
NVIDIA Android Tegra Thermal Management

Christina Guertin, Alexander Karp, Kexin Shi, Wesley Nitinthorn

March 2014

A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Christina Guertin

Alexander Karp

Kexin Shi

Wesley Nitinthorn

Date: March 2014

Approved:

Professor David Finkel, Advisor

This report represents the work of one or more WPI undergraduate students.

Submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its web site without editorial or peer review

Contents

Abstract

Acknowledgments

1 Background 1

1.1 NVIDIA . 1

1.1.1 Products . 1

1.1.2 Company History . 1

1.2 Tegra . 2

1.2.1 Tegra K1 . 2

1.2.2 SOC THERM . 2

1.3 Static Analysis . 3

1.4 Device Tree . 4

1.5 Thermal Framework . 5

1.6 of-thermal.c . 6

1.7 Device Drivers and Platform Drivers . 6

2 Project Phases 9

2.1 Driver Documentation . 9

2.2 Driver Cleanup . 11

2.3 Platform Driver Conversion . 11

2.3.1 Converting to SOC THERM Driver 12

2.4 Device Tree Conversion of Hardware Data 14

2.5 User-space App Implementation . 14

2.6 of-thermal Implementation . 15

3 Results 17

List of Figures

1.1 An illustration of the different thermal zones on a device. PLL represents the

“overall temperature”. 3

1.2 Diagram describing how SOC THERM and the thermal framework interact

via of-thermal. 8

Abstract

NVIDIA’s SOC THERM hardware takes care of the thermal management on their Tegra

chips. Originally, the hardware was managed on the software side by a library. We were

tasked with documenting this library and eventually converting it into a platform driver. At

the conclusion of our project, we were able to convert the SOC THERM library so that it

conformed with the upstream Linux kernel standard for platform drivers.

Acknowledgments

The team would like to thank the following people for their invaluable help with the project

by providing information and guidance:

Professor David Finkel

Matthew Longnecker

Paul Walmsley

Diwakar Tundlam

1. Background

1.1 NVIDIA

Founded in January of 1993, NVIDIA is a semiconductor company that makes graphics

processors, wireless communications processors, and digital media player software. In 1999,

NVIDIA revolutionized computer graphics by inventing the graphics processing unit (GPU),

propelling graphics from a feature into an ever-expanding industry. NVIDIA holds over 6,400

patents worldwide and is a very well-known company within the technology sector [11].

1.1.1 Products

NVIDIA’s product families include:

• GeForce: A series of gaming GPUs [7, 11]. NVIDIA’s first GPU series and its most

well-known.

• Quadro: A GPU series for professionals, offering high-end performance for digital

content creation and computer-aided design [11,12].

• Tegra: A system-on-a-chip (SoC) that is built for mobile devices [10,11].

• Tesla: The first dedicated, general purpose GPU. It is designed for high-end paral-

lelized general processing used in supercomputing [8, 11].

1.1.2 Company History

• 1993: NVIDIA is founded by Jen-Hsun Huang, Chris Malachowsky and Curtis Priem.

• 1995: NVIDIA launches NV1, its first product.

• 1999: NVIDIA invents the GPU.

• 2001: NVIDIA launches nForce, entering into the integrated graphics market.

1

• 2004: The Scalable Link Interface (SLI) is launched.

• 2006: CUDA architecture is unveiled.

• 2008: NVIDIA launches the Tegra mobile processor.

• 2010: NVIDIA powers world’s fastest supercomputer [9].

• 2012: NVIDIA launches Kepler architecture-based GPUs [6].

1.2 Tegra

Tegra is a system-on-a-chip (SoC) series developed for mobile devices. The series emphasizes

low power consumption and high performance for playing audio and video. It provides

camera capabilities, web browsing, and LTE networking through an optional chipset.

1.2.1 Tegra K1

Announced in January of 2014, Tegra K1 is NVIDIA’s latest iteration of its Tegra SoC series.

It uses a “4-Plus-1” CPU design, pairing a quad-core ARM Cortex A15 with a fifth, low

power core, allowing them to improve both performance and battery life. In addition to

its upgraded processor, the Tegra K1 is the first of NVIDIA’s Tegra SoCs to include one of

their Kepler GPUs, a major step forward in graphics performance and computing on mobile

devices. The inclusion of Kepler GPUs in the Tegra K1 will allow mobile applications to

take advantage of the GPU’s 192 cores for compute-intensive tasks [10].

1.2.2 SOC THERM

SOC THERM is a proprietary thermal management subsystem developed by NVIDIA, which

is responsible for monitoring and managing the temperature of its Tegra chips. In addition to

managing the chip’s temperature, SOC THERM also handles over-current interrupts, which

are triggered when the chip is drawing too much current, causing the battery to supply

insufficient voltage.

In order to prevent the chip from reaching excessive temperatures, SOC THERM has mul-

tiple sensors monitoring different areas of the chip. There are four areas that SOC THERM

monitors: CPU, GPU, memory, and overall temperature (see Figure 1.1). When the temper-

ature in one of these areas exceeds a certain threshold, SOC THERM throttles the frequency

of the CPU and/or GPU, slowing down the system. The magnitude of the throttling is de-

termined by the chip’s temperature. Slowing down the clock frequency reduces the chip’s

2

heat output, which allows heat to dissipate faster. Once the chip cools down, it is gradually

returned to its normal performance level.

CPU 1 CPU 2

CPU 3 CPU 4

Memory 1

Memory 2
GPU

PLL

Figure 1.1: An illustration of the different thermal zones on a device. PLL represents the
“overall temperature”.

Over-current interrupts are handled the same way as overheating events. The only dif-

ference is that while the Tegra processor keeps an eye on temperature itself, over-current

events are monitored externally by the Power Management Integrated Circuit or PMIC.

When the PMIC notices that the chip is drawing too much current, it raises an interrupt

to SOC THERM , which SOC THERM then handles. SOC THERM is integrated into

Android through the Linux thermal framework (see Section 1.5). This integration allows

SOC THERM to present the information that it has gathered to software in the user-space.

1.3 Static Analysis

Static program analysis is the assessment of software without actually running the program.

Basic static analysis software reads through the program’s code, or sometimes its object

files, and tests it against a predefined set of rules. This is useful for ensuring syntactic and

stylistic consistency within a body of code. Rules of inference are also used within static

analysis to infer data types in an effort to catch type mismatching.

Advanced static analysis software uses rigorous, formal mathematical methods to prove

axioms about a given program in order to prove its behavior.

3

Static analysis is highly useful within the code development process as it is a fast and

efficient way of finding code inconsistencies and defects.

1.4 Device Tree

One of our tasks for this project was to convert hardware data hardcoded in the kernel into

Device Tree format. Device Tree is a data structure used to organize and describe hardware.

The structure is passed to the kernel during boot time instead of being hard-coded into the

kernel. It is used by Open Firmware, an IEEE standard for boot firmware. A Device Tree

source file (.dts) is tokenized into a stand-alone Flattened Device Tree (FDT). Converting

the hard-coded data into Device Tree data is necessary because the board hardware on which

SOC THERM operates may vary. This variation must be accounted for by SOC THERM,

and may be expressed by using Device Tree format.

In order for this format to be useful, the operating system must be able to parse Device

Tree files. “Bindings” are a form of documentation that describes how a hardware de-

vice’s characteristics are structured in the Device Tree file. There are many predefined and

documented bindings that can be found in the ePAPR and IEEE 1275 documentation [5].

SOC THERM uses predefined thermal framework Device Tree bindings, therefore these are

the ones we focused on1.

The format of Device Tree is that of a tree with nodes and properties. Nodes may contain

child nodes as well as properties. Properties are represented as key-value pairs; the value may

be omitted. The following is an example of the structure used by the thermal framework:

Snippet 1.1: Device Tree example

1 / {

2 thermal-zones {

3 tsense_cpu0: tsense_cpu0 {

4 polling-delay = <0>;

5 trips {

6 cpu0_crit: cpu0_crit {

7 temperature = <101000>;

8 type = "critical";

9 };

10 };

11 cooling-maps {

12 map_crit {

13 trip = <&cpu0_crit>;

1The file located in the Linux kernel source tree: Documentation/devicetree/bindings/thermal/ther-
mal.txt

4

14 cooling-device = <&d_cdev THERMAL_NO_LIMIT

THERMAL_NO_LIMIT>;

15 };

16 };

17 };

18 };

19 }

The / indicates a single root node. Line 2 of the example above is a node with the name

thermal-zones. In accordance with the bindings, this node must be named thermal-zones

so that it may be parsed properly. This node has one child node, tsense cpu0, as seen on

line 3. This node may be given an arbitrary name because the parser already knows that it is

a thermal zone. It should be noted that any node may have any number of child nodes. The

thermal zone tsense cpu0 has a number of properties and child nodes. The first property is

seen in line 4. polling-delay is a cell-property with a value of 0. A cell-property may have

any number of 32 bit unsigned integers inside angle brackets as long as they are separated

by a space. For example, a cell property may look like: polling-delay = <1 2 3 4>. Line

5 is the beginning of a child node of tsense cpu0. There may be multiple trip points, but

in the example, there is only one: cpu0 crit. cpu0 crit has two properties, temperature

and type. type is a string data type. Line 11 is another child node of tsense cpu0 that

defines the mapping from cooling-device to trips. Line 13 defines the trip that the node

is mapping from and line 14 defines the cooling-device that is being mapped to. In line

13, &cpu0 crit is called a phandle. This is a reference to the above cpu0 crit defined in the

trips node starting at line 5. Line 14 uses a phandle as the first cell in the cooling-device

property, and then the macro THERMAL NO LIMIT in the last two cells. There are many more

property types that are not shown in the example above. This Device Tree format allows

SOC THERM to properly handle differences in hardware and not rely on hard-coded data.

1.5 Thermal Framework

Linux manages the system’s temperature through its thermal framework. The framework

includes thermal zones, thermal sensors, cooling devices, governors, trip points and ther-

mal instances. The thermal framework also exposes information to user-space applications

through sysfs, a virtual filesystem for device and driver information provided by Linux.

A thermal zone represents a physical region on a device. Generally, a thermal zone is

associated with one or more of the following components: thermal sensor units, and cooling

devices. A thermal sensor unit measures the temperature at its specific location and reports

the temperature as the temperature of the zone to which it is bounded. A cooling device can

5

be classified as either hardware or software. Hardware cooling devices include fans and other

physical devices that are designed to reduce the system’s temperature. On the other hand,

software cooling devices attempt to control system’s temperature by manipulating the CPU

and GPU’s clock speed. In our paper, we will solely focus on software cooling devices. A

thermal instance is created when a thermal zone is bounded to a cooling device at a specific

trip point. A trip point specifies an action to be performed if a temperature threshold has

been crossed. Trip points are located in within thermal instances.

1.6 of-thermal.c

The SOC THERM driver does not have direct access to data manipulated by the thermal

framework such as thermal zone structures. Instead, an API called of-thermal.c is responsible

for this interaction as well as parsing the Device Tree file containing thermal zone data2. It

is also used to register thermal zones outside of the sensor driver.

During initialization, the processes shown in 1.6 occur. First, machine initialization

code calls a function in of-thermal.c (in 1.6 this is displayed as the line extending from of-

thermal.c to Thermal Zone Device Tree) to parse the Device Tree file containing thermal

zone data. of-thermal.c then creates and populates its own thermal zone structures which

are internal representations of thermal zones. This can be seen as the dashed lined of 1.6

extending from of-thermal.c to thermal zone. These structures contain trip data, polling

data, binding parameters, sensor ids, and function callbacks. The function callbacks are

left blank; they are populated later on. Data parsed from the Device Tree file is then

passed to the thermal framework (Thermal Core in 1.6) where thermal zone structures are

registered (created and populated). In the below figure, this can be seen as the line extending

from of-thermal.c to Thermal Core. Functions from of-thermal.c are passed as callback

functions through this registration process. SOC THERM calls an of-thermal.c registration

function for each thermal sensor which adds callback functions to the thermal zone structs

previously created. This step is shown in 1.6 as the line extending from Sensor Driver

(SOC THERM) to of-thermal.c. These functions are for getting sensor temperatures and

trends.

1.7 Device Drivers and Platform Drivers

A driver is a piece of software that acts as a bridge between the operating system and

the underlying device hardware. Drivers abstract hardware operations into a set of APIs

2The file located in the Linux kernel source tree: drivers/thermal/of-thermal.c

6

for applications or operating systems to utilize [4]. This allows programs to be written

independently of the underlying hardware. Device drivers are discoverable by the kernel. A

platform driver is a special type of driver for devices that cannot announce their presence to

the kernel. Platform drivers provide a way for the kernel to probe for the existence of these

devices [3].

7

SOC THERM
Device Tree

Thermal Zone
Device Tree

Sensor Driver
(SOC THERM)

of-thermal.c Thermal Core

Hardware Sensor thermal zone Thermal Zone

malloc

callback callback

malloc
interrupt

parse parse

register sensor register zone

Figure 1.2: Diagram describing how SOC THERM and the thermal framework interact via
of-thermal.

8

2. Project Phases

Our mentors divided our project into multiple phases. The different phases were to acclimate

us with NVIDIA code base, workflows, and kernel hacking in general.

2.1 Driver Documentation

Code documentation is an important process within software development. Documentation

provides developers with an accurate understanding of the code in a succinct manner. With-

out proper documentation, valuable time is lost in trying to understand the code. However,

in an environment in which there are very few developers trying to fulfill the demand of

adding features and fixing bugs, developers often neglect to document their code sufficiently,

if at all.

The first step of our project was to document NVIDIA’s existing SOC THERM library.

This step accomplished two things. First, the SOC THERM library gained a comprehensive

set of documentation. Second, we would get a chance to understand the code we will be

working with. The second component is very important for us because it created a solid

foundation for us before we begin making functional changes to the driver code. As a side

benefit, we also familiarized ourselves with version control and NVIDIA’s rigorous code

review process.

The standard that our group followed for documenting the SOC THERM driver is called

kernel-doc [2]. This format is an easy to maintain style of documentation for functions and

data structures in the Linux kernel. Following this convention allows for consistency and

readability throughout the kernel. This documentation is located within source files. The

documentation blocks themselves are located adjacent to the function or data structure they

describe. Documentation in the kernel-doc format is structured as follows: the first line of

the comment must be /**. Comment blocks that are not in kernel-doc format should not

start with /**. The kernel-doc formatted comment blocks generally ends with */, but may

end with **/. An example of a full comment block detailing a function named cputemp get

is below in Snippet 2.1. This function gets the temperature of the CPU from the physical

9

thermal sensor corresponding to the CPU and sets a pointer to this temperature. It takes

in two parameters, data, and val.

Snippet 2.1: Kernel-doc for cputemp get

1 /**

2 * cputemp_get() - gets the CPU temperature.

3 * @data: not used

4 * @val: a pointer in which the temperature will be placed

5 *

6 * Reads the temperature of the thermal sensor associated with the CPU.

7 *

8 * Return: 0 if successful

9 */

10 static int cputemp_get(void *data, u64 *val)

Line 1 opens the kernel-doc comment block. Line 2 gives the name of the function

followed by an opened and closed parenthesis. This is followed by a short description of the

function which may be multiple lines long. Lines 3 and 4 describe the functions parameters.

Each argument must be preceded by an @ symbol. In the example above, the argument

@data is not used in the function. Lines 5 and 7 are blank lines, but must have * symbols

regardless. Line 6 is a longer description of the function; it describes the function in more

detail. This longer description can be multiple lines long. Line 8 describes what the function

returns. Line 9 ends the kernel-doc comment block.

The documentation format of data structures is similar to that of functions, but omits a

Return line. An example can be seen below in Snippet 2.2.

Snippet 2.2: Kernel-doc for a data structure

1 /**

2 * struct soctherm_platform_data - board-specific SOC_THERM info.

3 * @num_oc_irqs: Number of over-current IRQs

4 * @tsensor_clk_rate: Clock rate for the thermal sensors.

5 */

6 struct soctherm_platform_data {

7 int num_oc_irqs;

8 unsigned long tsensor_clk_rate;

9 }

Line 2 gives the name of the structure followed by a short description of it. Lines

3 and 4 describe each of the structure’s members. These descriptions may be multiple

lines long. Line 5 closes the kernel-doc comment block. Data structures may have longer

descriptions, just as functions. This longer description would be located after the structure’s

10

member descriptions [2]. By following these conventions for functions and data structures,

kernel-doc format provides consistency in documentation and increases the readability of the

SOC THERM driver code.

In order to provide meaningful documentation, we had to first truly understand what

the code was doing. Unfortunately, reading through the code only showed us what each

function did, but not what they meant within SOC THERM as a whole. To bridge that

gap, our mentors spent several hours teaching us not only SOC THERM concepts, but

kernel concepts as well. In addition to our mentors’ help, we used stack tracing to figure out

when each function is called while a device is running.

As a result of our documentation, we came away with a much clearer understanding of not

only the SOC THERM driver, but also a more thorough understanding of the Linux kernel

as a whole. This new understanding became very useful throughout our subsequent projects.

For NVIDIA, the benefit was two-fold. First, having a documented driver will significantly

reduce time spent by other employees in trying to understand the code. Second, adding

kernel-doc documentation brings the driver in-line with the upstream Linux kernel.

2.2 Driver Cleanup

We used multiple static analysis tools (see Section 1.3) to clean up the SOC THERM driver.

These tools included checkpatch, sparse, smatch, and cppcheck. This exercise accomplished

two things. First, it aligned NVIDIA’s driver code with the syntactic and stylistic guidelines

of the upstream kernel, since upstream development has a strict set of guidelines in terms of

documentation and code formatting. Second, the code cleanup accustomed us to the proper

way to write code within the Linux kernel environment.

We ran the driver’s source code through each tool, which provided us with warnings and

errors. Following that feedback, we modified the code accordingly. Most of the warnings

were simple to fix because they dealt with stylistic changes. Those that were not stylistic

required careful inspection of the error message. We uploaded the changes for our mentors

to review that our fixes were legitimate and not sweeping the issues under the rug. In the

end, the code was clean and free from any obvious errors.

2.3 Platform Driver Conversion

When we began, the SOC THERM driver was a library that did not follow the Linux kernel’s

standard for a platform driver. Similar to the code documentation, NVIDIA was incurring

a lot of technical debt. Generally in software development, technical debt refers to shortcuts

11

taken during the development process that decrease the maintainability of a piece of software.

NVIDIA took on this debt because other tasks were prioritized first. The engineers who

worked on the driver do not only have to fix bugs, but are also responsible for adding supports

for new chips. We helped NVIDIA to repay the debt by converting the SOC THERM driver

library into a proper platform driver.

2.3.1 Converting to SOC THERM Driver

Since we documented the code, we were familiar with the SOC THERM code. There are

three major files that we need to modify: board files, board-power files, and the SOC THERM

library files. Each board file contains initialization functions for a particular NVIDIA board

configuration. Similar to the board files, board-power files also contain power systems related

initialization functions for a particular board. Lastly, the SOC THERM driver files which

contains all of SOC THERM’s functionalities.

First, we disabled the blocks of code that were originally responsible for initializing

SOC THERM. This allowed us to be sure that our code was initializing SOC THERM.

Once SOC THERM was disabled, we gathered information about different components of

the platform driver. Our major sources of information were from the Linux documentation

for platform drivers1 and the source code for Samsung’s Exynos SoC’s thermal driver2.

For our driver to work, we needed to create at least two callback functions: probe and

remove. The kernel uses probe as part of the driver binding process [3]. “Driver binding is

the process of associating a device with a device driver that can control it” [1]. Each driver

maintains a structure with a list of ‘compatible’ strings. Compatible strings are essentially

names of devices that are compatible with a particular driver. Each device has a name, if

this name matches a compatible string in a driver, the linking process begins. The binding

process figures out which driver to bind which device to by pairing compatible strings to the

device’s name.

As its name suggests, the remove function is called when the kernel wants to remove the

device from the system or unbind. The responsibility of the remove function is to clean up

and release any memory allocated during the runtime of the device.

After we had some idea of what we needed to do, we identified which part(s) of the code

needed to be changed to support the platform driver. We added the probe function and other

relevant components into the library file and rearranged some of the existing initialization

code to work with the Linux driver model. Then we moved onto the remove function. We

1The file located in the Linux kernel source tree: Documentation/driver-model/platform.txt
2The file located in the Linux kernel source tree: drivers/thermal/exynos thermal.c

12

walked through the initialization process line-by-line to identify if we needed to undo any

steps taken by the initialization process before the device could be unbound.

We were working on this phase in parallel with implementing of-thermal SOC THERM

(see Section 2.6). This meant that we had to hack together some code to test the functionality

of the platform driver we created. The hack involved moving board-specific configuration

information into SOC THERM driver and its associated initialization functions. The hack

has been flagged for future removal once the separation of SOC THERM is completed.

We initially limited the scope of the conversion to one board since we only have one

board to test on. After we finished the conversion, we submitted the code for review. Then

we began adding support for all the boards that SOC THERM supports. Since we did not

physically have the boards, we had to test the code using NVIDIA’s automated test system,

which compiled our code and ran it on every board.

The last thing that we had to do to complete our library-to-driver conversion was to

remove all instances of static variables. The use of static variables within the library meant

that there could only ever be one instance of SOC THERM running at a time. While it is

unlikely that there will ever need to be more than one concurrent instance of SOC THERM,

allowing for that functionality helped to bring the driver into line with the upstream Linux

kernel.

When the driver is first probed and initialized, it receives a pointer to a platform device

struct, from which it is able to gather all of its initialization data. Originally, the library

took that data and stored it in a static variable to use throughout its lifetime. However,

that meant that there could only ever be one concurrent instance of that variable. In order

to fix this, we first identified the functions that were using this plat data variable. Next,

we had to modify each of those functions so that they took in an additional parameter, a

platform device struct. For functions that were solely called from within SOC THERM,

this was not much of a challenge. However, some of the functions that needed to be changed

were used as callbacks from other parts of the kernel. As such, we couldn’t change the

prototypes for those functions. In order to get around that, we found ways to include

our data into the parameters that were already being passed in. For example, one of the

callback functions took in a thermal zone device, which has a field called devdata. Upon

creation of our thermal zone devices, we were able to pass in our platform device struct

as devdata, which allowed us to access it in those callback functions. After modifying all of

those functions so that they had a copy of the platform device struct, we made sure that

our probe function took the device-specific data that would be needed and stored it within

the platform device’s own devdata field. Finally, we replaced all instances of plat data

with the device-specific data that we stored within platform device.

13

2.4 Device Tree Conversion of Hardware Data

Before we began our project work, hardware data was hard coded into C structures and

interpreted by SOC THERM , where it was then used to register thermal zones. This was

a bad practice because it did not account for variability in hardware. Instead, we converted

the hardware data for eight thermal sensors (four CPU, two MEM sensors, one GPU, and

one PLLX sensor) into Device Tree format. We only converted these eight thermal sensors

because they were not previously in use; converting the four sensor groups (which are in use)

would take much more time and was not within the scope of our project.

In order to do this conversion, we needed to view the bindings documentation3. This file

explained how the Device Tree file should be formatted for thermal zones. In accordance with

the documentation, a node named thermal-zones must be created, with eight child-nodes.

Each child-node represents a thermal zone. These child-nodes then have three properties and

two child-nodes. The properties are as follows: polling-delay, polling-delay-passive,

and thermal-sensors. polling-delay and polling-delay-passive are cell-properties

(see Section 1.4). These two properties were given the value 0. thermal-sensors is a

phandle (see Section 1.4) that is set to &soctherm, in reference to a node named soctherm,

followed by a number indicating the sensors id. This id value is unique to each sensor

within the thermal-zones node. The child-nodes that must be described are trips and

cooling-maps. These child-nodes have properties of their own, but for the eight thermal

sensors these nodes are left blank because the sensors do not have trip points or cooling

devices associated with them. Once the conversion was completed, the thermal framework

was able to parse and register these sensor zones. We confirmed that the new eight thermal

zones showed up in sysfs.

2.5 User-space App Implementation

regs show() is a function inside the SOC THERM driver. It gathers various register data

and system status. With this function, tegra11 soctherm.c exposes a debugfs file called

“regs”, allowing userspace to see a lot about the state of SOC THERM hardware.

In computing, a hex dump is a hexadecimal view of the computer data. It is commonly

used for debugging. Our task was to reduce the amount of code inside the SOC THERM

driver by moving the register parsing from the kernel space to userspace. In order to achieve

this goal, we first changed the regs output to a hex dump. After changing regs into a hex

dump, we modified a minimal but safe user-space app called soctherm spy.c to parse the new

3File located in the Linux kernel source tree at: Documentation/devicetree/bindings/thermal/thermal.txt

14

format. It reads the hex dump generated by regs, stores the hexadecimal-formatted register

data and system status into an array buffer, matches each element with the corresponding

state of the SOC THERM hardware, and prints them out.

2.6 of-thermal Implementation

The SOC THERM driver was previously responsible for directly calling a registration func-

tion of thermal zones from the thermal framework. We were tasked with moving this reg-

istration to of-thermal (see Section 1.6 for details on of-thermal). In order to implement

this change, first the registration had to be removed from SOC THERM. This was done by

removing the code which called the thermal framework registration function for each thermal

sensor.

The next step was to create an expose function which calls the sensor registration function

from of-thermal and passes in a number of parameters to it. These parameters include two

callback functions and the SOC THERM device which contains Device Tree nodes. The of-

thermal registration function takes previously created thermal zone structs and populates

their callback function fields. The rest of the fields have already been created during previ-

ous initializations. These callback functions were to get the sensor temperatures and to get

thermal trends. They were written in a similar manner to pre-existing SOC THERM func-

tions, but were tailored to work specifically with of-thermal. The function which obtained

the current thermal trend could not be written because the available data and architecture

did not allow for a required field to be passed in.

In addition to having an expose function, a remove function needed to be written. This

function would be called to undo the registration, such as when the SOC THERM driver

is unbound. The responsibility of this function is to unregister a given zone via a function

in of-thermal. It is also responsible for freeing memory allocated in the expose function. In

order to unregister thermal zones, the of-thermal unregister function takes a thermal zone

struct. To make these structs accessible in SOC THERM , we needed to store the registered

thermal zone structs in an array where the index of the sensor corresponds to the index in

the array.

Lastly, we were tasked with making trip temperatures accessible by the SOC THERM

sensor driver. Previously, SOC THERM had access to this data inside the SOC THERM

code because it was stored in hard-coded C structures (see Section 2.4). With the conver-

sion from hard coded hardware data to Device Tree format, this was no longer the case.

These trip temperatures are needed in order to program hardware shutdown cases; that is,

when a sensor reaches a critical temperature, the device should power off. This should be

15

programmed during initialization, therefore inside of the registration function in of-thermal,

we passed in another callback function called program trip(). This callback function takes

two parameters: a pointer to a temperature and a thermal trip type (active, passive, hot,

or critical). These parameters are obtained via of-thermal of thermal get trip temp()

and of thermal get trip type() functions, which are then passed in to program trip().

program trip() checks to see if the given trip type is critical; if it is not, the function ends

(only at critical trip points does the hardware shut down). It then calls another function

which configures the hardware to shutdown the system if a given sensor reaches a given

temperature. This configuration function could not be completed by our group because it

was not within the scope of our project. Instead, the function prints out useful information

about what was passed into it as well as what the next steps to finishing it are.

16

3. Results

Overall, our project was successful. We met our project goals and our code was going through

NVIDIA’s review process when we left the project site.

Driver Documentation

Our first project phase gave NVIDIA comprehensive documentation for their SOC THERM

library. This allows NVIDIAs employees and partners to spend more time on something that

matters instead of trying to comprehend SOC THERM code. Moreover, we walked away

with a better understanding of how the monolithic Linux kernel works in conjunction with

a device library. In addition to the documentation, SOC THERM code is now aligned with

upstream kernel coding guidelines. We ran multiple static analysis tools to make sure that

SOC THERM is free of any stylistic issues and obvious errors that may have been overlooked.

Platform Driver Conversion

The platform driver conversion project consisted of three main objectives. Each objective

was followed by a code review phase, which provided valuable feedback on both stylistic and

syntactic changes that needed to be made. Each code review phase iterated until all parties

involved were satisfied.

The first main objective of our project was to set up platform driver support for the

boards with which we were working. We removed the code that the board files used to start

up SOC THERM and instead initialized it via Device Tree. We ran tests so that we could

be assured that the platform driver version of SOC THERM functioned in the exact same

way as the library version.

The second main objective of our project was to add support for all of the other boards

with Tegra 4 and K1 chips. Since we removed the code that all of the board files used to start

up SOC THERM , we could also remove the initialization function within SOC THERM that

all of the board files were calling.

17

The third main objective of our project was to remove static variables from the newly

converted driver so that it could handle more than one instance of SOC THERM hardware at

a time. We placed those static variables within the platform device struct and converted

all of SOC THERM’s functions so that they also took in a pointer to that struct. This

allowed us to pass the information around without storing it into a global variable.

Device Tree Conversion of Hardware Data

The Device Tree conversion of hardware data added flexibility to the thermal manage-

ment system. Before this implementation, the SOC THERM driver was directly working

with board hardware data within hardcoded C structures. If the hardware that the sensor

driver functioned on was changed, the sensor driver would then have to be modified to ac-

commodate this change. With the data stored in Device Tree files, this modification is no

longer necessary. During initialization, the Device Tree file containing the appropriate hard-

ware data is parsed and then used to populate the C structures which the thermal framework

then manages.

User-space App Implementation

The userspace app implementation consisted of two main objectives. The first main

objective was to convert the “regs” output from SOC THERM debugfs into a hex dump.

We modified the code of regs show() inside SOC THERM driver. The second objective was

to modify a userspace app to parse the hex dump from “regs”. We implemented a minimal

but safe app called soctherm spy.c. The overall goal of this task was to reduce the amount

of code in SOC THERM kernel space but to keep the same information in the userspace.

of-thermal Implementation

Reworking the SOC THERM driver moved the responsibility of thermal zone structure

creation from SOC THERM to the thermal framework via of-thermal. Preventing the sensor

driver from creating thermal zones was necessary because this is handled during initializa-

tions by of-thermal. Instead, the sensor driver adds callback functions to the pre-existing

of-thermal thermal zone structures and the thermal framework structures via of-thermal.

18

References

[1] Driver Binding. https://www.kernel.org/doc/Documentation/driver-model/

binding.txt.

[2] kernel-doc nano-howto. https://www.kernel.org/doc/Documentation/

kernel-doc-nano-HOWTO.txt.

[3] The Platform Device API. http://lwn.net/Articles/448499/.

[4] What Is A Device Driver. https://www.pc-gesund.de/it-wissen/

what-is-a-device-driver.

[5] Power.orgTM Standard For Embedded Power ArchitectureTM Platform Requirements

(ePAPR) v1.1. http://www.power.org/documentation/epapr-version-1-1/, April

2011.

[6] NVIDIA. Company history. http://www.nvidia.com/page/corporate_timeline.

html.

[7] NVIDIA. GeForce. http://www.geforce.com.

[8] NVIDIA. High Performance Pomputing and Supercomputing. http://www.nvidia.

com/object/tesla-supercomputing-solutions.html.

[9] NVIDIA. Tesla GPUs Power World’s Fastest Supercomputer. http://

pressroom.nvidia.com/easyir/customrel.do?easyirid=A0D622CE9F579F09&prid=

678988&releasejsp=release_157.

[10] NVIDIA. The Tegra K1 Supercomputing Mobile Processor. http://www.nvidia.

com/object/tegra-k1.html.

[11] NVIDIA. The Visual Computing Company. http://www.nvidia.com/object/

visual-computing.html.

19

[12] NVIDIA. Workstation Solutions. http://www.nvidia.com/object/

workstation-solutions.html.

20

