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Abstract 

 
Swirling multiphase flows are found in a wide range of industrial processes. Such 

flows are used for separation of flows containing phases of different densities and for 

devices such as the spinning tensiometer. These flows are challenging to predict 

computationally, due to the presence of a phase boundary and the large pressure gradient 

generated by the swirl. In the present work the applicability of the front tracking method 

to swirling multi-phase flows is demonstrated by studying the evolution of a bubble in 

spinning tensiometer. Previous studies show that the evolution of a bubble in the spinning 

drop tensiometer can be used to measure the interfacial tension and other rheological 

properties. The front tracking method is applied to the spinning tensiometer problem to 

study several cases and verify the convergence of the solutions. The results are validated 

with other computational methods, theoretical models and experimental results. The 

length scales obtained from the front tracking method are in agreement with the 

corresponding values from experiments and other computational studies. The shape of the 

end of the elongated bubble obtained from the simulations is found to be similar to that 

suggested by a theoretical expression from previous studies. The simulations predict that 

the relaxation of bubble radius is exponential with time, at a rate that is found to be 

slightly greater than that predicted by the theoretical model. 
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1. Introduction 
 

Vortex or swirling flows have extensive applications in industry. The centrifugal 

force acting on the fluid and the resulting motion is harnessed in many ways for diverse 

uses. The most important application are separators, where a light fluid is separated from 

a heavier one due to swirling or vortex flows. Steam separators in boilers, air separators 

used in the petroleum industry and centrifuges in chemical laboratories are few such 

applications. Other applications include swirl simplex atomizer for gas turbine engines, 

centrifugal castings and so on. Most of these involve two or more phases of fluid.  

 Numerical simulations of multiphase flows are challenging. The abrupt change in 

density, viscosity and other properties at the interface between the two phases is difficult 

to simulate numerically. With the large range of length scales and time scales along with 

complex interface shapes, the problem becomes even more complicated. Therefore, 

swirling multi-phase flows is something that has attracted many researchers working in 

the field of computational fluid dynamics. 

 Front tracking is a method to deal with two-phase flows in which the interface is 

represented as marker points joined by elements. The front (the marker points and the 

elements) advances with the fluid velocity at each time step and thus the changes in 

interface structure can be followed. Unverdi and Tryggvason (1992) introduced this 

method. In this paper we aspire to investigate and study the applicability and behavior of 

a front tracking method in the case of two phase swirling flows. Here we studied the 

problem of bubble of a low density fluid in a higher density liquid, as used in a spinning 

drop tensiometer. We compare the results with other numerical studies, experiments and 
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theoretical models. We thus demonstrate the use of front tracking method in swirling 

flows and encourage its use in other applications involving swirling two-phase flows. 

 Interfacial tension between two fluids is a very important property in two phase 

flow and can dominate the fluid interactions. Mostly, the morphology of blends in the 

case of polymers, the emulsification process in the case of emulsions, the atomization of 

liquids for spraying applications and many more such applications have interfacial 

tension as an important parameter that controls the physics of those systems. Measure of 

correct and accurate value of interfacial tensions thus attains importance. Different 

methods are used for measuring interfacial tensions. Sessile drop method and pendant 

drop methods are a few examples. For precise measurement of ultra low interfacial 

tensions, spinning drop method is most popular. In this method, a bubble of low density 

fluid is placed in a fluid of higher density contained in a glass tube. The whole unit is 

rotated with a given angular velocity. Due to the centrifugal force acting on fluids with 

two different densities, the lighter fluid in the bubble moves towards the axis of rotation. 

This causes the bubble to elongate along the rotational axis and become thinner along the 

equator. The deformation is eventually stopped by the effect of surface tension. For a 

sufficiently high value of angular velocity, the shape of bubble is almost that of a cylinder 

with hemispherical ends. Depending upon the angular velocity and the densities of fluids, 

the bubble attains a fixed shape at equilibrium radius. By measuring the geometry of this 

shape and using the set of formulae one can attain a very precise value of interfacial 

tension. The main advantage of this method is that in case of ultra low values of 

interfacial tensions, the values of initial volume of bubble and the angular velocities can 

be varied accordingly and correct measurement of interfacial tension is possible. Recent 
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studies show that incase for polymers that degrade after some time, even the relaxation of 

bubble radius can be used to predict the value of the surface tension.  
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2. Background Study 
 

Vonnegut (1942) introduced a method to measure the interfacial tension between 

two fluids using the shape of an elongated bubble placed in a rotational field. He assumed 

the shape to be a long cylinder with hemispherical ends and solved for minimum total 

energy of the drop. He developed a simple mathematical model to get the expression of 

interfacial tension and found that it is proportional to the density difference, square of the 

angular velocity and the cube of the equilibrium radius of the elongated drop. However, 

due to the simplified model, his method was only useful in determination of interfacial 

tension for high angular velocities. Besides, he derived an equation for the shape of ends 

of the elongated bubble for a particular angular velocity.  

 Rosenthal (1961) solved the spinning drop model using force balance approach 

and came up with a differential equation whose solution predicted the shape of bubble for 

a particular angular velocity and density difference. He found that Vonnegut’s 

assumption is actually a limiting case of this general solution when angular velocity is 

high enough. However, he did not solve the model explicitly for interfacial tension, 

which restricted the use of his method in practical applications. Rosenthal extended his 

study to analyze the stability of bubble in the spinning drop tensiometer and found that 

the bubble is stable for disturbance of any wavelength provided it has attained 63% of its 

limiting radius value. 

 Princen, Zia and Mason (1967) used a technique similar to that of Rosenthal, in 

order to solve the spinning drop tensiometer problem, but they came up with a method to 

solve the surface tension explicitly. Thus, while Vonnegut’s results were able to predict 

interfacial tension values only at high angular velocities, Princen et al. model could be 
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used to find interfacial tension at any angular velocity. In this method it was necessary to 

measure the drop volume and length, to find the interfacial tension. They also validated 

the results with experiments and found them in good agreement with the theoretical 

model.  

 Cayias, Schechter and Wade (1975) argued that although the method developed 

by Princen et al. could be used to measure interfacial tension explicitly, it is not always 

possible to precisely measure the bubble volume.  They therefore came up with a similar 

explicit method, in which the drop diameter and its length were the only parameters 

needed to find the interfacial tension. Thus, they avoided the measurement of volume. 

Slattery and Chen (1978) also came up with an alternative method for calculating 

interfacial tension again using the elongated bubble length and radius. But they did not 

validate their results while Cayias et al. validated their findings with experiments.  

 Manning and Scriven (1978) studied the disturbances and sources of error in 

measuring interfacial tension using spinning drop technique. They discussed gravity 

effects, vibrations, misalignments and temperature effects on the behavior of bubble in 

spinning drop tensiometer. They also provided a list of recommendations that could be 

helpful in minimizing these errors. Currie and Van Nieuwkoop (1982) did some study of 

the buoyancy effects on spinning drop tensiometer, while Torza (1975) gave a brief note 

of using the spinning drop tensiometer for the interfacial tension measurement.  Chan, 

Elliot and Williams (2002) investigated the relationship between rotation rate of the 

bubble and the measured interfacial tension and discussed the limitations of this method. 

 Elmendorp and De Vos (1986) proposed a modified spinning drop tensiometer to 

measure the interfacial tension of molten polymer systems. It had a built-in heating coil 
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that heats the systems and keeps the polymer in molten state. They also suggested that the 

time for measurement could be shortened by an extrapolation of the transient state or by 

forced attainment of equilibrium shape. 

 Hsu and Flumerfelt (1975) proposed a model to measure the extensional 

properties of polymers using evolution of the shape of drop in the spinning drop 

tensiometer. They recorded the evolution of drop with time, calculated the extension rate 

as well as the instantaneous radius at a given time to find the extensional viscosity of 

standard oil. They compared the results with standard extension viscosity values. 

Joseph, Arney and Ma (1992) pointed out that the interfacial tension is strongly 

dependant on impurities present in the system and that the spinning drop method 

sometimes takes too long time for the bubble to attain equilibrium shape. This time may 

be too long in case of polymers, and may result in thermal degradation of the polymer. 

Joseph et al. (1992) argued that it is rather simple to find the upper and lower bounds on 

interfacial tension by studying the relaxation of the bubble shape. Thus, using these upper 

and lower bounds, an estimate about the range of interfacial tension can be made before 

the thermal degradation of the polymer. 

Joseph, Arney, Gillberg, Hu, Hultman, Verdier and Vinagre (1992) extended the 

idea of extrapolation of the transient state and proposed a model for the evolution of drop 

radius with time. They used the spinning drop tensioextensiometer, which was a modified 

version of tensiometer more adaptable for measurements of polymer systems, for 

validation the theory. They proposed that the relaxation of drop is exponential and 

developed an expression for the relaxation with time. They attempted to develop a 

relation between the exponent of relaxation and the interfacial tension. Thus, by taking 
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two readings of radius and time, one can evaluate the exponent value and calculate the 

interfacial tension. The relation between exponent and interfacial tension was not found 

to be in agreement with the experiments. 

 Considering the importance of interfacial tension on the morphology of polymer 

blends and emulsifiers, Hu and Joseph (1994) tried to extend the theory of relaxation of 

the bubble and obtained the evolution of the bubble shape using numerical simulation. Hu 

and Joseph (1994) worked on a model of bubble in rotating liquid using finite element 

method. Through their simulations they showed that the relaxation of bubble radius is 

actually an exponential curve. They also calculated the relaxation exponent using curve 

fitting and modified the expression for this exponent based on shear stress theory. This 

expression for the exponent of relaxation was in fact a correction to previous such 

expression derived by Joseph et al. (1992), and the new expression showed closer 

agreement with experiments though not an exact match. 

 In this thesis, we used the front tracking method for simulations of spinning drop 

problem. Tryggvason and Unverdi (1992) developed the front tracking method. In the 

simulation, we consider the drop to be in an axisymmetric domain. Tryggvason and Han 

worked on the code for axisymmetric domain. Some time earlier, Steinthorsson, Ajmani, 

Tryggvason and Benjamin (1997) had studied the axisymmetric front tracking method 

application in high density, multi-fluid flows. 

 In this study, we use the results of numerical analysis of Hu and Joseph (1994) 

and compare them with the results of front tracking method. Moreover, we also validate 

the simulation results with the experiments and analytical treatments by Princen et al. 

(1967) and Vonnegut (1942). The primary purpose of this study is to demonstrate the 
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applicability and behavior of the front tracking method in case of swirling flows. It also 

serves as a foundation for further applications of this method in other areas involving 

vortex or swirling two-phase flows in complex geometries. 
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3. Numerical Method 
 

In this chapter, the front tracking method, used for the analyses and simulation of 

the bubble in spinning drop tensiometer, is discussed in brief. This method was 

introduced by Unverdi and Tryggvason (1992). In this study we used an axisymmetric 

version of the code. Assuming axisymmetric conditions makes the simulation faster and 

less expensive. For two-phase flow, the governing equations are solved assuming a one-

fluid condition. The front is a set of marker points joined by elements, which represent 

the interface. The front is solved separately to incorporate the two-phase condition. The 

following section discuss the numerical method used for discretization of the governing 

equations, the type of grid used in computation, boundary conditions, tracking of the 

interface and evaluation of properties at the interface. 

3.1 Governing equations 

The Navier-Stokes equations in axisymmetric, conservative form are: 

2
21 ( ) ( )u wru uv

t r r z r
ρ ρρ ρ∂ ∂ ∂

+ + − =
∂ ∂ ∂

 

2 2 r
P u u v u f
r r r r r z r z

µ µ µ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 3.1

21 ( ) ( )v r uv v
t r r z
ρ ρ ρ∂ ∂ ∂

+ + =
∂ ∂ ∂

 

1 2 z
P v u vr f
z r r r z z r

µ µ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 3.2

( ) ( )2 3
2 2

1 1w w wr uw vw r
t r r z r r r r z z
ρ ρ ρ µ µ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞+ + = +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 3.3
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These equations are complemented by the incompressibility condition, 

1 0ru v
r r z
∂ ∂

+ =
∂ ∂

 3.4

Here, u , v  and w  are velocity components in radial, axial and angular directions 

respectively.  rf  and zf  are the body forces per unit volume in radial and axial 

directions respectively. The surface tension components are not included in the above 

equations and are dealt in the later sections of this chapter. 

The governing equations are solved over the complete domain at every time step 

assuming a one-fluid formulation. For simplicity, the above set of Navier-Stokes 

equations can be represented in the vector form as follows. 

1 1 ( )
n n

n n n
bn

u u A p D f
t ρ

+ −
= − −∇ + +

∆
 3.5

The first term gives the rate of change of velocity with time. The first term can be 

discretized using forward in time, first order, explicit method as follows, 

1n nu u u
t t

+∂ −
=

∂ ∆
 3.6

 The first term on right hand side is for velocity advection and can be collective 

represented by (A). Second term is the pressure divergence term. This term necessarily 

adjust the pressure such that the velocity field is divergence free ( p∇ ). The third term is 

the diffusion term (D).  

For example, the individual terms that contribute towards the advection and 

diffusion incase of momentum equation in radial direction are as follows: 
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2
21 ( ) ( ) wA ru uv

r r z r
ρρ ρ∂ ∂

= + −
∂ ∂

 3.7

2 2u u v uD
r r r r z r z

µ µ µ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 3.8

pp
r
∂

∇ =
∂

 3.9

 

3.2 Time integration 
Using first order, explicit, forward in time finite-difference discretization, we 

write the momentum equation and the continuity equation in vector form as: 

1 1

( , ) ( , , )
n n n n

n n n n n
h h h

u u A u D u p
t

ρ ρ ρ ρ µ
+ + −

= − + −∇
∆

 3.10

1 0n
h u +∇ ⋅ =  3.11

While solving the discretized equation, the stability conditions dominate the value 

of t∆ , which is discussed in later sections. The terms with superscript ‘n’ denote that the 

value of these terms is considered at the current time step while performing time 

integration. Since the above discretization is explicit, it is clear that only one term on 

right hand side, 1nu +  has the value of next time step. The equation (3.10) thus gives the 

velocity field in the next time step. 

The mass conservation equation implies that the velocity field must be divergence 

free. Thus the new velocity that is derived from equation (3.10) should also be divergence 

free. In order to satisfy this condition, the time integration of momentum equation is split 

up into two parts. Initially, in equation (3.10), the pressure term is completely ignored. In 
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the first step, time integration is done with advection and diffusion terms to get a 

temporary velocity field. This is the projection step.  

1 * ( , ) ( , , )
n n n

n n n n n
h h

u u A u D u
t

ρ ρ ρ ρ µ
+ −

= − +
∆

 3.12

The second step, a correction is done to the temporary velocity field by using the 

pressure part of momentum equation. This step corrects the temporary velocity such that 

it is divergence free. 

1 1 *n n n

h
u u p

t
ρ ρ+ + −

= −∇
∆

 3.13

However, there is no explicit equation that gives the pressure terms in the domain. 

This problem is solved using the help of mass conservation equation for incompressible 

flow. Taking the divergence of equation (3.13) and eliminating the terms from mass 

conservation principle, gives the following 

1

1 *h
h hn

p u
tρ +

⎛ ∇ ⎞
∇ = ∇ ⋅⎜ ⎟ ∆⎝ ⎠

 3.14

After pressure has been found by solving equation (3.14), the final velocity 

satisfying the incompressibility condition is found by: 

1 *
1

n
hn

tu u p
ρ

+
+

∆
= − ∇  3.15

3.3 Staggered Gird 
As discussed earlier, in order to discretize the partial differential equations, the 

domain is needed to be split into finite number of grid points. The values of variables 

such as velocity, density, pressure, viscosity and so on are stored at these grid points. It 

would be an obvious idea to store the values of all these variables at one specific point in 
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a grid element. However, in order to make the code more stable and fast, staggered grid is 

found more convenient than co-located grid. In a staggered grid, pressure is stored at a 

central location inside the finite volume while velocities are stored at the center of 

volume boundaries. A typical representation of the structure of staggered grid with the 

location of each variable in two-dimensional flow is shown in Figure 3.1. Density, 

viscosity and other properties are stored at the center along with the pressure. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Staggered grid arrangement 

Some of the notable advantages of using a staggered grid are tighter coupling 

between variable, simplicity for conservative methods and accuracy.  
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Figure 3.2 Radial velocity grid 

The notion of this grid structure can be explained physically as well, since flow of 

fluid takes place from one finite volume to other due to pressure differential present 

between the two finite volumes. Therefore, storing pressure at center that drives the fluid 

flow and thus inducing velocities at the boundaries is justified. Radial velocity 

components are placed on axial boundaries and axial velocity components on radial 

boundaries. The grid for radial velocity is thus displaced half a mesh to right from the 

pressure node and vertical velocity grid is displaced half a mesh upward. Figure 3.2 and 

3.3 show the position of radial and axial velocity grids.  
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Figure 3.3 Axial velocity grid 

3.4 Stretched Grid 
Sometimes it is necessary to concentrate the study of flow at a very specific area 

in the whole domain, and the rest of the area is not that important. In such cases, a 

stretched grid can be used in which the co-ordinate system is stretched so as to form grid 

that is fine in the area of interest and coarse in the rest area. The co-ordinate system is 

thus stretched into ξ  in r- direction and η  in z- direction. 

Thus,  

( )f rξ =  and ( )f zη =  

Therefore,  

1P P P
r r rξ

ξ
ξ ξ

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
 3.16
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and similarly,  

1 1z zv v
z z z zη η

µ µ
η η
⎛ ⎞∂ ∂ ∂ ∂

= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 3.17

Figure 3.4 shows the idea behind stretched grid. 

 

Figure 3.4 Stretched grid 

 

3.5 Discretization of Governing Equations 
Now consider the Navier-Stoke’s equation in r-direction. Using the stretched grid, 

we try to discretize it as discussed earlier, and then it needs to be spitted into advection, 

diffusion and pressure terms. So, we have 

Time Integration term: u
t
ρ∂
∂
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Advection term: A = 2 21 1 1 1( ) ( ) ( ) ( )r u uv r u uv
r r z r r zξ η

ρ ρ ρ ρ
ξ η

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
 

Diffusion term: D = 2 2u u v u
r r r r z r z

µ µ µ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

       = 1 1 1 1 1 12 2u u v u
r r r r z r zξ ξ ξ η ξ η

µ µ µ
ξ ξ ξ η ξ η

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

Pressure term: 
P
r

∂
−
∂

 

The velocity is first projected using the advection and diffusion terms only and 

pressure term is neglected. 

1 *
1/2, 1/2,

1/2, 1/2,( ) ( )
n n n
i j i j n n n n n n n

i j i j

u u
A u D u

t
ρ ρ

ρ ρ µ
+
+ +

+ +

−
= − +

∆
 3.18

Each term in equation (3.17) is discretized using finite difference method and 

with the help of stretched grid  

Thus, the advection terms gives 

 

1, ,

1/2

2 2

3/2, 1/2, 1/2, 1/2,
1/2, 1

1/2

1
2 2i j i j

i

n n n n
i j i j i j i jn n n

i j i i
i

u u u u
A r r
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ρ ρ

+

+

+ + + −
+ +

+
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4 2 2
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4 2 2
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 3.19

and the diffusion term is discretized as 
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The momentum equation in axial direction is discretized on similar lines. 

However, in order to find the corrected velocity field, as discussed in section 3.2, 

knowledge of the pressure points is necessary. This is solved by using the mass 

conservation equations and substituting the discrete form of temporary velocities in it. 

The pressure equation thus evaluated is, 

1/2 1/2 1/2 1/2

11/2 1/2
,1 1 1 1
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i i i j j j

ni i
i jn n n n
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r r p
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This equation is solved by iterative process to compute the new pressure field. The SOR 

method is mostly used in such a case.  
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The new velocities can now be calculated as, 

( )
1/2

1 * 1 1
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1
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Till now the discussion was regarding the discretization of N-S equation in radial 

and vertical directions and the corresponding treatments for pressure and mass 

conservation. However, in case of angular momentum equation, properties do not change 

in angular direction due to axisymmetry. Therefore, all the partial derivatives with respect 

to θ  are neglected. However, there is a term in radial momentum equation 2 /w rρ  that 

needs to be accounted for swirling flows. In order to solve this term, we consider the 

angular momentum equation and discretized it. 

( ) ( )2 3
2 2

1 1w w wr uw vw r
t r r z r r r r z z
ρ ρ ρ µ µ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞+ + = +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
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The conditions of stretched grid are further imposed on this equation thus deriving 

equation in ξ  and η  co-ordinates. w  is stored at the center of point along with pressure 

and other properties. Thus, 

1
, , , , ,1

,

1 ( )n n n n n
i j i j i j i j i jn

i j

w w t A Dρ
ρ

+
+= + ∆ − +  3.25

where, 
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The angular velocity field thus calculated is then added to radial component for 

accommodating the swirl component of velocity. 

 

3.6 Stability Conditions 
The stability of the numerical method is largely dependant on the type of method 

used for discretization. Proper selection of time interval t∆  is the key criterion for 

ensuring the stability of a particular numerical method. The value for stable t∆  is found 

using the Von Neumann analysis of the equations. Performing such analysis on the above 

set of equations gives following criterion. 

max
2
min

1
4

t
h

υ ∆
≤   and  

2 2
max

min

( )
2

u v t
υ
+ ∆

≤  3.28
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Thus, it is clear that the maximum and minimum values of viscosities, minimum 

value of spatial parameter in a stretched grid and the absolute squares of velocities have 

an impact on deciding the stable t∆  value. These values are calculated at each time 

integration step and the value of t∆  is updated accordingly. 

 

3.7 Boundary conditions 
Imposing correct boundary conditions is a measure of how realistic the simulation 

would be. In case of stretched grid, ghost points are necessary for imposing such 

boundary conditions. The properties such as pressure and velocity in these ghost points 

are derived from the assumptions such as “no-slip” condition and so on. 

Consider a boundary in the domain such that radial velocity at specific section is 

zero. In such a case, it is required to find the pressure and vertical velocity values at the 

ghost point locations. In case of pressure, it can be shown that the pressure values in 

ghost point locations are independent of the temporary velocity around these ghost 

points. Thus, we can assign any value to for these pressure points. Mostly it is taken 

equal to the immediate pressure value inside the actual domain. 

For calculating the vertical velocity, the no-slip condition is used. If the radial 

velocity along the boundary is zero then it means that,  

ghost wallv v= −  in case of advection subroutine. 

For diffusion, the following relation can be assumed, 

1, 1/ 2 1, 1/ 2 , 1/ 2
1( ) 2
3i j i j i jv ghost v v− + + + += −  3.29
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Figure 3.5 Boundary condition in staggered grid 

Other such boundary conditions can be worked out using the properties of fluid in 

general and along the boundary. 

 

3.8 Front Tracking 
The numerical technique discussed in previous section, solves the governing 

equations of fluids assuming a “one-fluid” formulations. However, the domain consists of 

two fluids, forming the low-density bubble and the outer high-density fluid. There is a 

steep change in density and other properties at the interface. The grid consists of marker 

function, which specifies the lighter or heavier fluid in incompressible flows.  In the front 

tracking method, the front is represented by a separate set of points or nodes while the 

governing equations are solved using one-fluid formulation. The front contains a chain of 

elements, each element having a start and an end point at a node. The position of 
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elements is advanced after each time step taking into account the velocities at node 

points. The density and other properties are smoothly varied along the grid points 

adjacent to the new front position. The surface tension is formulated as a δ - function 

along the front. 

3.8.1 Structure of the front 

The interface is represented by a separate set of points as compared to the 

staggered grid, which is discussed in earlier sections.  A typical front consists of nodes 

that are connected by elements. Each element has a start and an end node. The staggered 

grid and the interface front can be imagined to be in two layers lying one above the other. 

The lower layer is of staggered grid that solved the governing equation with one fluid 

formulation. The front, defined by a chain of linked elements forms the upper layer. The 

co-ordinates and velocities of nodes are calculated using their position in the underlying 

staggered grid. The node only stores the co-ordinate information. On the other hand, 

elements store the information of start and end node and knows the adjoining elements. 

The elements also contain information about the physical properties associated with the 

interface, like surface tension, change in the value of marker function used to identify the 

fluid, and other properties that are needed for a particular simulation. It also has the 

information about the inside and outside directions of front. For a given interface, all the 

elements have same direction. 

 The information about elements is stored in a form of linked list. Each object in 

the list contains intrinsic properties, co-ordinates of point as well as the pointer to next 

and previous objects. Order within the array is completely arbitrary, but there should be a 

starting element. Every operation on the front, starts with this starting element and then 
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continue with respect to the pointer towards next element and so on till all the elements 

are covered. Figure 3.6 gives a good idea about the structure of front.  

 

Figure 3.6 Front Structure 

For interfaces intersecting with the wall, we can introduce ghost elements. This is 

done by introducing a ghost point inside the wall. These serve as previous or succeeding 

elements for the elements connected to wall and are not included in the front that 

describes the fluid interface. 

3.8.2 Moving the Front 

 The new point of the front is found by time integration, using the velocities at the 

node point. For example, if a simple first order Euler integration is used, then the new 

location of interface is given by, 

1n n n
f f fx x v t+ = + ∆  3.30

This gives the new position of front ( 1n
fx + ) using the old position ( n

fx ) and the 

velocity of front ( n
fv ). 
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3.8.3 Restructuring of front 

 The front elements are stretched or shortened as they are advanced through time. 

There might arise a need to introduce new elements or delete the short elements. Length 

of elements must be comparable to the grid resolution. Therefore, when a particular 

element gets stretched, it is split up into two elements of smaller size. Figure 3.7 show 

how a stretched element is split up. Element BC, with start and end nodes B and C, is 

excessively stretched. It is split up by introducing a new node E in between nodes B and 

C. Node E is not taken as the midpoint of element BC, since it gives poor mass 

conservations and artificial pressure perturbations for high surface tension. Therefore, the 

position of new node is calculated by polynomial interpolation, taking into account the 

curvature of the element. Thus, introductions of node E gives two elements BE and EC. 

 

Figure 3.7 Addition of element 
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 Small elements are a source of error and it is a good idea to delete them in order 

to get rid of wiggles due to crowded points. While deleting an element, the node that is 

end point of the element is deleted. Figure 3.8 show that elements BC and CD are too 

short in length. It is necessary to delete element BC. The node C is then deleted and 

elements BC and CD are merged together to form a single element BD.  

 

Figure 3.8 Removing of an element 

 

3.8.4 Smoothing and restructuring of marker function 

 The properties, like velocity should be correctly calculated through the interface 

as we pass from one fluid to another. The points closest to the interface are identified 

first. In a smoothed interface approach, the transition zone between one fluid and another 
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is assumed to be sufficient smooth so that the variable available on the fixed grid can be 

interpolated. Thus, the weighted summation of the property over the points on fixed grid 

that are close to the front, is equal to the value of property at the front.   

3.8.5 Accounting for surface tension in the grid 

 Sometimes, the properties are associated with the front in a form of δ - function, 

like that of surface tension. In such a case, an approximate δ -function is constructed on 

the fixed grid using cells that are in the exact vicinity of front. Smoothing can be done in 

various ways, but the property should be conserved. The interface quantity in a δ -

function is usually expressed as units per area, while that in grid is expressed as units per 

unit volume.  

 The value of surface tension at front node is calculated by integrating over half 

the element on each side. The force on a small segment as shown in figure is equal to the 

product is surface tension and difference between the tangent vectors of adjacent 

elements.   

 

Figure 3.9 Calculating the surface tension force 
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( )f s ef t tδ σ= −  3.31

After the force on each front point has been found, we loop over the points to 

distribute the force from points on to the fixed grid.  
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4. Formulation of Model 
 

A lower density fluid bubble, when placed in a higher density fluid and rotated 

with some angular velocity along its axis, undergoes a change in shape to form an 

elongated bubble of approximate cylinder with hemispherical ends. This shape is due to 

the force balance between the pressure difference inside and outside the bubble, the 

pressure variation due to centrifugal force and the surface tension acting on the interface. 

 

4.1 Technical discussion about previous study 
 Vonnegut (1942) assumed the shape of bubble to be approximately that of a long 

cylinder with semi hemispherical ends. Considering the total energy of the bubble, he 

came up with an expression for surface tension with respect to other known parameters. 

An important assumption in the derivation was that the length of elongated bubble is 

large compared to the radius. The expression for surface tension is given as, 

( ) 2 3
2 1

4
eqRρ ρ ω

σ
−

=  4.1

It was clear from this expression that, for a given set of densities and angular 

velocities between two fluids, there is a specific value of radius of elongated bubble 

associated with it.  Moreover, the shape changes with angular velocity. He used this 

property to measure the interfacial tensions between the two fluids. Figure 4.1 gives a 

schematic of an elongated bubble showing its radius and length. 

Vonnegut assumed that since the centrifugal field is sufficiently high as compared 

to the gravitational field, the effect of gravity is neglected. Gravity does however have a 

very small effect. But that hardly changes the value of measured interfacial tension. The 
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Figure 4.1 General schematic of an elongated bubble in swirling flow 

derivation of equation (4.1) by Vonnegut was approximate and was only applicable to 

higher angular velocities. He also derived the expression for end shape of the bubble at 

equilibrium position, using force balance between pressure, centrifugal force and surface 

tension. We use this expression for end shape to compare the end shape of bubble 

obtained from simulation results. 

 The model of spinning drop tensiometer was later completely solved by Princen et 

al. (1967). They used the force balance and derived a differential equation. This equation 

was solved using elliptical integrals. From the solution of the equations, a method can be 

formulated to find the interfacial tension between two fluids, by measuring the bubble 

length. This method was applicable for the entire range of angular velocities and was 

accurate.  

Princen et al. also showed that the Vonnegut case is a particular boundary 

condition for the differential equation. They derived the relation between the length and 

radius of bubble at equilibrium condition. They validated the model with experiments in 

which interfacial tension was calculated using the tensiometer rotating at different 

angular velocities. Length of the bubble at equilibrium position is measured for each 

case. Considering the importance of these findings and in order to validate the code with 
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experiments, we decided to compare the experimental results with simulation from the 

front tracking method. The non-dimensional length was compared in two cases. 

 

4.2 Setting the Domain 
 In this study, the change of shape of a spherical bubble to an elongated one in 

swirling flows was simulated using the front tracking method in axisymmetric domain. A 

bubble of spherical shape, initially at rest in an axisymmetric domain, was considered. 

Since, the properties of bubble do not change along the axis; use of an axisymmetric 

domain simplifies the problem and increases the speed of numerical simulation.  Gravity 

effects in case of a tensiometer are negligible as compared to centrifugal force. Therefore, 

with no gravity acting perpendicular to axis of rotation, axisymmetric domain becomes 

suitable. One more advantage of the simulation is that, since gravity is completely absent, 

even cases with very low angular velocity can be studied. Figure 4.2 shows the general 

schematic of the axisymmetric conditions and Figure 4.3 shows the layout of bubble 

inside the domain. It should be noted that, even though the axis of rotation is set vertical 

in case of simulations, it really doesn’t make a difference, since gravity is absent.  

 This study is mainly directed to display the applicability of front tracking method 

in swirling flows. Therefore, the results of simulations were compared and validated 

against a similar study of bubble done by Hu and Joseph (1994) using another 

computational method (Finite Element Method). The simulation results were also 

compared against the experimental results. Considering the current simulation 

environment and the range of property values possible, it was difficult to incorporate the 

exact properties of material in the simulation. A dimensional analysis of the problem was 

done so as to bring non-dimensional similarity in results of the two cases. After 
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dimensional analysis, two non-dimensional parameters were deduced. One was the 

Reynolds number which is a measure of inertia force over viscous force and the other is 

the Bond number which is a ratio of centrifugal buoyancy force over interfacial tension 

force. It is interesting to note that Bond number is just a rearrangement of Vonnegut’s 

equations in dimensionless form.  A quick look at the relevant non-dimensional numbers 

defined by Manning and Scriven (1977) in their study yields the same dimensionless 

parameters. 

 

Figure 4.2 Schematic of axisymmetric domain with cylindrical co-ordinate system 

Reynolds Number =  
2Rρω

µ
 = Inertia force / viscous force. 

Bond Number = ( ) 2 3
2 1 Rρ ρ ω

σ
−
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= Centrifugal buoyancy force/ interfacial tension force. 

 

      

Figure 4.3 Bubble inside the domain at initial condition 

We first selected the values for density, radius and angular velocity. Viscosities 

were then found using the Reynolds’s number similarity while interfacial tension was 

calculated from the Bond Number similarity. Simulations were run for properties thus 

obtained. The results were compared with non-dimensional length and radius.  
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5. Results 
 

The simulation results of Front Tracking method in swirling flows were compared 

with experimental values, analytical expressions as well as other computational 

techniques. These cases are individually considered. 

 

5.1 Comparison with other numerical results 
As discussed earlier, Hu and Joseph (1992) studied the evolution of bubble in a 

spinning drop tensiometer using a numerical scheme based on the finite element method. 

They developed relaxation curves for length and radius of the bubble with time. The idea 

behind developing the relaxation curves was to develop a theory wherein the transient 

measurements of the drop shape can be used to predict the rheological properties of the 

fluid. This could be helpful towards finding the interfacial tension between fluids such as 

polymers that take a long time to achieve equilibrium and might decompose in the 

process. They found that the relaxation follows an exponential curve and calculated the 

exponent using curve fitting. Later, through analytical treatment, they deduced an 

expression for relaxation of curve. The list of properties for the case simulated by Hu and 

Joseph are as follows. 

1ρ  = 1.0 g/ cm3 2ρ  = 1.260 g/ cm3 

1µ  = 1000 poise 2µ  = 14.1 poise 

ω  = 2000 rpm σ  = 20 dyne/cm 

IR = 0.5 cm eqR  = 0.1914 cm 

These parameters gave a Reynolds Number of 4.679 and a Bond number of 71.28. 
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 We tried to develop similar relaxation curves in this study and compared the 

exponent from our simulations with that of the expression deduced. In the current study, a 

simulation of properties having dimensionless similarity with that of the case discussed 

by Hu and Joseph was carried out. The values for properties used and equilibrium radius 

obtained in the simulations are listed below. 

1ρ  = 2.0 2ρ  = 10.0 

1µ  = 0.267 2µ  = 0.053 

ω  = 2.0 σ  = 0.007 

IR = 0.25 eqR  = 0.09 

Simulations showed that the bubble, initially spherical in shape, slowly evolved 

into an elongated bubble. Figure 5.1 show different stages of evolution of the bubble with 

time.  

The simulations of front tracking method showed similar results as that of the Hu 

and Joseph. The ratio of equilibrium radius of bubble to initial radius was found to be 

0.3828 in case of FEM method while that in front tracking method was found to 0.3924.  

The length to initial diameter ratio was equal to 4.8 in case of Hu and Joseph study, while 

in front tracking method, the ratio was 4.68. 
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Figure 5.1 Evolution of bubble shape in a Spinning Tensiometer 

The results of the study analyzed by front tracking method were very close to 

those obtained by Hu and Joseph.  Figure 5.2 shows the typical density plot for a bubble 

inside a fluid of higher density. The sharp drop in density marks the interface.  
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Figure 5.2 Plot showing the density distribution inside the domain.  

Once the results of two numerical methods were validated, the convergence of 

front tracking method was analyzed. Simulations were done with three different grid 

resolutions for the case with above mentioned set of parameters. The results of these 

three simulations were compared against one another. Figure 5.4 and Figure 5.5 give the 

relaxation curves for radius and length of bubble. Figure 5.4 has a zoom in window to 

show the convergence with increasing fineness of grid resolution. 

Hu and Joseph plotted the relaxation curves on a semi logarithmic scale and found 

that the relaxation of radius is governed by the following expression. 

eR mt
qR ae−= +  5.1
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The constant ‘ a ’ is such that eR q a+  is equal to the initial radius IR , while ‘m’ 

is the exponent of the curve. Semi logarithmic plot of the relaxation curve with eR qR −  

against time give a straight line in the later stages of relaxation. The relaxation curve on a 

semi logarithmic scale is initially following a polynomial of higher order but later follows 

more or less a straight line. 

 

Figure 5.3 Bubble with velocity vectors at an intermediate time step 
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Figure 5.4 Relaxation of radius with time and convergence of scheme 

 

Figure 5.5 Relaxation of length with time 
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Hu and Joseph measured the exponent of this curve from their simulation plot. 

They also modified the equation for exponent of relaxation developed by Hsu and 

Flumerfelt (1975) and derived the following form of expression for exponent. 

1

2 2
e 2

e 1

0.75

/ R
1 1

12ln( / R )

eq

eq q

o q

T
R

m
L

R

µ

µ
µ

=
⎡ ⎤⎛ ⎞
+ −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 5.2

Incase of Hu and Joseph, the values of exponent from simulations were lower 

than the values predicted from equation (5.2). 

 

Figure 5.6 Plot showing the relaxation curve for radius on semi log axis. 

Working along similar lines, we plotted the relaxation radius on a semi 

logarithmic scale as seen in Figure 5.6. The exponent the curve had shape similar to that 

obtained by Hu and Joseph. It had a steep non-linear drop initially and then the radius 

relaxation was more or less linear in the semi logarithmic scale. The exponent of 
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relaxation was measured and compared with that from equation (5.2). The values 

obtained were as follows 

Front Tracking Method = 0.0077 

Equation (5.6) = 0.00701 

 Thus, the exponent of relaxation for front tracking method was slightly higher 

(about 10%) than that predicted by the expression derived by Hu and Joseph. However, 

Hu and Joseph have mentioned that the values of exponent from experiments are higher 

than those from equation (5.2). The relaxation of bubble in case of experiments was 

found to be at a faster rate as compares to that predicted by expression (5.2). The 

exponent value obtained from front tracking method also gives a faster rate of evolution.  

However, due to lack of data, a comparison between the rate of relaxation in experiments 

and the rate of relaxation observed in simulations could not be made. 

 

5.2 Comparison with Analytical Expression 
 As discussed in earlier section, Vonnegut (1942) derived an expression for shape 

of end of the elongated bubble. However, he also considered the force balance using 

pressure, surface tension and radius of curvature effects and found the expression for 

shape of end of the bubble as 

2 1/ 2
2 1/ 2

2 1/ 2

1 2 3 (4 ) 3ln ln 2 (4 )
3 2 3 (4 ) 3

VU V
V

⎡ ⎤− − −
= − + − −⎢ ⎥

+ − +⎣ ⎦
5.3

Here U  is the ratio of half-length of bubble to its equilibrium radius and V  is the 

ratio of radius of bubble to its equilibrium radius. The plot of this expression is compared 

with the shape obtained from the front tracking simulations. Figure 5.7 shows the 
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comparison between the two shapes. It is observed that the shape predicted by expression 

(5.3) and the shape from front tracking method is very similar. The minor differences in 

the shape can be account for the assumptions made by Vonnegut in deriving the 

expression (5.3). Vonnegut had assumed that the radius of curvature of bubble along the 

long cylindrical portion is infinite. In reality however, the radius of curvature assumes 

some high value and add to another tern in the force balance equation. The slight 

difference observed between the shapes can be accounted for this approximation. 

 

Figure 5.7 Comparison of Bubble end shape  

 
5.3 Validation with Experimental Results 

Princen et al. (1967) measured the interfacial tension between n-hexadecane and 

glycerol using spinning drop tensiometer. They measured the length of bubble at 

equilibrium shape and then calculated the interfacial tension using the solution of 

differential equation derived in their theoretical treatment. Measuring the length instead 

of the radius of the bubble is more easy and convenient apart from having better 
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accuracy. Small changes in the shape can be easily captured by measuring length rather 

than radius. The list of properties of fluids used by Princen et al. in their experiments is 

given below.  

Initial Radius 0.3567 cm Volume 0.19 cm3 

Inside fluid viscosity 2.831 cP Outside fluid viscosity 945 cP 

Inside Fluid Density 0.765 g/cm3 Outside Fluid Density 1.26 g/cm3

They varied the angular velocity from 860 rpm to about 4500rpm, measured the 

length of bubble in each step of angular velocity and calculated surface tension. In the 

study, we used the pre-determined properties in simulation, based on similarity of 

dimensionless numbers as discussed earlier. The length and radius of simulation output 

was measured and compared with that of Princen et al. Following list shows the 

properties used for simulation. In this case angular velocity was held constant along with 

density and radius. Viscosity and surface tension were varied to match the Bond number 

and Reynolds number of experiments.  

Initial Radius 0.25 Angular Velocity 2.0 

Inside Fluid Density 2.0 Outside Fluid Density 10.0 

It was found that the values obtained from simulations, are very close to the value 

obtained from experiments. Figure 5.8 show the plot for comparison of experimental and 

simulations results. 

 It is observed that the values for dimensionless length scales obtained from the 

simulations are in good agreement those from the experiments. Moreover, for the case of 

lowest Bond number, the value of angular velocity is too low to follow the Vonnegut 

theory. The prediction based on model developed by Princen et al. is applicable in this 



 44

case. The value from front tracking method is in good agreement with this value of 

lowest angular velocity as well thus validating the solution at very low angular velocities 

as well. 
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Figure 5.8 Comparison of simulation results with experiments of Princen et al. 

The rates of relaxation for these simulations were calculated and compared with 

equation (5.2). The results are listed as follows 

Bond Number 
Exponent from 

simulations 

Exponent from Hu and 

Joseph (1994) model 

61.531 0.00748 0.009498 

76.414 0.00589 0.006295 

115.934 0.00274 0.002833 
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From the above table it can be concluded that the figures from simulations are 

slightly greater than the values predicted by exponent model of Hu and Joseph.  
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6. Conclusion 
The evolution of a bubble in a spinning tensiometer has been simulated numerically 

using the front tracking method. The simulated bubble shape (radius and length) are in 

good agreement with corresponding values from the finite element simulations done by 

Hu and Joseph (1994).  The relaxation rate for the bubble radius was found to be slightly 

higher than the values from the theoretical model suggested by Hu and Joseph. However, 

Hu and Joseph state that the relaxation of the bubble in the experimental study was faster 

than that predicted by the expression for the exponent.  

The shape of the end of the bubble is in good agreement with the equation for the 

shape derived by Vonnegut (1942). Moreover, a comparison using experimental data 

from Princen et al. (1967) shows that the results obtained from the front tracking 

simulations are similar to those obtained from experiments.  The agreement of the 

simulation results with that of the experiments, theoretical model and results from other 

computational studies, confirm the applicability of the front tracking method to swirling 

two-phase flows. 

In the future, it would be interesting to compare the data for the relaxation of a bubble 

from experiment and the relaxation predicted by the simulations. Moreover, the effects of 

parameters like the angular velocity and temperature can be studied in detail for complex 

blends like that of polymers and fluids with ultra-low interfacial tensions. It should also 

be possible to examine the dependency of the rheological properties on other parameters, 

such as shear rate. 

Extending the front tracking method to handle flows in complex geometrical shapes 

would also be an important task. 
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