
Scalable Multi-Parameter Outlier Detection Technology

by

Jiayuan Wang

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

Jan 2014

APPROVED:

Professor Elke A. Rundensteiner, Thesis Advisor

Professor Mohamed Eltabakh, Thesis Reader

Professor Craig Wills, Department Head



Abstract

The real-time detection of anomalous phenomena on streaming data has become increas-

ingly important for applications ranging from fraud detection, financial analysis to traffic

management. In these streaming applications, often a large number of similar continuous

outlier detection queries are executed concurrently. In the light of the high algorithmic

complexity of detecting and maintaining outlier patterns for different parameter settings

independently, we propose a shared execution methodology called SOP that handles a

large batch of requests with diverse pattern configurations.

First, our systematic analysis reveals opportunities for maximum resource sharing

by leveraging commonalities among outlier detection queries. For that, we introduce a

sharing strategy that integrates all computation results into one compact data structure.

It leverages temporal relationships among stream data points to prioritize the probing

process. Second, this work is the first to consider predicate constraints in the outlier

detection context. By distinguishing between target and scope constraints, customized

fragment sharing and block selection strategies can be effectively applied to maximize the

efficiency of system resource utilization. Our experimental studies utilizing real stream

data demonstrate that our approach performs 3 orders of magnitude faster than the start-

of-the-art and scales to 1000s of queries.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, almost all information is generated, transmitted, and stored as digital data,

giving rise to a prevalent focus on how to extract insight from those huge volumes of

data. Outlier detection [8] is one popular technique to identify anomalous patterns and

then interpret them as the phenomenon in the real world. We can catch a glimpse of its

increasing importance in many modern applications in a variety of fields ranging from

fraud detection, traffic management, damage evaluation to economical analysis.

The idea of detecting outliers originates from the notion of capturing abnormal phe-

nomena in data put forward in [21]. An abnormal phenomenon is introduced as the core

principle that outliers can be identified by using the similarity among points in a dataset.

Based on this foundation, one important class of distance-based outlier definitions stands

out [5,8,22,23]. The one we used in this paper is given initially in [5] where outlier is an

object O with fewer than k neighbors in the database, where a neighbor is an object that

is within a distance R from object O. This definition fits well for applications where the

threshold for outlier is clear.
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In many applications a popular data stream is monitored by many analysts [12,13,14,15,16].

For example, some financial analysts may continuously monitor the stock transaction

streams from the New York Stock Exchange to evaluate their stability. They might detect

a widely-fluctuating real estate stock by bounding the range of the purchasing price differ-

ence from 100 to 200USD and set the configurations for number of neighbors needed at

30 for similar transactions. Meanwhile, other analysts might prefer to use a more relaxed

demarcation line to delineate unstable performance, setting the range from 80 to 220USD

or the number of similar transactions to 20. Also, some may be interested in the stability

across one year, while others may submit queries with a much shorter time span such as

six months. Thus applications may receive a huge workload of similar concurrent queries

with different pattern-specific and window-specific parameter settings over the same data

stream. Accordingly some strategies should be applied to process this workload of simi-

lar outlier detection queries to serve applications in real time, by reducing the processing

time and increasing the efficiency of delivery of results.

Most optimization principles on sharing system resources are concentrated on pattern-

specific and window-specific parameters [7]. To date, predicates have not yet been consid-

ered in the outlier detection context. Yet predicates are crucial in expressing the semantics

of outliers. For instance, the stocks that some analysts are interested in are confined to

Boston only, while others might pay attention to stocks to watch the economy in Mas-

sachusetts. Moreover, sometimes whether a data point is an outlier does not entirely rely

on the condition of the stream it belongs to. Rather it is common that several data streams

need to be considered in context. Again, considering the stock example, the stability of

real estate stocks in Boston may be relevant to the stability of building material stocks

in Massachusetts, or even the larger scope of material stocks under the USA. Therefore,

assuming real estate stocks in Boston are the original streams then building material s-

tocks are streams we use to compare against. Predicates play a role to control and filter
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these streams. Clearly, a system that supports hundreds of outlier detection queries with

predicates is extremely resource intensive.

1.2 State-of-art Limitations

Handling a huge workload of different outlier detection queries on a single system con-

tinuously under high input rates is a challenging problem. Accordingly, although the

state-of-the-art method [1] that efficiently deals with a single distance-based outlier de-

tection query has been proved to be optimal theoretically, executing each of the queries

independently via using this method still has prohibitively high demands on both com-

putational and memory resources. For example, it takes LEOC [1] 10s to update the

processing query results with 1M data points in the window, then it would take us 1000s

to process 100 queries by executing LEOC 100 times. This does not meet the real time

responsiveness requirement and thus would be prohibitively costly. Thus the method on

a single query is not feasible and applicable for practical applications, especially when

the number of queries to be executed is large. Therefore, we now propose to leverage

the insights and technique of LEOC while designing a resource-shared query processing

approach to process a huge of workload of queries.

With regards to lots of extensively researched solutions on the shared workload of

outlier detection queries processing [2,4], they reduce the massive system resource uti-

lization caused by the full scan of the whole window for each points being processed.

One of the cutting-edge approaches proposed in [2] scales to handle a large quantity of

queries where only pattern-specific parameters, namely number of neighbors K and neigh-

bor search range R, are supplied. More specifically, they do not take the window-specific

parameters into consideration. Also, they do not support predicates. In addition, the main

idea of its outlier detection is based on the single query strategy [2], which is based on
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the expensive range query during the search process.

Predicates are known to play an important role in screening the data we are interested

in by signifying selection conditions in a query. However, none of the existing outlier

techniques [1,2,6] integrates predicates as parameters into the outlier detection process.

One insightful sharing strategy [3] of predicates in streaming data environments comes

up with an idea of dividing the data set into fragments with different signatures attached

to recognize lists of queries that they belong to. We leverage their method to maximize

the resource sharing of arbitrary selection predicates. However, prior work concentrates

on aggregation only, it is not possible to directly be applied to outlier detection query

processing. Especially in our case where the evaluation of the outlier qualification of data

points in one stream sometimes depends on another data stream. This implies that outlier

detection can involve several data streams instead of a particular one in tradition. The one

to be detected and the one to be probed. Based on this idea, predicates can be put on both.

1.3 Challenges & Proposed Solution

This paper is to design, implement and evaluate an optimized technique for processing

multiple outlier detection queries in streaming environments. The efficient algorithm

we propose, called SOP, handles a huge workload of queries varying three parameter

sets where each two variations are contained. They include the number of neighbors K,

search range R, window size W, sliding size S, predicate TARGET and predicate SCOPE

respectively. In our framework, we introduce several innovative strategies and search

operations for optimizing the shared processing of multiple queries to ease the burden of

available CPU and memory resources.

First, we design the status indicator technique that takes advantage of the relationship

between the parameter setting values in different but similar outlier detection queries. For
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queries with less restricted specifications on parameter settings, their outputs are com-

pletely contained in the results of queries with more restricted parameter settings. Based

on this observation, namely pattern containment, using the status indicator allows us to

handle multiple queries without maintaining separate details about a workload of queries.

Then we propose a technique so that we simply keep least evidence sufficient for the

most restricted queries instead of routinely conducting expensive range queries to gain all

qualified neighbors.

Second, we also present a technique to handle predicate parameters in our distance-

based outlier detection process. In light of the demands from the real world request,

outliers to be detected sometimes are not only being confirmed as abnormal from data

streaming they belong to. Instead, their identification of the outlier status depends on

some other related data streams. Therefore data streams can be categorized into target

and scope based on their purpose in outlier detection queries. Target is the stream where

data reside to be evaluated if they are outliers or not and scope is the stream that all target

data probe into to find neighbors. By dividing target data into fragments and scope data

into blocks based on different predicates specifications on target and scope, we do not

have to use brute force to apply our outlier detection technology on data stream over

and over. We aim to utilize the uniqueness of fragments and blocks to actualize sharing

purpose when executing outlier detection technology. This is based on the characteristic

that all data contained in one fragment or block will not be included in other fragments

or blocks at the beginning when they are established. Meanwhile we exploit the bitmap

as a signature to signify different fragments and blocks we are detecting and probing as

well as the lists of associated queries, keeping track of the outputs for each query. Thus

duplicate computations can be avoided.

Lastly, our experimental studies on both synthetic and real data demonstrate that SOP

successfully reduces the CPU and memory utilization significantly by almost three or-
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ders of magnitudes, confirming the effectiveness and superiority over the state-of-the-art

alternatives.

1.4 Contributions

In our SOP approach, we successfully tackle all problem outlined above. Contributions of

our work on solving this real time outlier detections of multiple queries are summarized

as follows:

1) We introduce the concept of a status indicator to efficiently share same patterns for

different outlier detection queries. This frees the repeatedly executions on the same data

stream which is common for the state-of-the-art methodology [1].

2) We present the least search technique that plays a role in controlling the timing of

neighbor search termination. The appropriate termination can minimize the number of

comparisons before sufficient evidence for a data point is collected without neglecting to

compare some other data points when delivering outliers for all queries in the workload.

3) We integrate these techniques into one framework to enable general parameter set-

tings on outlier detection in streaming environments.

4) We propose an innovative way to incorporate predicate parameters into outlier de-

tection specification settings by fragment sharing strategy and block selection operation

on Target and Scope separately to share overlapped portions in predicates. No other ap-

proach of sharing of outlier detection is known to support this rich set of parameters.

5) We validate the improved performance of our approach with experiments against

other edge-cutting methods on both synthetic and real data.

The rest of the paper is organized as follows. Chpater 2 briefly introduces the pre-

liminary knowledge about distance-based outlier detection and the problem formalized in

3. The technique of SOP on sharing strategies given multi-query with arbitrary parameter
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settings is given in Chapter 4 and Chapter 5. Experimental results are analyzed in Chapter

6. Chapter 7 covers related work, while Chapter 8 concludes the whole paper.
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Chapter 2

Distanced-Based Outlier Detection

Basics

2.1 Basic Concepts

Outliers generally is described as objects that behave differently from the ”typical case”.

In recently years, several outlier definitions have been developed to separate outliers from

the normal majority. One of the most widely used definitions is based on distance [2,3]:

if there are less than k objects within a distance of range r for an object A, then A is

considered as an outlier. We use the following definition of distanced-based outlier to

define outliers. The function dist (pi, pj) is used to denote the distance between data

points pi and pj . Given the distance threshold R, function nn (pi, R) represents the number

of neighbors a data object pi has within range R.

Definition 1: Given R and parameter k (k¿0), if nn (pi, R) ¡ k, then pi is regarded as

an outlier.
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Figure 2.1: An example data set with two distance-based outliers

2.2 Outliers in Sliding Windows

One distinguishing trait of streaming data compared to static data is its infinity. Another

feature is the high velocity when streaming data arrive the system. This high speed and

volume arouse the difficulties in maintaining and processing all these on-the-fly data at

real time. In order to tackle streaming data, a sliding window semantics that is widely

used in literature [6,7] is taken out so that we can chopped infinite streaming data into

continuous finite snapshots and then apply our outlier detection algorithm in each snap-

shot. With this window mechanism, we are able to overcome the difficulties caused by

the huge volume and high arrival speed of data stream.

Meanwhile, it is well known that most analysts are more interested in the fresh data.

This is because fresh data always contains more useful information hidden behind. Ac-

cordingly, among outlier detection analysis, it is the most recent data that are the main

focus instead of the ancient one. Window mechanism is propitious to the processing of

newly-arrived data and the expiration of old ones.

However, when applying window mechanism in the distance-based outlier detection,

arrival and expiration of data points inevitably affect the total number of neighbors of

each data point in the latest window. This is because neighbors change over sliding win-
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dow. Hence, capability of dealing with this instability obviously becomes one of the most

system-resource-consuming considerations of the query processing tasks.

Here we give an example of how naive distance-based outlier detection in sliding

window works. Assume that there is a distance-based outlier detection query with R

specified as 5 and K specified as 3. Data point pi have p1, p3, p7 and p9 as neighbors in

the current window W1. After 5 seconds, window slides. p1 and p3 expire and no longer

can be counted as the neighbors of pi. Meanwhile, there are no more neighbors found in

the new-arrived data. At this point pi only collects two neighbors. Accordingly, we claim

that pi becomes an outlier after window slides.

In streaming database systems, we assume all arriving data points have their own

unique timestamps, denoted as pi.ts. If pi.ts is greater than pj .ts, it means that pi arrives

earlier than pj . For all neighbors of pi whose timestamp is less than pi.ts, we signify those

neighbors as preceding neighbors of pi, denoted as set P(pi). Likewise, all neighbors of pi

whose timestamp is larger than pi.ts, we signify those neighbors as succeeding neighbor

of pi, denoted as set S(pi). For all data points ∈ S(pi), they can always be considered as

neighbors of pi no matte how window slides. Only data points ∈ S(pi) cause the change

of total number of neighbors. In the above case, p1 and p3 are preceding neighbors of pi

while p7 and p9 are succeeding neighbors of pi.

This observation gives us an insightful view to classify data point into three different

categories based on the size of S and P. For a data point pi, if the size of S(pi) ¿= k, then pi

is a safe inlier. We denote Is as the set of safe inlier. This means pi is guaranteed to never

become an outlier at any time. If the size of S(pi) ¡ k, yet the size of P(pi) + S(pi) ¿= k,

then pi is an unsafe inlier. Iu is used to denote the set of unsafe inlier. This indicates when

some neighbors in P(pi) expire, pi has a chance to become an outlier if pi is not able to

find more neighbors in newly-arrived data point. Otherwise, if the number of data points

in S(pi) plus number of data points in P(pi) are less than k. Then by applying Definition

10



1 here, pi is regarded as an outlier. The set of outliers is symbolized as D.
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Chapter 3

Problem Formalization

3.1 A General Problem

Generally, when an analyst is not certain about the best parameter settings for his analysis,

he might submit multiple queries of the same type but with different parameter settings

at the same time. Moreover, the data streaming he has been concentrating on is entirely

possible being monitored by other analysts simultaneously. Therefore, efficiently sharing

among computation results from both intermediate and output ones multiple of outlier

detection queries that have arbitrary pattern-specific and window-specific parameters is

our goal. To actualize it, the main problem we need to settle is how to share and maintain

the progressive pattern in the real-time responsiveness applications.

Here is a general description of multiple queries with arbitrary pattern-specific and

window-specific parameters. Given a workload of WL with n distance-based outlier de-

tection queries Q1(S,k1,

r1,w1,s1), Q2(S,k2,r2,w2,s2), ...,Qn(S,kn,rn,wn,sn) querying the same input data stream

S, while all the other query parameters such as k, r, w and s differ.

As a matter of fact, all outlier detection algorithms are binding the neighbors of out-
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liers they are trying to find with the data stream where outliers reside only. However,

under many conditions, it is entirely possible for outliers and their neighbors coming

from totally distinct multiple data streams. Therefore we categorize data stream into two

types based on the demands of analysis purposes. Data stream in which all data points

are the ones we would like to evaluate whether they are outliers or not is Target stream.

Data stream that we probe into to see whether data points in it are neighbors of the data

points in Target stream or not is Scope stream. Based on the definition of distance based

outlier, Target and Scope streams can be irrelevant because what to analyze and what to

probe can be totally different.

In addition, so far none of the known outlier detection technologies have been devel-

oped to support predicates sharing. However, providing another predicate type param-

eters, which is not the common case in outlier detection, serves to be extremely useful

in practical applications. Accordingly, besides two pattern specific and window specific

parameters, we aim to integrate two predicates parameters into our outlier detection algo-

rithm dealing with multiple queries. Based on the type of data stream they are applying

to, they are Target predicate and Scope predicate. It is Target predicate if the filter is put

on the Target stream. Otherwise if filter is put on the Scope stream, then this predicate

is Scope predicate. Again, in order to share the computations and results of the progres-

sive pattern, it is crucial to exploit the similarities among those predicates specified by

different queries to improve performance efficiency.

Figure 3.1 is the query template with the predicate parameters extended from the gen-

eral outlier query template [7]. In this complete query template, the general formulation

of a query with arbitrary predicate parameters as well as pattern-specific and window-

specific parameters is fully illustrated. What need to be paid attention to is that Scope

stream is not only restricted to simply one data stream. Disparate Scope streams can be

pulled together through union operation into this template.

13



• Input: a query group QG with multiple outlier-detection queries on 

some input streams with arbitrary predicates and parameters.

• Goal: to minimize both the average processing time and the memory 

space needed by the system.

Template Outlier Detection Query Over Sliding Windows

Qi:

DETECT OUTLIERS

FROM TARGET  <stream1> <var1> [WHERE <cond on var...1>] 

WITH NEIGHBOR CONSTRAINT 

FROM SCOPE  <stream2> <var2> [WHERE <cond on var...2>]

USING COUNT =  <k>

WITH DISTANCE FUNCTION <f(x)>

WITHIN RANGE = <r> 

IN WINDOW = <w> AND SLIDE = <s>

Figure 3.1: Query Template

3.2 A Running Example

Here we introduce a concrete example of how an outlier query with predicates can be

formalized in the query template. The main purpose of the query is to detect users in HR

Dept who behaves strangely in the latest hour and keep updating every one minute. The

definition of strange behavior, in this query, is bound by the fact that their login or access

times on 10 different machines or 10 different files should be more than 30 times.

From description above. Target stream is users. Scope stream is different machine

login files and file access files. K is 30 times. R is 1o files. W is 60 minutes. S is 1

minute. Both target and scope predicate are HR Dept.

14



Chapter 4

Sharing Among Queries with Pattern

and Window Parameters

We now propose our approach in optimizing the process of a workload of queries with

arbitrary pattern-specific and window-specific parameters. Our sharing outlier process-

ing (SOP) algorithm mainly is based on the minimization of neighbor search times, the

maintenance of progressive pattern over sliding window among multiple queries and shar-

ing on both intermediate and output results. By applying these strategies during outlier

detection execution process, SOP can continuously generate an evolving result set and

provide answers to queries with all possible combinations of different-pattern specific

and window-specific parameters.

4.1 Varying Parameter - K

Consider the window-specific parameters and one of the pattern-specific parameters R are

the same for the workload of many queries with different K values. This implies that all

queries share the window size, slide size, range and require output at the same time, while

15



outlier data points that need to be reported for each query differ.

Assume that queries in the workload are ascendingly ordered in the light of the value

of K from min to max. The total neighbor number of each data point in the workload is

a constant number after the neighbor search stops. It has nothing related with different

K values among queries. Based on this observation, we can infer that under the situation

where only K is the variable parameter, we just need to maintain the number of neighbors

equivalent to the largest K value. Once the largest K neighbors have been found, then it

is sufficient to answer all the queries lined up whose K values are less. In this way, full

share is thus achieved.

Status Sharing Lemma: Given a workload WL of queries with arbitrary K param-

eter setting. After neighbor search stops, if data point pi ∈ Is for queries with K val-

ue ki (0¡i¡number of different k, kmin¡ki¡=kmax) in WL, then safe status indicator of pi

will be indexed as ki. If pi ∈ Iu for queries with K value kj (0¡j¡number of different k,

kmin¡kj¡=kmax) in WL, then unsafe status indicator of pi will be indexed as kj . For those

queries whose K value kk¿kj , pi ∈ D.

Proof: This Lemma holds because in arbitrary K case, there is an inclusion relation-

ship based on the number of neighbors for ascendingly ordered arbitrary K queries. This

pattern containment relationship enables the sharing by using a status indicator. Status in-

dicator just records two indexes referring to threshold based on the value of K, safe status

index Is and unsafe status index Iu. As long as certain number of succeeding neighbors,

say ki, of pi is maintained, then pi is a safe inlier to queries whose K values are less than

ki. Therefore by setting up the safe status index at ki, we are able to indicate the threshold

that to which queries this data point is safe inlier and to which not. Otherwise, if less

than kj neighbors are collected, then based on the pattern containment relationship, status

indicator can be used to at least show the divide of which queries can report this data point

as an outlier through unsafe status index. More specifically, we set up Iu as kj . Then for
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all queries whose K values are greater than Iu, pi would be outputted as an outlier, the

rest of the queries in the workload will not.

Following this lemma, we just need to try to find enough neighbors for the query

with greatest K value. This simplifies the multi-query sharing problem into single query

problem. The only difference is for multi-query sharing, status indicator is additionally

maintained. This leads to an important fact which is when to determine the termination

of neighbor searching. This can be a quite decisive factor in saving system resources.

This is so because if neighbor searching terminates too early, it is entirely possible that

pi can not find enough neighbors due to not touching every data point in the window.

Error output might be caused by such early termination. On the contrary, if we keep

searching neighbors even enough neighbors are collected, then redundant comparisons are

wasting many precious resources. So late termination of neighbor searching also cause

inefficiency. Therefore an inappropriate cutoff time actually significantly influences the

efficiency of sharing strategy. Here we give the definition of our Least Search operation

for arbitrary K case.

Definition: Given a workload WL with arbitrary K, for each data point pi, Least

Search is the search that first search succeeding neighbors and then preceding neighbors.

It will not stop searching neighbors until enough number of neighbors namely greater

than or equal to kmax = max{k: for all k specified by queries in WL} within range R

are found. Eventually, if it is unable to find kmax neighbors after all the data points in

alive window have been compared with pi already, then it terminates neighbor search

automatically.

The reason why SOP can use Least Search to exactly ensure the perfect intercept time

is because when we are searching neighbors to collect minimum evidence [1] required,

theoretically there are only two situations exist. One is that pi have found enough neigh-

bors. This means that minimum evidence, namely kmax neighbors, is collected. In this
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case, those kmax neighbors are shared by the whole workload, therefore status indicator

of pi will show that pi is an inlier for all queries. Continuation of neighbor search would

be unnecessary. Another situation is that pi cannot find kmax neighbors. In this case, we

could use the status indicator to evaluate to which queries pi is an outlier and to which

ones pi is not. In this way, neighbor search is forcefully terminated because neighbor

search has probed all other data points in the window already.

Example 1 Given four queries Q1, Q2, Q3, Q4 with corresponding K values of 1, 2,

3, 4. R is 1, W is 6 and S is 1. We mainly analyze data point p5. Figure 4.1 shows the

distribution of all data points in the dataset from a distance-based perspective before and

after window slides as well as all data points in the current window from a timestamp

perspective.
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Figure 4.1: Distribution of data points

Before window slides, p7 is the only succeeding neighbor of p5, therefore —S(p5)—

is updated to 1 indicating the number of succeeding neighbors. Then neighbor search

continues, p1, p2 and p3 are found as preceding neighbors of p5, therefore —P(p5, s2)— is

stored indicating there is a neighbor in the second slide and —P(p5, s1)— is maintained

indicating there are two neighbors in the first slide. At this moment, the search stops

because the total number of neighbors satisfies 4, the greatest K value. This means it

obtains sufficient evidence, which therefore makes p5 exclude itself from the outlier list

for Q4. Accordingly, the safe status indicator is set to 4 showing that p5 is safe for all four

queries in the workload.
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After window slides, p13 and p14 arrive as new data points. p1 and p2 are no longer

counted as neighbors of p5 due to the expiration of the first slide. Therefore —S(p5)—

updates to 3 and safe status indicator updates to 3, indicating that p5 is a safe inlier for

Q1, Q2 and Q3. Meanwhile, unsafe status indicator is updated to 4, indicating that for Q4

p5 is an unsafe inlier. So again p5 will not be outputted as an outlier for all queries.

The data structures of how we maintain those neighbor information are shown in

Figure 4.2. For succeeding neighbors, only a total number is being updated all the time

instead of indexes of some specific data points. However for preceding neighbors, in order

to support the event-based mechanism [2] to efficiently schedule the checkups of which

data points will be triggered as outliers due to window sliding, we maintain neighbor

counts based on the unit of each slides. Status indicator is an additional data structure that

indicates the output results that to which queries one data point is an outlier and to which

is not by updating its safe inlier index and unsafe inlier index.

|Succ(p5)| 1

(|Prec|, slide )

(1,slide2)

(2,slide1)

|Succ(p5)| 3

No need to 

store preceding 

neighbors

Figure 4.2: Arbitrary K: neighbor information

4.2 Varying Parameter - R

Consider the window-specific parameters and one of the pattern-specific parameters K

are same for the workload of a bunch of queries with different R values. This indicates

that the window size, slide size, count and require output at the same time are shared by

all queries, while outlier data points that need to be reported for each query differ.

Assume that queries are descendingly ordered based on their value of R from max to

min. Based on the premise that all the window specific parameters are fixed, as explained
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in arbitrary K case that number of neighbors holds a inclusion relationship, this contain-

ment relationship still contributes to the sharing strategies in arbitrary R case. This means

that number of neighbors found in some queries can also be shared by some other queries

Qi in the workload. More specifically, assume that there are two queries in which R value

ri of query Q1 is less than R value rj of query Q2, then all the neighbors of data point pi

for Q1 obviously can also be claimed as neighbors of ppii for Q2. According to this obser-

vation, once enough neighbors is found within the smallest range, then it is sufficient to

answer all the other queries with greater range value. Therefore, full sharing is achieved.

Status Sharing Lemma: Given a workload WL of queries with arbitrary R parameter

setting. After neighbor search stops, if data point pi ∈ Is for queries with R value ri

(0¡i¡number of different r, rmin¡ri¡=rmax) in WL, then safe status indicator of pi will be

indexed as ri. Accordingly, if data point ∈ Iu for queries with R value rj (0¡j¡number of

different r, rmin¡rj¡=rmax) in WL, then unsafe status indicator of pi will be indexed as rj .

For those queries whose R value rk¿rj , pi ∈ D.

Proof: This Lemma holds because in arbitrary R case, the inclusive relationship of

neighbor number still holds as in arbitrary K case. For descendingly ordered arbitrary R

queries, this pattern containment relationship enables the sharing strategy in number of

neighbors within different range. This means if number of neighbors of one data point

in the most restricted range rmin equivalent to k is maintained, then it is sufficient to

answer the queries with R value greater than rmin. Otherwise, if less than k neighbors are

collected for the most restricted range, then based on the pattern containment relationship,

status indicator can be used to at least show the divide between which queries can report

this data point as an outlier and which queries this data point is an unsafe inlier or safe

inlier. More specifically, for all queries whose R value is less than or equal to safe status

index, data point is safe. For all queries whose R values fall between safe status index and

unsafe status index, data point is an unsafe inlier. It has a potential to become an outlier
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due to expiration of its preceding neighbors at some point. Otherwise, queries whose R

values less than unsafe status index will output data point as an outlier.

However, there is a difference between arbitrary K case and arbitrary R case in sta-

tus sharing strategy. For arbitrary K case, neighbor sharing is bidirectional. This means

queries with larger K values can share neighbors with queries with smaller K values and

vice versa. Yet in arbitrary R case the neighbor sharing is unidirectional. This means only

neighbors found by queries with smaller R values can share number of neighbors with

queries whose R values are greater. Since the sharing in the opposite way is not appli-

cable for arbitrary R case, data structures used in arbitrary K case can not be inherited

to arbitrary R case directly. We adapt data structure that only maintains number of suc-

ceeding neighbors in a fixed range to a relation that maintains the number of succeeding

neighbors in disparate range for different queries. The same adaptation can be made to the

data structure that maintains preceding neighbors. So we maintain number of preceding

neighbors within disparate range based on the unit of slide. Utilizing this relation, we are

able to know how many neighbors we still need to find within some specific range. Also

we are able to look up the exact number of succeeding neighbors being shared by certain

queries. As for status indicator, it remains the same.

When we utilizing this lemma in our outlier detection process, the same as arbitrary

K case, when to determine the exact timing of neighbor search termination is a key factor

that significantly influences the sharing strategy efficiency. Below defined the rules of

how SOP handles the search termination in arbitrary R.

Definition: Given a workload WL consists of all queries with same window specific

parameters and count K parameter but arbitrary R, it always searches succeeding neigh-

bors and preceding neighbors later. For each data point pi, its neighbor search will not

stop until enough number of neighbors namely greater than or equal to K neighbors with-

in range rmin = min{r: for all r specified by queries in WL} are found. Otherwise, after
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all data points in alive window have been compared with pi and it is unable to find k

neighbors within range rmin, then neighbor search terminates automatically because so

far all data points have been touched.

The reason why this definition of least search process is optimal for SOP resembles

previously explained reason in the arbitrary K case. After neighbor search stops, there

are only two possibilities. One possibility is that pi finds k neighbors within the smallest

range. Under this condition, those k neighbors are shared by the whole workload, and

the status indicator of pi will show that pi is an inlier for all queries. Another case is

that pi cannot find k neighbors within smallest range. Under this circumstance, all data

points in the window have already been touched therefore the neighbor search terminates

automatically.

Example 2 Given four queries Q1, Q2, Q3, Q4 with corresponding R value of 1, 2, 3,

4. K is 3, W is 6 and S is 1. Again, this time we mainly focus on p5. Distribution of data

points is the same as in Example 1 shown in Figure 2.

Before the window slides, the succeeding neighbors of p5 in four disparate ranges

are shown in Figure 4.3. After compared with all succeeding data points, for Q3 and Q4

who share the same neighbors, p5 is a safe inlier and for Q1 and Q2, p5 is still an outlier,

therefore the neighbor search does not terminate. So it turns back to the preceding data.

When it stops, enough neighbors have been collected for Q1. Hence p5 is no longer an

outlier for all queries. Figure 4.3 shows the preceding neighbors information. Afterwards

the safe status is updated to 3 and the unsafe indicator 1.

|Succ(p5)|

R1 1

R2 2

R3 3

R4 3

(|Prec|, slide )

R1 (1,slide2);(1,slide1)

R2 (1,slide2)

|Succ(p5)|

R1 3

R2 3

R3 3

R4 3

No need to 

store preceding 

neighbors

Figure 4.3: Arbitrary R: neighbor information
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After the window slides, p13 and p14 arrive as new data points. Caused by the expi-

ration of the first slide, p1 and p2 can not be regarded as neighbors to any data point in

the current window. Therefore p5 loses two of its preceding neighbors, which makes it

become an outlier for Q1 and Q2. So it keeps neighbor search until it finds two neigh-

bors p13 and p14 within the smallest range. At this moment, four queries in the workload

share the same number of neighbors and p5 is excluded in the outlier list. Then the safe

indicator is updated to 1.

4.3 Varying Parameter - K and R

Now we consider when both pattern-specific parameters change yet window-specific pa-

rameters remain the same for all queries in the workload. This means that the window

size, slide size and require output at the same time are shared by all queries, while outlier

data points that need to be reported for each query differ.

Because the sharing mechanism and least search process of arbitrary K and arbitrary

R case use the same sharing idea and the data structure of those two cases are orthog-

onal. Therefore we can naturally combine previous two cases to actualize the sharing

mechanism and least search process for arbitrary K and R case.

However, just combining those two cases can lead to extreme situation that consumes

unnecessary resources. For instance, there is one query specifying K value as 1 and R

value as 1 and there is another query specifying K value as 100 and R value as 100. In

this case, least search will require to find 100 neighbors within range 1, which is the

most restricted condition. This potentially creates an authentic new query with the most

restricted parameter specifications. If we evaluate which data points are outliers for this

new created query, extra memory and CPU resources are inevitably wasted.

To settle this newly-aroused problem, an extra table to organize different R and K
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value is maintained. This table analyzes all arbitrary K and R specifications from all the

queries at the first place. Then considering different R values as the primary key of table,

corresponding greatest K values are then paired up to them. Accordingly, for each entry

in the table, namely one R and its greatest K, it can be processed as a single arbitrary K

case. For each column, it can be regarded as a single arbitrary R case. Therefore, without

generating new non-existed query and exploiting extra resources consumed by that query

is achieved.

Below shows the overall pseudo-code of this combination case in Algorithm 1 and 2.

Algorithm 1 SOP(pi,D) Arrival
Require: Data point pi, Dataset D, R //D is Data points in the current window, R is a set of different value of R
1: for each q ∈ pi.succPoint do
2: for (ri ∈ R) do
3: if (true == pi.isNeighbor(q, r) then
4: for (rj ¿= ri) do
5: pi.—Succ(pi, rj )— ++;
6: if (pi.—Succ(pi, ri)— ¿= pi.getKmax(ri)) then
7: pi.updateStatusIndicator;
8: break;
9: end if
10: end for
11: end if
12: end for
13: end for
14: while pi.precSlides ! = NULL and !pi.isSafe do
15: slide = getSlideWithLargestLifespan(pi.precSlides(D));
16: for each q ∈ slide do
17: for (ri ∈ R) do
18: if (true == pi.isNeighbor(q, r) then
19: for rj ¿= ri do
20: pi.—Prec(pi, rj )— ++;
21: slide.updateTriggeredList(pi);
22: if ( (pi.—Prec(pi, rj )— + pi.—Succ(pi, ri)— ¿= pi.getKmax(ri)) then
23: break;
24: end if
25: pi.updateTriggeredSlide(slide);
26: pi.updateStatusIndicator;
27: end for
28: end if
29: end for
30: end for
31: end while

We take the previous example to elaborate this algorithm. It establishes a table with

two entries in the first place. One entry is R equal to 1 and K equal to 1. Another one is R

equal to 100 and K equal to 100. Utilizing this methodology not only prevents the process

of query with extremely restricted parameter specifications, but also takes the advantage
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Algorithm 2 SOP(pi,D) Departure
Require: Data point pi, Dataset D, R //D is Data points in the current window, R is a set of different value of R
1: for each pi ∈ expSlide.triggereList do
2: slide = getUncomparedSlide(pi);
3: for each q ∈ pi.succPoint do
4: for (ri ∈ R) do
5: if (true == pi.isNeighbor(q, r) then
6: for (rj ¿= ri) do
7: pi.—Succ(pi, rj )— ++;
8: pi.updateStatusIndicator;
9: if (pi.—Succ(pi, ri)— ¿= pi.getKmax(ri)) then
10: break;
11: end if
12: end for
13: pi.updateTriggeredSlide(slide);
14: pi.updateStatusIndicator;
15: end if
16: end for
17: end for
18: end for

of sharing strategy and least process to output outliers in real-time response for different

queries with less resources being used.

In the line 7 of the Algorithm 1, a data point updates its attached status indicator each

time a neighbor is found. Line 14 in Algorithm 1 starts a loop to ensure that neighbor

search keeps looking into the fresh data point until enough neighbors has been found.

Figure 4.4 shows another example when the workload consists of four different queries

and how the table is established after pre-analyzing.

Query K R

a 100 100

b 1 1

c 1 100

d 100 1

R K

1 1, 100

100 1, 100

R K

1 100

100 100

Figure 4.4: Matching table

4.4 Varying Parameter - W

Assuming all the queries start simultaneously, consider the pattern-specific parameters

and one of the window-specific parameters S are the same for the workload of a bunch of

queries with different W values. This implies that all the queries share the count, range,
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slide size and require output at the same time, while outlier data points that need to be

reported for each query differ.

Assume that queries are ascendingly ordered based on the value of W from min to

max, how to maximize the sharing among queries with different window size now be-

comes the main focus. In terms of the definition of streaming system, window of larger

size contains the window of smaller size. This means that all slides constituting smaller

window are also the slides included in the larger window. The lifetime of data points

in the smaller window never terminates in the larger window unless the smaller window

slides and no longer keeps them anymore. It is entirely possible that for queries whose

have smaller window sizes than wmax, pi is outputted as an outlier due to no enough accu-

mulating neighbors in all slides contained by those windows. Yet for queries with larger

window sizes or window size being equal to wmax, it is entirely possible that there are

more neighbors of pi residing in other slides, which makes pi an inlier for those queries.

Based on this observation, if number of neighbors in each slide contained in the window

of larger size is maintained, answering the queries with smaller W value is adequate as

well.

Status Sharing Lemma: Given a workload WL of queries with arbitrary W value.

After neighbor search stops, if data point pi ∈ Is for queries with W value wi (0¡i¡number

of different w, wmin¡wi¡=wmax) in WL, then safe status indicator of pi will be indexed as

wi. Accordingly, if data point pi ∈ Iu for queries with W value wj (0¡j¡

number of different w, wmin¡wj¡=wmax) in WL, then unsafe status indicator of pi will be

indexed as wj . For those queries whose W value wk¡wj , pi ∈ D.

Proof: This Lemma holds because in arbitrary W case, there is an inclusion rela-

tionship among the number of neighbors for ascendingly ordered queries. As long as

pattern-specific parameters are same for all queries, then the definition to find outlier is

universal in the workload. This means we just need to consider how to chop progres-

26



sive neighbor numbers into different slides for different window to share. Therefore, we

maintain all progressive patterns, especially the number of succeeding neighbors that are

used to be maintained based on unit of window, in the unit of slide. This serves to avoid

duplicate neighbor search. Accordingly, once enough number of neighbors of one data

point in the window with smaller window size wmin is maintained, then it is sufficient to

answer the queries with W value greater than wmin. Otherwise, if less than k neighbors

are collected for query with window size wmin, then based on the pattern containment

relationship, status indicator can be used to at least show the divide of which queries can

report this data point as an outlier. In this way, full share is achieved.

When following status sharing lemma in the process, identical to arbitrary case, for

the arbitrary W case, sharing direction is also unidirectional. This is so because window

with larger size contains slides that are not in slides that compose the smaller window.

Thus only queries with smaller W value can share neighbors in each slide with the ones

with greater W value. Accordingly, if there are two queries in which query Q1 whose W

value is specified as wi containing m slides and query Q2 whose W value is wi containing

n slides, assume wi ¡ wj and m ¡ n, then for data point pi, intuitively, m slides of wi are

part of the n slides of wj . Hence the accumulated number of succeeding neighbors of pi

found in slides m1, m2, ... and mi can all be reused by wj of Q2 through one execution of

neighbor searching driven by Q1. Neighbors sharing on the other way does not work.

However, even status sharing lemma serves to significantly reduce resources by shar-

ing efficiently computation among multiple queries, a bad timing of neighbor search ter-

mination still causes either defective output or over-comparisons. Therefore how to eval-

uate the timing of termination affects the efficiency after all.

Definition: Given a workload WL consists with arbitrary W, for each data point pi,

its neighbor search will not stop until enough number of neighbors namely greater than

or equal to K neighbors within range R in the window size wmax = max{w: for all w
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specified by queries in WL}. Otherwise, after all the data points in the window whose

size is wmax compared with pi, it is still unable to find k neighbors. Then neighbor search

terminates automatically.

This optimizes the process of neighbor search is because when neighbor search stops,

there are only two possibilities. One case is that pi finds enough neighbors in the smallest

window size. Under this condition, those neighbors are shared by the whole workload,

and status indicator of pi will show that pi is an inlier for all queries. Another case is that

pi cannot find k neighbors in the smallest window size. Under this situation, based on

status sharing rule, status indicator still can be used as a measure to evaluate for which

queries pi is an outlier and which ones pi is not. In other words, all queries whose W

values are smaller than the unsafe indicator will output pi as an outlier and the rest of the

queries in the workload will not.

Example 3 Given four queries Q1, Q2, Q3 with corresponding W value of 2, 3, 6. K

is 2, R is 1 and S is 1. We concentrate on data point p3 and analyze how sharing strategy

works under arbitrary window case. Geographical distance distribution of all data points

and the window view are the same as Example 1.

Before the window slides, the succeeding neighbor of p3 in three disparate ranges are

shown in Figure 4.1. After compared with all succeeding data points in the window of

Q1, there are no neighbors. Therefore it looks back to compare with data points in the

first slide. After found two neighbors which make p3 an unsafe inlier for Q1, for Q2 and

then Q3 it still has some succeeding data points not compared. So it keeps searching

in the non-overlapped slides contained by Q2 and then Q3 in order until it hits the end

of the largest window. Meanwhile, for Q3 p3 becomes a safe inlier. All the succeeding

neighbors information and preceding neighbors information are shown in Figure 4.5.
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|Succ(p3)|

S2 0

S3 1

S4 1

(|Prec|, slide )

S1 (2,slide1)

|Succ(p3)|

S2 0

S3 1

S4 1

(|Prec|, slide )

null

Figure 4.5: Arbitrary W: neighbor information

After the window slides, p13 and p14 arrive as new data points and p1 and p2 expire.

For Q1, we just need to add the neighbor numbers from slide 2 and 3 to see if p3 is an

outlier. The same rule is applied to Q2. As for Q3 with the largest number, p3 is already

a safe inlier, therefore no need to do the search again. Accordingly, the safe indicator is

updated to 2 and unsafe is updated 2 indicating for Q1 p3 is an outlier.

4.5 Varying Parameter - S

Assume all queries start simultaneously, consider the pattern-specific parameters and one

of the window-specific parameters W are the same for the workload of a bunch of queries

with different S values. This implies that all queries share the count, range, window size

and require output at the same time, while outlier data points that need to be reported for

each query differ.

Not like the previous cases where neighbors can be shared among all the queries in the

workload, in this case, different slide sizes only influence the moving unit of each window

sliding and the output timing of the outlier results. According to the characteristics of

window mechanism, a window is triggered by certain time duration or certain number of

arriving data points, then slides forward. Hence, each time how much a window slides

depends on the slide size of the query specified by different users. Therefore in order

to evaluate an appropriate value to enable the sharing among a workload with queries of

arbitrary slide size, a greatest common divisor is calculated based on these different S
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values. This greatest common divisor is then used as the smallest unit which we call slice

for a window to move forward.

In terms of the features of greatest common divisor, each distinct slide size is divis-

ible by the slice size. This important characteristic allows us to simply use a counter to

measure number of times the slice size a window has slided and then to evaluate if the

corresponding slide size has been hit. Once it comes up to the time that one specific slide

size has been slided over, then outliers are outputted for queries with that slide size. All

corresponding maintenances also update at this time. Each time window slides, counter

increases its value up one and to see if there is any need to output. Also, if the counter

is accumulated to the greatest slide size in the whole workload, reset is triggered and

counting starts from the scratch.

4.6 Varying Parameter - W and S

Now we consider when both window-specific parameters change yet the pattern-specific

parameters remain the same for all queries in the workload. This means that the count,

range and require output at the same time are shared by all queries, while outlier data

points that need to be reported for each query differ.

Case of multiple slide sizes and case of multiple window sizes are orthogonal struc-

tures, so naturally combining those two strategies and data structures together does not

cause heavy workload. This is because, for case of multiple window sizes, we can simpli-

fy all the maintenance down to the progressive patterns in each slide, status indicator for

the whole workload and the update trigger overheads. For case of multiple slide sizes, we

only need to decide the timing we are required to output outliers and when to update cor-

responding intermediate results. Consequently, as to each different slide size, we exploit

their greatest common divisor as slice size, making slice the smallest unit we use to store
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neighbor information. Therefore, case of arbitrary W and S can be regarded as arbitrary

W case with fixed slide size whose value is slice size.

The pseudocode for the core routines is shown in Algorithm 3 and 4.

Algorithm 3 SOP(pi,D) Arrival
Require: Data point pi, Dataset D, W, slice //D is Data points in the current window, W is a set of different value of W
1: for each q ∈ pi.succPoint(slice) do
2: if (true == pi.isNeighbor(q) then
3: pi.—Succ(pi, slice)— ++;
4: pi.updateStatusIndicator;
5: if (pi.—Succ(pi, wmin)— ¿= k) then
6: break;
7: end if
8: end if
9: end for
10: while pi.precSlides ! = NULL and !pi.isSafe do
11: slide = getSlideWithLargestLifespan(pi.precSlides(slice));
12: for each q ∈ slide do
13: if (true == pi.isNeighbor(q) then
14: pi.—Prec(pi, wmin)— ++;
15: slide.updateTriggeredList(pi);
16: if ( (pi.—Prec(pi, wmin)— + pi.—Succ(pi, wmin)— ¿= k) then
17: break;
18: end if
19: pi.updateTriggeredSlide(slide);
20: pi.updateStatusIndicator;
21: end if
22: end for
23: end while

Algorithm 4 SOP(pi,D) Departure
Require: Data point pi, Dataset D, W, slice //D is Data points in the current window, W is a set of different value of W
1: for each pi ∈ expSlide.triggereList do
2: slide = pi.getUncomparedSlide(slice);
3: for each q ∈ pi.succPoint(slide) do
4: if (true == pi.isNeighbor(q) then
5: pi.—Succ(pi, slice)— ++;
6: pi.updateStatusIndicator;
7: if (pi.—Succ(pi, wmin)— ¿= k) then
8: break;
9: end if
10: end if
11: end for
12: pi.updateTriggeredSlide(slide);
13: pi.updateStatusIndicator;
14: end for

The first loop in the Algorithm 4 shows that we use slice as the smallest unit to slide

the window. And every time we update the number of neighbors, the timing is based on

size of slice. The body of the first loop in Algorithm 5 is for triggered potential outliers to

find new neighbors. During the process, slice is the smallest unit all the time and be used
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as a basic slide size.

4.7 Varying Parameter - K, R, W and S

Now we consider when both window-specific parameters and pattern-specific parameters

change for all queries in the workload. This means that the count, range, required output

at the same time and outlier data points that need to be reported for each query all differ.

This is the general case that frequently happens in the real application.

We actually can utilize a combination of previously introduced techniques to achieve

the maximum sharing. This is so because for the case of arbitrary pattern-specific parame-

ters only, the maintenance and data structure it involves in mainly is related to the number

of neighbors and corresponding update triggers. This means holding all the patterns iden-

tified by them in a containment relationship. Yet for the case of arbitrary window-specific

parameters only, all it refers to mainly is the size of the snapshot of the data streaming

we are analyzing and the sliding frequency. Therefore, they are orthogonal from each

other and can be integrated together without modification of sharing strategies and data

structure.

4.8 Complexity Analysis

Computational Costs Computationally, there are two major actions that contribute to

the cost of neighbor searching. We recall that, first range query compares all the data

points in the window no matter if these comparisons are necessary or not for each data

point. Instead of expensive cost of range query, neighbor search of SOP stops once the

query with the most restricted parameter specification is satisfied. Moreover, when one

data point is searching neighbors in the window, all the other data points being compared
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with also maintain the neighbor information, which reduces more CPU computation costs.

From this perspective, neighbor search for each data point is a constant operation. Second

the cost of sharing for each data point only requires on neighbor search. For each data

point, status indicators are set to indicate which queries will output the data point as an

outlier or not. Thus the cost of multiple queries in the workload can be reduced from

O(nk) (k is the number of queries, and n is the number of data points in the window) to

O(n). Third, as for the general case, we maintain a minimum set, an organized table, to

figure out the minimum k for each different r so no extra computation would be occupied.

Memory Costs The memory costs of SOP depends mainly on two factors, the re-

lation we maintain for different range which depends on the number of queries and the

intermediate computation results from the comparison of two different data points. Com-

plexity wise, compared to non-sharing method, memory requirements are multiplied by

the number of queries. SOP significantly decreases it via status sharing lemma to just one

neighbor search. As for the sharing method in [2], most of the intermediate computation

and event-based trigger update and maintenance are obviously reduced via least searching

lemma.

Conclusion As discussed above, SOP structure maintains a minimum object set and

also achieves least computation. Evidently, we do not need to hold the number of com-

parisons of data points equivalent to the complete window size at any stage for computing

if two data points are neighbors or not, rather once the data point is a safe inlier for al-

l, comparison stops. This is a clear win over the exiting methods for multiple queries

computations that need to utilize range query from scratch.

However, we observe that the resource requirements of SOP grow with Nvalues, the

number of different parameter specifications. More specifically, since SOP always search-

es to meet the most restricted parameters specification and maintains a relation of different

R value to keep number of neighbors in different ranges, its memory and CPU consump-
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tion grow with the number of queries.
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Chapter 5

Sharing Among Queries with Predicate

Parameters

In the preliminary section, a complete query template with outlier parameters and predi-

cate parameters is fully demonstrated. Sharing approach on pattern and window specific

parameters have been deliberated in the last section already. Integration of capability of

handling predicate parameters into SOP becomes the next problem so that SOP can be-

come more robust and pragmatic in the real application. Therefore, in this section, we

shift our focus to another half of our problem, i.e. the design of processing and opti-

mization strategies for the shared predicates in a workload of outliers detection queries.

We begin with the concept of two different sets. Next, we present the intuition and the

methodology of the sharing strategies for each case.

Assume that we have a workload WL consisting of a set of outlier detection queries.

Each outlier query have arbitrary selection predicates on both target and scope. According

to the particular role of each of these two screened sets via application of two predicate

parameters, as described in previously section, we classify these two sets into two cate-

gories. For the one to see if these data points in it are outliers or not, we call the set of

35



these data points Target Set. For the one that data points are selected separately against

which to be compared with data points in Target Set to evaluate whether they are neigh-

bors of data points in Target Set or not, we call the set constituted by these data points

Scope Set.
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Figure 5.1: Geographic Distribution and Window View

Figure 5.1 shows geography distribution and window view of both Target Set and

Scope Set. These two sets are composed of all data points specified by the corresponding

predicates given by the users. Target Set and Scope Set do not have to be pertaining to

each other. Nevertheless, from the perspective of the distance function, Target Set and

Scope Set should be related in some ways where connections are built on their meaning

in the real world determined by the analysts. This can be perceived from the running

example in problem formalization section. On the other hand, they can be the same data

stream.

D

.

.

.

Pn(D)

P1(D)

Multiple

Predicates

Figure 5.2: Unshared Predicates
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Assume no sharing strategy is applied, then Figure 5.2 shows how method introduced

earlier would process these requests. This helps to demonstrate conceptually that brute-

force method causes huge inefficiency. In the first place each data point is sequenced by

its time stamp when arriving system. Then based on different predicate, the input data

stream D are divided into n subsets. All data points in one subset satisfies one particular

predicate of one query. Thereafter, the outlier detection algorithm SOP is applied to each

set of data points separately. Then for each query, the system outputs the corresponding

correct result.

Simply applying SOP to each subset actually can meet the minimum demand that

system can handle outlier detection queries with predicate parameters. However, usually

most of predicate specifications have certain percentage of overlaps. If the workload

contains a huge number of queries whose selections on this data stream differ subtly, then

same computation of many times definitely wastes huge amounts of resources. Therefore,

our goal in this section is to introduce sharing strategies that reduce these unnecessary

costs.

5.1 Intuitions and Approaches

Given a continuous input stream, different queries in the workload will select disparate

data points in it based on their own predicates. Therefore within a fixed window size, each

query maintains two lists of indexes pointing to the data points in Target Set and Scope

Set. These two lists dynamically update data points in it according to the expiration and

arrival of data points each time window slides.

Arbitrary Target Predicate The main intuition for how we tackle the sharing prob-

lem for varying Target predicate is the following. Namely, we utilize the predicates p1,

p2, p3, ..., pn to partition the data points in a window of the input stream into disjoint sub-
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sets, called fragments in [3]. For each data point in each fragment, neighbors searching

would be applied. In other words, a set of data points in a window of the input stream,

is partitioned into F0, F1, ..., Fk, a set of k + 1 disjoint fragments: D= F0∪F1∪ ... ∪Fk.

Each fragment Fi is associated with a subset of the workload WL that denoted by WL

(Fi) ¡ 2|WL| where every data point in the fragment Fi satisfies the predicates of every

query in WL (Fi), and no other query. Among all these fragments, the workload WL (F0)

is an empty set. This means that all data points in F0 satisfy none of the predicates. Thus

none of these data points should participate in any query and accordingly can safely be

ignored.

Meanwhile, a signature that identifies the precise subset of queries is associated with

each data point. In other word, this signature of a data point encodes the fragment that it

falls in and accordingly the query. This can be realized by using the bitmap to contain one

bit for each of the n queries in the workload. Accordingly, when it comes to outputting

timing for each query, outliers in different fragments can be aggregated in terms of the

bitmap for different queries.

Example. Given a set of three queries Q1, Q2 and Q3 with disparate Target predicate

predicates p1, p2 and p3, how queries are related with each other by 8 fragments based on

these three predicates are shown in Figure 5.3. Also signatures for each fragment are also

designated under the number of fragments.
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Figure 5.3: Possible Fragments
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First we partition the Target Set into fragments. SOP can be applied in individual

fragment to detect outliers. Then, we use an array to maintain this list of outliers in each

fragment. Afterwards a simple add-up operation whose function is like an aggregation to

accumulate all outliers in different fragments together for each query through looking up

the signatures attached on those outliers. Therefore each data point just needs to apply

neighbor search once for queries with different Target Set but same Scope Set, which

significantly reduces the inefficiency aroused by repeated neighbor search. The basic idea

of pipelining general outlier detection and aggregation is shown below.
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Figure 5.4: Conceptual View of Fragments Sharing

Arbitrary Scope Predicate In arbitrary Scope predicate case, we basically have a

similar intuition as in arbitrary Target predicate case. Given predicates p1, p2, p3, ..., pn

indicating different Scope predicates of queries in the workload, we partition the Scope

data points from the input stream into disjoint subsets, called blocks. Namely these sets

of data points in a window of the input stream are partitioned into a set of k disjoint

blocks: D = B0∪B1∪ ... ∪Bk. Each block is associated with a subset of the workload WL

that is denoted by WL (Bi) ¡ 2|WL| where every data point in the block Bi satisfies the

predicates of each query in WL (Bi), and no other query.

Nevertheless, in arbitrary Target case, it does not matter which fragment should be

looked at first and which later. This is because all data points in different fragments have

to be examined once if they are outliers or not. In arbitrary Scope case, we should prior-
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Figure 5.5: Possible Blocks in Two Different Case

itize the principle that once we find enough neighbors, then we stop searching neighbors

to reduce the resources occupied by comparisons between two different data points to the

minimum. If the bitmap signature used in arbitrary Target case is applied here, then like

all data points in different fragments need to do neighbor search once, all data points in

the blocks need to be probed against once. Therefore a different technique is utilized to

distinguish different blocks.

In order to reduce the probing times by different queries over the same blocks, we

tag each block a priority. This priority functions clarifying the overlap level of different

queries in the workload. In other words, each block has a priority value starting at zero.

This value increases by one if one query is found to be related to it. This means more

queries a block involves, higher priority it is assigned. However, only with the priority,

we can not connect different blocks with their corresponding queries. Hence each block

maintains a list of indexes pointing to the queries whose predicate parameters of Scope

Sets consist of itself. Below shows the example different scenarios of block and its priority

establishment.

Example Given a set of three queries Q1, Q2 and Q3 with disparate Scope predicates

p1, p2 and p3, two possible cases of different block formulation with different priority and

query lists are shown in Figure 5.5.

From the Figures above, we can infer that the number of block is not determined by the

number of queries in the workload, yet is based on the condition how predicate parameters

overlap. Then priority can be generated to tag each block accordingly. Moreover, for the
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simplicity, the priority value is exactly the number of queries in each block’s query list.

Block Search Lemma: Given a workload WL consists of all queries with the same

outlier parameters and target parameter but arbitrary scope, for each data point pi, the

order of which block to probe in is based on its priority value. Assume each block has

its own unique priority, then the selection sequence is sorted by the descending order,

starting with the highest one and ending with the lowest one. The neighbor probing select

block from this sequential list from the highest to lowest accordingly. If some blocks

happen to have the same priority, then they would be linked together based on their own

priority values. During the process of neighbor probing, selection order of those blocks

does not influence the output results. In other words, if block Bi has priority value equal

p, then all blocks with priority values of p should be probed.

This lemma holds because to find enough neighbors, we just need to collect k neigh-

bors in range r. Thus once sufficient evidence is satisfied. Further search is meaningless,

but consumes limited yet precious resources. If one block with unique priority contain-

s enough evidence to make one data point an inlier, then for all queries, it is an inlier.

Search does not need to proceed. Otherwise it has to go to the next block with less higher

priority. However, for blocks with same priority, search has to be applied in each block

separately because these blocks are associated with different Scope predicates of different

queries. Therefore we can only ensure the search lemma to stop as early as possible and

then go to the parallel blocks.

Here is a concrete demonstration on how SOP shares different blocks in the whole

workload. We take the case where there is a block being involved with all three queries in

the workload as an example. The block in the middle has priority value equal three. Thus

it no doubt has the highest priority. When we probe for neighbors, we need to determine

which block to look into first. As explained previous, in order to eliminate the repeated

computing on same blocks, we always choose blocks with higher priority. Therefore,
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block in the center would be the first block we search neighbors in. If within the range of

this block, enough neighbors is found, then there is no need to look into other blocks with

lower priority. However, under some circumstances, more data points in the lower priority

need to be probed. So accordingly, the probing continues in the next lower priority until

sufficient evidence shows that data point in Target Set become safe. During the walking

down neighbor search in priority, it is entirely possible that different blocks are designated

with same priority yet their query lists are different, like the three different blocks with

priority value equal to two. If this is the case, then all these three blocks need to be probed

into since they are related to different lists of queries. This means for the block with the

same priority value, the order of which block to choose and then probe does not affect the

final output result.

General Case The most general case is that given a workload of queries that all differ

in both Target Set and Scope Sets parameter specifications, yet we now note that these

specified target and scope values have some percentage of the overlaps. Due to the fact

that data points in Target Set and Scope Sets can be irrelative with each other, therefore

the sharing strategies introduced above are orthogonal. So after combining those two

algorithms and maximize the sharing of the overlaps among predicate parameters, SOP

can achieve high efficiency for outlier detection with arbitrary predicate parameters. The

pseudocode for the core routines is shown in Algorithm 5.

Algorithm 5 SOP(pi,D)
Require: Data point pi, Dataset D, R //D is Data points in the current window, R is a set of different value of R

for each fragi ∈ slides.getLatest do
for each pi ∈ fragi do

for each priori in Prioritys.getInorder do
pi.neighborSearch;

5: pi.updateStatusIndicator;
if ! pi.isOutlier then

break;
end if

end for
10: end for

end for

Here is a brief demonstration on how SOP works after put sharing approaches of two
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different predicate parameters together. First we partition the set of data points D into

fragments, then for each data point in each fragment we efficiently probe the block with

the highest priority. If sufficient evidence is met in that block, then for all queries in both

Q (Fi) and Q (Bi), the data point is regarded as an inlier. Accordingly, no further search

is needed among other blocks. However, if for that data point, the number of neighbors is

not sufficient to be an inlier at this point, then the neighbor search process must continue

for this particular target data point probing into the blocks with the next lower priority

until it can be determined that this data point satisfies the definition of an inlier. Again

if more neighbors need to be found to prove that the data point at hand is not an outlier,

then this it will find other fragments that its query are involved with and probe into the

corresponding blocks with the sharing approach of arbitrary Scope case. Finally, either it

finds enough neighbors or the query will report it out as an outlier.

5.2 Complexity Analysis

Computationally, there are two major factors that influence the cost of neighbor searching.

One is the percentage of Target sharing. Another is the percentage of Scope sharing. To

be more specifically, it indicates the number of fragments and the number of blocks with

different priority values. Neighbor search for each data point is a constant operation.

Therefore O(nk) (k is the number of queries, and n is the number of data points in the

window) is the complexity of the LEOC. The best case in this scenario is the sharing is

100 percent. This means the complexity can be reduced to O(n).
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Chapter 6

Performance Evaluation

6.1 Experiment Setup and Methodology

Our experiments are conducted on a PC WITH 3.4G HZ Intel Core-i7 processor and 6GB

memory, running Windows 7 OS. All algorithms are implemented in JAVA on CHAOS

Stream Engine.

Real Data We used real streaming data set, namely, the Stock Trading Traces Data

(STT). It has one million transaction records throughout the trading hours of one day. All

data has same format of name, transId, time, volume, price and type.

Synthetic Data We also implemented a data generator to create dataset containing

100M objects produced by a data generator. This dataset is composed of Gaussian dis-

tributed data points as inlier candidates and uniform distributed ones as noises. Certain

percentage of random noises is distributed in each segment of the data stream.

Alternative Algorithms We compare our proposed algorithm SOP with two alterna-

tive methods. One is the state-of-the-art ACOD [1] whose method was the first mention

and then to provide a preliminary attempt at supporting multiple outlier detection requests

each with different parameter settings. However, [1] mainly focuses on outlier detection
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of single query method, though briefly sketched a preliminary idea of shared computation

for the shared K or shared R parameters in only about few paragraphs of the manuscript.

They thus do not consider different window or slide sizes. Neither do they consider the

generalized outlier queries with Scope and Target clauses supported by our work. Fur-

thermore, even for the 2 parameters that they do consider, namely, K and R, they do not

introduce the notion of searching only the minimum resources essentially to share outlier

computation, namely, the minimal set of neighbors to be probed for each data point.

In addition, we also compare against the best known single-query strategy LEOC [2],

which has been shown to be optimal in distance-based outlier detection. The method

however is applicable to the outlier detection request with a single fixed parameter setting

only. We choose this method not only because it is the best so far, but also because several

of its core principles such as minimal probing principle and lifespan-aware prioritization

principle also are able to be applied and adapted in the multiple parameter setting contexts.

Methodology We measure two common metrics for stream systems, namely the av-

erage processing time (CPU time) per window and the average memory consumption

per window. The CPU time per window corresponds to the total amount of system time

used to process one window before it expires. The consumed memory corresponds to the

memory required to store the information mainly for each active object (i.e., preceding

and succeeding neighbors), the heap size used for the events prioritization (i.e., triggered

outliers), and the outliers of all the queries in one live window. All data results are col-

lected and calculated on the unit of one window, and then have been averaged over all

windows. All experiments are reported using time-based mechanism, while count-based

one supports similar results.

We conduct scalability experiments to validate the performance of the proposed al-

gorithms with increasing number of queries in the input workload. We study the per-

formance by covering the important combinations of the six query parameters, varying

45



Type Name Value
Pattern K [30,1030)

R [200,1200)
Window W [1Ks,50Ks)

S [50s,50Ks)
Predicate T

S Location

Table 6.1: Parameters Setting of SOP

Workload
Pattern Window Predicate

K R W S T S
(A) arbitrary fixed fixed fixed fixed fixed
(B) fixed arbitrary fixed fixed fixed fixed
(C) arbitrary arbitrary fixed fixed fixed fixed
(D) fixed fixed arbitrary fixed fixed fixed
(E) fixed fixed fixed arbitrary fixed fixed
(F) fixed fixed arbitrary arbitrary fixed fixed
(G) arbitrary arbitrary arbitrary arbitrary fixed fixed
(H) fixed fixed fixed fixed arbitrary fixed
(I) fixed fixed fixed fixed fixed arbitrary
(J) fixed fixed fixed fixed arbitrary arbitrary
(K) arbitrary arbitrary arbitrary arbitrary arbitrary arbitrary

Table 6.2: Combinations of different workload

from focused specific ones to more general cases as shown in Table 1. In particular, we

evaluate performance of SOP with predicates parameters by differing sharing percentage

in targets and scopes. Core scenarios of our study are summarized in Table 2.

6.2 Evaluation of SOP for Varying Pattern and Window

Parameters

6.2.1 Varying Pattern-Specific Parameters

We prepare four workloads with 10, 100, 500, 1000 queries respectively by randomly

varying pattern-specific input parameters values (in the range shown in Table 1) for each
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Figure 6.1: Varying K values on Synthetic Dataset

query, while using fixed parameters settings for all the other query parameters.

Arbitrary K In the first experiment, we analyze the effect of our proposed algorithm

when compared to the-state-of-art algorithm LEOC and ACOD under different numbers

of queries. We use a fixed window size of 10Ks and a slide size of 0.5Ks on our synthetic

data. We keep range parameter R at 700. An appropriate value in range of R setting is

shown in Table 9. K is randomly generated from the possible values in the range from 30

to 1029 for each query.

Figures 6.1 show the CPU time and memory space on logarithmic scale on y-axis by

the three algorithms. Clearly, the CPU performance of our proposed method is superior

to the other two. This win is because after SOP finds enough neighbors for a data point so

that it is qualified to be excluded as an outlier during its life cycle for all queries, neighbor

search immediately stops for that data point. As explained in the previous section, if

a data point gets enough neighbors for the query with largest K value, namely the most

restricted condition, for other queries specifying smaller K value, this data point definitely

is qualified as a safe inlier. Therefore there is no need to keep searching. However, ACOD

would compare each data point with all the other data points in the window even if that

data point has already been confirmed to be safe with respect to each of the queries in the

workload. As to LEOC, because of its repeatedly detecting outliers over and over for each

query from the scratch, with the number of queries increasing, our gain in CPU obviously

becomes more and more significant.
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The trend in CPU resources utilized by our SOP is almost straight. This is because the

value of k is randomly selected from the same fixed range as depicted in the parameter

settings table Table 9. For each data point, only when the greatest k neighbors are found, it

is capable to be labeled as a safe inlier and then exempted from further neighbor search. At

least one of randomly selected k is likely to get fairly close to the upper ceiling value in the

range given sufficient number of searches. And, as is apparent from method description

(Section 5), the highest k value determines the overall CPU costs consumed while all

smaller contained k values are gotten as by-product nearly for free. Therefore as the

number of queries increases, the CPU cost in increasingly larger workload tends to be

similar over time.

For the same reason, a similar gain can also be observed in memory usage, especially

when compared with LEOC. However, SOP does not save much compared to ACOD.

This can be explained by the fact that even though ACOD applies expensive range query

searches, it does not store more than k largest neighbors for each data point. In other

words, except that ACOD stores extra intermediate results for neighbor pattern update

and maintenance after neighbor search stops caused by range search, essentially it stores

almost the same amount of information as SOP. Yet because of the least search process,

SOP still wins by a narrow margin from the perspective of memory.

Arbitrary R In this experiment, we evaluate the performance of SOP compared with

ACOD and LEOC under case with parameter R varying only. In order to keep the dataset

with even outlier distribution, we fix the window size to 10Ks, slide size to 0.5Ks and K

to 30, while R is randomly generated from 200 to 1199.

As shown in Figure 6.2, both the CPU and memory usage of our algorithm are signif-

icantly less than ACOD and LEOC. In particular, SOP is achieving up to three magnitude

times improvement compared to ACOD. Based on the sharing mechanism that if suffi-

cient neighbors are found in the most restricted condition which means the smallest range
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Figure 6.2: Varying R values on Synthetic Dataset

for one data point, it will be labeled as an inlier for query specifying that range. Obvi-

ously as well for all queries specifying smaller range, namely more relaxed condition, in

workload. The status indicator of this data point will become showing its safe afterwards.

A safe status indicator represents enough number of neighbors is gathered, capable to be

shared by all queries and no more need to keep on searching. Then SOP terminates the

neighbor search. However, ACOD does not stop searching until all data points in cur-

rent window have been touched. As a result, extra CPU cost used to update neighbor

information like number of neighbors and triggered outliers decrease its efficiency.

In addition, the trend of CPU cost is climbing as the number of queries increases. The

reason is because in the process of neighbor search, in order to track number of neighbors

falling in different range, for each data point, a table will be maintained by both ACOD

and SOP. The maintenance of this table correlates with the size of this table decided by

the number of different value of R. Consequently, CPU processing is burdened heavier as

the number of queries increases.

Similar available under the memory consumption is also due to the fact that ACOD

keeps neighbor search throughout the whole window. Therefore after the sufficient evi-

dence for each data point is collected, neighbor finding process continues, which causes

extra pattern maintenance and update. This maintenance and update are supposed to be

small. However, we also have to update the table kept to look up the number of neighbors

in different R. Every time we find a neighbor, an update of the table is executed. Because
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Figure 6.3: Varying K and R values on Synthetic Dataset

this is proportional to the size of different R values, more often update happens, more

extra memory is used. Therefore ACOD in arbitrary R case costs much more memory

space than SOP.

Arbitrary K and R In this experiment, we assess the impact of SOP with case of

varying both pattern-specific parameters compared with ACOD and LEOC. Again, to

keep reasonable outlier distribution in dataset, we fix the window size to 10Ks, slide size

to 0.5Ks, while both k and r is randomly generated from 30 to 1029 and 200 to 1199

individually.

Figure 6.3 depicts the performance of those three algorithms via CPU cost and mem-

ory consumption. We observe that SOP utilizes less processing time and memory usage

than the other two state-of-arts. This is not only caused by the reason explained in pre-

vious two single cases, but also because SOP keeps an optimization of neighbor search

requirement in combining K and R. In other word, SOP analyzes the relation between R

and K specified by all different queries so that when it searches neighbors for each da-

ta point, it does not aim to find greatest K within smallest R like ACOD does. Instead,

from given workload, it maintains a meta data to match different R and its corresponding

largest K. Served by this meta data, SOP is enabled not to apply neighbor search based

on the most restricted query conditions, namely the largest K and smallest R during the

outlier detection algorithm execution. Therefore more CPU cost and memory are saved.

However, ACOD always applies the most restricted criteria in each range query, even that
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Figure 6.4: Varying W values on Synthetic Dataset

combination of K and R might not even exist, which is always the case. As a result,

ACOD wastes more CPU and memory on that compared to SOP.

6.2.2 Varying Window-Specific Parameters

Next, we focus on workloads with 10, 100, 500, 1000 queries respectively by randomly

varying window-specific input parameter value (in the range shown in Table 9) for each

query, while using fixed parameter settings for the other query parameters.

Arbitrary W In this experiment, we study the performance of SOP compared with

LEOC and ACOD+ in the case that only w is arbitrary. We show the result with fixed

value of slide size at 0.5Ks, r 200 and k 30, while the window size is varied from 1Ks to

500Ks shown in Table 1.

In Figure 6.4, our algorithm still shows a better result on CPU time and memory con-

sumption. Our sharing mechanism on different window sizes mainly is concentrating

on maintaining number of neighbors in each slide, especially for succeeding neighbors.

This is quite different from LEOC since single query only requires number of succeeding

neighbors based on unit of window. However, this sharing mechanism benefiting us al-

most three folds faster is due to the fact that if a data point is safe for the smallest window

size, it certainly turns out to be a safe inlier represented by its status indicator. Obviously,

once a data point satisfies its safe identity for the most restricted condition which is the

smallest window size, there is no doubt that for those larger window size specified by
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other queries, it is a safe one. Hence its number of neighbors and its status indicator can

be shared in workloads and no need to search and update its neighbor information further.

However, for ACOD+, even after the data point is labeled as a safe inlier, neighbor search

continues until comparisons with all the other untouched data points have been finished.

In this scenario, needless CPU resources are consumed.

Regarding to memory space, applying main mechanism of SOP into ACOD+ does

help save memory to avoid recalculation of expensive range query. However, the side

effect of the range query, namely exhausted neighbor search still costs extra memory

space to update neighbor information and triggered outliers. From another perspective,

though sharing strategy helps, but ACOD+ does not maximize benefit brought by this

sharing strategy because when enough sharing information has gathered, search does not

halt afterwards.

Arbitrary S In this experiment, we concentrate on comparing the scalability of the

algorithms when varying the slide sizes only. Window size is set at 50Ks, k is 30 and r is

200, while slide size is varied from 50s to 50Ks as shown in Table 1. Figure only shows

the performance of SOP and ACOD. This is because case of arbitrary S only influences

the outlier output timing and the moving unit each time window slides. Therefore, only

slight effect on the maintenance and update is between LEOC and SOP.

As presented in Figure 6.5, the outcome again clearly shows that with respect to the

CPU consumption, SOP only takes 0.01742s to process each object on average, while A-

COD+ needs 0.57s for each object. This is as expected because SOP eliminates redundant

comparisons among different data points via keeping safe inliers from expensive neighbor

search.

In particular, the CPU time of SOP on each data point decreases from 0.0116 to 0.0021

as the number of queries increases. The reason is evident. Larger size introduces more

different slide sizes. More different values of slide size are there in one workload, the
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Figure 6.5: Varying S values on Synthetic Dataset

smaller greatest common divisor is. Our sharing strategy will use this greatest common

divisor to process window sliding mechanism on streaming data. In other words, value

of the greatest common divisor determines the basic unit for SOP to process and store

preceding neighbors and triggered outliers. Considering that triggered outliers are stored

by basic unit and the fact that smaller unit size gives rise to less number of triggered

outliers. Trend of CPU cost per data point will apparently go down as number of queries

increases.

Again our method is not only more desirable in CPU but also in memory utilization.

With the increase in number of queries, more storage resources will be distributed on

when to output outlier and how many basic units, namely the greatest common divisor,

we need to move forwards to avoid extra neighbor searching. Therefore, this rising trend

is exactly what we anticipate.

Arbitrary W and S In this experiment, we investigate the effectiveness of SOP under

the case of varying both window-specific parameters compared with ACOD+. We do

not compare with LEOC is because for LEOC, CPU process time consumed by each

data point are almost the same, which is available to be referred in other experiments as

a constant value. Therefore we remove it from this experiment. To enable outliers to

be even distributed, we use k as 30 and r as 200, while window size and slide size are

arbitrarily selected from the range of 1Ks to 500Ks and 50s to 50Ks respectively.

As illustrated in Figure 6.6, the CPU time consumed by SOP per tuple increases from
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Figure 6.6: Varying W and S values on Synthetic Dataset
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Figure 6.7: Varying K, R, W and S values on Synthetic Dataset

0.028 to 0.282 as number of queries increases from 10 to 1000. This cost is still three

orders of magnitudes less than cost of alternative algorithms. Clearly, results shown in

these two Figures are combined from two previous cases of arbitrary w and arbitrary s.

Because of the fact that these two cases are orthogonal as previously explained, impact of

the combination will not influence with each other.

6.2.3 Varying Pattern and Window Specific Parameters

In this general case, we prepare workloads with 10, 100, 1000, 10000, 50000 queries re-

spectively by selecting all input parameters (in the ranges shown in Table 1 for each query.

We examine the behavior of SOP compared with ACOD+ and LEOC in this experiment.

Observations can be drawn from Figure 6.7 that our approach SOP significantly out-

performs the unshared LEOC and state-of-art ACOD+ in processing multiple queries. As

previously shown, SOP achieves a tremendous gain in CPU utilization. Its constantly

hundreds times faster than ACOD benefiting from the fact that not all objects need to be

investigated once they become safe. The status indicator can only be turned on as safe for
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all queries only if for the most restricted condition, which is greatest K, smallest R and

smallest window size, the data point is qualified as an inlier. An inlier shares all neighbor

information to all queries in the workload, therefore no more search need be conducted

by SOP as ACOD+ does. Based on this mechanism, SOP saves much CPU processing.

As the number of queries rises, overlap among different queries will increases. There-

fore the neighbor information of each data point can be shared to a larger percentage,

meaning more running time is saved by our sharing strategy. In addition, as previous

explained, our two sharing strategies on pattern-specific and window-specific are orthog-

onal. Therefore their combination contributes to excellent scalability of our algorithm.

The memory usage also consistently exhibits stable improvement compared to the

alternatives solutions. The reason is as previously stated that LEOC has to specifically

detect outliers over the same streaming data over and over for every query, hence memory

used by different queries adds up as the number of queries grows. Consequently, as the

number of queries grows, the space consumption saved could be more significant. With

respect to ACOD, it always executes the distance computations among all data points

each time range query is executed. Accordingly it stores preceding neighbors for all

data points as well as update triggered outliers. However, SOP only stores the number

of preceding neighbors in each slide for unsafe inliers and outliers, and shares enough

number of neighbors for all queries. As a result, SOP avoids unnecessary space to keep

intermediate and redundant results. Memory utilization is reduced in this strategy.

6.3 Evaluation of SOP For Varying Predicates

6.3.1 Varying Target Sharing Percentage

In this experiment, we prepare four workloads with around 25%, 50%, 75% and 100%

Target sharing percentage respectively varying target predicates over the real dataset.
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(a) Target (b) Scope

Figure 6.8: Varying Predicate Sharing Percentage on Synthetic Dataset

Meanwhile, Scope sharing percentage is fixed at 50%, K, R, W and S are fixed at 30, 700,

10Ks and 0.5Ks individually. This is mainly achieved by varying the location which is

used for filtering the streaming data. We compare the execution time across 4 algorithms

(SOP, SOP T, SOP S, LEOC) based on the sharing approach discussed in the previous

section, in which SOP T only shares target and SOP S only shares scope.

As shown in Figure 6.8 (a), as the sharing percentage of Target increases, CPU pro-

cessing time of both SOP S and LEOC keep the same, while SOP T and SOP decrease.

This is what we expected. Because for each query with different Target predicates spec-

ification, LEOC and SOP S always have to execute our base outlier detection algorithm

over the whole dataset again and again. The time of outlier detection execution equals

the number of queries. Therefore, sharing strategy on Target has nothing to do with CPU

efficiency of LEOC and SOP S. However, if Target are shared as SOP T and SOP do,

higher Target sharing percentage, more overlapping area of Target, hence for data points

in Target, more queries those data points can be shared to. Therefore, this sharing strategy

greatly reduces the time of outlier detection execution over the whole workload. Espe-

cially when the sharing percentage is up to 100%, this means all queries share the same

Target areas. As a result, if same Scope area is shared, CPU processing is almost the same

as outlier detection on single query.
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6.3.2 Varying Scope Sharing Percentage

In this experiment, we prepare four workloads with around 25%, 50%, 75% and 100% S-

cope sharing percentage respectively by varying the scope predicates over the real dataset.

Meanwhile, Target sharing percentage is fixed as 50%, K, R, W and S are fixed at 30, 700,

10Ks and 0.5Ks individually. This is mainly achieved by varying the location which is

used for filtering the streaming data. We compare the execution time across 4 algorithms

(SOP, SOP T, SOP S, LEOC) based on the sharing approach discussed in previous sec-

tion.

It is obvious to observe from Figure 6.8 (b) that as now we share the Scope, SOP T

and LEOC who do not apply sharing strategy have a constant CPU processing time, in-

dependent of the Scope sharing percentage. This is because even for queries specifying

the same Scope area, they always have to execute outlier detection several times, which

is the number of queries. Consequently, their CPU time have no relevance to the varying

sharing percentage on Scope. On the contrary, for SOP S and SOP that use Scope shar-

ing strategy, their CPU process time decrease as their Scope sharing percentage increase.

The reason is because the higher sharing percentage on Scope, more overlapping area of

Scope, hence more queries can share the same searching area. Under most scenarios, data

points will find enough neighbors by only searching highest priority area in Scope and

then are labeled as safe inliers. Consequently, this safe status indicators are shared by all

queries whose Scope consist of the highest priority area. Therefore CPU time is saved

from this sharing strategy.

6.3.3 Scalability on Predicates

We now consider workloads with 16, 128, 512 and 1024 queries respectively representing

our main problem. In these workloads, we examine the performance of SOP compared
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Figure 6.9: Varying Predicates on Synthetic Dataset

with SOP T, SOP S and LEOC under case with both Target and Scope sharing percentage

are fixed at 50%, K, R, W and S are fixed at 30, 700, 10Ks and 0.5Ks individually.

As shown in Figure 6.9, SOP is always the best performer on CPU time. Then it

comes to SOP T, SOP S and LEOC accordingly. The reason is well explained in detail in

previous experiments as to the comparisons between SOP and SOP T, SOP and SOP S,

SOP and LEOC. The reason that why SOP T costs less CPU processing time than SOP S

is because the former shares data points needing to find enough number of neighbors, and

the latter shares the area that needed to be searched by target data points. This means

sharing Target reduces the time of each base outlier detection algorithm execution, how-

ever, sharing Scope can only share the searching result, reducing the searching times

in the same Scope. In the other word, sharing on Target has more effect on CPU time

than sharing on Scope. Another observation drawn from Figures is that as the number of

queries increases, all four algorithms show an increasing CPU consumption time. This is

as expected because at a fixed sharing percentage of Target and Scope, more number of

queries means more target data points are specified to search neighbors in Scope and more

information to distribute the results of outliers to different queries need to be calculate.

As a result, all these extra processing cause the increases in CPU cost.
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Chapter 7

Related Work

With the occurrence of streaming data generated by accurate digital equipments, outlier

detection on streaming environments has been extensively studied [6,7,11]. Most outlier

detection methods that have been developed through previous research efforts, neverthe-

less, are focused on processing single mining requests [7,17,18] for streaming pattern

detection only. The existing state-of-the-art algorithms [2] handle multiple queries of ar-

bitrary pattern-specific parameters, but their naive sharing strategies demand high CPU

and memory resources. Moreover, predicates, essentially for outlier specifications, have

never been paid attention to.

In the beginning, [9, 10, 11] extend the outlier detection domain from static data

to streaming data. They propose to use a simpler threshold variation in distance-based

outliers. They all consider about the lifetime [20] of each data point and the impact of

each data point on other alive data points. [9] leverages the fact that all neighbors of data

point pi that arrive after pi will not expire before pi is removed from the alive window. For

some neighbors, their influence as a neighbor never disappears, while for other neighbors,

they naturally depart before the entire lifetime of pi ends. Based on this observation,

three types of data can be categorized, namely outliers, unsafe inliers and safe inliers.
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This status can be decided by checking the number of different types of neighbors found

within a specified range.

Later, in order to further improve the CPU cost and reduce the memory consumption,

four algorithms in [2] of continuous outlier monitoring over streaming data are intro-

duced. They use range query to search neighbors for each data point in the current stream

window and then identify outliers from the dataset. They integrate an event-based ratio-

nale to efficiently schedule and reduce the number of checks when a data point expires.

However, the expensive range query search applied to every single new data tuple still

gives rise to performance degradation.

Seeing the optimization opportunity in [2], [1] casts light on several critical insights

to drive down the CPU costs by over three orders of magnitude with almost the same

memory utilization. The concept first is to exploit the literal notion of what constitutes

an outlier. Outliers are only very small numbers of objects against the entire huge data

set. Hence, this limited resources can be concentrated on serving the minority of outliers

and then unnecessary computation can dramatically be reduced. Furthermore, they take

advantage of the property of streaming data that later data points always have a more de-

cisive influence than data points that have arrived earlier. Consequently, they present two

principles, which are “minimal probing” and “lifespan-aware prioritization”, assisting in

abandoning the exhaustive range query in the process of searching. Nonetheless, their

methods are restricted to a single outlier query, not keeping up with requirements from

modern streaming systems that similar outlier queries always come concurrently in the

regular scenario. Therefore, standing on the foundation that this algorithm is the opti-

mal one in the outlier detection of single query, we propose to extend this approach to

multiple queries. Afterwards, we optimize it to share resources among different query

specifications to the maximum.

As for existing multiple queries of outlier detection, [2] develops an algorithm from its
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single query outlier detection method. It maintains certain amount of neighbors that can

satisfy the most restricted condition which is the greatest k and smallest r. Then it filters

the results with respect to each query to provide the corresponding outliers. However,

these provided approaches are only for cases with arbitrary r and k in distance-based

outlier specification, without cases with arbitrary w and s related to the streaming system.

Moreover, another limitation of this algorithm is that the base algorithm of the single

query it is extended from is outperformed by the latest algorithm presented in [1].

[24] presents shared execution strategies for processing a huge workload of the same

type neighbor-based pattern mining requests with arbitrary parameter settings. It first

proposes an incremental pattern representation specified by queries with different pattern-

specific parameters in a single compact structure to enable integrated pattern maintenance

for multiple queries. Then it introduces a meta query strategy that compacts multiple

queries with different window-specific parameters into a single query by leveraging the

overlaps among sliding windows. When combining those two strategies together, it also

executes the range query search during the sharing process, which has been proved to

be extremely expensive and unnecessary when considering the rarity property of outlier.

However, the techniques it presents still can not be used in our problem.

[3] presents an algorithm to share resources by exploiting similarities in the streaming

aggregate queries with differing periodic windows and arbitrary selection predicates. In

the varying selection predicates part especially, it introduces the idea of fragments where

streaming data is divided and categorized. Then it uses a signature to identify the u-

niqueness of each fragment and maintain the associated queries for each fragment. The

signature is implemented by a bitmap containing one bit for each queries in the workload

to confirm the relations between fragments and queries. However, though its mechanism

is insightful in sharing predicates in streaming environments, the domain it can be ap-

plied to is exclusively concerning the aggregation, therefore incapable to be exploited in
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the outlier detection.
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Chapter 8

Conclusion

Outlier detection is increasingly used in data streaming systems as critical infrastructure

for monitoring application. It serves as a helpful and difficult technique accordingly.

We use least searching and status sharing strategies for efficient shared processing of a

huge workload of outlier detection queries over streaming windows. Besides the common

sharing part, namely pattern-specific and window-specific parameters in multiple queries,

SOP also integrates the predicate as one of the parameters. Also it achieves its significant

resource sharing by analyzing the parameter settings at the query level and assigning the

signature to every unique fragment and block. Our experimental studies based on both

real and synthetic streaming data exhibit the clear superiority of SOP to the state-of-the-

art algorithms. Also SOP is confirmed with excellent scalability in terms of capability

of handling thousands of queries under high speed input streams in our experiments. An

intriguing future direction is merging more predicates into the parameters that can be

varied so that queries of outlier detection can have a more relaxed restriction on its format

and more resources can be shared.

63



Chapter 9

Bibliography

[1] L. Cao, Q. Wang, J. Wang and W. Yu, E. A. Rundensteiner, “Scalable Distance-Based

Outlier Detection over High-Volume Data Streams,”, In VLDB, 2013.

[2] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and Y. Manolopoulos.

“Continuous monitoring of distance-based outliers over data streams,” In ICDE, pages

135−146, 2011.

[3] S. Krishnamurthy, C. Wu, M. J. Franklin. “On-the-Fly Sharing for Streamed Ag-

gregation,” In SIGMOD, 2006.

[4] A. Shastri, D. Yang, E. A. Rundensteiner and M. O. Ward, “MTopS: Scalable Pro-

cessing of Continuous Top-K Multi-Query Workloads”, In CIKM, 2011, pp. 362−274.

[5] E. M. Knorr and R. T. Ng, “Algorithms for mining distance-based outliers in large

datasets,” In VLDB, pages 392− 403, 1998.

[6] F. Angiulli and F. Fassetti, “Detecting distance-based outliers in streams of data,”

In CIKM, pages 811−820, 2007.

[7] D. Yang, E. A. Rundensteiner, and M. O. Ward, “Neighbor-based pattern detection

for windows over streaming data, In EDBT, pages 529−540, 2009.

[8] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining outliers

64



from large data sets” in SIGMOD Conference, 2000, pp. 427−438.

[9] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clustering evolv-

ing data streams” In VLDB, pages 81−92, 2003.

[10] S. Thomspon. The twitter eurovision results. http://www.

wallblock.co.uk/.

[11] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and Y. Manolopou-

los, “Continuous monitoring of distance-based outliers over data streams” In ICDE, pages

135−146, 2011.

[12] Wang, S., Rundensteiner, E. A., Ganguly, S., and Bhatnagar, S. 2006. State-

Slice: New paradigm of multiquery optimization of window-based stream queries. In

Proceedings of the VLDB Conference. 619−630.

[13] Zhang, R., Koudas, N., Ooi, B. C., and Srivastava, D. 2005. Multiple aggrega-

tions over data streams. In Proceedings of the ACM SIGMOD Conference. 299−310.

[14] Hammad, M. A., Franklin, M. J., Aref, W. G., and Elmagarmid, A. K. 2003.

Scheduling for shared window joins over data streams. In Proceedings of the VLDB

Conference. 297−308.

[15] LI, J., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. A. 2005. No pane, no

gain: efficient evaluation of sliding-window aggregates over data streams. SIGMOD Rec.

34, 1, 39−44.

[16] Arasu, A. and Widom, J. 2004. Resource sharing in continuous sliding-window

aggregates. In Proceedings of the VLDB Conference. 336−347.

[17] Cao, F., Ester, M., Qian, W., and Zhou, A. 2006. Density-based clustering over

an evolving data stream with noise. In Proceedings of the SDM Conference.

[18] Chen, Y. and Tu, L. 2007. Density-based clustering for real-time stream data. In

Proceedings of the ACM KDD Conference. 133−142.

[19] Arasu, A., Babu, S., and Widom, J. 2006. The cql continuous query language:

65



Semantic foundations and query execution. VLDB J. 15, 2, 121−142.

[20] STREAMINSIGHT, M. 2012. Microsoft streaminsight query engine. http://msdn.microsoft.com/en-

us/library/ee362541.aspx.

[21] D. M. Hawkins. Identification of Outliers. Springer, 1980.

[22] F. Angiulli and F. Fassetti. Dolphin: An efficient algorithm for mining distance-

based outliers in very large datasets. TKDD, 3(1), 2009.

[23] S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear

time with randomization and a simple pruning rule. In KDD, pages 29−38, 2003.

[24] D. Yang, E. A. Rundensteiner, and M. O. Ward, “Shared Execution Strategy for

Neighbor-Based Pattern Mining Requests over Streaming Windows”, In VLDB, 2009,

pp. 224−238.

66


