

Problem

High school physics labs do not effectively reinforce the material taught in class.

Solution

Online pre-labs provide students with a better understanding of the material than traditional pre-labs.

Do Online Simulations Improve High School Physics Labs?

Jaden Chin (PH), Gracie Lodge-McIntire (AE), Joseph Murphy (ECE), Molly Youngs (EVE) Dr. Joseph Beck (CS), Dr. Robert Traver (US) PLA: Troy Bergeron (AE)

- Online PhET Simulation: The Moving Man
- Focus on properties and relationships of position vs. time and velocity vs. time graphs
- 25 students use online pre-lab
- 24 students use traditional pre-lab

Do Online Labs Help You **Understand Physics Topics?**

Conclusions

Our data was inconclusive.

• 12% score increase for online pre-

Yes

65%

• 8% score increase for traditional

This difference is too small to draw any conclusions without further

However, our survey results indicate students prefer online to traditional

References Abrahams, I., Reiss, M. J., & Sharpe, R. (2014). The impact of the 'getting practical: Improving practical work in science' continuing professional development programme on teachers' ideas and practice in science practical work. Research in

Chacko, P., Appelbaum, S., Kim, H., Zhao, J., & Montclare, J. K. (2015). Integrating technology in STEM education. Journal of Technology and Science Education, 5(1), 5-14. doi:10.3926/jotse.124 Gryczka, P., Klementowicz, E., Sharrock, C., & Montclare, J. (2016). Interactive online physics labs increase high school students' interest. Journal of Technology and Science Education, 6(3), 166-187. doi:10.3926/jotse.191 Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, , n/a. Lavonen, J., Jauhiainen, J., Koponen, I. T., & Kurki-Suonio, K. (2004). Effect of a long-term in-service training program on teachers' beliefs about the role of experiments in physics education. International Journal of Science Education, 26(3), N. G. Holmes, Jack Olsen, James L. Thomas, & Carl E. Wieman. (2017). Value added or misattributed? A multi-institution study on the educational benefit of labs for reinforcing physics content. Physical Review Physics Education Research, Wolf, S., & Fraser, B. (2008). Learning environment, attitudes and achievement among middle-school science students using inquiry-based laboratory activities. Research in Science Education, 38(3), 321-341. doi:10.1007/s11165-007-9052-y Yavaş, P. Ü, & Çağan, S. (2016). Development of an attitude scale towards high school physics lessons. Journal of Education and Training Studies, 5(1), 56. doi:10.11114/jets.v5i1.1974