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ABSTRACT 

This project focuses on implementing a version of Ascon, an algorithm selected by NIST 

as part of the Lightweight Cryptography standard, into an application-specific integrated circuit 

(ASIC) design. The new standard aims to address the security needs of small wireless devices 

with limited power applications. An ASIC design benefits these applications by drastically 

improving efficiency for specific tasks compared to general-purpose processors. This 

implementation adapts a high-speed design into a serial format by adding a serial-to-parallel 

interface with several test modes and a simplified input/output to improve the design’s 

compatibility with commonly used test platforms. As physical implementations of this standard 

are relatively untested, this project delivers an open-source ASIC implementation of Ascon 

offering a valuable tool for further evaluation and research.  
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I.  INTRODUCTION 

New hardware developments and trends have led to smaller and smaller wireless devices 

that rely on limited power supplies like batteries or electromagnetic coils, which create inherent 

system limitations. For these devices to maintain their benefits they use high-efficiency, low-

power processors that have significant limitations to their processing speed. To allow this 

category of devices to maintain security during communication the National Institute of 

Standards and Technology (NIST) created a new category of algorithms called Lightweight 

Cryptography. This standard prioritizes an algorithm with lower processing requirements to 

reduce the load of encryption on devices with limited resources. 

The algorithm selected by the NIST for standardization is called Ascon which was 

developed primarily by a team of researchers from Graz University of Technology in Austria. 

The algorithm was designed to have relatively high security, a low hardware footprint, and is 

particularly efficient at computing results for short messages [1].  

Another way to increase speed while decreasing power consumption or improving 

efficiency is to use dedicated hardware to perform these tasks. An application-specific integrated 

circuit (ASIC) is designed to perform specific tasks while optimizing for higher speeds or better 

efficiency than would be possible using a software program running on a general-purpose 

processor. The logic of an ASIC is configured to perform a limited number of specific tasks 

which reduces overhead but also limits its use cases because it cannot be reconfigured after it is 

produced. ASICs, however, provide an excellent solution for encryption on the devices described 

above.  

Due to its recent establishment as a new standard, physical implementations of the design 

are relatively untested. The goal of this MQP was to implement a version of Ascon as an ASIC 

that can be evaluated for its functionality and security. The design was tested with several 

scenarios and sets of data. After verification, it was processed into a layout where the 

specifications were analyzed, and the design was tested for timing and correctness. The source 

code is published as open-source to make the design available to the public for further research. 
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II.  BACKGROUND 

A.  CRYPTOGRAPHY 

 Cryptography is the science of converting confidential information, such as a password or 

private message, to a form that is inaccessible to third parties. At its core, cryptography relies on 

algorithms, mathematical functions that manipulate data, to encrypt and decrypt messages [2].  

1)  Encryption 

Encryption in its most basic form is the process of converting plain text into ciphertext 

using an encryption algorithm and a key. The plain text is the input data that the user considers 

confidential. To convert the plain text to ciphertext an algorithm will use a cryptographic key, 

usually in the form of a string of binary a set number of digits in length. In symmetric 

algorithms, the key is also considered private but must be shared with the second party to decrypt 

the message using the same algorithm. The length of the key typically determines the strength of 

the algorithm to brute force methods of attack in cases where all else is equal.  

Most modern internet transactions utilize encryption in some way if built using best 

practices: email messages, web pages, and e-commerce transactions all use encryption. Modern 

personal computers can be configured to encrypt their hard drives and sensitive data stored on 

servers or in data centers is also encrypted [3]. Below in Table 1 is an example of encryption and 

decryption shown with hexadecimal representation. To replicate the encryption example in Table 

1 more information would be required and it is provided as an example to improve 

understanding. This example uses a 128-bit key and a 64-bit word length for the plaintext and 

ciphertext. 

 

Table 1: Encryption and Decryption Examples 

 Key Plaintext Ciphertext 

Encryption 

(Plaintext → Ciphertext) 

00010203 04050607 

08090A0B 0C0D0E0F 

00010203 

80000000 

7763F8BA 

E8EC18D6 

 

 Key Ciphertext Plaintext 

Decryption  

(Ciphertext → Plaintext) 

00010203 04050607 

08090A0B 0C0D0E0F 

7763F8BA 

E8EC18D6 

00010203 

80000000 

 

2)  Hashing 

Hashing is another form of cryptographic operation that is similar to encryption because 

it involves the obfuscation of plaintext into a secure format. It is often based on a similar 

algorithm to its encryption counterpart and will use similar mathematical operations or logic to 

create the output digest. It differs from encryption in a few critical ways, it is not reversible and 

the digest will have a fixed length irrespective of the length of the plaintext. While an encrypted 

message can be decrypted to reveal the plaintext, a hash cannot be undone because the length of 

the plaintext is lost during the calculation. Most hashing algorithms do not depend on a key 

unlike encryption. 

The fact that it is not reversible makes it useful for applications where even the recipient 

of the message would not be allowed to know the contents of the message. Specifically, it is 
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commonly used to store passwords in a way that would not reveal the user’s passwords should 

the password database be compromised. The password can be hashed locally on the user’s device 

during account creation and whenever login is attempted, meaning the actual password never 

leaves the device even during communication and for storage in a database. Hashing has other 

uses in situations like the verification of information integrity and the simplification of larger sets 

of data for identification [4]. Below in Table 2 is an example of hashing shown with hexadecimal 

representation and a 256-bit hash.  

 

Table 2: Hashing Example 

 Plaintext Hash 

Hashing 00010203 

80000000 

8013EAAA 1951580A 7BEF7D29 BAC32337 

7E64F279 EA73E688 1B8AED69 855EF764 

 

3)  Lightweight Cryptography 

As the size of electronics has diminished and their efficiency has improved, demand for 

battery-powered devices and other low-energy applications has increased. The amount of data 

produced, and the size of files, have grown in a similar fashion demanding higher throughput 

devices. The NIST’s Lightweight Cryptography (LWC) standard aims to increase the efficiency 

of encryption in these types of applications. The NIST lists Internet of Things (IoT) devices, 

implanted medical devices, embedded stress sensors for roads and bridges, and keyless entry 

fobs as some of the targets for the implementation of this type of algorithm [5]. In high-

throughput applications like servers, a lightweight algorithm’s light computational load allows 

for higher-performance implementations [6].  

In April 2018, the NIST announced a competition to find a new cryptographic standard 

for use by small electronic devices. The standard is called ‘lightweight cryptography’ because of 

its lighter computational, and therefore energy, requirements for devices utilizing these 

algorithms. The announcement described the increasing number of IoT devices and electronic 

devices that operate using limited resources. The commonly used cryptographic standards 

available at the time used more resources than were reasonable for those applications. The NIST 

identified the need to plan ahead with the standardization of cryptography for this class of 

devices. Because of the vast applications of small electronic devices, the NIST stated that it 

would attempt to pick a versatile algorithm with wide applications and variations [7].  

B.  ASCON 

In February 2023, the NIST announced a winner to its Lightweight Cryptography 

standard competition, a family of algorithms called Ascon. The algorithm defeated 56 other 

submissions over several rounds of selection [5]. 

1)  About Ascon  

Ascon is a lightweight cryptographic algorithm specifically designed to use less resources 

in both hardware and software implementations. It has low power and energy requirements and 

can be very low area in hardware. Ascon makes use of two important concepts that work together 

to achieve a high level of security while optimizing hardware usage: a sponge and a permutation. 

Ascon reuses its permutation operation, the mapping of the algorithm’s internal state back onto 
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itself, to allow for the same gates to be used repeatedly. This also allows for scalability in speed 

because these operations can be done in series to optimize for power consumption and core area, 

or in parallel to prioritize speed. The sponge structure, which allows the algorithm to ‘absorb’ a 

long message for use with hashing or authentication, can also be shared between operations and 

saves die area in an embedded design. Figure 1 depicts the sponge structure of Ascon as 

presented to the NIST competition and how it would be used to compute a hash digest where M 

is the plaintext, H is the hashed output, and the block pª represents a rounds of permutations.  

 

 

Figure 1: Ascon Sponge Structure [1] 

Ascon also prioritized built-in side channel protection that is featured in the architecture 

of the algorithm and does not require special hardware. This project focuses on Ascon-128 and 

Ascon-Hash but there are several other variations of Ascon. Ascon-128 has twelve rounds of 

permutation processing for initialization and finalization and six rounds of intermediate 

permutation processing. In other words, it uses twelve rounds to absorb the key and nonce for 

initialization, and twelve rounds to produce or check the tag. It uses six rounds to process each 

block of the associated data and plaintext.[1]. 

The version of Ascon selected for hardware implementation uses Ascon-128 and Ascon-

Hash. Ascon-128 is an encryption/decryption algorithm that uses authenticated encryption with 

associated data (AEAD). Authenticated encryption (AE) identifies encryption that generates a tag 

to go with the ciphertext and is required to decrypt the message. The algorithm requires the 

verification of the tag of 128 bits before the plaintext is returned to the user. This means that if 

the message is tampered with in any way or the message is attempted to be decrypted without the 

tag the plaintext will not be returned to the user. AEAD varies from AE by also requiring the 

input of associated data (AD) which must be the same between encryption and decryption for the 

message to be decrypted correctly. AD is typically a non-private piece of information not limited 

in length that accompanies the private portion of the message like a title or name. The AD adds 

additional dependencies and context to the operation and is included in the calculation of the tag 

which will prevent tampering even without encrypting the AD. Ascon also requires a key of 128 

bits and a matching nonce of 128 bits to encrypt and decrypt. The nonce is a randomly generated 

number that is required for encryption and decryption but should not be used twice between two 

messages to ensure the same message is never encrypted the same way twice. Figure 2 below 

shows the order of information and the type of information required to perform encryption or 

decryption; the nonce is labeled as Npub. The data block size for AD, plaintext, and ciphertext is 

64 bits [8].  
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Figure 2: Diagram of Required IO Data Fields for AEAD [8] 

 Ascon-Hash is the matching hashing algorithm which also has a data block size of 64 

bits but only requires the message as input and will output a hash of 256 bits. Twelve rounds of 

processing are used to produce the hash once indicated the plaintext is provided in its entirety 

[1]. An example of the required Ascon-Hash inputs and outputs is shown below.  

 
Figure 3: Diagram of Required IO Data Fields for Hashing [8] 

2)  SystemVerilog Hardware Implementation 

This project uses a SystemVerilog implementation of Ascon written by Robert Primas 

using algorithm variants Ascon-128 and Ascon-Hash. The interface of the implementation is 

influenced by research by George Mason University’s Cryptographic Engineering Research 

Group. The resulting interface uses 32-bit buses to transmit the data in and out, and provide a 

key. A four-bit bus is used to indicate the type of data being transmitted which can be nonce, AD, 

plaintext or ciphertext, tag, or hash which is labeled in order from one to five. The rest of the 

pins are described below in Figure 4 [9]. 
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Figure 4: Interface Diagram of the System Verilog Ascon Implementation [9] 

The design can perform encryption, decryption, and hashing and the version chosen for 

implementation performs one round of permutation processing per clock cycle. The design is 

scalable and other versions of the core are available that can process 2, 3, or 6 permutations per 

clock cycle which can be created by changing the UROL parameter in config_core.sv. 

C.  OPEN SOURCE 

The goal of this project is to develop open-source tools to allow for further development 

and testing of the Ascon algorithm. Open-source projects make their source code available to 

anyone interested in viewing it. They also allow anyone to modify it and contribute to the 

development of the project or share it themselves. These two concepts are what make open-

source projects so great, they allow them to have a potentially infinite source of knowledge and 

perspectives contributing to their development. Ideally, this is great for security because it allows 

contributors to check each other’s work and examine the source code for weaknesses. It allows 

users to add features as they wish, and maintain the code without limitations or having to rely on 

a profit-oriented organization for its support [10]. 

However, the open-source aspects of this project have some limitations. The Cadence 

tools used for the development of this project are not available to the public, meaning none of the 

scripts used in creating the layout can be published. There are however other open-source tools 

available, like OpenLane, that can be used to create a layout with similar results.   
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III.  DEVELOPING A SERIAL TEST INTERFACE 

A.  DESIGN CRITERIA 

The biggest constraint for the final device is compatibility with the IO on the 

ChipWhisperer CW308 UFO main-board. The ChipWhisperer board does not have enough pins 

available for data transfer and perform the configuration necessary to operate the core. It has 

only ten pins available for target-specific usage and only 60 pins total including several for 

various voltages and ground. The existing implementation of Ascon described in SystemVerilog 

uses 32-bit buses to transmit most of its data and has a total of 121 data pins. This interface is 

great for high-speed use cases but is not great for testing applications where IO is limited. Figure 

5 shows a block diagram of how the ChipWhisperer setup would be used with the interface. 

 

 

Figure 5: Block Diagram of a ChipWhisperer Setup 

To overcome this discrepancy, a serial interface was developed in SystemVerilog that will 

act as the new top module. The interface only has nine total top-level data pins and will receive a 

serial stream of instructions and data before converting it to parallel data and control operations 

that can operate the core module at full speed. Its operation is configurable with several test 

functions allowing for encryption, decryption, and hashing with various message lengths and run 

times. It can operate for longer run times by performing the same operation repeatedly using the 

same data that was provided at the start. It can run encryption and hashing with message lengths 

that are longer than the input registers by repeating its input configuration to simulate a longer 

message. Figure 6 below shows a diagram of the hierarchy of the interface as well as its top-level 

pins and connectivity to the Acon core. Busses with more than one pin are represented by an 

arrow with an open head. 
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Figure 6: Diagram of the Serial Testbench Interface Implementation 

Beyond overcoming IO limitations, the goal of this interface is to operate in a fashion 

where the speed of the core is not limited by the speed of the serial interface. To allow the user to 

test the limits of the core while still communicating with the interface at reasonable speeds the 

interface has two clock inputs that control different logic in the device. The device needs to be 

able to operate the serial input and output at a slower speed like 38.4 kHz while still running the 

core at up to 100 MHz or more. 

A trigger pin was also added to the design, as shown in Figure 6, that provides a reference 

to the user about when the core starts a new permutation and can be used for testing. 

B.  IO FEATURES 

The interface module has nine top-level data pins; five of these pins are inputs and four 

are outputs. The inputs consist of two clocks: the interface clock (interface_clk) which 

configures the speed for all of the IO, and the core clock (core_clk) which controls the speed of 

the core module and its operation. There is also a reset pin (rst), a chip select pin (cs_n), and a 

pin for serial data in (sdi). The four outputs are the serial data out pin (sdo), an output valid pin 

(valid), an authentication failure pin (auth_fail), and a trigger pin (trig). A diagram of these pins 

is shown in Figure 6 and the extent of their use and functionality is described in section III.D. 

C.  OPERATION INSTRUCTIONS 

This section will go over information important to the proper operation of the interface, 

including instructions and behavioral features. 
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1)  Instruction Set 

The interface is designed to work with a set of instructions and data headers that were 

created to communicate with the serial interface without the need for additional control pins like 

the pins used in the core module. Each instruction must be 32 bits long and will contain a four-bit 

operation code followed by either zeroes or a configuration number determined by the type of 

instruction. The instructions are listed below in Table 1. There are three main types of 

instructions that need to be used. Three core configuration instructions are used to communicate 

to the interface which cryptographic operation to configure the core to perform. They use hex 

codes 0x0 through 0x2 to configure either encryption, decryption, or hashing and do not require 

a configuration number. The second type of instruction is the data type header that must be 

provided to the core to indicate the type of data that will be provided by the user in the next 64 to 

128 bits. They use hex codes 0x3 through 0x8 to identify the key, nonce, AD, plaintext, 

ciphertext, or tag and are followed by a number indicating the size of that data as either sixteen 

or eight bytes. The final type of instruction is for interface configuration and should be the last 

serial information sent to the core because it will also tell the interface to begin the test run. They 

use hex codes 0x9 through 0xB to indicate that the interface should perform single (SINGLE) or 

repeated (RPT) cryptographic operation, or simulate a longer plaintext message (VML). The 

RPT and VML interface instructions should also contain a configuration within the ranges listed 

in Table 3.  

 

Table 3: Interface Instructions and Headers 

Instruction (32 bits) Operation Code Config Range Config Use 

Core Encryption 0x0000 0x0000 NA 

Core Decryption 0x1000 0x0000 NA 

Core Hashing 0x2000 0x0000 NA 

Key Header 0x3000 0x0010|0x0008 Length in Bytes 

Nonce Header 0x4000 0x0010|0x0008 ” 

Associated Data Header 0x5000 0x0010|0x0008 ” 

Plaintext Header 0x6000 0x0010|0x0008 ” 

Ciphertext Header 0x7000 0x0010|0x0008 ” 

Tag Header 0x8000 0x0010|0x0008 ” 

Interface Single Operation 0x9000 0x0000 NA 

Interface Repeated Operation 0xA000 0xFFFF-0x0001 OP*Config*2¹⁶ 

Interface Variable Message Length 0xB000 0xFFFF-0x0000 OP*(Config+1) 

 

2)  Clocks 

The interface has two clock inputs that must be driven for the device to operate. The 

interface clock operates the logic that controls the input and output of the serial data and should 

be set to the same speed as serial communication is expected. The core clock controls the logic 

that operates the core and is passed to the core module. The details about how fast the clocks can 

be driven vary by architecture but the specifics can be found in section V. The system is designed 

so the clocks do not have to be driven at the same frequency, allowing the full potential of the 

core to be tested with a faster clock speed while keeping the speed of the serial interface at 

reasonable speeds. 
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3)  Operation 

The serial input to the device is enabled by the selection of the chip select (cs_n) pin to its 

active low state. The test function will continue and data will be returned without the activation 

of the cs_n pin. The serial data in (sdi) pin operates at the frequency of the interface clock and is 

used to load the information required to configure the interface. The interface expects an 

instruction as the first piece of data provided to tell the interface what the next type of 

information is or to configure the interface. Instructions should be loaded most significant bit 

first. The order the data is provided to the interface does not matter to its operation however, all 

of the required types of data must be provided to operate correctly, and the interface instruction 

must be provided last because it is used to initiate the test run. The required types of information, 

regardless of the type of cryptographic operation intended, are a core instruction, a plaintext or 

ciphertext instruction and its data, and an interface instruction. Until the interface instruction is 

given any of the information that was already loaded can be overwritten. The reset pin is 

synchronous to the clock controlling each register and should be held high for at least one clock 

cycle of the slowest clock. 

Output from the serial data out (sdo) pin is returned after the completion of the 

configured test operation. The valid pin will be enabled when the output is ready to indicate the 

return of valid data. Only one or two types of data will be returned per operation. The plaintext, 

ciphertext, or hash will always be returned first. Only the ciphertext return for encryption will be 

followed by the tag, The tag will be separated by one clock cycle where the valid pin is disabled. 

The trigger pin is used to indicate the first clock cycle in a round of permutations.  

If the tag provided for decryption does not match the one calculated, the authentication 

fail pin is activated, this will also prevent the return of the data to the user. To recover from this 

state the reset pin must be used.  

The best way to understand the specifics of the operation of the interface beyond this 

description would be to run it using the testbench in a simulation tool and observe the waveforms 

of the device. 

D.  MAJOR COMPONENTS 

The source code for the hardware descriptive language used to design the following 

structures is available on GitHub and listed in Appendix A. 

1)  SIPO 

The first substructure described in the interface is the serial input parallel output (SIPO) 

shift register on lines 55-86 of ascon_spi.sv. This section takes the serial input from the sdi pin 

on the package and converts it to 32-bit parallel data that can be stored in the data registers. The 

shift register is activated by the active low chip select pin cs_n. The structure also counts the 

number of shifts since the start of the interaction and provides a done flag to the interface FSM to 

signal the reading of the data. The SIPO conversion is the only system in the device that is 

controlled directly by the user. 

2)  Finite State Machines 

The finite state machine (FSM) is the most complicated structure in the interface because 

it is required to interact with both clock domains and control the actions of nearly every other 

structure in the interface. The finite state machines are described from line 183 to 382 and their 

https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv
https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L55
https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L183
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enumerated types are defined at line 88. It is built from two finite state machines that are on two 

separate clocks with buffers in between to reduce the chances of metastability during the cases 

where they need to interact. An overview of the FSM structure is shown below in Figure 7. 

 

 

Figure 7: Top Level Finite State Machine Flow Diagram 

The interface finite state machine is synchronized by the interface_clock and controls two 

main structures: the logic for storing the parallelized data in their appropriate data registers and 

the parallel in serial out (PISO) return order. The interface FSM is also used to enable the core 

FSM. The description of the interface FSM starts on line 197 of ascon_spi.sv. 

The first information the interface FSM expects is an instruction defining the core mode, 

(encryption, decryption, or hashing) or a data type instruction that tells the interface how long the 

next block of data is and what type of data it is. If it’s a data instruction the FSM moves to the 

next state where the parallelized data will be stored in the appropriate registers. Once data of the 

expected length is provided the interface will then expect another instruction. If all of the 

required data is already loaded the user can provide one of the three run mode instructions. Once 

a run instruction is provided the configuration is stored and the interface FSM will enable the 

core FSM.  

 

https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L88
https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L197C2-L197C3


 

 

16 

 

 

Figure 8: Interface Finite State Machine Flow Diagram 

The two FSMs need to communicate with each other, however, because they run on 

separate clocks there is a chance for there to be timing violations between the clock domains. 

The buffers are inserted to reduce these chances and give the data two clock cycles to settle out 

of metastability. The core FSM is enabled once the interface FSM buffers show that the interface 

FSM is in the state I_CORE. The interface FSM will then wait for the Core FSM to be in the 

state C_DONE before returning the data using the PISO converter.  

The core FSM description starts on line 277 of ascon_spi.sv and has significantly more 

logical checks than the interface FSM. It checks the core mode and the interface mode to 

determine how it is supposed to run with a total of nine different configurations. The three core 

modes are encryption, decryption, or hashing, each of which requires a different order of 

operations and slightly different behavior required to operate the core correctly. The three 

interface modes also each require different orders of operation to function correctly. The core 

FSM is mostly in charge of operating the high-speed logic that controls the inputs to the core 

module including the various flags, data types, and data buses shown in Figure 4. It is also 

responsible for controlling the logic that makes sense of the output signals from the core and 

preventing the return of information in the case of authentication failure. 

Figure 9 below shows all of the possible paths of flow for the core FSM. However, some 

of the logic is too complicated to be summed up in the diagram. For example, C_RUN has a total 

of three, layered, logical checks and three possible next states. For a complete understanding of 

how the core FSM works see the SystemVerilog in Appendix A or ascon_spi.sv on lines 277 

through 373. 

 

https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L277
https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L277
https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L277


 

 

17 

 

 

Figure 9: Core Finite State Machine Flow Diagram 

3)  Interface Test Mode Control 

The finite state machines described above also make use of the interface test mode 

control logic defined on lines 384-420 of ascon_spi.sv. This structure is used to control two of 

the three test modes: variable message length (vml) and repeated operation (rpt). Each mode has 

its own logic which is a counter that controls a done flag that is thrown when the counter reaches 

a value greater than or equal to the number configured by the interface instruction. The way these 

modes work and information about how to configure the interface using instructions is described 

later in Section III.D. The flags created by this logic are mostly used by the core FSM and the 

core control logic. 

4)  Data Registers 

The data registers are broken down into two parts: the input registers and the output 

registers. The input registers store the data loaded by the user for use in testing the core, this part 

of the device is controlled by the interface FSM and the interface clock. The output registers 

store the results of the test run with the core. This part is controlled by the core clock and the 

core FSM because it interacts with the core module which also uses the core clock. The input 

registers consist of one 4x32-bit register each for the key, nonce, AD, plaintext or ciphertext, and 

tag. The output registers are one 4x32-bit register for the plaintext or ciphertext, and one for the 

tag. There is a separate 8x32-bit register for hashing output.  

The logic for loading the input registers is on lines 422-508 of ascon_spi.sv and in 

Appendix A. The logic uses a 32-bit header instruction to put the data in the appropriate register. 

The header instruction will tell the interface what type of data will be provided next and how 

long that data will be in bytes. This data must be provided in chunks of 32 bits.  

The logic for loading the output registers is on lines 594-619 of ascon_spi.sv and has the 

much simpler task of reading the output of the Ascon core and storing it in the correct registers. 

https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L384
https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L422
https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L594
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When the output is valid it reads the 32-bit output bus from the core to the register associated 

with the type of data indicated by the bdo_type lines. It will count each clock cycle that data is 

transferred and reset that count after the core indicates the end of the type (bdo_eot).  

5)  Core Control 

The next significant component in the interface is the core control section, which is 

defined from line 512-591 of ascon_spi.sv. This structure controls all of the input lines on the 

Ascon core module making significant use of the core FSM current state. This means that this 

section of the interface must also use the core clock. The structure of an FSM works great for this 

kind of application because the type of output required by the core varies greatly from one type 

of operation to another but also follows a very predictable order that can be described well by 

using an FSM. The FSM can also be configured by input instructions to change the order of the 

FSM without changing the structure of the logic in the core control. In summary, the FSM and 

core control structures work together and improve the code’s readability. The core control uses a 

case statement to define this structure where each case gets its own core FSM state that will 

define the input to the key or the bdi lines. It will read the information from the input data 

registers and pass it to the output that controls the core. This section can access the same 

registers as the input data logic even though it uses a different clock because it is only reading 

the data from those registers, and it is never enabled at the same time that the data in those 

registers would be changed. 

6)  PISO 

The parallel in serial out (PISO) conversion logic is the part of the interface responsible 

for producing the output for the sdo pin. This logic is described from line 623 to 697 of 

ascon_spi.sv. The PISO conversion is controlled by the interface FSM and reads data that was 

stored in the data output registers. It works by reading the required data from the data registers to 

a shift register and then shifting that data through the register so that each bit is read from the 

thirty-first bit in the array to the output. This logic also controls the valid pin which indicates that 

the information provided by the sdo pin during that clock cycle should be recorded as part of the 

output data.  

7)  Encryption Core 

The encryption core was designed by Robert Primas and is available on GitHub. The top 

of the core module is shown in Figure 4 and is instantiated in the ascon_spi.sv file as core. This 

is the module that contains the Ascon algorithm logic necessary to perform encryption and 

hashing. Only small changes were made to his code to ensure compatibility with Cadence tools 

and add the trigger pin that will be used for testing purposes without modifying the functionality 

of the core.  

https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L512
https://github.com/twdrane/ascon-test-spi/blob/925cd08bf772f504e17eda136a19550dd45ae8b6/rtl/ascon_spi.sv#L623
https://github.com/rprimas/ascon-verilog
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IV.  DESIGN VERIFICATION 

A.  TEST BENCH 

The verification of the interface's functionality was confirmed using a custom testbench 

that was expanded over time as different aspects of the device were being tested. In its final 

form, the testbench can read a test vector file in hexadecimal format to the inputs of the interface 

and record its outputs to the command line. It will run until either the specified time (in ns) is 

reached or the output is finished, whichever happens first. It can run multiple test sets from the 

same file when they are separated by the keyword WAIT, where it will wait for the previous run 

to finish, reset the interface, and begin the next test. The results of the testbench are not checked 

automatically and must be verified after each run. The testbench implements two submodules, 

the Ascon interface as the device under test (dut) and a simple serial in parallel out (SIPO) 

module that is used to read the output from the interface into 32-bit words. The hierarchy of the 

testbench setup is shown in Figure 10 and the testbench SystemVerilog code is in Appendix B. 

 

 

Figure 10: Interface Testing Hierarchy 

The testbench does have some quirks, mainly that it outputs a waveform to the interface 

using the negative edge of the interface clock. The reasoning for this is discussed later in the 

complications section but does not affect the testing functionality. It also uses the system 

function $value$plusargs to allow the user to easily configure which test vector set they want to 

use without recompiling the testbench. An example of how to use the testbench makefile 

commands would be ‘make sim TVSET=1’. Files in the sim folder are compatible with tools like 

AMD Vivado and Cadence Xcelium. An example testbench compatible with Icarus Verilog and 

GTKWave will be made available in the ivsim directory to provide an accessible example 

waveform.  

B.  TEST VECTORS 

There are four sets of test vectors provided with the interface, each set is designed to 

check different functionality of the interface to make sure each part is functioning properly. Each 

set tests each core mode while varying some other aspect of the test vector set. The first test 

vector set checks the functionality of encryption, decryption, and hashing, using the simplest 



 

 

20 

 

interface instruction for a single operation of each type. The second test vector set uses shorter 

message lengths of only 64 bits for encryption, decryption, and hashing. The third set tests the 

second type of interface instruction and testing mode for repeated messages. The length of each 

run can easily be changed by modifying the configuration number at the end of the instruction in 

the test vector file. The last test vector set checks the final test mode included in the interface the 

variable message length. This set shows the limitations of the variable message length operation 

because no matter how it is configured the decryption part of this message will always fail to 

pass authentication. The test vectors were hand assembled and adapted from the test vectors 

generated using a reference Python implementation of Ascon intended to create test vectors for 

the encryption core. Test vector set number one is included in Appendix C as an example.  
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V.  LAYOUT 

A.  LAYOUT PROCESS 

Building a layout involves many steps of testing and synthesis throughout the process of 

converting the hardware descriptive language (HDL) programming into a map of standard cells 

and wires that make up an ASIC design. There are several layers of scripts and designs that all 

work to ensure a functional layout that meets the designer's intentions.  

After the HDL design is verified using the setup described in Section IV the first step in 

creating the layout is synthesis. Synthesis converts the HDL code to a netlist using a library of 

standard cells from the architecture chosen to fabricate the design. A standard cell is the logical 

building block of an integrated circuit (IC) and each cell describes the silicon structure that 

makes up a standard logic gate. A netlist lists each required standard cell and wire used to 

describe how all of the cells are connected to reproduce the interface design. After a netlist is 

created, static timing analysis (STA) can be done on the design using a database of timing values 

that describes the standard cells. STA calculates the signal propagation times between standard 

cells to verify all signals arrive before the clock edge for a given clock speed. From there, the 

layout can be generated using the netlist which places each of the standard cells on a two-

dimensional plane and draws their metal interconnects on the given number of layers. It also 

places a network of power distribution and connects the clock wires to each register. 

After the layout is generated gate-level (GL) simulation steps can be taken that now take 

into account more physical properties of the design like the length of wires and the actual 

number of standard cells required for the design. The GL simulation step is done to confirm the 

functionality of the design after it has been converted to standard cells. GL simulation can use 

the same Verilog testbench and test vectors to make sure the operation is identical. GL STA 

should be done to confirm the addition of wires and physical distance between cells will not 

create any timing violations. GL power simulation will provide a more accurate estimate of the 

power consumption of the chip. These steps are necessary to check that the design is still 

functional after the synthesis and layout conversion steps.  

B.  PADS 

Pads are additional cells required to create contact points for connecting bond wires to 

complete the chip package. Most steps from the process above need to be repeated with some 

minor modifications to add the pads to the final layout. The pads have a separate library and need 

a separate module declaration in a Verilog file to define their connections to the design.  

The pads are laid out with input pads on the top and left side, output pads on the bottom 

and right side, and one positive and one ground pad on each side of the chip. The order of the IO 

pads is defined in the chip/chip.io file. 

C.  FINAL LAYOUT 

The final layout design produced using the scripts, the interface design, and Cadence 

tools is shown in Figure 11. Figure 11 shows a closeup of the die with the standard cells and 

metal interconnects and layers depicted with various colors. Each color represents a different 

metal layer or via between layers. There is a ring of metal for power distribution shown in brown 

and light blue that surrounds the chip and a layer of blue interconnects that cross the chip to 

deliver power to each standard cell.  

 

https://github.com/twdrane/ascon-test-spi/blob/main/chip/chip.io
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Figure 11: Closeup of the Final Layout 

D.  DESIGN SPECIFICATIONS AND ANALYSIS 

Cadence’s layout design tool allows the user to highlight modules of a design and break 

down the number of cells and their area. The interface makes up more than half of the area and 

and number of cells in the whole device at 5,259 out of 9,276 cells. The serial interface top 

module is highlighted in red in Figure 12. The Ascon core is made up of a total of 4,017 standard 

cells cells with its submodule for calculating permutations using 1,678 of those cells. The core 

module is highlighted in pink and the permutation is highlighted in green. These numbers are 

summarized in Table 4. 

Table 4: Module Specifications 

Module Name Cell Count Active Area (µm) Color 

ascon_spi 5,259 16,805 Red 

ascon_core 2,339 6,634 Pink 

asconp 1,678 3,699 Green 

Total 9,276 27,138 N/A 
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Figure 12: Layout of Final Design with Modules Highlighted 

The following Table 5 lays out the results from RTL synthesis performed to create the 

first type of netlist. This step was performed with both 130 nm and 45 nm architectures using fast 

and slow operating conditions. The clock period was set at 10 ns for 45 nm and 20 ns for 130 nm 

which is equivalent to 100 MHz and 50 MHz respectively. These speeds were selected to not act 

as the limiting factor in the fast or slow design and not act as a variable. The active area 

represents the area taken up by those cells without taking into account the space needed for 

interconnects or wasted when creating a layout. There is minimal difference between the fast and 

slow operating conditions for each respective architecture where both 45 nm designs use about 

25,000 µm² and the 130 nm designs use about 90,000 µm². All of the designs will use 1,875 

registers to store information regardless of architecture while the 45 nm designs use about one 

thousand more standard cells than the 130 nm designs. 

The next important statistic is the critical path, which is the path between registers and/or 

IO that has the longest signal propagation time. For both slow designs, the critical path is in the 

interface module, and for both fast designs, the critical path is in the core module. All critical 

paths are constrained by the core clock. The slack represents the time left after the arrival of a 

signal before the required arrival time which is mostly determined by the arrival of the next clock 

edge. The slack listed below is the slack on the critical path, a higher slack is better, but also 

means that the clock speed could be increased to operate the device faster. The final specification 

is the power draw calculated in milliwatts as an estimate of the power draw for the final device. 

Typically the power draw increases with faster clocks or conditions, and larger, less efficient 

architectures which is consistent with the results in Table 5.  



 

 

24 

 

Table 5: RTL Synthesis Design Specifications 

RTL Synthesis 45 nm Slow 45 nm Fast 130 nm Slow 130 nm Fast 

Clock Period (ns) 10 10 20 20 

Clock Frequency 

(MHz) 

100 100 50 50 

Active Area (µm²) 25311 25156 90865 90231 

Cell Count 9848 9966 8990 8958 

Register Count 1875 1875 1875 1875 

Critical Path vml_counter[0] → 

 vml_counter[31] 

fsm[1] → 

auth_intern 

interface_config[0] 

→ bdi_eot 

fsm[1] → 

state[4] 

Critical Path Clock core_clk core_clk core_clk core_clk 

Slack (ns) 6.270 9.123 11.453 16.011 

Power (mW) 0.689 1.586 7.044 8.692 

 

 The results in Table 6 are calculated using the same process as the results in Table 5 

except the clock speed has been increased to the limits of the architecture and timing 

specifications. The 45 nm architecture provided the fastest results operating up to 2 GHz under 

optimal conditions. When the clock speed becomes a limiting factor the critical path becomes 

more consistent between the designs occuring only on a path from the state register in the core 

module. Besides the increase in clock speed and slightly different critical paths is higher power 

consumption caused by an increased switching frequency.  

 

Table 6: Maximum Clock Speed RTL Synthesis Design Specifications 

RTL Synthesis 45 nm Slow 45 nm Fast 130 nm Slow 130 nm Fast 

Clock Period (ns) 2.5 0.5 6 2 

Clock Frequency (MHz) 400 2000 166.7 500 

Active Area (µm²) 25461 25287 90629 90657 

Cell Count 9974 9730 8723 8785 

Register Count 1875 1875 1875 1875 

Critical Path fsm[1] → 

state[4]  

fsm[2] → 

state[1] 

state[3] → 

state[1] 

state[3] → 

state[0] 

Critical Path Clock core_clk core_clk core_clk core_clk 

Slack (ns) 0.005 0.006 0.159 0.007 

Power (mW) 2.752 33.431 24.189 87.875 

 

 Unfortunately, the Skywater 130 nm open-source architecture development library is not 

compatible with Cadence’s layout tools, meaning that the 130 nm design cannot be developed 

past a netlist. As a result, the design for the final layout is limited to the 45 nm architecture. The 

results of the final layout design using the 45 nm architecture are listed below in Table 7. The 

table lists four designs using two different timing libraries, each timing library was used to create 

one layout at 10 ns clock period and one at the upper limits of the design. The biggest difference 

between the two sets of data is the slight decrease in speed resulting from the additional 

calculations required by the physical distance between standard cells. The layout designs are 

about half as fast as their netlist counterparts at maximum clock speed. The layouts also result in 
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multiple different area calculations that include different aspects of the device. The core area is 

the calculated area of the logic design excluding the pads but including the space in the layout 

surrounding the standard cells. The layout results in about a fifty percent increase in area and 

somewhere between 65 and 70 percent efficiency in area usage. The chip area represents the area 

taken up by the entire chip design including the pads. The pads increase the area of the design 

significantly up to 545,000 µm² but are necessary to implement the design as a physical chip. 

Other specifications of the design are not significantly altered aside from small decreases in the 

number of registers. The critical path remains similar to the netlist designs.  

  

Table 7: Final Layout Design Specifications 

Final Layout 45 nm Slow Slow Max 

Clock 

Fast Fast Max 

Clock 

Clock Period (ns) 10 4 10 1 

Clock Frequency (Mhz) 100 250 100 1000 

Core Area (µm²) 38819 39434 37078 37270 

Chip Area (µm²) 543442 545752 536879 537609 

Cell Count 9289 9407 9289 9185 

Register Count 1875 1875 1875 1875 

Critical Path fsm[0] → 

auth_intern 

fsm[3] → 

auth_intern 

fsm[0] → 

state[3] 

fsm[1] → 

state[0] 

Critical path clock core_clk core_clk core_clk core_clk 

Slack (ns) 5.827 0.033 8.960 0.053 
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VI.  COMPLICATIONS AND FURTHER DEVELOPMENT 

A.  SIMULATION 

Several complications came up during the simulation step that slowed the progress of 

development for the interface and led to the inability to complete the project in an architecture 

that could be fabricated before the end of the project. Most issues did not result in too much of a 

delay, however the setbacks added up over the length of the project. 

1)  Timing and System Functions 

There were several weeks lost towards the end of B term that were spent trying to chase 

down an issue with the simulation of the core module using the provided testbench. This was 

particularly confusing because the core would simulate properly while using Icarus Verilog and 

was mostly functional while using an early implementation of the interface. It turns out that both 

Cadence’s Xcelium and AMD’s Vivado do not impose the same timing restrictions on system 

functions, like $fscanf, $fgets, or $sscanf, which are applied to assignments that are implemented 

synchronously. This meant that the testbench built by Robert Primas for verification of the Ascon 

core would not simulate properly with Xcelium or Vivado because it used $fscanf to read test 

vectors to the core module. This manifested as waveforms that looked like they should operate 

the core correctly but when digging a little further showed that the data assigned directly by 

$fscanf was changed a touch too early resulting in a mismatch between the control flags and the 

data bus leaving empty data registers in the core.  

In a sense, this error in the way the system functions work was discovered during the 

simulation process while building the custom testbench for the interface (interface_test.sv). 

There were some inconsistencies discovered surrounding the testbench towards the beginning of 

the project where assignments would be read from the beginning of the clock cycle rather than 

the end. To get around this, assignments in the testbench were changed to occur on the negative 

edge of the clock cycle. This did not uncover the root of the problem but allowed the simulation 

to continue with only minor delays. The timing error did not show up between the interface 

(ascon_spi.sv) and the core module because all assignments to the core are done synchronously 

with non-blocking assignments.  

There are some separate complications with system functions where IcarusVerilog has 

different requirements for their arguments. This means that the testbench and test vectors had to 

be redeveloped for IcarusVerilog to allow for different simulation options. 

2)  Gate Level vs. RTL Simulation 

There are a few structures that were discovered during the testing phase that caused 

issues with gate-level simulation even though they passed RTL simulation without issues.  

a) Complicated Assignments 

Some complicated if statements caused issues when it came to gate-level simulation even 

though they passed RTL simulation. This revealed itself as metastability that propagated through 

most signals in the system over time. It was resolved by examining the waveforms of the gate-

level simulation to find the source of the metastability. There were several cases where the issue 

was resolved by simplifying the condition of an if statement to a simple true or false statement 

and moving the complicated logic to an assign statement.  
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b) Case Statements 

Ideally, the design should not make use of latches especially if the structure is intended to 

be a register. Some Verilog structures can cause registers to be interpreted as latches if the logic 

does not provide a case for every logical possibility. These can be solved by making sure that all 

case statements have a default case assignment for each value assigned in the always block. 

Other solutions include providing an initial value to each wire in the procedural block or making 

sure that if statements have their complementary else statement.  

c) Reset Cases 

Some interface and core registers were missing reset cases. This resulted in RTL 

simulation that was functional, however, this oversight revealed itself during gate-level 

simulation. Adding reset cases to these registers and verifying that the core is reset before 

beginning simulation ensures that the device will behave as expected.  

B.  SIMPLIFICATIONS 

The process of designing the serial interface was a significant learning experience about 

the specifics of SystemVerilog. It allowed experimentation with what works and what does not 

through many different types of applications. As a result, the design is not optimal, there are 

significant simplifications that could be made to some of the structures that could reduce the area 

of the design and also improve the readability. There are almost certainly unnecessary registers 

that could be removed by simplifying logic and implementing a better system of combinational 

control signals. Almost the entire system of core loading logic could be simplified to using 

purely combinational logic eliminating at least four registers. 

Other simplifications also involve the optimization of register usage, simplifying the size 

of registers to eliminate bits that are never used by an instruction, or allowing some registers that 

are never used at the same time to be shared by multiple applications. For example, the test mode 

counters could be modified into one structure rather than one for each mode without too many 

structural changes.  

C.  LAYOUT 

(this 45nm cannot be fabricated) 

The 45 nm architecture used for the layout design is not a physical architecture and 

cannot be fabricated. If a physical design is desired in the future it must be done using a different 

process like GlobalFoundaries 180 nm which requires signing a nondisclosure agreement. 

Another approach would be to use open-source tools to create a Skywater 130 nm design. Both 

options would be too time-consuming to adapt to this late in the project but provide options for 

the project to continue in the future. 

D.  ADDITIONAL FEATURES 

Time constraints also lead to the inability to add certain features to the interface that 

would be nice to have for further testing. For example, the interface can only handle 128 bits of 

AD, plaintext, or ciphertext, the functionality could be modified to allow the user to load more 

information to the interface and return a longer output in the middle of the core operation. This 

would require a major overhaul of both the core and interface FSMs and would result in much 

more complicated operating instructions. The FSMs would be required to handshake with each 
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other more often increasing complexity and chances of metatstability. It would solve some of the 

limitations of the test modes but would limit the operating speed of the core to how fast serial 

information could be loaded.  
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APPENDIX A: ASCON_SPI.SV 
// Top spi control and testing interface for 32 bit ascon core intended  

// for use with the ascon hardware design by Robert Primas 

// available at https://github.com/rprimas/ascon-verilog  

// 

// Author: Trevor Drane 

// Design Repository: https://github.com/twdrane/ascon-test-spi 

// Designed as part of a WPI Major Qualifying Project 

 

`timescale 1ns / 1ps 

 

module ascon_spi ( 

    input logic interface_clk, 

    input logic core_clk, 

    input logic rst, 

    input logic cs_n, 

    input logic sdi, 

     

    output logic valid, 

    output logic sdo, 

    output logic auth_fail, 

    output logic trig 

    ); 

 

    //parameters 

    parameter logic TRUE = 1'b1; 

    parameter logic FALSE = 1'b0; 

 

    // core io 

    logic [31:0]    key_w; 

    logic           key_valid; 

    logic           key_ready; 

    logic [31:0]    bdi; 

    logic           bdi_valid; 

    logic           bdi_ready; 

    logic [3:0]     bdi_type; 

    logic           bdi_eot; 

    logic           bdi_eoi; 

    logic           decrypt; 

    logic           hash; 

    logic [31:0]    bdo; 

    logic           bdo_valid; 

    logic           bdo_ready; 

    logic [3:0]     bdo_type; 

    logic           bdo_eot; 

    logic           auth; 

    logic           auth_valid; 

    logic           auth_ready; 

 

    // core op wires 

    logic           key_valid_next; 

    logic           bdi_valid_next; 

    logic           bdi_eot_next; 

    logic           bdi_eoi_next; 

 

    ////////////////// 
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    // sipo convert // 

    ////////////////// 

 

    logic [31:0] d_parallel; 

    logic [31:0] shift_reg; 

    logic [31:0] sipo_next; 

    logic [4:0] n_shifts,shifts_next; 

    logic done; 

     

    always_ff @ (posedge interface_clk) begin : sipo1_seq 

        if (rst) begin 

            shift_reg <= 32'd0; 

            n_shifts <= 5'd31; 

        end 

        else begin 

            shift_reg <= sipo_next; 

            n_shifts <= shifts_next; 

        end 

    end 

     

    // only shift if cs_n is active 

    assign sipo_next = ~cs_n ? {shift_reg[30:0],sdi} : shift_reg; 

    assign shifts_next = ~cs_n ? n_shifts + 1 : n_shifts; 

    assign done = ~cs_n & (n_shifts == 5'd31); 

    // end sipo convert 

     

    // create sipo output 

    always_ff @ (posedge interface_clk) begin : sipo2_seq 

        if (rst) d_parallel <= 32'b0; 

        else d_parallel <= (done) ? shift_reg : d_parallel; 

    end 

 

    ////////////////////////// 

    // FSM enumerated types // 

    ////////////////////////// 

 

    // spi encryption interface state machine    

    typedef enum bit [4:0] { 

        I_IDLE, 

        I_INST, 

        I_READ_INST, 

        I_DATA, 

        I_READ_DATA, 

        I_CORE, 

        I_RETURN_SYNC, 

        I_RETURN_PTCT, 

        I_RETURN_BREAK, 

        I_RETURN_TAG, 

        I_RETURN_HASH, 

        I_DONE 

    } spi_fsm; 

     

    spi_fsm current_state; 

    spi_fsm next_state; 

 

    typedef enum bit [4:0] { 

        C_IDLE, 
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        C_LOAD_KEY, 

        C_LOAD_NONCE, 

        C_LOAD_AD, 

        C_LOAD_PTCT, 

        C_LOAD_TAG, 

        C_RUN, 

        C_WAIT_OUT, 

        C_DONE 

    } core_fsm; 

 

    core_fsm core_state; 

    core_fsm next_core_state; 

     

    logic rpt_done,vml_done; 

 

    logic [3:0]  inst; 

    logic [3:0]  next_data_type,data_type; 

    logic        read_done; 

    logic [2:0]  read_count,data_size,size_calc; 

 

    // main data registers 

    logic [31:0] interface_config; //configure interface settings and run 

cycles 

    logic [31:0] core_config; //encrypt/decrypt/hash 

    logic [2:0]  key_size; 

    logic [2:0]  nonce_size; 

    logic [2:0]  ad_size; 

    logic [2:0]  ptct_size; 

    logic [2:0]  tag_size; 

    // main data registers 

 

    // main data wires 

    logic [3:0] interface_mode; 

    assign interface_mode = interface_config[31:28]; 

    logic [3:0] core_mode; 

    assign core_mode = core_config[31:28]; 

 

    // load control values 

    logic [2:0]  load_count,load_count_next; 

    logic        load_done; 

 

    // return data control registers 

    logic [3:0] reg_count; 

    logic [4:0] piso_count; 

     

    assign inst = d_parallel[31:28]; 

    assign size_calc = (d_parallel[1:0] != 2'b0) ? d_parallel[5:2] : 

d_parallel[5:2]-1; // calculate size with rounding up 

    assign read_done = (current_state == I_READ_DATA) & (read_count == 

data_size); // defines finishing read and instruction count; 

 

    logic return_done;  

    logic hash_done; 

 

    assign return_done = ((reg_count == 4'd3 & current_state == I_RETURN_TAG) 

| (reg_count == ptct_size & current_state == I_RETURN_PTCT)) & (piso_count == 

5'd31); 
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    assign hash_done = (reg_count == 4'd7) & (piso_count == 5'd31); 

 

    logic auth_check; 

 

    assign auth_check = auth_valid && auth; 

     

    // auth fail pin 

    // set auth fail flag 

    always_ff @(posedge core_clk) begin : auth_fail_seq 

        if (rst == TRUE) begin 

            auth_fail <= FALSE; 

        end 

        else begin 

            if (auth_ready == TRUE) 

                auth_fail <= (auth_valid) ? ~auth : auth_fail; 

        end 

    end 

 

    /////////////////////////////// 

    //    ______ _____ __  __    // 

    //   |  ____/ ____|  \/  |   // 

    //   | |__ | (___ | \  / |   // 

    //   |  __| \___ \| |\/| |   // 

    //   | |    ____) | |  | |   // 

    //   |_|   |_____/|_|  |_|   // 

    //                           // 

    /////////////////////////////// 

 

    // clock transfer buffers 

    spi_fsm ifsm_buf_1,ifsm_buf_2; 

    core_fsm cfsm_buf_1,cfsm_buf_2; 

 

    // next state logic 

    always_comb begin : interface_state_comb 

        case (current_state) 

            I_IDLE: begin 

                next_state = (cs_n === 1'b0) ? I_INST : I_IDLE; 

            end 

            I_INST: begin 

                next_state = done === TRUE ? I_READ_INST : I_INST;  

            end 

            I_READ_INST: begin 

                case (inst) 

                    // configure core 

                    OP_DO_ENC,OP_DO_DEC,OP_DO_HASH:  

                    begin 

                        next_state = I_INST; 

                    end 

                    // load data 

                    

OP_LD_KEY,OP_LD_NONCE,OP_LD_AD,OP_LD_PT,OP_LD_CT,OP_LD_TAG:  

                    begin 

                        next_state = I_DATA; 

                    end 

                    // configure interface 

                    OP_INT_SINGLE,OP_INT_RPT,OP_INT_VML: 

                    begin 
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                        next_state = I_CORE; 

                    end 

                    default: next_state = I_INST; 

                endcase 

            end 

            I_DATA: begin 

                next_state = done === TRUE ? I_READ_DATA : I_DATA;  

            end 

            I_READ_DATA: begin 

                next_state = read_done === TRUE ? I_INST : I_DATA; 

            end 

            // pass control to core fsm 

            I_CORE: begin 

                next_state = cfsm_buf_2 == C_DONE ? I_RETURN_SYNC : I_CORE; 

            end 

            I_RETURN_SYNC: begin // extra clock cycle to assign sipo reg 

                next_state = core_mode === OP_DO_HASH ? I_RETURN_HASH : 

I_RETURN_PTCT; 

            end 

            I_RETURN_PTCT: begin 

                if (core_mode == OP_DO_ENC) 

                    next_state = return_done === TRUE ? I_RETURN_BREAK : 

I_RETURN_PTCT; 

                else 

                    next_state = return_done === TRUE ? I_DONE : 

I_RETURN_PTCT; 

            end 

            I_RETURN_BREAK: begin 

                next_state = I_RETURN_TAG; 

            end 

            I_RETURN_TAG: begin 

                next_state = return_done === TRUE ? I_DONE : I_RETURN_TAG; 

            end 

            I_RETURN_HASH: begin 

                next_state = hash_done === TRUE ? I_DONE : I_RETURN_HASH; 

            end 

            I_DONE: begin 

                // resets only after cs is deasserted 

                next_state = cs_n === TRUE ? I_IDLE : I_DONE; 

            end 

            default: next_state = I_IDLE; 

        endcase 

    end 

     

    // assign next state and reset case 

    always_ff @ (posedge interface_clk) begin : interface_state_seq 

        if (rst) begin 

            current_state <= I_IDLE; 

            cfsm_buf_1 <= C_IDLE; 

            cfsm_buf_2 <= C_IDLE; 

        end 

        else begin 

            current_state <= next_state; 

            cfsm_buf_1 <= core_state; 

            cfsm_buf_2 <= cfsm_buf_1; 

        end 

    end 
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    // end SPI FSM 

 

    // core next state logic 

    always_comb begin : core_state_comb 

        next_core_state = C_IDLE; 

        case (core_state) 

            C_IDLE: begin 

                if (ifsm_buf_2 == I_CORE) begin 

                    // check for hashing 

                    next_core_state = core_mode === OP_DO_HASH ? C_LOAD_AD : 

C_LOAD_KEY; 

                end 

                else next_core_state = C_IDLE; 

            end 

            C_LOAD_KEY: begin 

                next_core_state = load_done === TRUE ? C_LOAD_NONCE : 

C_LOAD_KEY; 

            end 

            C_LOAD_NONCE: begin 

                next_core_state = load_done === TRUE ? C_LOAD_AD : 

C_LOAD_NONCE; 

            end 

            C_LOAD_AD: begin 

                if (load_done) begin 

                    // check core operation for hashing 

                    if (core_mode == OP_DO_HASH) begin 

                        // check op for vml 

                        if (interface_mode == OP_INT_VML) begin 

                            if (vml_done) begin 

                                next_core_state = C_WAIT_OUT; 

                            end else next_core_state = C_LOAD_AD; 

                        end else next_core_state = C_WAIT_OUT; 

                    end else next_core_state = C_LOAD_PTCT; 

                end else next_core_state = C_LOAD_AD; 

            end 

            C_LOAD_PTCT: begin 

                if (load_done) begin 

                    if (interface_mode == OP_INT_VML) begin 

                        if (vml_done) begin 

                            case (core_mode) 

                                OP_DO_ENC: next_core_state = C_WAIT_OUT; 

                                OP_DO_DEC: next_core_state = C_LOAD_TAG; 

                                default: next_core_state = C_WAIT_OUT; 

                            endcase 

                        end 

                    end 

                    else begin 

                        // check core operation 

                        case (core_mode) 

                            OP_DO_ENC: next_core_state = C_WAIT_OUT; 

                            OP_DO_DEC: next_core_state = C_LOAD_TAG; 

                            default: next_core_state = C_WAIT_OUT; 

                        endcase 

                    end 

                end  

                else next_core_state = C_LOAD_PTCT; 

            end 



 

 

36 

 

            C_LOAD_TAG: begin 

                if (load_done) begin   

                    // check interface mode 

                    next_core_state = C_WAIT_OUT; 

                end  

                else next_core_state = C_LOAD_TAG; 

            end 

            C_RUN: begin 

                if (interface_mode == OP_INT_RPT)begin 

                    if (rpt_done) begin 

                        next_core_state = C_DONE; 

                    end 

                    else begin 

                        case (core_mode)  

                            OP_DO_ENC,OP_DO_DEC: next_core_state = 

C_LOAD_NONCE; 

                            OP_DO_HASH: next_core_state = C_LOAD_AD; 

                            default: next_core_state = C_LOAD_NONCE; 

                        endcase 

                    end 

                end 

                else next_core_state = C_DONE; 

            end 

            C_WAIT_OUT: begin // wait for the tag, auth, or hash message to 

be calculated 

                // check interface mode 

                if (core_mode == OP_DO_DEC) begin 

                    // check auth 

                    next_core_state = auth_check === TRUE ? C_RUN : 

C_WAIT_OUT; 

                end else begin 

                    // hashing and enc 

                    // wait for end of bdo 

                    next_core_state = bdo_eot === TRUE ? C_RUN : C_WAIT_OUT; 

                end 

            end 

            C_DONE: begin 

                next_core_state = (ifsm_buf_2 == I_CORE) ? C_DONE : C_IDLE; 

            end 

            default: next_core_state = C_IDLE; 

        endcase 

    end 

     

    // core next state 

    always_ff @ (posedge core_clk) begin : core_state_seq 

        if (rst) begin 

            core_state <= C_IDLE; 

            ifsm_buf_1 <= I_IDLE; 

            ifsm_buf_2 <= I_IDLE; 

        end 

        else begin 

            core_state <= next_core_state; 

            ifsm_buf_1 <= current_state; 

            ifsm_buf_2 <= ifsm_buf_1; 

        end 

    end 

    // end core fsm 
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    /////////////////////////////// 

    // interface mode ctrl logic // 

    /////////////////////////////// 

 

    logic [15:0] interface_count; 

    assign interface_count = interface_config[15:0]; 

 

    // OP_INT_RPT control 

    logic [31:0] rpt_counter; 

    assign rpt_done = (interface_mode == OP_INT_RPT) & (rpt_counter[31:16] >= 

interface_count); 

 

    always_ff @ (posedge core_clk) begin : rpt_ctl 

        if (rst) begin 

            rpt_counter <= 32'b0; 

        end 

        else begin 

            if ((interface_mode == OP_INT_RPT) & (core_state == C_RUN)) begin 

                rpt_counter <= rpt_counter + 1; 

            end 

        end 

    end 

 

    // OP_INT_VML control 

    logic [31:0] vml_counter; 

    assign vml_done = (interface_mode == OP_INT_VML) & (vml_counter >= 

interface_count); 

 

    always_ff @ (posedge core_clk) begin : vml_ctl 

        if (rst) begin 

            vml_counter <= 32'b0; 

        end 

        else begin 

            if ((interface_mode == OP_INT_VML) & ((core_state == C_LOAD_AD & 

core_mode == OP_DO_HASH) | (core_state == C_LOAD_PTCT)) & load_done) begin 

                vml_counter <= vml_counter + 1; 

            end 

        end 

    end 

    // end interface mode ctrl logic 

 

    ///////////////////////////// 

    // memory and config logic // 

    ///////////////////////////// 

 

    // inputs 

    // encrypt 

    logic [31:0] key        [3:0]; 

    logic [31:0] nonce      [3:0]; 

    logic [31:0] a_data     [3:0]; 

    logic [31:0] ptct       [3:0]; 

    // decrypt 

    logic [31:0] tag        [3:0]; 

     

    // outputs 

    logic [31:0] ptct_out   [3:0]; 
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    logic [31:0] tag_out    [3:0]; 

     

    logic [31:0] hash_out   [7:0]; 

     

    // data type logic 

    always_comb begin : data_type_comb 

        // determine data type from instruction 

        if (current_state == I_READ_INST) begin 

            case (inst) 

                OP_LD_KEY: next_data_type = D_KEY; 

                OP_LD_NONCE: next_data_type = D_NONCE; 

                OP_LD_AD: next_data_type = D_AD; 

                OP_LD_PT: next_data_type = D_PTCT; 

                OP_LD_CT: next_data_type = D_PTCT; 

                OP_LD_TAG: next_data_type = D_TAG; 

                default: next_data_type = D_NULL; 

            endcase 

        end else next_data_type = data_type; 

        // end read instructions 

    end 

     

    // syncronized assignments 

    always_ff @ (posedge interface_clk) begin : memory_config 

        // define resets 

        if (rst) begin 

            core_config <= 32'b0; 

            interface_config <= 32'b0; 

            data_size   <= 3'b0; 

            data_type   <= 4'b0; 

            read_count  <= 3'b0; 

            key[0]      <= 32'b0; key[1] <= 32'b0; key[2] <= 32'b0; key[3] <= 

32'b0; 

            nonce[0]    <= 32'b0; nonce[1] <= 32'b0; nonce[2] <= 32'b0; 

nonce[3] <= 32'b0; 

            a_data[0]   <= 32'b0; a_data[1] <= 32'b0; a_data[2] <= 32'b0; 

a_data[3] <= 32'b0; 

            ptct[0]     <= 32'b0; ptct[1] <= 32'b0; ptct[2] <= 32'b0; ptct[3] 

<= 32'b0; 

            tag[0]      <= 32'b0; tag[1] <= 32'b0; tag[2] <= 32'b0; tag[3] <= 

32'b0; 

            key_size    <= 3'b0; 

            nonce_size  <= 3'b0; 

            ad_size     <= 3'b0; 

            ptct_size   <= 3'b0; 

            tag_size    <= 3'b0; 

        end else begin 

            // update instructions 

            core_config <= ((inst == OP_DO_ENC | inst == OP_DO_DEC | inst == 

OP_DO_HASH) & current_state == I_READ_INST) ? d_parallel : core_config; 

            interface_config <= ((inst == OP_INT_SINGLE | inst == OP_INT_RPT 

| inst == OP_INT_VML) & current_state == I_READ_INST) ? d_parallel : 

interface_config; 

            data_size   <= (current_state == I_READ_INST) ? size_calc : 

data_size; 

            data_type   <= next_data_type; 

            // end update instructions 



 

 

39 

 

            // update data size 

            key_size    <= (data_type == D_KEY)     ? data_size : key_size; 

            nonce_size  <= (data_type == D_NONCE)   ? data_size : nonce_size; 

            ad_size     <= (data_type == D_AD)      ? data_size : ad_size; 

            ptct_size   <= (data_type == D_PTCT)    ? data_size : ptct_size; 

            tag_size    <= (data_type == D_TAG)     ? data_size : tag_size; 

            // end update size 

            // update data 

            //count reads 

            if (current_state == I_READ_DATA) begin 

                read_count <= read_count + 1; 

            end 

            else if (current_state == I_DATA) 

                read_count <= read_count; 

            else read_count <= 3'b0; 

            //save data to registers 

            key[read_count]     <= (data_type == D_KEY & current_state == 

I_READ_DATA)  ? d_parallel : key[read_count]; 

            nonce[read_count]   <= (data_type == D_NONCE & current_state == 

I_READ_DATA)    ? d_parallel : nonce[read_count]; 

            a_data[read_count]  <= (data_type == D_AD & current_state == 

I_READ_DATA)       ? d_parallel : a_data[read_count]; 

            ptct[read_count]    <= (data_type == D_PTCT & current_state == 

I_READ_DATA)     ? d_parallel : ptct[read_count]; 

            tag[read_count]     <= (data_type == D_TAG & current_state == 

I_READ_DATA)  ? d_parallel : tag[read_count]; 

            // end update data 

        end 

    end  

    // end memory and config 

 

     

    ///////////////////// 

    // core load logic // 

    ///////////////////// 

 

    // define load_done 

    always_comb begin : load_done_comb 

        case (core_state) 

            C_LOAD_KEY:     load_done = key_ready & (load_count == key_size); 

            C_LOAD_NONCE:   load_done = bdi_ready & (load_count == 

nonce_size); 

            C_LOAD_AD:      load_done = bdi_ready & (load_count == ad_size); 

            C_LOAD_PTCT:    load_done = bdi_ready & (load_count == 

ptct_size); 

            C_LOAD_TAG:     load_done = bdi_ready & (load_count == tag_size); 

            default: load_done = FALSE; 

        endcase 

    end 

 

    always_comb begin : core_load_comb 

        if (load_done) load_count_next = 3'b0; 

        else if ((bdi_ready & bdi_valid) | (key_ready & key_valid)) 

load_count_next = load_count + 1; 

        else load_count_next = load_count; 

        key_w = 32'b0; 

        key_valid_next = FALSE; 
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        bdi = 32'b0; 

        bdi_valid_next = FALSE; 

        bdi_type = D_NULL; 

        bdi_eot_next = FALSE; 

        bdi_eoi_next = FALSE; 

        case (core_state) 

            C_LOAD_KEY: begin  

                key_w           = key[load_count]; 

                key_valid_next  = ~load_done; 

            end 

            C_LOAD_AD: begin  

                bdi             = a_data[load_count]; 

                bdi_type        = D_AD; 

                bdi_valid_next  = ~load_done; 

                bdi_eot_next    = ((ad_size == load_count_next) & bdi_ready & 

((core_mode != OP_DO_HASH) | (interface_mode != OP_INT_VML) | vml_done)); 

                bdi_eoi_next    = ((ad_size == load_count_next) & bdi_ready & 

(core_mode == OP_DO_HASH) & ((interface_mode != OP_INT_VML) | vml_done)); 

            end 

            C_LOAD_NONCE: begin  

                bdi             = nonce[load_count]; 

                bdi_type        = D_NONCE; 

                bdi_valid_next  = ~load_done; 

                bdi_eot_next    = (nonce_size == load_count_next); 

            end 

            C_LOAD_PTCT: begin  

                bdi             = ptct[load_count]; 

                bdi_type        = D_PTCT; 

                bdi_valid_next  = ~load_done; 

                bdi_eot_next    = ((ptct_size == load_count_next) & bdi_ready 

& ((interface_mode != OP_INT_VML) | vml_done)); 

                bdi_eoi_next    = ((ptct_size == load_count_next) & bdi_ready 

& ((interface_mode != OP_INT_VML) | vml_done)); 

            end 

            C_LOAD_TAG: begin  

                bdi             = tag[load_count]; 

                bdi_type        = D_TAG; 

                bdi_valid_next  = ~load_done; 

                bdi_eot_next    = (tag_size == load_count_next); 

            end 

            default: begin 

                bdi             = 32'b0; 

                bdi_type        = D_NULL; 

                bdi_valid_next  = FALSE; 

            end 

        endcase 

    end 

 

    // sychronous state logic 

    always_ff @(posedge core_clk) begin : core_load_seq 

        if (rst == TRUE) begin 

            load_count  <= 3'b0; 

            key_valid   <= FALSE; 

        end else begin 

            load_count  <= load_count_next; 

            key_valid   <= key_valid_next; 

            bdi_valid   <= bdi_valid_next; 
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            bdi_eot     <= bdi_eot_next; 

            bdi_eoi     <= bdi_eoi_next; 

        end 

    end 

    //end core load logic 

 

 

    ///////////////////// 

    // core read logic // 

    ///////////////////// 

 

    logic [4:0] core_out_count; 

 

    always_ff @(posedge core_clk) begin : core_read 

        if (rst) begin 

            core_out_count <= 5'b0; 

            ptct_out[0] <= 32'b0; ptct_out[1] <= 32'b0; ptct_out[2] <= 32'b0; 

ptct_out[3] <= 32'b0; 

            tag_out[0]  <= 32'b0; tag_out[1]  <= 32'b0; tag_out[2]  <= 32'b0; 

tag_out[3]  <= 32'b0; 

            hash_out[0] <= 32'b0; hash_out[1] <= 32'b0; hash_out[2] <= 32'b0; 

hash_out[3] <= 32'b0;  

            hash_out[4] <= 32'b0; hash_out[5] <= 32'b0; hash_out[6] <= 32'b0; 

hash_out[7] <= 32'b0; 

        end else begin 

            if (bdo_eot) 

                core_out_count <= 5'b0; 

            else if (bdo_valid && bdo_ready)  

                core_out_count <= core_out_count + 1; 

            else  

                core_out_count <= core_out_count; 

            ptct_out[load_count]     <= (bdo_type == D_PTCT & bdo_valid) ? 

bdo : ptct_out[load_count]; 

            tag_out[core_out_count]  <= (bdo_type == D_TAG & bdo_valid) ? bdo 

: tag_out[core_out_count]; 

            hash_out[core_out_count] <= (bdo_type == D_HASH & bdo_valid) ? 

bdo : hash_out[core_out_count]; 

        end 

 

    end 

    // end core read logic 

 

 

    ////////////////// 

    // piso convert // 

    ////////////////// 

 

    logic [31:0] piso,piso_next; 

    logic [3:0] reg_count_next; 

    logic [4:0] piso_count_next; 

     

    assign sdo = valid ? piso[31] : 1'b0; 

    assign valid = (current_state == I_RETURN_PTCT | current_state == 

I_RETURN_TAG | current_state == I_RETURN_HASH); 

 

    always_comb begin : piso_comb 

        piso_next = piso; 
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        reg_count_next = reg_count; 

        piso_count_next = piso_count; 

        if (current_state == I_RETURN_SYNC | current_state == I_RETURN_BREAK) 

begin 

            case (next_state) 

                I_RETURN_PTCT: piso_next = ptct_out[0]; 

                I_RETURN_TAG: piso_next = tag_out[0]; 

                I_RETURN_HASH: piso_next = hash_out[0]; 

                default: piso_next = 32'b0; 

            endcase 

        end 

        else if (valid) begin    

            if (piso_count == 5'd31) begin 

                if (current_state == I_RETURN_HASH) begin 

                    if (reg_count == 3'd7) begin 

                        reg_count_next = 4'b0; 

                        piso_next = hash_out[0]; 

                    end 

                    else begin 

                        reg_count_next = reg_count + 1; 

                        piso_next = hash_out[reg_count+1]; 

                    end 

                end 

                else begin 

                    if (return_done) begin 

                        reg_count_next = 4'b0;  

                    end 

                    else begin 

                        reg_count_next = reg_count + 4'b1; 

                        case (next_state) 

                            I_RETURN_PTCT: piso_next = ptct_out[reg_count+1]; 

                            I_RETURN_TAG: piso_next = tag_out[reg_count+1]; 

                            default: piso_next = 32'b0; 

                        endcase 

                    end 

                end 

                piso_count_next = 5'b00000; 

            end 

            // shift 

            else begin  

                piso_next = {piso[30:0],1'b0}; 

                piso_count_next = valid ? piso_count + 5'b1 : piso_count; 

            end 

        end 

        else begin 

            reg_count_next = 4'b0; 

            piso_count_next = 5'b00000; 

        end 

    end 

 

    always_ff @(posedge interface_clk) begin : piso_seq 

        if (rst == TRUE) begin 

            piso <= 32'b0; 

            reg_count <= 4'b0; 

            piso_count <= 5'b00000; 

        end 

        else begin 
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            piso <= piso_next; 

            reg_count <= reg_count_next; 

            piso_count <= piso_count_next; 

        end 

    end 

    // end piso convert 

     

    // define config flags 

    assign hash = (core_mode == OP_DO_HASH); 

    assign decrypt = (core_mode == OP_DO_DEC); 

 

    // define read flags 

    assign bdo_ready = (core_state == C_LOAD_PTCT | (core_state == C_WAIT_OUT 

& (core_mode == OP_DO_ENC | core_mode == OP_DO_HASH))); 

    assign auth_ready = (core_state == C_WAIT_OUT) & (core_mode == 

OP_DO_DEC); 

 

    // instantiate the spi interface and convert for the ascon core module 

    ascon_core core( 

        .clk(core_clk),         //i 

        .rst(rst),              //i 

        .key(key_w),            //i 32 

        .key_valid(key_valid),  //i 

        .key_ready(key_ready),  //o 

        .bdi(bdi),              //i 32 

        .bdi_valid(bdi_valid),  //i 

        .bdi_ready(bdi_ready),  //o 

        .bdi_type(bdi_type),    //i 4 

        .bdi_eot(bdi_eot),      //i 

        .bdi_eoi(bdi_eoi),      //i 

        .decrypt(decrypt),      //i 

        .hash(hash),            //i 

        .bdo(bdo),              //o 32 

        .bdo_valid(bdo_valid),  //o 

        .bdo_ready(bdo_ready),  //i 

        .bdo_type(bdo_type),    //o 4 

        .bdo_eot(bdo_eot),      //o 

        .auth(auth),            //o 

        .auth_valid(auth_valid),//o 

        .auth_ready(auth_ready),//i 

        .trig(trig)             //o 

    ); 

     

endmodule // ascon_spi 
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APPENDIX B: INTERFACE_TEST.SV 
`timescale 1ns / 1ps 

/////////////////////////////////////////////////////////////////////////////

///// 

// Company: WPI 

// Engineer: Trevor Drane 

//  

// Create Date: 10/25/2023 02:43:11 PM 

// Design Name: Ascon SPI 

// Module Name: interface_test 

// Project Name:  

// Target Devices: Basys 3 

// Tool Versions:  

// Description: Simulation source for interface testing 

//  

// Dependencies: sipo.sv 

//  

// Revision: 

// Revision 0.01 - File Created 

// Additional Comments: 

//  
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module interface_test( 

 

    ); 

    logic interface_clk; 

    logic core_clk; 

    //logic clk; 

    logic rst; 

    logic cs_n; 

    logic sdi; 

    logic valid; 

    logic sdo; 

    logic auth_fail; 

    logic [31:0] in; 

    logic [31:0] out; 

    logic trig; 

 

     

    int tv_num; 

    string tv_path; 

    string TV_SET1 = "../tv/set1/tv.txt"; // long set 

    string TV_SET2 = "../tv/set2/tv.txt"; // short set 

    string TV_SET3 = "../tv/set3/tv.txt"; // rpt 

    string TV_SET4 = "../tv/set4/tv.txt"; // vml 

    string TV_SET5 = "../tv/set5/tv.txt"; // 

    int arg_status = 0; 

    //string CHECK_FILE = "../tv/set1/check_d.txt"; 

    int fvectors,fcheck; 

    int SIM_T = 60000; // 60 ms for one round of hashing 

    string line; 

    string hdr,ignore; 

    int cnt; 
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    logic [31:0] expected; 

    logic verify; 

     

     

    always #10 interface_clk = ~interface_clk; 

    always #5 core_clk = ~core_clk; 

    //always #5 clk = ~clk; 

     

    initial begin 

        verify = 1; 

        $dumpfile("trace.vcd"); 

        $dumpvars(0, interface_test); 

        //fcheck = $fopen (CHECK_FILE, "r"); 

        arg_status = $value$plusargs("TV_SET=%d",tv_num); 

        if (arg_status) begin 

            case (tv_num) 

                1: tv_path = TV_SET1; 

                2: tv_path = TV_SET2; 

                3: begin tv_path = TV_SET3; 

                    SIM_T = 150_000_000;  

                end 

                4: tv_path = TV_SET4; 

                5: tv_path = TV_SET5; 

                default: tv_path = TV_SET1; 

            endcase 

            fvectors = $fopen (tv_path, "r"); 

        end 

        else fvectors = $fopen (TV_SET1, "r"); 

        if (fvectors == 0) begin 

           $display("Could not open test vector file"); 

           $finish; 

        end 

        rst = 1'b1; 

        core_clk = 1'b0; 

        interface_clk = 1'b0; 

        cs_n = 1'b1; 

        sdi = 1'b0; 

        @(posedge interface_clk); 

        @(negedge interface_clk) rst = 1'b0; 

        @(negedge interface_clk) cs_n = 1'b0; 

        while (!$feof(fvectors)) begin 

            void'($fgets(line, fvectors)); 

            void'($sscanf(line, "%s", hdr)); 

            if (hdr == "WAIT") begin 

                fork 

                    begin 

                        wait (auth_fail); 

                        $display("AUTH FAIL @ %0t", $time); 

                        @(negedge interface_clk) rst = 1'b1; 

                        @(negedge interface_clk) rst = 1'b0; 

                    end 

                    begin 

                        wait (valid); 

                        wait (~valid); 

                        @(posedge interface_clk); 

                        @(posedge interface_clk); 
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                        wait (~valid); 

                    end 

                join_any 

                @(negedge interface_clk) rst = 1'b1; 

                @(negedge interface_clk) rst = 1'b0; 

                $display("timestamp: %0t", $time); 

                continue; 

            end 

            if (hdr == "STOP") continue; 

            if (hdr == "#") void'($fgets(line, fvectors)); 

            void'($sscanf(line, "%s %h", hdr, in)); 

            //if (hdr == "STOP") $stop; 

            cnt = 31; 

            repeat(32) begin  

                sdi = in[cnt]; 

                @(negedge interface_clk); 

                cnt = cnt - 1; 

            end 

        end 

        $fclose(fvectors); 

    end 

     

    always #SIM_T $stop; 

 

    sipo sipo ( 

        .clk(interface_clk), 

        .cs(valid), 

        .sdi(sdo), 

        .pdo(out) 

    ); 

 

    always @(out) begin 

        //void'($fscanf(fcheck, "%h", expected)); 

        //verify = (expected==out) && verify; 

        $display("%h", out); 

        // if ($feof(fcheck)) begin 

        //  if (verify == 1'b1) 

        //      $display("Testbench Passed"); 

        //  else 

        //      $display("Testbench Failed"); 

        // end 

    end 

     

    ascon_spi dut ( 

        .interface_clk(interface_clk), 

        .core_clk(core_clk), 

        //.clk(clk), 

        .rst(rst), 

        .cs_n(cs_n), 

        .sdi(sdi), 

        .valid(valid), 

        .sdo(sdo), 

        .auth_fail(auth_fail), 

        .trig(trig) 

    ); 

     

endmodule  
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APPENDIX C: SAMPLE TEST VECTOR SET 
# Load key 

INS 30000010 

DAT 9D79B1A3 

DAT 7F31801C 

DAT D11A6706 

DAT FB40D6BD 

# Specify authenticated encryption 

INS 00000000 

# Load nonce 

INS 40000010 

DAT 57526846 

DAT 903BB13E 

DAT DE562439 

DAT E9C1B823 

# Load associated data 

INS 50000010 

DAT 1AB3C589 

DAT E3E64EC6 

DAT 1F7EC67B 

DAT F7017780 

# Load plaintext 

INS 61000010 

DAT 4FCF816F 

DAT B65763D3 

DAT A38824BB 

DAT 6AAC9780 

# Interface instruction 

INS 90000000 

WAIT 

# Load key 

INS 30000010 

DAT 9D79B1A3 

DAT 7F31801C 

DAT D11A6706 

DAT FB40D6BD 

# Specify authenticated decryption 

INS 10000000 

# Load nonce 

INS 40000010 

DAT 57526846 

DAT 903BB13E 

DAT DE562439 

DAT E9C1B823 

# Load associated data 

INS 50000010 

DAT 1AB3C589 

DAT E3E64EC6 

DAT 1F7EC67B 

DAT F7017780 

# Load ciphertext 

INS 71000010 

DAT 13E3AD30 

DAT AB2075C8 

DAT 44E2D23F 

DAT 15A86348 
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# Load tag 

INS 81000010 

DAT 31639907 

DAT F2D82FD7 

DAT 58725E70 

DAT 6CE3C1F7 

# Interface instruction 

INS 90000000 

WAIT 

# Specify hashing 

INS 20000000 

# Load message data 

INS 51000010 

DAT 1AB3C589 

DAT E3E64EC6 

DAT 1F7EC67B 

DAT F7017780 

# Interface instruction 

INS 90000000 

WAIT 

STOP 

 


