
Exploring Edge Detection Methods for
Improved Image Classification

Advisor:

Professor Andrea Arnold

Written By:

Juliette Spitaels

May 2023

A Master’s Capstone Project
Worcester Polytechnic Institute

This report represents the work of one or more WPI
graduate students submitted to the faculty as evidence
of completion of a degree requirement. WPI routinely
publishes these reports on the web without editorial or

peer review.

Submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the
requirements for the Degree of Master of Science in Applied Mathematics.

Abstract
This work explores the best practices for edge detection in the context of

a deep learning method of quantitative analysis, that is, using neural network
accuracy as an objective measure of edge detection performance. To do this
we first coded and implemented a variety of popular edge detection meth-
ods with an average-based automatic threshold selection algorithm. Then
we specifically explored whether blurring an image to reduce noise and false
edges is a beneficial step in edge detection in the context of image classifi-
cation using neural networks. Additionally we tested if applying histogram
normalization was a better alternative to blurring in the context of machine
learning. Finally, we investigated the different effects of type I and type II
errors in edge detection methods in the context of deep learning.

The results indicated that in the context of simpler classification problems
blurring did not yield significant improvement to neural network accuracy,
but histogram equalization did improve network accuracy. In the context
of more difficult classification problems, with more categories and fewer im-
ages per category, these results were no longer supported by the data. We
also concluded that false-positive edges are preferable to false-negative edges
when preprocessing images for classification using deep learning. Finally, we
concluded that neural networks could be a valid method for quantitatively
assessing edge detection methods, but with the drawback that randomiza-
tion in the learning process does not guarantee a standard result, and this
method therefore requires repetition to manage the variation in results.

1

Acknowledgements
First I would like to thank Professor Andrea Arnold for her continued

support on this project; without her guidance and expertise, this work would
not have been possible. I would also like to thank Worcester Polytechnic
Institute’s Department of Mathematical Sciences for their continued support
throughout my educational journey.

2

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Project Goals . 3

2 Background 5
2.1 Edge Detection Process . 5

2.1.1 Grayscale . 5
2.1.2 Gaussian Blur . 6
2.1.3 Histogram Equalization 8
2.1.4 Edge Detection Filter 9
2.1.5 Threshold Selection . 12

2.2 Popular Edge Detection Methods 15
2.2.1 Sobel Method . 15
2.2.2 Canny Method . 16
2.2.3 Other Methods . 16

2.3 Quantitative Validation . 17
2.3.1 Pratt Figure of Merit 17
2.3.2 Neural Networks . 18

3 Methods and Data 21
3.1 Edge Detection Functions . 21
3.2 Automatic Threshold Selection 24
3.3 Datasets . 24

3.3.1 MNIST Dataset . 27
3.3.2 Architectural Heritage Elements Dataset 27
3.3.3 Training, Testing, and Validation Sets 30

3.4 Neural Networks . 31

4 Results 33
4.1 Computational Efficiency . 33
4.2 Neural Networks . 35

4.2.1 Two Category Classification 36
4.2.2 Three Category Classification 38

5 Discussion and Future Work 39
5.1 Discussion . 39

5.1.1 Computational Efficiency 39
5.1.2 Neural Networks . 40

3

5.2 Future Work . 43

6 Conclusion 45

4

List of Figures

1.1 Side by side comparison of a grayscale image of a house (left)
and the popular Sobel edge detection method applied to the
image (right). 1

2.1 Side by side comparison of a color image of a house (left) and
a grayscale version of the image (right). 6

2.2 Side by side comparison of a grayscale image of a house (left)
and a version of the image with the Gaussian blur function
applied (right). The differences between the images are subtle
but noticeable in elements like the bushes at the front of the
house, which are less crisp in the blurred image. 7

2.3 Side by side comparison of a grayscale image of a house (left)
and a version of the image with histogram equalization applied
(right). The difference between the images is subtle but no-
ticeable in the antenna on the top of the house and the siding.
Both these elements from the original image become darker af-
ter histogram equalization is applied, and contrast more with
the lightened sky. 8

2.4 This figure provides examples of three simple edge detection
methods based on the forward and central numeric derivative
equations. By row from left to right: the grayscale image of a
house is provided for reference, the forward derivative method
in the x-direction applied to the image, the forward deriva-
tive method in the y-direction applied to the image, and a
central difference method applied to the image. The x- and
y-directions forward derivatives can only detect edges that are
perpendicular to the filter, limiting the accuracy of the re-
sulting edge map, whereas the central difference method uses
both x- and y-directional filters, and can detect edges in both
directions, leading to a more complete representation of the
original image. 10

5

2.5 This figure illustrates how modifying the threshold for edge
detection changes the output of the algorithm. This exam-
ple uses the a central derivative algorithm explained at the
end of Section 2.1.4 which combines both x- and y-directional
filters, and tests a low threshold value of then subsequently
higher thresholds. By row from left to right: central derivative
method with threshold of 10, central derivative with threshold
of 30, central derivative method with threshold of 90, and cen-
tral derivative method with threshold of 135. It is clear from
the example that a low threshold maintains more information
from the original image compared to the highest threshold,
which erases most of the information in the image. 13

2.6 This figure demonstrates the Pratt Figure of Merit (PFOM)
used to evaluate three images against the MATLAB auto-
matic Canny method, via the pratt.m function created by
Vivek Bhadouria and shared on the MATLAB Central File
Exchange [34]. By row from left to right: the Canny Method,
the MATLAB Sobel Method, and our 3-by-3 Sobel Method.
As expected, we can see when comparing an image to itself,
as done in the first case presented, the PFOM is 1, a perfect
score. Then The MATLAB Sobel method yields a PFOM of
approximately 0.3834 and our 3-by-3 Sobel method yields a
lower value for the PFOM, only 0.1199. Visually, these scores
make sense, as our method results in more false positive edges
when compared to the Canny method, than the MATLAB
Sobel method. 19

6

3.1 This figure illustrates the different methods detailed in this
section, as applied to the grayscale image of a house. By row
from left to right: the grayscale image of a house, the central
difference method, the 3-by-3 Sobel method, the 5-by-5 Sobel
method, the the 5-by-5 Sobel method with diagonal filters,
the Laplacian-of-Gauss (LOG) method, the MATLAB Sobel
method, and the MATLAB Canny Method. Key places to look
to find differences are corners of shapes and off diagonal edges.
The first five methods, excluding the grayscaled image pro-
vided for reference, use our automatic thresholding method,
whereas the last two use the MATLAB auto-generated thresh-
olding built into the edge.m function [11] 25

3.2 This figure illustrates how modifying the threshold for edge
detection changes the output of the algorithm, according to
a scale factor on the threshold. This example uses the Sobel
method, initially with a scale factor of one, then subsequently
larger thresholds, scaled by two, three, and four. By row
from left to right: Sobel method with default threshold, Sobel
method with threshold scaled by a factor of 2, Sobel method
with threshold scaled by a factor of 3, and Sobel method with
threshold scaled by a factor of 3. It is clear from the exam-
ple that a low threshold maintains more information from the
original image compared to the higher threshold, which erases
more of the details in an image. 26

3.3 This figure illustrates an image from the MNIST dataset (left)
compared to the same image with our 3-by-3 Sobel method
algorithm applied (right) [43]. This comparison highlights that
in some cases, such as this one where an image is very small
and already represents a clear edge, an edge detection method
can actually reduce clarity and add noise to a image, instead
of improving it. 28

3.4 This figure exemplifies some of the original images from the
Architectural Heritage Elements dataset [12]. The images are
all 64-by-64 pixels in size and provided in color. By row from
left to right: an image from the bell tower class, an image from
the vault class, an image from the flying buttress class, and
an image from the dome interior class. 29

7

4.1 This figure illustrates the variety of methods applied to one of
the images from the bell tower category of the Architectural
Heritage Elements dataset [12]. By row from left to right: the
grayscale image, the Gaussian blurred image, the histogram
equalized image, the central derivative method applied to the
image, our 3-by-3 Sobel method applied to the image, the 5-by-
5 Sobel method applied to the image, the 5-by-5 Sobel method
with diagonal filters applied to the image, the Laplacian-of-
Gauss (LOG) method applied to the image, the MATLAB
Sobel method applied to the image, and the MATLAB Canny
method applied to the image. 35

8

List of Tables

4.1 Results of controlled experiments of timing edge detection
methods. The average times are calculated from three repli-
cates of the experiments and truncated at the fifth decimal
place. Values reported are the average time needed to process
the images of the bell tower, the vault, and the house, all re-
ported in seconds. The bell tower and vault images are both
64-by-46 pixels and the house image is 569-by-713 pixels. . . . 34

4.2 Results of controlled experiments of accuracy and training
time neural networks using the variety of edge detection meth-
ods on the two category dataset. Values reported are the aver-
age validation accuracy, the average testing accuracy, the stan-
dard deviation of the testing accuracy, and the time needed to
train the neural network (in seconds). Averages are calculated
from three replicates of the experiments and truncated at the
third decimal place. 37

4.3 Results of controlled experiments of accuracy and training
time of neural networks using the variety of edge detection
methods on the three category dataset. Values reported are
the average validation accuracy, the average testing accuracy,
the standard deviation of the testing accuracy, and the time
needed to train the neural network (in seconds). Averages
are calculated from three replicates of the experiments and
truncated at the third decimal place. 38

9

1. Introduction
Image processing is a vast field of study, one which explores techniques

for modifying images for a variety of purposes [1]. Many image processing
techniques are simply a mathematical operation designed and applied with
the goal of highlighting key features in a digital image [2]. Image processing
is also typically an important step in preparing images for machine learning
applications, such as image classification problems [3].

Edge detection is one popular method of image processing. The goal of
edge detection is to find the edges of different elements in a digital image,
and highlight these important features, while removing other information
from the picture [4]. At the most basic level, edge detection can be done
by calculating the difference in a pixel value compared to one or more of its
neighboring pixels. But more often, in practice, accurate edges are calculated
using methods that build off of the idea of a numeric derivative, with one of
the most popular and widely used methods being the Sobel method [5]. An
edge detection method is most often applied to an image via one or more
filters [6]. A filter can be applied to an image repeatedly, in windows across
the entire image, in order to retain only the detected edges in the picture [7].
An example of an edge detection method applied to an image is provided in
Figure 1.1.

Figure 1.1: Side by side comparison of a grayscale image of a house (left)
and the popular Sobel edge detection method applied to the image (right).

1

Evaluating the performance of an edge detection method is often subjec-
tive [8]. Some researchers use the Pratt Figure of Merit in order to evaluate
edge detection methods in a quantitative manner, but this method is limited
due to requiring a ground truth comparison for ideal edges [4], [9]. Since hav-
ing an ideal comparison image is rare in practice, this work instead presents
an alternative approach of using the accuracy and training time of a sim-
ple image classification neural network as a quantitative way of objectively
evaluating and comparing edge detection methods.

In order to apply a numeric method, like the Sobel method, it is necessary
to determine a threshold such that large enough differences in pixel value are
maintained, whereas smaller ones are discarded [10]. But determining such a
threshold is a not trivial task; it can be approached with a method as simple
as trial and error with subjective, visual evaluation, but this method cannot
be easily applied to new images and thus can make evaluating and comparing
different methods difficult. The MATLAB image processing toolbox features
one automatic threshold method [11], but this paper presents an alternate
method that uses the average difference value as the automatic threshold
parameter. This thresholding algorithm can be easily implemented as part
of different edge detection methods, so they can be fairly compared. This
average-based method was found to perform well in many tested scenarios,
when considering applications in image classification.

In this work we also explore the best practices of edge detection in con-
text of this alternative method of quantitative analysis, that is, using neural
network accuracy as an objective measure of edge detection performance. In
particular, we investigate whether blurring was still a beneficial step in edge
detection in the context of image classification using neural networks. We
further explore the effects of type I and type II errors in edge detection and
their resulting effects on a neural network’s classification accuracy.

1.1 Contributions

This project contributes a collection of MATLAB functions for a variety
of numeric edge detection methods including a central numeric derivative in
both the x- and y- directions, Sobel method using 3-by-3 convolution filters,
Sobel method using 5-by-5 convolution filters, Sobel method using 5-by-5
filters in the x, y, and diagonal directions, and the Laplacian-of-Gaussian
(LOG) method. From these various methods, we report on and compare

2

the computational cost of these algorithms, according to their computation
time, and evaluate their effectiveness quantitatively in context of an image
identification neural network.

All of the functions also include an automatic thresholding algorithm,
based on the average gradient value calculated for an image. This is a valu-
able contribution since it provides a way to compare different edge detection
methods both fairly and easily. We found that in some scenarios this au-
tomatic thresholding yielded the best image classification accuracy using a
simple neural network, compared to the higher automatic threshold imple-
mented in MATLAB’s edge function [11].

The code used to read folders of images and apply functions then write the
images to new file locations while maintaining the necessary folder structure
was another contribution of this project. All these automatically thresholded
edge detection methods were applied to subsets of the Architectural Heritage
Elements dataset [12], along with other methods of interest such as Gaus-
sian blurring, histogram equalization, and some methods from the MATLAB
edges function [11]. The AHE dataset is a categorical dataset of 64-by-64
images that features a variety of architectural elements such as bell towers
and vaults. All of these datasets are structured such that they are compatible
with the neural networks used to evaluate the edge detection methods.

The neural networks created for this project are additional contributions.
The networks were coded using MATLAB, and more specifically using the
deep learning package [13]. The neural networks are compatible with the
image datasets created from the AHE dataset [12]. From testing the various
datasets via these neural networks we are able to provide quantitative re-
sults on the effectiveness of the edge detection methods, which is presented
according to the classification accuracy rate and required training time.

1.2 Project Goals

My goals for this project related to both my independent learning and
the wider literature about edge detection and its applications. Personally,
in this project I aimed to better understand edge detection algorithms and
best practices, threshold selection methods, and evaluation metrics. I also
worked to build better understanding and skills for deep learning methods,
specifically broadening my skill set to include the training and testing image
classification neural networks using the deep learning toolbox in MATLAB

3

[13].
As for the greater context of edge detection, we looked to verify best

practices of edge detection, in the specialized context of deep learning. The
three main questions we looked to research are:

1. Are neural networks a feasible alternative to figures of merit for quan-
titatively assessing edge detection methods?

2. Can the traditional step of Gaussian blurring be eliminated when apply-
ing edge detection for deep learning applications, while still maintain-
ing good accuracy? Are other preprocessing methods, like histogram
equalization, more effective in this context?

3. Are thin edges always preferable over thicker edges in the context of
machine learning or can erring on the side of false-positives yield better
results?

4

2. Background
A digital image can be understood as a matrix of pixel values [1]. When

an image is defined in this way, it opens up almost endless possibilities for
mathematical manipulation of the picture. One of these possibilities is calcu-
lating derivatives, or more generally gradients, within the image, which can
be interpreted as edge detection [10]. Edge detection is a method of image
processing that highlights particular information in a picture. Similar to how
grayscale can help emphasize shade in a picture by removing red, blue, and
green information (RBG), edge detection helps emphasize distinct elements
in an image by removing similarly colored regions, and instead maintaining
only the points of high pixel value change [4].

There are many popular methods commonly used for edge detection, but
they all have the same objective: identify points of significant change in an
image [4]. In turn, this method can reduce the complexity and noise in an
image. This method can also reduce the informational density of an image,
by replacing many of the entries in the matrix with zero values, making
computations with the matrix faster. All of these changes can better prepare
an image for use in applications such an image identification with neural
networks [3].

2.1 Edge Detection Process

Extensive research into edge detection has highlighted a series of best
practice steps for detecting edges in digital images [4]. These include convert-
ing images to grayscale, applying a blurring filter, applying the edge detection
filter across the entire image, then identifying and applying a threshold for
change in the image. This section will describe these steps in detail, as well as
explain popular methods of edge detection and further discuss the questions
from Section 1.2, as they relate to certain steps in the algorithms.

2.1.1 Grayscale

The first step in a traditional edge detection problem is to convert any
color images to grayscale. Some research does explore edge detection in the
context of color images [14], but that is outside the scope of this work. A
color image has three values assigned to each pixel: one red, one blue, and
one green. When imagining a digital image as a matrix of values, a color
image is a three-dimensional matrix such that each one of the three colors

5

has its own matrix and each entry corresponds to an intensity of that color
for a specified pixel [15]. Converting an image from color (RBG) to grayscale
can be done by making a linear combination of the three color values, in
order to create one intensity value for each pixel in the grayscale image [10].
The final pixel value will then take on a value between zero and 255, where
zero represents a black pixel and 255 represents a white pixel [16]. This scale
can also be shifted such that zero represents black, one represents white, and
all shades of gray fall within that interval [17]. This is an important step in
both the edge detection and machine learning processes, since it significantly
reduces the information in the image and allows a picture to be viewed as a
one-dimensional matrix [1]. Figure 2.1 shows an application of this algorithm
on a sample image.

Figure 2.1: Side by side comparison of a color image of a house (left) and a
grayscale version of the image (right).

2.1.2 Gaussian Blur

Another step that is often considered best practice in edge detection is
to implement Gaussian blurring. This method normalizes pixel values in
relation to neighboring pixels to help reduce noise [18]. This is often consid-
ered a crucial step in the edge detection process in order to avoid detecting

6

false edges caused by noise in pictures, and it is often applied by default
in many edge detection methods [19]. The effects of Gaussian blurring are
demonstrated in Figure 2.2.

Figure 2.2: Side by side comparison of a grayscale image of a house (left) and
a version of the image with the Gaussian blur function applied (right). The
differences between the images are subtle but noticeable in elements like the
bushes at the front of the house, which are less crisp in the blurred image.

Despite being considered best practice when it comes to traditional eval-
uation of edge detection, we wanted to investigate the potential of skipping
this blurring step when evaluating edge detection methods via image classifi-
cation results. Significant research has indicated that noise in data can help
build more robust machine learning models [20]. In fact, many papers have
revealed the benefits of introducing Gaussian noise to a model in order to
reduce over fitting in deep learning algorithm and improve testing outcomes
[21]. Thus, removing this step from the process and comparing results to
traditional reprocessing was one of the areas of exploration in the project.

7

2.1.3 Histogram Equalization

Histogram equalization is a image processing technique that increases
contrast in an image [18]. This method works by analyzing the distribution of
pixel values in a given image, which typically follow an approximately normal
distribution, and adjusts them to instead follow an equal distribution [22].
This forces more pixel values to the extreme ends of the grayscale spectrum
and in turn increases the contrast in the image [22]. Figure 2.3 shows an
example of histogram equalization being applied to an image.

Figure 2.3: Side by side comparison of a grayscale image of a house (left)
and a version of the image with histogram equalization applied (right). The
difference between the images is subtle but noticeable in the antenna on the
top of the house and the siding. Both these elements from the original image
become darker after histogram equalization is applied, and contrast more
with the lightened sky.

Histogram equalization is not a traditional step in best practices for edge
detection, but some research has found positive results from applying this
method to images before the step of applying edge detection algorithms [9].
This makes sense, since increasing contrast in an image can also increase
the difference between neighboring pixel values, thus making edges easier
to detect. Therefore we considered the possibility that histogram equal-

8

ization could be a better preprocessing step compared to Gaussian blurring
when preparing digital images for edge detection and ultimately classification
problems using deep learning.

2.1.4 Edge Detection Filter

The next step in the edge detection process is calculating the desired
derivatives in an image. These calculations are performed by applying one
or more filters to an image via a moving window [7]. The exact filters vary
by method, but many of them tie back to an idea of a numeric derivative, so
we will use this simple example to illustrate the idea. The edge maps that
result from the methods discussed in this section are provided in Figure 2.4.

A numerical derivative is typically calculated by choosing two data points,
typically ones near each other, and calculating their difference in the y-
direction, then dividing by their difference in the x-direction. In the analytic
context, we define the true value of the derivative as the difference between
points that are infinitely close to one another. The analytic derivative is
represented mathematically such that

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

and thus there is a numeric approximation of the derivative such that

f ′(x0) ≈
f(x0 + h)− f(x0)

h
. (2.1)

The forward difference formula in Equation (2.1), used to calculate nu-
merical derivatives, can be applied to digital images such that each pixel is
a data point. In the case of an image, pixel values are evenly spaced, and it
is therefore logical to set a simple h value, where we assume the difference
between pixel positions is 1. By letting h = 1, we get

f ′(x0) ≈ f(x0 + 1)− f(x0)

Further, since a large positive or negative change in pixel would both repre-
sent an edge, and since pixel values are always non-negative, then it is also
logical to apply absolute value to the formula in this application [4]. Thus
we can derive an final equation for edge detection such that

f ′(x0) ≈ |f(x0 + 1)− f(x0)|

9

Figure 2.4: This figure provides examples of three simple edge detection
methods based on the forward and central numeric derivative equations. By
row from left to right: the grayscale image of a house is provided for reference,
the forward derivative method in the x-direction applied to the image, the
forward derivative method in the y-direction applied to the image, and a
central difference method applied to the image. The x- and y-directions
forward derivatives can only detect edges that are perpendicular to the filter,
limiting the accuracy of the resulting edge map, whereas the central difference
method uses both x- and y-directional filters, and can detect edges in both
directions, leading to a more complete representation of the original image.

10

The effect of taking an absolute value could be achieved equally by applying
a 2-norm to the value, that is,

f ′(x0) ≈
√

(f(x0 + 1)− f(x0))2

since squaring and then square rooting the value will always return the pos-
itive magnitude.

Applying this formula to a digital image, in the x-direction, can be done
by converting the equation for a forward numeric derivative into a simple
filter, that is,

[
−1 1

]
. It can then be understood that a derivative of zero

indicates no change in value, and a derivative value of 255 represents the
maximum difference between values, from a white pixel to a black pixel, or
vice versa. Then all other potential derivatives that could result from this
filter would fall in the range of zero to 255. The same application of the

equation could be applied in the y-direction as well, with the filter

[
−1
1

]
.

The process of applying this function to an image can be done via a moving
window; that is the operation in applied to the first two pixels in the image,
then the filter is shifted by one pixel across the row, and the operation is
applied again. When the filter comes to the end of a row, the window is
moved to the beginning of the next row and this process repeats until the
window has been moved across the whole image, meaning the difference has
been calculated for all pairs of neighboring pixels [7]. Visual examples of
these different methods applied to the same image are shown as the second
and third panels of Figure 2.4.

From this basic example of edge detection in both the x- and y-directions,
more complicated filters can be understood. Multiple filters can be combined
into a single edge detection method by combining the matrices output by
each of the filters. For example, if we modify the previous example to use a
central difference method to approximate the derivative in both the x- and
y-directions, the associated filters with the method would be as follows:

Gx =

 0 0 0
−1 0 1
0 0 0

 and Gy =

0 −1 0
0 0 0
0 1 0

In this method, each of these filters are again applied in moving windows

across the entire image independently, to calculate the derivative in the x-
and y-directions, respectively [7]. Then using a 2-norm, the values assigned

11

to each position in the matrix by each of the filters can be combined and
given a final gradient value [23]. This final value for each pixel can then be
compared to the defined threshold, which will be described next in Section
2.1.5. The demonstration of this method on an image is provided as the last
panel in Figure 2.4, alongside the previous methods discussed.

2.1.5 Threshold Selection

Threshold selection is one of the major decisions necessary when imple-
menting an edge detection method. In the case of using a simple derivative
method for edge detection, such as those described in Section 2.1.4, the cal-
culated differences from the filter will vary in value on the scale from zero to
255, just like pixel values. But in order to identify an edge, there must be a
minimum threshold defined that will be used to classify an edge in an image.
If a pixel value exceeds the specified threshold, the value is rounded all the
way up to 255 and represented as white; otherwise the value is rounded all
the way down to zero and represented as black [24]. It is then clear that a
lower threshold allows more details of the image to be preserved, and in some
cases a low threshold can also retain noise from the image. A higher threshold
puts more of an emphasis on the most significant edges, but once a threshold
becomes too high, we can begin to lose some of the vital information in an
image as well. An example of the effect that varying a threshold value can
have on the final edge map determined for the same image is provided in
Figure 2.5.

But as more complicated method are implemented for edge detection, the
values assigned to each pixel can take on values with a wider range than just
0-255, due to larger coefficients or multiple filters being used. This starts to
complicate the process of choosing not only a useful threshold, but also a
threshold that can be applied fairly in order to compare multiple methods.

Oftentimes, thresholds are picked through subjective evaluation or user
trial and error [8]. Indications of a good threshold value for a particular
image are that the edges are thin, complete, and accurate to the original
image [9]. Edges that are not in the original image, but are created through
the use of an edge detection method, are considered to be false-positives.
Edges that were in the original image but ignored in the edge detection are
considered to be false-negatives [4]. Oftentimes false-positives will be called
type I errors, while false-negatives are referred to as type II errors [25]. A
quantitative method for analyzing edges is the Pratt Figure of Merit, further

12

Figure 2.5: This figure illustrates how modifying the threshold for edge de-
tection changes the output of the algorithm. This example uses the a central
derivative algorithm explained at the end of Section 2.1.4 which combines
both x- and y-directional filters, and tests a low threshold value of then sub-
sequently higher thresholds. By row from left to right: central derivative
method with threshold of 10, central derivative with threshold of 30, central
derivative method with threshold of 90, and central derivative method with
threshold of 135. It is clear from the example that a low threshold maintains
more information from the original image compared to the highest threshold,
which erases most of the information in the image.

13

discussed in Section 2.3.1.
Some automatic thresholding methods exist in practice, to varying levels

of success. Automatic thresholding approaches using optimization, such as
the Otsu method, can be computationally expensive and do not consistently
yield good results on varied image types [26]. Other methods, like the default
thresholding built into the MATLAB edge function [11], are quick but can
also offer inconsistent results, as discussed further in Section 4.2. Since one
of the goals of this work is to compare and contrast edge detection methods,
we aimed to identify an automatic method for defining the threshold that is
both fast and applicable for all methods. Thus we created and implemented
a thresholding benchmark defined by the average difference value calculated
by a filter. Further detail on this method is provided in Section 3.2.

As we will be comparing this thresholding method to the built-in au-
tomatic threshold method used in the MATLAB edge function [11], it is
important to detail the function and algorithm in MATLAB, used by default
if the user does not specify a threshold. From reviewing the built-in Sobel
method function, the first important difference to highlight is the MATLAB
algorithm defines a scale factor of 4. Next, similar to our method, they find
the average value of change in the image after the specified filters have been
applied, but they differ by multiplying by the scale factor, and then taking
the square root of that value, which ultimately becomes their automatic final
threshold value. This method results in a threshold that is typically higher
than the threshold obtained using the method we created for this project. In
the case the user would like to specify a threshold for the problem, MATLAB
allows an optional parameter for this, acknowledging in their documentation
that edge detection is typically a heuristic process [11]. In addition, the
MATLAB function differs from our methods since it automatically applies
both a blurring filter to the image before processing and an edge thinning
method after the threshold has been applied. All these steps together will
almost certainly result in fewer edges detected in a given image, as compared
to our method.

Moreover, some edge detection methods implement multiple thresholds,
which identify both strong and weak edges, then implement additional al-
gorithms to identify which edges to retain and which to discard. The most
popular of these methods is the Canny method [19], which will be discussed
further in Section 2.2.2.

Despite the difficulty that choosing an appropriate threshold can pose
at times, it is crucial in separating the information that an edge detection

14

method will retain in the final image from information that will ultimately
be discarded.

2.2 Popular Edge Detection Methods

From the basic building blocks discussed, there are many popular edge
detection methods that are used in practice. Two of these that will be dis-
cussed in greater detail in this section are the Sobel method [5] and the
Canny method [19]. The Sobel method is a method that directly follows
the basic method described previously, and this method has been extensively
explored and modified by many researchers. The Canny method is a more
complicated method that leverages multiple thresholds in order to identify
more complete edges. This section will discuss both of these algorithms, and
also highlight some other interesting methods.

2.2.1 Sobel Method

The Sobel method is one of the most popular methods of edge detection
[5]. The most basic version of this method uses 3-by-3 filters that more
heavily weigh the adjacent pixels in an image, and then give less significant
weight to the diagonal pixels [26]. This method builds upon the logic of
the numeric derivative described in Section 2.1.4, but expands the size and
accounts for the additional, often important, information diagonal to a given
datapoint. The precise filters used in the Sobel method are provided below,
and the difference in weights can be seen in the larger coefficients in the
adjacent positions and the smaller coefficients in the diagonal positions [26]:

Gx =

−1 0 1
−2 0 2
−1 0 1

 and Gy =

−1 −2 −1
0 0 0
1 2 1

Then similar to the example described in Section 2.1.4, a 2-norm can

be used to combine the results from the two filters into one new matrix
representing these derivatives in the image.

Since this method is so widely used, many modified versions of the Sobel
method also exist including methods that use alternate coefficient weights
[27], larger filters, with 5-by-5 being very popular [28], and even using more
than two filters, such as methods that include filters that identify diagonal

15

edges [26]. We further explore the Sobel method and some of the popular
modified versions in our experiments, which will be explained in more detail
in Section 3.1.

2.2.2 Canny Method

Other methods of edge detection, most popularly the Canny method, be-
gin by filtering an image in the same way as the Sobel method, but differ
by adding additional steps, beginning with identify strong and weak edges
according to two different threshold values [19]. Through a process called hys-
teresis, all strong edges are maintained in the final edge map, but some weak
edges are also retained, under the condition that a weak edge is connected to
a strong edge [19]. These additional steps help ensure more complete edges
are identified and kept intact in the final edge map [19]. This method also
tends to result in fewer type I and type II errors compared to more traditional
methods, such as the Sobel method [29].

The main drawbacks of the Canny method, and other multi-threshold
methods that include the hysteresis step, are that the extra steps mean they
are more complicated to implement and often more computationally expen-
sive [30]. Therefore, achieving comparable performance to the Canny method
from a simpler, single threshold method was one point of interest in this work.
In order to quantitatively measure performance of different methods, we use
the accuracy of a simple image classification neural network as the metric of
comparison.

2.2.3 Other Methods

With the basic method of an edge detection algorithm understood, there
are almost endless possibilities for creating new filters. Some filters are cre-
ated based on mathematical equations, like the Taylor Series [31] or the
Laplacian-of-Gauss (LOG) [32]. And some methods are developed for highly
specific applications, such as improving clarity in medical scans [31], while
others are developed to tackle broader issues in edge detection, like mitigating
the effects of noise [32].

The LOG edge detection method uses only a single, 5-by-5 filter, and was
designed to incorporate a smoothing effect that minimizes noise in an image

16

while detecting edges, all in one step [32]. The LOG filter is defined as:

G =

−2 −4 −4 −4 −2
−4 0 8 0 −4
−4 8 24 8 −4
−4 0 8 0 −4
−2 −4 −4 −4 −2

The results of the LOG method, along with many of the other methods

described thus far in the paper, will be compared and analyzed in Section
4.2.

2.3 Quantitative Validation

Evaluating different methods of edge detection can be difficult and is of-
ten done subjectively [8]. Deciding that one method or threshold is superior
to another often includes checking for key characteristics such as thin, but
complete edges, which are accurate in placement to the original image [4],
[19]. While this may seem simple at first, it is often difficult to make objec-
tive, quantitative statements about effectiveness of edge detection methods,
especially without a “ground truth” map of edges to use for comparison.

2.3.1 Pratt Figure of Merit

The Pratt Figure of Merit (PFOM) is one of the most widely used meth-
ods of edge validation [4]. This figure of merit is an equation that mea-
sures edge detection accuracy according to the number of true-positive, true-
negative, false-positive, and false-negative edges. True-positive and true-
negative edges are when the method correctly identifies an edge, or lack of
an edge, in some part of an image. Edges that are not in the original image,
but are created through the application of an edge detection method, are
considered to be false-positives [33], often called type I errors [25]. Edges
that were in the original image but not maintained in the edge detection are
considered to be false-negatives [33], or type II errors [25]. The PFOM uses
the proportion of true and false edges as one aspect of the calculation to
quantitatively assess an edge detection method [4].

The PFOM also accounts for the correct placement of edges in its calcu-
lation [4]. Depending on the method and corresponding filter(s) used, edge

17

placement can be shifted or otherwise distorted. If an edge is inaccurate
to its location in the original image, this can be a sign of a poor method.
Therefore the distance between an ideal edge and the edge created via an
edge detection method is also taken into account by the PFOM [4].

Ultimately, the Pratt Figure of Merit method is computed according to
the equation

PFOM =
1

max(IA, II)

IA∑
i=1

1

1 + αd2i

where IA represents the detected edges, II represents the ideal edges, d rep-
resents the distance between the actual and ideal edges, and α is a constant
used to penalize displaced edges [4]. The resulting value from this function
will be in the range [0,1], such that 1 represents a perfect fit to the ground
truth. A MATLAB function which compares an image to another specified
ground truth, created by Vivek Bhadouria and shared on the MATLAB Cen-
tral File Exchange [34], can be used to easily calculate the PFOM for an edge
map given a ground truth comparison. Note, the function returns values as
percents, so in order to have values in the range of [0,1], they must be scaled
down by a factor of 100.

The major drawback of the PFOM as a quantitative way of assessing
and comparing edge detection methods lies in its need for a ground truth
comparison [9]. In practice, very few datasets have ideal edges specified, this
process in itself can be biased, and ideals may vary based on the intended
use of the edge detection. Sometimes the results of the Canny edge detection
method are used as the ground truth comparison, but this assumption is not
always fair in the context of all problems, especially in the case of trying to
outperform the Canny method with an alternative method. Thus in prac-
tice, the PFOM can not always be reasonably used [9]. Figure 2.6 provides
an example to illustrate this comparison of our 3-by-3 Sobel method and
the MATLAB automatic Sobel method to the MATLAB automatic Canny
method.

2.3.2 Neural Networks

As an alternative to a comparative method, such as the Pratt Figure of
Merit, which requires a ground truth comparison to derive a quantitative
measure of edge detection success, we instead consider using the accuracy of
an image classification neural network as an alternative quantitative measure

18

Figure 2.6: This figure demonstrates the Pratt Figure of Merit (PFOM) used
to evaluate three images against the MATLAB automatic Canny method,
via the pratt.m function created by Vivek Bhadouria and shared on the
MATLAB Central File Exchange [34]. By row from left to right: the Canny
Method, the MATLAB Sobel Method, and our 3-by-3 Sobel Method. As
expected, we can see when comparing an image to itself, as done in the first
case presented, the PFOM is 1, a perfect score. Then The MATLAB Sobel
method yields a PFOM of approximately 0.3834 and our 3-by-3 Sobel method
yields a lower value for the PFOM, only 0.1199. Visually, these scores make
sense, as our method results in more false positive edges when compared to
the Canny method, than the MATLAB Sobel method.

19

of success. A neural network is a machine learning algorithm which can be
applied to both classification and regression problems [35].

Neural networks are considered deep learning methods, since they consist
of a series of layers [35]. The basic structure of a neural network is an
input layer, some number of hidden layers, and an output layer. The input
layer corresponds with the size of the input data; in the case of an image
classification problem, that is the number of pixels in the image [36]. The
user’s desired response dictates the size of the output layer, and in the case of
classification, that is typically the number of categories in the problem [37].
Some of the layers can also be specialized to perform specific functions, such
as how convolutional layers are often used in image processing problems [38].
One of the things that makes neural networks different from other machine
learning models is that a neural network is tuned through a recursive training
process which tunes the weights and biases of the network in order to refine
the prediction algorithm and ultimately improve prediction accuracy [35].

Like all supervised machine learning methods, neural networks can pro-
duce a quantitative measure of accuracy, and in the case of classification,
that accuracy is the proportion of correctly classified samples. Throughout
the training process, the validation accuracy and training accuracy are used
to inform the recursive training process, and a final testing accuracy should
be calculated, on separate data not used for training or verification, to certify
the network’s performance [39]. Consistency between lower validation and
testing errors indicate a well trained model, whereas a high error or signifi-
cant discrepancy in these error values can indicate flaws in the model, such
as overfitting the model training data [39].

No ground truth is needed to derive a quantitative measure of neural
network classification accuracy. Instead, only a labeled dataset is needed to
complete this analysis, and these are often readily available given the increase
in digital data in recent decades [40]. It is this classification accuracy value
that we think could serve as an objective, quantitative measure of edged
detection method performance, in lieu of a figure of merit. Thus, this paper
explores the use of a simple neural network as a tool for measuring and
comparing the effectiveness of different edge detection methods.

20

3. Methods and Data
This section will describe the methodologies for edge detection and deep

learning methods implemented in this project in order to explore the effective-
ness of a variety of edge detection methods in a quantitative manner. Instead
of measuring quality of edge detection methods according to a comparative
method, like the Pratt Figure of Merit, which requires a ground truth ref-
erence, we instead measure edge detection effectiveness quantitatively with
respect to a simple neural network’s accuracy for image classification prob-
lems.

3.1 Edge Detection Functions

First we coded and tested a variety of edge detection methods during the
project. All the methods used the same basic algorithm, with varying filters,
as described in Section 2.1.4. The algorithm for these methods is detailed
in the pseudocode provided in Algorithm 1, as modified from the MATLAB
sample code available on the Sobel Operator Wikipedia page [41].

The first method we tried used simple filters derived from the central
derivative equation, and used the in the second example in Section 2.1.4.
This method, like many others, uses two filters: one for the derivative in the
x-direction and one for the derivative in the y-direction. The precise filters
are:

Gx =

 0 0 0
−1 0 1
0 0 0

 and Gy =

0 −1 0
0 0 0
0 1 0

The next method chosen for testing was the classic 3-by-3 Sobel method

[26], as detailed in Section 2.2.1. There are also two filters used for this
method, again with one relating to the x-direction and one the y-direction.
The exact filters are:

Gx =

−1 0 1
−2 0 2
−1 0 1

 and Gy =

−1 −2 1
0 0 0
1 2 1

Next we included a modified Sobel method, mentioned in Section 2.2.3,

which used a 5-by-5 filter [26]. Like the traditional Sobel method described
above, this method uses two filters as well, again one for highlighting changes
in the x-direction and the other for changes in the y-directions. The filters

21

Algorithm 1 Edge Detection Method

Function intakes image A
Define at least one n-by-n filter
Identify size of image A, r rows and c columns
Create matrix of all zeros, Z, same size as A
For demonstration we will define two filters, Gx and Gy

initialize a counter a = 0
initialize a running sum, total=0
for i=1 to r-(n-1) do

for j=1 to c-(n-1) do
Apply Gx to specified location in A, outputs S1
Apply Gy to specified location in A, outputs S2
S =

√
S12 + S22, a 2-norm

Assign S to corresponding location in Z, (i, j)
Add S to running sum, total = total + S
Adjust counter, a = a+ 1

end for
end for
threshold = total/a, an average of gradient values
Round pixel values in Z up or down according to threshold:
if Z(i,j) >= threshold then

Z(i,j) = 1 (white)
else

Z(i,j) = 0 (black)
end if
Return edge detected image as a logical binary type

22

are:

Tx =

2 3 0 −3 −2
3 4 0 −4 −3
6 6 0 −6 −6
3 4 0 −4 −3
2 3 0 −3 −2

 and Ty =

2 3 6 3 2
3 4 6 4 3
0 0 0 0 0
−3 −4 −6 −4 −3
−2 −3 −6 −3 −2

Then we also included a second modified Sobel method, this one which

used 4 different 5-by-5 filters [26]. As mentioned in Section 2.2.3, this method
was designed with the intention to pick up on changes in the x- and y-
directions as well as those on the 45 degree diagonals of the image. The
first two filters Tx and Ty are the same as in the previous method described,
whereas T45 and T135 are similar, but based on rotating the filter Ty 45 and
135 degrees, respectively. As with the other methods, the outputs of each
filter are combined using a 2-norm. The precise filters for this method are:

Tx =

2 3 0 −3 −2
3 4 0 −4 −3
6 6 0 −6 −6
3 4 0 −4 −3
2 3 0 −3 −2

 Ty =

2 3 6 3 2
3 4 6 4 3
0 0 0 0 0
−3 −4 −6 −4 −3
−2 −3 −6 −3 −2

T45 =

0 −2 −3 −2 −6
2 0 −4 −6 −2
3 4 0 −4 −3
2 6 4 0 −2
6 2 3 2 0

 and T135 =

−6 −2 −3 −2 0
−2 −6 −4 0 2
−3 −4 0 4 3
−2 0 4 6 2
0 2 3 2 6

Additionally, we tested the Laplacian-of-Gauss (LOG) method [32]. This

method uses only one filter, and as described in Section 2.2.3, the coefficients
are chosen with the intention of adding a blurring effect at the same time
as it detects edges [32]. This filter can be seen to give the strongest weight
to pixels close to the center, and smaller weights towards the diagonals and
edges. The exact coefficients for this 5-by-5 filter are presented below:

G =

−2 −4 −4 −4 −2
−4 0 8 0 −4
−4 8 24 8 −4
−4 0 8 0 −4
−2 −4 −4 −4 −2

23

The results of each of these methods applied to the same image is demon-
strated in Figure 3.1. Key places to look to find differences between method
results are corners of shapes and off diagonal edges. Figure 3.1 also demon-
strates the Sobel and Canny edge detection methods using the edges.m func-
tion available via MATLAB’s image processing toolbox [11]. These examples
use a version of automatic thresholding as described in Section 2.1.5 which is
much higher than our auto-generated threshold for this test image, described
in the next Section 3.2.

3.2 Automatic Threshold Selection

In order to fairly compare this variety of methods and avoid the hassle
of heuristically determining an appropriate threshold for each of these five
methods, we developed a simple algorithm for automatically calculating a
threshold for defining edges, which only requires an image input.

This method is based on a mean value cut off, where each of the filtered
values are totaled throughout the convolution process, then divided by the
final number of pixel values retained by the edge detection process. This
method automatically handles changes in filter size and number, as well as
varying ranges of possible values a filter creates. Thus, it was understood that
this average threshold method was a fair way to compare different methods’
effectiveness against one another. More detail of this precise algorithm’s
implementation in the function is provided in the pseudocode explanation of
the edge detection process (see Algorithm 1).

Moreover, we explored the idea of allowing the user to specify a scale
factor for adjusting the threshold according to the average value calculated
in this model. This can provide a user the choice to fine tune a threshold,
but can detract from the automatic aspect of the method. Figure 3.2 shows
how varied, user defined, scale factors can adjust the threshold and in turn
affect the final edges detected by a method, in this case the Sobel method.
This scale factor method was only explored in a limited capacity.

3.3 Datasets

In order to train and test an image classification algorithm, we must first
identify labeled datasets of images to use. We used the extremely popular

24

Figure 3.1: This figure illustrates the different methods detailed in this sec-
tion, as applied to the grayscale image of a house. By row from left to right:
the grayscale image of a house, the central difference method, the 3-by-3
Sobel method, the 5-by-5 Sobel method, the the 5-by-5 Sobel method with
diagonal filters, the Laplacian-of-Gauss (LOG) method, the MATLAB Sobel
method, and the MATLAB Canny Method. Key places to look to find dif-
ferences are corners of shapes and off diagonal edges. The first five methods,
excluding the grayscaled image provided for reference, use our automatic
thresholding method, whereas the last two use the MATLAB auto-generated
thresholding built into the edge.m function [11]

25

Figure 3.2: This figure illustrates how modifying the threshold for edge de-
tection changes the output of the algorithm, according to a scale factor on
the threshold. This example uses the Sobel method, initially with a scale
factor of one, then subsequently larger thresholds, scaled by two, three, and
four. By row from left to right: Sobel method with default threshold, Sobel
method with threshold scaled by a factor of 2, Sobel method with threshold
scaled by a factor of 3, and Sobel method with threshold scaled by a factor
of 3. It is clear from the example that a low threshold maintains more in-
formation from the original image compared to the higher threshold, which
erases more of the details in an image.

26

MNIST numbers dataset as a tool to set up and validate our network [42],
then explored these edge detection methods on a more complicated dataset,
the Architectural Heritage Elements dataset, which consisted of images of
various architectural features [12]. Describing these datasets in detail is im-
portant, since the results are in the context of these particular datasets,
which consist of a comparatively small number of relatively small images.

3.3.1 MNIST Dataset

The MNIST dataset consists of images of hand drawn numbers ranging
from values 0-9 [43]. This dataset is automatically provided in the MATLAB
deep learning package and contains 1000 images in each of the 10 categories
[42]. Additionally, all the images are grayscale and consistently sized, only
28-by-28 pixels [42]. Together, these traits make the dataset a good tool
for setting up a neural network and to ensure it is functioning as intended.
This MNIST dataset is also used as the dataset in MATLAB’s tutorial for
building an image classification neural network [44]. We used this tutorial as
a starting point when learning to build an image classification neural network
in MATLAB, and returned to this dataset as a “sanity check” throughout
the process working with the neural networks to ensure changes worked as
expected and to aid in debugging.

The MNIST dataset itself is not a good candidate for edge detection
experimentation though, since the majority of images are already simple
lines and solid colored regions. Oftentimes, applying edge detection to these
very small, simple images can actually make them more complicated opposed
to simplifying the information, as intended. Figure 3.3 provides an example
of how edge detection affects an image from the MNIST dataset.

3.3.2 Architectural Heritage Elements Dataset

In order to explore this method of using a simple neural network as a
way of comparing and quantifying the effectiveness of edge detection meth-
ods, it was necessary to use a good image classification dataset for this type
of experimentation. Some aspects taken into consideration when selecting a
dataset were the size of each image and the total number of images available.
Large images are more computationally expensive to both edge detect and
use in machine learning. Similarly, if a dataset is very large, as in it contains
many images, it will also be computationally expensive and slow to use for

27

Figure 3.3: This figure illustrates an image from the MNIST dataset (left)
compared to the same image with our 3-by-3 Sobel method algorithm applied
(right) [43]. This comparison highlights that in some cases, such as this
one where an image is very small and already represents a clear edge, an
edge detection method can actually reduce clarity and add noise to a image,
instead of improving it.

these applications. But alternately, if a dataset does not have enough images,
there is little chance that a simple neural network will have adequate oppor-
tunity to learn and perform well, instead tending to over fit the training data
[39].

Another consideration of the dataset would be the content of the images.
Since many of the filters work in a combination of the x- and y-directions,
we felt having at least some geometric features, such as those found in archi-
tecture, may be interesting and meaningful to include. Moreover, we wanted
to choose a dataset where the images were high quality with a clear sub-
ject. Very noisy datasets tend to be difficult to work with for neural network
training and testing [45], as well as edge detection [9], each with their own
dedicated fields of study. Additionally, busy backgrounds can detract from
the subject of an image, making classification problems more difficult.

With these factors in mind, we chose to use the Architectural Heritage

28

Elements (AHE) dataset for the experiments in this project, which had cate-
gories for a variety of architectural features like bell towers, vaults, and flying
buttresses [12]. In total there were ten categories in the AHE dataset, and
each category contained a different number of images. Each image is orig-
inally in color and of size 64-by-64 pixels. Figure 3.4 shows a selection of
images, labeled with their category.

Figure 3.4: This figure exemplifies some of the original images from the
Architectural Heritage Elements dataset [12]. The images are all 64-by-64
pixels in size and provided in color. By row from left to right: an image from
the bell tower class, an image from the vault class, an image from the flying
buttress class, and an image from the dome interior class.

29

3.3.3 Training, Testing, and Validation Sets

Instead of using all ten categories in the initial exploration of this prob-
lem, we instead created two smaller datasets from the ten categories provided.
Reducing the number of categories simplified the classification problem, al-
lowing us to focus more on the edge detection aspect of this project, opposed
to tuning a complex neural network.

One of the datasets used consisted of only two of the larger, similarly sized
categories, vaults and bell towers, with about 1000 images in each category’s
training set. The second dataset used consisted of three different categories
(apses, flying buttresses, and dome interiors), with the number of images in
each training category ranging from about 400 to about 600 images. We
selected these three categories for the second dataset since they were the
three most similarly sized groups. In order to apply edge detection to these
images, they were all converted from color to grayscale.

The AHE dataset was accessed for this project through the website Kag-
gle, where the images were provided in folders according to their classifica-
tion, and the data was pre-split into training and testing sets [12]. These
groupings were used, as provided, in this project. For the first dataset, with
only two categories, about 80-90% of the data in each category was used
to train the neural network and 10-15% of the data was saved to do a fi-
nal test of accuracy on the network, in keeping with best practices of cross
validation [39]. The bell tower category had 1057 training samples and 170
testing samples, and the vault category had 1097 training samples and 163
testing samples. Within the training dataset, we also needed to determine
which portion of the data would be a validation set, which is crucial to the
recursive learning pattern of the neural network. To do this, the first 810
images from each category were used as training data for the algorithm, and
the remaining images, 247 in the case of the bell tower group and 277 for
the vault group, were used to validate the neural network during the train-
ing process. This equates to about 75% of the training data being used for
training the neural network, and 25% of the training data being used for
validation during the training process.

The second dataset, which was made up of three categories, contained
fewer images per category and less even groupings compared to the previ-
ously described dataset. The second dataset was created with the intention
of checking how this method would perform on a more challenging problem.
Obviously adding a third group to the dataset makes the classification prob-

30

lem more challenging, and uneven datasets can also increase the complexity
of a problem. For this reason this dataset would be used for experimentation
with the edge detection methods as well. The apse category contained 505
training images and 50 testing images, the flying buttress category contained
405 training images and 70 testing images, and the interior dome category
contained 589 training images and 69 testing images. Because of these unbal-
anced groups, there was not as clear a proportion of training to testing data
within each category, but in total, based on these values, 89% of the data
was used for training and the remaining 11% was used for testing. Again, in
order to train the neural network via the back propagation method, we also
needed to reserve a portion of the training data to be used as validation data,
and based on the smallest category containing only 405 images, we decided
to use the first 350 images from each category for training (in even amounts)
and all remaining images in the training set were used for validation.

3.4 Neural Networks

For this project we used a simple neural network in MATLAB, created
according to MATLAB’s image classification deep learning tutorial [44]. This
network was initially designed for the MNIST dataset and could achieve well
over 90% accuracy on that data with very few epochs. With some modifi-
cations, the network was also suitable for AHE dataset. It was important
to keep this network simple, with only a few layers, as to maintain focus on
exploring edge detection methods opposed to tuning a neural network, which
is its own area of research [35].

The network has seven layers total, the first being the image input layer.
This layer corresponds with the size of the data, in the case of the AHE
dataset, 64x64x1, for a 64-by-64 pixel, grayscale image [36]. The second layer
is a two-dimensional convolutional layer, which is a layer which condenses
data according to an image’s two dimensional structure, using a dot product
as the filtering operation [38]. The third layer of this network is a batch
normalization layer, which is used to speed up training and decrease network
sensitivity [46]. Next, the fourth layer is a Rectified Linear Unit (ReLU)
layer, which applies a thresholding operation to the network to eliminate
small, presumably negligible weights from the algorithm [47]. The fifth layer
used in this network is a fully connected layer, which applies the weights
and biases to modified input at this step [48]. Then the sixth layer in this

31

network is a softmax layer, which gets its name from the softmax function
that it applies to the input, preparing it for classification output [49]. The
final, seventh layer in this neural network is the classification network, which
uses cross-entropy to determine the final classification label for a datapoint
according to the number of classes specified in the fully connected layer [37].
Based on this structure any correctly sized input can be fed to the network,
and then the functions associated with each layer can be applied, one at a
time, passing the output of one layer in as the input to the next until a final
classification label is achieved, which is returned as the final output of the
network.

Some other important parameters specified for this network were the
learning rate, the validation frequency, and the number of epochs. The
learning rate is the parameter that indicates the step size used in the gradi-
ent descent algorithm as part of the training process [50]. Using a step size
that is too small can mean the network may take a very long time to train,
whereas too large a step size can cause training to be inconsistent and some-
times lead to the network not learning at all [51]. Therefore it is important
to pick an appropriate learning rate for a given problem, and through testing
with this network, 0.01 appeared to work well for the methods tested in this
project. The validation frequency is the measure of how often the network
tests its accuracy on the validation data [51]. Finally, the number of epochs
is defined by the number of times the network is presented with the set of
training data. Thus the maximum number of epochs parameter indicates the
total number of times the network will be presented with the training data
points before terminating the training process [35].

32

4. Results
This section will discuss the results of the controlled experiments per-

formed to explore the computational efficiency of a variety of the methods
detailed in this paper and the potential use of neural networks accuracy as
quantitative measures of edge detection methods in lieu of figures of merit.
All results in this report were produced using a HP Pavilion Laptop with 16
GB RAM (15.9 GB usable), Intel® CoreTM i7-8550U (CPU @ 1.80GHz), 4
cores, and using the MATLAB R2021b programming language.

4.1 Computational Efficiency

First we measured the computational efficiency of the various methods
we described in Section 3.1. To test the methods we used two images from
the bell tower and vault categories of the Architectural Heritage Elements
dataset, selected at random, along with the house image used throughout
the paper. The bell tower and vault image are each 64-by-64 pixels, and the
house image is a much larger 569-by-713 pixels. Each function was tested
three times on each of the selected images, so the results could benefit from
replication, and to avoid any outliers skewing the data. The results of this
experiment are provided in Table 4.1.

To illustrate these methods applied to an image from the AHE dataset,
the bell tower image used for testing is shown in Figure 4.1, compared with
all the processed versions of the image.

33

Method Avg Time
Bell Tower
Image (sec)

Avg Time
Vault Image

(sec)

Avg Time
House Image

(sec)
Grayscale 0.00358 0.00348 0.02037

Gaussian Blur 0.00557 0.00545 0.04437
Histogram
Equalization

0.00739 0.00583 0.03977

Central
Derivative

0.01594 0.01485 0.97503

3-by-3 Sobel 0.01334 0.01429 0.97967
5-by-5 Sobel 0.01280 0.01299 0.99638
5-by-5 Sobel

with Diagonals
0.02289 0.02231 1.97348

LOG 0.00824 0.00831 0.50155
MATLAB

Sobel
0.00314 0.00340 0.01550

MATLAB
Canny

0.00544 0.00571 0.03470

Table 4.1: Results of controlled experiments of timing edge detection meth-
ods. The average times are calculated from three replicates of the exper-
iments and truncated at the fifth decimal place. Values reported are the
average time needed to process the images of the bell tower, the vault, and
the house, all reported in seconds. The bell tower and vault images are both
64-by-46 pixels and the house image is 569-by-713 pixels.

34

Figure 4.1: This figure illustrates the variety of methods applied to one of the
images from the bell tower category of the Architectural Heritage Elements
dataset [12]. By row from left to right: the grayscale image, the Gaussian
blurred image, the histogram equalized image, the central derivative method
applied to the image, our 3-by-3 Sobel method applied to the image, the
5-by-5 Sobel method applied to the image, the 5-by-5 Sobel method with
diagonal filters applied to the image, the Laplacian-of-Gauss (LOG) method
applied to the image, the MATLAB Sobel method applied to the image, and
the MATLAB Canny method applied to the image.

4.2 Neural Networks

As for the neural networks, we measured and reported on the training
time and accuracy values to analyze the effectiveness of the different edge
detection methods in the context of deep learning. In order to be confident
in the results, the training process and testing process for each network was
replicated three times, in order to avoid any outliers skewing the results. This
is especially important since the neural network training process involves
randomness, so there can be significant variation in network training and
performance, even on the same data. The average values of these three
replicates for each response are reported in Tables 4.2 and 4.3. We report
both the training accuracy and testing accuracy, as discrepancies in these
values can indicate information on the true performance of the network, and
the standard deviation of test accuracy, as an indication on consistency and

35

repeatability of methods.

4.2.1 Two Category Classification

First we report the results in Table 4.2 for the neural networks designed
to classify two categories of AHE data; bell towers and vaults. The method
that yielded the best results in this test was the Laplacian-of-Gauss (LOG)
edge detection method, without equalizing the image before application.

36

Method Avg
Validation
Accuracy

Avg
Testing

Accuracy

Standard
Deviation
of Testing
Accuracy

Avg
Training
Time
(sec)

Grayscale 0.715 0.731 0.150 171.666
Gaussian

Blur
0.667 0.642 0.132 172.666

Hitogram
Equalization

0.672 0.729 0.190 184.333

Central
Derivative

0.752 0.861 0.019 188.333

3-by-3 Sobel 0.775 0.889 0.054 187.000
5-by-5 Sobel 0.661 0.747 0.212 171.333
5-by-5 Sobel

with
Diagonals

0.649 0.730 0.190 169.333

LOG 0.842 0.924 0.019 176.333
MATLAB

Sobel
0.697 0.828 0.012 186.333

MATLAB
Canny

0.812 0.889 0.053 199.000

3-by-3 Sobel
with Blur

0.782 0.861 0.104 169.000

3-by-3 Sobel
with

Equalization

0.842 0.900 0.038 183.000

LOG with
Equalization

0.815 0.885 0.083 174.000

Table 4.2: Results of controlled experiments of accuracy and training time
neural networks using the variety of edge detection methods on the two cat-
egory dataset. Values reported are the average validation accuracy, the av-
erage testing accuracy, the standard deviation of the testing accuracy, and
the time needed to train the neural network (in seconds). Averages are cal-
culated from three replicates of the experiments and truncated at the third
decimal place.

37

4.2.2 Three Category Classification

Next we report the results in Table 4.3 for the neural networks designed to
classify images in the more challenging problem, the three categories dataset
of apses, flying buttresses, and interior domes. We tested fewer methods than
in the previous problem, after identifying the ones with the most promising
results from the initial experiment. This experiment showed that many edge
detection methods resulted in only marginally better accuracy compared to
the grayscale image, with the only obvious improvement being attributed to
the Canny method.

Method Avg
Validation
Accuracy

Avg
Testing

Accuracy

Standard
Deviation
of Testing
Accuracy

Avg
Training
Time
(sec)

Grayscale 0.629 0.626 0.070 115.333
Sobel 0.602 0.652 0.026 123.333
LOG 0.524 0.601 0.102 119.333

MATLAB
Sobel

0.492 0.536 0.058 113.666

MATLAB
Canny

0.712 0.717 0.049 117.000

3-by-3 Sobel
with Blur

0.666 0.696 0.154 122.000

3-by-3 Sobel
with

Equalization

0.619 0.617 0.006 113.000

LOG with
Equalization

0.626 0.636 0.058 117.333

Table 4.3: Results of controlled experiments of accuracy and training time
of neural networks using the variety of edge detection methods on the three
category dataset. Values reported are the average validation accuracy, the
average testing accuracy, the standard deviation of the testing accuracy, and
the time needed to train the neural network (in seconds). Averages are
calculated from three replicates of the experiments and truncated at the
third decimal place.

38

5. Discussion and Future Work
In this chapter we discuss the interpretation of the results and additional

opportunities for continued research and unanswered questions related to this
project.

5.1 Discussion

We will begin by discussing the results as they pertain to computational
efficiency and neural network behavior. The first key takeaway is that addi-
tional filter applications seem to be the feature of an edge detection method
that most affects the time needed to implement it on an image. The sec-
ond major result is that some of the methods developed without blurring
and with our automatic threshold method outperformed the Canny edge
detection method when implemented according to the automatic threshold
method in MATLAB’s edges function. This was true for the training and
testing accuracy when using the two class dataset. This allows us to infer
that in the context of deep learning, the best practices of blurring and thin
edges are not always critical to yield favorable results in simple problems.
But in more complex application of the three class dataset, the only method
to cause significant improvement compared to the grayscale baseline was the
Canny method.

5.1.1 Computational Efficiency

According to the results provided in Table 4.1, the slowest of the algo-
rithms was the 5-by-5 Sobel methods with diagonal filters. This result is
understandable as this method uses the most filters of all the methods tested
(four) opposed to most other methods using only two. Alternately, the fastest
method was the LOG method, which also makes sense given, since it is the
only method that uses only a single filter. Moreover, the x- and y- central
derivative method, the 3-by-3 Sobel method, and the 5-by-5 Sobel methods
all averaged to similar amounts of time. We expected the 5-by-5 method to
take the longest of these three methods in all scenarios, since it has the most
complicated filter, followed by the 3-by-3 Sobel, then the very simple x- and
y- central derivative method, but in fact the 5-by-5 methods were was actu-
ally faster in the case of small images. This could be because a 5-by-5 filter
needs to be applied to an image fewer times, so in the case of small images,
this advantage is noticeable, but in the case of large images, the additional

39

calculations per filter application ultimately take more time.
None of our methods rivaled the times of the default functions in MAT-

LAB. These functions include many additional steps beyond just detecting
edges including blurring and edge reduction [11]. Additionally, the Canny
method involves double edge detection and hysteresis steps. The default
MATLAB functions are likely more computationally effective due to more
efficient code structure, and therefore cannot be fairly compared to our more
basic functions. Instead, the MATLAB functions are interesting to compare
to one another, as it is clear that the MATLAB Sobel edge detection method
is much faster than the MATLAB Canny edge detection method. In the
case of the smaller images, the Canny method takes just less than double
time compared to the Sobel method. But in the case of the larger image the
Canny method requires a bit more than double the time. This can indicate
how on a large scale it could save significant time to use the Sobel method
over the Canny method, especially as image size increases.

Lastly, we notice that the preprocessing steps of grayscale, Gaussian blur,
and histogram equalization all take significantly less time than any of our
edge detection methods. This could indicate that if either of these optional
methods result in significant improvement to network performance, they will
contribute significantly less to computational time compared to the edge
detection methods, so even a small improvement in performance could be
worth the trade-off with time.

5.1.2 Neural Networks

From our data we first inspect the computation time to see there are only
differences of a few seconds in the training time for the different networks, in
both the two and three category datasets. We thought it could be possible
that the datasets which had edge detection methods applied, resulting in
binary logical elements could result faster training times compared to the
grayscale images, since logical elements have pixel values of strictly 0 or 1
whereas grayscale pixel values range from 0 to 255. But in practice this was
not the case, and we instead find that reducing the density of the input data
via edge detection did not have any noticeable effect on training time in our
experiment.

Next, we compare the average validation testing accuracy for the networks
trained on all the methods. We can see that for both the two and three
category datasets, the testing accuracy for all the networks is very close to

40

or greater than their validation accuracy. This result is good, since if the
testing accuracy were much lower for any of the models, this could be an
indication of overfitting.

Now we consider the outcomes specific to the two category dataset, with
results presented in Table 4.2. One of the first interesting results to discuss
from this two category round of experiments is that some of the methods
performed very similarly or worse than the networks trained on the grayscale
images. This is true of the other reprocessing methods, where only blurring or
histogram equalization was applied to the images, without applying an edge
detection method. Both of these models performed worse on average than
the grayscale model. It is also true that the 5-by-5 Sobel method with and
without diagonal filters also yielded poorly performing models, resulting in
worse validation and testing accuracy than the baseline of simple grayscale
images. It is possible that this is due to the relatively small size of the
images, such that the larger 5-by-5 filters could have combined too much
information from far apart in the image into a single derivative, resulting in
inaccurate edge detection. The major exception to this pattern is that the
LOG operator performed the best out of any of the models tested on the two
category dataset, and performed almost identically in testing when blurring
was applied as a preprocessing step as to when it was not. It is possible that
the heavy weighting of coefficient values towards the center of the LOG filter
could have mitigated the problem that was seen when using either the 5-by-5
Sobel methods when on small images. Because of these initial results, we
continued to test the LOG operator on the more challenging, three category
dataset, but omitted both the 5-by-5 Sobel methods from additional testing.

Based on the experimental results for the two class dataset, we can
also see that comparing the Sobel method with and without blurring, we
achieved very similar results. The validation accuracy was slightly better for
the method with blurring, whereas the testing accuracy was higher for the
method without blurring. This indicates that blurring may not be a critical
step when using edge detection in the context of simple image identification
neural networks. In fact, since the method without blurring performed better
on new data, it could indicate it was less likely to “memorize” the data, but
instead uncover a more meaningful underlying pattern in the data, which it
used for classifying the images. This discovery could relate to the way noise
has been found to help improve training accuracy and develop more robust
deep learning methods [20]. We can also see that in the case of the 3-by-3
Sobel method, applying histogram equalization as a preprocessing step prior

41

to edge detection, and in lieu of blurring, yielded a significant improvement
in both validation and testing accuracy for this network. This result could
indicate that equalizing is a useful alternative to blurring in some contexts,
but we cannot argue all, as these results were not supported by the LOG
method accuracy values, which performed slightly better without histogram
equalization applied prior to edge detection.

As for comments on threshold selection according to the two category
dataset networks, we can see by comparing the automatic thresholding al-
gorithms of the built in Sobel edge detection method in MATLAB’s image
processing toolbox [11] and our average-based method, our method had on
average better results. As discussed in Section 2.1.5, the MATLAB method
tends to set a higher threshold than our method, resulting in fewer false pos-
itive edges, but more false negative edges. On the other hand, the results
from the MATLAB edge function, which has thinner edges, did yield more
consistent results than our method, which has a standard deviation for test-
ing accuracy that was almost five times the size of the MATLAB method.
These results may indicate an underlying truth to the question regarding the
trade-off between type I and type II errors in the context of edge detection
for applications in deep learning. In context of the way a neural network
works, with making linear combinations of the given inputs, it makes sense
that false negatives could be dangerous, as they erase information that the
deep learning model cannot bring back through its algorithm. But it is clear
that too many false positives could lead to noise which causes inconsistent
results in network training, as shown by the high standard deviation for our
3-by-3 Sobel method’s testing accuracy.

Next we discuss the additional results from the second round of experi-
ments, which used the three category dataset, as presented in Table 4.3. This
experiment showed that the Canny Method and our 3-by-3 Sobel method
with Gaussian blurring applied were the only methods to result in a notice-
able improvement to prediction accuracy compared to the networks train on
the baseline, grayscale images. In fact, all the other methods performed ex-
tremely similarly or worse than the neural networks trained on the grayscale
images. These results could indicate in the context of more difficult prob-
lems that blurring can be a meaningful step in improving edge detection for
image identification using deep learning, as opposed to using an alternate
preprocessing step such as histogram equalization, or skipping the step all
together.

One other result to note in relation to our questions is that the high

42

threshold method produced by the MATLAB edge function for the Sobel
method [11] performed significantly worse than our automatic thresholding
method used with the 3-by-3 Sobel edge detection method. Without blurring
first, our method which typically identifies a lower threshold compared to
the automatic MATLAB function, and in turn retains more information,
when used alone performed similarly to the grayscale image, and when used
after Gaussian blurring, performed notably better that the baseline-grayscale
image. This means, across both experiments, it was found that using a
higher threshold and erring on the side of false-positives yielded better results
compared to the lower thresholds that had greater potential to produce false
negatives.

Ultimately, these experimental results and their analysis reveal that neu-
ral networks are absolutely a method for determining a quantitative evalua-
tion of edge detection methods, though the results do not necessarily align
with traditional metrics for validation. One drawback in using this method
is that network tuning can be a time intensive process, especially for com-
plicated datasets. Additionally, when a network is trained multiple times on
the same data, the model will not always yield the same accuracy or train-
ing time results, meaning multiple tests will usually be necessary to yield
meaningful results from this method.

5.2 Future Work

Based on this initial exploration of quantitatively evaluating edge detec-
tion methods using a simple neural network, there are many additional ques-
tions that can be explored. The first area to continue exploring next could
be investigating these methods on new, alternative datasets. We briefly in-
vestigated datasets with noisy backgrounds and found limited success, so the
question of noise would be of particular interest. Additional research could
also be done for datasets of various size, or even color images, and it is very
possible that the results of which edge detection methods perform best may
differ. Looking into the behavior of neural network accuracy on any of these
specific types of data could yield interesting results.

Moreover, additional filters and/or prepossessing steps could be explored
in future work on this subject. In particular, it’s possible that combining
both Gaussian blurring and histogram equalization may be a beneficial step
in highlighting important features in digital images, especially given the min-

43

imal computational cost of both these methods.
Lastly, additional work could be devoted to improving the automatic

threshold method discussed in this paper, which was created to be easily
applicable to many methods for the purpose of fair comparison. In particular,
there may be the opportunity to collect additional information for an image,
such as standard deviation of pixel differences, median pixel value, or image
size, and use these values as a meaningful, automatic scale factor or additional
term used to improve upon the average-based automatic threshold method
we presented.

44

6. Conclusion
This project explored the possibility of implementing deep learning as

a method of quantitatively comparing and evaluating edge detection meth-
ods in lieu of methods that require a ground truth comparison, like the
Pratt Figure of Merit. In order to ensure fair comparisons, we implemented
an average-based threshold selection method that was compatible with the
various edge detection methods investigated in this work. We tested these
methods on a simpler subset and more complex subset of the Architectural
Heritage Elements dataset in order to investigate questions of interest re-
garding edge detection in the context of simple image classification problems
using neural network solutions. Ultimately, this method allowed us to obtain
quantitative measures of edge detection performance without a ground truth
reference, with the major drawback being that results of this method are not
consistent, and instead require repetition of experiments to yield meaningful
results, due to the inherent randomization in the neural network training
process.

In the second question we considered that, in the context of neural net-
work validation on edge detection, the traditional step of Gaussian blurring
might be eliminated while still maintaining good accuracy. Based on the
experiments performed in comparing the Sobel method applied to the sim-
pler, two category dataset, both with and without blurring, we achieved
very similar accuracy results from the trained algorithms. Instead, we found
histogram equalization to be a more effective preprocessing step compared
to Gaussian blurring in this experiment. This indicates that blurring may
not be a critical step when using edge detection in the context of a sim-
ple dataset, when attempting image identification using a neural network.
But when datasets increased in complexity, such as in the case of the three
category dataset with varying numbers of samples per category, this result
was no longer found to be true, and instead Gaussian blurring did indicate
improved neural network performance for image classification.

The last question regarded the idea of whether thinner edges are always
preferable in the machine learning context. It was discussed that since type II
errors can erase important information from the input, whereas the algorithm
can still learn from and respond accordingly to thick edges, representative
of type I errors, during the training process then it may be preferable in
the context of deep learning to favor false-positives over false-negatives. To
investigate this question we compared the automatic thresholding algorithm
used in MATLAB’s edge function and our automatic threshold method. In
the context of the Sobel method, our threshold values for a given image

45

were typically much lower, meaning more edges were maintained in the final
edge map. In experiments using both the simple and more complicated
datasets, we found the lower threshold to produce better average training
and testing accuracy in the neural networks trained on that data. On the
other hand, the results from the MATLAB edge function, which has thinner
edges, did yield more consistent results than our method in the context of the
simpler dataset, which may indicate that false-positives could also introduce
potentially unwanted noise into the data.

Ultimately, this project explored many aspects of edge detection in the
context of deep learning as a tool for quantitative evaluation of various meth-
ods. As edge detection has been a popular image processing tool for decades,
we show with this work that there are still many opportunities to continue
to experiment with these algorithms, especially thorough the lens of machine
learning with neural networks.

46

Bibliography
[1] R. C. Gonzalez, “Digital image processing,” eng, in Digital Image Pro-

cessing (Applied mathematics and computation ; no. 13), Applied math-
ematics and computation ; no. 13. Reading, Mass: Addison-Wesley
Pub. Co., Advanced Book Program, 1977, ch. Chapter 1 Introduction,
isbn: 0201025965.

[2] R. Jain, R. Kasturi, and B. Schunck, “Machine Vision,” in Jan. 1995,
ch. Introduction, isbn: 978-0-07-032018-5.

[3] M. Sonka, V. Hlavac, and R. Boyle, “Image pre-processing,” in Image
Processing, Analysis and Machine Vision, Boston, MA: Springer US,
1993, pp. 56–111, isbn: 978-1-4899-3216-7. doi: 10.1007/978- 1-
4899-3216-7_4. [Online]. Available: https://doi.org/10.1007/
978-1-4899-3216-7_4.

[4] R. Jain, R. Kasturi, and B. Schunck, “Machine Vision,” in Jan. 1995,
ch. Chapter 5, Edge Detection, isbn: 978-0-07-032018-5.

[5] I. Sobel, “An isotropic 3x3 image gradient operator,” Presentation at
Stanford A.I. Project 1968, Feb. 2014.

[6] MathWorks, What Is Image Filtering in the Spatial Domain? - MAT-
LAB & Simulink. [Online]. Available: https : / / www . mathworks .

com/help/images/what-is-image-filtering-in-the-spatial-

domain.html (visited on 04/24/2023).

[7] R. Jain, R. Kasturi, and B. Schunck, “Machine Vision,” in Jan. 1995,
ch. Chapter 4, Image Filtering, isbn: 978-0-07-032018-5.

[8] S. El-Khamy, M. Lotfy, and N. El-Yamany, “A modified fuzzy So-
bel edge detector,” in Proceedings of the Seventeenth National Radio
Science Conference. 17th NRSC’2000 (IEEE Cat. No.00EX396), Feb.
2000, pp. C32/1–C32/9. doi: 10.1109/NRSC.2000.838961.

[9] Z. Hameed and C. Wang, “Edge detection using histogram equalization
and multi-filtering process,” in 2011 IEEE International Symposium of
Circuits and Systems (ISCAS), ISSN: 2158-1525, May 2011, pp. 1077–
1080. doi: 10.1109/ISCAS.2011.5937756.

[10] R. C. Gonzalez, “Digital image processing,” eng, in Digital Image Pro-
cessing (Applied mathematics and computation ; no. 13), Applied math-
ematics and computation ; no. 13. Reading, Mass: Addison-Wesley
Pub. Co., Advanced Book Program, 1977, ch. Chapter 4 Image En-
hancement, isbn: 0201025965.

47

[11] MathWorks, Find edges in 2-D grayscale image - MATLAB edge. [On-
line]. Available: https://www.mathworks.com/help/images/ref/
edge.html (visited on 04/24/2023).

[12] I. Kobzev and V. Roman, Architectural Heritage Elements Image64
Dataset, en. [Online]. Available: https://www.kaggle.com/datasets
/cf813b5fd4256b7ad7656efb0fb31b1c09686b0d8aa28c3c1f51f019e

5203a77 (visited on 04/18/2023).

[13] MathWorks, Deep Learning Toolbox Documentation. [Online]. Avail-
able: https://www.mathworks.com/help/deeplearning/ (visited on
04/17/2023).

[14] G. S. Robinson, “Color Edge Detection,” Optical Engineering, vol. 16,
no. 5, p. 165 479, 1977. doi: 10.1117/12.7972120. [Online]. Available:
https://doi.org/10.1117/12.7972120.

[15] MathWorks, Image types - MATLAB. [Online]. Available: https://
www.mathworks.com/help/matlab/creating_plots/image-types.

html (visited on 04/30/2023).

[16] MathWorks, Convert RGB image or colormap to grayscale - MATLAB
rgb2gray. [Online]. Available: https://www.mathworks.com/help/
matlab/ref/rgb2gray.html (visited on 04/24/2023).

[17] MathWorks, Convert matrix to grayscale image - MATLAB mat2gray.
[Online]. Available: https://www.mathworks.com/help/images/ref/
mat2gray.html (visited on 04/24/2023).

[18] L. Shapiro and G. Stockman, “Computer Vision,” in Prentice Hall,
2001, ch. Chapter 5 Filtering and Enhancing Images, isbn: 978-0-13-
030796-5. [Online]. Available: https://books.google.com/books?
id=FftDAQAAIAAJ.

[19] J. Canny, “A computational approach to edge detection,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-
8, pp. 679–698, Dec. 1986. doi: 10.1109/TPAMI.1986.4767851.

[20] G. An, “The Effects of Adding Noise During Backpropagation Training
on a Generalization Performance,” Neural Computation, vol. 8, no. 3,
pp. 643–674, Apr. 1996, Conference Name: Neural Computation, issn:
0899-7667. doi: 10.1162/neco.1996.8.3.643.

48

[21] C. M. Bishop, “Training with Noise is Equivalent to Tikhonov Regu-
larization,” Neural Computation, vol. 7, no. 1, pp. 108–116, Jan. 1995,
issn: 0899-7667. doi: 10.1162/neco.1995.7.1.108. [Online]. Avail-
able: https://doi.org/10.1162/neco.1995.7.1.108 (visited on
04/17/2023).

[22] MathWorks, Adjust Image Contrast Using Histogram Equalization -
MATLAB & Simulink. [Online]. Available: https://www.mathwork
s.com/help/images/histogram- equalization.html (visited on
04/30/2023).

[23] F. Li, C. Shen, J. Fan, and C. Shen, “Image restoration combining
a total variational filter and a fourth-order filter,” Journal of Visual
Communication and Image Representation, vol. 18, no. 4, pp. 322–330,
2007, issn: 1047-3203. doi: https://doi.org/10.1016/j.jvcir.
2007.04.005. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1047320307000260.

[24] R. Jain, R. Kasturi, and B. Schunck, “Machine Vision,” in Jan. 1995,
ch. Chapter 2, Binary Image Processing, isbn: 978-0-07-032018-5.

[25] D. C. Montgomery, “Design and analysis of experiments,” eng, in 8th
ed. Place of publication not identified: John Wiley & Sons Inc, 2013,
ch. Chapter 2, Simple Comparative Experiments, isbn: 1-62198-227-0.

[26] Z. Jin-Yu, C. Yan, and H. Xian-Xiang, “Edge detection of images based
on improved Sobel operator and genetic algorithms,” in 2009 Inter-
national Conference on Image Analysis and Signal Processing, ISSN:
2156-0129, Apr. 2009, pp. 31–35. doi: 10.1109/IASP.2009.5054605.

[27] P. Vinista and M. M. Joe, “A novel modified sobel algorithm for better
edge detection of various images,” International journal of emerging
technologies in engineering research (IJETER), vol. 7, no. 3, pp. 25–
31, 2019.

[28] H. Kekre and S. Gharge, “Image segmentation using extended edge op-
erator for mammographic images,” International Journal on Computer
Science and Engineering, vol. 2, Jul. 2010.

[29] V. Mohan, “Performance analysis of canny and sobel edge detection
algorithms in image mining,” International Journal of Innovative Re-
search in Computer and Communication Engineering, pp. 1760–1767,
Oct. 2013.

49

[30] A. Fuentes Alventosa, J. Gómez-Luna, and R. Medina-Carnicer, “Gud-
canny: A real-time gpu-based unsupervised and distributed canny edge
detector,” Journal of Real-Time Image Processing, vol. 19, pp. 1–15,
Jun. 2022. doi: 10.1007/s11554-022-01208-0.

[31] T. El Arwadi and A. El-Zaart, “A Novel 5x5 Edge Detection Operator
for Blood Vessel Images,” British Journal of Applied Science & Tech-
nology, vol. 11, pp. 1–10, Aug. 2015. doi: 10.9734/BJAST/2015/19967.

[32] Y.-y. Zheng, J.-l. Rao, and L. Wu, “Edge detection methods in digital
image processing,” in 2010 5th International Conference on Computer
Science & Education, Aug. 2010, pp. 471–473. doi: 10.1109/ICCSE.
2010.5593576.

[33] Y. Yitzhaky and E. Peli, “A method for objective edge detection evalu-
ation and detector parameter selection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, no. 8, pp. 1027–1033, Aug.
2003, Conference Name: IEEE Transactions on Pattern Analysis and
Machine Intelligence, issn: 1939-3539. doi: 10.1109/TPAMI.2003.
1217608.

[34] V. Bhadouria, Pratt’s figure of merit, 2023. [Online]. Available: https:
//www.mathworks.com/matlabcentral/fileexchange/60473-pratt

-s-figure-of-merit (visited on 04/25/2023).

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[36] MathWorks, Image input layer - MATLAB. [Online]. Available: https:
//www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.

imageinputlayer.html (visited on 04/18/2023).

[37] MathWorks, Classification output layer - MATLAB classificationLayer.
[Online]. Available: https://www.mathworks.com/help/deeplearni
ng/ref/classificationlayer.html (visited on 04/18/2023).

[38] MathWorks, 2-d convolutional layer - MATLAB. [Online]. Available:
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.

layer.convolution2dlayer.html (visited on 04/18/2023).

[39] G. James, Daniela Witten, Trevor Hastie, and Rob Tibshirani, An In-
troduction to Statistical Learning, 1st ed. Springer, 2017, isbn: 978-1-
4614-7138-7. [Online]. Available: https://www.statlearning.com/.

50

[40] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.
doi: 10.1126/science.aaa8415. eprint: https://www.science.org/
doi/pdf/10.1126/science.aaa8415. [Online]. Available: https:
//www.science.org/doi/abs/10.1126/science.aaa8415.

[41] Sobel operator, en, Page Version ID: 1134260670, Jan. 2023. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Sobel_
operator&oldid=1134260670 (visited on 04/17/2023).

[42] MathWorks, Data sets for deep learning. [Online]. Available: https:
//www.mathworks.com/help/deeplearning/ug/data-sets-for-

deep-learning.html (visited on 04/24/2023).

[43] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[44] MathWorks, Create Simple Image Classification Network - MATLAB &
Simulink. [Online]. Available: https://www.mathworks.com/help/de
eplearning/gs/create-simple-deep-learning-classification-

network.html (visited on 04/17/2023).

[45] M. Momeny, A. M. Latif, M. A. Sarram, R. Sheikhpour, and Y. D.
Zhang, “A noise robust convolutional neural network for image classi-
fication,” Results in Engineering, vol. 10, p. 100 225, 2021, issn: 2590-
1230. doi: https://doi.org/10.1016/j.rineng.2021.100225.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2590123021000268.

[46] MathWorks, Batch normalization layer - MATLAB. [Online]. Avail-
able: https://www.mathworks.com/help/deeplearning/ref/nnet.
cnn.layer.batchnormalizationlayer.html (visited on 04/18/2023).

[47] MathWorks, Rectified Linear Unit (ReLU) layer - MATLAB. [Online].
Available: https://www.mathworks.com/help/deeplearning/ref/
nnet.cnn.layer.relulayer.html (visited on 04/18/2023).

[48] MathWorks, Fully connected layer - MATLAB. [Online]. Available: h
ttps://www.mathworks.com/help/deeplearning/ref/nnet.cnn.

layer.fullyconnectedlayer.html (visited on 04/29/2023).

51

[49] MathWorks, Softmax layer - MATLAB. [Online]. Available: https:
//www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.

softmaxlayer.html (visited on 04/18/2023).

[50] E. Tuba, N. Bačanin, I. Strumberger, and M. Tuba, “Convolutional
Neural Networks Hyperparameters Tuning,” in Artificial Intelligence:
Theory and Applications, E. Pap, Ed., Cham: Springer International
Publishing, 2021, pp. 65–84, isbn: 978-3-030-72711-6. doi: 10.1007/
978-3-030-72711-6_4. [Online]. Available: https://doi.org/10.
1007/978-3-030-72711-6_4.

[51] MathWorks, Options for training deep learning neural network - MAT-
LAB trainingOptions. [Online]. Available: https://www.mathworks.
com/help/deeplearning/ref/trainingoptions.html (visited on
04/30/2023).

52

