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Abstract 
 

Mobile robotics is a growing field that focuses on developing platforms that can move 

throughout an environment to accomplish several tasks. Traditionally, mobile robotics consists of 

a payload attached to a wheeled base, like what can be seen on anything from iRobot’s Roomba 

robotic vacuum to NASA’s Mars Rovers. However, wheeled robots are largely restricted to 

smooth and flat surfaces. In many cases, it is useful for robots to be able to climb obstacles like 

stairs or jump up to higher elevations to improve their mobility. Recently, there has been a push 

to recreate the adaptability of humans and animals’ legs to make a robot that can truly go 

anywhere we can. Robots like Boston Dynamics’ Spot and Atlas, Agility Robotics’ Digit, and the 

hundreds of quadruped robots across the world push the boundaries of where robots can go. The 

limitless applications of legged robotics make them extremely attractive for working alongside 

humans since, in theory, there is no obstacle that we could traverse that they cannot. However, 

legged robots are incredibly inefficient in comparison to wheeled robots, and in general, complex 

obstacles that require legs to traverse only make up a small fraction of the total terrain that a 

mobile robot can expect to encounter. For example, if a robot is attempting to navigate a 

warehouse, it will likely spend most of its time driving around a smooth floor and only 

occasionally need to climb a staircase or traverse rough terrain. A legged robot would accomplish 

this navigation, but would not be the most efficient design. A wheeled robot would be highly 

efficient for traditional floor navigation, but unable to traverse complicated obstacles. This 

project explores the effectiveness of combining wheels and legs to create a highly robust mobile 

platform that can accomplish many types of locomotion as efficiently as possible. 
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1 Introduction 
 

 Mobile robotics is a subset of robotics that is continually increasing in popularity as 

robots become more complex and attempt to become more integrated into our lives. Mobile 

robots have the ability to move around and perform tasks in different places, which increases the 

versatility and usefulness of a single robot. Mobile robots have a variety of use cases; anything 

from indoor factory work to outdoor search and rescue, and each terrain likely comes with a 

different form of type of robotic locomotion that would be ideal to handle it.  

 The majority of mobile robots work in indoor environments, which primarily means that 

they are traveling along smooth surfaces like concrete, tile, or hard wood. For smooth surfaces, 

the natural choice for locomotion is wheels for a number of reasons. First and foremost, wheels 

are mechanically simple and are power efficient. Engineers have studied for centuries on how to 

implement robust and reliable powertrains for wheeled locomotion. Wheels are also easy to 

model kinematically, which simplifies the effort necessary to develop trajectory generation and 

motion planning algorithms. Additionally, wheels provide a stable base on which to place other 

components like manipulation elements and payloads, since three or more static points of contact 

on the ground provides mechanical stability. And finally, the combination of power efficiency 

and stability lends itself well to traveling at high speeds for long periods of time. However, most 

wheeled robotic platforms, unless specifically designed to do so, are unable to handle abstract 

terrain like rocks, rubble, and especially stairs. 

 The current popular solution to the deficiencies of wheels is legged robotics, a division of 

mobile robots that aims to replicate the versatility of animals by developing complex robotic 

legs. Legged robots are kinematically similar to humans and animals, which means that in 

theory, legged robots are the ideal choice to exist in a world that has been developed by humans. 

However, legged robots come with several important weaknesses. Firstly, they are extremely 

complex from a mechanical perspective. It is difficult to design leg linkages that are robust, 

accurate, and repeatable over extended periods of use. Further, it is excessively difficult to 

develop control algorithms to reliably maintain balance, especially while traversing the complex 

terrain that legged robots promise to overcome. The result of this is software that requires a lot of 

overhead to run, which makes robots intensely computationally expensive, which taxes the 

battery and power overhead of the whole robot. And finally, practical legged robots are 

historically very slow. Industrial legged robot technology is simply just now reaching a point 

where they can achieve the same walking pace as a human, and are far from reaching the speed 

and efficiency of wheels. 

 When examining the use cases for mobile robots, most applications require the robot to 

travel on a smooth surface for a strong majority of the run time. Very few applications require 

robots to continually do obstacles like stairs, and even when they do have to, the frequency with 

which they do can often times be optimized down using clever path planning algorithms. 

Therefore, ideal platform for most indoor mobile robotic applications would be a combination of 
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the efficiency of wheels and the versatility of legs. This platform would be able to provide the 

mechanical simplicity and efficiency of wheels, while also providing the ability to traverse stairs 

without requiring computationally expensive control algorithms.  

 This project attempts to achieve this ideal mobile platform by combining wheels and legs 

into a platform that is simple from both a mechanical and controls perspective. This robot will 

pursue attaching wheels onto a one degree of freedom leg to create a bipedal frame that navigates 

like a wheeled robot and balances like an inverted pendulum. This 1-DOF leg should provide the 

ability to dynamically balance in both roll and pitch, as well as the theoretical ability to jump and 

allow the robot to climb stairs. This combination of wheels and legs should provide a versatile 

dynamic platform that accomplishes all navigational tasks of an industrial mobile robot. This 

unique mobile robot shall be called “Scout”, a nod to one of several possible applications for it. 
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2 Background 
 

While a combination of wheels and legs on a mobile robot is unique and still rare in the modern 

climate of robotics, this project is not the first to attempt this combination. There are a few 

platforms that have explored this combination in the past and served as inspiration for some of 

the design decisions made throughout the course of this project. 

 

2.1 Boston Dynamics “Handle” 
 

Boston Dynamic’s groundbreaking robot handle served a number of purposes throughout its 

lifetime. Originally beginning life as a an offshoot research platform from their humanoid robot 

Atlas, Handle sought to explore the kinematics of combining wheels and a multi-DOF legged 

robot. Eventually, Boston Dynamics attempted to pursue a practical application with this robot of 

manipulating packages in a warehouse environment, demonstrated in Figure 1, before eventually 

sunsetting the robot to make way for its successor, Stretch. This history made Handle a large 

inspiration to this project, as prior to the start of this project, Brian Boxell, the engineer behind 

Scout, worked on the Strech project at Boston Dynamics. [2] 

 

Figure 1: Boston Dynamics Handle as it attempts to pick up an example payload. 

 

2.2 ETH Zurich “ANYmal” 
 

Researchers at ETH Zurich in Switzerland developed a quadruped robot called ANYmal, a 

research platform to explore the kinematics of legged robots in an academic environment. While 

ANYmal is primarily a standard quadruped with rubber knobs as feet, it also has a configuration 
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where the feet can be replaced with wheels. The ANYmal team has published a series of videos 

that demonstrate its unique abilities to combine wheels and legs to travel quickly over complex 

terrain like hills, while moving smoothly similar to how a human on roller skates would act. This 

robot is also capable of a few novel behaviors like shifting from standing like a quadruped to 

standing on its hind legs in bipedal mode, even with wheels as end-effectors on the legs, as seen 

in Figure 2. [3] 

 

Figure 2: ANYmal as it stands in bipedal mode, assisted by wheels as feet 

 

2.3 Ascento Robotics “Ascento” 
 

“Ascento” by Ascento Robotics is the one robot of this bunch that is a commercial platform. 

Ascento combines a four bar linkage with large wheels to create a versatile mobile platform that 

can transport the variety of sensor packages that the robot can be equipped with to perform 

various tasks. Ascento is the primary inspiration for this project, and many of the mechanical 

design decisions made throughout this project were influenced by those made by the Ascento 

team. [1] The Ascento robot can be seen standing up on two wheels in Figure 3. 
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Figure 3: Ascento Robot, Version 1 
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3 Design Decisions 
 

This section will discuss the preliminary design decisions that were made to shape the robot at a 

high level. This will include discussion over the high-level linkage design and its interaction with 

the wheels, the electronics hardware structure, and the software architecture behind the various 

functions of the robot. 

 

3.1 Why a Balancing Robot? 
 

As shown by previous robots in industry that combine wheels and legs, there are many ways to 

accomplish this unity. Robots like ANYmal integrate wheels onto four legs to improve stability, 

while Ascento accomplishes the combination by balancing on two legs like an inverted 

pendulum. To understand which configuration makes the most sense for this project, let us define 

a few major design criteria for this project: 

• Mechanically Simple 

• Kinematically Simple 

• Able to transport payloads 

• Able to achieve speeds higher than a legged robot 

• Minimal subsystems as to lower the scope of this project 

• Cost effectiveness 

Firstly, let us examine how a legged quadruped robot aligns with this design criteria. The 

mechanical complexity of each leg is going to be slightly more complex because if this robot is 

going to be able to do stairs, then each leg needs to be able to articulate laterally in the forward 

direction to be able to take a step up a stair. This means that a leg first must be able to move up 

and down, but also forward and backwards, thereby requiring at least two degrees of freedom. 

Two degrees of freedom is still kinematically trivial for an individual leg, but motions that 

combine all four of these legs would be very complex. In theory, a wheeled quadruped robot 

platform would be very stable, especially statically. This makes it a good choice for supporting 

heavy payloads. However, this design would require the manufacturing of four legs, which 

drives up the cost of this project, and increases the minimum amount of work required for 

completion. 

 

Next, let us examine how a bipedal balancing robot compares to a quadruped in terms of this 

design criteria. The mechanical design of the legs is much simpler, because the robot would be 

theoretically able to accomplish behaviors involving hopping that would be more complex for a 

quadruped. A balancing robot could change its pitch and hop to accomplish stairs, which 

alleviates the need for a second degree of freedom. This keeps the robot more kinematically 

simple. Additionally, this platform requires only two legs, which minimizes the work required for 

hardware bring-up and reduces the scope of the project. However, this platform will not be as 
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stable as it will be constantly balancing due to being in unstable equilibrium. This means that this 

design would not be as good for transporting heavy payloads. 

 

After examining the design requirements for this project, it was clear that a balancing robot 

would be able to satisfy all the requirements of this robot and would be easier to implement 

within the one-year scope of the project. 

 

3.2 Size and Weight 
 

One of the key design requirements of this project was to maintain a low but flexible budget 

since this robot was entirely self-funded without support from WPI. Because of this, an estimated 

size of 15 inches tall and weight of 5lbs was chosen after approximating the costs of electronics 

and materials that would be necessary to facilitate a robot of this size. This form factor, though 

small, would be significant enough to convey the results of the kinematic exploration intentions 

of the project.  

3.3 Linkage Design 
 

One of the focal points of this robot was the linkage design that should facilitate the legged 

robotic behaviors that the robot should accomplish. The high-level tasks that the linkage needed 

to accomplish were: 

• Individually articulate the length of each leg. 

• Raise and lower the robot’s body. 

• Be kinematically simple as to reduce the complexity required by the control algorithm. 

Conceptually, the kinematically simplest solution to the leg linkage would be a linkage that 

moved the center of the mass of the robot perfectly linearly straight up and down. This reduces 

the disturbance that would be imparted on the balance controller and would help maintain 

stability throughout the body’s vertical range of travel. However, perfect linearity is not a strict 

requirement because the balance controller is able to compensate for some lateral shifts in the 

COM so long as they are not too drastic. An implementation of a linear slide would work for this 

project, but the power train requirements and mechanical complexity was not favorable since it is 

easier to design a linkage with revolute joints as opposed to linear slides. A linear linkage like the 

Peaucellier mechanism was considered but rejected do to the complexity in having so many 

joints.  

The simple choice for this problem was a four-bar linkage that was designed to approximate 

linearity of the end effector through its range of motion. Though a four bar can never be perfectly 

linear, there exist link lengths and pivot points that can achieve desirable output paths. Thus, a 

four-bar linkage was the decision for the linkage of this robot. 
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3.4 Electronics Architecture 
 

One of the objectives of this project was to minimize cost, and electronics made up a large 

portion of the total cost of the project. Because of this, budget electronics were chosen where 

ever possible while attempting to not sacrifice the performance of the robot.  

 

3.4.1 Computational Processing 
 

The primary computational process for this robot is the balance control algorithm. One of the 

hallmarks of a good control algorithm is executing the loop as quickly as possible to decrease 

response latency. This means that the optimal choice for the primary microcontroller would be 

something without too much system overhead to dedicate all the resources towards running the 

control algorithm. Thus, the optimal choice would be either a single board computer (SBC) 

running a real time operating system (RTOS) or a microcontroller that natively runs an RTOS. 

Because of this, this project used an ESP32 as its primary microcontroller, which natively runs a 

release of FreeRTOS. This microcontroller would handle all inputs from sensor data, including 

input from the human operator, and would communicate with the brushless motor controllers.  

 

3.4.2 Brushless Motor Control 
 

This project uses brushless motors to actuate the wheels because brushless motors are 

lightweight and power dense, and also provide a form factor that is useful for packaging. The 

primary market for brushless motors of the size and power that was applicable for this project is 

drones, which means that most brushless motors and motor controllers are designed to operate at 

high RPMs and are not designed around low RPM fine control, which was integral for this 

project.  

The most common solution for brushless motor controllers in robots of this size is a motor 

controller from ODrive Robotics, which produces motor controllers specifically designed to 

tackle the fine control issues of brushless motors and also come with a convenient API for 

sending and receiving data to and from the motor controller from the microcontroller. However, 

the current options that ODrive produces are all too large of a footprint to fit in the size of robot 

that was decided upon. Additionally, the cost of $149 for a single ODrive S1 was too expensive 

for this project’s budget. The ODrives that were examined can be found here: 

https://odriverobotics.com/shop/odrive-s1  

 

Another alternative was a VESC-based brushless motor controller. VESC is an open-source 

brushless motor control firmware, on which several motor controllers are built. The primary 

market for VESC-based speed controls is electric skateboards, which although they do not come 

https://odriverobotics.com/shop/odrive-s1
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with the convenient API of the ODrive, are able to produce the low RPM fine control that this 

project would require. Additionally, VESC being open source means that this project was able to 

dig into the source code and modify the firmware to tailor it to this hardware platform wherever 

necessary. After looking into hardware options, the VESC A50S from TeamTriforce UK were 

selected. VESC supports multiple types of input, including PWM and DAC, which would make 

communicating with the ESP32 very easy. More information on these motor controllers can be 

found here: https://teamtriforceuk.com/a50s-v2/  

 

3.4.3 SBC for Future Peripheral Integrations 
 

Given that this platform was a mobile robot, the intention is to be able to attach useful peripheral 

devices like a camera or microphone to the robot. Though outside the scope of this project, the 

intention is to eventually have a standalone single board computer that handles the complex input 

from these peripherals and can translate them to useful behaviors that would be sent to the 

primary controls microcontroller. For example, a LiDAR could be attached to the top of the robot 

and feed data to a Raspberry Pi running ROS on Ubuntu that uses the data for SLAM. The 

Raspberry Pi could then generate a list of simpler commands for the robot to carry out for 

navigation and send them to the main ESP32 that handles the controls for how to accomplish 

those tasks. 

 

3.4.4 Battery and Voltage Regulation 
 

Being a mobile robot, the ability to move under its own power without the necessity of a tether to 

a power supply was paramount. Because of this, the robot needed its own battery power. The 

optimal choice for a battery would be lightweight and able to run for more than 30 minutes, a 

number chosen based on the predicted length of a demonstration of the robot. 16.8V (4S Lipo) 

was a natural decision for the operating voltage of the robot because it is a common voltage used 

in drones, which is what the motors and motor controllers of this size are typically designed for. 

The exact power draw requirements of the robot was difficult to estimate because it is heavily 

dependent how the robot is being driven. For example, the robot would be able to run for much 

longer if it was just idly balancing instead of driving around. Fortunately, this project had access 

to a wide range of LiPo batteries available for testing that were sized for 3lb combat robots, 

which enabled a guess and check philosophy to figure out what capacity battery was appropriate. 

The final decision was the GNB 4s 850mah LiPo found here: 

https://www.amazon.com/GAONENG-850mAh-15-2V-Battery-Range/dp/B097SJTNL4  

However, not all components run on 16.8V and therefore, some voltage regulation was required. 

The ESP32 operates on 5V in, and the servos that would be chosen for the leg linkage operate on 

6V. To facilitate this voltage regulation, Battery Eliminating Circuits (BEC) were used to step 

down the voltage from 16.8V. For the 5V processing line, a 2A BEC was chosen because of the 

https://teamtriforceuk.com/a50s-v2/
https://www.amazon.com/GAONENG-850mAh-15-2V-Battery-Range/dp/B097SJTNL4
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low current draw of the ESP32. For the servos, a 10A BEC was chosen because the servos 

chosen can draw upwards of 3A each. 
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4 Implementation 
 

4.1 Hardware Implementation 
 

Due to the nature of this robot being a balancing robot, designing and manufacturing a robust 

and durable robot was paramount to the success of the project. The robot had to be able to 

survive any failure mode without causing significant disruption to the development process. 

 

4.1.1 Leg Linkage 
 

The leg linkage decided upon was a four-bar linkage designed so that the path of the wheel 

throughout the range of motion would be as close to linear as possible. When designing the 

linkage, it was discovered that shortening the top link caused the driven link to approach a toggle 

point towards the limit of the travel. When the link approaches the toggle point, the horizontal 

displacement of the wheel is minimal. Using this concept, a close to linear four bar was produced 

according to the dimensions shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

The leg linkage is one of the most exposed parts of the robot, which makes it especially 

vulnerable to damage when the robot falls over. To accommodate this, materials were chosen that 

would far exceed the minimum requirements of a functional system. The legs are entirely 

machined out of aluminum 6061, chosen because of its availability and machinability. The joints 

of the legs are constructed with ball bearings on alloy steel shoulder bolts, both sourced from 

McMaster-Carr. Shoulder bolts and ball bearings were chosen because they can create robust, 

Figure 4: 4 Bark Linkage Diagram at Various Heights 
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low slop joints, which was critical for the leg linkage. The cross section of the linkage joints can 

be seen in Figure 5. The final physical implementation of the leg linkage can be seen in Figure 6. 

 

 

Figure 5: Linkage Joint Cross-Section 

 

 

Figure 6: Completed Leg Linkage Profile View 
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4.1.2 Leg Linkage Power Transmission 
 

As discussed in the design decision section, brushless motors were intended to power both the 

wheels on the legs and leg joints themselves. This decision was made such that the robot would 

have the power necessary to perform more complex behaviors like jumping. However, the 

complexities involved in implementing positional control of a brushless motor due to low rpm 

commutation issues made this design decision difficult to implement in real life and therefore out 

of the scope of the project. Instead, servos were chosen to control the legs because servos handle 

their own positional control, which made it easier to focus on the more interesting controls 

aspects of the legs. To transmit power to the legs, XL timing belts were used because belted 

transmissions tend to have low backlash and the XL tooth pattern interfaces well with 3D printed 

pulleys. 

 

Figure 7: Leg Linkage Free Body Diagram 

 

∑ 𝜏𝑃 = 3.875 ∗ 2.25𝑙𝑏𝑓 −  𝜏𝑠𝑒𝑟𝑣𝑜 

𝜏𝑠𝑒𝑟𝑣𝑜 = 8.71𝑖𝑛 ∗ 𝑙𝑏𝑓 = 140𝑜𝑧 ∗ 𝑖𝑛 

 

To maintain a safety factor of 2x, an output torque of 280oz*in of torque as necessary. 

Additionally, an external ratio of 1:3 was used to change the range of travel from 200 degrees of 

the servo to 66 degrees so that the entire range of travel of the servo could be used. The resulting 

servo of choice was the EcoPower 110T, a servo that was already readily available to this project. 

The integration of these servos can be seen in Figure 8. 

[1.1] 
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Figure 8: Back View of Robot 

 

4.1.3 Wheel Power Transmission 
 

It was decided that brushless motors would be used to power the wheels of this robot because 

brushless motors are lightweight and very powerful. However, brushless motors tend to struggle 

with low RPM commutation. Because of this, calculating the output torque of a brushless motor 

is not as simple as just reading a data sheet because it heavily depends on the motor controller 

tuning that it is coupled with. For industrial sized brushless motors, there are off the shelf 

solutions that do have these ratings very well documented, but since this project uses motors that 

were aimed towards drones, the advertised specifications were not to be trusted. 

Based on prior experience with motors of this size, it was clear that whatever motor we chose 

would be able to provide significantly more torque than what was necessary for the balance of 

the robot. The factor that was more important in this decision was the speed of the motor and 

what the maximum speed of the wheel should be. It was decided that the target maximum speed 

of the robot should be 3 feet per second. It was clear that there would have to be a significant 

gear reduction to match the maximum speed of the brushless motor to the desired output speed of 

the wheel. An off the shelf planetary gearbox was a simple way to add a reduction to the power 

train, and after doing some market research, the Long Robotics 19:1 planetary gearbox was 

chosen. Given the target maximum speed, an estimate of the reduction, and the operating voltage 

of the motor, the kv of the motor can be calculated. 
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𝑅𝑃𝑀𝑚𝑜𝑡𝑜𝑟 = 𝑘𝑣 ∗ 𝑣𝑜𝑙𝑡𝑠 

𝑅𝑃𝑀𝑤ℎ𝑒𝑒𝑙 = 𝑅𝑃𝑀𝑚𝑜𝑡𝑜𝑟 ∗
1

19𝑔𝑒𝑎𝑟𝑏𝑜𝑥
∗ 1.2𝑏𝑒𝑙𝑡 

𝑉𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑅𝑃𝑀𝑤ℎ𝑒𝑒𝑙 ∗ 2𝜋 ∗
1𝑠𝑒𝑐

60𝑚𝑖𝑛
∗ 2𝑖𝑛𝑐ℎ ∗ 1/12𝑖𝑛/𝑓𝑡 

Therefore, 

𝑘𝑣 =
3 𝑓𝑡

𝑠𝑒𝑐

∗
1

12
∗

1

2
∗

1

2𝜋
∗60∗19∗1.2

16.8
= 255 

 

 

Thus, a roughly 250kv brushless motor would satisfy the speed requirements of this robot. The 

MAD Components 4008 250kv brushless pancake motor was selected. A custom titanium shaft 

for this motor was machined to interface the motor with the Long Robotics gearbox. 

 

Additionally, the material chosen for the tires was 85A Ninjaflex TPU, a flexible 3D printing 

filament that would provide adequate grip. The implementation of the motors and wheel power 

train can be viewed in Figure 8. 

 

4.1.4 Body Design 
 

The body requirements of this robot were abstract and not well defined since the only major 

requirements of it were to house the electronics, connect the two legs together, and provide an 

attachment point for payload devices. Because of this, some artistic liberties were taken to design 

a body that was visually appealing, and much of the shape stems from this. 

 

The body consists of two primary areas: an upper and lower compartment. The upper 

compartment houses the motor controllers, the power distribution, and voltage regulation 

components. The lower compartment houses the microcontroller, IMU, receiver, and the battery. 

The body itself is a clamshell design made of two halves, which makes the body easier to be 3D 

printed on an FDM printer. It also has a lid that provides access to the power distribution 

compartment and has mounting holes for payloads. On the front, there is a panel to access the 

battery. These components can all be seen in the cross section view shown in Figure 9. 

[2.1] 

[2.2] 

[2.3] 
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Figure 9: Section View of Body 

The bottom of the body is a separate tray that holds all the components of the lower 

compartment. This tray can be easily removed from the robot for easy of maintenance. The back 

of the body consists of multiple holes that are filled with Micro USB ports that provide 

convenient access to the microcontroller and the A50S VESCs. Figure 10 below shows the 

physical implementation of the electronics tray. 

 

Figure 10: Electronics Tray 
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The primary material for the body was PLA+, which was chosen for its affordability and 

printability. 

4.2 Electronics Implementation 
 

4.2.1 Brushless Motor Control 
 

As previously discussed, VESC is an open-source brushless motor control firmware that is 

supported on several hardware platforms and is primarily aimed towards electric skateboards. 

The advantage to the VESC platform is that it is highly configurable, which means that it can be 

adapted to fit the needs of any hardware platform. However, this advantage comes with the huge 

disadvantage that nothing works out of the box and there is a lot of work necessary to reach even 

a minimally viable setup.  

 

At a high level, a brushless motor controller uses an estimation of the rotor position to determine 

which coils to charge, which produces a magnetic field that is locally optimal for the position of 

all the magnets and thereby produces the maximum torque. This closed-loop feedback controller 

is used until a certain ERPM threshold, where the motor switches to a timing-based controller. 

However, position estimation of the rotor can be a challenging task. The VESC platform supports 

both sensorless and sensored control to achieve commutation at low RPM. Sensorless mode with 

high frequency injection (HFI) enabled continuously measures the inductance of the motor to 

estimate the position of the rotor, whereas sensored mode uses an encoder to measure the actual 

position of the rotor. 

 

Originally, the plan was to use the VESCs in sensorless mode to simplify the mechanical and 

electrical requirements of the system. However, the results of early testing proved that this plan 

was not going to work. The VESC simply lacked the fine control at low RPMs that was 

necessary for the balancing algorithm. The motor output was inconsistent and not responsive. It 

would take anywhere between 50ms and 200ms for the motor to respond, and when it did, it did 

so with very little torque. Occasionally, when it started spinning, it would rotate in the other 

direction before taking off in the correct direction. This behavior was unacceptable for the 

balance controller. 

The solution was to use the VESCs in sensored mode with an inductive encoder. VESCs natively 

supports communication with encoders over SPI, I2C, and ABI hall effect encoders. However, all 

of these communication algorithms imply one-to-one communication between the encoder and 

the motor controller. For this project, it was useful to be able to measure the motor position from 

the microcontroller as well, which meant that these one-to-one communication protocols would 

not suffice. Instead, a simpler form of communication like PWM is preferred since it can easily 

be listened to by multiple devices. However, VESCs do not natively support PWM encoders. 

 

To accommodate these issues, a custom release of the VESC firmware was written that supports 
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PWM inductive encoders. This custom firmware supported the A50S VESCs and the AS5048A 

inductive encoders that were selected to measure the rotor position.  

This firmware release was based on the public VESC fork by Seems Reasonable robotics found 

here: https://github.com/seems-reasonable/bldc  

 

4.2.2 VESC Signal 
 

VESC supports multiple forms of communication, including PWM and DAC. At the time of this 

project’s conclusion, a 50hz PWM signal is generated to communicate between the ESP32 and 

the VESC motor controllers. However, this signal frequency is not ideal because it limits the 

update rate of the motors to only 50hz. Though slow, the effect of this is not noticeable because 

the brushless motor is not able to respond at this rate anyways. 

 

4.2.3 IMU Communication 
 

Analog Devices donated an ADIS16470 IMU to this project to be used as the primary input into 

the balance controller. The ADIS16470 only supports SPI communication, so that is the protocol 

that exists between the ESP32 and the IMU to communicate. The pins that need to be connected 

and actively controlled are: 3.3V, GND, MISO, MOSI, CS, RST, DR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/seems-reasonable/bldc
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4.2.4 ESP32 Pinout 
 

 

 

Figure 11: ESP32 Pin Diagram 
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4.3 Software Implementation 
 

Though controls was the focal point of this project, there is a significant amount of software 

necessary to create an overarching framework that interacts with all sensors and actuators. 

 

4.3.1 PlatformIO 
 

All software for this project was written in C++ using the PlatformIO extension for VSCode 

using the Arduino framework. PlatformIO provided a convenient way to manage building a large 

project, and made it very easy to interact with the ESP32 given its built in ESP32 integrations 

and serial monitor. 

 

4.3.2 Software Architecture by Class 
 

 Main 

This is the primary runner class that contains the highest level instructions for setup and 

 loop. This class houses the instances of the control algorithm classes, the controller class, 

 and input from the keyboard is handled here. 

 Controller 

 This class manages input from the RC controller that is used to remotely control the robot 

 and drive it around. It is able to read PWM input from three channels of the RC receiver 

 but could easily be configured to handle more PWM inputs. 

 PWM Monitor 

 This is a patternable class used to read PWM signals at the lowest level. It manages an 

 interrupt that is attached to a specified pin and continuously updates the value of that 

 PWM signal in the background. This provides a time efficient method of reading a PWM 

 signal that does not need to be managed after instantiation. 

 IMU 

 The IMU class is a wrapper class for interacting with various IMUs. This codebase 

 supports both the ADIS16470 and the MPU6050, a common hobbyist IMU. Each IMU 

 communicates in a different way, the ADIS16470 over SPI and the MPU6050 over I2C. 

 The existence of this wrapper class makes it easy from a software perspective to switch 

 back and forth between either IMU. 

 ADIS16470 

 This class manages the SPI transfer to communicate with the ADIS16470 IMU. On 

 startup, an interrupt is attached to the data ready pin of the IMU, which then raises a flag 
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 when active. During the main loop execution, the code checks this flag, and if it is active, 

 performs an SPI transfer to read data from the IMU. 

 Motor Interface 

 This wrapper class serves as an interface between controller classes and motors. After 

 instantiating this class, controller classes can simply send a desired power to the motors 

 and this class handles the conversion to PWM wavelengths and performs checks on the 

 validity of the given input to make sure that it is within a preset minimum and maximum. 

 Data Packet 

 One of the background capabilities of this codebase is real time datalogging. This class 

 represents a packet of data that contains a timestamp and infinitely many datapoints. The 

 intention is that other areas of the codebase have a reference to the data packet that is 

 associated with each time stamp and are able to write data to that packet. The packet is 

 then logged at the end of every loop iteration. 

 Math Utils 

 This file is included at the root of most files throughout the codebase. It includes useful 

 calculation functions like bounding functions, dot product and vector multiplication. 

 Importantly, it also contains a struct that represents a pose in 3D space. 

 PID 

 The PID file contains a struct that defines a set of PID constants and variables necessary 

 to execute a PID controller. This is a patternable class that makes it easy to implement 

 several PID controllers across the robot without repeating the core PID calculations. 

 Balance 

 This is the primary class that contains all code regarding the controls of balancing the 

 robot. In addition to containing the balance controller, it also contains a feed forward 

 velocity approximation algorithm and several functions that allow other classes to 

 interact with the balance controller. 

 Leg Control 

 This is the class that deals with control over the leg linkages. This class implements the 

 PID controller for the legs, handles leg velocity control, and contains several functions 

 that allow other classes to interact with the legs. 
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4.4 Controls Implementation 
 

The heart of this project was the control algorithm used to maintain balance in both pitch and 

roll. To accomplish this, two separate PID controllers were implemented: one based on pitch and 

controlled by the wheels, and one based on roll and controlled by the legs. 

 

4.4.1 Pitch Controller 
 

The first step in implementing a PID controller is to identify what the control variable, the 

setpoint, and outputs should be. Additionally, since this robot is more complex than a simple 

implementation of an inverted pendulum, this controller had to be agnostic of the height of the 

robot. This means that the controller had to have built in integrations for the center of mass of the 

robot changing. The final block diagram of the pitch controller can be seen in Figure 13 

Control Variable 

At first, it seemed like the logical control variable for this controller would be the angular offset 

from the vertical. That is, the angle at which the robot is leaning. Conceptually it makes sense 

that an algorithm that controls the angle of the robot directly could work. However, in practice, 

this control variable turned out to not be the optimal choice. Since the robot acts like an inverted 

pendulum as shown in Figure 12, the result of a controller with pitch as the control variable has 

non-linear output. In theory, this can be compensated for with careful PID constant tuning, but 

this controller will never succeed when the robot changes heights. 

 

After further inspection, it became clear that the variable that matters for balancing is the 

displacement of the projection of the center of mass onto the horizontal as shown by Figure 12. 

This creates a linear input to the PID controller, which makes tuning more forgiving, and makes 

the controller agnostic of the height of the robot.  

 

Thus, the control variable chosen was ℎ ∗ sin (𝜃), where h is the height of the robot and 𝜃 is the 

angular offset from the vertical. 
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Figure 12: Projection of Center of Mass 

 

Setpoint 

 

Conceptually, it makes sense that if the robot was leaning forward and maintaining equilibrium, 

then it must be accelerating. Similarly, if it leans backward, then it must be decelerating. This 

leaning can be linearized similar to what is shown in Figure 12 to calculate the horizontal 

displacement of the center of mass. This idea indicates a relationship between the displacement 

of the center of mass of the robot and the desired acceleration. As shown in the control block 

diagram in Figure 13, the primary outside input to the controller is the desired velocity for the 

robot. If the robot knows its current velocity, then the error in velocity can be calculated to 

determine how much the robot should accelerate. Thus, there exists a relationship between the 

error in velocity and the displacement of the center of mass of the robot that can be used to 

calculate the setpoint of the PID controller. The exact nature of this relationship was never 

explicitly modeled, it is only known that one exists. To simplify the work required for this 

project, the relationship was assumed to be linear. This allowed an implementation of another 

separate P controller that uses the error in velocity as the control variable, 0 as a setpoint, and 

outputs the desired horizontal displacement of the center of mass. 
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Output 

 

The output of the balance PID controller is simply a percentage motor power, where -100 

represents full backwards and 100 represents full power forward. The output of this controller is 

then bounded within a maximum absolute value to help prevent runaway issues.  

 

The Feed Forward Term 

 

A traditional PID controller works well for balancing statically. However, when the robot 

attempts to maintain dynamic equilibrium, the model is slightly different because there is an 

additional torque required to maintain a non-zero angle. If, for a moment, we ignore the PID 

controller and attempt to balance the robot by just sending an open loop value to the motors, we 

can conceptualize that there are different ideal powers to send to the robot at different angles. For 

example, if the robot was attempting to balance statically, that is, maintain balance standing still, 

then ideally no active control is required to balance. However, if the robot was attempting to 

maintain an angular offset of say, 5 degrees, then there is some torque that needs to be 

continuously applied to the motors to apply a reaction torque to the whole robot. This torque 

must exist for every ΔT, which means that the ideal power to send to the motors sums over time. 

While this summing sounds suspiciously similar to the intention of the integral term of the PID 

controller, just using the I term to account for this is not a good solution because the I term is 

useful for reducing steady state error when the robot is balancing in static equilibrium. Thus, a 

feed forward term can be summed with the output of the PID controller that provides another 

cumulative term to account for the angular offset of the robot while balancing in dynamic 

equilibrium. 

 

Integral Runaway and Reset 

 

One of the classic issues with PID controllers is buildup of the integral term over time. Since the 

integral term is an accumulation of the error over time, residue from early in the run can persist 

and contribute to the behavior of the controller as much as 10 minutes later when that 

information is no longer relevant. This causes the behavior of the controller to vary over time. 

The solution to this problem was to define criteria for when to reset the integral term, as well as 

when to bound it to a specific value. The implementation of this PID controller specified a range 

in which the integral term would reset if both the error in position and change in error over time 

fall beneath a certain threshold. Additionally, it also allowed for the definition of a maximum 

possible value of the integral term to prevent integral runaway. 
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Control Block Diagram 

 

 

Figure 13: Pitch Controller Block Diagram 

 

4.4.2 Roll Controller 
 

An auxiliary behavior of this robot is to maintain balance in roll as well as balance in pitch. This 

is accomplished by actively actuating the legs to respond to external stimuli like driving over 

uneven surfaces. The idea is that if the robot drives over non-level surfaces or is pushed from the 

side, the legs can adjust accordingly to maintain balance. This was accomplished using a very 

rudimentary P controller, with the control variable being the roll of the robot, the setpoint being 

0, and the output being a desired height of each leg. The desired height of the legs were then 

converted to a signal to send to the servos, which natively handled the position control. 
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5 Results and Discussion 
 

5.1 Hardware Discussion 

 

5.1.1 Leg Linkage 
 

The implementation of the four-bar leg linkage overall went very well. The legs were robust and 

durable, and throughout the course of the project, never physically failed. The legs achieved their 

original intention of achieving a linear range of travel for the wheels which simplified the 

amount of work that the balance controller had to compensate for. 

 

However, there are a few deficiencies of this leg design, mostly that reside in the implementation 

of the leg joints. The leg joints consisted of 3/16” shoulder bolts and ball bearings, which proved 

to have more slop than originally intended. This caused the body of the robot to be able to wiggle 

and shift side to side, which introduced noise into the roll readings. There was only roughly 1 

degree of wiggle, which was mostly insignificant but still not ideal. 

 

Overall, the hardware implementation of the legs was a resounding success.  

 

5.1.2 Wheel Design 
 

The electromechanical design of the wheels proved to be the most challenging design problem of 

the entire project. The result of this design was a power train that successfully enabled the robot 

to drive and balance, however there was significant room for improvement in the drive. The 

insufficiency mostly comes from the gearbox that was chosen, as there is roughly 2 degrees of 

slop between the input and output of the gearbox. This introduced a challenge for the balance 

controller to overcome, which while surmountable, introduced a ceiling to how stable the robot 

could possibly be. 

 

Additionally, it seems that the initial estimation of 3ft/s maximum speed was too slow. When the 

robot is balancing dynamically, it needs to be able to accelerate past its cruising speed on 

occasion to maintain balance. As discussed later in the results section, the maximum stable speed 

of the robot proved to be about 1.4ft/s, which indicates that it needed 1.6ft/s worth of speed 

overhead to facilitate the balance controller.  

 

However, the drive train was overall a success as it was able to facilitate the balancing and 

driving of the robot. Additionally, the TPU wheels provided more than enough grip for most 

surfaces that were tested. 
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5.2 Controller and Software Discussion 
 

At the end of this project, a robot that was able to balance both statically and dynamically was 

successfully produced. However, there were a number of unforeseen challenges that had to be 

overcome and some that still persist. 

 

5.2.1 Deficiencies of PID Control 
 

PID control is an elementary controller that is designed to work on linear systems with a clearly 

defined model. This makes PID control a great choice for controls of systems like robot arms 

where the conditions of the model are relatively consistent. However, for this project, there are 

various external influences that cause the controller to behave in ways beyond what it was 

initially designed for.  

As discussed in the Feed Forward section of the Pitch Controller implementation, traditional PID 

control struggles with compensation for cases where the theoretical resting power of the system 

is not zero. This implies that situations like dynamic balancing and climbing hills are difficult for 

the controller to accommodate. While it is able to accommodate some disturbances like this, the 

robot is unable to climb slopes of more than roughly 5 degrees.  

 

One way that the controller was designed to compensate for this issue was by relying heavily on 

the integral term. This meant that the robot would try to reduce the steady state error that would 

be introduced by slopes and dynamic balancing, but in turn, it would cause heavy oscillations 

while balancing statically. 

 

5.2.2 Balance Controller Results 
 

Despite the deficiencies of PID control discussed in the previous section, it did prove to be 

sufficient to facilitate balancing. In fact, it overall worked well enough to allow for stress testing 

and performance analysis in several tests. One of the tests that was conducted was a roughly 0.75 

mile walk around the WPI campus that required the robot to traverse several different 

environments like sidewalks, roads, hills, indoor floors, and doorways. In that test, the following 

results were measured: 
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 Maximum Speed: 1.4ft/s 

 Battery Life: >1hr 

 Average Time Between Falls: 14 min 

 Maximum Recoverable Angular Displacement: 3.5 degrees 

 

Over the course of a 1 hour 10 minute run, the robot experienced 5 falls which were related to 

accidentally exceeding the maximum speed of the robot, difficulties with handling slopes, or 

crossing bumps in doorways. Despite this, a failure rate of only 1 fall per 14 minutes is 

exceptional given the scope of this project. Figure 14 below shows an example of the robot 

driving past the landmark fountain on WPI’s campus. 

 

 

Figure 14: Scout Driving Past the Fountain 

 

5.2.3 Controller Response Example 
 

Throughout the development of the control algorithm, it was useful to be able to graph the pitch 

of the robot over time, as well as the output of the PID controller. Figure 15 shows an example 

transient response of the system in response to an impulse input that was imparted by poking the 

robot while it was statically balancing. Here, the system was able to respond by oscillating back 

and forth until once again reaching equilibrium with low steady state error. 
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Figure 15: Example Transient Response 
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6 Recommendations for Future Work 
 

One of the primary goals of this project given that this was its first year was to develop a 

hardware platform that could support complex control algorithms for later research. As such, the 

bulk of this project went into hardware development and left a lot of room for improvement in 

software.  

 

Broken down into categories, here are some recommendations for how the robot can be 

improved by future project groups. 

 

6.1 Hardware 
 

• Redesign the drive subsystem of the robot to something that does not use planetary 

gearboxes. One possible idea is to pursue a hub motor design where the motor is 

directly inside of the wheels, since this would most effectively reduce the slop of the 

power train.  

• Develop a new method for joining the links of the leg linkages that has less slop and 

is less susceptible to loosening than the current ball bearing and shoulder bolt 

solution. 

• Develop a better system for mounting peripheral electronics and payloads to the top 

of the robot. Eventually, the goal of this project is to support several attachments like 

cameras and microphones, which is not currently possible on this platform. 

• Implement brushless motors on the leg linkage. Currently, servos are used to power 

the legs, which allows for basic functions like balancing in roll. However, if the robot 

is ever to be able to hop and do stairs, then a much stronger actuator is necessary for 

this. 

 

6.2 Electronics 
 

• To go along with the hardware requirements of supporting peripheral devices, adding 

another processor to the electronics stack would be necessary for these peripherals. 

Future project groups could develop an architecture for running complex and slower 

algorithms like computer vision on an external SBC like a RaspberryPi and 

implement a communication line between the SBC and the ESP32 used for controls. 

• Design a PCB for integrating all the electronics hardware. Currently, the 

microprocessor, sensors and actuators are all joined on a breadboard. This is not an 

elegant or permanent solution, since wires frequently come loose when the robot falls 

over. 
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6.3 Software 

 
• Experiment with control algorithms besides PID. As discussed previously, PID falls 

short in a lot of scenarios that this robot could find itself in. Other more advanced 

control algorithms like MPC or LQR could provide a more powerful and robust 

method of controlling the balance of the robot. 

• Determine a better way of measuring the robot’s average velocity. Currently, velocity 

is measured by applying a moving average filter to the output power to the wheels. 

However, this method is not sufficient because the PID controller that outputs this 

power can oscillate significantly. Measuring the robot’s velocity goes hand in hand 

with tuning the balance controller.  

• Apply a rotation to the IMU data. Currently, measurements for roll, pitch, and yaw 

are not mutually exclusive. For example, rotating the IMU in pitch by 90 degrees 

could cause a 1 degree change in the reading of roll. This is likely because the IMU 

does not physically align with the casing that it is in. This can be adjusted for in 

software by applying a transformation matrix to the IMU data. 
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7 Conclusion 
 

This project successfully produced a hardware platform that could perform the basic tasks of a 

wheeled bipedal mobile robot. It began to explore some of the complex kinematics involved in 

balancing. This robot serves as a solid proof of concept for the validity of such a design as it 

shows that a balancing robot can be robust and stable. This project produced a relatively small 

robot as to fit within budget constraints, however the kinematics of such a robot would clearly 

scale up to a larger, similar robot.  

Within the scope of a one-year project completed by only one engineer, the resulting robot 

exceeded expectations and should provide a promising platform to be further developed in future 

projects. This project was never intended to be completed within the scope of only one year, and 

as such, it will take time for the full potential of this platform to become reality. This project 

provided a strong basis for all future work and should enable future researchers to skip a few of 

the low-level steps that were accomplished in this project.  

The final physical product of this project can be seen below in Figure 16. 

 

 

Figure 16: Scout Final Product 
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Appendix A: Bill of Materials 
 

Item Description # Source Unit Cost Ext. Cost 

A50S VESC 
Brushless Motor 
Controller 2 TeamTriForceUK  $    99.99   $    199.98  

MAD 4008 Brushless Drive Motor 2 MAD Components  $    68.00   $    136.00  

AS5048A  Inductive Encoder 2 Amazon  $    16.10   $      32.20  

Diametric 
Magnet 

MAGNET 0.315"DIA X 
0.098"H CYL 2 Digikey  $       0.82   $         1.64  

Planetary 
Gearbox Long Robotics 19:1 2 Long Robotics  $    18.32   $      36.64  

3/16" Shoulder 
Bolts, 1" Linkage Joint Bolts 2 McMaster  $       3.02   $         6.04  

3/16" Shoulder 
Bolts, 0.75" Linkage Joint Bolts 6 McMaster  $       2.49   $      14.94  

1/4" x 1.25" 
Shoulder Bolt Drive Shaft 2 McMaster  $       1.76   $         3.52  

Fasteners 
Assorted #6 and #8 
Plastite Screws 1 McMaster  $    25.00   $      25.00  

3/16" x 3/8" 
Bearing (10pk) Linkage Bearings 2 Amazon  $    12.00   $      24.00  

1/4" x 1/2" 
Bearing Wheel Bearings 1 Amazon  $    10.00   $      10.00  

ESP32 Microcontroller 1 Amazon  $    17.99   $      17.99  

XL Timing Belts 
(120 and 90) Power transmission 4 McMaster  $       7.50   $      30.00  

Red PLA+ Body Filament 1 Amazon  $    24.99   $      24.99  

Black PLA+ 
Miscellaneous Part 
Filament 1 Amazon  $    24.99   $      24.99  

Black Ninjaflex Wheel Filament 1 Amazon  $    58.99   $      58.99  

6" MicroUSB 
Extension ESP32 Extender 1 Amazon 9        $         8.99  

3" MicroUSB 
Extension VESC Extender 2 Amazon  $       6.99   $      13.98  

SR315 Spektrum Receiver 1 Amazon  $    54.99   $      54.99  

ADIS16470 
IMU 

Gyroscope/Acceleromet
er 1 Analog Devices  $  400.00   $    400.00  

GNB 4s 
850mah LiPo Battery 1 Amazon  $    38.99   $      38.99  

EcoPower110T Leg Linkage Servos 2 Amazon  $    39.99   $      79.98  

Castle 10A BEC 6V Voltage Regulation 1 Amazon  $    24.99   $      24.99  

iFlight 2A BEC 5V Voltage Regulation 1 Amazon  $    12.99   $      12.99  
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XT30, MR30 
Connectors Wiring 1 Amazon  $    30.00   $      30.00  

    Total: $1311.83 
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