
Differential Near Field Holography for Small Antenna Arrays

by

Brian A. Janice

A Thesis
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

 in partial fulfillment of the requirements for the
Degree of Master of Science

in
Electrical and Computer Engineering

by

August 2011

APPROVED:

__

Dr. Jeffrey Herd (MIT Lincoln Laboratory)

__

Professor Reinhold Ludwig

__

Professor Sergey Makarov, Major Advisor

ii

Abstract

Near-field diagnosis of antenna arrays is often done using microwave holography; however, the

technique of near-field to near-field back-propagation quickly loses its accuracy with

measurements taken farther than one wavelength from the aperture. The loss of accuracy is

partially due to windowing, but may also be attributed to the decay of evanescent modes

responsible for the fine distribution of the fields close to the array. In an effort to achieve better

resolution, the difference between these two phase-synchronized near-field measurements is used

and propagated back. The performance of such a method is established for different conditions;

the extension of this technique to the calibration of small antenna arrays is also discussed.

The method is based on the idea of differential backpropagation using the

measured/simulated/analytical data in the near field. After completing the corresponding

literature search authors have found that the same idea was first proposed by P. L. Ransom and

R. Mittra in 1971, at that point with the Univ. of Illinois [1],[2]. This method is basically the

same, but it includes a few distinct features:

1. The near field of a (faulty) array under test is measured at  5.25.1  via a near field
antenna range.

2. The template (non-faulty) near field of an array is simulated numerically (full-wave
FDTD solver or FEM Ansoft/ANSYS HFSS solver) at the same distance – an alternative
is to use measurements for a non-faulty array.

3. Both fields are assumed (or made) to be coherent (synchronized in phase).
4. A difference between two fields is formed and is then propagated back to array surface

using the angular spectrum method (inverse Fourier propagator). The corresponding
result is the surface (aperture) error field, ZF . This approach is more precise than the
inverse Rayleigh formula used in [1] since the evanescent spectrum may be included into
consideration.

5. The error field magnitude, ZF , peaks at faulty elements (both amplitude and phase

excitation fault).
6. The method inherently includes all mutual coupling effects since both the template field

and the measured field are full-wave results.

iii

Acknowledgements

I would like to thank the Electrical & Computer Engineering and Mathematical Sciences

Departments of Worcester Polytechnic Institute for the knowledge they have endowed me during

my graduate and undergraduate studies; without their contributions, I would have not been able

to complete this work. In particular, Professor Sergey Makarov has provided me with more

knowledge, motivation, and confidence in my abilities than any student could ask for.

I would also like to thank Dr. Francesca Sciré-Scappuzzo for her belief in my abilities, support,

and insistence on my completion of a graduate degree.

To the staff of MIT Lincoln Laboratory, in particular Drs. Jeffrey Herd and Sean Duffy: I have

never been so pleased to learn so much in what felt like such little time. Your patience and

manner is grand. Also, if not for Stephen Targonski and Hans Kvinlaug allowing me to use their

lab and near-field range, this work would be incomplete.

To my committee: Professor Reinhold Ludwig, Dr. Jeffrey Herd, and Professor Sergey Makarov.

Thank you for your time and patience – your belief in my work is an honor.

This work is a tribute to the sacrifices my mother has made in recognition of my potential. She

has put me in the position I am in today.

iv

Abstract ... ii

Acknowledgements .. iii

Table of Figures .. vii

Table of Tables ... x

Chapter 1: Introduction ... 1

Fundamental Antenna Quantities .. 2

Antenna Pattern ... 2

Radiation Lobes and Beamwidth .. 4

Polarization ... 6

Antenna Arrays ... 9

Chapter 2: Algorithm Specification and Numerical Modeling ... 13

The FDTD Algorithm ... 13

Source Modeling ... 18

Boundary Conditions .. 19

Array Geometry Under Study and Near Field Structure .. 22

Chapter 3: Near to Near/Far Field Transformations ... 26

Near to Far Field Transformations .. 28

Fraunhofer Diffraction .. 28

Equivalent Magnetic Currents and MoM ... 29

Rayleigh Diffraction Integral .. 35

Near to Nearer Field Transformations .. 37

Chapter 4: Idea of Differential Backpropagation ... 43

Algorithm .. 46

Simulated Backpropagation Results ... 49

v

Extensions ... 51

Chapter 5: Measured Results .. 53

Antenna Measurements ... 53

Hologram Error Sources ... 55

Array Under Study .. 59

Numerical vs. experimental backpropagation ... 61

Hybrid (Numerical – Experimental) Backpropagation .. 71

Chapter 6: Potential Extension to Array Calibration & Conclusions ... 74

Conclusions ... 76

References ... 78

Appendix A: Backpropagation for all array elements. ... 81

Appendix B: Backpropagation for partially attenuated element. ... 82

Appendix C: Backpropagation for element partially out of phase elements 83

Appendix D: Backpropagation for all array elements with 0.32 spacing. 85

Appendix E: FDTD MATLAB Codes .. 86

main.m .. 86

array_4x4_cw.m .. 89

constructor.m .. 93

viewer.m.. 101

fdtd.m .. 103

abc_murfirst.m .. 129

abc_super.m .. 130

fc.m ... 131

plot_nearfield.m .. 131

vi

Appendix F: Backpropagation MATLAB Code ... 138

vii

Table of Figures

Figure 1 Antenna pattern representations of the same antenna array: Top left: the field pattern in

a linear scale represents the magnitude of the electric or magnetic field as a function of angular

space. Top right: the power pattern in a linear scale represents a plot of the square of the

magnitude of the electric or magnetic field as a function of the angular space. Bottom: the power

pattern in the dB scale represents the magnitude of the electric or magnetic field (in decibels) as

a function of angular space. .. 3

Figure 2 Half-Power Beamwidth (HPBW) (top) First Null Beamwidth (FNBW) (bottom)

Example for the same antenna array as shown in Fig. 1. The HPBW is approximately 26 while

the FNBW is approximately 61 ... 6

Figure 3 Examples of linear (left) and circular (right) polarization. The polarization is the curve

traced by the end point of the vector representing the instantaneous electric field. 7

Figure 4 Frequency dependent transmission coefficient (dB) of two dipoles (transmit/receive

network). The red curve pertains to the two dipoles with the same polarization plane (top left).

The light blue curve pertains to the network when one dipole is rotated 30 (top right). The violet

curve pertains to the network when one dipole is rotated 60 (bottom left). The dark blue curve

pertains to the network when one dipole is rotated 90 (bottom right). ... 9

Figure 5 uv-space plot of the array factor for a 10x10 array of 2/ spaced elements. Top left

shows a uniformly excited array; Top right shows an array with a progressive 60 phase shift on

one axis; Bottom shows an array with a progressive 60 phase shift on both axes. 11

Figure 6 Array factors of a 10x10 array of 2/ spaced elements with no progressive scan angle,

but an amplitude taper. The graph on the left shows a uniformly excited array with the -13dB

side lobes. The graph on the right shows an array with a Dolph-Tschebyscheff taper applied for -

26dB side lobes. .. 12

Figure 7 1D visual example of the FDTD “leap frog” algorithm ... 15

Figure 8 3D visual example of the FDTD “leap frog” algorithm ... 16

Figure 9 4x4 array geometry under study. .. 22

Figure 10 Geometry of Fraunhofer diffraction problem. The blue section is the aperture. 28

viii

Figure 11 Example of non-uniform amplitude pattern of individual elements in a 4x4 array of

patch antennas. The top left is a corner element, the top right is an inner element, and the bottom

is an edge element. .. 38

Figure 12 Three numerically computed spatial Fourier spectra (spectrum magnitudes) in k-space

for a 4×4 array of /2 spaced patch antennas over a larger ground plane/reflector. All magnitude

spectra are obtained for the co-polar electric field at the distance of /8 from the aperture plane.

The observation plane is approximately twice as large as the array itself . The first plot (top left)

is the spectrum for the non faulty array with all radiators driven by identical generators; the

second plot (top right) is the spectrum for a faulty array where the generator for radiator 22 is

shorted out; the third plot (bottom) is the difference spectrum between first two, which shall be

used for the identification of a faulty element. ... 45

Figure 13 Lattice representation of surface with points stored within a matrix. Each square

represents the differential area. ... 47

Figure 14 The differential area of matrix that should not be included in the surface area

calculation is shown in red. Overlapping red regions must be subtracted twice. 48

Figure 15 Example of how the placement of the transmitting antenna along the grid changes the

orientation relative to the test antenna. This directive property, along with the polarization, must

be taken into account when observing measurements. The red circles portray the different part of

the horn pattern seen by the array when the horn is at different locations. 54

Figure 16 Example of smoothed hologram due to windowing in k-space, an effect of a finite

measurement plane [8] .. 56

Figure 17 Hologram of 4x4 patch array modeled in MATLAB with different windows in k -

space. Top left pertains to kkk yx 55.022  with a 42.5% error; Top right pertains to

kkk yx 65.022  with a 42.0% error; Middle left pertains to kkk yx 75.022  with a 39.9% error;

Middle right pertains to kkk yx 85.022  with a 39.1% error (fake); Bottom pertains to

kkk yx 95.022  with a 405% error. ... 58

Figure 18 Top – A 4x4 array of patches with a corporate feed and posterior-fastened aluminum

ground plane; bottom – the same array in the near-field range. ... 60

ix

Figure 19 Simulated (Ansoft/ANSYS HFSS) current distribution on the ground plane when one

of the array elements is detuned. ... 61

Figure 20 Squared differential hologram of non-faulty measured and simulated (HFSS) data

with the simulated data multiplied by a variable phase. From top left, the phases are -40, -30, -

25, -20, -14 (optimal). It can be seen that the measured array may not have been completely

parallel with the plane of elevation. .. 72

Figure 21 Top - Array factor of uniformly excited 4x4 array with 2/ spacing (black) and array

with corner element attenuated by 3dB (red). Bottom - Array factor of uniformly excited 4x4

array with 2/ spacing (black) and array with inner element attenuated by 3dB (red). 75

x

Table of Tables

Table 1 Electric field distributions in different observation planes (/2 spacing). 23

Table 2 Backpropagation parameters corresponding to a minimum restoration error of the co-

polar E-field at the distance of /8 from the top of the antenna array in the near field. 49

Table 3 Backpropagated fields in three cases (/2 spacing). Element 22 is shorted out for a faulty

array. ... 50

Table 4 Backpropagation results (num. to num. and experiment to experiment) – last row. 63

Table 5 Hybrid backpropagation results (numerical to experiment) – last row. 73

1

Chapter 1: Introduction

The goal of this paper is to describe a simple yet powerful and promising method of locating

partially or fully malfunctioning elements in an antenna array. The method is based on the idea

of differential backpropagation using the measured/simulated/analytical data in the near field.

After completing the corresponding literature search authors have found that the same idea was

first proposed by P. L. Ransom and R. Mittra in 1971, at that point with the Univ. of Illinois

[1],[2]. This method is basically the same, but it includes a few distinct features:

7. The near field of a (faulty) array under test is measured at  5.25.1  via a near field
antenna range.

8. The template (non-faulty) near field of an array is simulated numerically (full-wave
FDTD solver or FEM Ansoft/ANSYS HFSS solver) at the same distance – an alternative
is to use measurements for a non-faulty array.

9. Both fields are assumed (or made) to be coherent (synchronized in phase).
10. A difference between two fields is formed and is then propagated back to array surface

using the angular spectrum method (inverse Fourier propagator). The corresponding
result is the surface (aperture) error field, zF . This approach is more precise than the
inverse Rayleigh formula used in [1] since the evanescent spectrum may be included into
consideration.

11. The error field magnitude, zF , peaks at faulty elements (both amplitude and phase

excitation fault).
12. The method inherently includes all mutual coupling effects since both the template field

and the measured field are full-wave results.

Under ideal conditions, the method is weakly limited by diffraction since it is based on the exact

solution to Maxwell’s equations. For example, if the measurement plane is chosen as the

corresponding aperture and the probe height is chosen as the focal length, the well-known

Rayleigh resolution criterion yields typical resolution values on the order of 4/ or better.

Microwave holography is a well known method for diagnosis and alignment of phased array

antennas [4]-[10]. The hologram, a backpropagation of the complex near field from a probe

measurement, is often used as a first-look at the structural quality of an aperture. In arrays, the

hologram may provide maps of aperture illumination, element weights, and geometric faults.

Element weights are a primary concern when attempting to align an array, but several

uncertainties are intrinsic to the hologram [4]-[8]. Some uncertainties, such as probe relative

2

pattern and cable phase stability, are impossible to compensate for as they are specified by the

manufacturer [5], [6]; however, other uncertainties such as probe positioning and aliasing [7], [8]

may be minimized using certain measurement precautions. One of these precautions is to place

the probe farther away from the array in order to avoid mutual coupling between elements of the

array and the probe. As the probe is placed farther from the array, we will find that the

hologram’s accuracy degrades and may sometimes become confusing to read. This degradation

is normally attributed to measurement plane truncation [8], noise, and probe inaccuracies [5], [7];

however, we will show that the evanescent modes of the array also play a role in the fine

distribution of the field close to the aperture plane.

Although the hologram of an aperture gives insight to potential flaws, requirements concerning

the alignment of newer arrays have become more rigid. This has called the use of holography

into question as a sufficiently accurate tool for diagnosis of such systems, which are today tested

with other longer and more costly procedures [11]-[13]. Although these testing procedures are

very accurate, they become impractical when projecting costs to production units, as the time

taken to diagnose alignment problems becomes the most costly portion of the project.

Fundamental Antenna Quantities

Antenna Pattern

The antenna pattern is defined as “a mathematical function or a graphical representation of the

radiation properties of the antenna as a function of space coordinates. In most cases, the radiation

pattern is determined in the far-field region and is represented as a function of the directional

coordinates. Radiation properties include power flux density, radiation intensity, field strength,

directivity, phase, or polarization.” [3] The trace of a received electric or magnetic field at a

constant radius is called the amplitude field pattern, while a graph of the spatial variation of the

power density along a constant radius is called an amplitude power pattern.

These field and power patterns are often normalized with respect to their maximum value,

yielding “normalized” field/power patterns. These plots are usually presented in a dB (decibels)

scale, that is, 10log10 of the quantity in question. This is done to accentuate any portions of the

3

antenna pattern that may have low values. Thus, for all antennas, we have three typical pattern

plots of the same antenna,

a. The field pattern in a linear scale represents the magnitude of the electric or magnetic
field as a function of angular space;

b. The power pattern in a linear scale represents a plot of the square of the magnitude of the
electric or magnetic field as a function of the angular space

c. The power pattern in the dB scale represents the magnitude of the electric or magnetic
field (in decibels) as a function of angular space.

Figure 1 Antenna pattern representations of the same antenna array: Top left: the field pattern in a linear
scale represents the magnitude of the electric or magnetic field as a function of angular space. Top right:

the power pattern in a linear scale represents a plot of the square of the magnitude of the electric or
magnetic field as a function of the angular space. Bottom: the power pattern in the dB scale represents the

magnitude of the electric or magnetic field (in decibels) as a function of angular space.

4

The performance of an antenna is often given in terms of its principal E - and H - plane patterns.

The E -plane is defined as “The plane containing the electric field vector and the direction of

maximum radiation;” while the H -plane is defined as “the plane containing the magnetic field

vector and the direction of maximum radiation.” [3] It is possible for an antenna to have just one

principle plane, or an infinite number. In a linearly polarized antenna, the E -plane may also be

thought of as the plane in which current flows in the antenna, while the H -plane is the plane

perpendicular to that.

Radiation Lobes and Beamwidth

When observing a radiation pattern, there may be one portion of the pattern which has a very

high value compared to those portions surrounding it. This portion of the pattern is known as a

“radiation lobe.” Antenna patterns may have multiple lobes; for example, Fig. 1 has five lobes.

A “major lobe,” also known as “main beam,” is defined as “the radiation lobe containing the

direction of maximum radiation.” [3] Fig.1 demonstrates an antenna whose main beam is

directed in the 0 direction. Although this is the case for Fig. 1, antennas may have a main

beam directed in any direction and may even have multiple beams pointed in several directions.

Any lobe except the major lobe is called a minor lobe; for example, Fig. 1 has four minor lobes

surrounding its main beam.

A side lobe is defined as “a radiation lobe in any other direction than the intended lobe.” [3] This

definition may be further specified as any lobe adjacent to the main beam located in the same

hemisphere in the direction of the main beam. Thus, it may be said that Fig. 1 has four side

lobes. A back lobe is a “radiation lobe whose axis makes an angle of approximately 180 degrees

with respect to the main beam of the antenna.” [3] This term usually applies to any minor lobe

located in the hemisphere pointed in the opposite of the main beam.

Minor lobes typically represent radiation of power in undesired locations; thus, many designers

seek to minimize them as part of their design. Minor lobes are normally characterized by taking

the ratio of the power density in the minor lobe to that of the main beam; usually this is desired

to be below -20dB. Fulfilling this requirement is very important in radar systems, as side lobes

may increase the number of false target detections.

5

Associated with the main beam is the beamwidth. This parameter is known to be the angular

separation between two identical points on the main beam. [3] There are several ways of

choosing these “identical points;” however, one of the most popular choices is that point which

the radiation intensity is half of its maximum value. This is known as Half-Power Beamwidth

(HPBW) and is defined by the IEEE as “In a plane containing the direction of the maximum of a

beam, the angle between the two directions in which the radiation intensity is one half value of

the beam.” Another popular choice for beamwidth is the angular separation at which the first null

on each side of the main beam appears, or First Null Beamwidth (FNBW). One common

approximation made by engineers is 2/FNBWHPBW  . This is an important quantity for

antennas, as it is also describes the resolution capabilities of the antenna to distinguish between

two adjacent radiating sources or radar targets.

6

Figure 2 Half-Power Beamwidth (HPBW) (top) First Null Beamwidth (FNBW) (bottom) Example for the
same antenna array as shown in Fig. 1. The HPBW is approximately 26 while the FNBW is

approximately 61

Although a narrow beamwidth would be desirable in many cases, there is a tradeoff with respect

to this parameter and that of the side lobe level, i.e. the more narrow the beamwidth, the higher

the side lobe level and vice versa.

Polarization

 “The polarization of the wave transmitted (radiated) by the antenna. Note: When the direction is

not stated, the polarization is taken to be the polarization in the direction of maximum gain.” In

reality, polarization varies with the direction from the center of the antenna such that parts of the

pattern may have different polarizations.

7

The polarization of a wave is defined as “that property of an electromagnetic wave describing the

time-varying direction and relative magnitude of the electric-field vector; specifically, the

figured traced as a function of time by the extremity of the vector at a fixed location in space,

and the sense in which is it traced, as observed along the direction of propagation;” [3] thus, the

polarization is the curve traced by the end point of the vector representing the instantaneous

electric field. This may be defined in terms of waves either radiated or received by an antenna.

The polarization of a wave radiated by an antenna in the far field is defined as “the polarization

of the (locally) plane wave which is used to represent the radiated wave at that point. At any

point in the far field of an antenna, the radiated wave can be represented by a plane wave whose

electric-field strength is the same as that of the wave and whose direction of propagation is in the

radial direction from the antenna. As the radial distance approaches infinity, the radius of

curvature of the radiated wave’s phase front also approaches infinity and thus in any specified

direction the wave appears locally as a plane wave.” [3]

Polarization falls into three categories: linear, circular, and elliptical. A wave is linearly polarized

if the vector that describes the electric field always falls in the same plane; a wave is circularly

polarized if the endpoint of the vector that describes the instantaneous electric field traces a

perfect circle; a wave is elliptically polarized if the endpoint of the vector that describes the

instantaneous electric field traces an ellipse.

Figure 3 Examples of linear (left) and circular (right) polarization. The polarization is the curve traced by
the end point of the vector representing the instantaneous electric field.

In order for an electric field vector to be linearly polarized, it must possess

8

a. Only one component, or
b. Two orthogonal linear components that are in time phase or 180 (or multiples of 180)

out of phase.

When an antenna is linearly polarized, the (principle) E -plane pattern is directly related to the

polarization axis.

In order for an electric field vector to be circularly polarized, it must possess all of the following

a. The field must have two orthogonal components
b. The two components must have the same magnitude
c. The two components must have a time phase difference of odd multiples of 90.

A field is elliptically polarized if it is neither linearly of circularly polarize; however, the

necessary and sufficient conditions to create an elliptically polarized electric field vector are

a. The field must have two orthogonal linear components,
b. The two components can be of the same or different magnitude.
c. If the two components are not of the same magnitude, the time phase difference between

the two components must not be 0 or multiples of 180. If the two components are of the
same magnitude, the time phase difference between the two components must not be odd
multiples of 90

The “sense of rotation” for a circular or elliptical polarized wave is always determined by

rotating the phase-leading component toward the phase-lagging component and observing the

field rotation as the wave is viewed as it travels away from the observer. If rotation is clockwise,

the wave is right-hand (CW) polarized, if rotation is counter clockwise, the wave is left-hand

(CCW) polarized [3].

Polarization is important because if an antenna were trying to transmit a linearly polarized signal

to an identical antenna rotated 90 in the plane orthogonal to the direction of propagation

(orthogonal polarization), it would receive no signal at all; thus, it is important to be aware of the

polarization of an antenna. Fig. 4 shows a network of two dipoles – one transmit, one receive.

One dipole is rotated to show how the polarization affects power transmission. The top left

image pertains to both dipoles with the same polarization; the top right image pertains to one

dipole being rotated by 30; the bottom left image pertains to one dipole being rotated by 60;

the bottom right image pertains to both dipoles having polarizations orthogonal to each other.

The S21 parameter, a network parameter directly related to power transmission between two

ports, is shown in a plot below for each configuration versus frequency. One can clearly see the

9

degradation of transmitted power as a function of rotation as both dipoles begin to have

orthogonal polarizations.

Figure 4 Frequency dependent transmission coefficient (dB) of two dipoles (transmit/receive network). The

red curve pertains to the two dipoles with the same polarization plane (top left). The light blue curve
pertains to the network when one dipole is rotated 30 (top right). The violet curve pertains to the network
when one dipole is rotated 60 (bottom left). The dark blue curve pertains to the network when one dipole

is rotated 90 (bottom right).

 Antenna Arrays

As mentioned in the previous section, narrow beamwidth of an antenna system is helpful for

improving resolution in radar systems. Unfortunately, this is not very easy to accomplish with a

single antenna element; however, if we construct an antenna made of several antennas, called an

antenna array, this turns out to be an easier task. Another way of narrowing the beam of an

0.60 0.70 0.80 0.90 1.00 1.10 1.20
Freq [GHz]

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

d
B
(S

(2
,1

))

Ansoft LLC HFSSDesign1Dipole Network S21 vs. Rotation ANSOFT

Curve Info

dB(S(2,1))
Setup1 : Sweep1
alpha='0deg'

dB(S(2,1))
Setup1 : Sweep1
alpha='30deg'

dB(S(2,1))
Setup1 : Sweep1
alpha='60deg'

dB(S(2,1))
Setup1 : Sweep1
alpha='90deg'

10

antenna is by using a parabolic reflector. This is a very directional type of antenna; however, it

must be scanned mechanically, and thus is not as quick as scanning electrically with a phased

array.

The total field of an antenna array is usually analytically determined as the vector sum of the

fields radiated by each individual element. This sum is not entirely accurate, as the elements in

an array will likely couple to one another, creating element-specific fields. [3] This

approximation may be avoided by modeling the fields produced each element in the array

separately while all other elements are match-terminated, called the “active element” pattern.

Adding the vector sum of all active element patterns in an array will yield the proper array

pattern. It is possible to shape the pattern of an antenna array using several design parameters [3],

some of which are:

a. Element spacing;
b. Element excitation amplitude;
c. Element excitation phase;
d. Element geometry (i.e. individual element pattern);
e. Array geometry (elements aligned in a linear fashion, rectangular grid, triangular grid,

spherical grid, etc.).

As mentioned, the radiation pattern of an antenna array may be broken into the sum of the

patterns for each individual element. Ignoring mutual coupling, let’s consider an array of

elements located on a grid. The phase of each element as represented in the far field is expressed

as the complex exponential ije rk where  



cos,sinsin,cossin
2

k is the wave vector,

and ir is the special location of the element in question. If we are to sum up all patterns

multiplied by the proper phase, we will end up with the following expression




 
N

i

j
iELEMENT

j
ELEMENT

j
ELEMENT

j
ELEMENTARRAY

ieIeIeIeI
1

321
321 rkrkrkrk EEEEE 

The summation in eq (1) is known as the array factor for an array with no individual phase shifts.

If we are to introduce two progressive phase shifts in the x and y directions on a rectangular

grid, the total array factor for a rectangular grid of antennas is

11

       



N

n
yyn

M

m
xxm kdnjIkdmjIAF

11

sinsin1expcossin1exp 

This expression is used to approximate the far field radiation pattern of a rectangular phased

antenna array, if the array consists of dipole elements, the total pattern would be AFDIPOLE E ,

etc. One tool that some engineers use to view the array factor is called “uv-space.” This is a

coordinate transform which shows the angular shift of an array beam as a translation on the

Cartesian plane. The transform is




sinsin

sincos




v

u

Figure 5 uv-space plot of the array factor for a 10x10 array of 2/ spaced elements. Top left shows a

uniformly excited array; Top right shows an array with a progressive 60 phase shift on one axis; Bottom
shows an array with a progressive 60 phase shift on both axes.

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

uv -1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

uv

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

uv

12

One way of minimizing side lobes with arrays with the tradeoff of transmitted power is by

applying a taper to the gain of elements; the Dolph-Tschebyscheff taper is a popular method of

producing very low side lobes with acceptable field strength loss. This is done by applying the

weights of the thn degree Tschebyscheff polynomial to each element in the array. If low side

lobes are only needed on one axis, the weights may be applied to only one axis; however, if the

low side lobes are desired for all axes, the weights must be applied to each other on both axes

and will result in less transmitted power.

Figure 6 Array factors of a 10x10 array of 2/ spaced elements with no progressive scan angle, but an
amplitude taper. The graph on the left shows a uniformly excited array with the -13dB side lobes. The

graph on the right shows an array with a Dolph-Tschebyscheff taper applied for -26dB side lobes.

-100 -50 0 50 100
-50

-40

-30

-20

-10

0

Angle (deg)

A
m

pl
itu

de
 (
dB

)

-100 -50 0 50 100
-50

-40

-30

-20

-10

0

Angle (deg)

A
m

pl
itu

de
 (
dB

)

13

Chapter 2: Algorithm Specification and Numerical Modeling

The FDTD Algorithm

In order to solve Maxwell’s equations, we will consider their differential form. The most natural

way to solve these equations is by finite differences.

Finite difference methods for solving differential equations utilize the Taylor expansion of a

function, f, in the following form:

)(
6

)(
2

)()()(
3

33

2

22

xf
dx

d
xf

dx

d
xf

dx

d
xfxf



Rearranging (X) in the form of a central difference, we have

)()
2

(
)()(2hO

h
xf

h

xfhxf




These equations are the foundation of the finite-difference time-domain (FDTD) method of

solving differential equations. When solving electromagnetic problems, finite-difference time-

domain method (FDTD) is used frequently due to its efficiency and adaptability to different

problems. FDTD is especially useful when dealing with problems defined on a Cartesian grid.

This condition is useful when dealing with rectangular patch antennas, as they rarely have

oblique boundaries. When considering the discretization of the problem, the spatial meshing may

be chosen at the programmer’s discretion; however, the time step must maintain the following

inequality

3c

h
t  (1)

In order for us to start solving Maxwell’s equations for the quantities E and H , we will express

Faraday’s Law and Ampere’s Law in their form as two coupled first order differential equations

H
D





t

14

E
B





t

which translates to the following system of six scalar equations (for a homogeneous domain)

y

H

x

H

t

E
ε

x

H

z

H

t

E
ε

z

H

y

H

t

E
ε

xyz

zxy

yzx




































 (2)

x

E

y

E

t

H

z

E

x

E

t

H

y

E

z

E

t

H

yxz

xzy

zyx










































 (3)

This leaves us with six equations to solve for six unknowns.

The finite difference approximation of a two dimensional problem is best expressed on a

“staggered grid” where E is expressed at integer multiples of the spatial step, while H is

expressed on half-integer multiples of the spatial step. In order to denote such a scheme, let the

subscript r denote an index that refers to the z-coordinate and the superscript n refer to the time

coordinate such that),(tnzrff n
r  .

Expressing the x component of eq. 2 and eq. 3 in finite differences yields

z

HH

t

EE

n

r
y

n

r
yn

rx
n

rx


















2

1

2

1
2

1

2

11
1



15

z

EE

t

HH n

rx
n

rx

n

r
y

n

r
y

















1

2

1

2

1
2

1

2

1
1



The analog for the other two dimensions (four more equations) may be found in the same way.

In order to better visualize this process in the one dimensional problem, consider Fig. 7

portraying the so-called “leap-frog algorithm.”

Figure 7 1D visual example of the FDTD “leap frog” algorithm

16

Extrapolating this to three dimensions yields a hexagonal lattice with half-integer step sizes

shown in Fig. 8

Figure 8 3D visual example of the FDTD “leap frog” algorithm

The equations which govern the 3D FDTD algorithm are as follows with the same notation as

above with),,,(,, tnzryqxpff n
rqp  . This is known as the Yee FDTD scheme.

z

HH

y

HH

t

EE
n

rqp
y

n

rqp
y

n

rqp
z

n

rqp
z

n

rqp
x

n

rqp
x


































2

1

2

1
,,

2

1
2

1

2

1
,,

2

1
2

1

,
2

1
,

2

1
2

1

,
2

1
,

2

1
,,

2

1
1

,,
2

1



x

HH

z

HH

t

EE
n

rqp
z

n

rqp
z

n

rqp
x

n

rqp
x

n

rqp
y

n

rqp
y


































2

1

,
2

1
,

2

1
2

1

,
2

1
,

2

1
2

1

2

1
,

2

1
,

2

1

2

1
,

2

1
,,

2

1
,

1

,
2

1
,



17

y

HH

x

HH

t

EE
n

rqp
z

n

rqp
z

n

rqp
y

n

rqp
y

n

rqp
z

n

rqp
z


































2

1

2

1
,

2

1
,

2

1

2

1
,

2

1
,

2

1

2

1
,,

2

1
2

1

2

1
,,

2

1

2

1
,,

1

2

1
,,


 (4)

y

EE

z

EE

t

HH n

rqp
z

n

rqp
z

n

rqp
y

n

rqp
y

n

rqp
x

n

rqp
x



















2

1
,,

2

1
,1,,,

2

1
1,,

2

1

2

1
,

2

1
,

2

1

2

1
,

2

1
,



z

EE

x

EE

t

HH n

rqp
x

n

rqp
x

n

rqp
z

n

rqp
z

n

rqp
y

n

rqp
y


















 ,,
2

1
1,1,

2

1

2

1
,,

2

1
,,1

2

1
,,

2

1
2

1

2

1
,,

2

1



x

EE

y

EE

t

HH n

rqp
y

n

rqp
y

n

rqp
x

n

rqp
x

n

rqp
z

n

rqp
z



















2

1
,1,

2

1
,1

2

1
,,,1,

2

1
,

2

1
,

2

1
2

1

,
2

1
,

2

1



The following code shows how Yee’s FDTD scheme is realized in MATLAB.

%---

Dt % Time step

Cx % 1/dx

Cy % 1/dy

Cz % 1/dz

mu0 % permeability

eps0 % permittivity

% Allocate field matrices

Ex = zeros(Nx , Ny+1, Nz+1);

Ey = zeros(Nx+1, Ny , Nz+1);

Ez = zeros(Nx+1, Ny+1, Nz);

Hx = zeros(Nx+1, Ny , Nz);

Hy = zeros(Nx , Ny+1, Nz);

Hz = zeros(Nx , Ny , Nz+1);

for n = 1:Nt;

 Hx = Hx + (Dt/mu0)*(diff(Ey,1,3)*Cz - diff(Ez,1,2)*Cy);

 Hy = Hy + (Dt/mu0)*(diff(Ey,1,1)*Cx - diff(Ez,1,3)*Cz);

 Hz = Hz + (Dt/mu0)*(diff(Ey,1,2)*Cy - diff(Ez,1,1)*Cx);

18

 Ex(:,2:Ny,2:Nz) = Ex(:,2:Ny,2:Nz) + (Dt /eps0) * ...

 (diff(Hz(:,:,2:Nz),1,2)*Cy - diff(Hy(:,2:Ny,:),1,3)*Cz);

 Ey(2:Nx,:,2:Nz) = Ey(2:Nx,:,2:Nz) + (Dt /eps0) * ...

 (diff(Hx(2:Nx,:,:),1,3)*Cy - diff(Hz(:,:,2:Nz),1,1)*Cx);

 Ez(2:Nx,2:Ny,:) = Ez(2:Nx,2:Ny,:) + (Dt /eps0) * ...

 (diff(Hy(:,2:Ny,:),1,1)*Cx - diff(Hx(2:Nx,:,:),1,2)*Cy);

end

%---

Source Modeling

Although we are able to simulate the time progression of the fields using Yee's FDTD scheme,

we still must provide "initial values" to the boundary value problem, otherwise known as the

source. Sources are classified into two basic categories: hard sources and soft sources. The hard

source, or "replaced" source 0 is equivalent to defining one of the components of the electric

field at a certain point, ee yx , , in the form

  tyxtE eezyx sin,,,,  , OFFTt 0

This type of source was used more in the past when exciting coaxial and waveguide structures;

however, in some systems, the hard source may cause reflections of waves propagating back to

the source location. It can be shown that the hard source is analogous to placing a voltage across

a lossless transmission line.

The soft current source, on the other hand, is expressed as a lumped current source added to

Maxwell's equations. Let's assume the case of an electric field source pointed in the z direction.

The electric field, as calculated by Ampere's law, can be written in the form

c
z

z
z

xyz J
t

E
E

y

H

x

H

t

E


















H




11

, z
c
z EJ 

Where c
zJ is the conduction current density directed in the z direction. Similarly, we can

introduce a lumped current density into Ampere's law as the source of EM radiation,

19

c
z

z J
t

E





H ,
yx

I
J

L
zc

z 
 (5)

where L
zI is the total lumped current. As mentioned, it is possible to write eq. (5) in terms of

finite differences with a known lumped current as an added source. The defined impressed

current density may exist in free space or it may be supported by a physical conductor - in either

case, the initial source is a voltage.

Boundary Conditions

When solving Maxwell’s equations, the boundary conditions must be satisfied numerically as

well. If the boundary condition of 0E  is chosen for the electric field, this indicates that the

edges of the domain are composed of perfect electric conductors (PEC) since the tangential

component of the electric field on a PEC is 0. In the case of an open boundary, a boundary which

absorbs all incident electromagnetic waves is desired; this condition is known as absorbing

boundary conditions (ABCs).

Let us observe the wave equation for an unknown quantity W .

0ΔW
W



 2

02

2

c
t

0
WWWW
























2

2

2

2

2

2
2
02

2

zyx
c

t

Rearranging this equation to emphasize dominant propagation along the x -axis, we have

0
WW

W 












































2

2

2

2
2
000 zy

c
x

c
tx

c
t

If we wished to nullify the propagation of W in the x direction, we could impose the

condition

0W 














x
c

t 0 (6)

20

Likewise, if we wished to nullify the propagation of W in the x direction, we would use the

opposite signs as in eq. (6). This relates to our problem in the sense that, on the boundary, if we

want the plane-wave portion of E to be nullified so there is no reflection, we could impose the

following boundary conditions known as Mur’s first order ABCs.

00 







x

E
c

t

E zz (7)

 n

mz
n

mz
n

mz
n

mz EE
xtc

xtc
EE ,1

1

,2
0

0
,2

1

,1 



 

00 







x

E
c

t

E zz (8)

 n

mNz
n

mNz
n

mNz
n

mNz xxxx
EE

xtc

xtc
EE ,1

1

,
0

0
,

1

,1 


 





This result may also be extrapolated to the other two spatial dimensions similar to that of the

FDTD equations’ permutation of x, y, and z. The 3D implementation in MATLAB is as follows

%---
m1 = (c0*dt - d)/(c0*dt + d);

% Left

EyN(1, :,:) = EyP(2,:,:) + m1*(EyN(2,:,:) - EyP(1,:,:)); % left - Ey;

EzN(1, :,:) = EzP(2,:,:) + m1*(EzN(2,:,:) - EzP(1,:,:)); % left - Ez;

% Right

EyN(Nx+1, :,:)= EyP(Nx,:,:) + m1*(EyN(Nx, :,:) - EyP(Nx+1,:,:)); % right - Ey;

EzN(Nx+1, :,:)= EzP(Nx,:,:) + m1*(EzN(Nx, :,:) - EzP(Nx+1,:,:)); % right - Ez;

% Front

ExN(:, 1,:) = ExP(:,2,:) + m1*(ExN(:,2,:) - ExP(:,1,:)); % front - Ex;

EzN(:, 1,:) = EzP(:,2,:) + m1*(EzN(:,2,:) - EzP(:,1,:)); % front - Ez;

% Rear

ExN(:, Ny+1,:)= ExP(:,Ny,:) + m1*(ExN(:,Ny,:) - ExP(:,Ny+1,:)); % rear - Ex;

EzN(:, Ny+1,:)= EzP(:,Ny,:) + m1*(EzN(:,Ny,:) - EzP(:,Ny+1,:)); % rear - Ey;

% Bottom

ExN(:, :,1) = ExP(:, :,2) + m1*(ExN(:,:,2) - ExP(:,:,1)); % bottom - Ex;

EyN(:, :,1) = EyP(:, :,2) + m1*(EyN(:,:,2) - EyP(:,:,1)); % bottom - Ey;

% Top

21

ExN(:, :, Nz+1)= ExP(:,:,Nz) + m1*(ExN(:,:,Nz) - ExP(:,:,Nz+1)); % top - Ex;

EyN(:, :, Nz+1)= EyP(:,:,Nz) + m1*(EyN(:,:,Nz) - EyP(:,:,Nz+1)); % top - Ex;

%---

Although these conditions on E are sufficient to solve our problem, we may also impose

conditions on H and near the boundary which, depending on the polarization observed, will

cancel some of the errors imposed on Mur’s ABCs. Consider the 2D TM case where we have

polarization in the z direction. The rightmost boundary conditions of the domain may be

improved by imposing the same conditions on yH as in eq. (7) and eq. (8) one half step from

the boundary




















2

1

,
2

1

,1
0

02

1

,

)2(
2

1

,

n

mNz

n

mNy

n

mNy

n

mNy xxxx
EH

xtc

xtc
HH

Next, the yH value is calculated near the boundary as it ordinarily would be, using the FDTD

scheme, to obtain
)1(

2

1

,

n

mNy
x

H

Then, the final updated yH value on the boundary may be calculated as














1

)2(
2

1

,

)1(
2

1

,2

1

,

n

mNy

n

mNyn

mNy
xx

x

HH
H





tc0

Mei’s super ABCs may be realized in 3D in the following way with MATLAB

%--
HyP(1, :) = HyP(2, :) + m1*(HyN(2, :) - HyP(1, :)); % x = 0;

HyP(Nx, :) = HyP(Nx-1,:) + m1*(HyN(Nx-1,:) - HyP(Nx, :)); % x = Lx;

HxP(:, 1) = HxP(:, 2) + m1*(HxN(:, 2) - HxP(:, 1)); % y = 0;

HxP(:, Ny) = HxP(:,Ny-1) + m1*(HxN(:, Ny-1)- HxP(:, Ny)); % y = Ly;

% H(1) and H

HyN(1, :) = (rho*HyP(1, :) + HyN(1, :))/(1+rho); % x = 0;

HyN(Nx, :) = (rho*HyP(Nx,:) + HyN(Nx,:))/(1+rho); % x = Lx;

22

HxN(:, 1) = (rho*HxP(:, 1) + HxN(:, 1))/(1+rho); % y = 0;

HxN(:, Ny) = (rho*HxP(:,Ny) + HxN(:,Ny))/(1+rho); % y = Ly;
%--

Simpler boundary conditions met when modeling microwave problems are interfaces between

regions of different permittivity and permeability. The staggered grid may simply have the

permittivity/permeability defined on the boundary, and the average value between the two values

at the point which both media occupy the same space. This type of boundary, along with PEC

may be simply defined as a lattice of constants since the FDTD equations are scalar multiples of

these values.

 Array Geometry Under Study and Near Field Structure

A 4x4 planar array of linearly-polarized square patch antennas spaced at /2 or less is chosen as

shown in Fig. 9. The ground plane (or the reflecting plane) extends to approximately twice the

array size. The large reflector size is important for accurate restoration results.

Figure 9 4x4 array geometry under study.

Six observation planes used for sampling transversal electric (and magnetic) fields are shown in

Table 1. They are spaced at distances

23


2,

2

3
,,

2
,

4
,

8
 (9)

from the physical top of the antenna array. The array is simulated using the second-order Yee

FDTD scheme and standard MATLAB environment [26]. All radiators are terminated into an

ideal sinusoidal generator voltage source in series with a 50Ω resistance.

Table 1 shows typical field distributions for the co-polar electric field at different distances from

the array i.e. in the different observation planes. All elements have source amplitudes of 1V and

equal phases.

Table 1 Electric field distributions in different observation planes (/2 spacing).

Plane

height

Plane location vs. FDTD

mesh

Co-polar electric field -

magnitude

Co-polar electric field-phase

/8

/4

24

/2



1.5

2.0

25

One can see that the fine structure of the fields close to individual patches is lost, as long as the

distance from the array surface exceeds 4/ . However, the backpropagator will still be able to

recover it, especially when the differential backpropagation is used.

26

Chapter 3: Near to Near/Far Field Transformations

The space surrounding an antenna is usually subdivided into three regions: the reactive near

field; the radiating near-field, or “Fresnel region”; and the far field, or “Fraunhofer region”. The

boundaries between these regions are not unique and do not signify dramatic changes in the

electromagnetic field occupying the regions; however, they provide a guideline of what portion

of the field dominates in that region.

The reactive near field region is defined as “that portion of the near-field region immediately

surrounding the antenna wherein the reactive field predominates.” For most antennas, this region

is described by the inequality



3

62.0
D

R 

where  is the wavelength and D is the largest dimension of the antenna.

The radiating near field region is defined as “that region of the field of an antenna between the

reactive near field region and the far field region wherein radiation fields predominate and

wherein the angular field distribution is dependent upon the distance from the antenna. If the

antenna has a maximum dimension that is not large compared to the wavelength, this region may

not exist. For an antenna focused at infinity, the radiating near field region is sometimes referred

to as the Fresnel region on the basis of analogy to optical terminology. If the antenna has a

maximum overall dimension which is very small compared to the wavelength, this field region

may not exist.” This region’s boundary follows the inequality



23 2
62.0

D
R

D


In this region, the fields’ angular distribution changes considerably with distance from the

antenna.

The far field region is defined as “that region of the field of an antenna where the angular friend

distribution is essentially independent of the distance from the antenna. If the antenna has a

27

maximum overall dimension D , the fat field region is commonly taken to exist at distances

greater than /2 2D from the antenna,  being the wavelength. The far field patterns of certain

antenna, such as multibeam reflector antennas, are sensitive to variations in phase over their

apertures. For these antennas, /2 2D may be inadequate. In physical media, if the antenna has a

maximum overall dimension, D , which is large compared to  / , the far field region can be

taken to begin approximately at a distance equal to  /2D from the antenna,  being the

propagation constant in the medium. Fir an antenna focused at infinity, the far field region is

sometimes referred to as the Fraunhofer region on the basis of analogy optical terminology.”

This region is defined by the inequality



22D
R 

In this domain, the fields’ angular distribution is independent of the radial distance from the

antenna. This is the field which governs the performance of an antenna, as its behavior is the

product of design.

When the amplitude pattern of an antenna is measured, usually one (linear polarization) or two

transverse (dual or circular polarization) components of E are taken. This may be done in the

near or far zone; however, the near field range is a more accurate and reliable testing means. At

this point, all measurements are assumed to be taken from the radiating near field.

An interesting problem to consider when taking measurements in the near field is how to

produce the far field pattern with these measurements – after all, the antenna is designed for its

far field characteristics. It turns out there are several methods of doing this when dealing in the

sense of an aperture, that is to say, antennas which only radiate in the hemisphere covering them.

This may be realized as a horn or as an antenna over a ground plane or parabolic reflector.

28

Near to Far Field Transformations

Fraunhofer Diffraction

One simple means of finding the far field pattern is by using the so called Fraunhofer diffraction

equation. This is a very simple method of finding the field pattern at infinity using the same

principles as studying diffraction of light through an aperture. Consider the diffraction of a wave

in the z direction from the origin through an aperture onto another plane shown in Fig. 10

Figure 10 Geometry of Fraunhofer diffraction problem. The blue section is the aperture.

The electric field, of the point source in this case, takes the form

 krtje
r

E
r  0ˆ)(xE

Incorporating every point source’s effect on the plane implies an integral across the aperture,

yielding the following expression

  dXe
XR

E
r

APERTURE

XRktj 


)sin(0

)sin(
ˆ)(


xE

 (10)

29

For XR  , we may make the approximation

RXR

1

)sin(

1


 

Eq. (10) becomes

  





  dXe

R

E
XA XRktj)sin(0)(ˆ xE

Where A(X) is the aperture distribution

Simply put, equation is derived by adjusting the phase of the E field according to the distance

from the source to the surface of interest (in this case, infinity), and adjusting for the radial

falloff of power of the field, thus

  





  dXeXAe

R

E jkXkRtj)sin(0)(ˆ xE

or

 0EE  C

where C is some scaling constant (i.e. the result is proportional to the Fourier transform). This

formula is mainly used as a quick way to find the normalized pattern, not absolute gain pattern.

Equivalent Magnetic Currents and MoM

For electrical engineers, the method of moments (MoM) may be the most reasonable means of

calculating field quantities, as it deals in terms of currents, voltages, and impedances. In 1992, T.

K. Sarkar and A. Taaghol [18]-[20] produced a simple yet effective method of calculating the far

zone fields of an aperture using the MoM formulation. In order to present this idea, the field

equivalence principle and inhomogeneous Helmholtz equations which follow from Maxwell’s

equations are used.

The following equations fully describe the behavior of electromagnetic fields in any medium.

30

Ampere's Law modified by displacement currents: JH
E





t
 (a)

Faraday's Law: E
H





t
 (b)

Gauss's Law for electric fields:   E (c)

Gauss's Law for magnetic fields: 0 H (d)

Continuity Equation: 0
t





J


 (e)

We would like to solve these equations for the driving sources, J and , which are easily

applied by engineers, and, as such, are taken as givens along with the permittivity and

permeability of the considered medium, and thus there are five equations with only two

unknowns, H and E , which we may solve for in terms of J and  .

The first step to take is to define the magnetic vector potential, A , by recognizing that the curl of

a vector field is divergence free in equation (d):

AHH   0 (11)

Now, if we use equation (b) and plug in equation (11) for H in a homogeneous medium

(constant ,), we get:

 
E

A




t



0
t













A

E

Since the curl of the divergence of a scalar field is zero, we may assume the solution takes the

form of:

t



A

E  (12)

31

Now we have both unknown fields expressed through two potentials which we have yet to solve

for in terms of their sources.

Taking the curl of both sides of (11), we get:

  AAAH 2

plugging this into (a), we get:

  JAA
E  

 2

t

substituting in (12) gives us:

  













t

 AJ
A

A
2

2
2

t

  













t

 AJ
A

A
2

2
2

t

Leading us to the Lorentz gauge (since  has yet to be defined):

AA 










 1
0

tt

So we are left with:

J
A

A  




2

2
2

t
 (13)

A




 1

t
 (14)

leaving us only to solve for A in order to solve for  .

In order to solve eq. (13), we will note that eq. (13) is indeed linear and may be expressed in

phasor form when considering a time harmonic field. This may be done by introducing time

32

dependence in the form of tje  , turning time derivatives into multiplication by j , allowing us

to then cancel the exponential terms and leave us with no time derivatives:

JAA  22 k , k , or
c

k


 for free space (15a)

A



j

1
 (15b)

AH  (15c)

AE  j (15d)

In order to avoid taking two gradients of the magnetic vector potential, a numerical

inconvenience, we can use the continuity equation, (e), in phasor form:

0 Jj (15e)

Taking the gradient of both sides of (14a) gives us:

     JAA  22 k

Using equations (14b) and (14e), we get:


  22 k (16)

Thus, we are left with the following equations:

JAA  22 k


  22 k

0 Jj (17)

33

AH 

1

AE  j

The solutions to eqs. (17) may be expressed implicitly in the form of volume integrals using

Green's functions, or the fundamental solution to the Helmholtz equation in an unbounded space.

This solution is valid for any frequency:

 
3

)(),()(
R

rrJrrgrA d

 
3

)(),(
1

)(
R

rrrrgr d




where

rr
rr

rr






4
),(

0jke
g

Similarly, if we come up with an imaginary source for the magnetic field, called the “magnetic

current”, M , and we assume that 0J  , we have 0 D . This implies that the electric field is

the curl of a different field potential. Thus, we may come up with an electric field potential, F ,

and define it in the following way.

FE 

1

 (18)

 
3

)(),()(
R

rrMrrgrF d (19)

The field equivalence principle is a more rigorous formulation of the Huygens principle and is

based on the uniqueness theorem that states “a field in a lossy region is uniquely specified by the

sources within the region plus the tangential components of the electric field over the boundary,

or the tangential components of the magnetic field over the boundary, or the former over the

34

boundary and the latter over the rest of the boundary.” [3] Using the equivalency principle, the

fields outside an imaginary closed surface are obtained by placing suitable electric- and

magnetic-current densities over the closed surface which satisfy the boundary conditions. The

current densities may be selected such that the fields within the surface are zero and are equal to

the radiation produced by the sources on the outside; thus the field equivalence principle may be

used to obtain the fields radiated outside a closed surface by sources enclosed within it.

For example, if the region S is chosen with fields 1E and 1H enclosed, we may select the

sources on the boundary to be 1ˆ EnM s and 1ˆ HnJ s . Due to the uniqueness of

Maxwell’s equations, if the electric field is known, we may find the magnetic field; this means

that we may choose the surface S to be made of a perfect electric conductor, leading us to the

conditions 1ˆ EnM s and 0ˆ 1  HnJ s .

Now if we take an antenna and enclose it behind an infinite plane and define the magnetic

current near an infinite conducting plane, using the method of images, we have the equivalent

magnetic current 1ˆ2 EnM  . If E is measured, we may use it to define M . Remembering that

the new field E is equal to zero on the boundary of S , we can use eqs. (18)and (19) to find that

 
S

sdg),()()(rrrMrE

where  denotes the gradient operator with respect to the primed variable, and the Green’s

function is defined as

rr
rr

rr






4
),(

0jke
g

This produces the two following sets of equations for both components of the electric field

 




S

yx sdM
z

g
E)(

),(
)(r

rr
r

35

 




S

xy sdM
z

g
E)(

),(
)(r

rr
r

These equations are valid for finding the electric field at any distance from an aperture.

Rayleigh Diffraction Integral

Another means of propagating a near-field result to the far field is done by another optics tool

known as the Rayleigh diffraction formula. Its meaning is as follows.

Assume the quantity V is a monochromatic (single frequency) scalar wave field in free space,

i.e.

tjezyxUV ),,(

We also assume V satisfies the homogeneous (propagating) wave equation throughout the

region of interest, and as such, satisfies the Helmholtz equation   022  Uk . Generally, we

may express such a quantity in the form of an angular spectrum of plane waves

   
2

exp),(),,(
R

dpdqmzqypxjkqpAzyxU

where

221 qpm  when 122  qp

122  qpjm when 122  qp

The former value of m corresponds to homogeneous (propagating) waves, while the latter

corresponds to evanescent waves which do not propagate, but decay exponentially to zero as the

distance from the source becomes larger. If we consider U at the points  000 ,, zyx and

 111 ,, zyx (Denoted by),(kkk yxU), we see that apart from scaling and proportionality

constants, U is the two dimensional Fourier transform of the function

 2,12,1 exp),(),(jkmzqpAqpB  , thus

36

     







2

exp),(exp
2

),(
2

R

llllllll dydxqypxjkyxUjkmz
k

qpA


,  1,0l

This gives us

      







22

exp),(exp
2

),(
2

RR

lllllllliiiiii mzqypxjkyxUdydxmzqypxjkdpdq
k

yxU


If we choose 0,1  lk , we are able to propagate the wave at point  000 ,, zyx to  111 ,, zyx .

Changing the order of integration, we may define a function

        









2

exp
2

),,(),(
2

R

dpdqzzmyyqxxpjk
k

zzyyxxKyyxxK

lilili

lililiilliliil



And therefore,

 
2

00010110000111),(),(),(
R

dydxyyxxKyxUyxU (20)

Using the plane wave expansion of a spherical wave and noting that 01 zz  ,

       









2

010101

0

0 exp

2

exp

R
rr

rr
dpdq

m

zzmyyqxxpjkjkjk



we may recognize that
 





















0

0

0
010110

exp

2

1
),(

rr

rrjk

z
yyxxK


, so

 
 




















2

00
0

0

0
000111

exp
),(

2

1
),(

R
rr

rr
dydx

jk

z
yxUyxU


 (21)

Eq. (21) is known as the Rayleigh diffraction formula, expressing eq. (20) in closed form.

37

Near to Nearer Field Transformations

All of the above equations are valid for transforming a near field result to the far field; however,

in practice, it is also useful to solve the inverse problem, i.e. transform far/near field results back

to the aperture plane (the face of the antenna). This back-transformed quantity is known as the

hologram of the antenna. The hologram is especially needed when dealing with antenna arrays

containing a multitude of elements, since all elements must be weighted properly. Unfortunately,

none of these methods are completely accurate in solving the inverse problem.

We will start with the obvious Fraunhofer diffraction. The approximation made during the

Fraunhofer diffraction derivation is that the measurement plane is located at infinity, this would

allow us to convert far field results into the hologram; however, these results will still not be

entirely accurate even excluding the proportionality constant mentioned above. To understand

why the Fraunhofer diffraction equation should mainly be used as an approximation, we must

first note the fundamental quantity being observed in the derivation: the Fraunhofer diffraction

formula is derived solely from the notion of homogeneous waves, that is, those waves which are

travelling in space. However, we may note that all antennas have a reactive near field in which

the dominant energy is composed of inhomogeneous, or evanescent, waves that decay

exponentially with distance from the aperture. Therefore, this quantity is ignored altogether and

not reconstructed in the hologram.

Similarly, Narishman and Kumar [24] developed a method of calculating the hologram of an

array by recognizing that the array pattern is nothing but the appropriately displaced sum of

individually weighted element electric field patterns, i.e.

   0

1

0
0 ;;,,

0
zyyxxEazyxE mm

M

m
xmx  





Taking the Fourier transform of both sides of the equation allows for the modeling of

displacement as a phase shift in the frequency domain

           yxJvuEevuEavuE xx
yvxuj

M

m
xmx

mm  



 ,,,,

00

1

0

38

As such, the hologram in this case is the inverse Fourier transform of the array far field pattern

divided by the element pattern. This method fails to take into account the fact that mutual

coupling creates a non-uniformity of element patterns in the array. This is the same issue that the

array factor runs into when computing the array radiation pattern. Fig. 11 shows an example of

how the antenna patterns of individual array elements can be different. A 4x4 array was

simulated in Ansys HFSS. The top left image shows the active element pattern of one of the

corner elements; the top right image shows the active element pattern of one of the inner

elements; the bottom image shows the active element pattern of one of the edge elements. Note

that these patterns are not the same shape as one another.

Figure 11 Example of non-uniform amplitude pattern of individual elements in a 4x4 array of patch

antennas. The top left is a corner element, the top right is an inner element, and the bottom is an edge
element.

39

This method also does not show the electric field distribution on the ground plane, but only the

weight of each element, which may be desirable in some applications.

Since inverse Fraunhofer diffraction is not the ideal choice for calculating the hologram, we will

move on to Sarkar and Taaghol’s equivalent magnetic current approach. It can be seen that this

method is inherently the same as the Rayleigh diffraction formula, and so we can observe the

two together. Using this method may be shown to be valid for backpropagating near field results

to the aperture plane; however, in 1968, Shewell and Wolf [14] showed that the inverse

transform provided by this method is invalid for evanescent modes, and therefore we may say

that it has a similar effect as the inverse Fraunhofer diffraction on results. Namely, Shewell and

Wolf showed that the inverse Rayleigh diffraction formula is expressed as

 

         





































1

001
2

1
2

2

0

0

0
101001

00101001000111

1sinh
exp

,

,),(
2

1
),(

2






dkJzzk
kjk

z
yyxxK

dydxyyxxKyxUyxU

rr

rr

R

.

As such, this equation may be used to solve the inverse diffraction problem and obtain the

hologram including the evanescent modes; however, the following means is an equivalent way of

doing so, and is also derived as an exact solution to Maxwell’s equations.

In the source free region, beyond the aperture plane, the field E of a monochromatic wave

radiated by the aperture may be can be written as the superposition of plane waves in the form of

a Fourier transform

 
2

),(
4

1
),,(

2
R

rkfE yx
j

yx dkdkekkzyx


Where xk and yk are the spectral frequencies which extend over the entire frequency spectrum

 yx kk , , and),(yx kkf is the vector amplitude of each plane wave. Since

zyx zyx aaar ˆˆˆ  and zzyyxx kkk aaak ˆˆˆ  ,

FT can be written as

40

    
2

),(
4

1
),,(

2
R

fE yx
ykxkjzjk

yx dkdkeekkzyx yxz



But we can regard the portion in brackets as the transform of E , thus

    
2

,,
~

4

1
),,(

2
R

EE yx
ykxkj

yx dkdkezkkzyx yx



      
2

,,
4

1
,,

~
2

R

EE dxdyezyxzkk ykxkj
yx

yx



where

    zjk
yxyx

zekkzkk  ,,,
~

fE

This means we may find the field at any point z , provided we know its transform; however, in

order to have the transform, we must know the electric field. We may end this dilemma by

noticing that if we know the electric field at point zero

   yxyx kkkk ,0,,
~

fE  ,

We may use this to calculate the field at any point, which is exactly what we desire, but we must

first do a bit more math. In general,

       yxzzyxyyyxxxyx kkfkkfkkfkk ,ˆ,ˆ,ˆ, aaaf  ,

which can be expressed as

     yxzzyxtyx kkfkkkk ,ˆ,, aff  ,

     yxyyyxxxyx kkfkkfkk ,ˆ,ˆ, aaf  .

In order for E to satisfy the homogeneous wave equation in the source free region, the quantity

zk must be related to xk and yk in the following way

41

 2222
yxz kkkk  .

or

 222
yxz kkkk  when 222

yx kkk 

  222 kkkjk yxz  when 222
yx kkk 

where the two cases for k contribute to both homogeneous (former) and inhomogeneous (latter)

waves.

Since E must obey Maxwell’s equations in the source free region, we have

    0,
4

1
,,

2
2













  

R

rkfE yx
j

yx dkdkekkzyx


Using the chain rule, we have

      0,
4

1
,,

2
2

  

R

rkfE yx
j

yx dkdkekkzyx


Since   0f  yx kk , , as E is the superposition of f

This equation may be satisfied provided that

  0  rkrk kff jj eje

or

  0ˆ  kafkf zzt f

or

 
z

yyxx

z

t
z k

kfkf

k
f







kf

42

This means we can also find zf provided we know the tangential components of E on some

plane at distance z from the aperture.

This gives us our formulas to find the hologram given  0,, zyxEx and  0,, zyxE y .

       

APERTURE

ykxkj
xyxx ydxdezyxEkkf yx0,,,

       

APERTURE

ykxkj
yyxy ydxdezyxEkkf yx0,,,

   

 
   

 








 



222

222

222

222 ,,
~

,,
~

4

1

),,(

2
kkkjk

kkk yx
ykxkj

yx
kkkk

kkk yx
ykxkj

yx

yxz

yx
yx

yxz

yx
yx dkdkezkkdkdkezkk

zyx

EE

E



    zjk

z

yyxx
zyxyyyxxxyx

ze
k

kfkf
kkfkkfzkk 



















 
 aaaE ˆ,ˆ,ˆ),,(

~

Therefore, if we know the field at some point 0z , we simply phase the Fourier transform by 0z

and we will find our hologram with all variables considered. This is an equivalent result to the

four-fold integral simplified in the derivation of the Rayleigh diffraction formula. As mentioned

above, the diffraction formula throws out evanescent modes in order to express the integral in

closed form. An example of the implementation of this algorithm is shown in Appendix E.

43

Chapter 4: Idea of Differential Backpropagation

In this section, we present the standard direct and inverse propagator for horizontal observation

planes based on Fourier transform in the k-space [13]-[16]. Note that other propagator models in

the near field exist [17]-[25]. Only tangential electric fields xE , yE are included into

considerations. The spatial Fourier transform over a finite plane aperture (a×b) reads

 

  ydxdyjkxjkzyxEf

ydxdyjkxjkzyxEf

yx

b

b

a

a

yy

yx

b

b

a

a

xx





 

 
















exp)0,,(

exp)0,,(

2/

2/

2/

2/

2/

2/

2/

2/ (22)

Direct and inverse propagators (in the z-direction) have the form

 

 

 

 























222

222

222

222

222
2

222
2

222
2

222
2

exp),(
4

1

exp),(
4

1
),,(

exp),(
4

1

exp),(
4

1
),,(

kkk

yxyxyxyxy

kkk

yxyxyxyxyy

kkk

yxyxyxyxx

kkk

yxyxyxyxxx

yx

yx

yx

yx

dkdkzkkkyjkxjkkkf

dkdkzkkkjyjkxjkkkfzyxE

dkdkzkkkyjkxjkkkf

dkdkzkkkjyjkxjkkkfzyxE









 (23)

Positive values of z correspond to forward propagation; negative z – to back-propagation.

Dimensionless variables may further be introduced to quantify the effect of evanescent modes

corresponding to kkk yx  22





2

,,

,,,,





k
k

k
K

k

k
K

b
B

a
A

z
Z

x
Y

x
X

y
y

x
x

In the dimensionless form, the propagator reads

44

 

 

 



 





















1

22
,2

1

22
,2

,

2/

2/

2/

2/

,
2

,

22

22

1222exp),(
1

1222exp),(
1

),,(

22exp)0,,(

yx

yx

KK

yxyxyxyxyx

KK

yxyxyxyxyx

yx

yx

B

B

A

A

yxyx

dKdKZKKYjKXjKkkf

dKdKZKKjYjKXjKkkf

ZYXE

YdXdYjKXjKzyxEf









 (24)

Except for truncating the observation plane, direct and inverse Fourier propagators (constituting

the angular spectrum method) satisfy Maxwell’s equation precisely. The direct propagator is

equivalent to Rayleigh (Rayleigh-Sommerfeld) diffraction integral as shown in the last section.

One reason for the resolution degradation in Table 1 is that the evanescent modes responsible for

the fine distribution of the fields close to individual radiators decay very fast. However, a faulty

element in an array contributes not only to evanescent modes, but also to propagating modes in

Eq. (23). Its presence considerably changes the propagating part of the spatial Fourier spectrum

of an antenna array as compared to the ideal case of a non-faulty array. Therefore, the precise

location of such an element in an array, could in principle, be restored from the near field data

computed or measured at distances -2 from the aperture plane. The necessary condition for

this operation is the availability of two phase-synchronized field distributions: that of the non

faulty array and that of a faulty array with one (or more) malfunctioning elements.

Fig. 12 shows three numerically computed spatial Fourier spectra (spectrum magnitudes) in

yx kk , space for the array from Fig. 9. All magnitude spectra are obtained from the co-polar

electric field at a distance of /8 from the aperture plane. The first plot (top left) is the spectrum

of a non faulty array with all radiators driven by identical generators; the second plot (top right)

is the spectrum of a faulty array when the generator for radiator 22 is shorted out; the third plot

(bottom) is the difference spectrum between first two, which shall be used for the identification

of a faulty element.

45

Figure 12 Three numerically computed spatial Fourier spectra (spectrum magnitudes) in k-space for a 4×4
array of /2 spaced patch antennas over a larger ground plane/reflector. All magnitude spectra are

obtained for the co-polar electric field at the distance of /8 from the aperture plane. The observation
plane is approximately twice as large as the array itself . The first plot (top left) is the spectrum for the

non faulty array with all radiators driven by identical generators; the second plot (top right) is the
spectrum for a faulty array where the generator for radiator 22 is shorted out; the third plot (bottom) is the

difference spectrum between first two, which shall be used for the identification of a faulty element.

One can see from Fig. 12 that the difference spectrum carriers little power compared to the

original array spectra. However, it clearly has a dominant power density peak within the unit

circle,

46

kkk yx  22 (25)

which corresponds to propagating modes (plane waves). Whereas the evanescent part of the

difference spectrum at kkk yx  22 will be quickly lost, the propagating part still remains at

larger distances from the array. Therefore, it may potentially be recovered to determine the

geometric location of a faulty element. It is thus suggested:

1. Form a difference between the co-polar fields of non faulty and faulty arrays at a distance
of 2 from the aperture plane.

2. Find the spatial Fourier spectrum of that difference and propagate it back to the array
plane. The result is the error field magnitude, zF .

3. The error field magnitude, zF , presumably peaks at faulty elements (both amplitude

and phase excitation fault).

Algorithm

Consider first a non-differential backpropagation. The backpropagation algorithm has two

important parameters: window size in k-space and the roll-off coefficient of the raised cosine

filter, r, applied to the restored field. The window in k-space must be applied in order to

minimize errors caused by the exponential terms in the evanescent modes of the array. Table 2

lists the optimum values for these parameters found from the non-differential backpropagation.

The goal was to minimize the error between backpropagated and original fields. Parameters

reported in Table 2 give a minimum restoration error percentage of the L2 norm of the

approximate solution as compared to the exact solution at /8. In the following sections, these

same parameters will be used for differential backpropagation.

The L2 norm was taken by minimizing the integral of the square of the resultant hologram. This

numerical integration is conducted as follows: assume that the matrix representing the hologram

is a surface composed of points with separation d , and let each point on the following grid

represent each element of the matrix.

47

Figure 13 Lattice representation of surface with points stored within a matrix. Each square represents the
differential area.

The surface area of this matrix may be calculated as each point multiplied by the differential

area, 2d , however; this is not entirely accurate, as the edges of the matrix only represent an

differential area of 2/2d . Even so, the corners also only contribute an incremental area of

4/2d .

48

Figure 14 The differential area of matrix that should not be included in the surface area calculation is
shown in red. Overlapping red regions must be subtracted twice.

Thus, the total area of the matrix in question is not simply equal to the sum of each element

multiplied by the differential area. One must sum the matrix and subtract out the overlapping

parts as shown in Fig. 14. An example of a surface area calculation for a matrix representing a

surface is shown below.

%--
for m = 1:length(surface_x)
 for n = 1:length(surface_y)

 temp = surface_matrix;
 fxy(m, n) = d^2*(sum(sum(temp))-

0.5*(sum(temp(1,:))+sum(temp(end,:))+sum(temp(:,1))+sum(temp(:,end))));

 end
end
%--

49

Table 2 Backpropagation parameters corresponding to a minimum restoration error of the co-polar E-field
at the distance of /8 from the top of the antenna array in the near field.

Backpropagator

(from to)

Minimum

restoration error:

percentage of L2

norm compared to

the exact solution

at /8

Rectangular window

in the k-space

corresponding to

minimum

restoration error

Roll-off

coefficient of the

raised cosine filter,

r, applied to the

restored field

Integration

step in the

k-space

/8 to /8 0.3% 12k×12k 0.0 0.15k

/4 to /8 4.7% 3.75k×3.75k 0.2 0.15k

/2 to /8 17.3% 2.25k×2.25k 0.6 0.15k

 to /8 31.1% 1.00k×1.00k 0.4 0.15k

1.5 to /8 33.3% 0.85k×0.85k 0.5 0.15k

2.0 to /8 35.8% 0.75k×0.75k 0.5 0.15k

The same parameters will be used for differential backpropagation as described in the following

subsection.

 Simulated Backpropagation Results

The results of a differential backpropagation are given in Table 3. The algorithm parameters are

those from Table 2. Table 3 reports three backpropagated fields:

i. non faulty field;

ii. faulty field – the generator of radiator 22 is shorted out, and;

iii. the (difference) error field, zF .

50

One can see that the differential backpropagation uniquely determines the position of the faulty

radiator, at any distance from the array, with a high degree of resolution.

Table 3 Backpropagated fields in three cases (/2 spacing). Element 22 is shorted out for a faulty array.

Backp

ropa-

gator

Non-faulty array: all

radiators are excited with

equal generators at 1V

amplitude

Faulty array: the generator

of radiator 22 is shorted out

Difference between the

fields of non-faulty and

faulty arrays propagated

back to /8

/8 to

/8

/4 to

/8

/2 to

/8

51

 to

/8

1.5 to

/8

2.0 to

/8

Extensions

Appendix A gives the backpropagation results corresponding to the last row of Table 3 above,

but for all possible faulty element locations. It is seen that the algorithm is working properly.

Appendix B gives the same backpropagation results, but corresponding to a partially attenuated

element 12 (by -∞dB, -6dB, and -3dB). The algorithm is still working properly.

52

Appendix C gives the same backpropagation results corresponding to changes in phase of

element 12. The algorithm is working properly for all phase variations.

Appendix D gives the same results as in Appendix A, but with element spacing equal to 0.32

instead of 0.5 . The algorithm is still working properly, which is a significant result with regard

to backpropagation resolution at the lower frequency of the band.

53

Chapter 5: Measured Results

Antenna Measurements

Experimental results are needed to validate theoretical/numerical data in any case; therefore we

should take pattern measurements of an antenna with faults and see if they are easily detectable

with the differential hologram. Although antenna pattern measurements are usually taken with

the test antenna receiving a signal from another radiator, the transmit pattern will be identical if

the antenna is reciprocal. Under ideal conditions, the test antenna should be illuminated by plane

waves with uniform amplitude and phase to find a far field pattern. Normally, the far field region

is too great a distance to measure properly – this is another reason why our near field propagator

and far field transforms are so important.

The testing and measurements of antennas is usually conducted in an antenna range, whether it is

indoor or outdoor. The measurements conducted for this paper were performed in a rectangular

anechoic chamber. The anechoic chamber is an isolated room whose walls are covered in RF

absorbers. A rectangular anechoic chamber, as opposed to a tapered chamber, is typically

designed to simulate free-space conditions and maximize the volume of the “quiet zone.” This is

the region around the test antenna which has minimal electromagnetic interference. The

rectangular anechoic chamber takes into account the pattern, location of the source, frequency of

operation, and assumes that the receiving antenna at the test point is isotropic. Although the

reflected energy in the chamber is minimized using high quality RF absorber, the absorber’s

properties are frequency dependent and work better at some frequencies than others. Significant

reflections may still occur at large angles of incidence.

Near field measurements may be taken in three different ways: planar, cylindrical, or spherical

measurements. These measurements are taken along a grid with the transmitting antenna moving

from point-to-point measuring data. The planar measurement takes place on an yx, grid, the

cylindrical measurements take place on the ,z cylindrical grid, while the spherical

measurements take place on the  , grid. Although the spherical and cylindrical methods allow

54

for more field to be captured in the measurements, they are also more expensive and require

more computations. The planar scan is also better suited for phased arrays.

When conducting a planar scan over the yx, grid, a spacing of 2/,  yx must be used in

order to avoid any aliasing. The probe transmitting the signal is normally an open ended

waveguide or small horn with a relatively flat radiation pattern; this is for a special reason: as the

probe moves along the yx, grid, its orientation relative to the test antenna changes. This

directive property, along with the polarization of the horn, must be taken into account when

observing measurements – this process is known as “probe compensation.” This method uses the

Lorenz reciprocity theorem to couple the far fields of the test antenna to those of the probe. Note

how in Fig. 15, the center of the array in relation to the center of the horn is different with regard

to the horn pattern.

Figure 15 Example of how the placement of the transmitting antenna along the grid changes the
orientation relative to the test antenna. This directive property, along with the polarization, must be taken
into account when observing measurements. The red circles portray the different part of the horn pattern

seen by the array when the horn is at different locations.

55

Hologram Error Sources

Although we are using a complete solution to Maxwell’s equations to calculate the hologram, we

still have errors caused by measurement techniques. These errors have been characterized by

several authors [4]-[8] , and include

a. Noise;
b. Probe Relative pattern;
c. Probe polarization;
d. Probe gain;
e. Probe alignment;
f. Normalization constant;
g. Impedance mismatch;
h. AUT alignment;
i. Data point spacing (aliasing);
j. Measurement area truncation;
k. Probe X-Y position;
l. Probe Z-position;
m. Mutual coupling;
n. Receiver non-linearity;
o. Systematic phase errors;
p. Receiver dynamic range;
q. Room scattering;
r. Leakage;
s. Random errors

These errors, although large in number, add up to approximately 0.2dB in amplitude error, and a

2.5 degree phase error in the hologram [6]; even so, if we are to take the differential hologram of

two arrays we will be able to eliminate some of this error. Consider the errors caused by b, d, f,

q; these errors are linear in nature and, if repeatable, may either be measured and compensated

for or minimized in a differential measurement. That is to say, any linear sources that cause

changes to the amplitude of the electric field may be minimized with a differential measurement;

however, this is only the case when the faulty array has amplitude errors only. Errors caused by

positioning such as i, k, and l have been found to have a small but insignificant effect on

measurements [7], especially in the case of i, which may be minimized if the measurement grid

step is chosen carefully. Although errors e and h may be dramatic, it is easy to eliminate these by

carefully aligning the probe and test array in the measurement setup.

On the other hand, the differential measurement will be unable to eliminate errors related to

phase in any case. It is clear that the errors caused by g, n, o, p, r, and s also fall into the same

56

category as phase errors; even so, these errors account for 0.1dB of the 0.2dB amplitude and 0.75

degree out of 2.5 degree phase error estimates in [6]. The errors created by random noise

(Gaussian), Rochblatt and Rahmat-Samii [4] have found that unless dealing with a weak signal,

or very small SNR, these errors do not have a large effect on results; however, those errors

caused by other random errors may account for as much as 0.7dB and 0.5 degree phase errors.

One of the most noted errors in calculating the hologram is that of j, measurement plane

truncation, studied in depth by Newell [8]. This is the notion that the electric field is measured on

a finite rectangular grid at a distance 0z from the aperture plane. As we know, this measurement

plane must be infinite if the entire field were to be captured in such a measurement. Newell treats

this finite measurement plane as a filter on the k -space spectrum. This filter alters the behavior

of the backpropagator by smoothing the hologram discontinuities (i.e. convolving the result with

a sinc function, see fig 16.)

Figure 16 Example of smoothed hologram due to windowing in k-space, an effect of a finite
measurement plane [8]

57

The severity of the smoothing uncertainties caused by this windowing is obviously dependent on

the dimensions of the measurement plane, but is predictable. In most cases, this filtering removes

a bit more of the spectrum than the portion just pertaining to evanescent modes. Although this

information is necessary for reconstructing a perfect hologram, in reality, if the spectrum is not

windowed properly according to its measurement plane, much of the calculated information is

detrimental to reconstructing an accurate image: to clarify, any errors taken from the evanescent

modes of the spectrum will be amplified exponentially in the reconstructed fields in the aperture

plane, destroying the hologram altogether. Even though it leads to smoothing, It can be shown

that this windowing in the k -space, to an extent, is a necessity when backpropagating any wave

that is not expressed analytically, as even numerical errors may destroy the hologram if not

filtered properly. This is due to the effect on evanescent modes provided by our backpropagator

formulation. For example, in Fig. 18, five plots are shown for our 4x4 patch array in MATLAB

with field data taken from 2 and the following windows in k -space:

kkk yx 55.022  (42.5% Error)

kkk yx 65.022  (42.0% Error)

kkk yx 75.022  (Optimal, 39.9% Error)

kkk yx 85.022  (39.1% Error, fake)

kkk yx 95.022  (405% Error)

58

Figure 17 Hologram of 4x4 patch array modeled in MATLAB with different windows in k -space. Top

left pertains to kkk yx 55.022  with a 42.5% error; Top right pertains to kkk yx 65.022  with a

42.0% error; Middle left pertains to kkk yx 75.022  with a 39.9% error; Middle right pertains to

kkk yx 85.022  with a 39.1% error (fake); Bottom pertains to kkk yx 95.022  with a 405% error.

59

We can see that the measurements taken from a distance of 2 , in this case, provide an unstable

solution before the window in k -space even approaches kkk yx  22 . This is because the

window in k -space created by the finite scan plane has caused numerical errors when calculating

values somewhere outside of the circle kkk yx 75.022  ; however, if we were to use a larger

scan plane, it is possible to expand this optimal window in k -space to a larger number and

obtain more accurate results. We may find the same result for measured fields as well. The

window in k -space may be approximated by the following equations [8].

One distinct error uncharacterized fully by many is that of m, the mutual coupling of antenna

elements in an array [5], [6]. This problem stems from the fact that, in an array, individual

antenna element patterns are usually unique to one another, his non-uniqueness is seen as

amplitude and phase ripples between elements [6]. This means that the approximation that the

antenna array pattern is the array factor multiplied by the element pattern is not quite good

enough. The errors caused by mutual coupling may only be seen as errors caused by

approximations made in the backpropagator being used in the hologram calculation. In our case,

the backpropagator is an exact solution to Maxwell’s equations and is unaffected by this pattern

variation – this means we may even see the effects of mutual coupling in our hologram if

measurements are taken properly. The errors seen by mutual coupling may most likely be

attributed to inverse propagation techniques similar to that of Narishman and Kumar [24], or

incorrect array pattern simulation formulation (i.e. construction of the far field array pattern by

multiplication of the element pattern with the array factor). This error is also usually mentioned

alongside that of element pattern uncertainty [5], [6]; again, these errors may be seen as

inaccuracies in the backpropagation formulation or simulation methodology.

Array Under Study

The array shown in Fig. 18 is a 4x4 passive array of patches with a corporate feed based on T-

power dividers. The array is etched on a 60 mil Rogers4003 substrate (ε = 3.45, tanδ = 0.0027).

The array is 148mmx148mm in size and radiates at 4.00 GHz.

An array with the corporate non-isolated feeding network provides more challenges than the

array where every radiator has an isolated feed. The reason is that a faulty (detuned in this case)

60

radiator changes local termination to a corporate feeding network, which results in a different

performance of a group of nearby radiators. As an example, Fig. 19 shows the current

distribution on the array ground plane when one of the radiators is detuned by a copper strip

(capacitive loading) versus the non-faulty current distribution. Nevertheless, even in this case,

convincing results may be obtained.

Figure 18 Top – A 4x4 array of patches with a corporate feed and posterior-fastened aluminum ground
plane; bottom – the same array in the near-field range.

61

Non-faulty array Edge element detuned Corner element detuned

Central element detuned Surface current density scale

Figure 19 Simulated (Ansoft/ANSYS HFSS) current distribution on the ground plane when one of the
array elements is detuned.

Numerical vs. experimental backpropagation

In order to simulate the presence of a faulty element, a piece of copper tape (25mm×10mm) was

used to detune an individual patch. Measurements were taken at a distance of 2.0, as shown in

Fig. 18. The copol component of the electric field has been sampled over a 20'×16” observation

plane with a rectangular horn, with a sampling interval of 0.5”. All simulations in this section

have been done with Ansoft/ANSYS HFSS.

Table 4 provides the results for every array element. The first row in every page shows the array

geometry; the second row gives the current distribution on the ground plane. The last row gives

two results:

62

i. The error field magnitude, zF when the numerical solution for a faulty array is

subtracted from the numerical template for the regular array - left.
ii. The error field magnitude, zF when the experimental data for a faulty array is

subtracted from the experimental data for the regular array - right.

63

Table 4 Backpropagation results (num. to num. and experiment to experiment) – last row.

64

Table 4 (cont.)

65

Table 4 (cont.)

66

Table 4 (cont.)

67

Table 4 (cont.)

68

Table 4 (cont.)

69

Table 4 (cont.)

70

Table 4 (cont.)

71

Despite the non-isolated feeding network, it is seen from Table 4 that:

i. The differential backpropagation of measured faulty- and non-faulty data identifies
the faulty (detuned) element with accuracy better than or equal to element spacing. In
some cases the agreement is exact.

ii. The differential backpropagation of simulated faulty- and non-faulty data identifies
the faulty (detuned) element with accuracy better than or equal to element spacing.
The simulated data provides only slightly better resolution accuracy. This means that
the experimental procedure does not introduce much error.

Hybrid (Numerical – Experimental) Backpropagation

Sometimes the template array with no faulty elements may not be available for measurements.

Only an “unknown” array is thus available. In this case, the numerical data for the template

array may be generated and used in the differential algorithm.

However, the data should be aligned in phase. A way to this is to find the complex radiation

pattern and align the phases of the main beam. Yet another, perhaps less accurate, way is to find

maximum near field magnitude, in both measurements and simulations, and to assign phase zero

to the field at that location. In order to synchronize the phase of the plots in Table 5, the L2 norm

of the difference between the measured array data and a phased version of the HFSS data

(multiplied by the constant matrix je), both of non-faulty arrays, was minimized. Fig. 21.

shows how the phase synchronization affects this minimization - the ideal version of the

hologram in Fig. 21 should be zero.

72

Figure 20 Squared differential hologram of non-faulty measured and simulated (HFSS) data with the
simulated data multiplied by a variable phase. From top left, the phases are -40, -30, -25, -20, -14

(optimal). It can be seen that the measured array may not have been completely parallel with the plane of
elevation.

73

Table 5 shows two cases of differential backpropagation when the non-faulty array was modeled

in Ansoft/ANSYS and the faulty array field was measured. The phase alignment was done using

the existing measured solution for the non-faulty array. One can see that the method works, but

needs improvement.

Table 5 Hybrid backpropagation results (numerical to experiment) – last row.

Array Geometry Error Field

74

Chapter 6: Potential Extension to Array Calibration &

Conclusions

Phased arrays must be calibrated/aligned after they are build, as the attenuators and phase

shifters used in the design rarely exhibit identical characteristics to one another. Another problem

which may arise is faulty solder joints, or geometrical errors which may alter the radiation

pattern of an array. For example, if an element is attenuated by 3dB, we see a significant

difference in second null of the array factor; the second side lobe amplitude is also affected. This

may be unacceptable in some cases, especially if an array has a taper applied to it with specified

side lobe levels.

75

Figure 21 Top - Array factor of uniformly excited 4x4 array with 2/ spacing (black) and array with

corner element attenuated by 3dB (red). Bottom - Array factor of uniformly excited 4x4 array with 2/
spacing (black) and array with inner element attenuated by 3dB (red).

-100 -80 -60 -40 -20 0 20 40 60 80 100
-60

-50

-40

-30

-20

-10

0

Uniformly Excited AF

Corner Element -3dB

-100 -80 -60 -40 -20 0 20 40 60 80 100
-60

-50

-40

-30

-20

-10

0

Angle (deg)

A
m

pl
itu

de
 (
dB

)

Uniformly Excited AF

Inner Element -3dB

76

The most common calibration techniques consist of measuring the individual settings of each

element of an array [11]-[13]. When considering these methods, additional RF components must

be included in the array design, such as circulators, detectors, and filters, which may not be

desirable in some cases.

Although holography will always remain less accurate compared to element-by-element testing,

many of its common errors (standing waves, room scattering, and cable losses) are reduced when

the difference between the electric field distributions is utilized. This makes the differential

hologram a more reliable method to calibrate faulty elements in an array and an array as a whole.

There are also some cases in which element-by-element testing is undesirable altogether, making

holography one of the only options. For instance, when aligning broadband arrays that rely on

mutual coupling to remain matched at lower frequencies – it is impractical to turn off elements in

this case, as this can alter the active impedance of elements and lead to a faulty calibration.

Conclusions

1. We have shown via numerical simulations that differential backpropagation produces
convincing results for a small 4×4 patch array of individually fed radiators including all
effects of mutual coupling and the effect of a finite measurement plane.

2. These results allow us to uniquely determine a malfunctioning array element with a
different excitation phase and/or amplitude at any position in the array.

3. The array spacing may be as low as 0.32 as long as the measurement plane is located at
2 or a smaller distance.

4. The experimental results have been given for a 4×4 patch array with a corporate feed.
This case is more challenging due to low element isolation. Despite the low isolation,
differential backpropagation of measured faulty and non-faulty data identifies the detuned
element with accuracy better than or equal to element spacing. In some cases the
agreement is exact. The corresponding numerical simulation has confirmed this
conclusion.

5. The hybrid approach (numerical data for the template array vs. measured data for a
presumably faulty array) shows promise, but needs extra work with phase
synchronization.

The above means that with the use of differential microwave holography one may quickly assess

the performance of a small patch array. When considering the calibration of arrays, less RF

components are necessary when using holography. Although element-by-element techniques are

more accurate, they may sometimes be detrimental to array performance when dealing with

broadband arrays.

77

Some challenges of the current method include:

1. Amplitude errors reflected in the error field are simply indicators, not correct values
unless the phase of the error field is constant

2. Phase errors are identifiable, but not correct values in the error field in any case.
3. The provision of a calibrated array near-field pattern, either experimentally or

numerically, is a must.
4. Phase synchronization between the template pattern and that of the AUT is required.
5. A larger ground/reflector plane is needed.
6. Effects of positioning errors when testing separate units may have a severe influence.

78

References

[1]. P. L. Ransom and R. Mitra, “A method of locating defective elements in large phased

arrays,” Proceedings of the IEEE-Letters , pp. 1029-1030, 1971.

[2]. P. L. Ransom and R. Mitra, “A method of locating defective elements in large phased

arrays,” Phased Array Antennas. Dedham, MA: Artech House, 1972.

[3]. C.A. Balanis, "Fundamental Parameters of Antennas," Antenna Theory 3rd edition.

Hoboken, NJ: John Wiley & Sons, Inc., 2005

[4]. D.J. Rochblatt, Y.R.-S.“Effects of measurement errors on microwave antenna

holography,” IEEE Transactions of Antennas and Prop., vol 39, no. 7, pp. 933-942, Jul.

1991

[5]. C. A. Rose, “Accuracy estimation of microwave holography from planar near-field

measurements,” Microwave Instrumentation Technologies, www.mi-technologies.com

[6]. G.F. Masters, “Hologram accuracy estimation,” AMTA Conference, Nov. 13-17, 1995

[7]. P. K. Agrawal, “A method to compensate for probe positioning errors in an antenna near

field test facility,” in Antenna Propagat. Soc. Symp. Dig., Albuquerque, NM, May 1982,

vol. 1, pp. 218–221.

[8]. A.C. Newell, “Estimating the uncertainties due to truncation in planar near-field

holograms,” AMTA Conference, 2004.

[9]. D. J. Rochblatt, B.L. Seidel, “Microwave antenna holography,” IEEE Transations on

Microwave Theory and Techniques, vol. 40, no. 6, pp. 1294-1300, Jun. 1992.

[10]. W.J. Krzystofik, “Microwave holography,” Microwaves, Radar and Wireless

Communications 2000. MIKON-2000 13th International Conference on., pp. 597-600,

May 2000.

[11]. R. Sorace, “Phased array calibration,” IEEE Transactions of Antennas and Prop.,

vol 49, no. 4, pp. 517-525, Apr. 2001.

79

[12]. W. T. Patton, “Phased array alignment with planar near-field data,” in Proc.

Antenna Applicat. Symp., Urbana, IL, Sept. 1981.

[13]. D. K. Alexander and R. P. Gray, Jr., “Computer-aided fault determination for an

advanced phased array antenna,” in Proc. Antenna Applicat. Symp., Urbana, IL, Sept.

1979.

[14]. J.R. Shewell and E. Wolf, “Inverse diffraction and new reciprocity theorem,”

Journal of the Optical Society of America, vol. 58, no. 12, pp.1596-1603, Dec. 1968.

[15]. G.C. Sherman, “Integral-transform of diffraction theory,” Journal of the Optical

Society of America, vol. 57, no. 12, pp. 1490-1498, Dec. 1967.

[16]. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration

method for the Rayleigh-Sommerfeld diffraction formula,” APPLIED OPTICS, vol. 45,

no. 6, pp. 1102-1110, Feb. 2006.

[17]. A.C. Newell, R.J. Davis, “Holographic projection to an arbitrary plane from

spherical near-field measurements,” AMTA Conference, 2002

[18]. Taaghol and T. K. Sarkar, "Near-field to near/far-field transformation for arbitrary

field geometry, utilizing an equivalent magnetic current," IEEE Transactions On

Electromagnetic Compatibility, vol. 38, no. 3, pp. 536-542, Aug. 1996.

[19]. T. K. Sarkar and A. Taaghol, "Near-field to near/far-field transformation for

arbitrary near-field geometry utilizing an equivalent electric current and MoM," IEEE

Transactions on Antennas and Propagation, vol. 47, no. 3, pp. 566-573, Mar. 1999.

[20]. P. Petre and T. K. Sarkar, "Planar near-field to far-field transformation using an

equivalent magnetic current approach," IEEE Transactions of Antennas and Prop., vol

40, no. 11, pp. 1348-1356, Nov. 1992.

[21]. L. Klinkenbusch, "Spherical-multipole based time-domain near-field to near-field

transformation," 2010 URSI International Symposium on Electromagnetic Theory, pp.

737-740, 2010.

80

[22]. K. L. Shlager and G. S. Smith, "Comparison of two FDTD near-field to near-field

transformations applied to pulsed antenna problems," Electronic Letters, vol. 31, no. 12,

pp. 936-938, Jun. 2010.

[23]. K. F. Razavi and Y. Rahmat-Samii, "To phase or not to phase in planar near field

measurements: overcoming large probe positioning error," IEEE Antennas and

Propagation Society, AP-S International Symposium (Digest), 2010.

[24]. M. S. Narasimhan and B. Preetham Kumar, "A technique of synthesizing the

excitation currents of planar arrays or apertures," IEEE Transactions on Antennas and

Prop., vol. 38, no. 9, pp. 1326-1332, Sep. 1990.

[25]. N.S. Karnik, R. Taulpule, M. Shah, P.s. Verma, C.Y. Huang, J.Y. Cha, A.

Pandya, S. Usman, V. Pulipati, P. Pagadala, and B.P. Kumar, "Design, simulation and

experimental study of near-field beam forming techniques using conformal waveguide

arrays," IET Microw. Antennas Propag., vol. 4, iss. 2, pp. 162-174, 2010.

[26]. G. Noetscher, N. Chow, and S. Makarov, “Modeling accuracy and features of

body area networks with out-of-body antennas at 402 MHz, ” IEEE Antennas and

Propagation Magazine, vol. 53, Sep.-Oct. 2011, to appear.

81

Appendix A: Backpropagation for all array elements.

Backpr
opa-
gator

Non-faulty array
backpropagated near field

Faulty array backpropagated
near field

Difference between the
fields of non-faulty and
faulty arrays propagated

back to /8

2 to
/8

2 to
/8

2 to
/8

2 to
/8

82

Appendix B: Backpropagation for partially attenuated

element.

Attenua
tion

Non-faulty array
backpropagated near field

Faulty array backpropagated
near field

Difference between the
fields of non-faulty and
faulty arrays propagated

back to /8

-∞dB

-6dB

-3dB

83

Appendix C: Backpropagation for element partially out of

phase elements

(In every cell corresponding to a given phase, the first row corresponds to amplitude and the

second row corresponds to phase).

Phase
Shift

Non-faulty array
backpropagated near field

Faulty array backpropagated
near field

Difference between the
fields of non-faulty and
faulty arrays propagated

back to /8

0

90

84

30

10

85

Appendix D: Backpropagation for all array elements with

0.32 spacing.

Backpr
opa-
gator

Non-faulty array
backpropagated near field

Faulty array backpropagated
near field

Difference between the
fields of non-faulty and
faulty arrays propagated

back to /8

2 to
/8

2 to
/8

2 to
/8

2 to
/8

86

Appendix E: FDTD MATLAB Codes

main.m

% FDTD MATLAB antenna/array solver (preliminary version)

% Copyright SNM Spring 2011

% MAIN SCRIPT
clear all;

%% Read project file from subfolder PROJECTS (see file format) and visialize

project geometry

[FileName,PathName,FilterIndex] = uigetfile('projects/*.m','Select the MATLAB

project file');
run(strcat(PathName, FileName));

constructor;

save input;

%% Execute FDTD script (either as a script or as a function)

fdtd;
if ~isempty(custom)

 return;
else

 close all;
end

% Its output includes:
% A. Currents/voltages and self/mutual impedances of the ports (for total

M ports)

% This data is given for any excitation type (pulse or CW):

% AntI = zeros(M, M, length(t)); % antenna currents for all

ports
% AntV = zeros(M, M, length(t)); % antenna voltages for all

ports

% Z = zeros(length(findex), M, M); % port impedance matrix in

frequency domain (at all frequencies)
% B. Fields on all boundaries and in the observation plane

87

% This data is only given for CW excitation (complex Fourier coefficients
% of the fields are given):
% Extop = zeros(Nx , Ny+1); % Ex in the xy-observation

plane
% Eytop = zeros(Nx+1, Ny); % Ey in the xy-observation

plane

% Hxtop = zeros(Nx+1, Ny); % Hx in the xy-observation

plane

% Hytop = zeros(Nx , Ny+1); % Hy in the xy-observation

plane

load output;

%% Interpolate, plot, and save port impedances (total M ports) into Zout

if (length(f)>1)&(f(end)>f(1)) % frequency sweep - pulse excitation
 for m = 1:M

 Zout(:, m, m) = interp1(ftemp, Z(:, m, m), f); % still a row here

 end
 scrsz = get(0,'ScreenSize');

 figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);

 if M<=4 FontSize = 10; end;

 if M<=16 FontSize = 8; end;

 if M>16 FontSize = 7; end;

 for m = 1:RowNo(end)
 for n = 1:ColNo(end)

 index = n+(m-1)*ColNo(end);

 subplot(RowNo(end), ColNo(end), index);
 temp = squeeze(Zout(:, index, index));
 plot(f/1e6, real(temp), 'r', f/1e6, imag(temp), 'b'); grid on;

 string = strcat('Port', num2str(m), num2str(n));
 title (strcat(string, ': R-red, X-blue,

\Omega'),'FontSize',FontSize);

 xlabel('freq, MHz','FontSize',FontSize);
 set(gca,'FontSize',FontSize);

 axis square; axis tight;

 end

88

 end
 scrsz = get(0,'ScreenSize');
 figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);

 if M<=4 FontSize = 10; end;
 if M<=16 FontSize = 8; end;

 if M>16 FontSize = 7; end;

 for m = 1:RowNo(end)
 for n = 1:ColNo(end)

 index = n+(m-1)*ColNo(end);

 subplot(RowNo(end), ColNo(end), index);
 temp = squeeze(Zout(:, index, index));
 temp = 20*log10(abs((temp-R0)./(temp+R0)));

 plot(f/1e6, real(temp), 'r', f/1e6, imag(temp), 'b'); grid on;

 string = strcat('S', num2str(m), num2str(n));

 title (strcat(string, ': Refl. coeff., dB'),'FontSize',

FontSize);

 xlabel('freq, MHz','FontSize', FontSize);

 set(gca, 'FontSize', FontSize);

 axis square; axis tight;

 end

 end
 scrsz = get(0,'ScreenSize');

 figure('Position', [1 0.3*scrsz(4) 0.3*scrsz(3) 0.3*scrsz(4)]);

 RealizedG = zeros(length(temp),1);
 for m = 1:RowNo(end)
 for n = 1:ColNo(end)

 index = n+(m-1)*ColNo(end);
 temp = squeeze(Zout(:, index, index));

 GAMMA =(temp-R0)./(temp+R0);

 RealizedG = RealizedG + (1 - abs(GAMMA).^2);
 end
 end

 %RealizedG(find(RealizedG<0)) =0.001;
 RealizedG = 10*log10(RealizedG/index);
 plot(f/1e6, RealizedG, 'k'); grid on;

 title ('Difference between realized gain and ideal gain, dB');

89

 xlabel('freq, MHz');
 axis square; axis tight;
else % single frequency - CW

 for m = 1:M
 Zout(RowNo(m), ColNo(m)) = Z(:, m, m); % a matrix here

 end

end

%% Plot radiation patterns, near/far fields, and impedances at a single

frequency

if length(f)==1

 if plane
 plot_nearfield;
 end

end

%% Save project data

%% Data output into file
ftemp = f; Ztemp = Zout;

save(strcat(PathName, strcat(FileName(1:end-2),'.mat')));

array_4x4_cw.m

% FDTD MATLAB antenna/array solver (preliminary version)
% Copyright SNM Spring 2011

% PROJECT FILE: geometry/FDTD domain/frequency/timing/terminations
%% Geometry

% Geometry construction is based on individual objects. The number of

objects is arbitrary.

% Template for an individual object includes a top row with 15 numbers

separated by commas.
% Any object may be

% i. a brick material (diel, metal, etc.);

% ii. a rectangular sheet (metal);

% iii. or a line (ports only).
% Template for the top row:

90

% 3, % brick width, mm (x)
% 3, % brick length, mm (y)
% 0.5, % brick height, mm (z)

% 0.0, % brick center, mm (x)
% 0.0, % brick center, mm (y)

% 0.0, % brick center, mm (z)

% 0, % is metal (0 or 1)
% 0, % is port (0-not a port; 1- port with Ex; 2 -

port with Ey; 3 - port with Ez)

% 1, % relative permittivity
% 0.0, % electric conductivity, S/m
% 1, % relative permeability

% 0.0, % magnetic conductivity, S/m

% 0, % object color(R)

% 1, % object color(G)
% 0, % object color(B)

% Template for an object also includes three remaining rows: xyz-positions

for

% object translational copies - clones. Template for three remaining rows:

% 0, 20, 40, % x-translations for copies (use 0, if the object is not

cloned)
% 0, 20, 40, % y-translations for copies (use 0, if the object is not

cloned)

% 0, 20, 40, % z-translations for copies (use 0, if the object is not

cloned)
custom = [];

% This is the dielectric brick
objectd{1} = [1000, 1000, 20, +000, 0, -320, 0, 0, 2.0, 0, 1, 0, 1.0,

1.0, 0.0];
objectx{1} = [0];
objecty{1} = [0];

objectz{1} = [0];

% This is the metal ground plane

91

objectd{2} = [1800, 1800, 0, +000, 0, -340, 1, 0, 1, 0, 1, 0, 0.5, 0.5,

0.5];
objectx{2} = [0];

objecty{2} = [0];
objectz{2} = [0];

% This is the patch feed (for a square 4x4 array)

objectd{3} = [0, 0, 20, 60, 0, -320, 0, 3, 1, 0, 1, 0, 1.0, 0.0, 0.0];

objectx{3} = [-360, -120, +120, +360, -360, -120, +120, +360, -360, -120,

+120, +360, -360, -120, +120, +360];

objecty{3} = [-360, -360, -360, -360, -120, -120, -120, -120, +120, +120,

+120, +120, +360, +360, +360, +360];
objectz{3} = zeros(1, 16);

% This is the top patch (for a square 4x4 array)
objectd{4} = [160, 160, 0, 0, 0, -320, 1, 0, 1, 0, 1, 0, 0.5, 0.5, 0.5];

objectx{4} = [-360, -120, +120, +360, -360, -120, +120, +360, -360, -120,

+120, +360, -360, -120, +120, +360];
objecty{4} = [-360, -360, -360, -360, -120, -120, -120, -120, +120, +120,

+120, +120, +360, +360, +360, +360];

objectz{4} = zeros(1, 16);

%% FDTD domain data

W0 = 1880; % volume width, mm (x)
L0 = 1880; % volume length, mm (y)

H0 = 1200; % volume height, mm (z)
XC0 = 0; % volume center, mm (x)
YC0 = 0; % volume center, mm (y)

ZC0 = 100; % volume center, mm (z)

D = 20; % cell size, mm (in all directions)

%% Frequency sweep data/FDTD timing data
fstart = 625e6; % start frequency of the frequency

loop, Hz
fstop = 625e6; % stop frequency of the frequency

loop, Hz

92

steps = 1; % # of frequency steps
TO = 15e-9; % maximum total FDTD running time

(per port), s

R0 = 50; % generator/load impedance, Ohm
NoP = 16; % number of ports (total)

fields = 0; % plot (1) or not (0) instantaneous

fields
component = 5; % component to plot if any (1-Ex, 2-

Ey, 3-Ez, 4-Hx, 5-Hy, 6-Ez)

power = 0.25; % power factor

(abs(Ez)^power*sign(Ez) is plotted)
scale = 0.6; % scale factor to plot (to

abs(Ez)^power)

plane = 1; % plot (1) or not (0) near fields

planeZ = -260; % absolute height of the observation

plane for near fields, mm (0.125*lambda)

planeZ = -200; % absolute height of the observation

plane for near fields, mm (0.250*lambda)

planeZ = -080; % absolute height of the observation

plane for near fields, mm (0.500*lambda)

planeZ = +160; % absolute height of the observation

plane for near fields, mm (1.000*lambda)

planeZ = +400; % absolute height of the observation

plane for near fields, mm (1.500*lambda)

planeZ = +640; % absolute height of the observation

plane for near fields, mm (2.000*lambda)

%% Port termination data/Scan data (only for antenna arrays)

% TERMINATION DATA
% Termination data is given by two matrixes: TerminationV (voltage),

TerminationY (admittance)

% Both matrixes must have the size of Nrow by Ncol where Nrow is the number

of port rows

% (along the x-axis) and Ncol is the number of port columns (along the y-

axis)

93

% TERMINATION TYPES
% Three port termination types may be used:
% 1. Terminations for the standard impedance matrix

% (one element excited with all other open circuited)
% 2. Terminations for the active impedance of an array

% (one element excited with all other match terminated)

% 3. Terminations for the scan impedance of an array
% (all element are excited with proper phases)

% TerminationV = 0; TerminationY = 0; % for impedance matrix (simple

antenna)
% TerminationV = 0; TerminationY = 1; % for active impedance matrix

(antenna array)

% TerminationV = 1; TerminationY = 1; % for scan impedance matrix

(antenna array)

% TerminationV may be complex - complex excitations weights)
TerminationV = [1,1,1,1;...

 1,0,1,1;...

 1,1,1,1;...

 1,1,1,1];

TerminationY = [1,1,1,1;...

 1,1,1,1;...
 1,1,1,1;...

 1,1,1,1];

% Scan angles in deg; (default values are zeros)

xscan = 0; % progressive phase shift along the x-axis, deg (for

antenna array only)
yscan = 0; % progressive phase shift along the y-axis, deg (for

antenna array only)

constructor.m

% FDTD MATLAB antenna/array geometry constructor (preliminary version)
% Copyright SNM Spring 2011

% GEOMETRY CONSTRUCTION SCRIPT
% Domain/grid construction from geometry data

94

%% Constructor 1

x = [-W0/2+XC0:D:W0/2+XC0]; % x-grid
y = [-L0/2+YC0:D:L0/2+YC0]; % y-grid

z = [-H0/2+ZC0:D:H0/2+ZC0]; % z-grid

Nx = length(x)-1; % number of cells in the x-

direction
Ny = length(y)-1; % number of cells in the y-

direction

Nz = length(z)-1; % number of cells in the z-

direction

% Grid patches in the xy-plane
XYX = zeros(5, Nx*Ny);

XYY = zeros(5, Nx*Ny);

for m = 1:Nx
 xmin = x(m);

 for n = 1:Ny

 ymin = y(n);
 index = n + (m-1)*Ny;

 XYX(1:5, index) = [xmin xmin xmin+D xmin+D xmin];
 XYY(1:5, index) = [ymin ymin+D ymin+D ymin ymin];

 end
end

% Grid patches in the xz-plane
XZX = zeros(5, Nx*Nz);
XZZ = zeros(5, Nx*Nz);

for m = 1:Nx

 xmin = x(m);
 for n = 1:Nz
 zmin = z(n);

 index = n + (m-1)*Nz;

 XZX(1:5, index) = [xmin xmin xmin+D xmin+D xmin];

 XZZ(1:5, index) = [zmin zmin+D zmin+D zmin zmin];
 end

95

end
% Grid patches in the yz-plane
YZY = zeros(5, Ny*Nz);

YZZ = zeros(5, Ny*Nz);
for m = 1:Ny

 ymin = y(m);

 for n = 1:Nz
 zmin = z(n);

 index = n + (m-1)*Nz;

 YZY(1:5, index) = [ymin ymin ymin+D ymin+D ymin];
 YZZ(1:5, index) = [zmin zmin+D zmin+D zmin zmin];
 end

end

%% Constructor2

% Convert initial geometry data to arrays, snap to grid all geometry

objects

% Convert thin bodies to faces, convert narrow faces to lines

% Read initial geometry/composition data

index = 0;

for m = 1:size(objectd, 2)

 temp = cell2mat(objectd(m));
 tempx = cell2mat(objectx(m));

 tempy = cell2mat(objecty(m));

 tempz = cell2mat(objectz(m));

 for n = 1:length(tempx)

 index = index + 1;
 Objects(index) = index;
 W(index) = temp(1);

 L(index) = temp(2);
 H(index) = temp(3);
 XC(index) = temp(4) + tempx(n);

 YC(index) = temp(5) + tempy(n);

 ZC(index) = temp(6) + tempz(n);

 Ismet(index) = temp(7);
 Isport(index) = temp(8);

96

 Eps(index) = temp(9);
 SigE(index) = temp(10);
 Mu(index) = temp(11);

 SigM(index) = temp(12);
 Color(index, :) = [temp(13) temp(14) temp(15)];

 end

end

% Internal variables
Wtemp = W;

Ltemp = L;

Htemp = H;
% Convert all narrow faces/bricks to lines/faces (internally only)
threshold = 1.5*D;

for m = 1:length(Objects)

 if ~Isport(m)&(min([W(m) L(m) H(m)])==0) % face found
 if (W(m)<threshold)&(W(m)>0)

 Wtemp(m) = 0;

 end

 if (L(m)<threshold)&(L(m)>0)

 Ltemp(m) = 0;

 end
 if (H(m)<threshold)&(H(m)>0)

 Htemp(m) = 0;

 end

 end

end
% Introduce line indicator
for m = 1:length(Objects)

 Isline(m) = 0;
 if (W(m)==0)&(L(m)==0)
 Isline(m) = 3;

 end

 if (W(m)==0)&(H(m)==0)

 Isline(m) = 2;
 end

97

 if (L(m)==0)&(H(m)==0)
 Isline(m) = 1;
 end

end

% Snap all objects (port lines, faces, bricks) to grid:
% Replace physical boundaries by indexes into nearest integer cell nodes

for m = 1:length(Objects)

 [dummy, N1X(m)] = min(abs(XC(m)-Wtemp(m)/2-x-eps)); % left boundary

index

 [dummy, N2X(m)] = min(abs(XC(m)+Wtemp(m)/2-x-eps)); % right boundary

index
 [dummy, N1Y(m)] = min(abs(YC(m)-Ltemp(m)/2-y-eps)); % front boundary

index

 [dummy, N2Y(m)] = min(abs(YC(m)+Ltemp(m)/2-y-eps)); % rear boundary

index
 [dummy, N1Z(m)] = min(abs(ZC(m)-Htemp(m)/2-z-eps)); % bottom boundary

index

 [dummy, N2Z(m)] = min(abs(ZC(m)+Htemp(m)/2-z-eps)); % top boundary index

 XCtemp(m) = (x(N1X(m))+ x(N2X(m)))/2; % center alignment

 YCtemp(m) = (y(N1Y(m))+ y(N2Y(m)))/2; % center alignment

 ZCtemp(m) = (z(N1Z(m))+ z(N2Z(m)))/2; % center alignment

end

[dummy, planeNZ] = min(abs(planeZ-z-eps));

for m = 1:length(Objects)
 if (N1X(m)<=1)|(N1X(m)>=Nx) error('Antenna/array structure is not within

the ABC boundary (check FDTD domain)!'); end;

 if (N2X(m)<=1)|(N2X(m)>=Nx) error('Antenna/array structure is not within

the ABC boundary (check FDTD domain)!'); end;
 if (N1Y(m)<=1)|(N1Y(m)>=Ny) error('Antenna/array structure is not within

the ABC boundary (check FDTD domain)!'); end;
 if (N2Y(m)<=1)|(N2Y(m)>=Ny) error('Antenna/array structure is not within

the ABC boundary (check FDTD domain)!'); end;

98

 if (N1Z(m)<=1)|(N1Z(m)>=Nz) error('Antenna/array structure is not within

the ABC boundary (check FDTD domain)!'); end;
 if (N2Z(m)<=1)|(N2Z(m)>=Nz) error('Antenna/array structure is not within

the ABC boundary (check FDTD domain)!'); end;
end

%% Plotter1

% Visualize antenna/array geometry

% Display resulting objects and FDTD mesh alignment (XY, XZ, YZ planes)
% % Plot a 3D figure first

scrsz = get(0,'ScreenSize');

figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);

for m = 1:length(W)

 Transp = 0.5;
 wtemp = W(m);

 ltemp = L(m);

 htemp = H(m);
 if ~Isport(m)&(min([W(m) L(m) H(m)])==0) % face found

 Transp = 1;

 if (wtemp==0)

 wtemp = 0.001*max([ltemp htemp]);

 end

 if (ltemp==0)
 ltemp = 0.001*max([wtemp htemp]);

 end

 if (htemp==0)
 htemp = 0.001*max([ltemp wtemp]);
 end

 end
 if ~Isline(m)

 viewer(wtemp, ltemp, htemp, XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), Transp, 1, 'k');
 else

 viewer(Wtemp(m), Ltemp(m), Htemp(m), XCtemp(m), YCtemp(m), ZCtemp(m),

Color(m, :), Transp, 0.25, 'k');

99

 end
end
if ~isempty(custom)

 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha',

0.5);

end

viewer(W0, L0, H0, XC0, YC0, ZC0, [1 1 1], 0, 1, 'k');
axis('equal'); axis('tight'); view(-63, 40);

xlabel('x, mm'); ylabel('y, mm'); zlabel('z, mm');

grid on; title('Project geometry - hit ENTER', 'FontWeight', 'bold');
pause; close gcf;

% Plot three grid projections next
scrsz = get(0,'ScreenSize');

a=figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);

POSF = get(a, 'Position');
sp1 = subplot(1,3,1);

 patch(XYX, XYY, zeros(size(XYX)), 'w', 'EdgeColor', [0.5 0.5 0.5]);

 for m = 1:length(W)

 if Ismet(m)

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m),

Color(m, :), 0.5, 1.5, 'k');
 elseif Isline(m)

 viewer(Wtemp(m), Ltemp(m), Htemp(m), XCtemp(m), YCtemp(m),

ZCtemp(m), Color(m, :), 0.5, 0.25, 'k');

 else

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m),

Color(m, :), 0.5, 0.5, 'k');
 end

 end
 if ~isempty(custom)
 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5],

'FaceAlpha', 0.5);

 end

 viewer(W0, L0, H0, XC0, YC0, ZC0, [1 1 1], 0, 1, 'k');
 axis('equal'); axis('tight'); view(0, 90);

100

 title('XY-plane'); xlabel('x, mm'); ylabel('y, mm');
sp2 = subplot(1,3,2);
 patch(XZX, zeros(size(XZX)), XZZ, 'w', 'EdgeColor', [0.5 0.5 0.5]);

 for m = 1:length(W)
 if Ismet(m)

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m),

Color(m, :), 0.5, 1.5, 'k');
 elseif Isline(m)

 viewer(Wtemp(m), Ltemp(m), Htemp(m), XCtemp(m), YCtemp(m),

ZCtemp(m), Color(m, :), 0.5, 0.25, 'k');
 else
 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m),

Color(m, :), 0.5, 0.5, 'k');

 end

 end
 if ~isempty(custom)

 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5],

'FaceAlpha', 0.5);

 end

 viewer(W0, L0, H0, XC0, YC0, ZC0, [1 1 1], 0, 1, 'k');

 if plane
 viewer(W0, L0, 0, XC0, YC0, planeZ, [1 0 1], 0, 1, 'g');

 end

 axis('equal'); axis('tight'); view(0, 0);
 title('XZ-plane'); xlabel('x, mm'); zlabel('z, mm');
 text(-0.5, 1.75, 'Three projections and FDTD grid-hit Enter',

'FontWeight', 'bold', 'Units', 'normalized')
sp3 = subplot(1,3,3);

 patch(zeros(size(YZY)), YZY, YZZ, 'w', 'EdgeColor', [0.5 0.5 0.5]);

 for m = 1:length(W)
 if Ismet(m)
 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m),

Color(m, :), 0.5, 1.5, 'k');
 elseif Isline(m)
 viewer(Wtemp(m), Ltemp(m), Htemp(m), XCtemp(m), YCtemp(m),

ZCtemp(m), Color(m, :), 0.5, 0.25, 'k');

101

 else
 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m),

Color(m, :), 0.5, 0.5, 'k');

 end
 end

 if ~isempty(custom)

 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5],

'FaceAlpha', 0.5);

 end

 viewer(W0, L0, H0, XC0, YC0, ZC0, [1 1 1], 0, 1, 'k');
 if plane
 viewer(W0, L0, 0, XC0, YC0, planeZ, [1 0 1], 0, 1, 'g');

 end

 axis('equal'); axis('tight'); view(-90, 0);

 title('YZ-plane'); ylabel('y, mm'); zlabel('z, mm');
pause; close gcf;

viewer.m

function [] = viewer(W, L, H, XC, YC, ZC, Color, Transparency, LineWidth,

EdgeColor)

% FDTD MATLAB antenna/array geometry constructor (preliminary version)
% Copyright SNM Spring 2011

% PLOT OF A RECTANGULAR OBJECT(a plane, a brick, or a line)

% __________W__________

% | |y |

% |L | |

% | *(XC,YC,ZC)
% | | |

% |_________|_________|x

%

 if (W>0) & (L>0)
 hr = patch([-W/2 -W/2 +W/2 +W/2]+XC, [-L/2 +L/2 +L/2 -L/2]+YC, [-H/2

-H/2 -H/2 -H/2]+ZC, ...

102

 Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth,

'EdgeColor', EdgeColor); % bottom
 hr = patch([-W/2 -W/2 +W/2 +W/2]+XC, [-L/2 +L/2 +L/2 -L/2]+YC, [+H/2

+H/2 +H/2 +H/2]+ZC, ...
 Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth,

'EdgeColor', EdgeColor); % top

 end
 if (L>0) & (H>0)

 hr = patch([+W/2 +W/2 +W/2 +W/2]+XC, [-L/2 -L/2 +L/2 +L/2]+YC, [-H/2

+H/2 +H/2 -H/2]+ZC, ...
 Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth,

'EdgeColor', EdgeColor); % right

 hr = patch([-W/2 -W/2 -W/2 -W/2]+XC, [-L/2 -L/2 +L/2 +L/2]+YC, [-H/2

+H/2 +H/2 -H/2]+ZC, ...

 Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth,

'EdgeColor', EdgeColor); % left

 end

 if (W>0) & (H>0)

 hr = patch([-W/2 -W/2 +W/2 +W/2]+XC, [+L/2 +L/2 +L/2 +L/2]+YC, [-H/2

+H/2 +H/2 -H/2]+ZC, ...

 Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth,

'EdgeColor', EdgeColor); % back

 hr = patch([-W/2 -W/2 +W/2 +W/2]+XC, [-L/2 -L/2 -L/2 -L/2]+YC, [-H/2

+H/2 +H/2 -H/2]+ZC, ...
 Color, 'FaceAlpha', Transparency, 'LineWidth', LineWidth,

'EdgeColor', EdgeColor); % front

 end
 if (L==0)&(H==0) % x-line

 hrl = line([-W/2+XC W/2+XC], [YC YC], [ZC ZC], 'LineWidth', 3,

'Color', Color);
 end
 if (W==0)&(H==0) % y-line

 hrl = line([XC XC], [-L/2+YC L/2+YC], [ZC ZC], 'LineWidth', 3,

'Color', Color);
 end

 if (W==0)&(L==0) % z-line

103

 hrl = line([XC XC], [YC YC], [-H/2+ZC H/2+ZC], 'LineWidth', 3,

'Color', Color);
 end

 h = 1;

end

fdtd.m

% FDTD MATLAB antenna/array solver (preliminary version)
% Copyright SNM Spring 2011

% FDTD SCRIPT

%% External and internal inputs

load input;

f = linspace(fstart, fstop, steps); % port frequency, Hz
P = 10; % maximum number of cells

along the port line (internal)

factorMU = 0.8;
factorEPS = 0.8;

%% Constructor 1

% Define FDTD parameters and network parameters
eps0 = 8.85418782e-012; % dielectric permittivity of

vacuum(~air)
mu0 = 1.25663706e-006; % magnetic permeability of

vacuum(~air)
c0 = 1/sqrt(eps0*mu0); % speed of light in

vacuum(~air)

eta0 = sqrt(mu0/eps0); % vacuum impedance, Ohm

% Time stepping information
d = D/1000; % Cell size in m

dt = 0.9/(c0*sqrt(1/d^2 + 1/d^2 +1/d^2)); % Magic time step reduced

by a factor of 0.9
KT = round(TO/dt); t = [0: dt: KT*dt]; % Number of time steps

104

% DFT(FFT) information
NFFT = 2^14; % number of sample

frequencies

Fs = 1/dt; % sample frequency
fFFT = Fs/2*linspace(0, 1, NFFT/2+1); % all positive FFT

frequencies

findex = zeros(1, length(f)); % index into DFT

harmonics

findex(1) = floor(f(1)*(dt*NFFT)); % either exact or

to the left

for n = 2:length(f)
 findex(n) = ceil(f(n)*(dt*NFFT))+1; % either exact or

to the right

end

findex = unique(findex);
ftemp = fFFT(findex); % vector of FFT

frequencies for the band

% Define ports and port matrixes

% All port lines are defined exactly on the main grid

m = 0; % port number

 for n = 1:length(Objects)

 if Isport(n)>0 % port found
 m = m + 1;

 PortNumber(m) = m; % port number

 PortDir(m) = Isport(n);% port direction (along x, y,

or z)
 PortImpedance(m) = R0; % port impedance, Ohm

 RowNo(m) = floor((m-1)/size(TerminationV, 2)) + 1;
 ColNo(m) = m - size(TerminationV, 2)*floor((m-

1)/size(TerminationV, 2));

 PortVoltage(m) = TerminationV(RowNo(m), ColNo(m)); %

generator voltage, V (may be complex)

 indX = N1X(n):N2X(n); % integer grid

105

 indY = N1Y(n):N2Y(n); % integer grid
 indZ = N1Z(n):N2Z(n); % Integer grid
 if length(indX)>1 indX = indX(1:end-1); end; % port in x-

direction: indexes into Ex (on half grid)
 if length(indY)>1 indY = indY(1:end-1); end; % port in y-

direction: indexes into Ey (on half grid)

 if length(indZ)>1 indZ = indZ(1:end-1); end; % port in z-

direction: indexes into Ez (on half grid)

 PortIndX(m, 1:P) = 0;

 PortIndY(m, 1:P) = 0;

 PortIndZ(m, 1:P) = 0;
 PortIndX(m, 1:length(indX)) = indX; % indexes of nodes

beloning to the port

 PortIndY(m, 1:length(indY)) = indY; % indexes of nodes

beloning to the port
 PortIndZ(m, 1:length(indZ)) = indZ; % indexes of nodes

beloning to the port

 PortLength(m) = max([length(indX) length(indY) length(indZ)]);

 end

 end

 M = length(PortNumber); % # of ports

 %% Constructor2

 % Define metal-specific arrays (impose boundary conditions) for all

objects
 % Define all metal edges

 MetalX = ones(Nx, Ny+1, Nz+1); % 3D Metal indicator array for

Ex (on half grid in x and integer grid in y,z)
 MetalY = ones(Nx+1, Ny, Nz+1); % 3D Metal indicator array for

Ey (on half grid in y and integer grid in x,z)

 MetalZ = ones(Nx+1, Ny+1, Nz); % 3D Metal indicator array for

Ez (on half grid in z and integer grid in x,y)

 IndM = []; % all nodes at exactly metal edges (mu)

106

 IndE = []; % all cube centers around metal edges (eps)

 for m = 1:length(Objects)
 if Ismet(m)

 indX = N1X(m):N2X(m); % inside object and on the boundary

 indY = N1Y(m):N2Y(m); % inside object and on the boundary
 indZ = N1Z(m):N2Z(m); % inside object and on the boundary

 % Boundary conditions of zero tangential electric field

component

 if length(indX)>1 % non-trivial x-dimension

 MetalX(indX(1:end-1), indY, indZ) = 0; % zero tangential x-

field on the boundary

 end

 if length(indY)>1 % non-trivial y-dimension
 MetalY(indX, indY(1:end-1), indZ) = 0; % zero tangential y-

field on the boundary

 end
 if length(indZ)>1 % non-trivial z-dimension

 MetalZ(indX, indY, indZ(1:end-1)) = 0; % zero tangential z-

field on the boundary

 end

 % Accumulate all nodes for the metal edges
 if (length(indX)>1)&(length(indY)>1) % face in the xy-

plane
 for mx = 1:length(indX) % edge in the x-

direction

 row = [indX(mx) indY(1) indZ];

 IndM = [IndM; row];
 row = [indX(mx) indY(end) indZ];
 IndM = [IndM; row];

 row1 = [indX(mx) indY(1) indZ];

 row2 = [indX(mx) indY(1)-1 indZ];

 row3 = [indX(mx) indY(1) indZ-1];
 row4 = [indX(mx) indY(1)-1 indZ-1];

107

 IndE = [IndE; row1; row2; row3; row4];
 row1 = [indX(mx) indY(end) indZ];
 row2 = [indX(mx) indY(end)-1 indZ];

 row3 = [indX(mx) indY(end) indZ-1];
 row4 = [indX(mx) indY(end)-1 indZ-1];

 IndE = [IndE; row1; row2; row3; row4];

 end
 for my = 1:length(indY) % edge in the y-

direction

 row = [indX(1) indY(my) indZ];
 IndM = [IndM; row];
 row = [indX(end) indY(my) indZ];

 IndM = [IndM; row];

 row1 = [indX(1) indY(my) indZ];

 row2 = [indX(1)-1 indY(my) indZ];
 row3 = [indX(1) indY(my) indZ-1];

 row4 = [indX(1)-1 indY(my) indZ-1];

 IndE = [IndE; row1; row2; row3; row4];

 row1 = [indX(end) indY(my) indZ];

 row2 = [indX(end)-1 indY(my) indZ];

 row3 = [indX(end) indY(my) indZ-1];
 row4 = [indX(end)-1 indY(my) indZ-1];

 IndE = [IndE; row1; row2; row3; row4];

 end
 end
 if (length(indX)>1)&(length(indZ)>1) % face in the xz-

plane
 for mx = 1:length(indX) % edge in the x-

direction

 row = [indX(mx) indY indZ(1)];
 IndM = [IndM; row];
 row = [indX(mx) indY indZ(end)];

 IndM = [IndM; row];
 row1 = [indX(mx) indY indZ(1)];
 row2 = [indX(mx) indY-1 indZ(1)];

 row3 = [indX(mx) indY indZ(1)-1];

108

 row4 = [indX(mx) indY-1 indZ(1)-1];
 IndE = [IndE; row1; row2; row3; row4];
 row1 = [indX(mx) indY indZ(end)];

 row2 = [indX(mx) indY-1 indZ(end)];
 row3 = [indX(mx) indY indZ(end)-1];

 row4 = [indX(mx) indY-1 indZ(end)-1];

 IndE = [IndE; row1; row2; row3; row4];
 end

 for mz = 1:length(indZ) % edge in the z-

direction
 row = [indX(1) indY indZ(mz)];
 IndM = [IndM; row];

 row = [indX(end) indY indZ(mz)];

 IndM = [IndM; row];

 row1 = [indX(1) indY indZ(mz)];
 row2 = [indX(1)-1 indY indZ(mz)];

 row3 = [indX(1) indY-1 indZ(mz)];

 row4 = [indX(1)-1 indY-1 indZ(mz)];

 IndE = [IndE; row1; row2; row3; row4];

 row1 = [indX(end) indY indZ(mz)];

 row2 = [indX(end)-1 indY indZ(mz)];
 row3 = [indX(end) indY-1 indZ(mz)];

 row4 = [indX(end)-1 indY-1 indZ(mz)];

 IndE = [IndE; row1; row2; row3; row4];
 end
 end

 if (length(indY)>1)&(length(indZ)>1) % face in the yz-

plane

 for my = 1:length(indY) % edge in the y-

direction
 row = [indX indY(my) indZ(1)];

 IndM = [IndM; row];

 row = [indX indY(my) indZ(end)];

 IndM = [IndM; row];
 row1 = [indX indY(my) indZ(1)];

109

 row2 = [indX-1 indY(my) indZ(1)];
 row3 = [indX indY(my) indZ(1)-1];
 row4 = [indX-1 indY(my) indZ(1)-1];

 IndE = [IndE; row1; row2; row3; row4];
 row1 = [indX indY(my) indZ(end)];

 row2 = [indX-1 indY(my) indZ(end)];

 row3 = [indX indY(my) indZ(end)-1];
 row4 = [indX-1 indY(my) indZ(end)-1];

 IndE = [IndE; row1; row2; row3; row4];

 end
 for mz = 1:length(indZ) % edge in the z-

direction

 row = [indX indY(1) indZ(mz)];

 IndM = [IndM; row];

 row = [indX indY(end) indZ(mz)];
 IndM = [IndM; row];

 row1 = [indX indY(1) indZ(mz)];

 row2 = [indX-1 indY(1) indZ(mz)];

 row3 = [indX indY(1)-1 indZ(mz)];

 row4 = [indX-1 indY(1)-1 indZ(mz)];

 IndE = [IndE; row1; row2; row3; row4];
 row1 = [indX indY(end) indZ(mz)];

 row2 = [indX-1 indY(end) indZ(mz)];

 row3 = [indX indY(end)-1 indZ(mz)];
 row4 = [indX-1 indY(end)-1 indZ(mz)];
 IndE = [IndE; row1; row2; row3; row4];

 end
 end

 end

 end

 %% Constructor3

 % Fill out material-specific arrays

 % Fill out difference coefficients for FDTD difference equations

 DIELC = ones(Nx, Ny, Nz); % 3D Permittivity array on

half grid (cube centers)

110

 MAGNC = ones(Nx+1, Ny+1, Nz+1); % 3D Permeability array on

integer grid (cube nodes)
 SIGMAEC = zeros(Nx, Ny, Nz); % 3D Electric conductivity

array on half grid (cube centers)
 SIGMAMC = zeros(Nx+1, Ny+1, Nz+1); % 3D Magnetic conductivity

array on integer grid (cube nodes)

 if ~isempty(custom)

 eps_body = 50;
 sig_body = 0.5;

 DIELC = DIELC + (eps_body-1)*DIELext;

 SIGMAEC = SIGMAEC + sig_body*DIELext;
 end

 for m = 1:length(Objects)
 if (~Ismet(m))&(~Isport(m))

 indX = N1X(m):N2X(m);

 indY = N1Y(m):N2Y(m);
 indZ = N1Z(m):N2Z(m);

 DIELC(indX(1:end-1), indY(1:end-1), indZ(1:end-1)) = Eps(m);

 MAGNC(indX(1:end-1), indY(1:end-1), indZ(1:end-1)) = Mu(m);

 SIGMAEC(indX(1:end-1), indY(1:end-1), indZ(1:end-1))= SigE(m);

 SIGMAMC(indX(1:end-1), indY(1:end-1), indZ(1:end-1))= SigM(m);

 end
 end

 IndM = unique(IndM, 'rows');
 IndE = unique(IndE, 'rows');

 for m = 1:length(IndM)

 i1 = IndM(m, 1);

 i2 = IndM(m, 2);
 i3 = IndM(m, 3);

 MAGNC(i1, i2, i3) = factorMU*MAGNC(i1, i2, i3);
 end

 for m = 1:length(IndE)

111

 i1 = IndE(m, 1);
 i2 = IndE(m, 2);
 i3 = IndE(m, 3);

 DIELC(i1, i2, i3) = factorEPS*DIELC(i1, i2, i3);
 end

 DIELC = DIELC*eps0; MAGNC = MAGNC*mu0;

 % Fill out dielectric field arrays for every brick with taking into

 % account boundary smoothing: epsilon/sigma for Ex, Ey, Ez on the

 % edge of the grid are averaged over four bricks sharing the same

 % edge

 % Arrays for Ex

 Dtemp = eps0*ones(Nx, Ny+1, Nz+1); Stemp = zeros(Nx, Ny+1, Nz+1);

 nx = 1:Nx; ny = 2:Ny; nz = 2:Nz;
 Dtemp(:, ny, nz) = (DIELC(:, ny, nz) + DIELC(:, ny-1, nz) + DIELC(:,

ny, nz-1) + DIELC(:, ny-1, nz-1))/4;

 Stemp(:, ny, nz) = (SIGMAEC(:, ny, nz) + SIGMAEC(:, ny-1, nz) +

SIGMAEC(:, ny, nz-1) + SIGMAEC(:, ny-1, nz-1))/4;

 Ex1 = (1 - dt*Stemp./(2*Dtemp))./(1 + dt*Stemp./(2*Dtemp));

 Ex2 = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp));
 Ex3 = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp));

 Ex1 = Ex1(nx, ny, nz);
 Ex2 = Ex2(nx, ny, nz);

 Ex3 = Ex3(nx, ny, nz);

 % Arrays for Ey
 Dtemp = eps0*ones(Nx+1, Ny, Nz+1);

 Stemp = zeros(Nx+1, Ny, Nz+1);

 nx = 2:Nx; ny = 1:Ny; nz = 2:Nz;

 Dtemp(nx, :, nz) = (DIELC(nx, :, nz) + DIELC(nx-1, :, nz) + DIELC(nx,

:, nz-1) + DIELC(nx-1, :, nz-1))/4;

 Stemp(nx, :, nz) = (SIGMAEC(nx, :, nz) + SIGMAEC(nx-1, :, nz) +

SIGMAEC(nx, :, nz-1) + SIGMAEC(nx-1, :, nz-1))/4;

112

 Ey1 = (1 - dt*Stemp./(2*Dtemp))./(1 + dt*Stemp./(2*Dtemp));
 Ey2 = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp));
 Ey3 = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp));

 Ey1 = Ey1(nx, ny, nz);
 Ey2 = Ey2(nx, ny, nz);

 Ey3 = Ey3(nx, ny, nz);

 % Arrays for Ez

 Dtemp = eps0*ones(Nx+1, Ny+1, Nz);
 Stemp = zeros(Nx+1, Ny+1, Nz);

 nx = 2:Nx; ny = 2:Ny; nz = 1:Nz;

 Dtemp(nx, ny, :) = (DIELC(nx, ny, :) + DIELC(nx-1, ny, :) + DIELC(nx,

ny-1, :) + DIELC(nx-1, ny-1, :))/4;
 Stemp(nx, ny, :) = (SIGMAEC(nx, ny, :) + SIGMAEC(nx-1, ny, :) +

SIGMAEC(nx, ny-1, :) + SIGMAEC(nx-1, ny-1, :))/4;

 Ez1 = (1 - dt*Stemp./(2*Dtemp))./(1 + dt*Stemp./(2*Dtemp));

 Ez2 = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp));
 Ez3 = (dt./(d*Dtemp))./(1 + dt*Stemp./(2*Dtemp));

 Ez1 = Ez1(nx, ny, nz);

 Ez2 = Ez2(nx, ny, nz);

 Ez3 = Ez3(nx, ny, nz);

 % Fill out magnetic field arrays for every brick with taking into
 % account boundary smoothing: mu/sigmam for Hx, Hy, Hz on the

 % face of the grid are averaged over four face nodes
 % Arrays for Hx
 Htemp = mu0*ones(Nx+1, Ny, Nz); Stemp = zeros(Nx+1, Ny, Nz);

 ny = 1:Ny; nz = 1:Nz;

 Htemp(:, ny, nz) = (MAGNC(:, ny, nz) + MAGNC(:, ny+1, nz) + MAGNC(:,

ny, nz+1) + MAGNC(:, ny+1, nz+1))/4;
 Stemp(:, ny, nz) = (SIGMAMC(:, ny, nz) + SIGMAMC(:, ny+1, nz) +

SIGMAMC(:, ny, nz+1) + SIGMAMC(:, ny+1, nz+1))/4;

 Hx1 = (1 - dt*Stemp./(2*Htemp))./(1 + dt*Stemp./(2*Htemp));

 Hx2 = (dt./(d*Htemp))./(1 + dt*Stemp./(2*Htemp));

113

 % Arrays for Hy

 Htemp = mu0*ones(Nx, Ny+1, Nz); Stemp = zeros(Nx, Ny+1, Nz);
 nx = 1:Nx; nz = 1:Nz;

 Htemp(nx, :, nz) = (MAGNC(nx, :, nz) + MAGNC(nx+1, :, nz) + MAGNC(nx,

:, nz+1) + MAGNC(nx+1, :, nz+1))/4;
 Stemp(nx, :, nz) = (SIGMAMC(nx, :, nz) + SIGMAMC(nx+1, :, nz) +

SIGMAMC(nx, :, nz+1) + SIGMAMC(nx+1, :, nz+1))/4;

 Hy1 = (1 - dt*Stemp./(2*Htemp))./(1 + dt*Stemp./(2*Htemp));

 Hy2 = (dt./(d*Htemp))./(1 + dt*Stemp./(2*Htemp));

 % Arrays for Hz

 Htemp = mu0*ones(Nx, Ny, Nz+1); Stemp = zeros(Nx, Ny, Nz+1);
 nx = 1:Nx; ny = 1:Ny;

 Htemp(nx, ny, :) = (MAGNC(nx, ny, :) + MAGNC(nx+1, ny, :) +

MAGNC(nx, ny+1, :) + MAGNC(nx+1, ny+1, :))/4;
 Stemp(nx, ny, :) = (SIGMAMC(nx, ny, :) + SIGMAMC(nx+1, ny, :) +

SIGMAMC(nx, ny+1, :) + SIGMAMC(nx+1, ny+1, :))/4;

 Hz1 = (1 - dt*Stemp./(2*Htemp))./(1 + dt*Stemp./(2*Htemp));
 Hz2 = (dt./(d*Htemp))./(1 + dt*Stemp./(2*Htemp));

 clear Dtemp Htemp Stemp;

 % Difference coefficients for ports (at load terminations)
 % Averaging follows the E-field scheme
 for m = 1:M

 if PortDir(m)==1
 diel(m) = (DIELC(PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1))

+ ...

 DIELC(PortIndX(m,1), PortIndY(m,1)-1,

PortIndZ(m,1)) + ...

 DIELC(PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1)-

1) + ...

114

 DIELC(PortIndX(m,1), PortIndY(m,1)-1,

PortIndZ(m,1)-1))/4;
 end

 if PortDir(m)==2
 diel(m) = (DIELC(PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1))

+ ...

 DIELC(PortIndX(m,1)-1, PortIndY(m,1),

PortIndZ(m,1)) + ...

 DIELC(PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1)-

1) + ...
 DIELC(PortIndX(m,1)-1, PortIndY(m,1),

PortIndZ(m,1)-1))/4;

 end

 if PortDir(m)==3

 diel(m) = (DIELC(PortIndX(m,1), PortIndY(m,1), PortIndZ(m,1))

+ ...

 DIELC(PortIndX(m,1)-1, PortIndY(m,1),

PortIndZ(m,1)) + ...

 DIELC(PortIndX(m,1), PortIndY(m,1)-1,

PortIndZ(m,1)) + ...

 DIELC(PortIndX(m,1), PortIndY(m,1)-1,

PortIndZ(m,1)))/4;

 end

 sigma(m) = PortLength(m)*d/(d*d*PortImpedance(m));
 end

%% Constructor4
AntI = zeros(M, M, length(t)); % antenna currents for all ports
AntV = zeros(M, M, length(t)); % antenna voltages for all ports

Z = zeros(length(findex), M, M); % port impedance matrix in

frequency domain (at all frequencies)
T = linspace(0, 1/ftemp(1), 100); % Fourier integration for CW

excitation

% Port voltages and currents in time/frequency domain

VG = zeros(M, length(t));

115

if length(f) >1 % Port voltages for pulse excitation
 for m = 1:M
 Xscan = (ColNo(m)-1)*xscan/180*pi;

 Yscan = (RowNo(m)-1)*yscan/180*pi;
 for n = 1:length(findex)

 tdelay = (Xscan + Yscan)/(2*pi*ftemp(n));

 VoltageAmpl = abs(PortVoltage(m));
 VoltagePhase = angle(PortVoltage(m));

 VGdelay = VoltageAmpl*sin(2*pi*ftemp(n)*t + VoltagePhase -

Xscan - Yscan);
 VGdelay(find(t<tdelay)) = 0;
 taper = exp(-4*((t-1/ftemp(1)-tdelay)*ftemp(1)).^2); %

amplitude taper based on the lowest band frequency; variations are possible

 taper(find(t<tdelay)) = 0;

 VG(m, :) = VG(m, :) + VGdelay.*taper; % generator

voltages for every port

 end

 end

 VG = VG/length(findex); % normalize

else % port voltages for CW excitation

 for m = 1:M
 Xscan = (ColNo(m)-1)*xscan/180*pi;

 Yscan = (RowNo(m)-1)*yscan/180*pi;

 tdelay = (Xscan + Yscan)/(2*pi*ftemp(1));
 VoltageAmpl = abs(PortVoltage(m));
 VoltagePhase = angle(PortVoltage(m));

 VGdelay = VoltageAmpl*sin(2*pi*ftemp(1)*t + VoltagePhase

+ Xscan + Yscan);

 VGdelay(find(t<tdelay)) = 0;

 taper = 1- exp(-4*(t-tdelay).^2*f(1)^2);
 taper(find(t<tdelay)) = 0;
 VG(m, :) = VGdelay.*taper; % generator

voltages for every port
 end
end

116

%% FDTD-marching

% FDTD method - marching on in time
close gcf;

if fields

 scrsz = get(0,'ScreenSize');
 a=figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);

 POSF = get(a, 'Position');

 colormap(jet(128));
end

% Allocate (clear) field matrices

ExP = zeros(Nx , Ny+1, Nz+1);

EyP = zeros(Nx+1, Ny , Nz+1);

EzP = zeros(Nx+1, Ny+1, Nz);
HxP = zeros(Nx+1, Ny , Nz);

HyP = zeros(Nx , Ny+1, Nz);

HzP = zeros(Nx , Ny , Nz+1);
ExN = zeros(Nx , Ny+1, Nz+1);

EyN = zeros(Nx+1, Ny , Nz+1);

EzN = zeros(Nx+1, Ny+1, Nz);

HxN = zeros(Nx+1, Ny , Nz);

HyN = zeros(Nx , Ny+1, Nz);

HzN = zeros(Nx , Ny , Nz+1);

ExPP = zeros(Nx , Ny+1, Nz+1);
EyPP = zeros(Nx+1, Ny , Nz+1);
EzPP = zeros(Nx+1, Ny+1, Nz);

% Allocate (clear) boundary matrixes

if length(ftemp)==1

 KTrack = floor(1/dt/ftemp(1))+ 2; % one last period (a bit over)

 Eyleft = zeros(KTrack, Ny , Nz+1);

 Ezleft = zeros(KTrack, Ny+1, Nz);

117

 Hyleft = zeros(KTrack, Ny+1, Nz);
 Hzleft = zeros(KTrack, Ny , Nz+1);

 Eyright = zeros(KTrack, Ny , Nz+1);

 Ezright = zeros(KTrack, Ny+1, Nz);

 Hyright = zeros(KTrack, Ny+1, Nz);
 Hzright = zeros(KTrack, Ny , Nz+1);

 Exfront = zeros(KTrack, Nx , Nz+1);

 Ezfront = zeros(KTrack, Nx+1, Nz);

 Hxfront = zeros(KTrack, Nx+1, Nz);

 Hzfront = zeros(KTrack, Nx , Nz+1);

 Exback = zeros(KTrack, Nx , Nz+1);
 Ezback = zeros(KTrack, Nx+1, Nz);

 Hxback = zeros(KTrack, Nx+1, Nz);

 Hzback = zeros(KTrack, Nx , Nz+1);

 Exbottom = zeros(KTrack, Nx , Ny+1);

 Eybottom = zeros(KTrack, Nx+1, Ny);

 Hxbottom = zeros(KTrack, Nx+1, Ny);
 Hybottom = zeros(KTrack, Nx , Ny+1);

 Extop = zeros(KTrack, Nx , Ny+1);
 Eytop = zeros(KTrack, Nx+1, Ny);

 Hxtop = zeros(KTrack, Nx+1, Ny);
 Hytop = zeros(KTrack, Nx , Ny+1);

 ExtopP = zeros(KTrack, Nx , Ny+1);
 EytopP = zeros(KTrack, Nx+1, Ny);
 HxtopP = zeros(KTrack, Nx+1, Ny);

 HytopP = zeros(KTrack, Nx , Ny+1);

end

% Main FDTD loop - "bootstrapping" (initial conditions are zeros)

118

kt = 2; s = 1;
E = zeros(1, KT);
tic

while kt <= KT
 if kt/KT>=0.05*s

 s = s +1;

 disp(strcat('FDTD is running - ', num2str(100*kt/KT, '%4.0f'), '%

done'));

 end

 %% E-field update (everywhere except on the boundary; (45% of time))
 ExN(:,2:Ny,2:Nz) = Ex1.*ExP(:,2:Ny,2:Nz) + Ex2.*(diff(HzP(:,:,2:Nz),1,2)

- diff(HyP(:,2:Ny,:),1,3));

 EyN(2:Nx,:,2:Nz) = Ey1.*EyP(2:Nx,:,2:Nz) + Ey2.*(diff(HxP(2:Nx,:,:),1,3)

- diff(HzP(:,:,2:Nz),1,1));

 EzN(2:Nx,2:Ny,:) = Ez1.*EzP(2:Nx,2:Ny,:) + Ez2.*(diff(HyP(:,2:Ny,:),1,1)

- diff(HxP(2:Nx,:,:),1,2));

 %% FDTD_abc1: radiation BCs (Mur 1981, first order, homogeneous

material)

 abc_murfirst;

 % abc_mursecond;

 %% FDTD-terminal

 % Port updates (through the E-field)
 % Terminal model (fills network arrays [mm, mm, kt])

 for m = 1:M

 cond = sigma(m)*TerminationY(RowNo(m), ColNo(m));
 es1(m) = (1 - dt*cond/(2*diel(m)))/(1 + dt*cond/(2*diel(m)));
 es2(m) = (dt/(d*diel(m)))/(1 + dt*cond/(2*diel(m)));

 es3(m) = (dt*cond/(d*diel(m)))/(1 + dt*cond/(2*diel(m)));
 if PortDir(m) == 1 % port along the x-axis

 temp = nonzeros(PortIndX(m, :));

 CellsPerPort = length(temp);
 for k = 1:CellsPerPort

 k_e = PortIndX(m, k);

 m_e = PortIndY(m, 1);

119

 p_e = PortIndZ(m, 1);
 ExN(k_e, m_e, p_e) = es1(m) * ExP(k_e, m_e, p_e)+ ...
 es2(m) *(HzN(k_e, m_e, p_e) - HzN(k_e,

m_e-1, p_e) - HyN(k_e, m_e, p_e) + HyN(k_e, m_e, p_e-1))- ...
 es3(m) *(VG(m, kt) + VG(m, kt-

1))/(2*CellsPerPort);

 end
 AntV(m, m, kt) = -d*sum(ExN(PortIndX(m, 1:CellsPerPort), m_e,

p_e));

 end
 if PortDir(m) == 2 % port along the y-axis
 temp = nonzeros(PortIndY(m, :));

 CellsPerPort = length(temp);

 for k = 1:CellsPerPort

 k_e = PortIndX(m, 1);
 m_e = PortIndY(m, k);

 p_e = PortIndZ(m, 1);

 EyN(k_e, m_e, p_e) = es1(m) * EyP(k_e, m_e, p_e)+ ...

 es2(m) *(HxN(k_e, m_e, p_e) - HxN(k_e,

m_e, p_e-1) - HzN(k_e, m_e, p_e) + HzN(k_e-1, m_e, p_e))- ...

 es3(m) *(VG(m, kt) + VG(m, kt-

1))/(2*CellsPerPort);

 end

 AntV(m, m, kt) = -d*sum(EyN(k_e, PortIndY(m, 1:CellsPerPort),

p_e));
 end

 if PortDir(m) == 3 % port along the z-axis
 temp = nonzeros(PortIndZ(m, :));

 CellsPerPort = length(temp);

 for k = 1:CellsPerPort
 k_e = PortIndX(m, 1);
 m_e = PortIndY(m, 1);

 p_e = PortIndZ(m, k);
 EzN(k_e, m_e, p_e) = es1(m) * EzP(k_e, m_e, p_e)+ ...
 es2(m) *(HyN(k_e, m_e, p_e) - HyN(k_e-

1, m_e, p_e) - HxN(k_e, m_e, p_e) + HxN(k_e, m_e-1, p_e))- ...

120

 es3(m) *(VG(m, kt) + VG(m, kt-

1))/(2*CellsPerPort);
 end

 AntV(m, m, kt) = -d*sum(EzN(k_e, m_e, PortIndZ(m,

1:CellsPerPort)));

 end

 AntI(m, m, kt) = -(AntV(m, m, kt)- VG(m,

kt))/PortImpedance(m)*TerminationY(RowNo(m), ColNo(m));

 AntV(m, m, kt) = (AntV(m, m, kt) + AntV(m, m, kt-1))/2; % at half

grid in time - optional
 AntI(m, m, kt) = (AntI(m, m, kt) + AntI(m, m, kt-1))/2; % at half

grid in time - optional

 end

 %% Boundary conditions -metal

 ExN = MetalX.*ExN;
 EyN = MetalY.*EyN;

 EzN = MetalZ.*EzN;

 %% H-field update (everywhere, 35% of time)

 HxN = Hx1.*HxP + Hx2.*(diff(EyN,1,3)- diff(EzN,1,2));

 HyN = Hy1.*HyP + Hy2.*(diff(EzN,1,1)- diff(ExN,1,3));

 HzN = Hz1.*HzP + Hz2.*(diff(ExN,1,2)- diff(EyN,1,1));

 %% Superabsorption

 abc_super;

 %% Impedance matrix
 if length(findex)>1

 % FDTD-network - pulse

 % Phasor calculations for pulse excitation

 for m = 1:M
 if ((kt-2)*dt)> (1/f(1)) %

at least one period detected at the lowest frequency
 AntennaV = squeeze(AntV(m, m, :)); %

voltage in time domain

121

 if TerminationY(RowNo(m), ColNo(m))==0 %

standard impedance or active impedance
 mm = find(abs(PortVoltage)>0);

 AntennaI = squeeze(AntI(mm, mm, :)); %

current in time domain

 else

 AntennaI = squeeze(AntI(m, m, :)); %

current in time domain

 end

 AntennaVFFT = fft(AntennaV, NFFT); %

FFT of voltage
 AntennaIFFT = fft(AntennaI, NFFT); %

FFT of current

 for n = 1:length(findex)

 Z(n, m, m) =

AntennaVFFT(findex(n))/AntennaIFFT(findex(n));

 end

 end

 end

 else

 % FDTD-network-CW
 % Phasor calculations (using Fourier coefficients for fundamental

frequency)

 % mm - driven port number (from fdtd_marching)
 % m - other port number (local)
 for m = 1:M

 if ((kt-2)*dt)> (1/ftemp) %

at least one period detected

 index = kt-round(1/dt/f(1))-1:1:kt; %

window covering one period
 tempt = t(index)-t(index(1));
 omega = 2*pi*ftemp; %

radian frequency
 % Voltage phasor
 AntennaV = squeeze(AntV(m, m, index));

 AntennaV = interp1(tempt, AntennaV, T,'linear');

122

 func = AntennaV.*exp(-j*omega*T); %

integrand for Fourier coefficients
 VPhasor(m, m) = (1/length(T))*(sum(func)-0.5*func(1)-

0.5*func(end));
 %

trapezoidal

 %

integration (1/T*int(exp(-j*omega*t)*f))

 % Current phasor

 AntennaI = squeeze(AntI(m, m, index));
 AntennaI = interp1(tempt, AntennaI, T,'linear');
 func = AntennaI.*exp(-j*omega*T); %

integrand for Fourier coefficients

 IPhasor(m, m) = (1/length(T))*(sum(func)-0.5*func(1)-

0.5*func(end));
 %

trapezoidal

 %

integration (1/T*int(exp(-j*omega*t)*f))

 end

 end
 % Once all currents/voltages have been found->Z

 for m = 1:M

 if ((kt-2)*dt)> (1/ftemp) % at

least one period detected
 if TerminationY(RowNo(m), ColNo(m))==0 %

standard impedance or active impedance
 mm = find(abs(PortVoltage)>0);

 Z(1, m, m) = VPhasor(m, m)/IPhasor(mm, mm);

 else
 Z(1, m, m) = VPhasor(m, m)/IPhasor(m, m);
 end

 end
 end
 end

123

 %% Plotter1
 % Scale/plot fields and port voltages
 if fields

 % Real-time figure
 % Subdivide the window (a plot for each port)

 % Fields in the xz-plane (or in any other plane)

 if M<=9
 sp1 = subplot(M, 2, [1:2:2*M-1]);

 POSS1 = get(sp1, 'Position');

 end
 if component == 1 % plot Ex
 string0 = 'Electric field E_x at t=';

 if rem(Ny, 2)>0 % Ny is odd

 output = 0.25*(ExN(:, (Ny+1)/2, 1:end-1) + ...

 ExN(:, (Ny+1)/2+1, 1:end-1) + ...
 ExN(:, (Ny+1)/2, 2:end) + ...

 ExN(:, (Ny+1)/2+1, 2:end));

 else % Ny is even

 output = 0.50*(ExN(:, Ny/2+1, 1:end-1) + ...

 ExN(:, Ny/2+1, 2:end));

 end
 end

 if component == 2 % plot Ey

 string0 = 'Electric field E_y at t=';
 if rem(Ny, 2)>0 % Ny is odd
 output = 0.25*(EyN(:, (Ny+1)/2, 1:end-1) + ...

 EyN(:, (Ny+1)/2+1, 1:end-1) + ...
 EyN(:, (Ny+1)/2, 2:end) + ...

 EyN(:, (Ny+1)/2+1, 2:end));

 else % Ny is even
 output = 0.50*(EyN(:, Ny/2+1, 1:end-1) + ...

 EyN(:, Ny/2+1, 2:end));

 end
 output = 0.50*(output(1:end-1, :,:) + output(2:end, :,:));
 end

 if component == 3 % plot Ez

124

 string0 = 'Electric field E_z at t=';
 if rem(Ny, 2)>0 % Ny is odd
 output = 0.25*(EzN(1:end-1, (Ny+1)/2, :) + ...

 EzN(1:end-1, (Ny+1)/2+1, :) + ...
 EzN(2:end, (Ny+1)/2, :) + ...

 EzN(2:end, (Ny+1)/2+1, :));

 else % Ny is even
 output = 0.50*(EzN(1:end-1, Ny/2+1, :) + ...

 EzN(2:end, Ny/2+1, :));

 end
 end
 if component == 4 % plot Hx

 string0 = 'Magnetic field H_x at t=';

 if rem(Ny, 2)>0 % Ny is odd

 output = 0.5* (HxN(:, (Ny+1)/2, :) + ...
 HxN(:, (Ny+1)/2+1,:));

 else % Ny is even

 output = HxN(:, Ny/2+1, :);

 end

 output = 0.50*(output(1:end-1, :,:) + output(2:end, :,:));

 end
 if component == 5 % plot Hy

 string0 = 'Magnetic field H_y at t=';

 if rem(Ny, 2)>0 % Ny is odd
 output = 0.5* (HyN(:, (Ny+1)/2, :) + ...
 HyN(:, (Ny+1)/2+1,:));

 else % Ny is even
 output = HyN(:, Ny/2+1, :);

 end

 end
 if component == 6 % plot Hz
 string0 = 'Magnetic field H_z at t=';

 if rem(Ny, 2)>0 % Ny is odd
 output = 0.5* (HzN(:, (Ny+1)/2, :) + ...
 HzN(:, (Ny+1)/2+1,:));

 else % Ny is even

125

 output = HzN(:, Ny/2+1, :);
 end
 output = 0.50*(output(:, :,1:end-1) + output(:, :,2:end));

 end
 output = squeeze(output); output = abs(output).^power.*sign(output);

 output = interp2(output, 3); output(1) = +scale; output(end)=-scale;

 imagesc([x(1)+D/2 x(end)-D/2], [z(1)+D/2 z(end)-D/2], output'); %

this function removes all old patches

 for m = 1:length(W)

 Wtemp = W;
 if Ismet(m)
 viewer(W(m), H(m), L(m), XCtemp(m), ZCtemp(m),

YCtemp(m), Color(m, :), 0.5, 1.5, 'k');

 elseif Isline(m)

 viewer(W(m), H(m), L(m), XCtemp(m), ZCtemp(m),

YCtemp(m), Color(m, :), 0.5, 0.25, 'k');

 else

 viewer(W(m), H(m), L(m), XCtemp(m), ZCtemp(m),

YCtemp(m), Color(m, :), 0.5, 0.5, 'k');

 end

 end
 if ~isempty(custom)

 patch(Xshape, Zshape, Yshape, 'w','EdgeColor',[0.75 0.75 0.75],

'FaceAlpha', 0.1);
 end
 string = strcat(num2str(1e9*t(kt)), ' ns');

 axis 'equal'; axis 'tight', set(gca,'YDir','normal');
 xlabel('x, mm'); ylabel('z, mm');

 title(strcat(string0, string));

 % Port voltages
 for m = 1:M

 if M<=9

 subplot(M, 2, 2*m);

 time = t(1:kt);
 GeneratorV = VG(m, 1:kt);

126

 AntennaV = squeeze(AntV(m, m, 1:kt));
 string1 = strcat('Port#', num2str(RowNo(m)),

num2str(ColNo(m)));

 string2 = num2str(mean(Z(:, m, m)), '%5.1f');
 plot(time*1e9, GeneratorV, 'b', time*1e9, AntennaV, 'r'); grid

on;

 xlabel('time, ns', 'FontSize', 7); ylabel('volts', 'FontSize',

7); set(gca,'FontSize',7);

 title (strcat(string1, ': Vg-blue; Va-red, Z=', string2),

'FontSize', 7);
 end
 end

 drawnow;

 end

 %% Accumulate fields on the faces (half a step offsetted from the

boundaries) over one last period

 if length(ftemp)==1

 if kt>KT-KTrack

 index = kt -(KT-KTrack);

 Eyleft(index, :, :)= (EyN(1, :, :)+EyN(2, :, :))/2;

 Ezleft(index, :, :)= (EzN(1, :, :)+EzN(2, :, :))/2;
 Hyleft(index, :, :)= HyN(1, :, :);

 Hzleft(index, :, :)= HzN(1, :, :);

 Eyright(index, :, :)= (EyN(end, :, :)+EyN(end-1, :, :))/2;

 Ezright(index, :, :)= (EzN(end, :, :)+EzN(end-1, :, :))/2;
 Hyright(index, :, :)= HyN(end, :, :);
 Hzright(index, :, :)= HzN(end, :, :);

 Exfront(index, :, :)= permute((ExN(:, 1, :)+ExN(:, 2, :))/2, [2 1

3]);

 Ezfront(index, :, :)= permute((EzN(:, 1, :)+EzN(:, 2, :))/2, [2 1

3]);

 Hxfront(index, :, :)= permute(HxN(:, 1, :), [2 1 3]);
 Hzfront(index, :, :)= permute(HzN(:, 1, :), [2 1 3]);

127

 Exback(index, :, :)= permute((ExN(:, end, :)+ExN(:, end-1, :))/2,

[2 1 3]);
 Ezback(index, :, :)= permute((EzN(:, end, :)+EzN(:, end-1, :))/2,

[2 1 3]);

 Hxback(index, :, :)= permute(HxN(:, end, :), [2 1 3]);
 Hzback(index, :, :)= permute(HzN(:, end, :), [2 1 3]);

 Exbottom(index, :, :)= permute((ExN(:, :, 1)+ExN(:, :, 2))/2, [3

1 2]);

 Eybottom(index, :, :)= permute((EyN(:, :, 1)+EyN(:, :, 2))/2, [3

1 2]);

 Hxbottom(index, :, :)= permute(HxN(:, :, 1), [3 1 2]);

 Hybottom(index, :, :)= permute(HyN(:, :, 1), [3 1 2]);

 Extop(index, :, :)= permute((ExN(:, :, end)+ExN(:, :, end-1))/2,

[3 1 2]);
 Eytop(index, :, :)= permute((EyN(:, :, end)+EyN(:, :, end-1))/2,

[3 1 2]);

 Hxtop(index, :, :)= permute(HxN(:, :, end), [3 1 2]);
 Hytop(index, :, :)= permute(HyN(:, :, end), [3 1 2]);

 ExtopP(index, :, :)= permute((ExN(:, :, planeNZ)+ExN(:, :,

planeNZ-1))/2, [3 1 2]);
 EytopP(index, :, :)= permute((EyN(:, :, planeNZ)+EyN(:, :,

planeNZ-1))/2, [3 1 2]);
 HxtopP(index, :, :)= permute(HxN(:, :, planeNZ-1), [3 1 2]);

 HytopP(index, :, :)= permute(HyN(:, :, planeNZ-1), [3 1 2]);
 end

 end

 %% Prepare for the next step

 kt = kt + 1;
 ExPP = ExP; EyPP = EyP; EzPP = EzP;

 ExP = ExN; EyP = EyN; EzP = EzN; HxP = HxN; HyP = HyN; HzP = HzN;
end % end of fdtd marching loop

128

%% Fields phasors on the boundary
if length(ftemp)==1
 tempt = t(1:KTrack) - t(1);

 omega = 2*pi*ftemp; % radian frequency
 % left/right

 [Eyleft] = fc(tempt, T, omega, Eyleft);

 [Hyleft] = fc(tempt, T, omega, Hyleft);
 [Ezleft] = fc(tempt, T, omega, Ezleft);

 [Hzleft] = fc(tempt, T, omega, Hzleft);

 [Eyright] = fc(tempt, T, omega, Eyright);
 [Hyright] = fc(tempt, T, omega, Hyright);
 [Ezright] = fc(tempt, T, omega, Ezright);

 [Hzright] = fc(tempt, T, omega, Hzright);

 % front/back

 [Exfront] = fc(tempt, T, omega, Exfront);
 [Hxfront] = fc(tempt, T, omega, Hxfront);

 [Ezfront] = fc(tempt, T, omega, Ezfront);

 [Hzfront] = fc(tempt, T, omega, Hzfront);

 [Exback] = fc(tempt, T, omega, Exback);

 [Hxback] = fc(tempt, T, omega, Hxback);

 [Ezback] = fc(tempt, T, omega, Ezback);
 [Hzback] = fc(tempt, T, omega, Hzback);

 % top/bottom

 [Exbottom] = fc(tempt, T, omega, Exbottom);
 [Hxbottom] = fc(tempt, T, omega, Hxbottom);
 [Eybottom] = fc(tempt, T, omega, Eybottom);

 [Hybottom] = fc(tempt, T, omega, Hybottom);
 [Extop] = fc(tempt, T, omega, Extop);

 [Hxtop] = fc(tempt, T, omega, Hxtop);

 [Eytop] = fc(tempt, T, omega, Eytop);
 [Hytop] = fc(tempt, T, omega, Hytop);
 % observation plane

 [ExtopP] = fc(tempt, T, omega, ExtopP);
 [HxtopP] = fc(tempt, T, omega, HxtopP);
 [EytopP] = fc(tempt, T, omega, EytopP);

 [HytopP] = fc(tempt, T, omega, HytopP);

129

end

clear ExPP EyPP EzPP ExP EyP EzP HxP HyP HzP ExN EyN EzN HxN HyN HzN;
clear Ex1 Ey1 Ez1 Ex2 Ey2 Ez2 Ex3 Ey3 Ez3 Hx1 Hy1 Hz1 Hx2 Hy2 Hz2 DIELC MAGNC

SIGMAEC SIGMAMC MetalX MetalY MetalZ;

clear AntennaIFFT AntennaVFFT fFFT

toc
save output;

abc_murfirst.m

%% Radiation BCs (Mur 1981, first order)

% Copyright Greg Noetscher/SNM Spring 2011

% Mur 1st order ABCs are implemented on each face of the domain

m1 = (c0*dt - d)/(c0*dt + d);

% Left

EyN(1, :,:) = EyP(2,:,:) + m1*(EyN(2,:,:) - EyP(1,:,:)); % left -

Ey;

EzN(1, :,:) = EzP(2,:,:) + m1*(EzN(2,:,:) - EzP(1,:,:)); % left -

Ez;
% Right

EyN(Nx+1, :,:)= EyP(Nx,:,:) + m1*(EyN(Nx, :,:) - EyP(Nx+1,:,:)); % right

- Ey;
EzN(Nx+1, :,:)= EzP(Nx,:,:) + m1*(EzN(Nx, :,:) - EzP(Nx+1,:,:)); % right

- Ez;

% Front
ExN(:, 1,:) = ExP(:,2,:) + m1*(ExN(:,2,:) - ExP(:,1,:)); % front

- Ex;

EzN(:, 1,:) = EzP(:,2,:) + m1*(EzN(:,2,:) - EzP(:,1,:)); % front

- Ez;

% Rear
ExN(:, Ny+1,:)= ExP(:,Ny,:) + m1*(ExN(:,Ny,:) - ExP(:,Ny+1,:)); % rear

- Ex;

130

EzN(:, Ny+1,:)= EzP(:,Ny,:) + m1*(EzN(:,Ny,:) - EzP(:,Ny+1,:)); % rear

- Ey;
% Bottom

ExN(:, :,1) = ExP(:, :,2) + m1*(ExN(:,:,2) - ExP(:,:,1)); %

bottom - Ex;

EyN(:, :,1) = EyP(:, :,2) + m1*(EyN(:,:,2) - EyP(:,:,1)); %

bottom - Ey;
% Top

ExN(:, :, Nz+1)= ExP(:,:,Nz) + m1*(ExN(:,:,Nz) - ExP(:,:,Nz+1)); % top -

Ex;
EyN(:, :, Nz+1)= EyP(:,:,Nz) + m1*(EyN(:,:,Nz) - EyP(:,:,Nz+1)); % top -

Ex;

abc_super.m

%% FDTD-superabsorption
% Super ABCs for H (Mei 1992, for Mur's first order BCs only)

% Copyright SNM Spring 2011

coeff1 = (c0*dt - d)/(c0*dt + d);
rho = c0*dt/d; RHO = 1 + rho;

% Left

HyN(1,:,:) = (HyN(1,:,:) + rho*(HyP(2,:,:) + coeff1*(HyN(2,:,:) -

HyP(1,:,:))))/RHO; % left - Hy;

HzN(1,:,:) = (HzN(1,:,:) + rho*(HzP(2,:,:) + coeff1*(HzN(2,:,:) -

HzP(1,:,:))))/RHO; % left - Hz;

% Right

HyN(Nx,:,:) = (HyN(Nx,:,:) + rho*(HyP(Nx-1,:,:) + coeff1*(HyN(Nx-1,:,:) -

HyP(Nx,:,:))))/RHO; % right - Hy;
HzN(Nx,:,:) = (HzN(Nx,:,:) + rho*(HzP(Nx-1,:,:) + coeff1*(HzN(Nx-1,:,:) -

HzP(Nx,:,:))))/RHO; % right - Hz;

% Front
HxN(:,1,:) = (HxN(:,1,:) + rho*(HxP(:,2,:) + coeff1*(HxN(:,2,:) -

HxP(:,1,:))))/RHO; % front - Hx;
HzN(:,1,:) = (HzN(:,1,:) + rho*(HzP(:,2,:) + coeff1*(HzN(:,2,:) -

HzP(:,1,:))))/RHO; % right - Hz;
% Rear

131

HxN(:,Ny,:) = (HxN(:,Ny,:) + rho*(HxP(:,Ny-1,:) + coeff1*(HxN(:,Ny-1,:) -

HxP(:,Ny,:))))/RHO; % rear - Hx;
HzN(:,Ny,:) = (HzN(:,Ny,:) + rho*(HzP(:,Ny-1,:) + coeff1*(HzN(:,Ny-1,:) -

HzP(:,Ny,:))))/RHO; % rear - Hz;
% Bottom

HxN(:,:,1) = (HxN(:,:,1) + rho*(HxP(:,:,2) + coeff1*(HxN(:,:,2) -

HxP(:,:,1))))/RHO; % bottom - Hx;
HyN(:,:,1) = (HyN(:,:,1) + rho*(HyP(:,:,2) + coeff1*(HyN(:,:,2) -

HyP(:,:,1))))/RHO; % bottom - Hy;

% Top
HxN(:,:,Nz) = (HxN(:,:,Nz) + rho*(HxP(:,:,Nz-1) + coeff1*(HxN(:,:,Nz-1) -

HxP(:,:,Nz))))/RHO; % top - Hx;

HyN(:,:,Nz) = (HyN(:,:,Nz) + rho*(HyP(:,:,Nz-1) + coeff1*(HyN(:,:,Nz-1) -

HyP(:,:,Nz))))/RHO; % top - Hy;

fc.m

% FDTD MATLAB antenna/array solver (preliminary version)

% Copyright SNM Spring 2011

% FOURIER EXPANSION OF A PERIODIC SIGNAL ON A BOUNDARY
function [FIELD1] = FC(tempt, T, omega, FIELD)

 FIELD = interp1(tempt, FIELD, T,'linear');

 func = FIELD.*repmat(exp(-j*omega*T'), [1, size(FIELD, 2),

size(FIELD, 3)]); % integrand for Fourier coefficients

 FIELD1 = (1/length(T))*squeeze(sum(func, 1)-0.5*func(1,:,:)-

0.5*func(end,:,:)); % trapezoidal integration

end

plot_nearfield.m

% FDTD MATLAB antenna/array solver (preliminary version)

% Copyright SNM Spring 2011
% NEAR FIELD/POYNTING VECTOR PLOT

132

%% Add common phase factor (to better resolve the phases without +/-pi

jumps)
factor = exp(j*pi);

ExtopP = ExtopP*factor;
EytopP = EytopP*factor;

HxtopP = HxtopP*factor;

HytopP = HytopP*factor;

%% Determine which component to plot (dominant component is selected)
tempx = max(max(abs(ExtopP)));

tempy = max(max(abs(EytopP)));

CompE = zeros(Nx, Ny);
CompH = zeros(Nx, Ny);
if tempx>tempy

 for m = 1:Nx

 for n = 1:Ny
 CompE(m ,n) = (ExtopP(m, n)+ExtopP(m, n+1))/2;

 end

 end

else

 for m = 1:Nx

 for n = 1:Ny
 CompE(m, n) = (EytopP(m, n)+EytopP(m+1, n))/2;

 end

 end

end

tempx = max(max(abs(HxtopP)));
tempy = max(max(abs(HytopP)));
if tempx>tempy

 for m = 1:Nx
 for n = 1:Ny
 CompH(m ,n) = (HxtopP(m, n)+HxtopP(m+1, n))/2;

 end

 end

else
 for m = 1:Nx

133

 for n = 1:Ny
 CompH(m, n) = (HytopP(m, n)+HytopP(m, n+1))/2;
 end

 end
end

if tempx>tempy % Hx dominates

 PoyntingP = -0.5*real(CompE.*conj(CompH));
 PoyntingQ = -0.5*imag(CompE.*conj(CompH));

else

 PoyntingP = +0.5*real(CompE.*conj(CompH));
 PoyntingQ = +0.5*imag(CompE.*conj(CompH));
end

%% Plot magnitudes and phases of the near field on the top face (E and H)

scrsz = get(0,'ScreenSize');

figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);
% E-field in the xy-plane

subplot(2, 2, 1);

output = abs(CompE)';

output = interp2(output, 3);

imagesc([x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output);

Dx = (max(x)-min(x))/ColNo(end);
Dy = (max(y)-min(y))/RowNo(end);

for m = 1:length(Objects)

 Transparency = 0.0;

 if Ismet(m)

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');
 else

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');
 end

end

if ~isempty(custom)

 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha',

0.5);

134

end
xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;
title(strcat('E-field magn.(V/m) at z=', num2str(planeZ), 'mm'));

colorbar;

% H-field in the xy-plane
subplot(2, 2, 2);

output = abs(CompH)';

output = interp2(output, 3);
imagesc([x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output);

for m = 1:length(Objects)

 Transparency = 0.0;
 if Ismet(m)
 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');

 else
 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');

 end

end

if ~isempty(custom)

 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha',

0.5);

end

xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;

title(strcat('H-field magn.(A/m) at z=', num2str(planeZ), 'mm'));

colorbar;

% E-field phase in the xy-plane

subplot(2, 2, 3);
output = unwrap(angle(CompE)');

output = interp2(output, 3);

imagesc([x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output);
for m = 1:length(Objects)

 Transparency = 0.0;

 if Ismet(m)

135

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');
 else

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');

 end

end
if ~isempty(custom)

 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha',

0.5);
end
xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;

title(strcat('E-field phase (rad) at z=', num2str(planeZ), 'mm'));

colorbar;

% H-field phase in the xy-plane
subplot(2, 2, 4);

output = unwrap(angle(CompH)');

output = interp2(output, 3);

imagesc([x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output);

for m = 1:length(Objects)

 Transparency = 0.0;
 if Ismet(m)

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');

 else

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');
 end

end
if ~isempty(custom)
 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha',

0.5);

end

xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;
title(strcat('H-field phase (rad) at z=', num2str(planeZ), 'mm'));

136

colorbar;

%% Plot magnitudes of the near field on the top face (P and Q)
scrsz = get(0,'ScreenSize');

figure('Position', [1 0.3*scrsz(4) 0.6*scrsz(3) 0.6*scrsz(4)]);

% Poynting vector in the xy-plane (P)
subplot(1, 2, 1);

output = PoyntingP';

output = interp2(output, 3);
imagesc([x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output);

for m = 1:length(Objects)

 Transparency = 0.0;
 if Ismet(m)
 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');

 else
 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');

 end

end

if ~isempty(custom)

 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha',

0.5);

end

xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;

title(strcat('P=re(ExH*)/2 [W] at z=', num2str(planeZ), 'mm'))

colorbar;

% Poynting vector in the xy-plane (Q)

subplot(1, 2, 2);
output = PoyntingQ';

output = interp2(output, 3);

imagesc([x(1)+D/2 x(end)-D/2], [y(1)+D/2 y(end)-D/2], output);
for m = 1:length(Objects)

 Transparency = 0.0;

 if Ismet(m)

137

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');
 else

 viewer(W(m), L(m), H(m), XCtemp(m), YCtemp(m), ZCtemp(m), Color(m,

:), 0.0, 1, 'k');

 end

end
if ~isempty(custom)

 patch(Xshape, Yshape, Zshape, 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha',

0.5);
end
xlabel('x, mm'); ylabel('y, mm'); axis equal; axis tight;

title(strcat('Q=im(ExH*)/2 [W] at z=', num2str(planeZ), 'mm'))

colorbar;

138

Appendix F: Backpropagation MATLAB Code
clear all

ftemp = 4e9; %% Hz

c0 = 3e8; %% m/s
Domain = 0.75; %% unitless
step = 0.10; %% unitless

d = 0.1*25.4e-3; %% m

deltaZ = -130e-3; %% m

x = (-8:0.5:8)*25.4e-3; %% m

y= (-10:0.5:10)*25.4e-3; %% m

CompEfalse = dlmread('11','\ ',2,0); %%

V/m

CompEfalse = reshape(CompEfalse(:,6)+1i*CompEfalse(:,7),length(x),length(y));

%% V/m

CompEtrue = dlmread('perfect','\ ',2,0);

%% V/m
CompEtrue = reshape(CompEtrue(:,6)+1i*CompEtrue(:,7),length(x),length(y));

%% V/m

CompE=CompEtrue - CompEfalse;

r1 = 0.0; %% Raised cosine window ratio for near field

r2 = 0; %% Raised cosine window ratio for k-space
r3 = 0.5;

%% Define the propagator and window the E-field - raised cosine (r = 0 -

rect)

Nx = size(CompE, 1);
Ny = size(CompE, 2);

139

xw = tukeywin(Nx, r1);
yw = tukeywin(Ny, r1);
Window = xw*yw';

CompEW = CompE.*Window;

%% Introduce the observation plane and domain of integration
[X1, Y1] = meshgrid(x, y); % grid

% spatial harmonics

k = 2*pi*ftemp/c0;

kx = [-Domain*k:step*k:Domain*k];

ky = [-Domain*k:step*k:Domain*k];

dkx = kx(2) - kx(1);

dky = ky(2) - ky(1);

fx = zeros(length(kx), length(ky));
fy = zeros(length(kx), length(ky));

KX_ = kx/k;

KY_ = ky/k;

%% Fourier spectrum
for m = 1:length(kx)

 for n = 1:length(ky)
 argument = kx(m)*X1' + ky(n)*Y1';

 exponent = exp(j*argument);
 temp = CompEW.*exponent; % Ex

 fxy(m, n) = d^2*(sum(sum(temp))-

0.5*(sum(temp(1,:))+sum(temp(end,:))+sum(temp(:,1))+sum(temp(:,end))));
 end

end

%% Windowing the spectrum - raised cosine (r = 0 - rect)

xw = tukeywin(length(kx), r2);
yw = tukeywin(length(ky), r2);

Window = xw*yw';
fxyW = fxy.*Window;

140

%% Back propagation and inverse DFT
KX = zeros(length(kx), length(ky));
KY = zeros(length(kx), length(ky));

KZ = zeros(length(kx), length(ky));
for m = 1:length(kx)

 for n = 1:length(ky)

 KX(m, n) = kx(m);
 KY(m, n) = ky(n);

 temp = kx(m)^2 + ky(n)^2;

 if temp<=k^2
 KZ(m, n) = sqrt(k^2 - temp);
 else

 KZ(m, n) = -j*sqrt(temp - k^2);

 end

 end
end

for m = 1:length(x)

 for n = 1:length(y)

 xtemp = x(m);

 ytemp = y(n);

 ztemp = deltaZ;
 argument = xtemp*KX + ytemp*KY + ztemp*KZ;

 exponent = exp(-j*argument);

 temp = fxyW.*exponent;

 CompEprop(m, n) = 1/(4*pi^2)*dkx^2*(sum(sum(temp))-

0.5*(sum(temp(1,:))+sum(temp(end,:))+sum(temp(:,1))+sum(temp(:,end))));
 end
end

xw = tukeywin(Nx, r3);

yw = tukeywin(Ny, r3);

Window = xw*yw';
CompEprop = CompEprop.*Window;

%% PLOTS

141

scrsz = get(0,'ScreenSize');
figure('Position', [1 0.3*scrsz(4) 0.3*scrsz(3) 0.5*scrsz(4)]);
subplot(1, 2, 1);

imagesc(x,y,interp2((abs(CompEprop')),3));
xlim([-6*25.4e-3 6*25.4e-3]); ylim([-8*25.4e-3 8*25.4e-3]);

patch([-148e-3 -148e-3 148e-3 148e-3]/2,[-148e-3 148e-3 148e-3 -148e-3]/2,[0

0 0 0], 'w','EdgeColor',[0.5 0.5 0.5], 'FaceAlpha', 0.);
patch_spacing = 37e-3;

X_patchi = [-19.4e-3 -19.4e-3 19.4e-3 19.4e-3]/2-3*patch_spacing/2;

Y_patchi = [-19.4e-3 19.4e-3 19.4e-3 -19.4e-3]/2+3*patch_spacing/2;
for k = 0:3;
 Y_patchi = [-19.4e-3 19.4e-3 19.4e-3 -19.4e-3]/2+3*patch_spacing/2;

 for m = 0:3;

 patch(X_patchi,Y_patchi,zeros(1,4), 'w','EdgeColor',[0.5 0.5 0.5],

'FaceAlpha', 0.);
 Y_patchi=Y_patchi-2*patch_spacing/2;

 end

 X_patchi=X_patchi+2*patch_spacing/2;

end

title('Amplitude'); xlabel('x, m'); ylabel('y, m');

colorbar;
ylim([-200 200]);

subplot(1, 2, 2);

imagesc(x,y,interp2(flipud(180/pi*angle(CompEprop')),3));

patch([-148 -148 148 148],[-148 148 148 -148],[0 0 0 0], 'w','EdgeColor',[0.5

0.5 0.5], 'FaceAlpha', 0.);
patch_spacing = 37;
X_patchi = [-19.4 -19.4 19.4 19.4]-3*patch_spacing;

Y_patchi = [-19.4 19.4 19.4 -19.4]+3*patch_spacing;
for k = 0:3;
 Y_patchi = [-19.4 19.4 19.4 -19.4]+3*patch_spacing;

 for m = 0:3;

 patch(X_patchi,Y_patchi,zeros(1,4), 'w','EdgeColor',[0.5 0.5 0.5],

'FaceAlpha', 0.);
 Y_patchi=Y_patchi-2*patch_spacing;

142

 end
 X_patchi=X_patchi+2*patch_spacing;
end

title('Phase'); xlabel('x, mm'); ylabel('y, m'); axis equal; axis tight;
colorbar;

ylim([-200 200]);

