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1.0  Introduction 

A key challenge for the insurance industry is to charge each customer an appropriate 

price for the risk they represent. Risk varies widely from customer to customer, and a 

deep understanding of different risk factors helps predict the likelihood and cost of 

insurance claims. The goal of this project is to see how well various statistical methods 

perform in predicting bodily injury liability Insurance claim payments based on the 

characteristics of the insured customer’s vehicles for this particular dataset from Allstate 

Insurance Company. 

The data was found at the Kaggle website(www.kaggle.com), which is a website that 

specializes in running statistical analysis and predictive modeling competitions. The data 

consist of automobile insurance claims from the Allstate Insurance Company, and were 

posted for the Kaggle competition called the "Claim Prediction Challenge", which was run 

from July 13 to October 12 2011. The contest’s goal was to use data—three years of 

information on drivers' vehicles and their injury claims from 2005 to 2007 to predict 

insurance claims in 2008.   

A number of factors will determine bodily injury rates, among them a driver's age, past 

accident history, and domicile, etc. However, this contest focused on the relationship 

between bodily injury claims and vehicle characteristics well as other characteristics 

associated with the insurance policies. 

In this project, we implemented different statistical models to test their performances 

using the contest data. The original training data consists of observations from 2005 to 

2007. Observations from 2008 make up the test data used to score the public 

leaderboard. Since the response variable (Claim_Amount) is not provided in the test set, 

we created our own training set and test set to evaluate model performance. The metric 

for the leaderboard used to score entries was the "normalized Gini coefficient" (named for 

the similar Gini coefficient/index used in Economics), and we used it to evaluate model 

performance. We also compared our results to those of the 290 entries from 202 

contestants competing in 107 teams using the same evaluation method but a different 

test set. 

The 2005-2007 data consist of 34 variables and 13184290 cases. The meanings of most 

of the predictor variables are unknown to us because the information was not provided 

due to company privacy.  

Challenges of this project included: (1) A weak relation between claims and predictors. 

Vehicle characteristics are not the main factor in car accidents and the severity of the 

accident. (2) High dimensionality. The data has 33 the covariates including a number of 

categorical variables with many levels. (3) Missing values. The data naturally contains 

http://www.kaggle.com/
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numerous missing observations. (4) Big data. The whole training data set contains 

13184290 observations, and algorithmic efficiency is a problem that needs to be 

considered.  

We tried several statistical methods, including logistic regression, Tweedie’s compound 

gamma-Poisson model, principal component analysis (PCA), response averaging, and 

regression and decision trees. From all the models we tried, PCA combined with a with a 

Regression Tree produced the best results. This is somewhat surprising given the 

widespread use of the Tweedie model for insurance claim prediction problems. 

 

2.0  Data exploration and Basic Summary Statistics 

 

Each of the 13184290 cases in the 2005-2007 data sets contains one year’s information 

for an insured vehicle. The response variable Claim_Amount (dollar amount of claims 

experienced for that vehicle in that year) has been adjusted to disguise its actual value. 

Among the other variables given definitions on the Kaggle website, Calendar_Year is the 

year that the vehicle was insured, Household_ID is a household identification number 

that allows year-to-year tracking of each household, and Model_Year is the year when 

the specific vehicle’s model came into market, ranging from 1999-2009. Since a customer 

may insure multiple vehicles in one household, there may be multiple vehicles associated 

with each household identification number. The variable Vehicle identifies these vehicles 

(but the same Vehicle number may not apply to the same vehicle from year to year). The 

data set also has coded variables denoting make (manufacturer), model, and submodel. 

From these, it is impossible to determine the actual make, model or submodel of a 

vehicle.The remaining variables contain miscellaneous vehicle characteristics, as well as 

other characteristics associated with the insurance policy. There are not any details about 

what these variables are on the Kaggle website. 

The dataset contains a substantial number of missing values for the categorical variables. 

Table 2.1 shows the number and percentage of missing values. In this project, ‘missing’ 

was counted as a new level of the category for a categorical variable.  
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       Table 2.1 

Variable Name Blind_ 

Model 

Blind 

Make 

Blind_ 

Submodel 

Cat1 Cat2 Cat3 Cat4 

Number of 

Missing Values 

8431 8431 8431 25981 4874164 3999 563164

9 

Percentage of 

Missing 

0.064% 0.064% 0.064% 0.197% 3.697% 0.030% 42.7% 

Variable Name Cat5 Cat6 Cat7 Cat8 Cat10 Cat11 Cat12 

Number of 

Missing Values 

5637321 25981 7167634 3364 3917 31469 28882 

Percentage of 

Missing 

42.7% 0.197% 54.4% 0.026% 0.029% 0.239% 0.219% 

 

The Kaggle contest provided two datasets: training data and test data. Contestants could 

use the training set to train their methods and the test set to compute their predictions for 

contest submission. However, the insurance claim responses for the test set have never 

been published. As a result, we split the training set into two sets. Observations from 

2005 and 2006 were used as a training set, and observations from 2007 was used as a 

test set for this project.  

A basic statistics summary for the continuous variables in the original training set with 

13184290 observations is shown in Appendix A. A statistics summary for categorical 

variables can be found in Appendix B.   

The response variable “Claim_Amount” is highly skewed with only 95,605 non-zero 

values (about 0.73%) among the 13,184,290 records. A frequency histogram of the 

non-zero claim amounts is shown in Figure 2.1, and of all claim amounts is shown in 

Figure 2.2. 
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Figure 2.1 

 

Figure 2.2

 

Histogram of Non-zero Claim_Amount 

Non-zero Claim_Amount 
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Some of the other categorical covariates have a large number of levels (see Appendix B), 

and this became a complication when we trying to get the statistical algorithms to work. 

The correlation matrix between the continuous variables is shown in Table 2.2. There are 

12 numerical predictors, named Var1 - Var8 and NVVar1 - NVVar4, and the response, 

insurance claim amount. We can see some strong correlations between some of the 

covariates,e.g.:Var2 and Var4. The correlation coefficients bigger than 0.7 are highlighted 

in Table 2.2. However, none of the covariates is even modestly correlated with the 

response. 

Table 2.2 

 Var1 Var2 Var3 Var4 Var5 Var6 Var7 

Var1 1.0000       

Var2 0.5585 1.0000      

Var3 0.7464 0.6457 1.0000     

Var4 0.5759 0.9826 0.6570 1.0000    

Var5 0.9062 0.5718 0.7861 0.5924 1.0000   

Var6 0.7787 0.7722 0.8272 0.7159 0.7904 1.0000  

Var7 0.6768 0.5079 0.6682 0.5201 0.4975 0.8024 1.0000 

Var8 0.2689 0.7017 0.3586 0.6909 0.3020 0.5767 0.2491 

NVVar1 -0.0216 -0.0198 -0.0377 -0.0196 -0.0242 -0.0386 -0.0331 

NVVar2 -0.0436 -0.0524 -0.0482 -0.0533 -0.0437 -0.0566 -0.0516 

NVVar3 -0.0094 -0.253 -0.0176 -0.0243 -0.0115 -0.0234 -0.0176 

NVVar4 -0.0654 -0.0575 -0.0736 -0.0599 -0.0663 -0.0796 -0.0696 

Claim_Amount -0.0009 -0.0013 -0.0011 -0.0012 -0.0002 -0.0013 -0.0014 

 

 

 Var8 NVVar1 NVVar2 NVVar3 NVVar4 Claim_Amount 

Var1       

Var2       

Var3       

Var4       

Var5       

Var6       

Var7       

Var8 1.0000      

NVVar1 -0.0356 1.0000     

NVVar2 -0.0427 -0.0089 1.0000    

NVVar3 -0.0350 -0.0394 0.0206 1.0000   

NVVar4 -0.0500 0.0762 -0.0483 -0.0433 1.0000  

Claim_Amount -0.0015 0.0004 0.0014 0.0019 0.0001 1.0000 
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3.0  Methodology 

Predicting the claim amount value can be regarded as a regression problem, because the 

claim amount is a continuous variable. The insurance claim prediction problem could also 

be considered as a classification problem by transforming the claim amount variable into 

a binary variable, taking response variable as one (Y = 1) if its value is greater than zero 

and zero otherwise (Y = 0). In this case, the desired outcome would be correctly 

predicting whether or not there would be a claim. We considered both approaches. 

 

Since this problem can be considered as both classification and regression, there are a 

number of choices for analytical models and methods. To predict insurance claim 

amounts, we tried Tweedie’s compound gamma-Poisson model, a gamma general linear 

model with gamma distribution and natural log link function, and regression trees. To 

classify observations as having or not having a claim, we tried logistic regression, and 

classification trees. However, given the computer resources available to us, we found 

that due to high dimensionality and the size of the data set, none of the algorithms used 

to apply those models and methods would converge without some form of dimension 

reduction.  

 

a. Methods used to deal with high dimensionality 

i. Principal Component Analysis (PCA) 

Given a large set of correlated variables, principal component analysis (PCA) can be 

used to summarize the pattern of variation in those variables with a smaller set of 

variables called principal components (PCs). In our data set, we investigated whether the 

12 continuous variables Var1-Var8 and NVVar1-NVVar4 could perhaps be adequately 

represented by a smaller number of principal components.  

 

The variation in a set of variables can be summarized by their variances and covariances. 

Their PCs are a new set of variables formed by taking linear combinations of the original 

variables that are uncorrelated and that explain as much variation as possible in the 

fewest number of PCs. There are the same number of PCs as there are original variables. 

The first PC is the normalized linear combination that has maximum variance. The 

second PC is the normalized linear combination that has maximum variance among all 

normalized linear combinations uncorrelated with the first PC. The third PC is the 

normalized linear combination that has maximum variance among all normalized linear 

combinations uncorrelated with the first two PCs, and so on. When used for dimension 

reduction, the hope is that a large proportion of the total variation can be represented by a 
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relatively small number of PCs, which then substitute for the original variables. Principal 

component analysis can also be used to identify meaningful underlying variables. 

Another benefit of PCA is that many statistical procedures work better conceptually and 

algorithmically with uncorrelated variables. 

 

To find the principal components, we compute the covariance matrix of the data, and 

calculate the eigenvalues and corresponding eigenvectors of this covariance matrix. 

Then we need to normalize each eigenvector to make the set orthonormal. The 

proportion of the variance that each eigenvector represents can be calculated by dividing 

the eigenvalue corresponding to that eigenvector by the sum of all eigenvalues. 

 

There are several methods to apply PCA to categorical variables, among these an 

optimal scoring method due to Fisher. However, due to computational constraints, the 

most feasible method for our purposes is to apply PCA to categorical variables by 

establishing a design matrix that assigns dummy variables to the categorical variables. 

For example, if variable Cat1 has 10 levels A to J from 1-6 individuals, the transformed 

matrix will be of 6 * 10 dimension, as shown in Figure 3.1:  

 

 

Figure 3.1 

Original Cat1: 

 

 

Transformed Cat1: 

 

 

PCA is then applied to the combined set of quantitative and dummy variables. 

 

Another method called Fisher’s optimal scoring [1] can be used to transform nominal 

variables by scoring the categories. PCA could then be applied for dimension reduction 

[2]. However, this method proved impractical due to its intensive use of computational 

http://en.wikipedia.org/wiki/Covariance_matrix
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resources.  

 

ii. Response Averaging 

Three categorical variables with large numbers of values made fitting models and 

obtaining predictions particularly challenging. These variables were Blind Make (75 

values), Blind Model (1303 values), and Blind Submodel (2740 values). The approach we 

used was to change the categorical values into numerical values by replacing each of 

those categorical values with the average of the insurance claims in the training set 

corresponding to that categorical value. 

  

b. Classification  

i. Logistic Regression 

Binomial or binary logistic regression models the probability the response belongs to one 

of two possible categories as a function of one or more predictors. In our case the 

categories are that an insurance claim occurred (Y=1), or that an insurance claim didn’t 

occur (Y=0). The logistic regression fits the model    

Pr(Y = 1|X)  = 𝑒𝛽
𝑇

X

1+𝑒𝛽
𝑇

X
  , 

where X is the vector of predictors. 

 

c. Regression 

i. The Tweedie Model 

This dataset has a large number of zero responses, and non-zero positive responses. We 

assumed that 𝑇 is the number of claims one car have and 𝑋𝑗  is the amount of the jth 

claim, so the total claim for one car over the course of the year follows a Tweedie 

distribution [3]. Due to its ability to simultaneously model the zeros and the continuous 

positive outcomes, the Tweedie GLM is a widely used method in predicting insurance 

claims. 

We assume the observed response vector is Y = (𝑌1; … … . ; 𝑌𝑛)′  , where 𝑌𝑖 is distributed 

as a compound gamma-Poisson distribution (Tweedie distribution) with parameters  μi,  

ϕ,  p, if the 𝑌𝑖 are independently distributed as  
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∑ 𝑋𝑗 , 𝑇~𝑃𝑜𝑖𝑠(𝜆)

𝑇

𝑗=1

, 𝑋𝑗

 
~
 

𝐺𝑎(𝛼, 𝛾), 𝑇 ⊥ 𝑋𝑗  

 

 

where Pois(λ) denotes a Poisson random variable with mean λ , and Ga(α,γ) denotes a 

Gamma random variable with mean and variance equal to αγ and αγ2, respectively. As a 

result, the compound Poisson distribution has a probability mass at zero accompanied by 

a skewed continuous distribution on the positive real line.  

 

The Tweedie distribution belongs to the exponential dispersion family. A two-parameter 

representation of the exponential dispersion model is 

𝑝(𝑦|𝜃, 𝜙) = 𝑎(𝑦, 𝜙)𝑒𝑥𝑝 (
𝑦𝜃 − 𝜅(𝜃)

𝜙
) 

Where α and κ are known functions, θ is the natural parameter and Φ > 0 is the 

dispersion parameter. For the exponential family of distributions, we have the well-known 

relationships E(y) = μ=κ′(θ) and Var(y) =Φκ′′(θ). Since the mapping from θ to μ is one-to 

one, κ′′(θ) can also be represented as a function of μ, denoted by V (μ) = μp in which 

the value of the index parameter p lies in the interval (1, 2). By means of deriving and 

equating the cumulant generating functions for the above equation, we can work out the 

relationship between the two sets of parameters in the two representations as: 

 

𝜇 = 𝜆𝛼𝛾 

 

𝜆 =
𝜇2−𝑝

𝜙(2 − 𝑝)
 

 

𝑝 =
𝛼 + 2

𝛼 + 1
 

𝛼 =
2 − 𝑝

𝑝 − 1
 

𝜙 =
𝜆1−𝑝 ∙ (𝛼𝛾)2−𝑝

2 − 𝑝
 

𝜆 =
𝜇2−𝑝

𝜙(2 − 𝑝)
 

 

 

In the Tweedie model, the mean μ= E(Y) is stipulated as a function of some linear 

predictors through a link function as η(μ) = Xβ, where X is the design matrix and β is the 

vector of fixed effects. For unknown p, parameter estimation can be done using the 

profile likelihood approach. 

 



 

There is also a zero-inflated Tweedie model, which adds additional mass at 0. The 

zero-inflated Tweedie model assumes that, for the ith observation of the count data, 

𝑌𝑖 is generated as below:  

 

𝑌𝑖~ {
0 with probability 𝑞𝑖

𝑇𝑤𝑒𝑒𝑑𝑖𝑒(𝜇𝑖 , 𝜙, 𝑝) with probability 1 − 𝑞𝑖
 

 

d. Decision Tree Method 

A decision tree is a tree-based method that partitions the predictor space X into a set of 

rectangles and fits a simple model in each one. The majority of trees use a simple 

two-stage algorithm: First, partition the observations by univariate splits in a recursive 

way and second, fit a model in each cell of the resulting partition. The algorithm decides 

on the predictor giving the best split by doing an exhaustive search over all possible splits 

and choosing the predictor and split giving the maximum of an information measure. A 

tree is built recursively through this process; a process known as recursive partitioning. 

Decision tree methods can be both used for classification and regression, yielding 

classification and regression trees, respectively. The partitions are chosen to maximize a 

measure of classification or prediction accuracy, respectively.   

i. Regression Tree 

A regression tree stratifies the predictor space into rectangular regions, and fits a simple 

model in each of the regions to predict a continuous response.  

 

We chose an ANOVA method similar to linear regression as the splitting criterion. 

Specifically, the splitting criterion minimizes SST − (SSL + SSR), where SST =∑

(y𝑖  −  y̅)2   is the sum of squares for the node, and SSR, SSL are the sums of squares for 

the right and left split node, respectively. 

 

This splitting or partitioning is then applied to each of the new branches. The process 

continues until each node reaches a user-specified minimum node size and becomes a 

terminal node. We then used cross-validation to prune the tree. At each pair of leaf nodes 

with a common parent, we evaluated the error on the validation/testing data, and saw 

whether the testing sum of squares would shrink if we removed those two nodes and 

made their parent a leaf. If so, we pruned; otherwise, not. This was repeated until pruning 

no longer improved the error on the testing data. 

 



 

ii. The Conditional Inference Decision Tree [5][6] 

However, the standard algorithm does not perform well on highly imbalanced data such 

as these, due to overfitting and towards predictors with many possible splits. The 

conditional inference tree algorithm nullifies this bias through the use of a significance 

test procedure to screen the predictors.  

 

Specifically, a permutation test is conducted to test the hypothesis of independence 

between any of the predictors and the response. If the test fails to reject the null 

hypothesis, the recursive partitioning stops. Otherwise, the predictor with strongest 

association with the response is chosen and the optimal split determined. These steps 

are recursively repeated until the tree is completed. 

 

The conditional inference decision tree can both be used for classification and 

regression. 

e. Other models  

Other models like GLM Gamma Regression, SVM, and clustering methods were also  

tried to solve the problem. For GLM Gamma Regression, the original thought was to use 

logistic regression first to predict whether an insurance claim would occur or not, and then 

use the gamma regression to fit the non-zero responses. However, the logistic 

regression’s prediction performance kept this method from being competitive, as shown 

in the next section. Other methods including SVM and k-means clustering were also 

implemented; however, due to the highly unbalanced nature of the data and its high 

dimensionality, these methods proved impractical. Consequently, in what follows we only 

provide information on models that gave a relatively good result.  

 

4.0  Evaluation Methods - Normalized Gini Coefficient 

a. Normalized Gini Coefficient  

For the Kaggle contest, the specified evaluation measure is the normalized Gini 

coefficient. Traditionally, statistical response models have been evaluated based on 

some form of goodness of fit. Assumptions are made regarding underlying data 

distributions and models are evaluated based on how well predicted values fit the 

observed data values from a sample data set. Various statistical measures (Likelihood, 

𝑅2, the F statistic, the Chi Square statistic, classification indices and so on) are used to 

evaluate or produce the goodness of fit. In the insurance claim prediction, the Kaggle 

contest required the contestants to use the normalized Gini coefficient as the evaluation 



 

measure.  

 

To define the normalized Gini coefficient, we first need to define Lorenz curve: “Let 

p∈ [0,100], and define the function L(p)to be the proportion of all claims associated with 

the largest p percent of predicted values. The graph of L(p) versus p is the Lorenz 

curve. The line at 45 degrees represents the results expected from a “null model”, that is, 

from predicting by randomly choosing a claim amount from the data set, so the area 

between L(p) and the 45 degree line represents the improvement of the prediction 

method over chance prediction.. Let L1(p) denote the Lorenz curve  for the prediction 

method being evaluated and L2(p) the Lorenz curve for perfect prediction, and let A1 and 

A2 be the respective areas between the Lorenz curves and the 45 degree line.. The 

normalized Gini coefficient is the ratio A1/A2. 

 

As a result of this definition, the actual predicted values do not matter for evaluating the 

normalized Gini coefficient, only the relative ordering of these predictions does. 

 

b. Confusion Matrix 

The confusion matrix, also known as the contingency table, is a specific table layout that 

displays the performance of a classification test. For a binary classification it contains two 

rows and two columns that report the number of false positives (FP), false negatives (FN), 

true positives (TP), and true negatives (TN) (Table 4.1).  

  

Table 4.1 

 Model Prediction 

Positive 

Model Prediction 

Negative 

Truth: Positive TP FN 

Truth: Negative FP TN 

 

5.0  Experimental Results 

 

The original training set has information from years 2005 to 2007, with 13184290 

observations. In the Kaggle contest, participants developed their predictors using the 

training data, and used them to predict claims in the test set. They submitted these 



 

predictions and the sponsors evaluated the results using the normalized Gini coefficient. 

The claims data in the test set were never published, so we cannot evaluate our 

predictors on that data. However, the leader board scoring can be found on the Kaggle 

website and shows how the best prediction methods (which were also not disclosed) 

performed on the test data.  

 

While we don’t have the test set claims data, we can assess the similarity of the 

covariates in my test set (Table 5.1) and the Kaggle test sets (Table 5.2). 

 

 

Table 5.1 

Name Mean SD Min Max 

Var1 0.01759 0.9849655 -2.57822 5.14339 

Var2 0.01301 0.9957419 -2.49339 7.82942 

Var3 0.01553 1.009001 -2.79033 5.56322 

Var4 0.02049 0.995602 -2.50822 7.58926 

Var5 0.02844 0.9944316 -3.35034 4.01817 

Var6 0.008497 0.9910882 -2.376657 4.584289 

Var7 0.008933 1.001785 -2.778491 4.127148 

Var8 0.00117 1.025582 -2.16304 47.35072 

NVVar1 -0.009784 1.02622 -0.23153 6.627110 

NVVar2 0.01242 1.035767 -0.26612 8.88308 

NVVar3 -0.01515 1.042242 -0.27234 8.69114 

NVVar4 0.005654 1.015079 -0.25142 6.388802 

 

 

Table 5.2 

Name Mean SD Min Max 

Var1 -0.29122 0.44803 -2.57822 3.08644 

Var2 -0.05289 0.898978 -2.14757 7.82942 

Var3 -0.2088 0.692303 -2.4664 2.0691 

Var4 -0.08893 0.881487 -2.16994 7.94445 

Var5 -0.1727 0.615788 -5.0572 2.8763 

Var6 -0.37134 0.55005 -2.02925 2.85897 

Var7 -0.5528 0.502969 -2.2133 1.6819 

Var8 0.08771 1.095868 -1.4848 46.72172 

NVVar1 -0.02708 0.930115 -0.23153 6.62711 

NVVar2 -0.01003 0.984403 -0.26612 8.88308 

NVVar3 -0.04531 0.895811 -0.27234 8.69114 

NVVar4 0.009567 1.042618 -0.25142 6.3888 



 

 

We can see that given the large samples, the continuous covariates Var1, Var3, Var6 and 

Var7 in the training set and test set have some significant differences (highlighted in 

yellow). For the other continuous variables, the mean and standard deviations are close, 

and the maximum and minimum values for all variables are very close. While these 

summary statistics do not rule out the possibility that similar results would be obtained by 

using our methods on the Kaggle test data, they do indicate the possibility of substantial 

differences due to differences in the distributions of the covariates in the two sets, . 

 

We further checked the correlation matrix of our test set (Table 5.3) and the Kaggle test 

set (Table 5.4) 

 

Table 5.3 

 Var1 Var2 Var3 Var4 Var5 Var6 

Var1 1.0000      

Var2 0.5582 1.0000     

Var3 0.7488 0.6491 1.0000    

Var4 0.5795 0.9837 0.6623 1.0000   

Var5 0.9112 0.5691 0.7876 0.5925 1.0000  

Var6 0.7800 0.7700 0.8332 0.7867 0.7530 1.0000 

Var7 0.6770 0.5064 0.6762 0.5215 0.5100 0.8066 

Var8 0.2682 0.6999 0.3641 0.6898 0.2976 0.5714 

NVVar1 -0.0197 -0.0191 -0.0356 -0.0188 -0.0222 -0.0367 

NVVar2 -0.0444 -0.0529 -0.0494 -0.0538 -0.0443 -0.0569 

NVvar3 -0.0107 -0.0274 -0.0201 -0.0264 -0.0124 -0.0252 

NVVar4 -0.0631 -0.0561 -0.0704 -0.0583 -0.0637 -0.0761 

 

 Var7 Var8 NVVar1 NVVar2 NVVar3 NVVar4 

Var1       

Var2       

Var3       

Var4       

Var5       

Var6       

Var7 1.0000      

Var8 0.2462 1.0000     

NVVar1 -0.0331 -0.0337 1.0000    

NVVar2 -0.0520 -0.0418 -0.0106 1.0000   

NVvar3 -0.0200 -0.0348 -0.0381 0.0192 1.0000  

NVVar4 -0.0680 -0.4830 0.0675 -0.0454 -0.0414 1.0000 



 

 

Table 5.4 

 Var1 Var2 Var3 Var4 Var5 Var6 

Var1 1.0000      

Var2 0.4568 1.0000     

Var3 0.8403 0.4851 1.0000    

Var4 0.5485 0.9964 0.4915 1.0000   

Var5 0.8236 0.4744 0.7947 0.4809 1.0000  

Var6 0.8504 0.6873 0.8503 0.6912 0.7309 1.0000 

Var7 0.5480 0.0601 0.5585 0.0643 0.2422 0.5168 

Var8 0.3623 0.7328 0.3128 0.7321 0.2805 0.5798 

NVVar1 -0.0439 -0.0201 -0.0503 -0.0205 -0.0358 -0.0510 

NVVar2 -0.0478 -0.0556 -0.0527 -0.0556 -0.0463 -0.0596 

NVvar3 -0.0269 -0.0183 -0.0181 -0.0183 -0.0144 -0.0207 

NVVar4 --0.0726 -0.0705 -0.0827 -0.0709 -0.0646 -0.0936 

 

 

 Var7 Var8 NVVar1 NVVar2 NVVar3 NVVar4 

Var1       

Var2       

Var3       

Var4       

Var5       

Var6       

Var7 1.0000      

Var8 -0.0677 1.0000     

NVVar1 -0.0471 -0.0275 1.0000    

NVVar2 -0.0243 -0.0429 -0.0092 1.0000   

NVvar3 -0.0133 -0.0153 0.0284 0.0284 1.0000  

NVVar4 -0.0532 -0.0652 -0.0396 -0.0396 -0.0334 1.0000 

 

To better compare the above tables, we subtracted the Table 5.4 entries from the 

corresponding entries in Table 5.3. The results are shown in Table 5.5. 

 

 

 

 

 

 

 



 

 

Table 5.5 

 

 

Var1 Var2 Var3 Var4 Var5 Var6 

Var1 0 

     Var2 0.1014 0 

    Var3 -0.0915 0.164 0 

   Var4 0.031 -0.0127 0.1708 0 

  Var5 0.0876 0.0947 -0.0071 0.1116 0 

 Var6 -0.0704 0.0827 -0.0171 0.0955 0.0221 0 

Var7 0.129 0.4463 0.1177 0.4572 0.2678 0.2898 

Var8 -0.0941 -0.0329 0.0513 -0.0423 0.0171 -0.0084 

NVVar1 0.0242 0.001 0.0147 0.0017 0.0136 0.0143 

NVVar2 0.0034 0.0027 0.0033 0.0018 0.002 0.0027 

NVvar3 0.0162 -0.0091 -0.002 -0.0081 0.002 -0.0045 

NVVar4 -0.1357 0.0144 0.0123 0.0126 0.0009 0.0175 

 

 

  Var7 Var8 NVVar1 NVVar2 NVVar3 NVVar4 

Var1             

Var2             

Var3             

Var4             

Var5             

Var6             

Var7 0           

Var8 0.3139 0         

NVVar1 0.014 -0.0062 0       

NVVar2 -0.0277 0.0011 -0.0014 0     

NVvar3 -0.0067 -0.0195 -0.0665 -0.0092 0   

NVVar4 -0.0148 -0.4178 0.1071 -0.0058 -0.008 0 
 

             

              

              

              
We can see that for most variables, the correlation coefficients are very close, except for 

variable Var7. The differences in the correlation coefficients of Var7 with Var2, Var4, Var5, 

Var6 and Var8 are bigger than 0.2.   

 

Since we don't have the response on the Kaggle test set, in order to evaluate the 

performance of the various methods considered, we divided the original training set into a 



 

training and a test set. The training set contains information from 2005 to 2006 with 

8473402 (64%) observations, and the test set contains information from 2007 with 

4710888 (36%) observations. We trained our predictors on this training set and tested 

them on this test set, in the hope is that the results would be similar to what we would 

have obtained if we had applied them to the true test set. In what follows, “training set” 

and “test set” will refer to these two sets.  

 

One question is the similarity of the training set and test set. To check this, we created 

summary statistics for some of the variables in the training and test sets. For the 

response variable Claim_Amount, the summary statistics of non-zero and zero values are 

shown in Table 5.6. The histogram of non-zero values in the training set is shown in 

Figure 5.1 and some summary statistics are shown in Table 5.7. The corresponding 

displays for the test set are shown in Figure 5.2 and Table 5.8. 

 

 

 

Table 5.6 Comparison of Zero and Non-Zero Values 

 Counts of non-zero values Counts of -zero values Percentage of none-zero values 

Training Set 61838 8411564 0.735% 

Test Set 33767 4677121 0.722% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5.1 
 

 
 

 

Table 5.7 Summary Statistics, Training Set  

 

Non-zero Claim 

Amount 

mean Standard 

deviation 

min max 

 201.00 465.2236 0.00 11440.00 

 

 

 

 

 

 

 

 

 

 

 

Histogram of Non-zero Claim_Amount, Training Set 

Non-zero Claim_Amount 



 

Figure 5.2 

 

 

Table 5.8  Summary Statistics, Test Set  

Non-zero Claim 

Amount 

mean Standard 

deviation 

min max 

 163.20 312.5247 0.00 7667.00 

 

We can see is that the percentage of zero and non-zero values are similar in the training 

set and test set, but the summary statistics of non-zero values are not as similar. 

Essentially, there are substantial differences between our test set and Kaggle’s and 

between our training and test set. 

  

 

 

a. Logistic Regression 

Logistic regression can be used to classify according to whether or not an insurance 

Histogram of Non-zero Claim_Amount, Test Set 

Non-zero Claim_Amount 



 

claim occurred. However, 162G of memory are needed to fit a logistic regression with all 

available predictor variables, which is not available on our computing cluster. So we first 

tried to delete the two variables that have over 1000 levels each: Blind_Model and 

Blind_Submodel. 

 

In the logistic regression, we set the response equal to 1 for any positive claim amount. 

The result of fitting the logistic regression on the test set is shown in Table 5.9. 

 

 

Table 5.9 Confusion Matrix 

Real value \  Prediction Positive Negative 

Truth: positive 4643325 33183 

Truth: negative 33796 584 

 

We can see the prediction is not good. From the above, we can see the model fails to 

predict non-zeros. 

 

We then tried to use response averaging to transform the three categorical variables 

Blind_Make, Blind_Model and Blind_Submodel into numerical values, and then fitted the 

logistic regression. The result is shown in Table 5.10 

 

Table 5.10 Confusion Matrix with Response Averaging 

Real value \  Prediction Positive Negative 

Truth: positive 4643293 33215 

Truth: negative 33828 552 

 

We can see that by using response averaging the result is worse than the previous 

logistic regression model. We further tried using PCA and response averaging as 

predictors, the result is shown in Table 5.11  

 

Table 5.11 Confusion Matrix with Response Averaging and PCA 

Real value \  Prediction Positive Negative 

Truth: positive 4643272 33236 

Truth: negative 33849 531 

 

From Table 5.11 we can see the result is worse than the other two. In this case, response 

averaging and PCA doesn’t help improving the prediction accuracy, on the contrary, they 

make it worse.  

 

b. Tweedie Model with Sampling Subset 



 

 

We tried to fit our data with the Tweedie model. Because of the large size of data as well 

as the many levels of the categorical variables, the algorithms wouldn’t converge. To get 

some idea of the performance of this model, we used random sampling without 

replacement to draw four samples, each with sampling fraction around 1/80 giving 

approximately 100,000 observations as training sets. The Tweedie model was fit to each 

of these training sets. Figures 5.3-5.6 show the resulting residual plots versus fitted 

values. 

 

It can be seen in all the four plots that the residuals have a relatively larger range, 

indicating that the fits are poor for responses which have values around 0, and that the 

models failed to predict high insurance claims. 

 

  Figure 5.3                              Figure 5.4 

 
 

Figure 5.5                          Figure 5.6 

 



 

 

We took two samples (sample_trainB, sample_trainC) among the four samples above to 

calculate the normalized Gini coefficient and get 0.38 for sample_trainB and 0.39 for 

sample_trainC. However, applying the model trained on training sample trainB to predict 

the responses for sample trainC, resulted in a normalized Gini coefficient of only 

0.004039204.  

 

Because the algorithm failed to converge for the full data set, we needed to find a way to 

deal with the high dimensionality problem. Our first attempted solution was to use PCA to 

reduce the dimension of the predictor space. 

 

c. PCA 

To apply PCA to the categorical variables, we first transformed them to dummy variables 

as described in the methodology section. Taking all the resulting the variables, 

continuous and categorical, we find that 38 principal components account for 98% of the 

variation. Fitting the Tweedie model to the training data with these as predictors, we 

obtain a normalized Gini coefficient on the test set, 0.02249483. The resulting residual 

plot is shown in Figure 5.7: 

Figure 5.7 

 



 

We can see data possibly contains a lot of noise and this model probably suffers from 

over-fitting. However, we do not have an effective remedy for over-fitting in the Tweedie 

model. As a result, we attempted another approach. We first obtained principal 

components for the dummy categorical variables, obtaining the results shown in Table 

5.12 (shown only for the first 12 PCs).  

 

Table 5.12 

PC Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 

Standard deviation 9.16E-01 7.15E-01 6.44E-01 5.93E-01 5.85E-01 5.55E-01 

Cumulative 

proportion 
0.157674 0.096012 0.078068 0.066011 0.064264 0.057933 

Proportion of 

variance 
0.157674 0.253687 0.331755 0.397766 0.462031 0.519964 

PC Comp 7 Comp 8 Comp 9 Comp 10 Comp 11 Comp 12 

Standard deviation 5.42E-01 5.20E-01 4.76E-01 4.68E-01 4.51E-01 3.78E-01 

Cumulative 

proportion 
0.0552 0.050903 0.042554 0.041085 0.038228 0.026909 

Proportion of 

variance 
0.575164 0.626067 0.668621 0.709707 0.747935 0.774844 

 

 

Next, we applied PCA to the continuous variables. In our data, the continuous variables 

are Var1-Var8 and NVVar1-NVVar4. Since all of the correlations of variables 

NVVar1-NVVar4 are smaller then 0.3, we chose to obtain the principal components only 

for Var1-Var8 (Table 5.13) 

Table 5.13 

 
 

 

We chose to use three PCs, explaining 91% of the variation.  

 

Using these PC’s in the Tweedie model. The algorithm ran successfully. The fitted 

against actual value plot is shown in Figure 5.8:  

 

 

 



 

Figure 5.8 

 

The resulting normalized Gini coefficient is 0.3751337 in the training set, very similar to 

the previous result in the sampling data set. 

 

To run the Tweedie model with separate PCs (take 5 PC from 12 categorical variables, 

and 3 PCs from the 8 continuous variables) on the test set, the true against fitted values 

plot is shown in Figure 5.9.  

 

Applying the model to the test set, we get a normalized Gini coefficient of 0.05972099, 

considerably better than the previous results, and very similar to the internal benchmark 

0.05933 from the website, ranking 52 among the 102 participating teams.  

 

 

 

 

 

 

 

 

 

 



 

Figure 5.9 

 
 

d. Regression Tree with PCA 

Regression trees are very prone over-fitting. To reduce the over-fitting as much as 

possible, we further divided the test set into two equal parts, a validation set and test set.  

 

The validation set was used to tune the parameters of a classifier and determine the 

termination of the algorithm. The test set was used only to assess the performance of the 

fully-trained classifier. We used the test set to estimate the error rate after we had chosen 

the final model to compute the normalized Gini coefficient. 

  

First we transformed the three variables Blind Make, Blind Model, and Blind Submodel 

using the response averaging technique mentioned previously: in the training set, we 

replaced the categorical levels by the average of the corresponding insurance claims, 

while in the validation set and test sets, we replaced those categorical levels with the 

numerical values obtained from the training set.  

 

Implementing a decision tree model on the transformed three variables in the training set, 

we obtained a normalized Gini coefficient 0.48, the highest one so far. However, this 

model is seriously over-fit with the Gini coefficient of 0.040 on the test set.   

 



 

As we did for the Tweedie model, we used PCA to transform the 12 categorical variables 

Cat1- -Cat12 (using the design matrix set-up), and as before took 5 PCs with 46% of their 

total variance and among the 8 continuous variables Var1-Var8, we took 3 PC’s with 91% 

of their total variance. 

 

Finally, we implemented the decision tree model with the PCs from PCA as the predictors, 

and pruned the tree using ten-fold cross-validation. The final model is shown in Figure 

5.10 and 5.11 

 

 

Figure 5.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5.11

 

 

 

The variable new_valueaa is the variable transformed from the original variable 

Blind_Submodel which has over 2000 levels and is the least granular of the car model 

descriptors. We can see this is the most important variable in the decision tree. By using 

the model above, the normalized Gini coefficient on the training set is 0.152567, and on 

the test set is 0.080135, which, if it applied to the Kaggle test data, would rank 27th 

among contest results.  

 

e. Conditional Inference Tree with PCA 

As mentioned in the methodology section, a conditional inference method for tree fitting 



 

was developed to deal with highly imbalanced data, such as ours. 

 

The covariates used were the same as it is for the Regression Tree. Since this method 

can both be used for regression and decision trees, we first tried the decision tree for 

classification.  

 

We can see from the resulting decision tree in Figure 5.12, the top three important 

predictor variables are: NVCat, Model_Year, and new-valueaa (the sub_model 

transformed by the response averaging method).  

 

 

Figure 5.12 

 

 

 

 

 



 

 

And the confusion matrix for the prediction evaluation is shown below in Table 5.14  

 

Table 5.14 

Real value \  Prediction Positive Negative 

Truth: positive 4643310 33198 

Truth: negative 33852 528 

 

 

This result is worse than all the results from logistic regression; the conditional inference 

classification tree notably fails to identify nonzero claims.  

 

 

We then tried the conditional inference regression tree, and the covariates used are the 

same as for the classification tree. The tree model is shown as below in Figure 5.13:  

 

Figure 5.13 

 

  

 

The final normalized Gini coefficient of the conditional inference regression tree on the 



 

test set is 0.06190335, which, if it applied to the Kaggle test data, would rank 47th among 

contest results.  

 

Comparing the result of Gini coefficient obtained by regression tree using different fitting 

method, the traditional regression tree performs better for our data set. The decision 

tree’s result is worse than logistic regression model. 

 

6.0  Computer Resources 

 

All the models were run using R on a linux cluster, which contains two Intel E5-2670 

2.60Ghz 20M Cache 8-Core 115W Processor, with 378 GB of shared memory used by 

other people, and we were not able to access all the 378 GB memory. 

The cluster we used doesn’t support parallel computing, so it takes long time to run most 

of the models. 

 

7.0  Conclusion 

The aim of this project was to compare the performances of various statistical models 

and methods on predicting the bodily injury liability insurance claim payments based on 

the characteristics of the insured’s vehicles in a particular data set, which was used in a 

Kaggle data competition. We tried a number of methods, including principal component 

analysis, response averaging, the Tweedie model, and decision tree methods. The most 

successful methods, based on the normalized Gini coefficient, were regression tree with 

PCA, which on our test set gave a value of 0.080135. If our test set were comparable to 

the test set in the competition (a questionable assumption), our results would have 

earned 27th in the ranking. We also tried viewing the problem as classification, using 

logistic regression and classification trees to see how well these methods could predict 

whether a car will have insurance claim or not. The evaluation method for classification is 

the confusion matrix. Classification trees performed worse than logistic regression for this 

data.  

 

One difficulty we faced was not knowing the exact values of many of the predictor 

variables, as these had been anonymized. This prevented us from making some 

informed choices we might have made in the presence of full information. 

 

Another difficulty in predicting insurance claims using only the predictors given, is that 

many other factors contribute to the frequency and severity of car accidents including 

how, where and under what conditions people drive, as well as what cars they are driving. 



 

But the most important influential predictors are actually related to the drivers, including 

their driving history, driving behavior, etc. Therefore, prediction only based on the car 

characteristics is almost an impossible mission, and the best predictions we could make 

were not particularly accurate, if the criterion were the difference between the prediction 

and the actual claim. Indeed, in this case, a not unreasonable strategy would be to 

predict a claim amount of 0 for all cases, since more than 99% of all claims are 0. In fact, 

in terms of classification, this strategy proved better than both the classification tree and 

logistic regression methods. 

 

However, using the normalized Gini coefficient, which uses only the rankings of the 

predictions, as the measure of prediction quality, we were able to obtain respectable 

results as measured by the best contest entries.  

 

Another challenging part of the project was to find a way to process the data and create a 

data set that could be used by the algorithms. Not all the algorithms are able to handle 

the presence of categorical variables, so those variables have to be transformed into 

numerical variables. Furthermore, transforming categorical variables that have over 2000 

levels is even more difficult. From all the models we tried, PCA combined with 

Regression Tree has the best result. Although the Tweedie model is famous for the 

insurance claim prediction problem, the regression tree gave the most accurate result in 

this insurance claim prediction project. 

 

Among the several methods we have tried, the regression tree algorithm has been 

proven the most efficient model for prediction given existing and limited resources. 

However, grid search has been identified as a method to find out the best settings of 

parameters for a decision tree analysis. As part of the future work, it might be beneficial to 

implement this method using parallel computing to better tune the parameters of the 

regression tree.  
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Appendix  A 

 

Statistics Summary for Numerical Variables: 

Name Mean Standard Deviation Min Max
Var1          -0.01011925 9.800609e-01   -2.5782218   5.143392e+00
Var2          -0.06508703 9.684165e-01   -2.4933927  7.829420e+00
Var3          -0.02543391 1.018902e+00   -2.7903352  5.563325e+00
Var4          -0.05456793 9.680170e-01   -2.5082161  7.589262e+00
Var5           0.003838594 9.910490e-01   -3.3503442  4.018167e+00
Var6          -0.04012272 9.792078e-01   -2.3766568  4.584289e+00
Var7          -0.02421288 1.006433e+00   -2.7784905  4.127148e+00
Var8          -0.05856059 1.003954e+00   -2.1630421  4.735074e+01
NVVar1         0.01468409 1.031040e+00   -0.2315299  6.627110e+00
NVVar2         0.01751169 1.038212e+00   -0.2661168  8.883081e+00
NVVar3         0.01354226 1.027748e+00   -0.2723372  8.691144e+00
NVVar4         0.01851377 1.034274e+00   -0.2514189  6.388803e+00
Claim_Amount   1.360658 3.900103e+01    0  1.144075e+04

 

 

 

 

 

 

 

 

 

 

 



 

Appendix  B 

Variable Name Category Counts Examples and Counts 

Blind_Make 75 K: 1657185, 

Q           233255 

AR          202083 

D           174362 

…… 

Blind_Model 1303 A.1, A.2,…,A.15,…,B.1,… 

Blind_Submodel 2740 A.1.1,…,B.2.0,…,D.5.2,… 

Cat1 11 D    2487951 

B    4017739 

J     233968 

G     782602 

…… 

Cat2 

 

4 C    5895027 

?    4874164 

A    2191054 

B     224045 

Cat 3 7 F     872031 

A    7488029 

B    2256802 

…… 

Cat 4 4 ?    5631649 

A    5723163 

C    1454425 

B     375053 

…… 

Cat 5 4 ?    5637321 

A    6683980 

C     779280 

B      83709 

…… 

Cat 6 6 C    3677694 

E    1173316 

?      25981 

…… 

 

 



 

 

Cat 7 5 ?    7167634 

C    4618653 

A    1050621 

…… 

Cat 8 4 C     880481 

A    8626513 

B    3673932 

?       3364 

Cat 9 2 A     2333508 

B    10850782 

Cat 10 4 B     3969170 

A     8573092 

C      638111 

?        3917 

 

Cat 11 

 

7 

 

F      787998 

B     3174528 

E      816595 

…… 

Cat 12 6 D     3525723 

B     4348276 

C     3619974 

…… 

OrdCat 8 4      5935475 

5      2964704 

2      4146321 

…… 

NVCat 15 M     5767944 

O     3416948 

F      325556 

…… 

 


