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Abstract 

Near-field diagnosis of antenna arrays is often done using microwave holography; however, the 

technique of near-field to near-field back-propagation quickly loses its accuracy with 

measurements taken farther than one wavelength from the aperture. The loss of accuracy is 

partially due to windowing, but may also be attributed to the decay of evanescent modes 

responsible for the fine distribution of the fields close to the array. In an effort to achieve better 

resolution, the difference between these two phase-synchronized near-field measurements is used 

and propagated back. The performance of such a method is established for different conditions; 

the extension of this technique to the calibration of small antenna arrays is also discussed. 

The method is based on the idea of differential backpropagation using the 

measured/simulated/analytical data in the near field. After completing the corresponding 

literature search authors have found that the same idea was first proposed by P. L. Ransom and 

R. Mittra in 1971, at that point with the Univ. of Illinois [1],[2]. This method is basically the 

same, but it includes a few distinct features: 

1. The near field of a (faulty) array under test is measured at  5.25.1   via a near field 
antenna range.  

2. The template (non-faulty) near field of an array is simulated numerically (full-wave 
FDTD solver or FEM Ansoft/ANSYS HFSS solver) at the same distance – an alternative 
is to use measurements for a non-faulty array.     

3. Both fields are assumed (or made) to be coherent (synchronized in phase).  
4. A difference between two fields is formed and is then propagated back to array surface 

using the angular spectrum method (inverse Fourier propagator). The corresponding 
result is the surface (aperture) error field, ZF . This approach is more precise than the 
inverse Rayleigh formula used in [1] since the evanescent spectrum may be included into 
consideration.  

5. The error field magnitude, ZF , peaks at faulty elements (both amplitude and phase 

excitation fault). 
6. The method inherently includes all mutual coupling effects since both the template field 

and the measured field are full-wave results.  
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Chapter 1: Introduction 

The goal of this paper is to describe a simple yet powerful and promising method of locating 

partially or fully malfunctioning elements in an antenna array. The method is based on the idea 

of differential backpropagation using the measured/simulated/analytical data in the near field. 

After completing the corresponding literature search authors have found that the same idea was 

first proposed by P. L. Ransom and R. Mittra in 1971, at that point with the Univ. of Illinois 

[1],[2]. This method is basically the same, but it includes a few distinct features: 

7. The near field of a (faulty) array under test is measured at  5.25.1    via a near field 
antenna range.  

8. The template (non-faulty) near field of an array is simulated numerically (full-wave 
FDTD solver or FEM Ansoft/ANSYS HFSS solver) at the same distance – an alternative 
is to use measurements  for a non-faulty array.     

9. Both fields are assumed (or made) to be coherent (synchronized in phase).  
10. A difference between two fields is formed and is then propagated back to array surface 

using the angular spectrum method (inverse Fourier propagator). The corresponding 
result is the surface (aperture) error field, zF . This approach is more precise than the 
inverse Rayleigh formula used in [1] since the evanescent spectrum may be included into 
consideration.  

11. The error field magnitude, zF ,  peaks at faulty elements (both amplitude and phase 

excitation fault). 
12. The method inherently includes all mutual coupling effects since both the template field 

and the measured field are full-wave results.   

Under ideal conditions, the method is weakly limited by diffraction since it is based on the exact 

solution to Maxwell’s equations. For example, if the measurement plane is chosen as the 

corresponding aperture and the probe height is chosen as the focal length, the well-known 

Rayleigh resolution criterion yields typical resolution values on the order of  4/  or better.  

Microwave holography is a well known method for diagnosis and alignment of phased array 

antennas [4]-[10]. The hologram, a backpropagation of the complex near field from a probe 

measurement, is often used as a first-look at the structural quality of an aperture. In arrays, the 

hologram may provide maps of aperture illumination, element weights, and geometric faults. 

Element weights are a primary concern when attempting to align an array, but several 

uncertainties are intrinsic to the hologram [4]-[8]. Some uncertainties, such as probe relative 
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pattern and cable phase stability, are impossible to compensate for as they are specified by the 

manufacturer [5], [6]; however, other uncertainties such as probe positioning and aliasing [7], [8] 

may be minimized using certain measurement precautions. One of these precautions is to place 

the probe farther away from the array in order to avoid mutual coupling between elements of the 

array and the probe. As the probe is placed farther from the array, we will find that the 

hologram’s accuracy degrades and may sometimes become confusing to read. This degradation 

is normally attributed to measurement plane truncation [8], noise, and probe inaccuracies [5], [7]; 

however, we will show that the evanescent modes of the array also play a role in the fine 

distribution of the field close to the aperture plane. 

Although the hologram of an aperture gives insight to potential flaws, requirements concerning 

the alignment of newer arrays have become more rigid. This has called the use of holography 

into question as a sufficiently accurate tool for diagnosis of such systems, which are today tested 

with other longer and more costly procedures [11]-[13]. Although these testing procedures are 

very accurate, they become impractical when projecting costs to production units, as the time 

taken to diagnose alignment problems becomes the most costly portion of the project. 

Fundamental Antenna Quantities 

Antenna Pattern 

The antenna pattern is defined as “a mathematical function or a graphical representation of the 

radiation properties of the antenna as a function of space coordinates. In most cases, the radiation 

pattern is determined in the far-field region and is represented as a function of the directional 

coordinates. Radiation properties include power flux density, radiation intensity, field strength, 

directivity, phase, or polarization.” [3] The trace of a received electric or magnetic field at a 

constant radius is called the amplitude field pattern, while a graph of the spatial variation of the 

power density along a constant radius is called an amplitude power pattern. 

These field and power patterns are often normalized with respect to their maximum value, 

yielding “normalized” field/power patterns. These plots are usually presented in a dB (decibels) 

scale, that is, 10log10  of the quantity in question. This is done to accentuate any portions of the 
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antenna pattern that may have low values. Thus, for all antennas, we have three typical pattern 

plots of the same antenna, 

a. The field pattern in a linear scale represents the magnitude of the electric or magnetic 
field as a function of angular space; 

b. The power pattern in a linear scale represents a plot of the square of the magnitude of the 
electric or magnetic field as a function of the angular space 

c. The power pattern in the dB scale represents the magnitude of the electric or magnetic 
field (in decibels) as a function of angular space. 

 

 

Figure 1 Antenna pattern representations of the same antenna array: Top left: the field pattern in a linear 
scale represents the magnitude of the electric or magnetic field as a function of angular space. Top right: 

the power pattern in a linear scale represents a plot of the square of the magnitude of the electric or 
magnetic field as a function of the angular space. Bottom: the power pattern in the dB scale represents the 

magnitude of the electric or magnetic field (in decibels) as a function of angular space. 
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The performance of an antenna is often given in terms of its principal E - and H - plane patterns. 

The E -plane is defined as “The plane containing the electric field vector and the direction of 

maximum radiation;” while the H -plane is defined as “the plane containing the magnetic field 

vector and the direction of maximum radiation.” [3] It is possible for an antenna to have just one 

principle plane, or an infinite number. In a linearly polarized antenna, the E -plane may also be 

thought of as the plane in which current flows in the antenna, while the H -plane is the plane 

perpendicular to that. 

Radiation Lobes and Beamwidth 

When observing a radiation pattern, there may be one portion of the pattern which has a very 

high value compared to those portions surrounding it. This portion of the pattern is known as a 

“radiation lobe.” Antenna patterns may have multiple lobes; for example, Fig. 1 has five lobes.  

A “major lobe,” also known as “main beam,” is defined as “the radiation lobe containing the 

direction of maximum radiation.” [3] Fig.1 demonstrates an antenna whose main beam is 

directed in the 0  direction. Although this is the case for Fig. 1, antennas may have a main 

beam directed in any direction and may even have multiple beams pointed in several directions. 

Any lobe except the major lobe is called a minor lobe; for example, Fig. 1 has four minor lobes 

surrounding its main beam. 

A side lobe is defined as “a radiation lobe in any other direction than the intended lobe.” [3] This 

definition may be further specified as any lobe adjacent to the main beam located in the same 

hemisphere in the direction of the main beam. Thus, it may be said that Fig. 1 has four side 

lobes. A back lobe is a “radiation lobe whose axis makes an angle of approximately 180 degrees 

with respect to the main beam of the antenna.” [3] This term usually applies to any minor lobe 

located in the hemisphere pointed in the opposite of the main beam. 

Minor lobes typically represent radiation of power in undesired locations; thus, many designers 

seek to minimize them as part of their design. Minor lobes are normally characterized by taking 

the ratio of the power density in the minor lobe to that of the main beam; usually this is desired 

to be below -20dB. Fulfilling this requirement is very important in radar systems, as side lobes 

may increase the number of false target detections. 
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Associated with the main beam is the beamwidth. This parameter is known to be the angular 

separation between two identical points on the main beam. [3] There are several ways of 

choosing these “identical points;” however, one of the most popular choices is that point which 

the radiation intensity is half of its maximum value. This is known as Half-Power Beamwidth 

(HPBW) and is defined by the IEEE as “In a plane containing the direction of the maximum of a 

beam, the angle between the two directions in which the radiation intensity is one half value of 

the beam.” Another popular choice for beamwidth is the angular separation at which the first null 

on each side of the main beam appears, or First Null Beamwidth (FNBW). One common 

approximation made by engineers is 2/FNBWHPBW  . This is an important quantity for 

antennas, as it is also describes the resolution capabilities of the antenna to distinguish between 

two adjacent radiating sources or radar targets. 
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Figure 2 Half-Power Beamwidth (HPBW) (top) First Null Beamwidth (FNBW) (bottom) Example for the 
same antenna array as shown in Fig. 1. The HPBW is approximately 26 while the FNBW is 

approximately 61 

Although a narrow beamwidth would be desirable in many cases, there is a tradeoff with respect 

to this parameter and that of the side lobe level, i.e. the more narrow the beamwidth, the higher 

the side lobe level and vice versa. 

Polarization 

 “The polarization of the wave transmitted (radiated) by the antenna. Note: When the direction is 

not stated, the polarization is taken to be the polarization in the direction of maximum gain.” In 

reality, polarization varies with the direction from the center of the antenna such that parts of the 

pattern may have different polarizations. 



7 

 

The polarization of a wave is defined as “that property of an electromagnetic wave describing the 

time-varying direction and relative magnitude of the electric-field vector; specifically, the 

figured traced as a function of time by the extremity of the vector at a fixed location in space, 

and the sense in which is it traced, as observed along the direction of propagation;” [3] thus, the 

polarization is the curve traced by the end point of the vector representing the instantaneous 

electric field. This may be defined in terms of waves either radiated or received by an antenna. 

The polarization of a wave radiated by an antenna in the far field is defined as “the polarization 

of the (locally) plane wave which is used to represent the radiated wave at that point. At any 

point in the far field of an antenna, the radiated wave can be represented by a plane wave whose 

electric-field strength is the same as that of the wave and whose direction of propagation is in the 

radial direction from the antenna. As the radial distance approaches infinity, the radius of 

curvature of the radiated wave’s phase front also approaches infinity and thus in any specified 

direction the wave appears locally as a plane wave.” [3] 

Polarization falls into three categories: linear, circular, and elliptical. A wave is linearly polarized 

if the vector that describes the electric field always falls in the same plane; a wave is circularly 

polarized if the endpoint of the vector that describes the instantaneous electric field traces a 

perfect circle; a wave is elliptically polarized if the endpoint of the vector that describes the 

instantaneous electric field traces an ellipse. 

 

Figure 3 Examples of linear (left) and circular (right) polarization. The polarization is the curve traced by 
the end point of the vector representing the instantaneous electric field. 

In order for an electric field vector to be linearly polarized, it must possess 
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a. Only one component, or 
b. Two orthogonal linear components that are in time phase or 180 (or multiples of 180) 

out of phase. 

When an antenna is linearly polarized, the (principle) E -plane pattern is directly related to the 

polarization axis. 

In order for an electric field vector to be circularly polarized, it must possess all of the following 

a. The field must have two orthogonal components 
b. The two components must have the same magnitude 
c. The two components must have a time phase difference of odd multiples of 90. 

A field is elliptically polarized if it is neither linearly of circularly polarize; however, the 

necessary and sufficient conditions to create an elliptically polarized electric field vector are 

a. The field must have two orthogonal linear components, 
b. The two components can be of the same or different magnitude. 
c. If the two components are not of the same magnitude, the time phase difference between 

the two components must not be 0 or multiples of 180. If the two components are of the 
same magnitude, the time phase difference between the two components must not be odd 
multiples of 90 

The “sense of rotation” for a circular or elliptical polarized wave is always determined by 

rotating the phase-leading component toward the phase-lagging component and observing the 

field rotation as the wave is viewed as it travels away from the observer. If rotation is clockwise, 

the wave is right-hand (CW) polarized, if rotation is counter clockwise, the wave is left-hand 

(CCW) polarized [3]. 

Polarization is important because if an antenna were trying to transmit a linearly polarized signal 

to an identical antenna rotated 90 in the plane orthogonal to the direction of propagation 

(orthogonal polarization), it would receive no signal at all; thus, it is important to be aware of the 

polarization of an antenna. Fig. 4 shows a network of two dipoles – one transmit, one receive. 

One dipole is rotated to show how the polarization affects power transmission. The top left 

image pertains to both dipoles with the same polarization; the top right image pertains to one 

dipole being rotated by 30; the bottom left image pertains to one dipole being rotated by 60; 

the bottom right image pertains to both dipoles having polarizations orthogonal to each other. 

The S21 parameter, a network parameter directly related to power transmission between two 

ports, is shown in a plot below for each configuration versus frequency. One can clearly see the 
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degradation of transmitted power as a function of rotation as both dipoles begin to have 

orthogonal polarizations. 

 

 

 
Figure 4 Frequency dependent transmission coefficient (dB) of two dipoles (transmit/receive network). The 

red curve pertains to the two dipoles with the same polarization plane (top left). The light blue curve 
pertains to the network when one dipole is rotated 30 (top right). The violet curve pertains to the network 
when one dipole is rotated 60 (bottom left). The dark blue curve pertains to the network when one dipole 

is rotated 90 (bottom right). 

 Antenna Arrays 

As mentioned in the previous section, narrow beamwidth of an antenna system is helpful for 

improving resolution in radar systems. Unfortunately, this is not very easy to accomplish with a 

single antenna element; however, if we construct an antenna made of several antennas, called an 

antenna array, this turns out to be an easier task. Another way of narrowing the beam of an 
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antenna is by using a parabolic reflector. This is a very directional type of antenna; however, it 

must be scanned mechanically, and thus is not as quick as scanning electrically with a phased 

array. 

The total field of an antenna array is usually analytically determined as the vector sum of the 

fields radiated by each individual element. This sum is not entirely accurate, as the elements in 

an array will likely couple to one another, creating element-specific fields. [3] This 

approximation may be avoided by modeling the fields produced each element in the array 

separately while all other elements are match-terminated, called the “active element” pattern. 

Adding the vector sum of all active element patterns in an array will yield the proper array 

pattern. It is possible to shape the pattern of an antenna array using several design parameters [3], 

some of which are: 

a. Element spacing; 
b. Element excitation amplitude; 
c. Element excitation phase; 
d. Element geometry (i.e. individual element pattern); 
e. Array geometry (elements aligned in a linear fashion, rectangular grid, triangular grid, 

spherical grid, etc.). 

As mentioned, the radiation pattern of an antenna array may be broken into the sum of the 

patterns for each individual element. Ignoring mutual coupling, let’s consider an array of 

elements located on a grid. The phase of each element as represented in the far field is expressed 

as the complex exponential ije rk  where  



cos,sinsin,cossin
2

k  is the wave vector, 

and ir  is the special location of the element in question. If we are to sum up all patterns 

multiplied by the proper phase, we will end up with the following expression 


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The summation in eq (1) is known as the array factor for an array with no individual phase shifts. 

If we are to introduce two progressive phase shifts in the x  and y  directions on a rectangular 

grid, the total array factor for a rectangular grid of antennas is 
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This expression is used to approximate the far field radiation pattern of a rectangular phased 

antenna array, if the array consists of dipole elements, the total pattern would be AFDIPOLE E , 

etc. One tool that some engineers use to view the array factor is called “uv-space.” This is a 

coordinate transform which shows the angular shift of an array beam as a translation on the 

Cartesian plane. The transform is 


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Figure 5  uv-space plot of the array factor for a 10x10 array of 2/  spaced elements. Top left shows a 

uniformly excited array; Top right shows an array with a progressive 60 phase shift on one axis; Bottom 
shows an array with a progressive 60 phase shift on both axes. 
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One way of minimizing side lobes with arrays with the tradeoff of transmitted power is by 

applying a taper to the gain of elements; the Dolph-Tschebyscheff taper is a popular method of 

producing very low side lobes with acceptable field strength loss. This is done by applying the 

weights of the thn  degree Tschebyscheff polynomial to each element in the array. If low side 

lobes are only needed on one axis, the weights may be applied to only one axis; however, if the 

low side lobes are desired for all axes, the weights must be applied to each other on both axes 

and will result in less transmitted power.  

 
Figure 6 Array factors of a 10x10 array of 2/  spaced elements with no progressive scan angle, but an 
amplitude taper. The graph on the left shows a uniformly excited array with the -13dB side lobes. The 

graph on the right shows an array with a Dolph-Tschebyscheff taper applied for -26dB side lobes. 
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Chapter 2: Algorithm Specification and Numerical Modeling 

The FDTD Algorithm 

In order to solve Maxwell’s equations, we will consider their differential form. The most natural 

way to solve these equations is by finite differences. 

Finite difference methods for solving differential equations utilize the Taylor expansion of a 

function, f, in the following form: 

 )(
6

)(
2

)()()(
3

33

2

22

xf
dx

d
xf

dx

d
xf

dx

d
xfxf

  

Rearranging (X) in the form of a central difference, we have 

)()
2

(
)()( 2hO

h
xf

h

xfhxf



 

These equations are the foundation of the finite-difference time-domain (FDTD) method of 

solving differential equations. When solving electromagnetic problems, finite-difference time-

domain method (FDTD) is used frequently due to its efficiency and adaptability to different 

problems. FDTD is especially useful when dealing with problems defined on a Cartesian grid. 

This condition is useful when dealing with rectangular patch antennas, as they rarely have 

oblique boundaries. When considering the discretization of the problem, the spatial meshing may 

be chosen at the programmer’s discretion; however, the time step must maintain the following 

inequality 

3c

h
t             (1) 

In order for us to start solving Maxwell’s equations for the quantities E  and H , we will express 

Faraday’s Law and Ampere’s Law in their form as two coupled first order differential equations 

H
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which translates to the following system of six scalar equations (for a homogeneous domain) 
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This leaves us with six equations to solve for six unknowns. 

The finite difference approximation of a two dimensional problem is best expressed on a 

“staggered grid” where E  is expressed at integer multiples of the spatial step, while H  is 

expressed on half-integer multiples of the spatial step. In order to denote such a scheme, let the 

subscript r denote an index that refers to the z-coordinate and the superscript n refer to the time 

coordinate such that ),( tnzrff n
r  . 

Expressing the x component of eq. 2 and eq. 3 in finite differences yields 

z

HH

t

EE

n

r
y

n

r
yn

rx
n

rx


















2

1

2

1
2

1

2

11
1


 



15 

 

z

EE

t

HH n

rx
n

rx

n

r
y

n

r
y

















1

2

1

2

1
2

1

2

1
1


  

The analog for the other two dimensions (four more equations) may be found in the same way. 

In order to better visualize this process in the one dimensional problem, consider Fig. 7 

portraying the so-called “leap-frog algorithm.” 

 

Figure 7 1D visual example of the FDTD “leap frog” algorithm 
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Extrapolating this to three dimensions yields a hexagonal lattice with half-integer step sizes 

shown in Fig. 8 

 

 
Figure 8 3D visual example of the FDTD “leap frog” algorithm 

The equations which govern the 3D FDTD algorithm are as follows with the same notation as 

above with ),,,(,, tnzryqxpff n
rqp  . This is known as the Yee FDTD scheme. 
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The following code shows how Yee’s FDTD scheme is realized in MATLAB. 

%--------------------------------------------------------------- 

Dt      % Time step 

Cx      % 1/dx 

Cy      % 1/dy 

Cz      % 1/dz 

mu0     % permeability 

eps0    % permittivity 

  

% Allocate field matrices 

Ex = zeros(Nx  , Ny+1, Nz+1); 

Ey = zeros(Nx+1, Ny  , Nz+1); 

Ez = zeros(Nx+1, Ny+1, Nz  ); 

Hx = zeros(Nx+1, Ny  , Nz  ); 

Hy = zeros(Nx  , Ny+1, Nz  ); 

Hz = zeros(Nx  , Ny  , Nz+1); 

  

for n = 1:Nt; 

    Hx = Hx + (Dt/mu0)*(diff(Ey,1,3)*Cz - diff(Ez,1,2)*Cy); 

    Hy = Hy + (Dt/mu0)*(diff(Ey,1,1)*Cx - diff(Ez,1,3)*Cz); 

    Hz = Hz + (Dt/mu0)*(diff(Ey,1,2)*Cy - diff(Ez,1,1)*Cx); 
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    Ex(:,2:Ny,2:Nz) = Ex(:,2:Ny,2:Nz) + (Dt /eps0) * ... 

        (diff(Hz(:,:,2:Nz),1,2)*Cy - diff(Hy(:,2:Ny,:),1,3)*Cz); 

    Ey(2:Nx,:,2:Nz) = Ey(2:Nx,:,2:Nz) + (Dt /eps0) * ... 

        (diff(Hx(2:Nx,:,:),1,3)*Cy - diff(Hz(:,:,2:Nz),1,1)*Cx); 

    Ez(2:Nx,2:Ny,:) = Ez(2:Nx,2:Ny,:) + (Dt /eps0) * ... 

        (diff(Hy(:,2:Ny,:),1,1)*Cx - diff(Hx(2:Nx,:,:),1,2)*Cy); 

end 

%--------------------------------------------------------------- 

Source Modeling 

Although we are able to simulate the time progression of the fields using Yee's FDTD scheme, 

we still must provide "initial values" to the boundary value problem, otherwise known as the 

source. Sources are classified into two basic categories: hard sources and soft sources. The hard 

source, or "replaced" source 0 is equivalent to defining one of the components of the electric 

field at a certain point, ee yx , , in the form 

  tyxtE eezyx sin,,,,  , OFFTt 0  

This type of source was used more in the past when exciting coaxial and waveguide structures; 

however, in some systems, the hard source may cause reflections of waves propagating back to 

the source location. It can be shown that the hard source is analogous to placing a voltage across 

a lossless transmission line. 

The soft current source, on the other hand, is expressed as a lumped current source added to 

Maxwell's equations. Let's assume the case of an electric field source pointed in the z  direction. 

The electric field, as calculated by Ampere's law, can be written in the form 
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Where c
zJ  is the conduction current density directed in the z  direction. Similarly, we can 

introduce a lumped current density into Ampere's law as the source of EM radiation, 
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where L
zI  is the total lumped current. As mentioned, it is possible to write eq. (5) in terms of 

finite differences with a known lumped current as an added source. The defined impressed 

current density may exist in free space or it may be supported by a physical conductor - in either 

case, the initial source is a voltage. 

Boundary Conditions 

When solving Maxwell’s equations, the boundary conditions must be satisfied numerically as 

well. If the boundary condition of 0E   is chosen for the electric field, this indicates that the 

edges of the domain are composed of perfect electric conductors (PEC) since the tangential 

component of the electric field on a PEC is 0. In the case of an open boundary, a boundary which 

absorbs all incident electromagnetic waves is desired; this condition is known as absorbing 

boundary conditions (ABCs). 

Let us observe the wave equation for an unknown quantity W . 
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Rearranging this equation to emphasize dominant propagation along the x -axis, we have 
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If we wished to nullify the propagation of W  in the x  direction, we could impose the 

condition 

0W 
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x
c

t 0           (6) 
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Likewise, if we wished to nullify the propagation of W  in the x  direction, we would use the 

opposite signs as in eq. (6). This relates to our problem in the sense that, on the boundary, if we 

want the plane-wave portion of E  to be nullified so there is no reflection, we could impose the 

following boundary conditions known as Mur’s first order ABCs. 
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This result may also be extrapolated to the other two spatial dimensions similar to that of the 

FDTD equations’ permutation of x, y, and z. The 3D implementation in MATLAB is as follows 

%--------------------------------------------------------------------------------- 
m1      = (c0*dt - d)/(c0*dt + d); 

%   Left 

EyN(1, :,:)   =  EyP(2,:,:)  + m1*(EyN(2,:,:) - EyP(1,:,:));        %   left - Ey; 

EzN(1, :,:)   =  EzP(2,:,:)  + m1*(EzN(2,:,:) - EzP(1,:,:));        %   left - Ez; 

%   Right 

EyN(Nx+1, :,:)=  EyP(Nx,:,:) + m1*(EyN(Nx, :,:) - EyP(Nx+1,:,:));   %   right - Ey; 

EzN(Nx+1, :,:)=  EzP(Nx,:,:) + m1*(EzN(Nx, :,:) - EzP(Nx+1,:,:));   %   right - Ez; 

%   Front 

ExN(:, 1,:)   =  ExP(:,2,:)  + m1*(ExN(:,2,:) - ExP(:,1,:));        %   front - Ex; 

EzN(:, 1,:)   =  EzP(:,2,:)  + m1*(EzN(:,2,:) - EzP(:,1,:));        %   front - Ez; 

%   Rear 

ExN(:, Ny+1,:)=  ExP(:,Ny,:) + m1*(ExN(:,Ny,:) - ExP(:,Ny+1,:));    %   rear - Ex; 

EzN(:, Ny+1,:)=  EzP(:,Ny,:) + m1*(EzN(:,Ny,:) - EzP(:,Ny+1,:));    %   rear - Ey; 

%   Bottom 

ExN(:, :,1)   =  ExP(:, :,2)  + m1*(ExN(:,:,2) - ExP(:,:,1));       %   bottom - Ex; 

EyN(:, :,1)   =  EyP(:, :,2)  + m1*(EyN(:,:,2) - EyP(:,:,1));       %   bottom - Ey; 

%   Top 
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ExN(:, :, Nz+1)=  ExP(:,:,Nz) + m1*(ExN(:,:,Nz) - ExP(:,:,Nz+1));   %   top - Ex; 

EyN(:, :, Nz+1)=  EyP(:,:,Nz) + m1*(EyN(:,:,Nz) - EyP(:,:,Nz+1));   %   top - Ex; 

%--------------------------------------------------------------------------------- 

Although these conditions on E  are sufficient to solve our problem, we may also impose 

conditions on H  and near the boundary which, depending on the polarization observed, will 

cancel some of the errors imposed on Mur’s ABCs. Consider the 2D TM case where we have 

polarization in the z  direction. The rightmost boundary conditions of the domain may be 

improved by imposing the same conditions on yH   as in eq. (7) and eq. (8) one half step from 

the boundary 
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Next, the yH  value is calculated near the boundary as it ordinarily would be, using the FDTD 
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Mei’s super ABCs may be realized in 3D in the following way with MATLAB 

%------------------------------------------------------------------ 
HyP(1, :) = HyP(2, :) + m1*(HyN(2, :) - HyP(1, :)); % x = 0; 

HyP(Nx, :) = HyP(Nx-1,:) + m1*(HyN(Nx-1,:) - HyP(Nx, :)); % x = Lx; 

HxP(:, 1) = HxP(:, 2) + m1*(HxN(:, 2) - HxP(:, 1)); % y = 0; 

HxP(:, Ny) = HxP(:,Ny-1) + m1*(HxN(:, Ny-1)- HxP(:, Ny)); % y = Ly; 

% H(1) and H 

HyN(1, :) = (rho*HyP(1, :) + HyN(1, :))/(1+rho); % x = 0; 

HyN(Nx, :) = (rho*HyP(Nx,:) + HyN(Nx,:))/(1+rho); % x = Lx; 
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HxN(:, 1) = (rho*HxP(:, 1) + HxN(:, 1))/(1+rho); % y = 0; 

HxN(:, Ny) = (rho*HxP(:,Ny) + HxN(:,Ny))/(1+rho); % y = Ly; 
%------------------------------------------------------------------ 

Simpler boundary conditions met when modeling microwave problems are interfaces between 

regions of different permittivity and permeability. The staggered grid may simply have the 

permittivity/permeability defined on the boundary, and the average value between the two values 

at the point which both media occupy the same space. This type of boundary, along with PEC 

may be simply defined as a lattice of constants since the FDTD equations are scalar multiples of 

these values. 

 Array Geometry Under Study and Near Field Structure 

A 4x4 planar array of linearly-polarized square patch antennas spaced at /2 or less is chosen as 

shown in Fig. 9. The ground plane (or the reflecting plane) extends to approximately twice the 

array size. The large reflector size is important for accurate restoration results. 

 

Figure 9 4x4 array geometry under study. 

Six observation planes used for sampling transversal electric (and magnetic) fields are shown in 

Table 1. They are spaced at distances  
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
2,
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,

8
                          (9) 

from the physical top of the antenna array.  The array is simulated using the second-order Yee 

FDTD scheme and standard MATLAB environment [26]. All radiators are terminated into an 

ideal sinusoidal generator voltage source in series with a 50Ω resistance.  

Table 1 shows typical field distributions for the co-polar electric field at different distances from 

the array i.e. in the different observation planes. All elements have source amplitudes of 1V and 

equal phases.  

Table 1 Electric field distributions in different observation planes (/2 spacing). 

Plane 

height 

Plane location vs. FDTD 

mesh  

Co-polar electric field  - 

magnitude 

Co-polar electric field-phase
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One can see that the fine structure of the fields close to individual patches is lost, as long as the 

distance from the array surface exceeds 4/ .  However, the backpropagator will still be able to 

recover it, especially when the differential backpropagation is used.  
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Chapter 3: Near to Near/Far Field Transformations 

The space surrounding an antenna is usually subdivided into three regions: the reactive near 

field; the radiating near-field, or “Fresnel region”; and the far field, or “Fraunhofer region”. The 

boundaries between these regions are not unique and do not signify dramatic changes in the 

electromagnetic field occupying the regions; however, they provide a guideline of what portion 

of the field dominates in that region. 

The reactive near field region is defined as “that portion of the near-field region immediately 

surrounding the antenna wherein the reactive field predominates.” For most antennas, this region 

is described by the inequality 



3

62.0
D

R   

where   is the wavelength and D  is the largest dimension of the antenna. 

The radiating near field region is defined as “that region of the field of an antenna between the 

reactive near field region and the far field region wherein radiation fields predominate and 

wherein the angular field distribution is dependent upon the distance from the antenna. If the 

antenna has a maximum dimension that is not large compared to the wavelength, this region may 

not exist. For an antenna focused at infinity, the radiating near field region is sometimes referred 

to as the Fresnel region on the basis of analogy to optical terminology. If the antenna has a 

maximum overall dimension which is very small compared to the wavelength, this field region 

may not exist.” This region’s boundary follows the inequality 



23 2
62.0

D
R

D
  

In this region, the fields’ angular distribution changes considerably with distance from the 

antenna. 

The far field region is defined as “that region of the field of an antenna where the angular friend 

distribution is essentially independent of the distance from the antenna. If the antenna has a 
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maximum overall dimension D , the fat field region is commonly taken to exist at distances 

greater than /2 2D from the antenna,   being the wavelength. The far field patterns of certain 

antenna, such as multibeam reflector antennas, are sensitive to variations in phase over their 

apertures. For these antennas, /2 2D may be inadequate. In physical media, if the antenna has a 

maximum overall dimension, D , which is large compared to  / , the far field region can be 

taken to begin approximately at a distance equal to  /2D from the antenna,   being the 

propagation constant in the medium. Fir an antenna focused at infinity, the far field region is 

sometimes referred to as the Fraunhofer region on the basis of analogy optical terminology.” 

This region is defined by the inequality 



22D
R   

In this domain, the fields’ angular distribution is independent of the radial distance from the 

antenna. This is the field which governs the performance of an antenna, as its behavior is the 

product of design. 

When the amplitude pattern of an antenna is measured, usually one (linear polarization) or two 

transverse (dual or circular polarization) components of E  are taken. This may be done in the 

near or far zone; however, the near field range is a more accurate and reliable testing means. At 

this point, all measurements are assumed to be taken from the radiating near field. 

An interesting problem to consider when taking measurements in the near field is how to 

produce the far field pattern with these measurements – after all, the antenna is designed for its 

far field characteristics. It turns out there are several methods of doing this when dealing in the 

sense of an aperture, that is to say, antennas which only radiate in the hemisphere covering them. 

This may be realized as a horn or as an antenna over a ground plane or parabolic reflector. 
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Near to Far Field Transformations 

Fraunhofer Diffraction 

One simple means of finding the far field pattern is by using the so called Fraunhofer diffraction 

equation. This is a very simple method of finding the field pattern at infinity using the same 

principles as studying diffraction of light through an aperture. Consider the diffraction of a wave 

in the z  direction from the origin through an aperture onto another plane shown in Fig. 10 

 

Figure 10 Geometry of Fraunhofer diffraction problem. The blue section is the aperture. 

The electric field, of the point source in this case, takes the form 

 krtje
r

E
r  0ˆ)( xE  

Incorporating every point source’s effect on the plane implies an integral across the aperture, 

yielding the following expression 

  dXe
XR

E
r

APERTURE

XRktj 


 )sin(0

)sin(
ˆ)( 


xE

      (10)
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For XR  , we may make the approximation 

RXR

1

)sin(

1


 
 

Eq. (10) becomes 

  





  dXe

R

E
XA XRktj )sin(0)(ˆ xE  

Where A(X) is the aperture distribution 

Simply put, equation is derived by adjusting the phase of the E field according to the distance 

from the source to the surface of interest (in this case, infinity), and adjusting for the radial 

falloff of power of the field, thus 

  





  dXeXAe

R

E jkXkRtj )sin(0 )(ˆ xE  

or 

 0EE  C  

where C is some scaling constant (i.e. the result is proportional to the Fourier transform). This 

formula is mainly used as a quick way to find the normalized pattern, not absolute gain pattern. 

Equivalent Magnetic Currents and MoM 

For electrical engineers, the method of moments (MoM) may be the most reasonable means of 

calculating field quantities, as it deals in terms of currents, voltages, and impedances. In 1992, T. 

K. Sarkar and A. Taaghol [18]-[20] produced a simple yet effective method of calculating the far 

zone fields of an aperture using the MoM formulation. In order to present this idea, the field 

equivalence principle and inhomogeneous Helmholtz equations which follow from Maxwell’s 

equations are used. 

The following equations fully describe the behavior of electromagnetic fields in any medium. 
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Ampere's Law modified by displacement currents: JH
E





t
    (a) 

Faraday's Law:     E
H





t
    (b) 

Gauss's Law for electric fields:     E     (c) 

Gauss's Law for magnetic fields:   0 H     (d) 

Continuity Equation:     0
t





J


    (e) 

We would like to solve these equations for the driving sources, J  and , which are easily 

applied by engineers, and, as such, are taken as givens along with the permittivity and 

permeability of the considered medium, and thus there are five equations with only two 

unknowns, H  and E , which we may solve for in terms of J  and  . 

The first step to take is to define the magnetic vector potential, A , by recognizing that the curl of 

a vector field is divergence free in equation (d): 

AHH   0          (11) 

Now, if we use equation (b) and plug in equation (11) for H  in a homogeneous medium 

(constant , ), we get: 

 
E

A




t

   

0
t













A

E  

Since the curl of the divergence of a scalar field is zero, we may assume the solution takes the 

form of: 

t



A

E            (12) 
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Now we have both unknown fields expressed through two potentials which we have yet to solve 

for in terms of their sources. 

Taking the curl of both sides of (11), we get: 

  AAAH 2   

plugging this into (a), we get: 

  JAA
E  

 2

t
 

substituting in (12) gives us: 

  













t

 AJ
A

A
2

2
2

t
  

  













t

 AJ
A

A
2

2
2

t
 

Leading us to the Lorentz gauge (since   has yet to be defined): 

AA 










 1
0

tt
 

So we are left with: 

J
A

A  




2

2
2

t
         (13) 

A




 1

t
          (14) 

leaving us only to solve for A  in order to solve for  . 

In order to solve eq. (13), we will note that eq. (13) is indeed linear and may be expressed in 

phasor form when considering a time harmonic field. This may be done by introducing time 
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dependence in the form of tje  , turning time derivatives into multiplication by j , allowing us 

to then cancel the exponential terms and leave us with no time derivatives: 

JAA  22 k , k , or 
c

k


   for free space   (15a) 

A



j

1
          (15b) 

AH             (15c) 

AE  j           (15d) 

In order to avoid taking two gradients of the magnetic vector potential, a numerical 

inconvenience, we can use the continuity equation, (e), in phasor form: 

0 Jj           (15e) 

Taking the gradient of both sides of (14a) gives us: 

     JAA  22 k   

Using equations (14b) and (14e), we get: 


  22 k           (16) 

Thus, we are left with the following equations: 

JAA  22 k  


  22 k  

0 Jj           (17) 
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AH 

1

  

AE  j  

The solutions to eqs. (17) may be expressed implicitly in the form of volume integrals using 

Green's functions, or the fundamental solution to the Helmholtz equation in an unbounded space. 

This solution is valid for any frequency: 

 
3

)(),()(
R

rrJrrgrA d  

 
3

)(),(
1

)(
R

rrrrgr d


  

where  

rr
rr

rr






4
),(

0jke
g  

Similarly, if we come up with an imaginary source for the magnetic field, called the “magnetic 

current”, M , and we assume that 0J  , we have 0 D . This implies that the electric field is 

the curl of a different field potential. Thus, we may come up with an electric field potential, F , 

and define it in the following way. 

FE 

1

           (18) 

 
3

)(),()(
R

rrMrrgrF d           (19) 

The field equivalence principle is a more rigorous formulation of the Huygens principle and is 

based on the uniqueness theorem that states “a field in a lossy region is uniquely specified by the 

sources within the region plus the tangential components of the electric field over the boundary, 

or the tangential components of the magnetic field over the boundary, or the former over the 
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boundary and the latter over the rest of the boundary.” [3] Using the equivalency principle, the 

fields outside an imaginary closed surface are obtained by placing suitable electric- and 

magnetic-current densities over the closed surface which satisfy the boundary conditions. The 

current densities may be selected such that the fields within the surface are zero and are equal to 

the radiation produced by the sources on the outside; thus the field equivalence principle may be 

used to obtain the fields radiated outside a closed surface by sources enclosed within it.  

For example, if the region S  is chosen with fields 1E  and 1H  enclosed, we may select the 

sources on the boundary to be 1ˆ EnM s  and 1ˆ HnJ s . Due to the uniqueness of 

Maxwell’s equations, if the electric field is known, we may find the magnetic field; this means 

that we may choose the surface S to be made of a perfect electric conductor, leading us to the 

conditions 1ˆ EnM s  and 0ˆ 1  HnJ s . 

Now if we take an antenna and enclose it behind an infinite plane and define the magnetic 

current near an infinite conducting plane, using the method of images, we have the equivalent 

magnetic current 1ˆ2 EnM  . If E is measured, we may use it to define M . Remembering that 

the new field E  is equal to zero on the boundary of S , we can use eqs. (18)and (19) to find that 

 
S

sdg ),()()( rrrMrE  

where   denotes the gradient operator with respect to the primed variable, and the Green’s 

function is defined as 

rr
rr

rr






4
),(

0jke
g  

This produces the two following sets of equations for both components of the electric field 

 




S

yx sdM
z

g
E )(

),(
)( r

rr
r  
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 




S

xy sdM
z

g
E )(

),(
)( r

rr
r  

These equations are valid for finding the electric field at any distance from an aperture. 

Rayleigh Diffraction Integral 

Another means of propagating a near-field result to the far field is done by another optics tool 

known as the Rayleigh diffraction formula. Its meaning is as follows. 

Assume the quantity V  is a monochromatic (single frequency) scalar wave field in free space, 

i.e.  

tjezyxUV ),,(  

We also assume V  satisfies the homogeneous (propagating) wave equation throughout the 

region of interest, and as such, satisfies the Helmholtz equation   022  Uk . Generally, we 

may express such a quantity in the form of an angular spectrum of plane waves 

   
2

exp),(),,(
R

dpdqmzqypxjkqpAzyxU  

where 

221 qpm     when 122  qp  

122  qpjm  when 122  qp  

The former value of m corresponds to homogeneous (propagating) waves, while the latter 

corresponds to evanescent waves which do not propagate, but decay exponentially to zero as the 

distance from the source becomes larger. If we consider U  at the points  000 ,, zyx  and 

 111 ,, zyx  (Denoted by ),( kkk yxU ), we see that apart from scaling and proportionality 

constants, U is the two dimensional Fourier transform of the function

 2,12,1 exp),(),( jkmzqpAqpB  , thus 
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     





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2

exp),(exp
2

),(
2

R

llllllll dydxqypxjkyxUjkmz
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qpA


,  1,0l  

This gives us 

      




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22

exp),(exp
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lllllllliiiiii mzqypxjkyxUdydxmzqypxjkdpdq
k

yxU


If we choose 0,1  lk , we are able to propagate the wave at point  000 ,, zyx  to  111 ,, zyx . 

Changing the order of integration, we may define a function 

        
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And therefore,  

 
2

00010110000111 ),(),(),(
R

dydxyyxxKyxUyxU      (20) 

Using the plane wave expansion of a spherical wave and noting that 01 zz  , 
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we may recognize that 
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     (21) 

Eq. (21) is known as the Rayleigh diffraction formula, expressing eq. (20) in closed form. 
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Near to Nearer Field Transformations 

All of the above equations are valid for transforming a near field result to the far field; however, 

in practice, it is also useful to solve the inverse problem, i.e. transform far/near field results back 

to the aperture plane (the face of the antenna). This back-transformed quantity is known as the 

hologram of the antenna. The hologram is especially needed when dealing with antenna arrays 

containing a multitude of elements, since all elements must be weighted properly. Unfortunately, 

none of these methods are completely accurate in solving the inverse problem.  

We will start with the obvious Fraunhofer diffraction. The approximation made during the 

Fraunhofer diffraction derivation is that the measurement plane is located at infinity, this would 

allow us to convert far field results into the hologram; however, these results will still not be 

entirely accurate even excluding the proportionality constant mentioned above. To understand 

why the Fraunhofer diffraction equation should mainly be used as an approximation, we must 

first note the fundamental quantity being observed in the derivation: the Fraunhofer diffraction 

formula is derived solely from the notion of homogeneous waves, that is, those waves which are 

travelling in space. However, we may note that all antennas have a reactive near field in which 

the dominant energy is composed of inhomogeneous, or evanescent, waves that decay 

exponentially with distance from the aperture. Therefore, this quantity is ignored altogether and 

not reconstructed in the hologram. 

Similarly, Narishman and Kumar [24] developed a method of calculating the hologram of an 

array by recognizing that the array pattern is nothing but the appropriately displaced sum of 

individually weighted element electric field patterns, i.e. 
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Taking the Fourier transform of both sides of the equation allows for the modeling of 

displacement as a phase shift in the frequency domain 

           yxJvuEevuEavuE xx
yvxuj

M

m
xmx

mm  



 ,,,,

00

1

0

  



38 

 

As such, the hologram in this case is the inverse Fourier transform of the array far field pattern 

divided by the element pattern. This method fails to take into account the fact that mutual 

coupling creates a non-uniformity of element patterns in the array. This is the same issue that the 

array factor runs into when computing the array radiation pattern. Fig. 11 shows an example of 

how the antenna patterns of individual array elements can be different. A 4x4 array was 

simulated in Ansys HFSS. The top left image shows the active element pattern of one of the 

corner elements; the top right image shows the active element pattern of one of the inner 

elements; the bottom image shows the active element pattern of one of the edge elements. Note 

that these patterns are not the same shape as one another.  

 
Figure 11 Example of non-uniform amplitude pattern of individual elements in a 4x4 array of patch 

antennas. The top left is a corner element, the top right is an inner element, and the bottom is an edge 
element. 
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This method also does not show the electric field distribution on the ground plane, but only the 

weight of each element, which may be desirable in some applications. 

Since inverse Fraunhofer diffraction is not the ideal choice for calculating the hologram, we will 

move on to Sarkar and Taaghol’s equivalent magnetic current approach. It can be seen that this 

method is inherently the same as the Rayleigh diffraction formula, and so we can observe the 

two together. Using this method may be shown to be valid for backpropagating near field results 

to the aperture plane; however, in 1968, Shewell and Wolf [14] showed that the inverse 

transform provided by this method is invalid for evanescent modes, and therefore we may say 

that it has a similar effect as the inverse Fraunhofer diffraction on results. Namely, Shewell and 

Wolf showed that the inverse Rayleigh diffraction formula is expressed as 
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As such, this equation may be used to solve the inverse diffraction problem and obtain the 

hologram including the evanescent modes; however, the following means is an equivalent way of 

doing so, and is also derived as an exact solution to Maxwell’s equations. 

In the source free region, beyond the aperture plane, the field E  of a monochromatic wave 

radiated by the aperture may be can be written as the superposition of plane waves in the form of 

a Fourier transform 

 
2

),(
4

1
),,(

2
R

rkfE yx
j

yx dkdkekkzyx


 

Where xk  and yk  are the spectral frequencies which extend over the entire frequency spectrum

 yx kk , , and ),( yx kkf is the vector amplitude of each plane wave. Since 

zyx zyx aaar ˆˆˆ   and zzyyxx kkk aaak ˆˆˆ  , 

FT can be written as 
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    
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fE yx
ykxkjzjk

yx dkdkeekkzyx yxz


  

But we can regard the portion in brackets as the transform of E , thus 

    
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1
),,(

2
R

EE yx
ykxkj

yx dkdkezkkzyx yx


  

      
2

,,
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1
,,

~
2

R

EE dxdyezyxzkk ykxkj
yx

yx


 

where 

    zjk
yxyx

zekkzkk  ,,,
~

fE  

This means we may find the field at any point z , provided we know its transform; however, in 

order to have the transform, we must know the electric field. We may end this dilemma by 

noticing that if we know the electric field at point zero 

   yxyx kkkk ,0,,
~

fE  , 

We may use this to calculate the field at any point, which is exactly what we desire, but we must 

first do a bit more math. In general, 

       yxzzyxyyyxxxyx kkfkkfkkfkk ,ˆ,ˆ,ˆ, aaaf  , 

which can be expressed as 

     yxzzyxtyx kkfkkkk ,ˆ,, aff  , 

     yxyyyxxxyx kkfkkfkk ,ˆ,ˆ, aaf  . 

In order for E  to satisfy the homogeneous wave equation in the source free region, the quantity 

zk  must be related to xk  and yk  in the following way 



41 

 

 2222
yxz kkkk  . 

or  

 222
yxz kkkk    when 222

yx kkk    

  222 kkkjk yxz   when 222
yx kkk    

where the two cases for k  contribute to both homogeneous (former) and inhomogeneous (latter) 

waves. 

Since E  must obey Maxwell’s equations in the source free region, we have 

    0,
4

1
,,

2
2













  

R

rkfE yx
j

yx dkdkekkzyx


 

Using the chain rule, we have 

      0,
4

1
,,

2
2

  

R

rkfE yx
j

yx dkdkekkzyx


 

Since   0f  yx kk , , as E  is the superposition of f  

This equation may be satisfied provided that  

  0  rkrk kff jj eje  

or 

  0ˆ  kafkf zzt f  

or 

 
z

yyxx

z

t
z k

kfkf

k
f







kf
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This means we can also find zf  provided we know the tangential components of E  on some 

plane at distance z  from the aperture. 

This gives us our formulas to find the hologram given  0,, zyxEx  and  0,, zyxE y . 

       

APERTURE

ykxkj
xyxx ydxdezyxEkkf yx0,,,

 

       

APERTURE

ykxkj
yyxy ydxdezyxEkkf yx0,,,
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zyxyyyxxxyx

ze
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kfkf
kkfkkfzkk 



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













 
 aaaE ˆ,ˆ,ˆ),,(

~
 

Therefore, if we know the field at some point 0z , we simply phase the Fourier transform by 0z

and we will find our hologram with all variables considered. This is an equivalent result to the 

four-fold integral simplified in the derivation of the Rayleigh diffraction formula. As mentioned 

above, the diffraction formula throws out evanescent modes in order to express the integral in 

closed form. An example of the implementation of this algorithm is shown in Appendix E. 
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Chapter 4: Idea of Differential Backpropagation 

In this section, we present the standard direct and inverse propagator for horizontal observation 

planes based on Fourier transform in the k-space [13]-[16]. Note that other propagator models in 

the near field exist [17]-[25]. Only tangential electric fields xE , yE  are included into 

considerations. The spatial Fourier transform over a finite plane aperture (a×b) reads  

 

  ydxdyjkxjkzyxEf

ydxdyjkxjkzyxEf
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b

b
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a
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2/                  (22) 

Direct and inverse propagators (in the z-direction) have the form  
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       (23) 

Positive values of z correspond to forward propagation; negative z – to back-propagation. 

Dimensionless variables may further be introduced to quantify the effect of evanescent modes 

corresponding to kkk yx  22   





2

,,

,,,,





k
k

k
K

k

k
K

b
B

a
A

z
Z

x
Y

x
X

y
y

x
x

 

In the dimensionless form, the propagator reads 
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       (24) 

Except for truncating the observation plane, direct and inverse Fourier propagators (constituting 

the angular spectrum method) satisfy Maxwell’s equation precisely. The direct propagator is 

equivalent to Rayleigh (Rayleigh-Sommerfeld) diffraction integral as shown in the last section. 

One reason for the resolution degradation in Table 1 is that the evanescent modes responsible for 

the fine distribution of the fields close to individual radiators decay very fast. However, a faulty 

element in an array contributes not only to evanescent modes, but also to propagating modes in 

Eq. (23). Its presence considerably changes the propagating part of the spatial Fourier spectrum 

of an antenna array as compared to the ideal case of a non-faulty array. Therefore, the precise 

location of such an element in an array, could in principle, be restored from the near field data 

computed or measured at distances -2  from the aperture plane. The necessary condition for 

this operation is the availability of two phase-synchronized field distributions: that of the non 

faulty array and that of a faulty array with one (or more) malfunctioning elements. 

Fig. 12 shows three numerically computed spatial Fourier spectra (spectrum magnitudes) in 

yx kk ,  space for the array from Fig. 9. All magnitude spectra are obtained from the co-polar 

electric field at a distance of /8 from the aperture plane. The first plot (top left) is the spectrum 

of a non faulty array with all radiators driven by identical generators; the second plot (top right) 

is the spectrum of a faulty array when the generator for radiator 22 is shorted out; the third plot 

(bottom) is the difference spectrum between first two, which shall be used for the identification 

of a faulty element. 
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Figure 12 Three numerically computed spatial Fourier spectra (spectrum magnitudes) in k-space for a 4×4 
array of /2 spaced patch antennas over a larger ground plane/reflector. All magnitude spectra are 

obtained for the co-polar electric field at the distance of /8 from the aperture plane. The observation 
plane is approximately twice as large as the array itself .  The first plot (top left) is the spectrum for the 

non faulty array with all radiators driven by identical generators; the second plot (top right) is the 
spectrum for a faulty array where the generator for radiator 22 is shorted out; the third plot (bottom) is the 

difference spectrum between first two, which shall be used for the identification of a faulty element. 

One can see from Fig. 12 that the difference spectrum carriers little power compared to the 

original array spectra. However, it clearly has a dominant power density peak within the unit 

circle, 
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kkk yx  22                                       (25) 

which corresponds to propagating modes (plane waves).  Whereas the evanescent part of the 

difference spectrum at kkk yx  22  will be quickly lost, the propagating part still remains at 

larger distances from the array. Therefore, it may potentially be recovered to determine the 

geometric location of a faulty element.  It is thus suggested: 

1. Form a difference between the co-polar fields of non faulty and faulty arrays at a distance 
of 2  from the aperture plane. 

2. Find the spatial Fourier spectrum of that difference and propagate it back to the array 
plane. The result is the error field magnitude, zF . 

3. The error field magnitude, zF ,  presumably peaks at faulty elements (both amplitude 

and phase excitation fault). 

Algorithm  

Consider first a non-differential backpropagation. The backpropagation algorithm has two 

important parameters: window size in k-space and the roll-off coefficient of the raised cosine 

filter, r, applied to the restored field. The window in k-space must be applied in order to 

minimize errors caused by the exponential terms in the evanescent modes of the array. Table 2 

lists the optimum values for these parameters found from the non-differential backpropagation.  

The goal was to minimize the error between backpropagated and original fields. Parameters 

reported in Table 2 give a minimum restoration error percentage of the L2 norm of the 

approximate solution as compared to the exact solution at /8. In the following sections, these 

same parameters will be used for differential backpropagation. 

The L2 norm was taken by minimizing the integral of the square of the resultant hologram. This 

numerical integration is conducted as follows: assume that the matrix representing the hologram 

is a surface composed of points with separation d , and let each point on the following grid 

represent each element of the matrix. 
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Figure 13 Lattice representation of surface with points stored within a matrix. Each square represents the 
differential area. 

The surface area of this matrix may be calculated as each point multiplied by the differential 

area, 2d , however; this is not entirely accurate, as the edges of the matrix only represent an 

differential area of 2/2d . Even so, the corners also only contribute an incremental area of 

4/2d . 
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Figure 14 The differential area of matrix that should not be included in the surface area calculation is 
shown in red. Overlapping red regions must be subtracted twice. 

Thus, the total area of the matrix in question is not simply equal to the sum of each element 

multiplied by the differential area. One must sum the matrix and subtract out the overlapping 

parts as shown in Fig. 14. An example of a surface area calculation for a matrix representing a 

surface is shown below. 

%------------------------------------------------------------------ 
for m = 1:length(surface_x) 
    for n = 1:length(surface_y) 

        temp     = surface_matrix; 
        fxy(m, n) = d^2*(sum(sum(temp))-

0.5*(sum(temp(1,:))+sum(temp(end,:))+sum(temp(:,1))+sum(temp(:,end)))); 

    end  
end 
%------------------------------------------------------------------ 
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Table 2 Backpropagation parameters corresponding to a minimum restoration error of the co-polar E-field 
at the distance of /8 from the top of the antenna array in the near field. 

Backpropagator 

(from to) 

 

Minimum 

restoration error: 

percentage of L2 

norm compared to 

the exact solution 

at /8 

Rectangular window 

in the k-space 

corresponding to 

minimum 

restoration error 

Roll-off 

coefficient of the 

raised cosine filter, 

r, applied to the 

restored field  

Integration 

step in the 

k-space 

/8 to /8 0.3% 12k×12k 0.0 0.15k 

/4 to /8 4.7% 3.75k×3.75k 0.2 0.15k 

/2 to /8 17.3% 2.25k×2.25k 0.6 0.15k 

 to /8 31.1% 1.00k×1.00k 0.4 0.15k 

1.5 to /8 33.3% 0.85k×0.85k 0.5 0.15k 

2.0 to /8 35.8% 0.75k×0.75k 0.5 0.15k 

 

The same parameters will be used for differential backpropagation as described in the following 

subsection.  

 Simulated Backpropagation Results 

The results of a differential backpropagation are given in Table 3. The algorithm parameters are 

those from Table 2. Table 3 reports three backpropagated fields:  

i. non faulty field; 

ii. faulty field – the generator of radiator 22 is shorted out, and; 

iii. the (difference) error field, zF . 
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One can see that the differential backpropagation uniquely determines the position of the faulty 

radiator, at any distance from the array, with a high degree of resolution.  

Table 3 Backpropagated fields in three cases (/2 spacing). Element 22 is shorted out for a faulty array. 

Backp

ropa-

gator 

 

Non-faulty array: all 

radiators are excited with 

equal generators at 1V 

amplitude 

Faulty array: the generator 

of radiator 22 is shorted out 

Difference between the 

fields of non-faulty and 

faulty arrays propagated 

back to /8  

 

/8 to 

/8 

 

 

 

 

 

 

 

/4 to 

/8 

 

   

 

/2 to 

/8 
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 to 

/8 

 

 
 

 

1.5 to 

/8 

 

 

 

2.0 to 

/8 

 

 

 

Extensions 

Appendix A gives the backpropagation results corresponding to the last row of Table 3 above, 

but for all possible faulty element locations. It is seen that the algorithm is working properly. 

Appendix B gives the same backpropagation results, but corresponding to a partially attenuated 

element 12 (by -∞dB, -6dB, and -3dB). The algorithm is still working properly. 
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Appendix C gives the same backpropagation results corresponding to changes in phase of 

element 12. The algorithm is working properly for all phase variations.  

Appendix D gives the same results as in Appendix A, but with element spacing equal to 0.32 

instead of 0.5 . The algorithm is still working properly, which is a significant result with regard 

to backpropagation resolution at the lower frequency of the band.  
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Chapter 5: Measured Results 

Antenna Measurements 

Experimental results are needed to validate theoretical/numerical data in any case; therefore we 

should take pattern measurements of an antenna with faults and see if they are easily detectable 

with the differential hologram. Although antenna pattern measurements are usually taken with 

the test antenna receiving a signal from another radiator, the transmit pattern will be identical if 

the antenna is reciprocal. Under ideal conditions, the test antenna should be illuminated by plane 

waves with uniform amplitude and phase to find a far field pattern. Normally, the far field region 

is too great a distance to measure properly – this is another reason why our near field propagator 

and far field transforms are so important. 

The testing and measurements of antennas is usually conducted in an antenna range, whether it is 

indoor or outdoor. The measurements conducted for this paper were performed in a rectangular 

anechoic chamber. The anechoic chamber is an isolated room whose walls are covered in RF 

absorbers. A rectangular anechoic chamber, as opposed to a tapered chamber, is typically 

designed to simulate free-space conditions and maximize the volume of the “quiet zone.” This is 

the region around the test antenna which has minimal electromagnetic interference. The 

rectangular anechoic chamber takes into account the pattern, location of the source, frequency of 

operation, and assumes that the receiving antenna at the test point is isotropic. Although the 

reflected energy in the chamber is minimized using high quality RF absorber, the absorber’s 

properties are frequency dependent and work better at some frequencies than others. Significant 

reflections may still occur at large angles of incidence. 

Near field measurements may be taken in three different ways: planar, cylindrical, or spherical 

measurements. These measurements are taken along a grid with the transmitting antenna moving 

from point-to-point measuring data. The planar measurement takes place on an yx,  grid, the 

cylindrical measurements take place on the ,z  cylindrical grid, while the spherical 

measurements take place on the  ,  grid. Although the spherical and cylindrical methods allow 
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for more field to be captured in the measurements, they are also more expensive and require 

more computations. The planar scan is also better suited for phased arrays. 

When conducting a planar scan over the yx,  grid, a spacing of 2/,  yx  must be used in 

order to avoid any aliasing. The probe transmitting the signal is normally an open ended 

waveguide or small horn with a relatively flat radiation pattern; this is for a special reason: as the 

probe moves along the yx,  grid, its orientation relative to the test antenna changes. This 

directive property, along with the polarization of the horn, must be taken into account when 

observing measurements – this process is known as “probe compensation.” This method uses the 

Lorenz reciprocity theorem to couple the far fields of the test antenna to those of the probe. Note 

how in Fig. 15, the center of the array in relation to the center of the horn is different with regard 

to the horn pattern. 

 

Figure 15 Example of how the placement of the transmitting antenna along the grid changes the 
orientation relative to the test antenna. This directive property, along with the polarization, must be taken 
into account when observing measurements. The red circles portray the different part of the horn pattern 

seen by the array when the horn is at different locations. 
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Hologram Error Sources 

Although we are using a complete solution to Maxwell’s equations to calculate the hologram, we 

still have errors caused by measurement techniques. These errors have been characterized by 

several authors [4]-[8] , and include  

a. Noise; 
b. Probe Relative pattern; 
c. Probe polarization; 
d. Probe gain; 
e. Probe alignment; 
f. Normalization constant; 
g. Impedance mismatch; 
h. AUT alignment; 
i. Data point spacing (aliasing); 
j. Measurement area truncation; 
k. Probe X-Y position; 
l. Probe Z-position; 
m. Mutual coupling; 
n. Receiver non-linearity; 
o. Systematic phase errors; 
p. Receiver dynamic range; 
q. Room scattering; 
r. Leakage; 
s. Random errors 

These errors, although large in number, add up to approximately 0.2dB in amplitude error, and a 

2.5 degree phase error in the hologram [6]; even so, if we are to take the differential hologram of 

two arrays we will be able to eliminate some of this error. Consider the errors caused by b, d, f, 

q; these errors are linear in nature and, if repeatable, may either be measured and compensated 

for or minimized in a differential measurement. That is to say, any linear sources that cause 

changes to the amplitude of the electric field may be minimized with a differential measurement; 

however, this is only the case when the faulty array has amplitude errors only. Errors caused by 

positioning such as i, k, and l have been found to have a small but insignificant effect on 

measurements [7], especially in the case of i, which may be minimized if the measurement grid 

step is chosen carefully. Although errors e and h may be dramatic, it is easy to eliminate these by 

carefully aligning the probe and test array in the measurement setup. 

On the other hand, the differential measurement will be unable to eliminate errors related to 

phase in any case. It is clear that the errors caused by g, n, o, p, r, and s also fall into the same 



56 

 

category as phase errors; even so, these errors account for 0.1dB of the 0.2dB amplitude and 0.75 

degree out of 2.5 degree phase error estimates in [6]. The errors created by random noise 

(Gaussian), Rochblatt and Rahmat-Samii [4] have found that unless dealing with a weak signal, 

or very small SNR, these errors do not have a large effect on results; however, those errors 

caused by other random errors may account for as much as 0.7dB and 0.5 degree phase errors. 

One of the most noted errors in calculating the hologram is that of j, measurement plane 

truncation, studied in depth by Newell [8]. This is the notion that the electric field is measured on 

a finite rectangular grid at a distance 0z  from the aperture plane. As we know, this measurement 

plane must be infinite if the entire field were to be captured in such a measurement. Newell treats 

this finite measurement plane as a filter on the k -space spectrum. This filter alters the behavior 

of the backpropagator by smoothing the hologram discontinuities (i.e. convolving the result with 

a sinc function, see fig 16.) 

 

Figure 16  Example of smoothed hologram due to windowing in k-space, an effect of a finite 
measurement plane [8] 
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The severity of the smoothing uncertainties caused by this windowing is obviously dependent on 

the dimensions of the measurement plane, but is predictable. In most cases, this filtering removes 

a bit more of the spectrum than the portion just pertaining to evanescent modes. Although this 

information is necessary for reconstructing a perfect hologram, in reality, if the spectrum is not 

windowed properly according to its measurement plane, much of the calculated information is 

detrimental to reconstructing an accurate image: to clarify, any errors taken from the evanescent 

modes of the spectrum will be amplified exponentially in the reconstructed fields in the aperture 

plane, destroying the hologram altogether. Even though it leads to smoothing, It can be shown 

that this windowing in the k -space, to an extent, is a necessity when backpropagating any wave 

that is not expressed analytically, as even numerical errors may destroy the hologram if not 

filtered properly. This is due to the effect on evanescent modes provided by our backpropagator 

formulation. For example, in Fig. 18, five plots are shown for our 4x4 patch array in MATLAB 

with field data taken from  2  and the following windows in k -space: 

kkk yx 55.022   (42.5% Error) 

kkk yx 65.022   (42.0% Error) 

kkk yx 75.022   (Optimal, 39.9% Error) 

kkk yx 85.022   (39.1% Error, fake) 

kkk yx 95.022   (405% Error) 
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Figure 17  Hologram of 4x4 patch array modeled in MATLAB with different windows in k -space. Top 

left pertains to kkk yx 55.022   with a 42.5% error; Top right pertains to kkk yx 65.022   with a 

42.0% error; Middle left pertains to kkk yx 75.022   with a 39.9% error; Middle right pertains to 

kkk yx 85.022   with a 39.1% error (fake); Bottom pertains to kkk yx 95.022   with a 405% error. 
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We can see that the measurements taken from a distance of 2 , in this case, provide an unstable 

solution before the window in k -space even approaches kkk yx  22 . This is because the 

window in k -space created by the finite scan plane has caused numerical errors when calculating 

values somewhere outside of the circle kkk yx 75.022  ; however, if we were to use a larger 

scan plane, it is possible to expand this optimal window in k -space to a larger number and 

obtain more accurate results. We may find the same result for measured fields as well. The 

window in k -space may be approximated by the following equations [8]. 

One distinct error uncharacterized fully by many is that of m, the mutual coupling of antenna 

elements in an array [5], [6]. This problem stems from the fact that, in an array, individual 

antenna element patterns are usually unique to one another, his non-uniqueness is seen as 

amplitude and phase ripples between elements [6].  This means that the approximation that the 

antenna array pattern is the array factor multiplied by the element pattern is not quite good 

enough. The errors caused by mutual coupling may only be seen as errors caused by 

approximations made in the backpropagator being used in the hologram calculation. In our case, 

the backpropagator is an exact solution to Maxwell’s equations and is unaffected by this pattern 

variation – this means we may even see the effects of mutual coupling in our hologram if 

measurements are taken properly. The errors seen by mutual coupling may most likely be 

attributed to inverse propagation techniques similar to that of Narishman and Kumar [24], or 

incorrect array pattern simulation formulation (i.e. construction of the far field array pattern by 

multiplication of the element pattern with the array factor). This error is also usually mentioned 

alongside that of element pattern uncertainty [5], [6]; again, these errors may be seen as 

inaccuracies in the backpropagation formulation or simulation methodology. 

Array Under Study 

The array shown in Fig. 18 is a 4x4 passive array of patches with a corporate feed based on T-

power dividers. The array is etched on a 60 mil Rogers4003 substrate (ε = 3.45, tanδ = 0.0027). 

The array is 148mmx148mm in size and radiates at 4.00 GHz.  

An array with the corporate non-isolated feeding network provides more challenges than the 

array where every radiator has an isolated feed. The reason is that a faulty (detuned in this case) 
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radiator changes local termination to a corporate feeding network, which results in a different 

performance of a group of nearby radiators. As an example, Fig. 19 shows the current 

distribution on the array ground plane when one of the radiators is detuned by a copper strip 

(capacitive loading) versus the non-faulty current distribution. Nevertheless, even in this case, 

convincing results may be obtained.     

 

 

Figure 18  Top – A 4x4 array of patches with a corporate feed and posterior-fastened aluminum ground 
plane; bottom – the same array in the near-field range. 
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Non-faulty array    Edge element detuned        Corner element detuned 

     

Central element detuned     Surface current density scale 

    

Figure 19  Simulated (Ansoft/ANSYS HFSS) current distribution on the ground plane when one of the 
array elements is detuned. 

Numerical vs. experimental backpropagation 

In order to simulate the presence of a faulty element, a piece of copper tape (25mm×10mm) was 

used to detune an individual patch. Measurements were taken at a distance of 2.0, as shown in 

Fig. 18. The copol component of the electric field has been sampled over a 20'×16” observation 

plane with a rectangular horn, with a sampling interval of 0.5”. All simulations in this section 

have been done with Ansoft/ANSYS HFSS.  

Table 4 provides the results for every array element. The first row in every page shows the array 

geometry; the second row gives the current distribution on the ground plane. The last row gives 

two results: 
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i. The error field magnitude, zF  when the numerical solution for a faulty array is 

subtracted from the numerical template for the regular array - left.  
ii. The error field magnitude, zF  when the experimental data for a faulty array is 

subtracted from the experimental data for the regular array - right. 
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Table 4 Backpropagation results (num. to num.  and experiment to experiment) – last row. 
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Table 4 (cont.)  
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Table 4 (cont.) 
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Table 4 (cont.) 
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Table 4 (cont.) 
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Table 4 (cont.) 
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Table 4 (cont.) 
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Table 4 (cont.) 
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Despite the non-isolated feeding network, it is seen from Table 4 that:  

i. The differential backpropagation of measured faulty- and non-faulty data  identifies 
the faulty (detuned) element with accuracy better than or equal to element spacing.  In 
some cases the agreement is exact.  

ii. The differential backpropagation of simulated faulty- and non-faulty data  identifies 
the faulty (detuned) element with accuracy better than or equal to element spacing. 
The simulated data provides only slightly better resolution accuracy. This means that 
the experimental procedure does not introduce much error.   

Hybrid (Numerical – Experimental)  Backpropagation 

Sometimes the template array with no faulty elements may not be available for measurements. 

Only an “unknown” array is thus available. In this case,  the numerical data for the template 

array may be generated and used in the differential algorithm. 

However, the data should be aligned in phase. A way to this is to find the complex radiation 

pattern and align the phases of the main beam. Yet another, perhaps less accurate, way is to find 

maximum near field magnitude, in both measurements and simulations, and to assign phase zero 

to the field at that location. In order to synchronize the phase of the plots in Table 5, the L2 norm 

of the difference between the measured array data and a phased version of the HFSS data 

(multiplied by the constant matrix je ), both of non-faulty arrays, was minimized. Fig. 21. 

shows how the phase synchronization affects this minimization - the ideal version of the 

hologram in Fig. 21 should be zero. 



72 

 

 

Figure 20  Squared differential hologram of non-faulty measured and simulated (HFSS) data with the 
simulated data multiplied by a variable phase. From top left, the phases are -40, -30, -25, -20, -14 

(optimal). It can be seen that the measured array may not have been completely parallel with the plane of 
elevation. 
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Table 5 shows two cases of differential backpropagation when the non-faulty array was modeled 

in Ansoft/ANSYS and the faulty array field was measured. The phase alignment was done using 

the existing measured solution for the non-faulty array. One can see that the method works, but 

needs improvement. 

Table 5 Hybrid backpropagation results (numerical to experiment) – last row. 

Array Geometry Error Field 
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Chapter 6: Potential Extension to Array Calibration & 

Conclusions 

Phased arrays must be calibrated/aligned after they are build, as the attenuators and phase 

shifters used in the design rarely exhibit identical characteristics to one another. Another problem 

which may arise is faulty solder joints, or geometrical errors which may alter the radiation 

pattern of an array. For example, if an element is attenuated by 3dB, we see a significant 

difference in second null of the array factor; the second side lobe amplitude is also affected. This 

may be unacceptable in some cases, especially if an array has a taper applied to it with specified 

side lobe levels. 
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Figure 21 Top - Array factor of uniformly excited 4x4 array with 2/  spacing (black) and array with 

corner element attenuated by 3dB (red). Bottom - Array factor of uniformly excited 4x4 array with 2/  
spacing (black) and array with inner element attenuated by 3dB (red). 
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The most common calibration techniques consist of measuring the individual settings of each 

element of an array [11]-[13]. When considering these methods, additional RF components must 

be included in the array design, such as circulators, detectors, and filters, which may not be 

desirable in some cases. 

Although holography will always remain less accurate compared to element-by-element testing, 

many of its common errors (standing waves, room scattering, and cable losses) are reduced when 

the difference between the electric field distributions is utilized. This makes the differential 

hologram a more reliable method to calibrate faulty elements in an array and an array as a whole. 

There are also some cases in which element-by-element testing is undesirable altogether, making 

holography one of the only options. For instance, when aligning broadband arrays that rely on 

mutual coupling to remain matched at lower frequencies – it is impractical to turn off elements in 

this case, as this can alter the active impedance of elements and lead to a faulty calibration. 

Conclusions 

1. We have shown via numerical simulations that differential backpropagation produces 
convincing results for a small 4×4 patch array of individually fed radiators including all 
effects of mutual coupling and the effect of a finite measurement plane. 

2. These results allow us to uniquely determine a malfunctioning array element with a 
different excitation phase and/or amplitude at any position in the array. 

3. The array spacing may be as low as 0.32 as long as the measurement plane is located at  
2 or a smaller distance.  

4. The experimental results have been given for a 4×4 patch array with a corporate feed. 
This case is more challenging due to low element isolation. Despite the low isolation, 
differential backpropagation of measured faulty and non-faulty data identifies the detuned 
element with accuracy better than or equal to element spacing.  In some cases the 
agreement is exact. The corresponding numerical simulation has confirmed this 
conclusion.  

5. The hybrid approach (numerical data for the template array vs. measured data for a 
presumably faulty array) shows promise, but needs extra work with phase 
synchronization.  

The above means that with the use of differential microwave holography one may quickly assess 

the performance of a small patch array. When considering the calibration of arrays, less RF 

components are necessary when using holography. Although element-by-element techniques are 

more accurate, they may sometimes be detrimental to array performance when dealing with 

broadband arrays. 
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Some challenges of the current method include:  

1. Amplitude errors reflected in the error field are simply indicators, not correct values 
unless the phase of the error field is constant 

2. Phase errors are identifiable, but not correct values in the error field in any case. 
3. The provision of a calibrated array near-field pattern, either experimentally or 

numerically, is a must. 
4. Phase synchronization between the template pattern and that of the AUT is required.  
5. A larger ground/reflector plane is needed.  
6. Effects of positioning errors when testing separate units may have a severe influence. 
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Appendix A: Backpropagation for all array elements.  

Backpr
opa-
gator 

 

Non-faulty array 
backpropagated near field 

Faulty array backpropagated 
near field 

Difference between the 
fields of non-faulty and 
faulty arrays propagated 

back to /8 

 
2 to 
/8 

2 to 
/8 

 
2 to 
/8 

 
2 to 
/8 
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Appendix B: Backpropagation for partially attenuated 

element. 

Attenua
tion 

 

Non-faulty array 
backpropagated near field 

Faulty array backpropagated 
near field 

Difference between the 
fields of non-faulty and 
faulty arrays propagated 

back to /8 

 
-∞dB 

 
-6dB 

 

 
-3dB 
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Appendix C: Backpropagation for element partially out of 

phase elements  

(In every cell corresponding to a given phase, the first row corresponds to amplitude and the 

second row corresponds to phase). 

Phase 
Shift 

 

Non-faulty array 
backpropagated near field 

Faulty array backpropagated 
near field 

Difference between the 
fields of non-faulty and 
faulty arrays propagated 

back to /8 

 
0 
 

 
90 
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30 

10 
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Appendix D: Backpropagation for all array elements with 

0.32 spacing. 

Backpr
opa-
gator 

 

Non-faulty array 
backpropagated near field 

Faulty array backpropagated 
near field 

Difference between the 
fields of non-faulty and 
faulty arrays propagated 
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2 to 
/8 

 
2 to 
/8 

 
2 to 
/8 

 
2 to 
/8 
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Appendix E: FDTD MATLAB Codes 

main.m 

%   FDTD MATLAB antenna/array solver (preliminary version) 

%   Copyright SNM Spring 2011 

%   MAIN SCRIPT 
clear all; 

  

%%  Read project file from subfolder PROJECTS (see file format) and visialize 

project geometry 

[FileName,PathName,FilterIndex] = uigetfile('projects/*.m','Select the MATLAB 

project file'); 
run(strcat(PathName, FileName));  

  

constructor; 

save input; 

  

%%  Execute FDTD script (either as a script or as a function) 

fdtd; 
if ~isempty(custom) 

    return; 
else 

    close all;  
end 

%   Its output includes:  
%   A. Currents/voltages and self/mutual impedances  of the ports (for total 

M ports) 

%   This data is given for any excitation type (pulse or CW): 

%   AntI    = zeros(M, M, length(t));          %   antenna currents for all 

ports  
%   AntV    = zeros(M, M, length(t));          %   antenna voltages for all 

ports  

%   Z       = zeros(length(findex), M, M);     %   port impedance matrix in 

frequency domain (at all frequencies) 
%   B. Fields on all boundaries and in the observation plane 



87 

 

%   This data is only given for CW excitation (complex Fourier coefficients 
%   of the fields are given): 
%   Extop = zeros(Nx  , Ny+1);                 %    Ex in the xy-observation 

plane 
%   Eytop = zeros(Nx+1, Ny);                   %    Ey in the xy-observation 

plane  

%   Hxtop = zeros(Nx+1, Ny);                   %    Hx in the xy-observation 

plane 

%   Hytop = zeros(Nx  , Ny+1);                 %    Hy in the xy-observation 

plane 

  

load output; 

  

%%  Interpolate, plot, and save port impedances (total M ports) into Zout 

if (length(f)>1)&(f(end)>f(1))  %   frequency sweep - pulse excitation 
    for m = 1:M 

        Zout(:, m, m) = interp1(ftemp, Z(:, m, m), f);  %   still a row here 

    end 
    scrsz = get(0,'ScreenSize'); 

    figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);  

    if M<=4     FontSize = 10;   end; 

    if M<=16    FontSize = 8;    end; 

    if M>16     FontSize = 7;    end; 

    for m = 1:RowNo(end) 
        for n = 1:ColNo(end) 

            index = n+(m-1)*ColNo(end); 

            subplot(RowNo(end), ColNo(end), index); 
            temp = squeeze(Zout(:, index, index)); 
            plot(f/1e6, real(temp), 'r', f/1e6, imag(temp), 'b'); grid on; 

            string = strcat('Port', num2str(m), num2str(n)); 
            title (strcat(string, ': R-red, X-blue, 

\Omega'),'FontSize',FontSize);  

            xlabel('freq, MHz','FontSize',FontSize);  
            set(gca,'FontSize',FontSize);            

            axis square; axis tight; 

        end 
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    end 
    scrsz = get(0,'ScreenSize'); 
    figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);  

    if M<=4     FontSize = 10;   end; 
    if M<=16    FontSize = 8;    end; 

    if M>16     FontSize = 7;    end; 

    for m = 1:RowNo(end) 
        for n = 1:ColNo(end) 

            index = n+(m-1)*ColNo(end); 

            subplot(RowNo(end), ColNo(end), index); 
            temp = squeeze(Zout(:, index, index)); 
            temp = 20*log10(abs((temp-R0)./(temp+R0))); 

            plot(f/1e6, real(temp), 'r', f/1e6, imag(temp), 'b'); grid on; 

            string = strcat('S', num2str(m), num2str(n)); 

            title (strcat(string, ': Refl. coeff., dB'),'FontSize', 

FontSize);  

            xlabel('freq, MHz','FontSize', FontSize);  

            set(gca, 'FontSize', FontSize); 

            axis square; axis tight; 

        end 

    end 
    scrsz = get(0,'ScreenSize'); 

    figure('Position', [1 0.3*scrsz(4) 0.3*scrsz(3) 0.3*scrsz(4)]);  

    RealizedG = zeros(length(temp),1); 
    for m = 1:RowNo(end) 
        for n = 1:ColNo(end) 

            index = n+(m-1)*ColNo(end);             
            temp = squeeze(Zout(:, index, index)); 

            GAMMA =(temp-R0)./(temp+R0); 

            RealizedG = RealizedG + (1 - abs(GAMMA).^2); 
        end 
    end 

    %RealizedG(find(RealizedG<0)) =0.001;  
    RealizedG = 10*log10(RealizedG/index); 
    plot(f/1e6, RealizedG, 'k'); grid on;         

    title ('Difference between realized gain and ideal gain, dB');  
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    xlabel('freq, MHz');     
    axis square; axis tight;     
else                            %   single frequency - CW 

   for m = 1:M 
       Zout(RowNo(m), ColNo(m)) = Z(:, m, m);   %   a matrix here 

   end 

end 

  

%%  Plot radiation patterns, near/far fields, and impedances at a single 

frequency 

if length(f)==1 

   if plane  
        plot_nearfield; 
   end 

end 

  

%%  Save project data 

%%   Data output into file 
ftemp = f; Ztemp = Zout;  

save(strcat(PathName, strcat(FileName(1:end-2),'.mat')));  

 

array_4x4_cw.m 

%   FDTD MATLAB antenna/array solver (preliminary version) 
%   Copyright SNM Spring 2011 

%   PROJECT FILE: geometry/FDTD domain/frequency/timing/terminations 
%%  Geometry 

%   Geometry construction is based on individual objects. The number of 

objects is arbitrary. 

%   Template for an individual object includes a top row with 15 numbers 

separated by commas.  
%   Any object may be  

%       i. a brick material (diel, metal, etc.);  

%       ii. a rectangular sheet (metal);  

%       iii. or a line (ports only). 
%   Template for the top row: 



90 

 

%   3,                        %   brick width, mm   (x) 
%   3,                        %   brick length, mm  (y) 
%   0.5,                      %   brick height, mm  (z) 

%   0.0,                      %   brick center, mm (x) 
%   0.0,                      %   brick center, mm (y) 

%   0.0,                      %   brick center, mm (z) 

%   0,                        %   is metal (0 or 1) 
%   0,                        %   is port (0-not a port; 1- port with Ex; 2 - 

port with Ey; 3 - port with Ez) 

%   1,                        %   relative permittivity 
%   0.0,                      %   electric conductivity, S/m 
%   1,                        %   relative permeability 

%   0.0,                      %   magnetic conductivity, S/m 

%   0,                                  %   object color(R) 

%   1,                                  %   object color(G) 
%   0,                                  %   object color(B) 

%   Template for an object also includes three remaining rows: xyz-positions 

for 

%   object translational copies - clones. Template for three remaining rows: 

%   0, 20, 40,      % x-translations for copies (use 0, if the object is not 

cloned) 
%   0, 20, 40,      % y-translations for copies (use 0, if the object is not 

cloned) 

%   0, 20, 40,      % z-translations for copies (use 0, if the object is not 

cloned) 
custom = []; 

  

%   This is the dielectric brick 
objectd{1} = [1000, 1000, 20, +000, 0,  -320,  0,  0,  2.0, 0, 1, 0,  1.0, 

1.0, 0.0]; 
objectx{1} = [0]; 
objecty{1} = [0]; 

objectz{1} = [0]; 

  

%   This is the metal ground plane 
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objectd{2} = [1800, 1800, 0,  +000, 0,  -340, 1, 0,  1,  0, 1, 0, 0.5, 0.5, 

0.5]; 
objectx{2} = [0]; 

objecty{2} = [0]; 
objectz{2} = [0]; 

  

%   This is the patch feed (for a square 4x4 array) 

objectd{3} = [0,  0,  20,  60,  0, -320,  0, 3,  1, 0, 1, 0, 1.0, 0.0, 0.0]; 

objectx{3} = [-360, -120, +120, +360, -360, -120, +120, +360, -360, -120, 

+120, +360, -360, -120, +120, +360]; 

objecty{3} = [-360, -360, -360, -360, -120, -120, -120, -120, +120, +120, 

+120, +120, +360, +360, +360, +360]; 
objectz{3} = zeros(1, 16); 

  

%   This is the top patch (for a square 4x4 array) 
objectd{4} = [160, 160, 0,  0,  0, -320, 1, 0, 1, 0, 1, 0,  0.5, 0.5, 0.5]; 

objectx{4} = [-360, -120, +120, +360, -360, -120, +120, +360, -360, -120, 

+120, +360, -360, -120, +120, +360]; 
objecty{4} = [-360, -360, -360, -360, -120, -120, -120, -120, +120, +120, 

+120, +120, +360, +360, +360, +360]; 

objectz{4} = zeros(1, 16); 

  

%%   FDTD domain data 

W0  = 1880;                            %   volume width, mm   (x) 
L0  = 1880;                            %   volume length, mm  (y) 

H0  = 1200;                            %   volume height, mm  (z) 
XC0 = 0;                               %   volume center, mm   (x) 
YC0 = 0;                               %   volume center, mm  (y) 

ZC0 = 100;                             %   volume center, mm  (z) 

D   = 20;                              %   cell size, mm (in all directions) 

  

%%   Frequency sweep data/FDTD timing data 
fstart  = 625e6;                       %  start frequency of the frequency 

loop, Hz 
fstop   = 625e6;                       %  stop frequency of the frequency 

loop, Hz 
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steps   = 1;                           %  # of frequency steps 
TO      = 15e-9;                       %  maximum total FDTD running time 

(per port), s 

R0      = 50;                          %  generator/load impedance, Ohm       
NoP     = 16;                          %  number of ports (total) 

fields  = 0;                           %  plot (1) or not (0) instantaneous 

fields  
component = 5;                         %  component to plot if any (1-Ex, 2-

Ey, 3-Ez, 4-Hx, 5-Hy, 6-Ez) 

power     = 0.25;                      %  power factor 

(abs(Ez)^power*sign(Ez) is plotted) 
scale     = 0.6;                       %  scale factor to plot (to 

abs(Ez)^power) 

plane   = 1;                           %  plot (1) or not (0) near fields  

  

planeZ  = -260;                         %  absolute height of the observation 

plane for near fields, mm (0.125*lambda) 

planeZ  = -200;                         %  absolute height of the observation 

plane for near fields, mm (0.250*lambda) 

planeZ  = -080;                         %  absolute height of the observation 

plane for near fields, mm (0.500*lambda) 

planeZ  = +160;                         %  absolute height of the observation 

plane for near fields, mm (1.000*lambda) 

planeZ  = +400;                         %  absolute height of the observation 

plane for near fields, mm (1.500*lambda) 

planeZ  = +640;                         %  absolute height of the observation 

plane for near fields, mm (2.000*lambda) 

  

%%   Port termination data/Scan data (only for antenna arrays) 

%   TERMINATION DATA 
%   Termination data is given by two matrixes: TerminationV (voltage), 

TerminationY (admittance)   

%   Both matrixes must have the size of Nrow by Ncol where Nrow is the number 

of port rows  

%   (along the x-axis) and  Ncol is the number of port columns (along the y-

axis) 
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%   TERMINATION TYPES 
%   Three port termination types may be used: 
%   1. Terminations for the standard impedance matrix 

%   (one element excited with all other open circuited)  
%   2. Terminations for the active impedance of an array  

%   (one element excited with all other match terminated)  

%   3. Terminations for the scan impedance of an array 
%   (all element are excited with proper phases)  

%   TerminationV = 0; TerminationY = 0;     %   for impedance matrix (simple 

antenna) 
%   TerminationV = 0; TerminationY = 1;     %   for active impedance matrix 

(antenna array) 

%   TerminationV = 1; TerminationY = 1;     %   for scan impedance matrix 

(antenna array) 

%   TerminationV may be complex - complex excitations weights)               
TerminationV = [1,1,1,1;... 

                1,0,1,1;... 

                1,1,1,1;... 

                1,1,1,1]; 

             

TerminationY = [1,1,1,1;... 

                1,1,1,1;... 
                1,1,1,1;... 

                1,1,1,1]; 

%   Scan angles in deg; (default values are zeros) 

xscan        = 0;      %  progressive phase shift along the x-axis, deg (for 

antenna array only) 
yscan        = 0;      %  progressive phase shift along the y-axis, deg (for 

antenna array only) 

 

constructor.m 

%   FDTD MATLAB antenna/array geometry constructor (preliminary version) 
%   Copyright SNM Spring 2011 

%   GEOMETRY CONSTRUCTION SCRIPT 
%   Domain/grid construction from geometry data 
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%%  Constructor 1 

  

x   = [-W0/2+XC0:D:W0/2+XC0];           %   x-grid 
y   = [-L0/2+YC0:D:L0/2+YC0];           %   y-grid 

z   = [-H0/2+ZC0:D:H0/2+ZC0];           %   z-grid 

  

Nx = length(x)-1;                       %   number of cells in the x-

direction  
Ny = length(y)-1;                       %   number of cells in the y-

direction 

Nz = length(z)-1;                       %   number of cells in the z-

direction 

  

%   Grid patches in the xy-plane 
XYX = zeros(5, Nx*Ny); 

XYY = zeros(5, Nx*Ny); 

for m = 1:Nx 
    xmin = x(m); 

    for n = 1:Ny 

        ymin = y(n); 
        index = n + (m-1)*Ny; 

        XYX(1:5, index) = [xmin xmin xmin+D xmin+D xmin]; 
        XYY(1:5, index) = [ymin ymin+D ymin+D ymin ymin]; 

    end 
end 

%   Grid patches in the xz-plane 
XZX = zeros(5, Nx*Nz); 
XZZ = zeros(5, Nx*Nz); 

for m = 1:Nx 

    xmin = x(m); 
    for n = 1:Nz 
        zmin = z(n); 

        index = n + (m-1)*Nz; 

        XZX(1:5, index) = [xmin xmin xmin+D xmin+D xmin]; 

        XZZ(1:5, index) = [zmin zmin+D zmin+D zmin zmin]; 
    end 
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end 
%   Grid patches in the yz-plane 
YZY = zeros(5, Ny*Nz); 

YZZ = zeros(5, Ny*Nz); 
for m = 1:Ny 

    ymin = y(m); 

    for n = 1:Nz 
        zmin = z(n); 

        index = n + (m-1)*Nz; 

        YZY(1:5, index) = [ymin ymin ymin+D ymin+D ymin]; 
        YZZ(1:5, index) = [zmin zmin+D zmin+D zmin zmin]; 
    end 

end 

  

%%  Constructor2 

%   Convert initial geometry data to arrays, snap to grid all geometry 

objects 

%   Convert thin bodies to faces, convert narrow faces to lines 

%   Read initial geometry/composition data 

index = 0; 

for m = 1:size(objectd, 2) 

    temp  = cell2mat(objectd(m)); 
    tempx = cell2mat(objectx(m)); 

    tempy = cell2mat(objecty(m)); 

    tempz = cell2mat(objectz(m)); 

    for n = 1:length(tempx)  

        index = index + 1; 
        Objects(index)  = index;    
        W(index)        = temp(1); 

        L(index)        = temp(2); 
        H(index)        = temp(3); 
        XC(index)       = temp(4) + tempx(n); 

        YC(index)       = temp(5) + tempy(n); 

        ZC(index)       = temp(6) + tempz(n);     

        Ismet(index)    = temp(7); 
        Isport(index)   = temp(8); 
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        Eps(index)      = temp(9); 
        SigE(index)     = temp(10); 
        Mu(index)       = temp(11); 

        SigM(index)     = temp(12); 
        Color(index, :) = [temp(13) temp(14) temp(15)]; 

    end 

end 

     

%   Internal variables 
Wtemp = W; 

Ltemp = L; 

Htemp = H; 
%   Convert all narrow faces/bricks to lines/faces (internally only) 
threshold = 1.5*D; 

for m = 1:length(Objects) 

    if ~Isport(m)&(min([W(m) L(m) H(m)])==0)     %  face found 
        if (W(m)<threshold)&(W(m)>0) 

            Wtemp(m) = 0; 

        end 

        if (L(m)<threshold)&(L(m)>0) 

            Ltemp(m) = 0; 

        end 
        if (H(m)<threshold)&(H(m)>0) 

            Htemp(m) = 0; 

        end 

    end 

end      
%   Introduce line indicator 
for m = 1:length(Objects) 

    Isline(m) = 0; 
    if (W(m)==0)&(L(m)==0) 
        Isline(m) = 3; 

    end 

    if (W(m)==0)&(H(m)==0) 

        Isline(m) = 2;         
    end 
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    if (L(m)==0)&(H(m)==0) 
        Isline(m) = 1;         
    end 

end 

  

%   Snap all objects (port lines, faces, bricks) to grid: 
%   Replace physical boundaries by indexes into nearest integer cell nodes 

for m = 1:length(Objects)  

    [dummy, N1X(m)] = min(abs(XC(m)-Wtemp(m)/2-x-eps)); %  left boundary 

index 

    [dummy, N2X(m)] = min(abs(XC(m)+Wtemp(m)/2-x-eps)); %  right boundary 

index 
    [dummy, N1Y(m)] = min(abs(YC(m)-Ltemp(m)/2-y-eps)); %  front boundary 

index 

    [dummy, N2Y(m)] = min(abs(YC(m)+Ltemp(m)/2-y-eps)); %  rear boundary 

index 
    [dummy, N1Z(m)] = min(abs(ZC(m)-Htemp(m)/2-z-eps)); %  bottom boundary 

index 

    [dummy, N2Z(m)] = min(abs(ZC(m)+Htemp(m)/2-z-eps)); %  top boundary index 

     

    XCtemp(m) = (x(N1X(m))+ x(N2X(m)))/2;           %  center alignment  

    YCtemp(m) = (y(N1Y(m))+ y(N2Y(m)))/2;           %  center alignment 

    ZCtemp(m) = (z(N1Z(m))+ z(N2Z(m)))/2;           %  center alignment 

end 

  

[dummy, planeNZ] = min(abs(planeZ-z-eps)); 

  

for m = 1:length(Objects)  
     if (N1X(m)<=1)|(N1X(m)>=Nx) error('Antenna/array structure is not within 

the ABC boundary (check FDTD domain)!'); end; 

     if (N2X(m)<=1)|(N2X(m)>=Nx) error('Antenna/array structure is not within 

the ABC boundary (check FDTD domain)!'); end; 
     if (N1Y(m)<=1)|(N1Y(m)>=Ny) error('Antenna/array structure is not within 

the ABC boundary (check FDTD domain)!'); end; 
     if (N2Y(m)<=1)|(N2Y(m)>=Ny) error('Antenna/array structure is not within 

the ABC boundary (check FDTD domain)!'); end; 
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     if (N1Z(m)<=1)|(N1Z(m)>=Nz) error('Antenna/array structure is not within 

the ABC boundary (check FDTD domain)!'); end; 
     if (N2Z(m)<=1)|(N2Z(m)>=Nz) error('Antenna/array structure is not within 

the ABC boundary (check FDTD domain)!'); end; 
end 

  

%%  Plotter1  

%   Visualize antenna/array geometry  

%   Display resulting objects and FDTD mesh alignment (XY, XZ, YZ planes) 
% %   Plot a 3D figure first 

scrsz = get(0,'ScreenSize'); 

figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);   

  

for m = 1:length(W)       

    Transp = 0.5;   
    wtemp = W(m); 

    ltemp = L(m); 

    htemp = H(m); 
    if ~Isport(m)&(min([W(m) L(m) H(m)])==0)     %  face found 

        Transp = 1; 

        if (wtemp==0) 

            wtemp = 0.001*max([ltemp htemp]); 

        end 

        if (ltemp==0) 
            ltemp = 0.001*max([wtemp htemp]); 

        end 

        if (htemp==0) 
            htemp = 0.001*max([ltemp wtemp]); 
        end 

    end 
    if ~Isline(m) 

        viewer(wtemp, ltemp, htemp, XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), Transp, 1, 'k'); 
    else 

        viewer(Wtemp(m), Ltemp(m), Htemp(m), XCtemp(m), YCtemp(m), ZCtemp(m), 

Color(m, :), Transp, 0.25, 'k'); 
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    end 
end 
if ~isempty(custom) 

    patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha', 

0.5); 

end 

viewer(W0, L0, H0, XC0, YC0, ZC0, [1 1 1], 0, 1, 'k'); 
axis('equal'); axis('tight');  view(-63, 40); 

xlabel('x, mm'); ylabel('y, mm'); zlabel('z, mm'); 

grid on; title('Project geometry - hit ENTER', 'FontWeight', 'bold'); 
pause; close gcf;  

  

%   Plot three grid projections next 
scrsz = get(0,'ScreenSize'); 

a=figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);   

POSF = get(a, 'Position'); 
sp1 = subplot(1,3,1); 

    patch(XYX, XYY, zeros(size(XYX)), 'w', 'EdgeColor', [0.5 0.5 0.5]); 

    for m = 1:length(W)   

        if Ismet(m)  

            viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), 

Color(m, :), 0.5, 1.5, 'k'); 
        elseif Isline(m) 

            viewer(Wtemp(m), Ltemp(m), Htemp(m), XCtemp(m), YCtemp(m), 

ZCtemp(m), Color(m, :), 0.5, 0.25, 'k'); 

        else 

            viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), 

Color(m, :), 0.5, 0.5, 'k');     
        end 

    end 
    if ~isempty(custom) 
        patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 

'FaceAlpha', 0.5); 

    end 

    viewer(W0, L0, H0, XC0, YC0, ZC0, [1 1 1], 0, 1, 'k'); 
    axis('equal'); axis('tight');  view(0, 90); 
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    title('XY-plane'); xlabel('x, mm'); ylabel('y, mm'); 
sp2 = subplot(1,3,2); 
    patch(XZX, zeros(size(XZX)), XZZ, 'w', 'EdgeColor', [0.5 0.5 0.5]); 

    for m = 1:length(W)   
        if Ismet(m)  

            viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), 

Color(m, :), 0.5, 1.5, 'k'); 
        elseif Isline(m) 

            viewer(Wtemp(m), Ltemp(m), Htemp(m), XCtemp(m), YCtemp(m), 

ZCtemp(m), Color(m, :), 0.5, 0.25, 'k'); 
        else 
            viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), 

Color(m, :), 0.5, 0.5, 'k');     

        end 

    end 
    if ~isempty(custom) 

        patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 

'FaceAlpha', 0.5); 

    end 

    viewer(W0, L0, H0, XC0, YC0, ZC0,    [1 1 1],  0, 1, 'k'); 

    if plane 
        viewer(W0, L0, 0,  XC0, YC0, planeZ, [1 0 1],  0, 1, 'g'); 

    end 

    axis('equal'); axis('tight');  view(0, 0); 
    title('XZ-plane'); xlabel('x, mm'); zlabel('z, mm'); 
    text(-0.5, 1.75, 'Three projections and FDTD grid-hit Enter', 

'FontWeight', 'bold', 'Units', 'normalized') 
sp3 = subplot(1,3,3); 

    patch(zeros(size(YZY)), YZY, YZZ, 'w', 'EdgeColor', [0.5 0.5 0.5]);  

    for m = 1:length(W)   
        if Ismet(m)  
            viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), 

Color(m, :), 0.5, 1.5, 'k'); 
        elseif Isline(m) 
            viewer(Wtemp(m), Ltemp(m), Htemp(m), XCtemp(m), YCtemp(m), 

ZCtemp(m), Color(m, :), 0.5, 0.25, 'k'); 
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        else 
            viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), 

Color(m, :), 0.5, 0.5, 'k');     

        end 
    end 

    if ~isempty(custom) 

        patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 

'FaceAlpha', 0.5); 

    end 

    viewer(W0, L0, H0, XC0, YC0, ZC0, [1 1 1],  0, 1, 'k'); 
    if plane 
        viewer(W0, L0, 0,  XC0, YC0, planeZ, [1 0 1],  0, 1, 'g'); 

    end 

    axis('equal'); axis('tight');  view(-90, 0); 

    title('YZ-plane'); ylabel('y, mm'); zlabel('z, mm'); 
pause; close gcf;  

  

viewer.m 

function [] = viewer(W, L, H, XC, YC, ZC, Color, Transparency, LineWidth, 

EdgeColor) 

%   FDTD MATLAB antenna/array geometry constructor (preliminary version) 
%   Copyright SNM Spring 2011 

%   PLOT OF A RECTANGULAR OBJECT(a plane, a brick, or a line) 

%   __________W__________ 

%   |         |y        | 

%   |L        |         | 

%   |         *(XC,YC,ZC)    
%   |         |         | 

%   |_________|_________|x 

%        

  

    if (W>0) & (L>0) 
        hr = patch([-W/2 -W/2 +W/2 +W/2]+XC, [-L/2 +L/2 +L/2 -L/2]+YC, [-H/2 

-H/2 -H/2 -H/2]+ZC, ... 
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            Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth, 

'EdgeColor', EdgeColor);   %   bottom 
        hr = patch([-W/2 -W/2 +W/2 +W/2]+XC, [-L/2 +L/2 +L/2 -L/2]+YC, [+H/2 

+H/2 +H/2 +H/2]+ZC, ... 
            Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth, 

'EdgeColor', EdgeColor);   %   top 

    end 
    if (L>0) & (H>0)     

        hr = patch([+W/2 +W/2 +W/2 +W/2]+XC, [-L/2 -L/2 +L/2 +L/2]+YC, [-H/2 

+H/2 +H/2 -H/2]+ZC, ... 
            Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth, 

'EdgeColor', EdgeColor);   %   right    

        hr = patch([-W/2 -W/2 -W/2 -W/2]+XC, [-L/2 -L/2 +L/2 +L/2]+YC, [-H/2 

+H/2 +H/2 -H/2]+ZC, ... 

            Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth, 

'EdgeColor', EdgeColor);   %   left 

    end 

    if (W>0) & (H>0) 

        hr = patch([-W/2 -W/2 +W/2 +W/2]+XC, [+L/2 +L/2 +L/2 +L/2]+YC, [-H/2 

+H/2 +H/2 -H/2]+ZC, ... 

            Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth, 

'EdgeColor', EdgeColor);   %   back    

        hr = patch([-W/2 -W/2 +W/2 +W/2]+XC, [-L/2 -L/2 -L/2 -L/2]+YC, [-H/2 

+H/2 +H/2 -H/2]+ZC, ... 
            Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth, 

'EdgeColor', EdgeColor);   %   front 

    end 
    if (L==0)&(H==0)    %  x-line 

        hrl = line([-W/2+XC W/2+XC], [YC YC], [ZC ZC], 'LineWidth', 3, 

'Color', Color);   
    end 
    if (W==0)&(H==0)    %  y-line 

        hrl = line([XC XC], [-L/2+YC L/2+YC], [ZC ZC], 'LineWidth', 3, 

'Color', Color);   
    end 

    if (W==0)&(L==0)    %  z-line 
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        hrl = line([XC XC], [YC YC], [-H/2+ZC H/2+ZC], 'LineWidth', 3, 

'Color', Color);   
    end 

    h = 1;  

  

end 

  

fdtd.m 

%   FDTD MATLAB antenna/array solver (preliminary version) 
%   Copyright SNM Spring 2011 

%   FDTD SCRIPT   

%%  External and internal inputs 

load input; 

f           = linspace(fstart, fstop, steps);   %  port frequency, Hz 
P           = 10;                               %  maximum number of cells 

along the port line (internal) 

factorMU    = 0.8; 
factorEPS   = 0.8; 

  

%%  Constructor 1 

%   Define FDTD parameters and network parameters  
eps0      = 8.85418782e-012;               %    dielectric permittivity of 

vacuum(~air) 
mu0       = 1.25663706e-006;               %    magnetic permeability of 

vacuum(~air) 
c0        = 1/sqrt(eps0*mu0);              %    speed of light in 

vacuum(~air) 

eta0      = sqrt(mu0/eps0);                %    vacuum impedance, Ohm 

  

%   Time stepping information 
d       = D/1000;                               %   Cell size in m  

dt      = 0.9/(c0*sqrt(1/d^2 + 1/d^2 +1/d^2));  %   Magic time step reduced 

by a factor of 0.9 
KT      = round(TO/dt); t = [0: dt: KT*dt];     %   Number of time steps 
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%   DFT(FFT) information 
NFFT        = 2^14;                                     %   number of sample 

frequencies 

Fs          = 1/dt;                                     %   sample frequency 
fFFT        = Fs/2*linspace(0, 1, NFFT/2+1);            %   all positive FFT 

frequencies 

findex      = zeros(1, length(f));                      %   index into DFT 

harmonics  

  

findex(1) = floor(f(1)*(dt*NFFT));                      %   either exact or 

to the left 

for n = 2:length(f) 
    findex(n) = ceil(f(n)*(dt*NFFT))+1;                 %   either exact or 

to the right 

end 

findex  = unique(findex); 
ftemp   = fFFT(findex);                                 %   vector of FFT 

frequencies for the band 

  

%   Define ports and port matrixes 

%   All port lines are defined exactly on the main grid 

m   = 0;     %    port number 

    for n = 1:length(Objects) 

        if Isport(n)>0   % port found    
            m = m + 1;  

            PortNumber(m)       = m;        %   port number 

            PortDir(m)          = Isport(n);%   port direction (along x, y, 

or z) 
            PortImpedance(m)    = R0;       %   port impedance, Ohm 

            RowNo(m)            = floor((m-1)/size(TerminationV, 2)) + 1; 
            ColNo(m)            = m - size(TerminationV, 2)*floor((m-

1)/size(TerminationV, 2)); 

            PortVoltage(m)      = TerminationV(RowNo(m), ColNo(m)); %   

generator voltage, V (may be complex) 

  

            indX = N1X(n):N2X(n);           %   integer grid 
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            indY = N1Y(n):N2Y(n);           %   integer grid 
            indZ = N1Z(n):N2Z(n);           %   Integer grid 
            if length(indX)>1 indX = indX(1:end-1); end;     %   port in x-

direction: indexes into Ex (on half grid) 
            if length(indY)>1 indY = indY(1:end-1); end;     %   port in y-

direction: indexes into Ey (on half grid) 

            if length(indZ)>1 indZ = indZ(1:end-1); end;     %   port in z-

direction: indexes into Ez (on half grid) 

  

            PortIndX(m, 1:P) = 0; 

            PortIndY(m, 1:P) = 0; 

            PortIndZ(m, 1:P) = 0; 
            PortIndX(m, 1:length(indX)) = indX;     %   indexes of nodes 

beloning to the port 

            PortIndY(m, 1:length(indY)) = indY;     %   indexes of nodes 

beloning to the port 
            PortIndZ(m, 1:length(indZ)) = indZ;     %   indexes of nodes 

beloning to the port 

  

            PortLength(m) = max([length(indX) length(indY) length(indZ)]);           

        end 

    end 

    M = length(PortNumber); %   # of ports 

  

    %%  Constructor2 

    %   Define metal-specific arrays (impose boundary conditions) for all 

objects 
    %   Define all metal edges 

    MetalX  = ones(Nx, Ny+1, Nz+1);         %   3D Metal indicator array for 

Ex (on half grid in x and integer grid in y,z) 
    MetalY  = ones(Nx+1, Ny, Nz+1);         %   3D Metal indicator array for 

Ey (on half grid in y and integer grid in x,z) 

    MetalZ  = ones(Nx+1, Ny+1, Nz);         %   3D Metal indicator array for 

Ez (on half grid in z and integer grid in x,y) 

  

    IndM     = [];   %   all nodes at exactly metal edges (mu) 
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    IndE     = [];   %   all cube centers around metal edges (eps) 

  

    for m = 1:length(Objects) 
        if Ismet(m) 

            indX = N1X(m):N2X(m);  % inside object and on the boundary 

            indY = N1Y(m):N2Y(m);  % inside object and on the boundary 
            indZ = N1Z(m):N2Z(m);  % inside object and on the boundary 

  

            %   Boundary conditions of zero tangential electric field 

component 

            if length(indX)>1 % non-trivial x-dimension 

                MetalX(indX(1:end-1), indY, indZ) = 0;   % zero tangential x-

field on the boundary  

            end 

            if length(indY)>1 % non-trivial y-dimension 
                MetalY(indX, indY(1:end-1), indZ) = 0;   % zero tangential y-

field on the boundary 

            end 
            if length(indZ)>1 % non-trivial z-dimension 

                MetalZ(indX, indY, indZ(1:end-1)) = 0;   % zero tangential z-

field on the boundary 

            end 

  

            %   Accumulate all nodes for the metal edges              
            if (length(indX)>1)&(length(indY)>1)        %   face in the xy-

plane 
               for mx = 1:length(indX)                  %   edge in the x-

direction 

                    row = [indX(mx)  indY(1)  indZ];                     

                    IndM = [IndM;  row];                      
                    row = [indX(mx)  indY(end) indZ]; 
                    IndM = [IndM;  row]; 

                    row1 = [indX(mx)  indY(1)      indZ]; 

                    row2 = [indX(mx)  indY(1)-1    indZ];  

                    row3 = [indX(mx)  indY(1)      indZ-1]; 
                    row4 = [indX(mx)  indY(1)-1    indZ-1]; 
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                    IndE = [IndE; row1; row2; row3; row4]; 
                    row1 = [indX(mx)  indY(end)    indZ]; 
                    row2 = [indX(mx)  indY(end)-1  indZ];  

                    row3 = [indX(mx)  indY(end)    indZ-1]; 
                    row4 = [indX(mx)  indY(end)-1  indZ-1]; 

                    IndE = [IndE; row1; row2; row3; row4];                     

               end 
               for my = 1:length(indY)                  %   edge in the y-

direction 

                    row = [indX(1)  indY(my)  indZ]; 
                    IndM = [IndM;  row]; 
                    row = [indX(end)  indY(my)  indZ]; 

                    IndM = [IndM;  row]; 

                    row1 = [indX(1)    indY(my)  indZ]; 

                    row2 = [indX(1)-1  indY(my)  indZ]; 
                    row3 = [indX(1)    indY(my)  indZ-1]; 

                    row4 = [indX(1)-1  indY(my)  indZ-1]; 

                    IndE = [IndE; row1; row2; row3; row4]; 

                    row1 = [indX(end)    indY(my)  indZ]; 

                    row2 = [indX(end)-1  indY(my)  indZ]; 

                    row3 = [indX(end)    indY(my)  indZ-1]; 
                    row4 = [indX(end)-1  indY(my)  indZ-1]; 

                    IndE = [IndE; row1; row2; row3; row4]; 

               end 
            end 
            if (length(indX)>1)&(length(indZ)>1)        %   face in the xz-

plane 
               for mx = 1:length(indX)                  %   edge in the x-

direction 

                    row = [indX(mx)  indY  indZ(1)]; 
                    IndM = [IndM;  row]; 
                    row = [indX(mx)  indY  indZ(end)]; 

                    IndM = [IndM;  row]; 
                    row1 = [indX(mx)  indY    indZ(1)]; 
                    row2 = [indX(mx)  indY-1  indZ(1)]; 

                    row3 = [indX(mx)  indY    indZ(1)-1]; 
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                    row4 = [indX(mx)  indY-1  indZ(1)-1]; 
                    IndE = [IndE; row1; row2; row3; row4]; 
                    row1 = [indX(mx)  indY    indZ(end)]; 

                    row2 = [indX(mx)  indY-1  indZ(end)]; 
                    row3 = [indX(mx)  indY    indZ(end)-1]; 

                    row4 = [indX(mx)  indY-1  indZ(end)-1]; 

                    IndE = [IndE; row1; row2; row3; row4];                     
               end 

               for mz = 1:length(indZ)                  %   edge in the z-

direction 
                    row = [indX(1)  indY  indZ(mz)]; 
                    IndM = [IndM;  row]; 

                    row = [indX(end)  indY  indZ(mz)]; 

                    IndM = [IndM;  row]; 

                    row1 = [indX(1)    indY  indZ(mz)]; 
                    row2 = [indX(1)-1  indY  indZ(mz)]; 

                    row3 = [indX(1)    indY-1  indZ(mz)]; 

                    row4 = [indX(1)-1  indY-1  indZ(mz)]; 

                    IndE = [IndE; row1; row2; row3; row4]; 

                    row1 = [indX(end)    indY  indZ(mz)]; 

                    row2 = [indX(end)-1  indY  indZ(mz)]; 
                    row3 = [indX(end)    indY-1  indZ(mz)]; 

                    row4 = [indX(end)-1  indY-1  indZ(mz)]; 

                    IndE = [IndE; row1; row2; row3; row4];                     
               end 
            end 

  

            if (length(indY)>1)&(length(indZ)>1)        %   face in the yz-

plane 

               for my = 1:length(indY)                  %   edge in the y-

direction 
                    row = [indX  indY(my)  indZ(1)]; 

                    IndM = [IndM;  row]; 

                    row = [indX  indY(my)  indZ(end)]; 

                    IndM = [IndM;  row]; 
                    row1 = [indX    indY(my)  indZ(1)]; 
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                    row2 = [indX-1  indY(my)  indZ(1)]; 
                    row3 = [indX    indY(my)  indZ(1)-1]; 
                    row4 = [indX-1  indY(my)  indZ(1)-1]; 

                    IndE = [IndE; row1; row2; row3; row4]; 
                    row1 = [indX    indY(my)  indZ(end)]; 

                    row2 = [indX-1  indY(my)  indZ(end)]; 

                    row3 = [indX    indY(my)  indZ(end)-1]; 
                    row4 = [indX-1  indY(my)  indZ(end)-1]; 

                    IndE = [IndE; row1; row2; row3; row4];                     

               end 
               for mz = 1:length(indZ)                  %   edge in the z-

direction 

                    row = [indX  indY(1)  indZ(mz)]; 

                    IndM = [IndM;  row]; 

                    row = [indX  indY(end)  indZ(mz)]; 
                    IndM = [IndM;  row]; 

                    row1 = [indX   indY(1)  indZ(mz)]; 

                    row2 = [indX-1 indY(1)  indZ(mz)]; 

                    row3 = [indX   indY(1)-1  indZ(mz)]; 

                    row4 = [indX-1 indY(1)-1  indZ(mz)]; 

                    IndE = [IndE; row1; row2; row3; row4];  
                    row1 = [indX   indY(end)  indZ(mz)]; 

                    row2 = [indX-1 indY(end)  indZ(mz)]; 

                    row3 = [indX   indY(end)-1  indZ(mz)]; 
                    row4 = [indX-1 indY(end)-1  indZ(mz)]; 
                    IndE = [IndE; row1; row2; row3; row4];                      

               end 
            end         

        end  

    end 

  

    %%  Constructor3 

    %   Fill out material-specific arrays 

    %   Fill out difference coefficients for FDTD difference equations 

    DIELC    = ones(Nx, Ny, Nz);            %   3D Permittivity array  on 

half grid (cube centers) 
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    MAGNC    = ones(Nx+1, Ny+1, Nz+1);      %   3D Permeability array on 

integer grid (cube nodes) 
    SIGMAEC  = zeros(Nx, Ny, Nz);           %   3D Electric conductivity 

array on half grid (cube centers) 
    SIGMAMC  = zeros(Nx+1, Ny+1, Nz+1);     %   3D Magnetic conductivity 

array on integer grid (cube nodes) 

  

    if ~isempty(custom) 

        eps_body = 50; 
        sig_body  = 0.5; 

        DIELC       = DIELC +       (eps_body-1)*DIELext; 

        SIGMAEC     = SIGMAEC +     sig_body*DIELext; 
    end 

     

    for m = 1:length(Objects) 
       if (~Ismet(m))&(~Isport(m)) 

            indX = N1X(m):N2X(m); 

            indY = N1Y(m):N2Y(m); 
            indZ = N1Z(m):N2Z(m); 

            DIELC(indX(1:end-1), indY(1:end-1), indZ(1:end-1))  = Eps(m);  

            MAGNC(indX(1:end-1), indY(1:end-1), indZ(1:end-1))  = Mu(m); 

            SIGMAEC(indX(1:end-1), indY(1:end-1), indZ(1:end-1))= SigE(m); 

            SIGMAMC(indX(1:end-1), indY(1:end-1), indZ(1:end-1))= SigM(m); 

       end 
    end 

  

    IndM = unique(IndM, 'rows'); 
    IndE = unique(IndE, 'rows'); 

  

   for m = 1:length(IndM) 

        i1 = IndM(m, 1); 

        i2 = IndM(m, 2); 
        i3 = IndM(m, 3); 

        MAGNC(i1, i2, i3) =  factorMU*MAGNC(i1, i2, i3); 
    end     

    for m = 1:length(IndE) 
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        i1 = IndE(m, 1); 
        i2 = IndE(m, 2); 
        i3 = IndE(m, 3); 

        DIELC(i1, i2, i3) =  factorEPS*DIELC(i1, i2, i3); 
    end    

  

    DIELC = DIELC*eps0; MAGNC = MAGNC*mu0; 

  

    %   Fill out dielectric field arrays for every brick with taking into 

    %   account boundary smoothing: epsilon/sigma for Ex, Ey, Ez on the 

    %   edge of the grid are averaged over four bricks sharing the same 

    %   edge  

    %   Arrays for Ex 

    Dtemp = eps0*ones(Nx, Ny+1, Nz+1); Stemp = zeros(Nx, Ny+1, Nz+1); 

    nx = 1:Nx; ny = 2:Ny; nz = 2:Nz;  
    Dtemp(:, ny, nz) = (DIELC(:, ny, nz)   + DIELC(:, ny-1, nz)   + DIELC(:, 

ny, nz-1)   + DIELC(:, ny-1, nz-1))/4;  

    Stemp(:, ny, nz) = (SIGMAEC(:, ny, nz) + SIGMAEC(:, ny-1, nz) + 

SIGMAEC(:, ny, nz-1) + SIGMAEC(:, ny-1, nz-1))/4;  

  

    Ex1     = (1 - dt*Stemp./(2*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 

    Ex2     = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 
    Ex3     = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 

    Ex1     = Ex1(nx, ny, nz); 
    Ex2     = Ex2(nx, ny, nz); 

    Ex3     = Ex3(nx, ny, nz); 

  

    %   Arrays for Ey  
    Dtemp = eps0*ones(Nx+1, Ny, Nz+1); 

    Stemp = zeros(Nx+1, Ny, Nz+1); 

    nx = 2:Nx; ny = 1:Ny; nz = 2:Nz;  

    Dtemp(nx, :, nz) = (DIELC(nx, :, nz)   + DIELC(nx-1, :, nz)   + DIELC(nx, 

:, nz-1)   + DIELC(nx-1, :, nz-1))/4;  

    Stemp(nx, :, nz) = (SIGMAEC(nx, :, nz) + SIGMAEC(nx-1, :, nz) + 

SIGMAEC(nx, :, nz-1) + SIGMAEC(nx-1, :, nz-1))/4;  
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    Ey1     = (1 - dt*Stemp./(2*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 
    Ey2     = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 
    Ey3     = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 

    Ey1     = Ey1(nx, ny, nz); 
    Ey2     = Ey2(nx, ny, nz); 

    Ey3     = Ey3(nx, ny, nz); 

  

    %   Arrays for Ez  

    Dtemp = eps0*ones(Nx+1, Ny+1, Nz); 
    Stemp = zeros(Nx+1, Ny+1, Nz); 

    nx = 2:Nx; ny = 2:Ny; nz = 1:Nz;  

    Dtemp(nx, ny, :) = (DIELC(nx, ny, :)   + DIELC(nx-1, ny, :)   + DIELC(nx, 

ny-1, :)   + DIELC(nx-1, ny-1, :))/4;  
    Stemp(nx, ny, :) = (SIGMAEC(nx, ny, :) + SIGMAEC(nx-1, ny, :) + 

SIGMAEC(nx, ny-1, :) + SIGMAEC(nx-1, ny-1, :))/4;  

  

    Ez1     = (1 - dt*Stemp./(2*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 

    Ez2     = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 
    Ez3     = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp)); 

    Ez1     = Ez1(nx, ny, nz); 

    Ez2     = Ez2(nx, ny, nz); 

    Ez3     = Ez3(nx, ny, nz); 

  

    %   Fill out magnetic field arrays for every brick with taking into 
    %   account boundary smoothing: mu/sigmam for Hx, Hy, Hz on the 

    %   face of the grid are averaged over four face nodes 
    %   Arrays for Hx 
    Htemp = mu0*ones(Nx+1, Ny, Nz); Stemp = zeros(Nx+1, Ny, Nz); 

    ny = 1:Ny; nz = 1:Nz;  

    Htemp(:, ny, nz) = (MAGNC(:, ny, nz)   + MAGNC(:, ny+1, nz)   + MAGNC(:, 

ny, nz+1)   + MAGNC(:, ny+1, nz+1))/4;  
    Stemp(:, ny, nz) = (SIGMAMC(:, ny, nz) + SIGMAMC(:, ny+1, nz) + 

SIGMAMC(:, ny, nz+1) + SIGMAMC(:, ny+1, nz+1))/4;  

  

    Hx1  = (1 - dt*Stemp./(2*Htemp))./(1 + dt*Stemp./(2*Htemp)); 

    Hx2  = (dt./(d*Htemp))./(1 + dt*Stemp./(2*Htemp)); 
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    %   Arrays for Hy 

    Htemp = mu0*ones(Nx, Ny+1, Nz); Stemp = zeros(Nx, Ny+1, Nz); 
    nx = 1:Nx; nz = 1:Nz;  

    Htemp(nx, :, nz) = (MAGNC(nx, :, nz)   + MAGNC(nx+1, :, nz)   + MAGNC(nx, 

:, nz+1)   + MAGNC(nx+1, :, nz+1))/4;  
    Stemp(nx, :, nz) = (SIGMAMC(nx, :, nz) + SIGMAMC(nx+1, :, nz) + 

SIGMAMC(nx, :, nz+1) + SIGMAMC(nx+1, :, nz+1))/4;   

  

    Hy1  = (1 - dt*Stemp./(2*Htemp))./(1 + dt*Stemp./(2*Htemp)); 

    Hy2  = (dt./(d*Htemp))./(1 + dt*Stemp./(2*Htemp)); 

  

    %   Arrays for Hz 

    Htemp = mu0*ones(Nx, Ny, Nz+1); Stemp = zeros(Nx, Ny, Nz+1); 
    nx = 1:Nx; ny = 1:Ny;  

    Htemp(nx, ny, :)  = (MAGNC(nx, ny, :)   + MAGNC(nx+1, ny, :)   + 

MAGNC(nx, ny+1, :)   + MAGNC(nx+1, ny+1, :))/4;  
    Stemp(nx, ny, :) = (SIGMAMC(nx, ny, :) + SIGMAMC(nx+1, ny, :) + 

SIGMAMC(nx, ny+1, :) + SIGMAMC(nx+1, ny+1, :))/4; 

  

    Hz1  = (1 - dt*Stemp./(2*Htemp))./(1 + dt*Stemp./(2*Htemp)); 
    Hz2  = (dt./(d*Htemp))./(1 + dt*Stemp./(2*Htemp)); 

  

    clear Dtemp Htemp Stemp; 

  

    %   Difference coefficients for ports (at load terminations) 
    %   Averaging follows the E-field scheme 
    for m = 1:M 

        if PortDir(m)==1 
            diel(m)  =  (DIELC( PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1)) 

+ ... 

                         DIELC( PortIndX(m,1), PortIndY(m,1)-1, 

PortIndZ(m,1)) + ... 

                         DIELC( PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1)-

1) + ... 
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                         DIELC( PortIndX(m,1), PortIndY(m,1)-1, 

PortIndZ(m,1)-1))/4;  
        end 

        if PortDir(m)==2 
            diel(m)  =  (DIELC( PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1)) 

+ ... 

                         DIELC( PortIndX(m,1)-1, PortIndY(m,1), 

PortIndZ(m,1)) + ... 

                         DIELC( PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1)-

1) + ... 
                         DIELC( PortIndX(m,1)-1, PortIndY(m,1), 

PortIndZ(m,1)-1))/4;  

        end 

        if PortDir(m)==3 

            diel(m)  =  (DIELC( PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1)) 

+ ... 

                         DIELC( PortIndX(m,1)-1, PortIndY(m,1), 

PortIndZ(m,1)) + ... 

                         DIELC( PortIndX(m,1), PortIndY(m,1)-1, 

PortIndZ(m,1)) + ... 

                         DIELC( PortIndX(m,1), PortIndY(m,1)-1, 

PortIndZ(m,1)))/4;  

        end         

        sigma(m)   = PortLength(m)*d/(d*d*PortImpedance(m));  
    end 

  

%%  Constructor4 
AntI    = zeros(M, M, length(t));          %   antenna currents for all ports  
AntV    = zeros(M, M, length(t));          %   antenna voltages for all ports  

Z       = zeros(length(findex), M, M);     %   port impedance matrix in 

frequency domain (at all frequencies) 
T       = linspace(0, 1/ftemp(1), 100);    %   Fourier integration for CW 

excitation  

  

%   Port voltages and currents in time/frequency domain 

VG      = zeros(M, length(t)); 



115 

 

if length(f) >1     %   Port voltages for pulse excitation 
    for m = 1:M 
        Xscan               = (ColNo(m)-1)*xscan/180*pi; 

        Yscan               = (RowNo(m)-1)*yscan/180*pi; 
        for n = 1:length(findex) 

            tdelay       = (Xscan + Yscan)/(2*pi*ftemp(n)); 

            VoltageAmpl  = abs(PortVoltage(m)); 
            VoltagePhase = angle(PortVoltage(m)); 

            VGdelay      = VoltageAmpl*sin(2*pi*ftemp(n)*t + VoltagePhase - 

Xscan - Yscan); 
            VGdelay(find(t<tdelay)) = 0; 
            taper       = exp(-4*((t-1/ftemp(1)-tdelay)*ftemp(1)).^2);     %   

amplitude taper based on the lowest band frequency; variations are possible 

            taper(find(t<tdelay)) = 0; 

            VG(m, :)   = VG(m, :) + VGdelay.*taper;     %   generator 

voltages for every port 

        end 

    end 

    VG = VG/length(findex);                             %   normalize 

else    %   port voltages for CW excitation 

    for m = 1:M 
        Xscan               = (ColNo(m)-1)*xscan/180*pi; 

        Yscan               = (RowNo(m)-1)*yscan/180*pi; 

        tdelay              = (Xscan + Yscan)/(2*pi*ftemp(1)); 
        VoltageAmpl         = abs(PortVoltage(m)); 
        VoltagePhase        = angle(PortVoltage(m)); 

        VGdelay             = VoltageAmpl*sin(2*pi*ftemp(1)*t + VoltagePhase 

+ Xscan + Yscan);        

        VGdelay(find(t<tdelay)) = 0;  

        taper       = 1- exp(-4*(t-tdelay).^2*f(1)^2); 
        taper(find(t<tdelay)) = 0; 
        VG(m, :)   = VGdelay.*taper;                           %   generator 

voltages for every port 
    end 
end 
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%%  FDTD-marching 

%   FDTD method - marching on in time 
close gcf; 

if fields  

    scrsz = get(0,'ScreenSize'); 
    a=figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);   

    POSF = get(a, 'Position'); 

    colormap(jet(128)); 
end 

  

% Allocate (clear) field matrices 

ExP = zeros(Nx  , Ny+1, Nz+1); 

EyP = zeros(Nx+1, Ny  , Nz+1); 

EzP = zeros(Nx+1, Ny+1, Nz  ); 
HxP = zeros(Nx+1, Ny  , Nz  ); 

HyP = zeros(Nx  , Ny+1, Nz  ); 

HzP = zeros(Nx  , Ny  , Nz+1); 
ExN = zeros(Nx  , Ny+1, Nz+1); 

EyN = zeros(Nx+1, Ny  , Nz+1); 

EzN = zeros(Nx+1, Ny+1, Nz  ); 

HxN = zeros(Nx+1, Ny  , Nz  ); 

HyN = zeros(Nx  , Ny+1, Nz  ); 

HzN = zeros(Nx  , Ny  , Nz+1); 

  

ExPP = zeros(Nx  , Ny+1, Nz+1); 
EyPP = zeros(Nx+1, Ny  , Nz+1); 
EzPP = zeros(Nx+1, Ny+1, Nz  ); 

  

%   Allocate (clear) boundary matrixes 

if length(ftemp)==1    

    KTrack = floor(1/dt/ftemp(1))+ 2;    %   one last period (a bit over)   

  

    Eyleft = zeros(KTrack,  Ny  , Nz+1); 

    Ezleft = zeros(KTrack,  Ny+1, Nz); 
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    Hyleft = zeros(KTrack,  Ny+1, Nz); 
    Hzleft = zeros(KTrack,  Ny  , Nz+1); 

  

    Eyright = zeros(KTrack,  Ny  , Nz+1); 

    Ezright = zeros(KTrack,  Ny+1, Nz); 

    Hyright = zeros(KTrack,  Ny+1, Nz); 
    Hzright = zeros(KTrack,  Ny  , Nz+1); 

  

    Exfront = zeros(KTrack,  Nx  , Nz+1); 

    Ezfront = zeros(KTrack,  Nx+1, Nz); 

    Hxfront = zeros(KTrack,  Nx+1, Nz); 

    Hzfront = zeros(KTrack,  Nx  , Nz+1); 

  

    Exback = zeros(KTrack,  Nx  , Nz+1); 
    Ezback = zeros(KTrack,  Nx+1, Nz); 

    Hxback = zeros(KTrack,  Nx+1, Nz); 

    Hzback = zeros(KTrack,  Nx  , Nz+1);     

  

    Exbottom = zeros(KTrack,  Nx  , Ny+1); 

    Eybottom = zeros(KTrack,  Nx+1, Ny); 

    Hxbottom = zeros(KTrack,  Nx+1, Ny); 
    Hybottom = zeros(KTrack,  Nx  , Ny+1); 

  

    Extop = zeros(KTrack,  Nx  , Ny+1); 
    Eytop = zeros(KTrack,  Nx+1, Ny); 

    Hxtop = zeros(KTrack,  Nx+1, Ny); 
    Hytop = zeros(KTrack,  Nx  , Ny+1); 

  

    ExtopP = zeros(KTrack,  Nx  , Ny+1); 
    EytopP = zeros(KTrack,  Nx+1, Ny); 
    HxtopP = zeros(KTrack,  Nx+1, Ny); 

    HytopP = zeros(KTrack,  Nx  , Ny+1); 

end 

  

%   Main FDTD loop - "bootstrapping" (initial conditions are zeros) 
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kt = 2; s = 1; 
E  = zeros(1, KT); 
tic 

while kt <= KT 
    if kt/KT>=0.05*s 

        s = s +1;  

        disp(strcat('FDTD is running - ', num2str(100*kt/KT, '%4.0f'), '% 

done')); 

    end 

    %%  E-field update (everywhere except on the boundary; (45% of time)) 
    ExN(:,2:Ny,2:Nz) = Ex1.*ExP(:,2:Ny,2:Nz) + Ex2.*(diff(HzP(:,:,2:Nz),1,2) 

- diff(HyP(:,2:Ny,:),1,3)); 

    EyN(2:Nx,:,2:Nz) = Ey1.*EyP(2:Nx,:,2:Nz) + Ey2.*(diff(HxP(2:Nx,:,:),1,3) 

- diff(HzP(:,:,2:Nz),1,1)); 

    EzN(2:Nx,2:Ny,:) = Ez1.*EzP(2:Nx,2:Ny,:) + Ez2.*(diff(HyP(:,2:Ny,:),1,1) 

- diff(HxP(2:Nx,:,:),1,2));        

  

    %%  FDTD_abc1: radiation BCs (Mur 1981, first order, homogeneous 

material)         

      abc_murfirst; 

    % abc_mursecond; 

  

    %%  FDTD-terminal 

    %   Port updates (through the E-field) 
    %   Terminal model (fills network arrays [mm, mm, kt]) 

    for m = 1:M 

        cond       = sigma(m)*TerminationY(RowNo(m), ColNo(m));  
        es1(m)     = (1 - dt*cond/(2*diel(m)))/(1 + dt*cond/(2*diel(m))); 
        es2(m)     = (dt/(d*diel(m)))/(1 + dt*cond/(2*diel(m))); 

        es3(m)     = (dt*cond/(d*diel(m)))/(1 + dt*cond/(2*diel(m))); 
        if PortDir(m) == 1  %   port along the x-axis 

            temp = nonzeros(PortIndX(m, :)); 

            CellsPerPort = length(temp); 
            for k = 1:CellsPerPort 

                k_e = PortIndX(m, k); 

                m_e = PortIndY(m, 1); 
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                p_e = PortIndZ(m, 1); 
                ExN(k_e, m_e, p_e) = es1(m) * ExP(k_e, m_e, p_e)+ ... 
                                     es2(m) *(HzN(k_e, m_e, p_e) - HzN(k_e, 

m_e-1, p_e) - HyN(k_e, m_e, p_e) + HyN(k_e, m_e, p_e-1))- ... 
                                     es3(m) *(VG(m, kt) + VG(m, kt-

1))/(2*CellsPerPort); 

            end 
            AntV(m, m, kt) =  -d*sum(ExN(PortIndX(m, 1:CellsPerPort), m_e, 

p_e)); 

        end 
        if PortDir(m) == 2  %   port along the y-axis    
            temp = nonzeros(PortIndY(m, :)); 

            CellsPerPort = length(temp); 

            for k = 1:CellsPerPort 

                k_e = PortIndX(m, 1); 
                m_e = PortIndY(m, k); 

                p_e = PortIndZ(m, 1); 

                EyN(k_e, m_e, p_e) = es1(m) * EyP(k_e, m_e, p_e)+ ... 

                                     es2(m) *(HxN(k_e, m_e, p_e) - HxN(k_e, 

m_e, p_e-1) - HzN(k_e, m_e, p_e) + HzN(k_e-1, m_e, p_e))- ... 

                                     es3(m) *(VG(m, kt) + VG(m, kt-

1))/(2*CellsPerPort); 

            end 

            AntV(m, m, kt) =  -d*sum(EyN(k_e, PortIndY(m, 1:CellsPerPort), 

p_e)); 
        end 

        if PortDir(m) == 3  %   port along the z-axis 
            temp = nonzeros(PortIndZ(m, :)); 

            CellsPerPort = length(temp); 

            for k = 1:CellsPerPort 
                k_e = PortIndX(m, 1); 
                m_e = PortIndY(m, 1); 

                p_e = PortIndZ(m, k); 
                EzN(k_e, m_e, p_e)  = es1(m) * EzP(k_e, m_e, p_e)+ ... 
                                      es2(m) *(HyN(k_e, m_e, p_e) - HyN(k_e-

1, m_e, p_e) - HxN(k_e, m_e, p_e) + HxN(k_e, m_e-1, p_e))- ... 
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                                      es3(m) *(VG(m, kt) + VG(m, kt-

1))/(2*CellsPerPort);                            
            end 

            AntV(m, m, kt) =  -d*sum(EzN(k_e, m_e, PortIndZ(m, 

1:CellsPerPort))); 

        end 

        AntI(m, m, kt) =  -(AntV(m, m, kt)- VG(m, 

kt))/PortImpedance(m)*TerminationY(RowNo(m), ColNo(m));   

        AntV(m, m, kt) =  (AntV(m, m, kt) + AntV(m, m, kt-1))/2; % at half 

grid in time - optional 
        AntI(m, m, kt) =  (AntI(m, m, kt) + AntI(m, m, kt-1))/2; % at half 

grid in time - optional 

    end 

  

    %%   Boundary conditions -metal 

            ExN = MetalX.*ExN;  
            EyN = MetalY.*EyN;  

            EzN = MetalZ.*EzN; 

  

    %%  H-field update (everywhere, 35% of time) 

            HxN =  Hx1.*HxP + Hx2.*(diff(EyN,1,3)- diff(EzN,1,2));    

            HyN =  Hy1.*HyP + Hy2.*(diff(EzN,1,1)- diff(ExN,1,3));       

            HzN =  Hz1.*HzP + Hz2.*(diff(ExN,1,2)- diff(EyN,1,1));    

  

    %%  Superabsorption 

    abc_super;  

  

    %% Impedance matrix 
    if length(findex)>1 

        %  FDTD-network - pulse 

        %   Phasor calculations for pulse excitation             

        for m = 1:M 
            if ((kt-2)*dt)> (1/f(1))                                    %   

at least one period detected  at the lowest frequency                      
                AntennaV    = squeeze(AntV(m, m, :));                   %   

voltage in time domain                 
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                if TerminationY(RowNo(m), ColNo(m))==0                  %   

standard impedance or active impedance 
                    mm = find(abs(PortVoltage)>0); 

                    AntennaI    = squeeze(AntI(mm, mm, :));             %   

current in time domain   

                else 

                    AntennaI    = squeeze(AntI(m, m, :));               %   

current in time domain 

                end 

                AntennaVFFT = fft(AntennaV, NFFT);                      %   

FFT of voltage 
                AntennaIFFT = fft(AntennaI, NFFT);                      %   

FFT of current 

                for n = 1:length(findex) 

                    Z(n, m, m) = 

AntennaVFFT(findex(n))/AntennaIFFT(findex(n)); 

                end 

            end   

        end 

    else 

        %  FDTD-network-CW 
        %   Phasor calculations (using Fourier coefficients for fundamental 

frequency) 

        %   mm - driven port number (from fdtd_marching) 
        %   m  - other port number (local) 
        for m = 1:M 

            if ((kt-2)*dt)> (1/ftemp)                                    %   

at least one period detected 

                index       = kt-round(1/dt/f(1))-1:1:kt;               %   

window covering one period 
                tempt       = t(index)-t(index(1)); 
                omega       = 2*pi*ftemp;                                   %   

radian frequency  
                %   Voltage phasor 
                AntennaV            = squeeze(AntV(m, m, index)); 

                AntennaV            = interp1(tempt, AntennaV, T,'linear'); 
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                func                = AntennaV.*exp(-j*omega*T);    %   

integrand for Fourier coefficients 
                VPhasor(m, m)       = (1/length(T))*(sum(func)-0.5*func(1)-

0.5*func(end)); 
                                                                  %   

trapezoidal 

                                                                  %   

integration (1/T*int(exp(-j*omega*t)*f)) 

                %   Current phasor 

                AntennaI            = squeeze(AntI(m, m, index)); 
                AntennaI            = interp1(tempt, AntennaI, T,'linear'); 
                func                = AntennaI.*exp(-j*omega*T);    %   

integrand for Fourier coefficients 

                IPhasor(m, m)       = (1/length(T))*(sum(func)-0.5*func(1)-

0.5*func(end)); 
                                                                  %   

trapezoidal  

                                                                  %   

integration  (1/T*int(exp(-j*omega*t)*f))               

            end    

        end 
        %   Once all currents/voltages have been found->Z 

        for m = 1:M 

            if ((kt-2)*dt)> (1/ftemp)                                  %   at 

least one period detected       
                if TerminationY(RowNo(m), ColNo(m))==0                 %   

standard impedance or active impedance 
                    mm = find(abs(PortVoltage)>0); 

                    Z(1, m, m) = VPhasor(m, m)/IPhasor(mm, mm); 

                else 
                    Z(1, m, m) = VPhasor(m, m)/IPhasor(m, m); 
                end 

            end                 
        end 
    end 
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    %%  Plotter1 
    %   Scale/plot fields and port voltages 
    if fields 

        %   Real-time figure 
        %   Subdivide the window (a plot for each port) 

        %   Fields in the xz-plane (or in any other plane) 

        if M<=9 
            sp1 = subplot(M, 2, [1:2:2*M-1]);              

            POSS1   = get(sp1, 'Position'); 

        end 
        if component == 1 % plot Ex 
           string0 = 'Electric field E_x at t='; 

           if rem(Ny, 2)>0     %   Ny is odd    

                output = 0.25*( ExN(:, (Ny+1)/2, 1:end-1)   + ... 

                                ExN(:, (Ny+1)/2+1, 1:end-1) + ... 
                                ExN(:, (Ny+1)/2, 2:end)     + ... 

                                ExN(:, (Ny+1)/2+1, 2:end) ); 

            else                %   Ny is even 

                output = 0.50*( ExN(:, Ny/2+1, 1:end-1)     + ...                        

                                ExN(:, Ny/2+1, 2:end) ); 

           end 
        end 

        if component == 2 % plot Ey 

           string0 = 'Electric field E_y at t='; 
           if rem(Ny, 2)>0     %   Ny is odd    
                output = 0.25*( EyN(:, (Ny+1)/2, 1:end-1)   + ... 

                                EyN(:, (Ny+1)/2+1, 1:end-1) + ... 
                                EyN(:, (Ny+1)/2, 2:end)     + ... 

                                EyN(:, (Ny+1)/2+1, 2:end) );                              

            else                %   Ny is even 
                output = 0.50*( EyN(:, Ny/2+1, 1:end-1)     + ...                        

                                EyN(:, Ny/2+1, 2:end) ); 

           end 
           output = 0.50*( output(1:end-1, :,:) + output(2:end, :,:));  
        end                 

        if component == 3 % plot Ez 
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           string0 = 'Electric field E_z at t='; 
           if rem(Ny, 2)>0     %   Ny is odd    
                output = 0.25*( EzN(1:end-1, (Ny+1)/2, :)   + ... 

                                EzN(1:end-1, (Ny+1)/2+1, :) + ... 
                                EzN(2:end, (Ny+1)/2, :)     + ... 

                                EzN(2:end, (Ny+1)/2+1, :) ); 

            else                %   Ny is even 
                output = 0.50*( EzN(1:end-1, Ny/2+1, :)     + ...                        

                                EzN(2:end, Ny/2+1, :) ); 

           end 
        end 
        if component == 4 % plot Hx 

           string0 = 'Magnetic field H_x at t='; 

           if rem(Ny, 2)>0     %   Ny is odd    

                output = 0.5* ( HxN(:, (Ny+1)/2,  :) + ... 
                                HxN(:, (Ny+1)/2+1,:)); 

            else                %   Ny is even 

                output = HxN(:, Ny/2+1, :);  

           end                 

           output = 0.50*( output(1:end-1, :,:) + output(2:end, :,:)); 

        end 
        if component == 5 % plot Hy 

           string0 = 'Magnetic field H_y at t='; 

           if rem(Ny, 2)>0     %   Ny is odd    
                output = 0.5* ( HyN(:, (Ny+1)/2,  :) + ... 
                                HyN(:, (Ny+1)/2+1,:)); 

            else                %   Ny is even 
                output = HyN(:, Ny/2+1, :);  

           end                 

        end 
        if component == 6 % plot Hz 
           string0 = 'Magnetic field H_z at t='; 

           if rem(Ny, 2)>0     %   Ny is odd    
                output = 0.5* ( HzN(:, (Ny+1)/2,  :) + ... 
                                HzN(:, (Ny+1)/2+1,:)); 

            else                %   Ny is even 
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                output = HzN(:, Ny/2+1, :);  
           end                 
           output = 0.50*( output(:, :,1:end-1) + output(:, :,2:end)); 

        end 
        output = squeeze(output); output = abs(output).^power.*sign(output);  

        output = interp2(output, 3); output(1) = +scale; output(end)=-scale;      

        imagesc( [x(1)+D/2 x(end)-D/2], [z(1)+D/2 z(end)-D/2], output'); %  

this function removes all old patches 

        for m = 1:length(W)   

            Wtemp = W; 
            if Ismet(m)  
                viewer(W(m), H(m), L(m),            XCtemp(m), ZCtemp(m), 

YCtemp(m), Color(m, :), 0.5, 1.5, 'k'); 

            elseif Isline(m) 

                viewer(W(m), H(m), L(m),            XCtemp(m), ZCtemp(m), 

YCtemp(m), Color(m, :), 0.5, 0.25, 'k'); 

            else 

                viewer(W(m), H(m), L(m),            XCtemp(m), ZCtemp(m), 

YCtemp(m), Color(m, :), 0.5, 0.5, 'k');     

            end 

        end 
        if ~isempty(custom) 

            patch(Xshape, Zshape, Yshape, 'w','EdgeColor',[0.75 0.75 0.75], 

'FaceAlpha', 0.1); 
        end 
        string      =   strcat(num2str(1e9*t(kt)), ' ns');   

        axis 'equal';    axis 'tight', set(gca,'YDir','normal');  
        xlabel('x, mm'); ylabel('z, mm'); 

        title(strcat(string0, string)); 

      

        %   Port voltages   
        for m = 1:M 

           if M<=9                 

               subplot(M, 2, 2*m);       

               time    = t(1:kt); 
               GeneratorV      = VG(m, 1:kt); 



126 

 

               AntennaV        = squeeze(AntV(m, m, 1:kt)); 
               string1          =   strcat('Port#', num2str(RowNo(m)), 

num2str(ColNo(m)));   

               string2 = num2str(mean(Z(:, m, m)), '%5.1f'); 
               plot(time*1e9, GeneratorV, 'b', time*1e9, AntennaV, 'r'); grid 

on; 

               xlabel('time, ns', 'FontSize', 7); ylabel('volts', 'FontSize', 

7);  set(gca,'FontSize',7); 

               title (strcat(string1, ': Vg-blue; Va-red, Z=', string2), 

'FontSize', 7);                  
            end 
         end 

         drawnow;                             

    end 

    %% Accumulate fields on the faces (half a step offsetted from the 

boundaries) over one last period 

    if length(ftemp)==1    

        if kt>KT-KTrack 

            index = kt -(KT-KTrack); 

  

            Eyleft(index, :, :)= (EyN(1, :, :)+EyN(2, :, :))/2; 

            Ezleft(index, :, :)= (EzN(1, :, :)+EzN(2, :, :))/2; 
            Hyleft(index, :, :)=  HyN(1, :, :); 

            Hzleft(index, :, :)=  HzN(1, :, :); 

  

            Eyright(index, :, :)= (EyN(end, :, :)+EyN(end-1, :, :))/2; 

            Ezright(index, :, :)= (EzN(end, :, :)+EzN(end-1, :, :))/2; 
            Hyright(index, :, :)=  HyN(end, :, :); 
            Hzright(index, :, :)=  HzN(end, :, :); 

  

            Exfront(index, :, :)= permute((ExN(:, 1, :)+ExN(:, 2, :))/2, [2 1 

3]); 

            Ezfront(index, :, :)= permute((EzN(:, 1, :)+EzN(:, 2, :))/2, [2 1 

3]); 

            Hxfront(index, :, :)= permute(HxN(:, 1, :), [2 1 3]); 
            Hzfront(index, :, :)= permute(HzN(:, 1, :), [2 1 3]); 
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            Exback(index, :, :)= permute((ExN(:, end, :)+ExN(:, end-1, :))/2, 

[2 1 3]); 
            Ezback(index, :, :)= permute((EzN(:, end, :)+EzN(:, end-1, :))/2, 

[2 1 3]); 

            Hxback(index, :, :)= permute(HxN(:, end, :), [2 1 3]); 
            Hzback(index, :, :)= permute(HzN(:, end, :), [2 1 3]); 

  

            Exbottom(index, :, :)= permute((ExN(:, :, 1)+ExN(:, :, 2))/2, [3 

1 2]); 

            Eybottom(index, :, :)= permute((EyN(:, :, 1)+EyN(:, :, 2))/2, [3 

1 2]); 

            Hxbottom(index, :, :)= permute(HxN(:, :, 1), [3 1 2]); 

            Hybottom(index, :, :)= permute(HyN(:, :, 1), [3 1 2]); 

  

            Extop(index, :, :)= permute((ExN(:, :, end)+ExN(:, :, end-1))/2, 

[3 1 2]); 
            Eytop(index, :, :)= permute((EyN(:, :, end)+EyN(:, :, end-1))/2, 

[3 1 2]); 

            Hxtop(index, :, :)= permute(HxN(:, :, end), [3 1 2]); 
            Hytop(index, :, :)= permute(HyN(:, :, end), [3 1 2]);  

  

            ExtopP(index, :, :)= permute((ExN(:, :, planeNZ)+ExN(:, :, 

planeNZ-1))/2, [3 1 2]); 
            EytopP(index, :, :)= permute((EyN(:, :, planeNZ)+EyN(:, :, 

planeNZ-1))/2, [3 1 2]); 
            HxtopP(index, :, :)= permute(HxN(:, :, planeNZ-1), [3 1 2]); 

            HytopP(index, :, :)= permute(HyN(:, :, planeNZ-1), [3 1 2]);  
        end 

    end 

    %%  Prepare for the next step         

    kt   = kt + 1; 
    ExPP = ExP; EyPP = EyP; EzPP = EzP; 

    ExP = ExN; EyP = EyN; EzP = EzN; HxP = HxN; HyP = HyN; HzP = HzN; 
end     %   end of fdtd marching loop  
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%%  Fields phasors on the boundary 
if length(ftemp)==1    
    tempt       = t(1:KTrack) - t(1);            

    omega       = 2*pi*ftemp;                    %   radian frequency  
    %   left/right     

    [Eyleft]    = fc(tempt, T, omega, Eyleft); 

    [Hyleft]    = fc(tempt, T, omega, Hyleft); 
    [Ezleft]    = fc(tempt, T, omega, Ezleft); 

    [Hzleft]    = fc(tempt, T, omega, Hzleft); 

    [Eyright]   = fc(tempt, T, omega, Eyright); 
    [Hyright]   = fc(tempt, T, omega, Hyright); 
    [Ezright]   = fc(tempt, T, omega, Ezright); 

    [Hzright]   = fc(tempt, T, omega, Hzright); 

    %   front/back 

    [Exfront]    = fc(tempt, T, omega, Exfront); 
    [Hxfront]    = fc(tempt, T, omega, Hxfront); 

    [Ezfront]    = fc(tempt, T, omega, Ezfront); 

    [Hzfront]    = fc(tempt, T, omega, Hzfront); 

    [Exback]    = fc(tempt, T, omega, Exback); 

    [Hxback]    = fc(tempt, T, omega, Hxback); 

    [Ezback]    = fc(tempt, T, omega, Ezback); 
    [Hzback]    = fc(tempt, T, omega, Hzback); 

    %   top/bottom 

    [Exbottom]    = fc(tempt, T, omega, Exbottom); 
    [Hxbottom]    = fc(tempt, T, omega, Hxbottom); 
    [Eybottom]    = fc(tempt, T, omega, Eybottom); 

    [Hybottom]    = fc(tempt, T, omega, Hybottom); 
    [Extop]    = fc(tempt, T, omega, Extop); 

    [Hxtop]    = fc(tempt, T, omega, Hxtop); 

    [Eytop]    = fc(tempt, T, omega, Eytop); 
    [Hytop]    = fc(tempt, T, omega, Hytop); 
    %   observation plane 

    [ExtopP]    = fc(tempt, T, omega, ExtopP); 
    [HxtopP]    = fc(tempt, T, omega, HxtopP); 
    [EytopP]    = fc(tempt, T, omega, EytopP); 

    [HytopP]    = fc(tempt, T, omega, HytopP); 
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end 

  

clear ExPP EyPP EzPP ExP EyP EzP HxP HyP HzP ExN EyN EzN HxN HyN HzN; 
clear Ex1 Ey1 Ez1 Ex2 Ey2 Ez2 Ex3 Ey3 Ez3 Hx1 Hy1 Hz1 Hx2 Hy2 Hz2 DIELC MAGNC 

SIGMAEC SIGMAMC MetalX MetalY MetalZ; 

clear AntennaIFFT AntennaVFFT fFFT 

  

toc 
save output; 

 

abc_murfirst.m 

%% Radiation BCs (Mur 1981, first order) 

%   Copyright Greg Noetscher/SNM Spring 2011 

%   Mur 1st order ABCs are implemented on each face of the domain 

  

m1      = (c0*dt - d)/(c0*dt + d); 

%   Left 

EyN(1, :,:)   =  EyP(2,:,:)  + m1*(EyN(2,:,:) - EyP(1,:,:));        %  left - 

Ey; 

EzN(1, :,:)   =  EzP(2,:,:)  + m1*(EzN(2,:,:) - EzP(1,:,:));        %  left - 

Ez; 
%   Right 

EyN(Nx+1, :,:)=  EyP(Nx,:,:) + m1*(EyN(Nx, :,:) - EyP(Nx+1,:,:));   %   right 

- Ey; 
EzN(Nx+1, :,:)=  EzP(Nx,:,:) + m1*(EzN(Nx, :,:) - EzP(Nx+1,:,:));   %   right 

- Ez; 

%   Front 
ExN(:, 1,:)   =  ExP(:,2,:)  + m1*(ExN(:,2,:) - ExP(:,1,:));        %   front 

- Ex; 

EzN(:, 1,:)   =  EzP(:,2,:)  + m1*(EzN(:,2,:) - EzP(:,1,:));        %   front 

- Ez; 

%   Rear 
ExN(:, Ny+1,:)=  ExP(:,Ny,:) + m1*(ExN(:,Ny,:) - ExP(:,Ny+1,:));    %   rear 

- Ex; 
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EzN(:, Ny+1,:)=  EzP(:,Ny,:) + m1*(EzN(:,Ny,:) - EzP(:,Ny+1,:));    %   rear 

- Ey; 
%   Bottom 

ExN(:, :,1)   =  ExP(:, :,2)  + m1*(ExN(:,:,2) - ExP(:,:,1));       %   

bottom - Ex; 

EyN(:, :,1)   =  EyP(:, :,2)  + m1*(EyN(:,:,2) - EyP(:,:,1));       %   

bottom - Ey; 
%   Top 

ExN(:, :, Nz+1)=  ExP(:,:,Nz) + m1*(ExN(:,:,Nz) - ExP(:,:,Nz+1)); %    top - 

Ex; 
EyN(:, :, Nz+1)=  EyP(:,:,Nz) + m1*(EyN(:,:,Nz) - EyP(:,:,Nz+1)); %    top - 

Ex;    

 

abc_super.m 

%%  FDTD-superabsorption 
%   Super ABCs for H (Mei 1992, for Mur's first order BCs only) 

%   Copyright SNM Spring 2011 

coeff1  = (c0*dt - d)/(c0*dt + d); 
rho     = c0*dt/d; RHO = 1 + rho; 

%   Left     

HyN(1,:,:) = (HyN(1,:,:) + rho*(HyP(2,:,:) + coeff1*(HyN(2,:,:) - 

HyP(1,:,:))))/RHO; %  left - Hy; 

HzN(1,:,:) = (HzN(1,:,:) + rho*(HzP(2,:,:) + coeff1*(HzN(2,:,:) - 

HzP(1,:,:))))/RHO; %  left - Hz;    

%  Right 

HyN(Nx,:,:) = (HyN(Nx,:,:) + rho*(HyP(Nx-1,:,:) + coeff1*(HyN(Nx-1,:,:) - 

HyP(Nx,:,:))))/RHO; %  right - Hy; 
HzN(Nx,:,:) = (HzN(Nx,:,:) + rho*(HzP(Nx-1,:,:) + coeff1*(HzN(Nx-1,:,:) - 

HzP(Nx,:,:))))/RHO; %  right - Hz;    

%   Front 
HxN(:,1,:) = (HxN(:,1,:) + rho*(HxP(:,2,:) + coeff1*(HxN(:,2,:) - 

HxP(:,1,:))))/RHO; %  front - Hx; 
HzN(:,1,:) = (HzN(:,1,:) + rho*(HzP(:,2,:) + coeff1*(HzN(:,2,:) - 

HzP(:,1,:))))/RHO; %  right - Hz;    
%   Rear 
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HxN(:,Ny,:) = (HxN(:,Ny,:) + rho*(HxP(:,Ny-1,:) + coeff1*(HxN(:,Ny-1,:) - 

HxP(:,Ny,:))))/RHO; %  rear - Hx; 
HzN(:,Ny,:) = (HzN(:,Ny,:) + rho*(HzP(:,Ny-1,:) + coeff1*(HzN(:,Ny-1,:) - 

HzP(:,Ny,:))))/RHO; %  rear - Hz;    
%   Bottom 

HxN(:,:,1) = (HxN(:,:,1) + rho*(HxP(:,:,2) + coeff1*(HxN(:,:,2) - 

HxP(:,:,1))))/RHO; %  bottom - Hx; 
HyN(:,:,1) = (HyN(:,:,1) + rho*(HyP(:,:,2) + coeff1*(HyN(:,:,2) - 

HyP(:,:,1))))/RHO; %  bottom - Hy;    

%   Top 
HxN(:,:,Nz) = (HxN(:,:,Nz) + rho*(HxP(:,:,Nz-1) + coeff1*(HxN(:,:,Nz-1) - 

HxP(:,:,Nz))))/RHO; %  top - Hx; 

HyN(:,:,Nz) = (HyN(:,:,Nz) + rho*(HyP(:,:,Nz-1) + coeff1*(HyN(:,:,Nz-1) - 

HyP(:,:,Nz))))/RHO; %  top - Hy; 

 

fc.m 

%   FDTD MATLAB antenna/array solver (preliminary version) 

%   Copyright SNM Spring 2011 

%   FOURIER EXPANSION OF A PERIODIC SIGNAL ON A BOUNDARY 
function [FIELD1] = FC(tempt, T, omega, FIELD) 

  

    FIELD      = interp1(tempt, FIELD, T,'linear'); 

    func       = FIELD.*repmat(exp(-j*omega*T'), [1, size(FIELD, 2), 

size(FIELD, 3)]);      %   integrand for Fourier coefficients 

    FIELD1    = (1/length(T))*squeeze(sum(func, 1)-0.5*func(1,:,:)-

0.5*func(end,:,:));      %   trapezoidal integration 

  

end 

 

plot_nearfield.m 

%   FDTD MATLAB antenna/array solver (preliminary version) 

%   Copyright SNM Spring 2011 
%   NEAR FIELD/POYNTING VECTOR PLOT   
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%%  Add common phase factor (to better resolve the phases without +/-pi 

jumps) 
factor = exp(j*pi);  

ExtopP = ExtopP*factor; 
EytopP = EytopP*factor; 

HxtopP = HxtopP*factor; 

HytopP = HytopP*factor; 

  

%%  Determine which component to plot (dominant component is selected) 
tempx = max(max(abs(ExtopP))); 

tempy = max(max(abs(EytopP))); 

CompE = zeros(Nx, Ny); 
CompH = zeros(Nx, Ny); 
if tempx>tempy 

    for m = 1:Nx 

        for n = 1:Ny 
            CompE(m ,n) = (ExtopP(m, n)+ExtopP(m, n+1))/2; 

        end 

    end 

else 

    for m = 1:Nx 

        for n = 1:Ny 
             CompE(m, n) = (EytopP(m, n)+EytopP(m+1, n))/2; 

        end 

    end 

end 

tempx = max(max(abs(HxtopP))); 
tempy = max(max(abs(HytopP))); 
if tempx>tempy 

    for m = 1:Nx 
        for n = 1:Ny 
            CompH(m ,n) = (HxtopP(m, n)+HxtopP(m+1, n))/2;             

        end 

    end 

else 
    for m = 1:Nx 
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        for n = 1:Ny 
             CompH(m, n) = (HytopP(m, n)+HytopP(m, n+1))/2; 
        end 

    end 
end 

if tempx>tempy %    Hx dominates  

    PoyntingP = -0.5*real(CompE.*conj(CompH)); 
    PoyntingQ = -0.5*imag(CompE.*conj(CompH)); 

else 

    PoyntingP = +0.5*real(CompE.*conj(CompH)); 
    PoyntingQ = +0.5*imag(CompE.*conj(CompH)); 
end 

  

%%  Plot magnitudes and phases of the near field on the top face (E and H) 

scrsz = get(0,'ScreenSize'); 

figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);   
%   E-field in the xy-plane 

subplot(2, 2, 1); 

output = abs(CompE)'; 

output = interp2(output, 3); 

imagesc( [x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output);  

Dx = (max(x)-min(x))/ColNo(end); 
Dy = (max(y)-min(y))/RowNo(end); 

for m = 1:length(Objects)     

    Transparency = 0.0;                     

    if Ismet(m) 

        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k');    
    else 

        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k'); 
    end 

end 

if ~isempty(custom) 

    patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha', 

0.5); 
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end 
xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;  
title(strcat('E-field magn.(V/m) at z=', num2str(planeZ), 'mm')); 

colorbar; 

  

%   H-field in the xy-plane 
subplot(2, 2, 2);    

output = abs(CompH)'; 

output = interp2(output, 3); 
imagesc( [x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output); 

for m = 1:length(Objects)     

    Transparency = 0.0;                     
    if Ismet(m) 
        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k');    

    else 
        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k'); 

    end 

end 

if ~isempty(custom) 

    patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha', 

0.5); 

end 

xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;  

title(strcat('H-field magn.(A/m) at z=', num2str(planeZ), 'mm')); 

colorbar; 

  

%   E-field phase in the xy-plane 

subplot(2, 2, 3);    
output = unwrap(angle(CompE)'); 

output = interp2(output, 3); 

imagesc( [x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output); 
for m = 1:length(Objects)     

    Transparency = 0.0;                     

    if Ismet(m) 
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        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k');    
    else 

        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k'); 

    end 

end 
if ~isempty(custom) 

    patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha', 

0.5); 
end 
xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;  

title(strcat('E-field phase (rad) at z=', num2str(planeZ), 'mm')); 

colorbar; 

  

%   H-field phase in the xy-plane 
subplot(2, 2, 4);    

output = unwrap(angle(CompH)'); 

output = interp2(output, 3); 

imagesc( [x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output); 

for m = 1:length(Objects)     

    Transparency = 0.0;                     
    if Ismet(m) 

        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k');    

    else 

        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k'); 
    end 

end 
if ~isempty(custom) 
    patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha', 

0.5); 

end 

xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;  
title(strcat('H-field phase (rad) at z=', num2str(planeZ), 'mm')); 
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colorbar; 

  

%%  Plot magnitudes of the near field on the top face (P and Q) 
scrsz = get(0,'ScreenSize'); 

figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);   

%   Poynting vector in the xy-plane (P) 
subplot(1, 2, 1);   

output = PoyntingP'; 

output = interp2(output, 3); 
imagesc( [x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output); 

for m = 1:length(Objects)     

    Transparency = 0.0;                     
    if Ismet(m) 
        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k');    

    else 
        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k'); 

    end 

end 

if ~isempty(custom) 

    patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha', 

0.5); 

end 

xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;  

title(strcat('P=re(ExH*)/2 [W] at z=', num2str(planeZ), 'mm')) 

colorbar; 

  

%   Poynting vector in the xy-plane (Q) 

subplot(1, 2, 2);    
output = PoyntingQ'; 

output = interp2(output, 3); 

imagesc( [x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output); 
for m = 1:length(Objects)     

    Transparency = 0.0;                     

    if Ismet(m) 
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        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k');    
    else 

        viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m, 

:), 0.0, 1, 'k'); 

    end 

end 
if ~isempty(custom) 

    patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha', 

0.5); 
end 
xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;  

title(strcat('Q=im(ExH*)/2 [W] at z=', num2str(planeZ), 'mm')) 

colorbar; 
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Appendix F: Backpropagation MATLAB Code 
clear all 

  

ftemp   = 4e9;              %% Hz 

c0      = 3e8;              %% m/s 
Domain  = 0.75;             %% unitless 
step    = 0.10;             %% unitless 

d       = 0.1*25.4e-3;            %% m 

deltaZ = -130e-3;         %% m 

  

x = (-8:0.5:8)*25.4e-3;   %% m 

y= (-10:0.5:10)*25.4e-3;  %% m 

  

CompEfalse = dlmread('11','\ ',2,0);                                      %% 

V/m 

CompEfalse = reshape(CompEfalse(:,6)+1i*CompEfalse(:,7),length(x),length(y));      

%% V/m 

  

CompEtrue = dlmread('perfect','\ ',2,0);                                      

%% V/m 
CompEtrue = reshape(CompEtrue(:,6)+1i*CompEtrue(:,7),length(x),length(y));      

%% V/m 

  

CompE=CompEtrue - CompEfalse; 

r1 = 0.0;                  %% Raised cosine window ratio for near field              

r2 = 0;                    %% Raised cosine window ratio for k-space 
r3 = 0.5; 

  

%%  Define the propagator and window the E-field - raised cosine (r = 0 - 

rect) 

  

Nx = size(CompE, 1); 
Ny = size(CompE, 2); 
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xw = tukeywin(Nx, r1);  
yw = tukeywin(Ny, r1);  
Window = xw*yw'; 

CompEW = CompE.*Window;  

  

%%   Introduce the observation plane and domain of integration     
[X1, Y1]    = meshgrid(x, y);     % grid 

  

%   spatial harmonics 

k   = 2*pi*ftemp/c0;  

kx  = [-Domain*k:step*k:Domain*k]; 

ky  = [-Domain*k:step*k:Domain*k]; 

dkx = kx(2) - kx(1); 

dky = ky(2) - ky(1); 

fx = zeros(length(kx), length(ky)); 
fy = zeros(length(kx), length(ky)); 

KX_ = kx/k; 

KY_ = ky/k; 

  

%%  Fourier spectrum 
for m = 1:length(kx) 

    for n = 1:length(ky) 
        argument = kx(m)*X1' + ky(n)*Y1';  

        exponent = exp(j*argument); 
        temp     = CompEW.*exponent;    % Ex 

        fxy(m, n) = d^2*(sum(sum(temp))-

0.5*(sum(temp(1,:))+sum(temp(end,:))+sum(temp(:,1))+sum(temp(:,end)))); 
    end  

end 

  

%%  Windowing the spectrum - raised cosine (r = 0 - rect) 

xw = tukeywin(length(kx), r2);  
yw = tukeywin(length(ky), r2);  

Window  = xw*yw'; 
fxyW    = fxy.*Window;  

  



140 

 

%%  Back propagation and inverse DFT 
KX          = zeros(length(kx), length(ky)); 
KY          = zeros(length(kx), length(ky)); 

KZ          = zeros(length(kx), length(ky)); 
for m = 1:length(kx) 

    for n = 1:length(ky) 

        KX(m, n) = kx(m); 
        KY(m, n) = ky(n); 

        temp = kx(m)^2 + ky(n)^2; 

        if temp<=k^2 
            KZ(m, n) = sqrt(k^2 - temp); 
        else 

            KZ(m, n) = -j*sqrt(temp - k^2); 

        end 

    end 
end 

  

for m = 1:length(x) 

    for n = 1:length(y) 

        xtemp = x(m); 

        ytemp = y(n); 

        ztemp = deltaZ;  
        argument = xtemp*KX + ytemp*KY + ztemp*KZ;  

        exponent = exp(-j*argument); 

        temp     = fxyW.*exponent;               

        CompEprop(m, n) = 1/(4*pi^2)*dkx^2*(sum(sum(temp))-

0.5*(sum(temp(1,:))+sum(temp(end,:))+sum(temp(:,1))+sum(temp(:,end)))); 
    end  
end 

  

xw = tukeywin(Nx, r3);  

yw = tukeywin(Ny, r3);  

Window       = xw*yw'; 
CompEprop    = CompEprop.*Window; 

  

%% PLOTS 
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scrsz = get(0,'ScreenSize'); 
figure('Position', [1 0.3*scrsz(4) 0.3*scrsz(3) 0.5*scrsz(4)]);  
subplot(1, 2, 1); 

imagesc(x,y,interp2((abs(CompEprop')),3)); 
xlim([-6*25.4e-3 6*25.4e-3]); ylim([-8*25.4e-3 8*25.4e-3]); 

patch([-148e-3 -148e-3 148e-3 148e-3]/2,[-148e-3 148e-3 148e-3 -148e-3]/2,[0 

0 0 0], 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha', 0.); 
patch_spacing = 37e-3; 

X_patchi = [-19.4e-3 -19.4e-3 19.4e-3 19.4e-3]/2-3*patch_spacing/2; 

Y_patchi = [-19.4e-3 19.4e-3 19.4e-3 -19.4e-3]/2+3*patch_spacing/2; 
for k = 0:3; 
    Y_patchi = [-19.4e-3 19.4e-3 19.4e-3 -19.4e-3]/2+3*patch_spacing/2; 

    for m = 0:3; 

        patch(X_patchi,Y_patchi,zeros(1,4), 'w','EdgeColor',[0.5 0.5 0.5], 

'FaceAlpha', 0.); 
        Y_patchi=Y_patchi-2*patch_spacing/2; 

    end 

    X_patchi=X_patchi+2*patch_spacing/2; 

end 

  

title('Amplitude'); xlabel('x, m'); ylabel('y, m'); 

colorbar; 
ylim([-200 200]); 

subplot(1, 2, 2); 

imagesc(x,y,interp2(flipud(180/pi*angle(CompEprop')),3)); 

patch([-148 -148 148 148],[-148 148 148 -148],[0 0 0 0], 'w','EdgeColor',[0.5 

0.5 0.5], 'FaceAlpha', 0.); 
patch_spacing = 37; 
X_patchi = [-19.4 -19.4 19.4 19.4]-3*patch_spacing; 

Y_patchi = [-19.4 19.4 19.4 -19.4]+3*patch_spacing; 
for k = 0:3; 
    Y_patchi = [-19.4 19.4 19.4 -19.4]+3*patch_spacing; 

    for m = 0:3; 

        patch(X_patchi,Y_patchi,zeros(1,4), 'w','EdgeColor',[0.5 0.5 0.5], 

'FaceAlpha', 0.); 
        Y_patchi=Y_patchi-2*patch_spacing; 
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    end 
    X_patchi=X_patchi+2*patch_spacing; 
end 

title('Phase'); xlabel('x, mm'); ylabel('y, m'); axis equal; axis tight; 
colorbar; 

ylim([-200 200]); 

 


