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Abstract

The goal of this paper is to extend the results of Bayraktar and Young (2006)

on minimizing an individual’s probability of lifetime ruin; i.e. the probability

that the individual goes bankrupt before dying. We consider a scenario in

which the individual is allowed to invest in both a domestic bank account and

a foreign bank account, with the exchange rate between the two currencies

being modeled by geometric Brownian motion. Additionally, we impose the

restriction that the individual is not allowed to borrow money, and assume

that the individual’s wealth is consumed at a constant rate. We derive for-

mulas for the minimum probability of ruin as well as the individual’s optimal

investment strategy. We also give a few numerical examples to illustrate

these results.
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1 Introduction

In the current state of the American economy, it is natural for individuals to

be concerned about their financial well-being in the present as well as in the

future. In particular, some have reason to be concerned about the possibility

of bankruptcy during retirement. In a situation where the American dollar

is a bit weaker or more unstable, it is reasonable to suppose that some in-

dividuals may be interested in investing in a potentially more stable foreign

currency.

In this paper we begin to consider an extension of the work of Bayraktar

and Young (2006) in determining how an individual should invest her wealth

in order to minimize the probability that she ruins before death. We focus

on the scenario in which the individual’s rate of consumption is constant and

borrowing constraints are imposed. However, we look at a financial market

model in which the individual has the option of investing some of her wealth

in a domestic bank account and some in a foreign bank account; the risk is

introduced by the random exchange rate between the two currencies.

The Foreign Exchange market is an interesting model to consider. For

some investors, the possibility of trading in a currency market can be more

appealing than trading in a stock exchange. The Foreign Exchange offers

high market liquidity, and has a high trading volume. Margins of profit are

lower than in other, possibly riskier markets, but there is still the potential

for significant earnings. So while not every investor would be interested in

this market, its applications are relevant.
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The most common criterion for optimization problems in financial lit-

erature is the maximization of expected utility of consumption, and there

has been a substantial amount of work done on that subject. Bayraktar and

Young (2006) note that these methods generally depend on a subjective util-

ity function for consumption, whereas minimizing the probability of lifetime

ruin may be more appealing and comprehensible to individuals since that

criterion is more objective. And indeed, this technique has seen increased

application in recent years.

Our work closely follows that of Bayraktar and Young (2006), since our

market model is closely related. We consider only the “no-borrowing” case

with constant consumption; after that, it should not be difficult to see how

the other cases would follow. Before presenting the main results, we review a

few of the definitions and theorems from probability and stochastic calculus,

that the reader may have a suitable reference. Later we give a few numerical

examples to demonstrate our results.
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2 Background

2.1 Probability

To begin with, it would be helpful to establish the setting in which our work

takes place. Specifically, we will assume the existence of a continuous-time

filtered probability space. We will give a brief definition of most of the

relevant fundamental concepts. While this is not strictly necessary, it helps

to assure that the reader is able to follow the reasoning presented in the

paper.

Definition 2.1 (σ-algebra). Let Ω be a nonempty set, and let F be a collec-

tion of subsets of Ω. F is a σ-algebra (also known as a σ-field) on Ω if the

following conditions are satisfied:

• Ω ∈ F

• A ∈ F =⇒ Ac ∈ F

• A1, A2, . . . ∈ F =⇒
⋃∞
i=1Ai ∈ F

Definition 2.2 (Probability measure). Let Ω be a nonempty set, and F a

σ-algebra of subsets of Ω. A probability measure is a function P : F → [0, 1]

such that

• P (Ω) = 1.

• If A1, A2, . . . ∈ F are disjoint, then P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai).
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Definition 2.3 (Probability Space). A triple (Ω,F ,P), consisting of a sam-

ple space Ω, a σ-algebra F on Ω, and a probability measure P on F , is called

a probability space.

Definition 2.4 (Random Variable). Given a probability space (Ω,F ,P), a

random variable is a function X : Ω → R with the property that for any

Borel set B ∈ B, the inverse image X−1 (B) belongs to F .

Definition 2.5 (Measurability). A random variable X is said to be measur-

able with respect to a σ-algebra G (or, X is G-measurable) if for any Borel

set B ∈ B the inverse image X−1 (B) belongs to G.

These are the basic assumptions of most models in probability. To dis-

cuss results relying on stochastic calculus, we also would like to review the

concepts of filtrations and stopping times.

Definition 2.6 (Filtration). Let (Ω,F ,P) be a probability space, and let T be

a fixed positive number. A continuous filtration is a collection of σ-algebras

with the following properties:

• ∀t ∈ [0, T ] ,∃Ft ⊂ F .

• s ≤ t =⇒ Fs ⊂ Ft

Moreover,
(
Ω,F ,P, {Ft}0≤t≤T

)
is called a filtered probability space.

Definition 2.7 (Stopping Time). A stopping time τ is a random variable

satisfying the following property: ∀t ∈ [0, T ], {ω ∈ Ω : τ (ω) ≤ t} ∈ Ft.
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Definition 2.8 (Stopped σ-algebra). Let
(
Ω,F ,P, {Ft}0≤t≤T

)
be a filtered

probability space, and let τ be a stopping time. The stopped σ-algebra (stopped

at τ) is defined as:

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft}.

2.2 Stochastic Calculus

In addition to the material on probability theory, we also provide a reference

for fundamental definitions and theorems in stochastic calculus, as these are

necessary tools in the proofs of our results.

Definition 2.9 (Stochastic Process). A continuous stochastic process is a

collection of random variables {Xt, t ∈ [0, T ]}. For each ω ∈ Ω, Xt (ω) is a

deterministic function called the sample path, or trajectory.

Definition 2.10 (Adaptedness). A stochastic process Xt is said to be adapted

to a filtration {Ft} if for every t, Xt is Ft-measurable.

Definition 2.11 (Càdlàg Process). A stochastic process Xt is called càdlàg

if it has sample paths satisfying the following conditions almost surely:

• Xt (ω) is right-continuous, i.e. limt→a+ Xt (ω) = Xa (ω) for all a.

• Xt (ω) has left-limits, i.e. limt→a− Xt (ω) exists for all a.

The word “càdlàg” is a French acronym, standing for continue à droite,

limitée à gauche, literally “continuous on the left, limited on the right.”
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Definition 2.12 (Conditional Expectation). The conditional expectation of

a random variable X with respect to a σ-algebra G ⊂ F , denoted E [X|G], is

itself a random variable with the following properties:

• E [X|G] is G-measurable.

• ∀A ∈ G,
∫
A
XdP =

∫
A
E [X|G] dP

Definition 2.13 (Martingale). Let
(
Ω,F ,P, {Ft}0≤t≤T

)
be a filtered prob-

ability space. An adapted stochastic process Mt is called a martingale with

respect to Ft if it satisfies the following property:

E [Mt|Fs] = Ms for all 0 ≤ s ≤ t (2.1)

Definition 2.14 (Stopped Process). If X is a stochastic process and τ is a

stopping time, then we can define the stopped process

Xt∧τ =

 Xt if t ≤ τ

Xτ if t > τ
(2.2)

In that case, the stochastic process is said to be “stopped” at time τ . The

stopped process is equal to the original process until time τ , and becomes

constant after that time, equal to the value of Xτ .

A similar notion is the “killed” process, which instead of taking on the

constant value Xτ at its killing time, takes a value ∆ (outside the range of

X) called the “coffin state”.
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Definition 2.15 (Brownian Motion). A standard Brownian motion (or Wiener

process) is a continuous stochastic process Wt with independent increments

which are normally distributed: For all 0 = t0 < t1 < t2 < . . . < tm, the

increments

Wt1 −Wt0 ,Wt2 −Wt1 , . . . ,Wtm −Wtm−1 (2.3)

are independent and normally distributed with mean 0 and variance ti− ti−1.

Definition 2.16 (Itō Integral). The Itō integral
∫ t

0
HsdWs of a càdlàg process

H is defined as:

∫ t

0

HsdWs = lim
n→∞

n∑
i=1

Hti−1

(
Wti −Wti−1

)
. (2.4)

where 0 = t0 < t1 < t2 < . . . < tn is a partition of [0, t], growing finer as n

increases.

Theorem 2.17 (Properties of the Itō Integral). The Itō integral It =
∫ t

0
HsdWs

has the following properties:

• It has continuous sample paths.

• It is Ft-adapted.

• It is a martingale.

• It has quadratic variation [I, I]t =
∫ t

0
H2
sds.

Definition 2.18 (Itō Process). An Itō Process is a stochastic process X of
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the following form:

Xt = X0 +

∫ t

0

µs dWs +

∫ t

0

νs ds (2.5)

where µ and ν are adapted stochastic processes, and X0 is a nonrandom

initial value.

Alternatively, this can be written in the differential form:

dXt = µs dWs + νs ds (2.6)

Also note that the quadratic variation of the Itō process X is given by (in

integral and differential form):

[X,X]t =

∫ t

0

µ2
s ds (2.7)

d [X,X]t = µ2
t dt (2.8)

Theorem 2.19 (Itō’s Formula). Let Xt be an Itō process and let f (t, x) be

a function for which the partial derivatives ft, fx, and fxx are defined and

continuous. Then

f (T,XT ) = f (0, X0) +

∫ T

0

ft (t,Xt) dt+

∫ T

0

fx (t,Xt) dXt

+
1

2

∫ T

0

fxx (t,Xt) d [X,X]t (2.9)

A Poisson process is a stochastic process which takes nonnegative integer

values characterized by a rate parameter λ. It is typically used to model the
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number of events which occur in a given time interval.

Definition 2.20 (Poisson Process). The Poisson process Nt with rate pa-

rameter λ obeys a Poisson distribution with parameter λt:

P (Nt = k) =
(λt)k

k!
e−λt (2.10)

The Poisson process is an example of what is called a “pure jump” pro-

cess. It has stationary, independent increments. Moreover, the times between

successive jumps are independent and follow an exponential distribution with

parameter λ (i.e., an exponential distribution with mean 1/λ).

Theorem 2.21 (Compensated Poisson Process). If Nt is a Poisson process

with rate parameter λ, we define the compensated Poisson process Mt =

Nt − λt. Mt is a martingale.

Definition 2.22 (Jump Process). Let Xt be an Itō process, and let Jt be a

“pure jump” process. That is, Jt is an adapted, càdlàg process with finitely

many jumps on the interval (0, T ], and is constant between jumps. We will

call a process of the following form a jump process:

Yt = Xt + Jt (2.11)

When discussing processes with jumps, Itō’s Formula takes a slightly

altered form.

Theorem 2.23 (Itō’s Formula for Jump Processes). Let Yt be a jump process,

and let f (y) be a function which is twice continuously differentiable. Then
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we have the following:

f (Yt) = f (Y0) +

∫ t

0

f ′ (Ys) dY
c
s +

1

2

∫ t

0

f ′′ (Ys) d [Y, Y ]cs

+
∑

0<s≤t

[f (Ys)− f (Ys−)] (2.12)

Here, the quantity Y c denotes the continuous part of the jump process

Y . If Y is given in the form of (2.11), then Y c = X.
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3 Probability of Lifetime Ruin

We will be considering the problem of minimizing an individual’s probability

of ruin under the condition that borrowing is forbidden. In section 3.1 we

outline the financial market model used in the analysis. In 3.2 we present

and prove the main results.

3.1 Model

We will assume a model in which an individual has the option of investing

in two assets: A domestic bank account B, and a foreign bank account F .

Each of these banks will have its own fixed interest rate, and the exchange

rate X between the two currencies will be modeled by a geometric Brownian

motion. So our assets have the following dynamics:

dB = rdB dt

dF = rfF dt (3.1)

dX = µX dt+ σX dW

where α and σ are constants, and W is a standard Brownian motion. We

will prove a lemma which states that the above formulation is equivalent to

a situation in which the individual is allowed to invest in the domestic bank

account and in a domestic risky asset whose price is given by F̃ = FX.
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Lemma 3.1. The model in (3.1) is equivalent to the following model:

dB = rdB dt

dF̃ = (µ+ rf ) F̃ dt+ σF̃ dW (3.2)

where F̃ = FX.

Proof. The proof follows from the multidimensional version of Itō’s lemma.

The two-dimensional case is as follows: If U and V are Itō processes, and if

f (t, u, v) is a function which is twice continuously differentiable, then

df (t, U, V ) =ft (t, U, V ) dt+ fu (t, U, V ) dU + fv (t, U, V ) dV

+
1

2
fuu (t, U, V ) dUdU +

1

2
fvv (t, U, V ) dV dV (3.3)

+ fuv (t, U, V ) dUdV

where fu denotes the first partial derivative of f with respect to u, and so

on. Using f (t, u, v) = uv, this reduces to

df (t, U, V ) = 0dt+ V dU + UdV + 0dUdU + 0dV dV + 1dUdV

= V dU + UdV + dUdV
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Substituting U = X and V = F , we obtain

dF̃ = FdX +XdF + dXdF

= F (µXdt+ σXdW ) +X (rfFdt) + (µXdt+ σXdW ) (rfFdt)

= F̃ (µdt+ σdW ) + F̃ (rfdt) + 0

And this can be rearranged as

dF̃ = (µ+ rf ) F̃ dt+ σF̃dW (3.4)

So the possibility of investing in the domestic bank B and the foreign bank

F is equivalent to investing in the domestic bank and a domestic asset F̃

with dynamics as given in (3.4).

We will henceforth assume that the individual may act by investing a

portion of her wealth in F̃ , with the remainder invested in B. In this for-

mulation, F̃ can be interpreted as a risky asset while B is a risk-free asset;

we assume that µ + rf > rd (indeed, we are not interested in the problem

otherwise, since no investor should invest in a risky asset with lower expected

return than the risk-free asset).

We will also assume that the individual’s total wealth is continuously

consumed at a constant rate c.

Let Vt denote the wealth of the individual at time t, and denote by πt

the amount she invests in the risky asset F̃ . Then the amount invested in the

risk-free asset B is Vt− πt. Therefore the wealth process obeys the following
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dynamics:

dVt =
πt

F̃t
dF̃t +

(Vt − πt)
Bt

dBt − cdt

⇒ dVt =
πt

F̃t

[
(µ+ rf ) F̃tdt+ σF̃tdWt

]
+

(Vt − πt)
Bt

rdBtdt− cdt

This can be simplified as:

 dVt = [rdVt + (µ+ rf − rd) πt − c] dt+ σπtdWt

V0 = v
(3.5)

We now wish to define what is meant by “lifetime ruin”. We let τ0 denote

the first time that V = 0, and let τd denote the individual’s time of death.

Lifetime ruin is defined as the event in which the wealth process reaches zero

before the individual dies, i.e. the event {τ0 < τd}. Here we will assume that

τd follows an exponential distribution with parameter λ, so that the expected

value of τd is 1/λ (later, we will model this using a Poisson process with rate

parameter λ, since the time between jumps in the Poisson process follows an

exponential distribution).

The minimum probability of ruin will be denoted by ψ (v) (the argu-

ment v indicates that this probability is conditional on V0 = v). So we are

minimizing the probability that τ0 < τd, with respect to the set of admissi-

ble trading strategies (denoted by A). For this paper, we also impose the

restriction that 0 ≤ πt ≤ Vt (i.e. no borrowing or short-selling is possible).
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Therefore the probability ψ (v) is given by:

ψ (v) = inf
π

P [ τ0 < τd |V0 = v ] (3.6)

For each real number α, we can define a second-order differential operator

Lα which is associated with the minimization problem. For each open subset

G of R+ and for each h ∈ C2 (G), define the function Lαh : G → R as

follows:

Lαh (v) = [rdv + (µ+ rf − rd)α− c]h′ (v) +
1

2
σ2α2h′′ (v)− λh (v) (3.7)

The operator Lα will be used in the following sections to characterize ψ in a

compact manner.

3.2 Minimum Probability of Ruin

In this section we will present the verification theorem which states the nec-

essary and sufficient conditions that ψ must satisfy. First, note that when the

individual’s wealth is above c/rd, the probability of lifetime ruin is equal to

0; the individual can invest all of her wealth in the domestic (risk-free) bank

account and consume continuously at rate c with no possibility of running

out of money. To see this, consider the dynamics of the wealth process when

all of the individual’s wealth is invested in the domestic bank:

dVt = rdVtdt− cdt
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In this case, there is no stochastic integral involved; so it can be expressed

as an ordinary differential equation:

dV

dt
= rdV − c

So for all V ≥ c/rd, we have that dV
dt
≥ 0, i.e. there is no chance that the

wealth process will decrease in this situation, let alone reach zero.

Thus in addition to the stopping times τ0 and τd which we already de-

fined, we also introduce the stopping time τc/rd = inf {t > 0 : Vt ≥ c/rd},

that is, the first time that the individual’s wealth reaches c/rd (or more). If

we now define the stopping time τ = τd∧ τc/rd , it follows that we can express

ψ as follows:

ψ (v) = inf
π

P [ τ0 < τ |V0 = v ] (3.8)

We can now present the verification theorem:

Theorem 3.2. Suppose h : R+ → [0, 1] is a decreasing function, and α0 : R+ → R+

which satisfy the following conditions:

(i) h ∈ C2 on [0, c/rd)

(ii) α0 ∈ A

(iii) Lαh (v) ≥ 0, for 0 ≤ α ≤ v < c/rd

(iv) Lα0(v)h (v) = 0, for v ∈ (0, c/rd)

(v) h (0) = 1 and h (v) = 0 for v ≥ c/rd
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Then the minimum probability of lifetime ruin ψ is given by:

ψ (v) = h (v) , v ≥ 0 (3.9)

And the optimal investment strategy π∗ in the risky asset F̃ is given by:

π∗ (v) = α0 (v) , v ∈ [0, c/rd] (3.10)

Proof. Suppose we have h which satisfies the properties stated above. Let

N be a Poisson process (independent of W ) with rate parameter λ. The

stopping time τd will be defined as the time of the first jump of the process

N . Let α be a function on the interval [0, c/rd] with 0 ≤ α(v) ≤ v, and let

V α denote the wealth process under the investment strategy α. We denote

αs = α(V α
s ). We will kill the wealth process at time τd and assign Wτd = ∆,

(the coffin state). Our convention will be that for any function f : R+ → R+,

we let f(∆) = 0. In particular, note that h(c/rd) = 0 and h(V α
τd

) = 0. Using

the wealth process dynamics as stated in 3.5 and Itō’s formula as in 2.23, we

have the following:

h(V α
t∧τ∧τ0)− h(v) =

∫ t∧τ∧τ0

0

h′(V α
s )dV α

s +
1

2

∫ t∧τ∧τ0

0

h′′(V α
s )d[V α, V α]s

+
∑

0<s≤t∧τ∧τ0

[h(V α
s )− h(V α

s−)] (3.11)
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=

∫ t∧τ∧τ0

0

h′(V α
s ){[rdV α

s + (µ+ rf − rd)αs − c]ds+ σαsdWs}

+
1

2

∫ t∧τ∧τ0

0

h′′(V α
s )(σ2α2

s)ds +
∑

0<s≤t∧τ∧τ0

[h(V α
s )− h(V α

s−)] (3.12)

Since the process jumps only at time τd, then the jump at time s can be

expressed as h(V α
s )− h(V α

s−) = −h(V α
s−)∆Ns and so we write

∑
0<s≤t∧τ∧τ0

[h(V α
s )− h(V α

s−)] = −
∫ t∧τ∧τ0

0

h(V α
s−)dNs (3.13)

In order to write the expression in a compact manner, we add and subtract

the term λ
∫ t∧τ∧τ0

0
h(V α

s−) in the right hand side:

h(V α
t∧τ∧τ0) = h(v) +

∫ t∧τ∧τ0

0

{[rdV α
s + (µ+ rf − rd)αs − c]h′(V α

s ) +
1

2
σ2α2

sh
′′(V α

s )}ds

−
∫ t∧τ∧τ0

0

λh(V α
s−)ds+

∫ t∧τ∧τ0

0

σαsh
′(V α

s )dWs

−
∫ t∧τ∧τ0

0

h(V α
s−)dNs + λ

∫ t∧τ∧τ0

0

h(V α
s−)ds (3.14)

So the expression can be simplified to:

h(V α
t∧τ∧τ0) = h(v) +

∫ t∧τ∧τ0

0

Lαh(V α
s )ds+

∫ t∧τ∧τ0

0

σαsh
′(V α

s )dWs

−
∫ t∧τ∧τ0

0

h(V α
s−)d(Ns − λs) (3.15)

Taking the expectation of both sides, the third and fourth terms vanish (it

can be shown that the integrands satisfy sufficient conditions). So, following

18



from assumption (iii) in the theorem statement, we have:

Ev[h(V α
t∧τ∧τ0)] = h(v) + Ev

[∫ t∧τ∧τ0

0

Lαh(V α
s )ds

]
≥ h(v) (3.16)

Here, Ev indicates that the expectation is conditional on V0 = v. Therefore,

the process h(V α
t∧τ∧τ0), t ≥ 0, is a submartingale. Since h(0) = 1, h(V α

τ0∧τ ) =

0, and h(V α
c/rd

), it follows (where 1 denotes the indicator function) that

h(V α
τ0∧τ ) = 1{τα0 <τ}. (3.17)

Now, taking expectations of both sides and applying the optional sampling

theorem gives

Evh(V α
τ0∧τ ) = Pv(τ

α
0 < τ) ≥ h(v), (3.18)

since h(V α
t∧τ∧τ0) is a submartingale. Therefore

inf
α

Pv(τ
α
0 < τ) = ψ(v) ≥ h(v). (3.19)

If we consider α0 as specified in the theorem statement (namely, property

(iv), i.e. α0 is the minimizer of Lαh), then it follows that h(V α0
t∧τ∧τ0) is a

martingale. So we have that

Evh(V α0
τ0∧τ ) = Pv(τ

α0
0 < τ) = h(v). (3.20)

We have therefore shown that the statements in 3.9 and 3.10 are true for
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v ∈ [0, c/rd). Together with the assumption in (v) and the fact that

ψ (v) = infπ∈AP [ τ0 < τ |V0 = v ], the proof is complete.

The forms of the functions h and α are discovered by imposing a few

additional properties that are not stated explicitly in the preceding theorem.

However, because that theorem asserts that the function h is unique on

the interval [0, c/rd), if we find h and α which satisfy the assumptions of

Theorem 3.2 and the additional assumptions, then the additional properties

are implicit.

We make the following additional hypotheses as well: In the constrained

case, we assume that α0 (the amount invested in the foreign bank F̃ ) is a

continuous function of v, and that there exists a wealth level vl such that

v − α0(v) = 0 for v < vl and v − α0(v) > 0 for v > vl. The idea here is that

when the individual has more wealth, it is wiser to invest a portion of it in a

risk-free asset. The subscript l denotes that the individual is, upon reaching

this level, “lending” some amount of money to the domestic bank.

We will consider the intervals [0, vl] and (vl, c/rd] separately. First we

look at the interval (vl, c/rd], and we assume that the borrowing constraint

is non-binding.

Proposition 3.3. Assume that 0 ≤ α0(v) < v on the interval (vl, c/rd]. The

function h has the following form (with β ≥ 1):

h(v) = β
(

1− rd
c
v
)d
, (3.21)
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where

d =
1

2rd

[
(rd + λ+m) +

√
(rd + λ+m)2 − 4rdλ

]
> 1, (3.22)

and

m =
1

2

(
µ+ rf − rd

σ

)2

. (3.23)

The corresponding α0 on (vl, c/rd] is given by:

α0(v) =
µ+ rf − rd

σ2

1

d− 1

(
c

rd
− v
)
. (3.24)

Proof. Items (iii), (iv), (v) of Theorem 3.2 require that we solve

λh(v) = (rdv − c)h′(v) + min
α

[
(µ+ rf − rd)αh′(v) +

1

2
σ2α2h′′(v)

]
(3.25)

with the boundary condition h(c/rd) = 0. We can show that we also have

the boundary condition h′(c/rd) = 0: Consider the solution φ of (3.25)

with λ = 0 (corresponding to the event that the individual never dies).

So h ≤ φ on some interval (c/rd − δ, c/rd], since the probability of ruin be-

fore death is necessarily less than the probability of ruin before infinity (i.e.

P(τ0 < τd) ≤ P(τ0 <∞)). So it is enough to show that φ′(c/rd) = 0, which

would imply h′(c/rd) = 0. Note that φ is a solution to the following (with

φ(c/rd) = 0):

0 = (rdv − c)φ′(v) + min
α

[
(µ+ rf − rd)αφ′(v) +

1

2
σ2α2φ′′(v)

]
(3.26)
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Pestien and Suddherth (1985) showed that the optimal investment strategy

α∗ maximizes (in our case) the quantity:

f(α) =
(µ+ rf − rd)α− (c− rdv)

α2
. (3.27)

By ordinary calculus, it is easily checked that the value of α which maximizes

that expression is α∗ = 2(c−rdv)/(µ+rf−rd). However, we also have (again

from ordinary calculus, this time applied to the minimization problem in

(3.26)) that

α∗(v) = −µ+ rf − rd
σ2

φ′(v)

φ′′(v)
(3.28)

Therefore, for v ∈ (c/rd − δ, c/rd], we have (for some k < 0)

φ′(v) = k(c− rdv)m/rd (3.29)

So we showed that φ′(c/rd) = 0, which implies that h′(c/rd) = 0.

To be consistent with the hypothesis that the borrowing constraint is

non-binding on (vl, c/rd], it must be true that h is convex on (vl, c/rd]. To

see this, note that if h is not convex in some neighborhood of a point v∗ ∈

(vl, c/rd] (i.e. h′′(v) < 0 in that neighborhood), then α0 is as large as possible

on that neighborhood, which contradicts the hypothesis that the borrowing

constraint is non-binding. So we have that h is convex on (vl, c/rd], and can
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therefore consider its Legendre transform h̃:

h̃(u) = min
v

[h(v) + vu] (3.30)

h can be recovered from h̃ by

h(v) = max
u

[h̃(u)− uv] (3.31)

From ordinary calculus, the value of v which minimizes the quantity in (3.30)

is v = (h′)−1(−u) = h̃′(u). Therefore the value of u which maximizes the

expression in (3.31) is u = −h′(v). We can then make substitutions into

(3.25). Using v = h̃′(u), it follows that

h(v) = h̃(u)− uh̃′(u), h′(v) = −u, and h′′(v) = − 1

h̃′′(u)
. (3.32)

Additionally, as in (3.28), we use

α = −µ+ rf − rd
σ2

h′(v)

h′′(v)
(3.33)

Making these substitutions in (3.25) gives

λh(v) = (rdv − c)h′(v)− 1

2

(µ+ rf − rd)2

σ2

(h′(v))2

h′′(v)

⇒ λ[h̃(u)− uh̃′(u)] = (rdh̃
′(u)− c)(−u) +mu2h̃′′(u) (3.34)

Here, m is as given in (3.23). Simplifying further gives the following differ-
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ential equation:

λh̃(u) + (rd − λ)uh̃′(u)−mu2h̃′′(u) = cu (3.35)

The general solution of this

h̃(u) = D1u
B1 +D2u

B2 +
c

r
u (3.36)

where D1 and D2 are constants, and B1 and B2 are the roots of

−λ− (rd − λ+m)B +mB2 = 0, (3.37)

so

B1 =
1

2m

[
(rd − λ+m) +

√
(rd − λ+m)2 + 4λm

]
> 1 (3.38)

B2 =
1

2m

[
(rd − λ+m)−

√
(rd − λ+m)2 + 4λm

]
< 0 (3.39)

Let uc = −h′(c/rd) = 0, so h̃′(0) = c/rd. From the definition of h̃ and

because h(c/rd) = 0, we have at u = uc = 0,

h̃(0) = 0. (3.40)

From this it follows that D2 = 0. We can then use (3.36) and (3.31) to

recover h:

h(v) = max
u

[
D1u

B1 +
c

r
u− vu

]
. (3.41)
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The maximizing value of u here (by ordinary calculus) is:

u =

(
v − c/rd
D1B1

)1/(B1−1)

. (3.42)

Substituting this back into (3.41) gives:

h(v) = D1

(
v − c/rd
D1B1

) B1
B1−1

− (v − c/rd)
(
v − c/rd
D1B1

) 1
B1−1

h(v) =

[
D1

(D1B1)
B1
B1−1

− 1

(D1B1)
1

B1−1

](
− c

rd

) B1
B1−1 (

1− rd
c
u
) B1
B1−1

. (3.43)

And we simplify this by denoting the leading constant quantity by β and

noting that B1

B1−1
= d, so we obtain

h(v) = β
(

1− rd
c
v
)d
. (3.44)

Using this expression for h, the optimal investment strategy α0 is found by

minimizing (using ordinary calculus) the expression:

[
(µ+ rf − rd)αh′(v) +

1

2
σ2α2h′′(v)

]
. (3.45)

And the value of α which minimizes this expression is

α0(v) =
µ+ rf − rd

σ2

1

d− 1

(
c

rd
− v
)
. (3.46)
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Corollary 3.4. The lending level vl takes the following form:

vl =
x

1 + x

c

rd
, (3.47)

where

x =
µ+ rf − rd

σ2

1

d− 1
. (3.48)

Proof. This follows from the assumption that α0 is continuous. Substituting

our value of x into (3.46), and setting α0(vl) = vl, we have

x

(
c

rd
− vl

)
= vl (3.49)

which simplifies to the expression in (3.47).

We therefore have an explicit expression for the lending level vl. Recall

that when wealth lies below this level, all of the wealth should be invested into

the foreign bank. The quantity vl varies nontrivially with changes in most of

the parameters, but there are a few things we can note about its behavior.

For instance, we can see that as c approaches zero, vl also approaches zero;

that is, if we have a low rate of consumption then we should invest most

of our money in the domestic bank. Indeed, this agrees with our intuition.

However, the behavior of vl with respect to the other parameters is more

difficult to analyze.

Next we consider the interval [0, vl], on which α0(v) = v.

Proposition 3.5. Under the assumption that α0(v) = v on [0, vl], the func-
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tion h solves the following:

λh = [(µ+ rf )v − c]h′ +
1

2
σ2v2h′′ (3.50)

with boundary conditions

h(0) = 1 and
h(vl)

h′(vl)
= −1

d

(
c

rd
− vl

)
. (3.51)

Proof. From part (iv) of Theorem 3.2, and with the substitution α0(v) = v

on [0, vl], we have

Lα0(v)h = 0

⇒ [rdv + (µ+ rf − rd) v − c]h′ +
1

2
σ2v2h′′ − λh = 0 (3.52)

So we have

λh = [(µ+ rf )v − c]h′ +
1

2
σ2v2h′′. (3.53)

The boundary condition h(0) = 1 is directly from part (v) of Theorem 3.2.

The other boundary condition arises from the fact that h ∈ C2 on the interval

[0, c/rd) (part (i) of Theorem 3.2). At v = vl, the boundary between the two

regions, h should satisfy:

h(vl) = β
(

1− rd
c
vl

)d
(3.54)

⇒ h′(vl) = −βdrd
c

(
1− rd

c
vl

)d−1

(3.55)
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Combining these conditions gives

h(vl)

h′(vl)
= −1

d

(
c

rd
− vl

)
(3.56)

Using these boundary conditions, it is possible to solve the ordinary dif-

ferential equation (3.53) numerically. Then the continuity condition h(vl−) =

h(vl+) can be used to determine the unknown parameter β. We now need

only to show that if h has the properties stated in Proposition 3.5, then

α0 = v.

Proposition 3.6. Suppose h satisfies the equations (3.50) and (3.51) on

[0, vl]. Then

arg min
0≤α≤v

[
(µ+ rf − rd)αh′(v) +

1

2
σ2α2h′′(v)

]
= v, v ∈ [0, vl]. (3.57)

Proof. Define a function f by

f(α) = (µ+ rf − rd)αh′(v) +
1

2
σ2α2h′′(v) (3.58)

for v ∈ [0, vl]. In order to prove this proposition, it suffices to show that

f ′(v) ≤ 0 for v ∈ [0, vl]. That is,

f ′(v) = (µ+ rf − rd)h′(v) + σ2vh′′(v) ≤ 0 (3.59)
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Solving for h′′(v) in equation (3.50) and substituting into this inequality gives

(µ+ rf − rd)h′(v) +
2

v
{λh(v)− [(µ+ rf )v − c]h′(v)} ≤ 0

⇒ [−(µ+ rf + rd)v + 2c]h′(v) + 2λh(v) ≤ 0 (3.60)

Rearranging, this can be put in the following form:

h(v)

h′(v)
≥ (µ+ rf + rd)

2λ
v − c

λ
(3.61)

We define functions y(v) and z(v) as follows:

y(v) =
h(v)

h′(v)
(3.62)

z(v) =
(µ+ rf + rd)

2λ
v − c

λ
(3.63)

And we complete the proof by proving the following lemma (which asserts

that y ≥ z on [0, vl]).

Lemma 3.7. With y and z as given in (3.62) and (3.63), y > z on (0, vl)

and y = z at v = 0 and v = vl.

Proof. The equation in (3.53) can be rearranged as:

λ
h(v)

h′(v)
= [(µ+ rf )v − c] +

1

2
σ2v2h′′(v) (3.64)
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Note that

y′(v) =
h′(v)2 − h(v)h′′(v)

h′(v)2
, (3.65)

so we can solve for the quantity h′′(v)
h′(v)

as well:

h′′(v)

h′(v)
=

1− y′(v)

y(v)
(3.66)

Substituting these into (3.64) and rearranging yields the following:

σ2v2(y′(v)− 1) = −2λy(v)2 + 2[(µ+ rf )v − c]y(v) (3.67)

The function z(v) satisfies a similar ODE (this is easily verified by substitu-

tion):

σ2v2

(
z′(v)− µ+ rf + rd

2λ

)
= −2λz(v)2 + 2

[
µ+ rf + rd

2
v − c

]
z(v) (3.68)

We have that y(0) = z(0) = −c/λ (to see this, set v = 0 in (3.67)), and that

y(vl) = z(vl) = −(1/d)(c/rd − vl). First we show that y′(vl) < z′(vl). If we

substitute y(vl) into (3.67), we have after simplification

y′(vl) = 1 +
rd +m

λ
− rd
λ
d. (3.69)

Substituting the value of d in this expression, we can show that y′(vl) < z′(vl)
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if and only if

−(µ+ rf ) + λ+m <
√

(rd + λ+m)2 − 4rλ. (3.70)

And since µ+ rf > rd, this is true if

−rd + λ+m <
√

(rd + λ+m)2 − 4rλ. (3.71)

This inequality is true, and can be checked by squaring both sides. Therefore,

we have that y′(vl) < z′(vl). This means that y > z on the interval (vl−δ, vl),

for some δ > 0. The remainder of the proof will be done by contradiction:

Suppose that there exists ṽ ∈ (0, vl) such that y(ṽ) = z(ṽ) and y > z on

(ṽ, vl). If we can show that no such ṽ exists, the proof will be complete.

Since y(ṽ) = z(ṽ) and y > z on (ṽ, vl), we have y′(ṽ) ≥ z′(ṽ). So by

substitution in (3.67) and (3.68), we have

1− 2λ

σ2ṽ2
y(ṽ)2 +

2[(µ+ rf )ṽ − c]
σ2ṽ2

y(ṽ)

≥ (µ+ rf + rd)

2λ
− 2λ

σ2ṽ2
z(ṽ)2 +

2[1
2
(µ+ rf + rd)ṽ − c]

σ2ṽ2
z(ṽ) (3.72)

Note that the middle terms cancel (as y(ṽ) = z(ṽ)), so substituting the value

of z(ṽ), what remains can be simplified to

1− µ+ rf + rd
2λ

≥ −µ+ rf − rd
σ2ṽ

(
µ+ rf + rd

2λ
ṽ − c

λ

)
(3.73)

The right hand side of this inequality is positive. We therefore have two
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cases. In the case where
µ+rf+rd

2λ
≥ 1, we directly obtain our contradiction.

In the case when
µ+rf+rd

2λ
< 1, the inequality in (3.73) can be written as

ṽ ≥ 2c(µ+ rf − rd)
σ2[2λ− (µ+ rf )− rd] + [(µ+ rf )2 − r2

d]
(3.74)

If we can show that vl is less than that quantity, then ṽ ∈ (0, vl) cannot

exist. It turns out that if we substitute in the value of vl we can show that

ṽ ≥ 2c(µ+rf−rd)
σ2[2λ−(µ+rf )−rd]+[(µ+rf )2−r2d]

is equivalent to the inequality in (3.70), which

was already shown to be true.

Therefore, we have shown that there cannot exist ṽ ∈ (0, vl) such that

y(ṽ) = z(ṽ) and y > z on (ṽ, vl). So y > z on the whole interval (0, vl).

The results of this section are summarized in the following theorem.

Theorem 3.8. The constrained minimum probability of lifetime ruin

ψ ∈ C1(R+) ∩ C2(R+ \ {c/rd}) is given by

ψ(v) =


h(v) if v ∈ [0, vl]

β
(
1− rd

c
v
)d
, if v ∈ (vl, c/rd)

0 if v > c/rd

(3.75)

where h solves the differential equation specified in (3.50) and (3.51) and

where vl is as specified in Corollary 3.4, and where

β = h(vl)
(

1− rd
c
vl

)−d
(3.76)
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The optimal investment strategy π∗(v) is given by

π∗(v) =


v if v ∈ [0, vl]

µ+rf−rd
σ2

1
d−1

(
c
rd
− v
)

if v ∈ (vl, c/rd]

(3.77)
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4 Numerical Examples

Here we provide a few examples with numerical data to illustrate the results

of section 3.2. We assume the following parameter values:

• rd = 0.02; the domestic bank has an interest rate of 2% over inflation.

• rf = 0.035; the foreign bank has an interest rate of 3.5% over inflation.

• µ = 0.025; the drift of the exchange rate is 2.5%.

• σ = 0.20; the volatility of the exchange rate is 20%.

• c = 1; wealth is consumed at a rate of one unit per year.

• λ = 0.04; constant hazard rate of 4% such that the individual’s ex-

pected future lifetime is 25 years.

For these parameter choices, we have an approximate lending level of vl =

14.64. So the individual would invest all of her wealth in the foreign bank

when v ≤ 14.64, and some amount less than her total wealth when v > 14.64.

Moreover, the wealth level at which she invests only in the domestic bank

is c/rd = 50. Figure 4.1 shows the amount invested in the foreign bank for

wealth levels v ∈ [0, 50], computed using Theorem 3.8.

We can also express the optimal investment strategy in terms of the

fraction of total wealth invested. Figure 4.2 shows the fraction of total wealth

that the individual would invest in the foreign bank for v ∈ [0, 50].

The function ψ(v) given in Theorem 3.8 can be evaluated numerically

for v ≤ 14.64 using a software ODE solver. After that solution is found,
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the other piece of ψ(v) can be evaluated. For this example, we have the

boundary conditions (as in (3.51)) of h(0) = 1 and h(14.64)
h′(14.64)

= −10.36. Solv-

ing numerically in Maple (using dsolve with numeric, method=bvp options)

gives a curve with h(14.64) ≈ 0.361. This value can then be used to solve for

β in Theorem 3.8, using (3.76). The resulting curve is shown in Figure 4.3.

Figure 4.1: Optimal investment strategy. Here vl = 14.64.
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Figure 4.2: Percentage of total wealth invested.

Figure 4.3: Minimum probability of ruin. The level vl = 14.64 is indicated.
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5 Summary and Conclusion

In this paper we consider the problem of minimizing the probability of lifetime

ruin of an individual investing in a market with foreign and domestic bank

accounts. Our model assumes that the investor is not allowed to borrow,

and that her consumption remains at a constant level. By extending the

work of Bayraktar and Young (2006), we find expressions for the minimum

probability of ruin as well as the optimal investment strategy for any given

wealth level.

Moreover, part of our goal was to present the arguments leading to our

results in a very clear manner. To that end we included a reference of the

main concepts from probability theory and stochastic calculus which were

applied, and attempted to make the steps of each proof clear and justified.

We find that there exists a “lending level” of wealth at which the invest-

ment strategy changes. For wealth below that level, the individual invests all

of her wealth in the foreign bank account. For wealth above the lending level,

the individual instead is able to reduce her risk of ruin by investing a portion

of her wealth into the risk-free domestic bank. Naturally, an individual with

a sufficiently high amount of wealth will have zero risk of lifetime ruin as

long as her consumption is constant.

We do not address the case in which borrowing is allowed or in which

the consumption rate varies with total wealth. Bayraktar and Young (2006)

cover these cases, and their results naturally apply to our model as well. The

assumptions of this paper are in some ways simplistic, and the results could
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be made more realistic by assuming random interest rates or other (possibly

random) consumption rates. Additionally, the assumption that only two

currencies are tradeable is itself a significant simplification.

Nevertheless, viewing these results in the context of foreign exchange

markets can give insight into the behavior of any investor seeking to minimize

the risk of bankruptcy.
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6 Appendix: MATLAB and Maple Code

Maple code used to solve the ODE in (3.50) and (3.51):

> sol1 := dsolve(0.04*h(v)-(0.06*v-1)*(diff(h(v),v))
- 0.02*v^2*(diff(diff(h(v),v),v)) = 0,
h(0.01) = 1,
h(14.644660940672622)/(D(h))(14.644660940672622) = -10.355339059327376],
numeric, method = bvp, abserr = 0.001);
sol1(14.6446);
plots[odeplot](sol1, 0.001 .. 15, color = red);

MATLAB function for computing the lending level vl as in Corollary 3.4:

function[vl] = LendingLevel(rd,rf,mu,sigma,c,lambda)

m = 0.5*(mu+rf-rd)^2/sigma^2;
d = ( (rd+lambda+m) + sqrt((rd+lambda+m)^2-4*rd*lambda) )/(2*rd);
x = (mu+rf-rd)/(sigma^2*(d-1));
vl = (x*c)/((1+x)*rd);

MATLAB function for computing the function π∗(v) as in Theorem 3.8:

function[pi] = OptimalStrategyPlot(rd,rf,mu,sigma,c,lambda)

pi = zeros(1,251);
v = 0:c/(rd*250):c/rd;

m = 0.5*(mu+rf-rd)^2/sigma^2;
d = ( (rd+lambda+m) + sqrt((rd+lambda+m)^2-4*rd*lambda) )/(2*rd);

vl = LendingLevel(rd,rf,mu,sigma,c,lambda);

for i = 1:251
if v(i) < vl,

pi(i) = v(i);
else

pi(i) = (mu+rf-rd)/(sigma^2*(d-1)) * (c/rd - v(i));
end

end
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MATLAB function used to compute the function ψ(v) as in Theorem
3.8. Here, HVECEX was a global variable consisting of the data imported
from Maple regarding the first half of the function (solved by the Maple code
shown above).

function[h] = h_example_plot()

global HVECEX
h_first = HVECEX;

lambda = 0.04; mu = 0.025; r_f = 0.035; r_d = 0.02; c = 1; sigma = 0.2;
m = 0.5*((mu+r_f-r_d)/sigma)^2;
d = (1/(2*r_d))*( (r_d+lambda+m) + sqrt((r_d+lambda+m)^2-4*r_d*lambda) );
vl = LendingLevel(r_d,r_f,mu,sigma,c,lambda);

v_first = (vl/100:vl/100:vl)’;
v_rest = (vl+vl/100:vl/100:50)’;

beta = h_first(length(h_first))*(1-r_d*vl/c)^(-d);

h_rest = beta*(1-r_d*v_rest/c).^d;

v = [ v_first ; v_rest ];
h = [ h_first ; h_rest ];
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