed-loop strategy, such as PID control, requires careful conversion to 

govern operations. However, the ANN, which is a data-driven decision-making approach, 

provides a chance to bypass the complex dynamic physics equations and map the real-time 

status into control actions by experience, which is a proper control logic for governing the 

coupled robocasting operation. 

This study decomposed the current ceramic robocasting manufacturing process based on 

the motions in the Cartesian coordinates. For this process, it can also be decomposed based on 

the deformation mechanism. A further study can be carried out to compare the possible 

similarities and differences between two kinds of decompositions for the same ceramic 

robocasting manufacturing process. 

 

6.8.8 Concluding Remarks 

This study shows an approach for analyzing the current ceramic robocasting process via 

the application of AD theory. FR-DP and DP-PV matrices and decompositions were 

demonstrated. The relationships among FR-DP-PV were analyzed. Possible solutions for 

optimizing the current ceramic robocasting manufacturing process by integrating closed-loop 

control were discussed. Future work includes applying the proposed change in the robocasting 

printer to decouple the motion of three directions and create a material properties database. 
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6.9 Improving Ceramic Additive Manufacturing by Machine Learning Enabled Closed-

Loop Control 

6.9.1 Design of the Control Loop  

An in-process machine learning enabled closed-loop control process flow is demonstrated 

in Figure 47. The process flow is divided into two stages. The first stage is designed to acquire 

data and generate control logic, in this study, an artificial neural network model. The second 

stage is designed for the process that fabricates the design pattern. A MATLAB script was 

developed to enable communication among a 3D printer, loadcell sensor, ANN model, and 

computer thought RS-232 standard serial port. The operational G-code is loaded, analyzed, and 

sent to the printer in line-by-line form.  

 

 

Figure 47 Flow diagram of ANN closed-control loop 

 

In the first stage, an ANN model was created to generate the prediction-based process 

parameter. The ANN was developed in TensorFlow (Google Brain, CA) based on the collected 

location, pressure, geometric, and time-series information of each data point. The pattern used 

in this research is design pattern #3. Since the length of each track and travel speed had been 

constrained to 20 mm and 1200 mm/min, the relationship between  𝐿𝐸   and 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 were 
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calculated by Equation (18) and expressed in Table 10.  

 

Table 10 Relationship between 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 and 𝐿𝐸 in this study 

𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 1.0 1.1 1.2 1.3 1.4 1.5 1..6 1.7 1.8 1.9 

 𝐿𝐸(mm) 20 22 24 26 28 30 32 34 36 38 

 

The conclusion form chapter 6.6.1 stated that the optimal 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 was between 1.2 and 

1.7. Thus, the processing pressure and dimensional information for ten sets of the designed 

pattern were collected for ANN model training and testing. The 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 for these ten sets of 

prints ranged from 1.0 to 1.9, with an increment of 0.1. An example of the data collected for 

training the artificial neural network model is shown in Table 11. As shown in Figure 31, the 

starting loadcell reading in the table represents the real-time load that is added to the plunger 

at a certain extruding point, while the ending loadcell reading represents the load at the next 

extruding point. The difference between these two readings represents the change in pressure 

that corresponds to the extrusion operation. As the loadcell sensor was directly attached to the 

plunger of the syringe, the pressure added to the ceramic slurry was proportional to the load 

applied to the plunger. The relationship among the loadcell reading(g), process pressure (Pa),  

gravitational acceleration and area of the plunger (𝑚2) is expressed in equation (35): 

𝑃 =
𝐿𝑜𝑎𝑑𝑐𝑒𝑙𝑙 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ∗ 𝑔

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑝𝑙𝑢𝑛𝑔𝑒𝑟 ∗ 1000
(35) 

The extrusion in Table 11 represents the length of extruding 𝐿𝐸   in equation (15) between 

two neighboring extrusion points. The starting loadcell reading, ending loadcell reading, and 

extrusion were collected to train the ANN model for predicting the desired extruding distance. 

In the model training stage, the starting loadcell reading and ending loadcell reading were 

inputs, and the extrusion was the output. Since process variables were pre-defined in the G-

code in this stage, the collected in-process pressure information and dimensional information 

were treated as the uncontrolled group information. 

 

Table 11 Example of data collected for training and testing the extruding length 

prediction ANN model 

Data ID 

Starting 

loadcell 

reading (g) 

Ending loadcell 

reading (g) 

Loadcell reading 

difference (g) 
Extrusion (mm) 

1 4712 4819 107 26 

2 8562 8621 59 30 

3 8097 8478 381 30 
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4 4814 4838 24 26 

5 4743 4825 82 26 

6 4671 4814 143 26 

7 4946 4982 36 26 

8 4627 4810 183 26 

9 4832 4877 45 26 

 

In the second stage, an executable real-time G-code was generated by the MATLAB script 

based on a given pre-defined G-code, real-time sensor reading information, targeted sensor 

reading, and pre-trained ANN model. Since the designed pattern's physical location and 

dimensions were constrained, the extrusion length for each extruding point, the E value, acted 

as the variable in the generated G-code and was predicted. The variable real-time G-code was 

generated and sent to the robocasting printer in a line-by-line order. Each line of G-code was 

followed by an inquiry command—in this study, “M400”—to track the robocasting printer's 

current movement status. As the robocasting printer used in this study is loaded with 

Smoothieware firmware, an “OK” echo would be replied to the “M400” command only when 

the printer finished its motion and attained idling status [90]. Thus, a full sequence of inquiry 

“M400” followed by an “OK” response was treated as a signal for generating a new line of G-

code. The desired length of extrusion was predicted by inputting the in-process pressure and 

targeted pressure into the pre-trained artificial neural network model. Since process variables 

were governed by the ANN model in the second stage, the collected in-process pressure 

information and dimensional information were treated as controlled group information.  

A pre-pressure function was also integrated into the MATLAB script before printing the 

first designed model in the controlled group. The pre-pressure function increases the pressure 

before printing the designed model to improve the closed-loop control performance and 

protects the robocasting system. If the difference between the two inputs of the ANN model is 

extremely large, such as when the current loadcell reading is 0 while the target loadcell reading 

is 5000 g, the predicted extrusion could also be extremely large. As specified in the introduction, 

the extrusion motion is converted by the rotation motion of the motor. An extremely large 

extrusion may cause the motor to exceed its maximum rotating speed. The current pre-pressure 

function was defined to extrude the ceramic slurry at 1200 mm/min until the in-process loadcell 

reading reaches 90% of the target loadcell reading. 
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6.9.2 Profile of Printed Patterns for the Uncontrolled Group 

The geometric profile of printed patterns was measured by non-contact confocal 

microscopy (Sensofar, Barcelona) and analyzed by MountainsMap software (Digital Surf, 

France). The time interval between the finished printing and the measurement was 24 hours. 

Thus, the geometric information of each extruding point was obtained. 

 

Figure 48 Profiles for the printed pattern with 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 ranging from 1.0 to 1.9 

 

The profiles overview for the uncontrolled groups is shown in Figure 48. Printed profiles 

above the red line exhibit a worse quality than those below the red line. To explain this 

phenomenon, the loadcell reading history for groups with 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒  equal to 1.0, 1.4, and 1.8 

were analyzed, as shown in Figure 49. Based on Table 10, the 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 1.0 group had an 

extrusion length of 20 mm, and the 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 1.4 group had an extrusion length of 28 mm, 

while the 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 1.8 group had an extrusion length of 36 mm. These three groups were 

reasonable examples of the extrusion process with low extrusion, medium extrusion, and high 

extrusion. The loadcell reading history in Figure 10 a) shows that the printing process can be 

divided into three stages. As the dimension of the printed pattern, travel speed, and sampling 

rate of the loadcell were pre-defined, the total interval time to print the whole pattern was 129.6 

s, whereas the time interval for each model was 14.4 s. In the first stage, the sensor reading 

increases at a fast rate. Depending on Equation (35), when the shear stress is smaller than the 

slurry’s yield stress, the volume flow out of the nozzle is zero. The pressure continues to 

accumulate until it reaches a point where the shear stress becomes greater than the yield stress. 

Equations (35) and (36) show that 
𝑑𝑃𝑝

𝑑𝑡
 , which is the plunger pressure change rate, is 

proportional to the extrusion rate. The first model in the 1.0, 1.4, and 1.8 groups belong to this 
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stage. 

In the second stage, the sensor reading increment rate starts to decrease compared with 

that in the first stage. From the second stage on, the slurry starts to form a continuous flow out 

of the nozzle. The profile of the printed model in this stage contains a pattern transformation 

from dash-like to continuous. The 2nd to 9th printed models in the 1.0 group and the 2nd to 5th 

printed models in the 1.4 group belong to this stage.  

In the third stage, the sensor reading becomes relatively stable compared with the first and 

second stages. As the slurry exhibits a shear-thing property, that the increase of pressure will 

decrease the viscosity, further increase the slurry extrusion speed. The increase in extrusion 

speed will then increase the volume flow of the slurry, which further decreases the processing 

pressure. This process continues until a dynamic equilibrium point is reached, which can be 

expressed as Equations (36–37): 

𝑑𝑃𝑝

𝑑𝑡
= 0 (36) 

∆𝑉 =
𝑉𝑠

𝛽
∗

𝑑𝑃𝑝

𝑑𝑡
= 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡=0 (37) 

 

 

Figure 49 a) Loadcell reading history for extrusion length of 20 mm, 28 mm, and 36 mm 

groups and b) 6th model on the extrusion length of 28 mm group 

 

The sensor reading history of the 6th model on the extrusion length of 28 mm group is 

shown in Figure 49 b). The first model in the stable stage of the 28 mm group was randomly 

selected as an example of the stable printing stage. The printing process for each stable printed 

model can be divided into three stages. As each model's interval time was 14.4 s and the 

loadcell had a sampling rate of 10 Hz, the loadcell history curve for each model contained 144 

data points, of which 132 points were obtained from the designed model. Stages I and II 

represented the actual data points from the model. Stage I represented the data points of the 
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first two tracks of the model, and stage II contained data points from track three to track eleven 

of the designed model. The remaining 12 points were obtained from the rapid travel motion 

between the two neighboring models, which are labeled as Stage III in Figure 49 b). Since the 

rapid motion only moved the nozzle location but did not extrude any slurry, the loadcell reading 

decreased, resulting in the rapid increase rate of the sensor reading in stage I. 

This study only focused on the stable stage of the print. To ensure the same number of data 

points derived from each uncontrolled group, the data of the 6th model to the 9th model for each 

printed group was collected to generate the ANN model. The 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 1.0 group did not have 

any stable model that belongs to the stable stage; thus, data from this group were excluded 

from the ANN model.  

 

6.9.3 Pressure Control by ANN 

 

A total of 376 sets of data were collected and normalized for training the ANN prediction 

model; 80% of the data were categorized as training sets; and the remainder of the data were 

categorized as test sets to verify the accuracy of the trained model. The structure of the data set 

is shown in Table 11. The ANN's layer structure was set to have two hidden layers, and each 

layer had 64 nodes. The starting loadcell reading and ending loadcell reading were inputs for 

training the artificial neural network model, and the length of extrusion was the output. A 

detailed explanation is provided in chapter 6.9.1. A summary of the model is shown in Figure 

50: 

 

Figure 50 Summary of the ANN model for extrusion length prediction 

 

As stated in the literature review chapter, many different activation functions are available 

for training the ANN method. Figure 51 shows the absolute error of the training sets by using 

four most frequently used activation functions. As shown in Figure 51, a) is the training set 
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error for the ReLU activation function, b) is the training set error for the Tanh activation 

function, c) is the training set error for the Sigmoid activation function, and d) is the training 

set error for the Softplus activation function. An error distribution of these four activation 

functions is shown in Table 12. The error is the absolute error defined as the difference between 

the predicted length of extrusion and the actual length of extrusion. The predicted length of 

extrusion was generated by the trained ANN model, while the actual length of extrusion was 

the data collected from each group in Figure 48. The absolute error from the training sets and 

test sets were included in Table 12. In the current circumstance, the ReLU function exhibits the 

most concentrated error distribution compared with other functions, and the majority of the 

errors are within a range of ±2 mm. The ReLU function was chosen to carry out the research 

because it had the smallest error range among the four activation functions. 

 

Figure 51 Absolute error (mm) of the training set by using different activation functions: 

a) ReLU, b)Tanh, c)Sigmoid, and D)Softplus 
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Table 12 Statistics of the error distribution of these four activation functions 

Bin Center Bin End 
Relative 

Frequency 
Relative 

Frequency 
Relative 

Frequency 
Relative 

Frequency 
  % % % % 

Frequency 
Counts 

Frequency 
Counts 

Frequency 
Counts of 
Extrusion 

Error ReLU 

Frequency 
Counts of 
Extrusion 

Error Tanh 

Frequency 
Counts of 
Extrusion 

Error Sigmoid 

Frequency 
Counts of 
Extrusion 

Error Softplus 

-13 -12 0.332225914 0.664451827 0.332225914 0 

-11 -10 0.996677741 0.332225914 0.332225914 0.332225914 

-9 -8 0.996677741 2.657807309 0.664451827 1.328903654 

-7 -6 0.664451827 0.332225914 0.996677741 1.661129568 

-5 -4 1.993355482 0.996677741 13.28903654 0.996677741 

-3 -2 16.94352159 19.6013289 8.637873754 9.634551495 

-1 0 20.93023256 25.24916944 23.92026578 22.92358804 

1 2 40.86378738 34.2192691 32.22591362 34.2192691 

3 4 7.973421927 14.28571429 13.95348837 19.26910299 

5 6 5.980066445 0.332225914 0.996677741 4.651162791 

7 8 2.325581395 0.996677741 4.318936877 3.986710963 

9 10 0 0.332225914 0.332225914 0.996677741 

 

The count of the absolute errors of the training set and test set by the ReLU activation 

function is shown in Figure 52. The absolute errors were calculated based on the difference 

between the predicted extrusion length and the actual extrusion length. The relevant error was 

the error divided by the actual extrusion length. The relevant error is a measure of the sample 

precision [91]. The statistical results of the relevant errors for both the training set and the test 

set are shown in Table 13 and Table 14. The results show that among the 376 sets of the 

predicted length of extrusion, 50% were within the 5% relevant error range, approximately 80% 

of the predicted length of extrusion were within the 10% relevant error range, and 92% of the 

predicted length of extrusion were within the 15% relevant error range. This ANN model was 

employed as the control function of the actual print. 

 

Figure 52 Count of error (mm) of the training set and test set: a) test set and b) training 

set 
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Table 13 Statistics of relevant errors for the ANN model 

Relative Error Center (%) Bin End Count Frequency (%) 

-37.5 -35 0 0 

-32.5 -30 2 0.53191 

-27.5 -25 5 1.32979 

-22.5 -20 7 1.8617 

-17.5 -15 2 0.53191 

-12.5 -10 20 5.31915 

-7.5 -5 66 17.55319 

-2.5 0 62 16.48936 

2.5 5 129 34.30851 

7.5 10 43 11.43617 

12.5 15 15 3.98936 

17.5 20 12 3.19149 

22.5 25 6 1.59574 

27.5 30 6 1.59574 

32.5 35 1 0.26596 

37.5 40 0 0 

42.5 45 0 0 

47.5 50 0 0 

52.5 55 0 0 

57.5 60 0 0 

62.5 65 0 0 

-37.5 -35 0 0 

-32.5 -30 0 0 

 

Table 14 Statistics of the accumulated frequency of relevant error range 

Relevant Error Range 
Accumulated 

Frequency (%) 

Between -5% and 5% 50.79787 

Between -10% and10% 79.78723 

Between -15% and15% 89.09574 

Between -20% and 20% 92.81914 

 

The performance of the trained ANN model in the actual printing condition was verified 

in the second stage of the control flow, as shown in Figure 47. To successfully call the model 

in the MATLAB script, a starting loadcell reading and ending loadcell reading must be 

specified for predicting the extrusion length. The real-time sensor reading of the extrusion was 

acquired and defined as the starting loadcell reading. The appropriate sensor readings in Figure 

53—5500 g, 6500 g, and 7000 g—were selected as the reference sensor reading. The choice of 

reference loadcell reading was based on the loadcell history for the extrusion length of the 28 

mm group in Figure 49 a). This group exhibited the best appearance printing quality during the 

stable printing stage, which covered the loadcell range between approximately 5500 g and 7200 
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g. These reference sensor readings acted as the target loadcell readings. As each experiment 

group's full name was too long to easily reference, an abbreviation name was given to each 

group, as shown in Table 15. In this study, the focus is the stable stage of the print; as mentioned 

in chapter 6.9.2, the sensor histories of the 6th to 9th models belong to this stage. The sensor 

histories for the models in each group are plotted in Figure 53. 

 

Table 15 Abbreviation name of experiment groups 

Full name of the experiment groups Abbreviation name 

Uncontrolled group with the extrusion length of 20 mm group Extrusion 20 mm 

Uncontrolled group with the extrusion length of 28 mm group Extrusion 28 mm 

Uncontrolled group with the extrusion length of 32 mm group Extrusion 32 mm 

Uncontrolled group with the extrusion length of 36 mm group Extrusion 36 mm 

Controlled group with target loadcell reading or 5500 g RFE 5500 

Controlled group with target loadcell reading or 6500 g RFE 6500 

Controlled group with target loadcell reading or 7000 g RFE 7000 

 

 

Figure 53 Sensor histories of the 6th to 9th models in variance printing condition: a) 

extrusion length of 20 mm, b) extrusion length of 28 mm, c) extrusion length of 36 mm, d) 

controlled group with target sensor reading of 5500 g, e) controlled group with target sensor 

reading of 6500 g, and f) controlled group with target sensor reading of 7000 g 

 

As stated in chapter 6.9.2, each model contained 144 data points; thus, complete sensor 
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histories for the 6th to 9th models contained 576 data points. The statistical results of the 

collected 576 data points for each group in Figure 53 are shown in Table 16. Table 16 shows 

that the standard error, standard deviation, and variance for the controlled groups were lower 

than those of the uncontrolled groups. The standard error, standard deviation, and sample 

variance are measurements to express each data set's precision. The relevant equations were 

expressed as equations (38–39). The sensor reading histories of the controlled groups were 

more stable than that of the uncontrolled groups. The pressure was successfully controlled and 

stabilized by the trained ANN model. 

𝑆𝐸 =
𝜎

√𝑛
 (38) 

𝑆2 =
∑(𝑥𝑖 − 𝑥̅)2

𝑛 − 1
 (39) 

  

where SE is the standard error, 𝜎 is the standard deviation, 𝑆2 is the sample variance, 

𝑥𝑖 is the value of a sample, 𝑥̅ is the mean value of all samples, and n is the sample size. 

 It is also notable that there was a rapid loadcell reading change between two adjacent 

models caused by the rapid motion between models in Stage III. Figure 53 shows that the 

change in amplitude among the controlled groups was more extensive than that of the 

uncontrolled groups. This change was because the length of extrusion in the controlled group 

was a predicted variable. The objective of the control loop was to ensure the in-process pressure 

near the targeted pressure. Thus, when the difference between the in-process loadcell reading 

and the targeted loadcell reading was small, the predicted extrusion would be small to maintain 

a stable loadcell reading. For the uncontrolled group, the process extrusion was constant 

regardless of the current printing status. Thus at the end of Stage II, the extrusion of the 

uncontrolled group was greater than that of the controlled group. Therefore, for the process in 

Stage III, the loadcell reading decreased more significantly in the controlled group than that of 

the uncontrolled group. For the process in Stage I, the large difference between the actual 

loadcell reading and the targeted loadcell reading in the controlled group resulted in a large 

predicted extrusion length, which rapidly increased the in-process loadcell reading rapidly. This 

phenomenon indicated that the control loop could improve the system's response toward 

loadcell reading changes. By optimizing the printing path, the rapid loadcell change in Stage 

III could be reduced and even eliminated. The printing path optimization was not discussed in 

this study and could be treated as independent research in the future. 
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Table 16 Statistical results of the sensor histories for variance processes   

 

6.9.4 Characterization of Printed Patterns  

6.9.4.1 Characterization of the Whole Pattern  

The surface metrology method was adopted to analyze the widths of the printed patterns. 

Figure 48 shows all visual profiles of the uncontrolled group with varying extrusion lengths. 

The overall visual printing quality of the uncontrolled 28 mm group, 32 mm group, and 36 mm 

group were better than that of other groups. These examples adequately represented the low, 

medium, and high extrusion range. Profiles for the printed patterns of the uncontrolled 28 mm, 

32 mm, 36 mm, and controlled RFE 5500, RFE 6500, and RFE 7000 groups are shown in 

Figure 54. The width information of the models in Figure 54 were measured by a confocal 

microscope. As shown in Figure 55, each model was sliced into 22 cross-sectional profiles, 

which were evenly distributed in the 11 tracks. These cross-section profiles were labeled in the 

order of printing.  

 

Figure 54 Profiles for the printed pattern in various conditions. Uncontrolled groups: 

extrusion 28 mm, extrusion 32 mm, and extrusion 36 mm; controlled groups: RFE 5000, 

6500, and 7000. 

 

The printed profiles in controlled and uncontrolled conditions are shown in Figure 54. The 

mean width of each model in various printing conditions was calculated based on the 22 width 
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data, as shown in Figure 56. The error bars in the figure were calculated as the standard error 

of the 22 width data for each model. The first four models in the uncontrolled 28 mm group 

and the first three models in the 32 mm group failed to form a continuous print; so the average 

width for these seven groups was zero. As discussed in chapter 6.9.2, a stable print stage is 

when the shear stress is greater than the slurry yield stress, and the ceramic slurry can 

continuously flow out of the nozzle. As shown in Figure 54, the 5th model in the uncontrolled 

28 mm group, the 4th model in the uncontrolled 32 mm, and the 1st model in the uncontrolled 

36 mm group contain dash-like tracks. Thus, the stable printing stage for the 28 mm group start 

from the 6th model, while that for the 36 mm group start from the 2nd model. As explained in 

chapter 6.9.1, a pre-pressure operation was integrated into the control loop to ensure that the 

printing operation of the controlled group reached a stable stage before the 1st model. Thus, it 

can be observed that the visual quality of the first model in the controlled groups is better than 

those of the uncontrolled groups.   

 

 
Figure 55 Example of a printed model to be analyzed. a) Overview of a model in REF 

6500 group acquired by the confocal microscope, b) cross-sectional profile of measurement 

points #1, 4, 5, 8, 9, 12, 13, 16, 17, 20, and 21, and c) detailed profile of measurement points 
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Figure 56 Mean profile width statistics for each model printed by various printing 

conditions. 

 

Table 17 Statistical results of the profile information for the mean of each model in the 

uncontrolled 28 mm, 32 mm, and 36 mm groups and controlled REF 5500, RFE 6500, and 

REF 7000 groups 

 

 

The statistical results of the mean width for each printed model in the uncontrolled 28 mm, 

32 mm, and 36 mm groups and controlled REF 5500, RFE 6500, and REF 7000 groups are 

shown in Table 17. The worst mean width variations in the models for a controlled group, RFE 

7000, is better than the best uncontrolled group, Extrusion 36 mm, in standard error (26.73 μm 

vs. 93.14 μm, respectively), standard deviation (81.2 μm vs. 288.44 μm), and sample variance 

(6431.84  μm2 vs. 83196.83 μm2). As shown in Figure 56, each printed model's mean width 
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in the controlled group exhibits improved consistency compared with that of the uncontrolled 

groups. An obvious trend is that the controlled group’s mean width of the printed model 

increases with an increase in the target loadcell reading.  

 

6.9.4.2 Characterization of the Single Model  

Similar to the approach in chapter 6.9.4.2, the surface metrology method was adopted to 

analyze the profile of a single model that is printed in the stable printing stage with various 

printing conditions. The selected model was measured by a confocal microscope and sliced 

into 110 cross-sectional profiles, which were evenly distributed among the 11 tracks. These 

cross-sectional profiles were labeled in the order of printing and were analyzed by 

MountainsMap software. As shown in Figure 54 and Figure 56, the observed width varies 

drastically in the uncontrolled group, whereas the controlled group showed improved 

consistency in the printed width. The 7th model in the uncontrolled groups typically shows the 

best apparent quality for all the tested printing conditions. Thus, the 7th model had been chosen 

for detailed characterization. In the controlled groups, the first model was chosen as the typical 

model to represent the relatively consistent printing quality of each group. Figure 57 compares 

the results of the detailed analysis of the 7th model from the uncontrolled 28 mm and 36 mm 

groups. 

  

 

Figure 57 Statistical width information of the 7th model in uncontrolled printing 

conditions: a) Statistical width information for the whole model and b) range and distribution 

of each model 

 

The statistical width information of the uncontrolled printing condition is shown in Figure 

57. The widths of the printed model in the uncontrolled groups exhibit a considerable variation 
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along the printing direction. Figure 57 b) shows the boxplot and distribution of 110 measured 

width information for the uncontrolled 28 mm and 36 mm groups. The range of the box was 

determined by the 25th and 75th percentiles, while the whiskers were determined by the 5th and 

95th percentiles. These results show that the measured width distribution of the 36 mm group 

is more discrete than that of the 28 mm group. As shown in Figure 58, the print in the 28 mm 

group shows a more uniform trend compared with the 36 mm group. In the 36 mm group, some 

of the neighboring tracks merged with each other, which contributes to the width variance. The 

width quality of the 7th model in the 28 mm group is better than that of the 36 mm group. 

 
Figure 58 Overview of the 7th model in the uncontrolled groups acquired by the confocal 

microscope: a) extrusion length of 28 mm and b) extrusion length of 36 mm 

 

Figure 59 a) is the scatter plot of 110 width measurement points for selected models in 

controlled and uncontrolled printing conditions. Figure 59 b) shows the boxplot diagram that 

corresponds to each printing condition. It can be observed from these two figures that the width 

quality of the printing in each controlled group has a relatively small width variation along the 

printing direction, and the width distribution is relatively uniform. Whereas the printing width 

of the uncontrolled group has a large variance along the printing direction, and the distribution 

is more scattered compared with that of the controlled groups. 
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Figure 59 Information of the 7th model for the uncontrolled 28 mm group, and the typical 

model in controlled RFE 5500 group, RFE 6500, and RFE 7000 group: a) statistical width 

information for the whole model, and b) range and distribution of each model 

 

Table 18 Statistical results of width information for the 7th model for the uncontrolled 28 

mm group, and the typical model in controlled RFE 5500 group, RFE 6500, and RFE 7000 

group.   

  Extrusion 28 mm RFE 5500 RFE 6500 RFE 7000 

Mean (um) 1072.79688 735.1566667 844.1836364 1119.03611 

Standard Error (um) 7.112759374 2.196787492 1.977800417 4.050423 

Standard Deviation (um) 74.59924966 22.8296853 20.74334578 42.4811948 

Sample Variance (um^2) 5565.04805 521.1945308 430.286394 1804.65191 

Sample Size 110 110 110 110 
 

 

Table 18 shows the statistical results of width information for the 7th model of the 

uncontrolled 28 mm group and typical models in the controlled RFE 5500, RFE 6500, and RFE 

7000 groups. The RFE 7000 group exhibits the worst consistency among all controlled groups, 

as the standard error, standard deviation, and sample variance are larger than those of other 

controlled groups. However, the print stability in the RFE 7000 groups is still better than that 

of the uncontrolled 28 mm group for standard error (4.05 vs. 7.11, respectively), standard 

deviation (42.48 vs. 74.60), and sample variance (1804.65 vs. 5565.04). This observation 

suggests that the width in the typical models in the controlled groups has better consistency 

and stability than the 7th model in the uncontrolled 28 mm group. Based on Figure 48, the 7th 

model in the 28 mm group has the best apparent quality in the uncontrolled group, whereas the 

typical models represent the average quality of the controlled group. Thus, adding closed-loop 

control resulted in better consistency and stability in printing quality.  
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6.9.5 Concluding Remarks 

In this study, a method to integrate closed-loop, real-time processing control based on 

machine learning was created and verified. A novel process flow that utilizes an ANN model 

as the control logic was implemented. This control loop was successfully created to predict the 

processing parameter based on the given real-time status of the robocasting printer and the 

desired target. The sensor reading history showed that by adopting ANN-governed closed-loop 

control, the process pressure exhibited a more stable trend than that of an open-loop process. 

The distribution in the printed width of the controlled group showed better consistency than 

that of the uncontrolled groups, which indicates the potential to control the width distribution 

by integrating machine learning enabled closed-loop control into the current robocasting 

process.  
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7 Summary 

7.1  Conclusion and Impact 

This dissertation mainly focuses on improving ceramic additive manufacturing by machine 

learning-enabled closed-loop control. The critical parameters for ceramic robocasting were 

prescribed in this research to achieve this goal. The relationships among the functional 

requirements, design parameters, and process variables were analyzed.  

 The mathematical models and the axiomatic design approach were applied to analyze the 

current ceramic robocasting process. FR-DP and DP-PV matrices and decompositions were 

demonstrated, and the relationships among FR-DP-PV were analyzed. To the best of the 

author’s knowledge, this work is the first research to demonstrate and explain FR-DP-PV 

interactions. Possible solutions for optimizing and redesigning the current ceramic robocasting 

manufacturing process were discussed. This research also proved that the current robocasting 

process is a heavily coupled system that contains a complex physical model.  

In conventional control theory, a clear objective function is the key to successfully 

achieving control. However, a complex physical model commonly represents that the transfer 

function will be difficult to create. The work in this study demonstrated a method to integrate 

machine learning and closed-loop control into the current open-loop control robocasting 

system. A data-driven method that integrates closed-loop real-time processing parameter 

control based on machine learning was demonstrated and verified. A database of the 

relationships among processing pressure, extrusion, and the printed part's quality was 

established. An artificial neural network model was constructed and trained based on the 

established database. The novel process flow utilized the pre-trained ANN model as the control 

logic to successfully predict the processing parameter based on the given real-time status of the 

robocasting printer and desired target. The sensor reading showed that by adopting the ANN-

governed closed-loop control, the process pressure exhibited a more stable trend than that of 

the open-loop process. An improvement in printing quality has been observed by comparing 

the controlled printing results with the uncontrolled printing results. Closed-loop control 

resulted in better consistency and stability in printing quality compared with that of the 

uncontrolled process. This project suggests that machine learning, which enabled closed-loop 

control, is a promising approach to improve the printing quality of the ceramic, selective 

deposition additive manufacturing process.  
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7.2  Recommendations for Future Works 

In this research, the robocasting process was analyzed based on the Cartesian coordinate 

system; however, it can also be examined based on function. These two different clues may 

produce different decompositions for the same manufacturing system. These differences can 

be compared and analyzed to determine different causes. 

The ceramic slurry employed in this work was pre-defined. The behavior of the slurry with 

different rheological properties can be investigated in future studies. The rheological properties 

can be integrated into the ANN model as input. 

The work in this study expressed a method for integrating machine learning and closed-

loop control into the current open-loop control robocasting system. In this study, the “pressure-

extrusion-width of print” was chosen as an example to demonstrate this method. However, it 

should not only be limited to pressure-extrusion control. The control loop's core control logic, 

the ANN, is a data-driven machine learning method in which the realization of control requires 

sufficient data sets and approximate physical relations. This property introduces the potential 

to extend the ANN governed by the closed-loop method into a broader application in the 

ceramic AM field, especially when a complete physical model is hard to construct. 

In this study, the variance in the printed width was successfully stabilized. However, a 

mathematical model between the process variables and the printed width was not created in 

this work. The intelligent process of materials directly utilizes material properties as a feedback 

signal to control the process variables. Kushner et al.'s intelligent processing of materials (IPM) 

was first demonstrated in 1986 as a systemic tool to design and control the synthesis and 

process of materials [92]. The conventional closed-loop control strategy commonly 

concentrates on comparing the measured signal and the pre-set signal. Simultaneously, 

intelligent processing characterizes the material properties and controls the material variables 

[93]. As shown in Figure 60, in the conventional closed-loop control strategy, disturbances 

produced during the manufacturing process can be compensated by the feedback loop, which 

has no influence on the input of the whole process. [69]. In the IPM control strategy, material 

properties are integrated into the loop and govern the whole control strategy by online 

adjustment of the process inputs. An accurate physics relationship between the material 

properties and the performance is needed to ensure the success of IPM. By combining the IPM 

theory and machine learning, it is possible to generate a more comprehensive prediction model. 
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Figure 60 Block diagrams of closed-loop control systems: a) conventional closed-loop 

control and b) intelligent process of material [69] 

 

This study comprises the initial feasibility research that proves that the print width quality 

can be improved by integrating machine learning-enabled closed-loop control into the current 

robocasting system. In-depth research of the mathematical relationship between the pressure 

and printed width was not conducted but can be carried out as a future study.   
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Appendix A 

This appendix includes the Arduino script to collect data from the button loadcell at a 

sampling rate of 10 Hz by using an HX711 24-Bit Analog-to-Digital Converter (Avia, China). 

//Lib HX711 is from 
//https://github.com/bogde/HX711 
#include "HX711.h" 
#define FILTER_LEN 10 
HX711 scale; 
long offset; 
long filter[FILTER_LEN]; 
long cali[100]; 
int pointer; 
void setup()  
{ 
  long sum = 0; 
   Serial.begin(9600); 
  pointer = 0; 
   scale.begin(A1, A0, 128); 
  for(int i=0;i<30;i++) 
  { 
    scale.read(); 
    Serial.println("data discard"); 
  } 
  for(int i=0;i < FILTER_LEN;i++) 
  { 
    filter[i] = scale.read(); 
    sum += filter[i]; 
  } 
  offset= sum/FILTER_LEN; 
  Serial.println("====offset===="); 
  Serial.println(offset); 
  Serial.println("====done===="); 
 } 
void loop() { 
  long dataIn = scale.read(); 
  filter[pointer] = dataIn; 
  long sum = 0; 
  for(int i = 0; i < FILTER_LEN; i++) 
  { 
    sum += filter[i]; 
  } 
  long force = (sum/FILTER_LEN-offset)/10;  
    pointer = (pointer+1)%FILTER_LEN; 
  Serial.println(force); 
  Serial.println(dataIn); 
} 
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Appendix B 

This appendix expresses data sets used to generate the machine learning model. The 

verification result, predicted extrusion length and error, are also included in the table. 

Starting Loadcell 

Reading(g) 

Target 

Loadcell 

Reading(g) 

Extrusion length(mm) 
Predicted Extrusion 

length(mm) 

Extrusion 

Error(mm) 

2049 2073 22 23.27002335 1.270023346 

4024 4083 26 23.58701897 -2.41298103 

6100 6113 32 33.17488098 1.174880981 

4702 4788 38 25.94402885 -12.0559711 

4415 4500 24 24.90459061 0.904590607 

4851 4886 38 26.10897255 -11.8910275 

4210 4263 26 23.9798336 -2.0201664 

2167 2219 22 23.05657959 1.05657959 

6235 6253 32 32.14198303 0.141983032 

4632 4683 20 25.12681961 5.126819611 

6130 6192 34 33.23952484 -0.76047516 

6702 6734 28 29.03293419 1.032934189 

2361 2401 22 22.64263535 0.642635345 

3931 4139 24 25.25023079 1.250230789 

6300 6589 28 33.29459381 5.294593811 

2203 2511 22 24.66944695 2.669446945 

5916 5958 32 33.82906342 1.829063416 

8288 8426 36 35.67091751 -0.32908249 

4295 4378 24 24.57638359 0.576383591 

4963 4979 20 26.63206291 6.632062912 

5966 5986 32 33.64603424 1.646034241 

6611 6636 28 29.22262383 1.222623825 

7723 7777 30 32.08359146 2.083591461 

6638 6655 28 28.98116302 0.981163025 

4981 5015 20 27.11949348 7.119493484 

7781 7833 30 32.31374359 2.313743591 

5104 5184 38 28.97378159 -9.02621841 

6656 6684 28 29.05800438 1.058004379 

5017 5052 20 27.42322731 7.42322731 

6000 6058 32 34.22292709 2.222927094 

7926 7981 30 32.99311829 2.993118286 

4619 4622 24 24.37479401 0.374794006 

6721 6776 28 29.21864319 1.218643188 

2952 3016 22 22.45801163 0.458011627 

5129 5159 20 28.21264076 8.212640762 

4746 4766 26 25.12798691 -0.87201309 

6838 6882 28 28.96041107 0.960411072 
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6223 6267 32 32.39624023 0.396240234 

6018 6019 34 33.50810242 -0.49189758 

5191 5205 20 28.39590836 8.395908356 

6270 6293 32 31.89694405 -0.10305595 

8330 8397 30 34.93333817 4.933338165 

3285 3380 22 22.72269249 0.72269249 

3117 3446 22 24.9818821 2.981882095 

8049 8427 30 37.73562241 7.735622406 

4345 4493 24 25.53043747 1.530437469 

3456 3510 22 22.40877724 0.408777237 

6219 6255 32 32.37861252 0.378612518 

4673 4685 24 24.70987129 0.709871292 

5316 5351 20 29.7874794 9.787479401 

6100 6149 34 33.39602661 -0.60397339 

7065 7103 28 28.96961403 0.969614029 

3734 3807 22 23.03373146 1.033731461 

8943 9010 30 33.73406601 3.73406601 

5822 5834 38 33.2091217 -4.7908783 

7204 7263 28 29.85651016 1.856510162 

5836 5848 38 33.2410965 -4.7589035 

6538 6596 32 30.00047684 -1.99952316 

5231 5471 20 33.05573654 13.05573654 

6908 7169 28 31.17545128 3.175451279 

5406 5600 34 33.56867981 -0.43132019 

5137 5189 26 28.6977253 2.697725296 

5559 5588 38 31.61421394 -6.38578606 

5750 5813 34 33.73369217 -0.26630783 

5481 5491 20 30.62488365 10.62488365 

5588 5620 38 31.90377808 -6.09622192 

6598 6634 32 29.39261818 -2.60738182 

4529 4614 24 25.21554184 1.21554184 

5859 5876 34 33.36116409 -0.63883591 

5486 5505 20 30.83816147 10.83816147 

6710 6743 32 29.03136826 -2.96863174 

4693 4752 22 25.49590683 3.49590683 

5724 5754 38 32.95229721 -5.04770279 

7365 7389 28 30.11251259 2.112512589 

5565 5591 20 31.60440063 11.60440063 

5508 5528 20 31.03326416 11.03326416 

6665 6707 32 29.17449188 -2.82550812 

5315 5354 26 29.85651207 3.85651207 

5992 5995 32 33.47574997 1.475749969 

4466 4504 20 24.43460655 4.434606552 

6125 6171 32 33.18063354 1.180633545 

6091 6096 32 33.19664764 1.196647644 
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7304 7334 28 29.92111588 1.921115875 

4165 4302 24 24.9362278 0.936227798 

4894 4940 38 26.66124725 -11.3387527 

7586 7629 30 31.33554268 1.335542679 

7377 7421 30 30.42552376 0.425523758 

9005 9021 36 32.90516663 -3.09483337 

4621 4651 26 24.76717567 -1.23282433 

6192 6234 32 32.62818909 0.628189087 

4356 4393 26 24.1443634 -1.8556366 

4440 4777 26 28.72738647 2.727386475 

9251 9306 30 32.873909 2.873908997 

4798 4851 38 26.03358459 -11.9664154 

5429 5443 20 30.28627968 10.28627968 

8373 8444 36 35.08149338 -0.91850662 

2880 2949 22 22.5182724 0.5182724 

4879 4985 38 27.69308662 -10.3069134 

6732 6753 28 28.89159966 0.891599655 

4625 4646 24 24.6486454 0.648645401 

6275 6328 34 32.0418396 -1.9581604 

5638 5655 38 32.01457214 -5.98542786 

8771 8837 30 34.11087799 4.110877991 

8383 8424 36 34.65398026 -1.34601974 

5804 5961 34 35.12688065 1.126880646 

6099 6126 34 33.26875687 -0.73124313 

4497 4521 26 24.33449364 -1.66550636 

2138 2165 22 23.00166702 1.001667023 

4309 4399 22 24.70086288 2.700862885 

5264 5266 20 28.74282837 8.742828369 

8690 8744 36 34.13275528 -1.86724472 

2596 2700 22 22.87787819 0.877878189 

4306 4352 26 24.13286018 -1.86713982 

3968 4028 22 23.45847893 1.458478928 

5270 5315 26 29.61478424 3.614784241 

6053 6098 34 33.74174881 -0.25825119 

7107 7552 36 34.44647217 -1.55352783 

5765 5819 38 33.64635468 -4.35364532 

7303 7358 30 30.24172783 0.241727829 

6779 6836 28 29.15908051 1.159080505 

6620 6668 28 29.29300499 1.29300499 

5635 5683 38 32.58755875 -5.41244125 

4760 4870 38 26.82533455 -11.1746655 

8277 8308 36 34.23123932 -1.76876068 

5208 5215 20 28.39605713 8.396057129 

5566 5629 38 32.32489777 -5.67510223 

4997 5095 38 28.47316742 -9.52683258 
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5409 5423 20 30.12642479 10.12642479 

4469 4526 24 24.68418312 0.684183121 

4712 4743 26 25.15392876 -0.84607124 

5805 5929 34 34.68335724 0.683357239 

5202 5230 26 28.75130844 2.751308441 

3104 3184 22 22.542696 0.542695999 

6308 6355 32 31.74498749 -0.25501251 

6062 6098 34 33.61555862 -0.38444138 

4686 4712 26 24.97278214 -1.02721786 

4506 4607 24 25.36135292 1.361352921 

2319 2354 22 22.68478394 0.684783936 

4396 4432 26 24.23254013 -1.76745987 

6362 6402 32 31.27654648 -0.72345352 

8508 8547 36 34.34333801 -1.65666199 

5394 5452 38 30.85383224 -7.14616776 

5424 5424 20 29.9767189 9.976718903 

5532 5552 20 31.22509384 11.22509384 

5094 5124 20 27.93598557 7.935985565 

4924 4981 26 27.10997009 1.109970093 

6685 6720 28 29.08332825 1.083328247 

8872 8958 36 34.15156555 -1.84843445 

4159 4222 22 23.97853851 1.978538513 

8434 8506 36 34.95656967 -1.04343033 

8959 8995 36 33.27943802 -2.72056198 

5156 5391 34 32.35998535 -1.64001465 

5848 5980 34 34.88962936 0.889629364 

4165 4291 24 24.79611778 0.796117783 

4647 4651 24 24.48376656 0.483766556 

5553 5560 20 31.14260674 11.14260674 

8085 8162 36 33.98134232 -2.01865768 

6586 6885 28 31.64099884 3.64099884 

4575 4625 20 24.87896729 4.878967285 

5158 5197 26 28.61444092 2.614440918 

4726 4765 20 25.33101082 5.331010818 

7655 7698 30 31.64027405 1.640274048 

4156 4283 24 24.78614998 0.786149979 

8548 8568 36 33.99618149 -2.00381851 

2072 2110 22 23.22439194 1.224391937 

4886 5221 34 32.14028168 -1.85971832 

6953 7017 28 28.98957825 0.989578247 

6117 6163 32 33.24365997 1.243659973 

7174 7215 28 29.49000168 1.490001678 

4611 4698 38 25.58051109 -12.4194889 

6912 6948 28 28.7875042 0.787504196 

8226 8276 36 34.25302505 -1.74697495 
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8497 8589 30 35.08349228 5.083492279 

4401 4460 24 24.53810692 0.538106918 

5424 5426 20 30.01523209 10.01523209 

7173 7219 30 29.55058861 -0.44941139 

6085 6097 34 33.28691864 -0.71308136 

6188 6212 32 32.54913712 0.549137115 

5661 5679 38 32.21766663 -5.78233337 

8997 9009 36 32.86935043 -3.13064957 

4443 4491 26 24.50395584 -1.49604416 

5989 6050 34 34.25244141 0.252441406 

4083 4146 26 23.78680992 -2.21319008 

8856 8930 30 34.02594757 4.025947571 

6435 6487 28 30.77511597 2.775115967 

4631 4698 24 25.36250496 1.362504959 

4944 4971 38 26.69280243 -11.3071976 

4264 4301 26 23.91226959 -2.08773041 

6407 6434 28 30.84214783 2.842147827 

4067 4326 24 26.24292374 2.242923737 

2517 2591 22 22.69162941 0.69162941 

5281 5315 20 29.49080467 9.490804672 

5049 5097 38 27.92543983 -10.0745602 

4227 4305 22 24.34115028 2.341150284 

2409 2458 22 22.62007904 0.620079041 

6469 6525 32 30.53181839 -1.46818161 

7292 7305 28 29.64710426 1.647104263 

4509 4568 20 24.81056786 4.810567856 

5003 5047 38 27.48513794 -10.5148621 

5353 5389 26 30.10247421 4.102474213 

6223 6271 34 32.42081451 -1.57918549 

7650 7718 30 31.94321632 1.943216324 

5969 6059 34 34.59854507 0.598545074 

3664 3734 22 22.8283596 0.828359604 

7216 7240 28 29.45447159 1.454471588 

7242 7595 30 33.84659576 3.846595764 

5213 5250 26 29.01083374 3.01083374 

5461 5510 38 31.21604538 -6.78395462 

5353 5378 20 29.8906498 9.890649796 

8314 8356 36 34.53765488 -1.46234512 

6770 6827 32 29.17116928 -2.82883072 

8698 8766 30 34.30351639 4.303516388 

7247 7615 36 34.063694 -1.936306 

5861 5893 34 33.56837082 -0.43162918 

6930 6981 28 28.90108299 0.901082993 

4617 4668 24 25.06553459 1.065534592 

8148 8255 36 34.64959717 -1.35040283 
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8132 8204 30 34.12390137 4.123901367 

4688 4691 24 24.63627815 0.636278152 

6065 6117 32 33.69020844 1.690208435 

8335 8382 36 34.69540787 -1.30459213 

4651 4686 26 24.96466827 -1.03533173 

9118 9169 30 33.12104034 3.121040344 

7279 7292 28 29.58969498 1.589694977 

4038 4116 22 23.86434174 1.864341736 

7648 7928 36 34.69057083 -1.30942917 

4609 4690 22 25.4824295 3.482429504 

5712 5759 38 33.18375015 -4.81624985 

5250 5542 34 34.20896149 0.208961487 

3879 3909 22 22.85183907 0.851839066 

5055 5092 20 27.76194191 7.76194191 

4787 4828 26 25.71610451 -0.28389549 

5817 5860 34 33.61649704 -0.38350296 

4623 4657 24 24.83529091 0.835290909 

4872 4922 26 26.56336784 0.563367844 

9030 9100 30 33.57712173 3.577121735 

6594 6609 28 29.29513359 1.295133591 

6881 6929 28 28.9393692 0.939369202 

5505 5559 38 31.66401863 -6.33598137 

6490 6557 28 30.43393707 2.433937073 

4827 4870 26 26.07194138 0.071941376 

6196 6226 34 32.52296448 -1.47703552 

5290 5379 38 30.61953163 -7.38046837 

3572 3660 22 22.86317253 0.863172531 

5125 5157 26 28.2193737 2.219373703 

4388 4461 24 24.6836319 0.683631897 

8432 8494 30 34.82616425 4.826164246 

5556 5628 38 32.41827774 -5.58172226 

8618 8687 36 34.4985466 -1.5014534 

5585 5793 34 35.2468605 1.246860504 

8587 8587 36 33.63779831 -2.36220169 

5008 5259 20 31.49390793 11.49390793 

5249 5271 26 29.00776291 3.007762909 

4819 4874 22 26.23862267 4.238622665 

6561 6617 28 29.80698586 1.806985855 

4770 4806 20 25.48527336 5.485273361 

4544 4593 26 24.77149391 -1.22850609 

9189 9229 30 32.81149292 2.81149292 

4147 4206 26 23.8973217 -2.1026783 

7108 7171 30 29.48454285 -0.51545715 

4769 4796 26 25.3268528 -0.6731472 

8425 8516 36 35.23337936 -0.76662064 
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4971 5000 38 26.94457436 -11.0554256 

3513 3569 22 22.46473122 0.464731216 

6140 6184 32 33.05016708 1.050167084 

4754 4815 22 25.83782005 3.837820053 

7335 7364 28 30.04502487 2.045024872 

5467 5548 38 31.88022423 -6.11977577 

8524 8611 36 34.95475388 -1.04524612 

5022 5077 26 27.84624672 1.846246719 

8357 8396 36 34.68598557 -1.31401443 

4811 4845 20 25.77231789 5.772317886 

8166 8222 36 34.06604767 -1.93395233 

5463 5480 20 30.61581039 10.61581039 

6234 6235 32 32.04543304 0.045433044 

5660 5837 34 35.0682373 1.068237305 

4689 4720 20 25.05996323 5.059963226 

7845 7912 30 32.79140472 2.791404724 

6667 6703 28 29.11669922 1.116699219 

3809 3876 22 23.14651489 1.146514893 

4594 4622 26 24.63082123 -1.36917877 

4656 4927 20 29.08812141 9.088121414 

7946 8081 36 34.12151337 -1.87848663 

5516 5557 38 31.50160408 -6.49839592 

4466 4466 20 23.95059776 3.950597763 

7307 7337 28 29.93436623 1.934366226 

4581 4619 24 24.72583961 0.725839615 

4312 4394 24 24.60653305 0.606533051 

4938 4962 20 26.58785629 6.587856293 

4510 4576 24 24.90225029 0.90225029 

6422 6509 32 31.09254265 -0.90745735 

5387 5461 38 31.10599136 -6.89400864 

5229 5560 34 34.79212952 0.792129517 

7242 7278 28 29.72530746 1.725307465 

4510 4544 26 24.49466324 -1.50533676 

6745 6761 32 28.82820702 -3.17179298 

6566 6598 32 29.62016487 -2.37983513 

4660 4669 24 24.61180496 0.611804962 

8448 8669 36 36.9354248 0.935424805 

8399 8435 36 34.55020142 -1.44979858 

3914 3964 22 23.19487762 1.194877625 

5163 5187 20 28.36633682 8.366336823 

7232 7290 30 29.96716499 -0.03283501 

7967 8140 36 34.70829391 -1.29170609 

3193 3274 22 22.54989433 0.549894333 

7020 7063 28 28.835886 0.835886002 

3021 3095 22 22.51829147 0.518291473 
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4823 5128 26 31.06573486 5.065734863 

6059 6137 32 33.89719391 1.897193909 

6262 6300 32 32.05211639 0.052116394 

4704 4733 24 25.09127426 1.091274261 

5622 5639 38 31.88669014 -6.11330986 

7723 7729 30 31.45955086 1.459550858 

5937 6031 34 34.57950592 0.57950592 

5760 5776 38 32.97045135 -5.02954865 

6412 6459 32 30.9256134 -1.0743866 

2267 2313 22 22.83460236 0.834602356 

4979 5019 26 27.21873665 1.218736649 

5419 5421 26 29.97527122 3.975271225 

8685 8860 36 35.7768898 -0.2231102 

5389 5420 26 30.29393578 4.293935776 

5813 5908 32 34.30984879 2.309848785 

4405 4509 22 25.12137222 3.121372223 

7507 7559 30 31.10366249 1.103662491 

6177 6216 32 32.72794342 0.72794342 

2704 2788 22 22.68773842 0.687738419 

8309 8314 36 34.03453827 -1.96546173 

2791 2875 22 22.66313553 0.663135529 

2223 2265 22 22.89633751 0.896337509 

5357 5642 34 34.92940521 0.929405212 

2109 2139 22 23.09533501 1.095335007 

8576 8584 36 33.77071381 -2.22928619 

3836 4149 22 26.34796524 4.34796524 

5684 5716 38 32.6710968 -5.3289032 

6256 6264 32 31.91510391 -0.08489609 

4802 4841 26 25.79679108 -0.20320892 

5080 5124 26 28.09377861 2.09377861 

7106 7154 28 29.28069687 1.280696869 

5426 5456 26 30.57041359 4.570413589 

8569 8590 36 33.96202087 -2.03797913 

7436 7480 30 30.68608856 0.686088562 

8005 8095 30 33.79704285 3.797042847 

7156 7201 28 29.46250916 1.462509155 

4877 4924 22 26.54550743 4.545507431 

4652 4667 24 24.66903877 0.669038773 

5615 5745 34 34.00676346 0.006763458 

5264 5280 20 29.01128006 9.01128006 

5380 5408 20 30.16422844 10.16422844 

4835 5127 34 30.91161919 -3.08838081 

6890 6910 28 28.67011452 0.670114517 

4533 4610 24 25.1119976 1.111997604 

8262 8330 36 34.6460228 -1.3539772 
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5877 5877 34 33.17260742 -0.82739258 

5191 5283 38 29.89156532 -8.10843468 

4514 4604 22 25.22919083 3.229190826 

7995 8272 36 36.18405151 0.184051514 

5485 5504 38 30.83016968 -7.16983032 

8600 8684 30 34.74180603 4.74180603 

5489 5494 20 30.59254646 10.59254646 

4467 4521 24 24.64092255 0.640922546 

6511 6564 32 30.18248749 -1.81751251 

6382 6406 28 31.02068138 3.020681381 

4168 4499 26 27.44106865 1.441068649 

8233 8293 30 34.41394424 4.413944244 

7265 7307 28 29.90489197 1.904891968 

5189 5213 26 28.57185173 2.57185173 

6037 6083 34 33.87395096 -0.12604904 

6637 6664 32 29.07434845 -2.92565155 

4619 4621 24 24.36205673 0.362056732 

5564 5789 34 35.40940094 1.40940094 

7593 7946 36 35.39674377 -0.60325623 

5638 5703 38 32.93889999 -5.06110001 

3914 4146 24 25.51303673 1.513036728 

4303 4405 24 24.83857155 0.838571548 

7591 7960 36 35.59592056 -0.40407944 

6165 6187 32 32.71805573 0.718055725 
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Appendix C 

This appendix contains the Matlab script to monitor in-process sensor information. 

clear all 
clc 
s = serial('COM3');  %define port 
set(s,'BaudRate',9600);  %banudrate 
fopen(s);  %open ports 
fid=fopen('serial_data.txt','w+'); % open/create a txt named'serial_data' 
interval = 10000;  
passo = 1; 
t = 1; 
x = 0; 
while(t<interval) 
    b = str2num(fgetl(s));  %use fget(s) Function read searil data from buffer 
    fid2=fopen('sensor_data.txt','w+'); % open/create a txt named'sensor_data', this text will be overright 
with change of time 
    fprintf(fid,'%d ',b); 
    fprintf(fid2,'%d ',b); 
    fprintf(fid,'\n');      
    fprintf('%d ',b); 
    fprintf('\n');   
    x = [x,b];                        
    plot(x); 
    grid 
    t = t+passo; 
    drawnow; 
    fclose(fid2);                       %close 'sensor_data' before time 
end 
fclose(fid);                        % close txt 
fclose(s);  
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Appendix D 

This appendix contains the MATLAB script to enable communication between a 3D printer, 

loadcell sensor, artificial neural network (ANN) model, and computer thought RS-232 standard 

serial port. 

clear all 
clc 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%initalize 
Normalization%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=xlsread('zhaolongdata9.9.csv');   % this function is based on data sheet 'zhaolongdata9.9.csv') 
Pressure1_mean=mean(A(:,1)); 
Pressure2_mean=mean(A(:,2)); 
Extrusion_mean=mean(A(:,3)); 
Pressure1_std=std(A(:,1)); 
Pressure2_std=std(A(:,2)); 
Extrusion_std=std(A(:,3)); 
%%%%%%%%%%%%%%%%%%%%%%Open port for control printer%%%%%%%%%%%%%%%%%%% 
arduino=serialport('COM4',250000); % create serial communication object on port COM4 
configureTerminator(arduino,"CR/LF") %arduino.Terminator = {10, 13}; 
flush(arduino); 
%%%%%%%%%%%%%%%%%%%%%%%%%Load machine learning 
Model%%%%%%%%%%%%%%%%%%% 
%This program is now running Rule Predict good set 1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
net = importKerasNetwork('model.h5'); % Load Pretrained machine learning model 
out=4500;                % This value should be overwrite by sensor 
target_pressure=7000;    % This value should be defined by width & Pressure relation 
target_extrusion= 34;    % This value doesnot matter in this research, but it can be used to predict 
pressures 
%%%%%%%%%%%%%%%%%%%%%%%%%This part is doing perparing for storage data%%%%%%%% 
frecord = fopen('testrecord.txt','w+'); 
fpn = fopen ('14test.txt', 'rt');                   %open the file   
 X=[0,0];                              %To store X 
 Y=[0,0];                              %To store Y 
 E=[0,0];                              %To store E 
  
while feof(fpn) ~= 1                        %find the value of pointer P, reture 1 if it is the end of 
the file, otherwise return 0    
      file = fgetl(fpn);                    %get the first line of the file.   
      skipmark=0;                           %skipmark for delay 
      commentcounter=0; 
      gohome=0; 
      repidcounter=0;                       %Repid motion counter 
      presuresensor=0;                     %Pressure signal simulation rest 
      S=regexp(file,'\s+','split');         %split and save this line of code into a cell S; 
      [A,B]=size(S);                        %Get the size of Cell:A*B 
      str1=cell2mat(S(1,1));                  %If it is repid motion 
      str2='G0'; 
      str3=';'; 
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      str4='G28'; 
      tf1 = strcmp(str1,str2); 
      tf2 = strcmp(str1,str3); 
      tf3 = strcmp(str1,str4); 
      if tf1==1 
          repidcounter=1;                %then set a counter to 1 
      end 
      if tf2==1 
          commentcounter=1; 
      end 
      if tf3==1 
          gohome=1; 
      end 
      for i=1:B                             %Form first unit of the cell to the last unit of the cell 
         if cell2mat(S(1,i))== 'X'         %Read X data; 
         xnumber= cell2mat(S(1,i+1));   
         X(1,2)= str2double(xnumber); 
         elseif cell2mat(S(1,i))== 'Y'         %Read Y data; 
         ynumber= cell2mat(S(1,i+1));   
         Y(1,2)= str2double(ynumber); 
         elseif cell2mat(S(1,i))== 'E'          %If the ith cell is "E"(to specify extrusion) 
            skipmark=1;                        %skipmark for delay 
            munber= cell2mat(S(1,i+1));        %Then the number of the next cell(i+1) should be the 
one which stores extruding rate 
            munberr= str2double(munber);       % convert this unite from string to double 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
            if munberr>5                     %%% if Extrusion is not 0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Read Pressure from 
Text%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% 
             fileID = fopen('sensor_data.txt','r'); 
             formatSpec = '%f'; 
             out = fscanf(fileID,formatSpec); 
%%%%%%%%Then use the sensordata do nomalization and 
prediction%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            Predict=3;      % Predict pressure1=1;Predict pressure2=2;Predict Extrusion=3; Else=0 
            Pressure1=(out-Pressure1_mean)/Pressure1_std;    % Normalize Pressure1 
            Pressure2=(target_pressure-Pressure2_mean)/Pressure2_std;  % Normalize Pressure2 
            Extrusion=(target_extrusion-Extrusion_mean)/Extrusion_std; % Normalize Extrusion 
            x_predic_pressure1 = [Pressure2,Extrusion];     % Inputs for Normalized Pressure1 
prediction 
            x_predic_pressure2 = [Pressure1,Extrusion];     % Inputs for Normalized Pressure2 
prediction 
            x_predic_extrusion = [Pressure1,Pressure2];     % Inputs for Normalized Extrusion 
prediction 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%this part tells what to 
predict%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            if Predict==1                                    
                x=x_predic_pressure1; 
            elseif Predict==2 
                x=x_predic_pressure2; 
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            elseif Predict==3 
                x=x_predic_extrusion; 
            else 
                x=0; 
            end 
            prediction=net.predict(x);   %Actual Output for prediction 
            munberrr=prediction;               %%% This part is used for calculation! 
            S{1,i+1}= num2str(munberrr);       %%% Convert the extrsion rate back string and save 
to the cell 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
         end 
      end 
      ADC=strjoin(S);  
      if commentcounter==0 
      if gohome==1 
      fprintf('%s ',ADC);                  %print the string S into new file 
      fprintf(frecord,'%s',ADC); 
      writeline(arduino,ADC);                  %print the string S into gcode interpreter 
      fprintf('\n'); 
      fprintf(frecord,'\n'); 
      n = read_ok(arduino, false);  
      elseif repidcounter==1 
            fprintf(frecord,'%s ',ADC);             %Write the string S into new file 
            fprintf(frecord,'\n'); 
            fprintf('%s ',ADC);                  %print the string S into new file 
            writeline(arduino,ADC);                  %print the string S into new file 
            fprintf('\n'); 
            n = read_ok(arduino, true);     
             fileID = fopen('sensor_data.txt','r'); 
             formatSpec = '%f'; 
             out = fscanf(fileID,formatSpec); 
          while  out<target_pressure*0.9          %pressure calculation 
              Resete='G92 E0.0000';                %Reset Extrusion back to 0 
              fprintf(frecord,'%s ',Resete);             %Write the string S into new file 
              fprintf(frecord,'\n'); 
              fprintf('%s ',Resete);                  %print the string S into new file 
              writeline(arduino,Resete);             %print the string S into gcode interpreter 
              fprintf('\n'); 
              n = read_ok(arduino, true);  
              BDC='G1 E30 F1200'; 
              fprintf(frecord,'%s ',BDC);             %Write the string S into new file 
              fprintf(frecord,'\n'); 
              fprintf('%s ',BDC);                  %print the string S into new file 
              writeline(arduino,BDC);                  %print the string S into gcode interpreter 
              fprintf('\n'); 
              n = read_ok(arduino, true);  
             fileID = fopen('sensor_data.txt','r'); 
             formatSpec = '%f'; 
             out = fscanf(fileID,formatSpec); 
          end 
            
       elseif skipmark==1 
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         fprintf('X is %d ',X(:));                  %print the string S into new file 
         fprintf('\n'); 
         fprintf('Y is %d ',Y(:));                  %print the string S into new file 
         fprintf('\n'); 
         fprintf(frecord,'%s ',ADC);             %Write the string S into new file 
         fprintf(frecord,'\n'); 
         fprintf('%s ',ADC);                  %print the string S into new file 
         writeline(arduino,ADC);                  %print the string S into gcode interpreter 
         fprintf('\n'); 
         n = read_ok(arduino, true);  
         fprintf(frecord,'X is %d ',X(:));                  %print the string S into new file 
         fprintf(frecord,'\n'); 
         fprintf(frecord,'Y is %d ',Y(:));                  %print the string S into new file 
         fprintf(frecord,'\n'); 
         X(1,1)=X(1,2); 
         Y(1,1)=Y(1,2); 
       else 
        fprintf(frecord,'%s ',ADC);             %Write the string S into new file 
        fprintf(frecord,'\n'); 
        fprintf('%s ',ADC);                  %print the string S into new file 
        writeline(arduino,ADC);                  %print the string S into gcode interpreter 
        fprintf('\n'); 
        n = read_ok(arduino, true);  
        
      end 
      end   
end 
fclose(frecord); 
clear arduino; 
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Appendix E 

This appendix is an example of the original executive G-code. In this example 𝑀𝐸𝑥𝑡𝑟𝑢𝑑𝑒 =

1.3. 

G90 
M82 
M106 S0 
M140 S0 
M104 S0 T0 
G28 
G92 E0.000 
G1 Z-28 F3000 
G1 E300 F1000 
T0 
G1 Z-32.5 F1800 
G1 Y-80 F3900 
G92 E0.0000 
G1 Y-0 F3600 
G0 X-150 Y-70 E 240 F 1800 
G92 E0 
G1  X   -150    Y   -20 F1200 
G92 E0.0000  
G1  X   -130    Y   -20 E   26   
G92 E0.0000  
G1  X   -130    Y   -18    
G92 E0.0000  
G1  X   -150    Y   -18 E   26   
G92 E0.0000  
G1  X   -150    Y   -16    
G92 E0.0000  
G1  X   -130    Y   -16 E   26   
G92 E0.0000  
G1  X   -130    Y   -14    
G92 E0.0000  
G1  X   -150    Y   -14 E   26   
G92 E0.0000  
G1  X   -150    Y   -12    
G92 E0.0000  
G1  X   -130    Y   -12 E   26   
G92 E0.0000  
G1  X   -130    Y   -10    
G92 E0.0000  
G1  X   -150    Y   -10 E   26   
G92 E0.0000  
G1  X   -150    Y   -8     
G92 E0.0000  
G1  X   -130    Y   -8  E   26   
G92 E0.0000  
G1  X   -130    Y   -6     
G92 E0.0000  
G1  X   -150    Y   -6  E   26   
G92 E0.0000  
G1  X   -150    Y   -4     
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G92 E0.0000  
G1  X   -130    Y   -4  E   26   
G92 E0.0000  
G1  X   -130    Y   -2     
G92 E0.0000  
G1  X   -150    Y   -2  E   26   
G92 E0.0000  
G1  X   -150    Y   0      
G92 E0.0000  
G1  X   -130    Y   0   E   26   
G92 E0.0000  
G1  X   -130    Y   2                              
G92 E0.0000                          
;factor 1.3                      
G92 E0.0000  
G1  X   -120    Y   -20 F1200 
G92 E0.0000  
G1  X   -100    Y   -20 E   26   
G92 E0.0000  
G1  X   -100    Y   -18    
G92 E0.0000  
G1  X   -120    Y   -18 E   26   
G92 E0.0000  
G1  X   -120    Y   -16    
G92 E0.0000  
G1  X   -100    Y   -16 E   26   
G92 E0.0000  
G1  X   -100    Y   -14    
G92 E0.0000  
G1  X   -120    Y   -14 E   26   
G92 E0.0000  
G1  X   -120    Y   -12    
G92 E0.0000  
G1  X   -100    Y   -12 E   26   
G92 E0.0000  
G1  X   -100    Y   -10    
G92 E0.0000  
G1  X   -120    Y   -10 E   26   
G92 E0.0000  
G1  X   -120    Y   -8     
G92 E0.0000  
G1  X   -100    Y   -8  E   26   
G92 E0.0000  
G1  X   -100    Y   -6     
G92 E0.0000  
G1  X   -120    Y   -6  E   26   
G92 E0.0000  
G1  X   -120    Y   -4     
G92 E0.0000  
G1  X   -100    Y   -4  E   26   
G92 E0.0000  
G1  X   -100    Y   -2     
G92 E0.0000  
G1  X   -120    Y   -2  E   26   
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G92 E0.0000  
G1  X   -120    Y   0      
G92 E0.0000  
G1  X   -100    Y   0   E   26   
G92 E0.0000  
G1  X   -100    Y   2                                  
G92 E0.0000                          
;factor 1.3                                                  
G92 E0.0000  
G1  X   -90 Y   -20 F1200 
G92 E0.0000  
G1  X   -70 Y   -20 E   26   
G92 E0.0000  
G1  X   -70 Y   -18    
G92 E0.0000  
G1  X   -90 Y   -18 E   26   
G92 E0.0000  
G1  X   -90 Y   -16    
G92 E0.0000  
G1  X   -70 Y   -16 E   26   
G92 E0.0000  
G1  X   -70 Y   -14    
G92 E0.0000  
G1  X   -90 Y   -14 E   26   
G92 E0.0000  
G1  X   -90 Y   -12    
G92 E0.0000  
G1  X   -70 Y   -12 E   26   
G92 E0.0000  
G1  X   -70 Y   -10    
G92 E0.0000  
G1  X   -90 Y   -10 E   26   
G92 E0.0000  
G1  X   -90 Y   -8     
G92 E0.0000  
G1  X   -70 Y   -8  E   26   
G92 E0.0000  
G1  X   -70 Y   -6     
G92 E0.0000  
G1  X   -90 Y   -6  E   26   
G92 E0.0000  
G1  X   -90 Y   -4     
G92 E0.0000  
G1  X   -70 Y   -4  E   26   
G92 E0.0000  
G1  X   -70 Y   -2     
G92 E0.0000  
G1  X   -90 Y   -2  E   26   
G92 E0.0000  
G1  X   -90 Y   0      
G92 E0.0000  
G1  X   -70 Y   0   E   26   
G92 E0.0000  
G1  X   -70 Y   2                                  
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G92 E0.0000                          
;factor 1.3                                                  
G92 E0.0000  
G1  X   -60 Y   -20 F1200 
G92 E0.0000  
G1  X   -40 Y   -20 E   26   
G92 E0.0000  
G1  X   -40 Y   -18    
G92 E0.0000  
G1  X   -60 Y   -18 E   26   
G92 E0.0000  
G1  X   -60 Y   -16    
G92 E0.0000  
G1  X   -40 Y   -16 E   26   
G92 E0.0000  
G1  X   -40 Y   -14    
G92 E0.0000  
G1  X   -60 Y   -14 E   26   
G92 E0.0000  
G1  X   -60 Y   -12    
G92 E0.0000  
G1  X   -40 Y   -12 E   26   
G92 E0.0000  
G1  X   -40 Y   -10    
G92 E0.0000  
G1  X   -60 Y   -10 E   26   
G92 E0.0000  
G1  X   -60 Y   -8     
G92 E0.0000  
G1  X   -40 Y   -8  E   26   
G92 E0.0000  
G1  X   -40 Y   -6     
G92 E0.0000  
G1  X   -60 Y   -6  E   26   
G92 E0.0000  
G1  X   -60 Y   -4     
G92 E0.0000  
G1  X   -40 Y   -4  E   26   
G92 E0.0000  
G1  X   -40 Y   -2     
G92 E0.0000  
G1  X   -60 Y   -2  E   26   
G92 E0.0000  
G1  X   -60 Y   0      
G92 E0.0000  
G1  X   -40 Y   0   E   26   
G92 E0.0000  
G1  X   -40 Y   2                                  
G92 E0.0000                          
;factor 1.3                                                  
G92 E0.0000  
G1  X   -30 Y   -20 F1200 
G92 E0.0000  
G1  X   -10 Y   -20 E   26   
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G92 E0.0000  
G1  X   -10 Y   -18    
G92 E0.0000  
G1  X   -30 Y   -18 E   26   
G92 E0.0000  
G1  X   -30 Y   -16    
G92 E0.0000  
G1  X   -10 Y   -16 E   26   
G92 E0.0000  
G1  X   -10 Y   -14    
G92 E0.0000  
G1  X   -30 Y   -14 E   26   
G92 E0.0000  
G1  X   -30 Y   -12    
G92 E0.0000  
G1  X   -10 Y   -12 E   26   
G92 E0.0000  
G1  X   -10 Y   -10    
G92 E0.0000  
G1  X   -30 Y   -10 E   26   
G92 E0.0000  
G1  X   -30 Y   -8     
G92 E0.0000  
G1  X   -10 Y   -8  E   26   
G92 E0.0000  
G1  X   -10 Y   -6     
G92 E0.0000  
G1  X   -30 Y   -6  E   26   
G92 E0.0000  
G1  X   -30 Y   -4     
G92 E0.0000  
G1  X   -10 Y   -4  E   26   
G92 E0.0000  
G1  X   -10 Y   -2     
G92 E0.0000  
G1  X   -30 Y   -2  E   26   
G92 E0.0000  
G1  X   -30 Y   0      
G92 E0.0000  
G1  X   -10 Y   0   E   26   
G92 E0.0000  
G1  X   -10 Y   2                                  
G92 E0.0000                          
;factor 1.3                                                                              
G92 E0.0000  
G1  X   0   Y   -20 F1200 
G92 E0.0000  
G1  X   20  Y   -20 E   26   
G92 E0.0000  
G1  X   20  Y   -18    
G92 E0.0000  
G1  X   0   Y   -18 E   26   
G92 E0.0000  
G1  X   0   Y   -16    
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G92 E0.0000  
G1  X   20  Y   -16 E   26   
G92 E0.0000  
G1  X   20  Y   -14    
G92 E0.0000  
G1  X   0   Y   -14 E   26   
G92 E0.0000  
G1  X   0   Y   -12    
G92 E0.0000  
G1  X   20  Y   -12 E   26   
G92 E0.0000  
G1  X   20  Y   -10    
G92 E0.0000  
G1  X   0   Y   -10 E   26   
G92 E0.0000  
G1  X   0   Y   -8     
G92 E0.0000  
G1  X   20  Y   -8  E   26   
G92 E0.0000  
G1  X   20  Y   -6     
G92 E0.0000  
G1  X   0   Y   -6  E   26   
G92 E0.0000  
G1  X   0   Y   -4     
G92 E0.0000  
G1  X   20  Y   -4  E   26   
G92 E0.0000  
G1  X   20  Y   -2     
G92 E0.0000  
G1  X   0   Y   -2  E   26   
G92 E0.0000  
G1  X   0   Y   0      
G92 E0.0000  
G1  X   20  Y   0   E   26   
G92 E0.0000  
G1  X   20  Y   2                                  
G92 E0.0000                          
;factor 1.3                                                  
G92 E0.0000  
G1  X   30  Y   -20 F1200 
G92 E0.0000  
G1  X   50  Y   -20 E   26   
G92 E0.0000  
G1  X   50  Y   -18    
G92 E0.0000  
G1  X   30  Y   -18 E   26   
G92 E0.0000  
G1  X   30  Y   -16    
G92 E0.0000  
G1  X   50  Y   -16 E   26   
G92 E0.0000  
G1  X   50  Y   -14    
G92 E0.0000  
G1  X   30  Y   -14 E   26   
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G92 E0.0000  
G1  X   30  Y   -12    
G92 E0.0000  
G1  X   50  Y   -12 E   26   
G92 E0.0000  
G1  X   50  Y   -10    
G92 E0.0000  
G1  X   30  Y   -10 E   26   
G92 E0.0000  
G1  X   30  Y   -8     
G92 E0.0000  
G1  X   50  Y   -8  E   26   
G92 E0.0000  
G1  X   50  Y   -6     
G92 E0.0000  
G1  X   30  Y   -6  E   26   
G92 E0.0000  
G1  X   30  Y   -4     
G92 E0.0000  
G1  X   50  Y   -4  E   26   
G92 E0.0000  
G1  X   50  Y   -2     
G92 E0.0000  
G1  X   30  Y   -2  E   26   
G92 E0.0000  
G1  X   30  Y   0      
G92 E0.0000  
G1  X   50  Y   0   E   26   
G92 E0.0000  
G1  X   50  Y   2                                  
G92 E0.0000                          
;factor 1.3                                                  
G92 E0.0000  
G1  X   60  Y   -20 F1200 
G92 E0.0000  
G1  X   80  Y   -20 E   26   
G92 E0.0000  
G1  X   80  Y   -18    
G92 E0.0000  
G1  X   60  Y   -18 E   26   
G92 E0.0000  
G1  X   60  Y   -16    
G92 E0.0000  
G1  X   80  Y   -16 E   26   
G92 E0.0000  
G1  X   80  Y   -14    
G92 E0.0000  
G1  X   60  Y   -14 E   26   
G92 E0.0000  
G1  X   60  Y   -12    
G92 E0.0000  
G1  X   80  Y   -12 E   26   
G92 E0.0000  
G1  X   80  Y   -10    



117 
 

G92 E0.0000  
G1  X   60  Y   -10 E   26   
G92 E0.0000  
G1  X   60  Y   -8     
G92 E0.0000  
G1  X   80  Y   -8  E   26   
G92 E0.0000  
G1  X   80  Y   -6     
G92 E0.0000  
G1  X   60  Y   -6  E   26   
G92 E0.0000  
G1  X   60  Y   -4     
G92 E0.0000  
G1  X   80  Y   -4  E   26   
G92 E0.0000  
G1  X   80  Y   -2     
G92 E0.0000  
G1  X   60  Y   -2  E   26   
G92 E0.0000  
G1  X   60  Y   0      
G92 E0.0000  
G1  X   80  Y   0   E   26   
G92 E0.0000  
G1  X   80  Y   2                                  
G92 E0.0000                          
;factor 1.3                                                  
G92 E0.0000  
G1  X   90  Y   -20 F1200 
G92 E0.0000  
G1  X   110 Y   -20 E   26   
G92 E0.0000  
G1  X   110 Y   -18    
G92 E0.0000  
G1  X   90  Y   -18 E   26   
G92 E0.0000  
G1  X   90  Y   -16    
G92 E0.0000  
G1  X   110 Y   -16 E   26   
G92 E0.0000  
G1  X   110 Y   -14    
G92 E0.0000  
G1  X   90  Y   -14 E   26   
G92 E0.0000  
G1  X   90  Y   -12    
G92 E0.0000  
G1  X   110 Y   -12 E   26   
G92 E0.0000  
G1  X   110 Y   -10    
G92 E0.0000  
G1  X   90  Y   -10 E   26   
G92 E0.0000  
G1  X   90  Y   -8     
G92 E0.0000  
G1  X   110 Y   -8  E   26   
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G92 E0.0000  
G1  X   110 Y   -6     
G92 E0.0000  
G1  X   90  Y   -6  E   26   
G92 E0.0000  
G1  X   90  Y   -4     
G92 E0.0000  
G1  X   110 Y   -4  E   26   
G92 E0.0000  
G1  X   110 Y   -2     
G92 E0.0000  
G1  X   90  Y   -2  E   26   
G92 E0.0000  
G1  X   90  Y   0      
G92 E0.0000  
G1  X   110 Y   0   E   26   
G92 E0.0000  
G1  X   110 Y   2                              
G92 E0.0000 
; layer end 
G28  F1000 
G1 E-100 F3000 
 


