
Mitigating Temporal Memory Safety Errors in the Linux Kernel

by

Jake Backer

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

April 2023

APPROVED:

Professor Robert J. Walls, Major Thesis Advisor

Professor Craig Shue, Thesis Reader

Abstract

Temporal memory safety vulnerabilities can allow attackers to escalate privileges on

Linux based devices. This paper presents two solutions to temporal safety vulnerabili-

ties. First, we present the Bounce Allocator: A pool-based memory allocator designed

to mitigate temporal memory safety errors on ARMv8.5-A based Linux devices. Other

solutions do not effectively mitigate temporal memory safety errors or have large memory

and performance overheads that makes them unsuitable for production environments. The

Bounce Allocator achieves entropy comparable with other solutions while using signif-

icantly less memory and having improved runtime performance. The Bounce Allocator

is implemented on top of an existing allocator to help preserve kmalloc caching perfor-

mance.

This paper also presents Tag Exclusion Sets: A simple solution that deterministically

prevents a subset of temporal memory safety attacks in the Linux kernel. This solution

has little runtime overhead and no memory overhead and requires little change to the

memory allocator.

Acknowledgements

I would like to thank my advisor, Robert Walls, for his support and guidance through-

out this work and my studies. I also thank John Criswell and Ziming Zhao for their

valuable advice and collaboration this year. I thank Craig Shue for his support and ad-

vice throughout my time at WPI. Thanks to my family, friends, and loved ones for their

unwavering support. Finally, I thank my parents and grandparents for giving me the op-

portunity to make it to where I am today.

I

Contents

1 Introduction 1

2 Background 4

2.1 ARM Memory Tagging Extension . 4

3 Bounce Allocator 6

3.1 Design . 6

3.1.1 Threat Model . 6

3.1.2 Design Goals . 9

3.1.3 Design Overview . 10

3.1.4 Bounce Table . 11

3.1.5 Ready Free List . 12

3.1.6 Embedded Free List . 13

3.1.7 Limitations . 13

3.2 Performance Evaluation . 14

3.2.1 Methodology . 14

3.2.2 Results . 15

3.3 Memory Evaluation . 15

3.4 Security Evaluation . 16

3.5 Related Work . 17

II

3.5.1 DieHard . 17

3.5.2 Kernel Address Sanitizer . 19

3.6 Conclusions and Future Work . 20

4 Tag Exclusion Sets 22

4.1 Threat Model . 22

4.2 Design . 23

4.2.1 Alternative Solutions . 25

4.3 Evaluation . 25

5 Conclusions 26

III

List of Figures

3.1 Overview of the DirtyCred attack and CVE-2021-4154. This demon-

strates the three phases of the DirtyCred attack as well as the details for a

specific vulnerability. 8

3.2 The top structure represents the bounce table and the bottom structure

represents the Ready Free List. Each arrow points from the table entry

containing the pointer to the address it points to. This diagram shows a

potential state of the allocator after one table entry from the ready list has

been allocated. 10

3.3 The DirtyCred attack and CVE-2021-4154 with the Bounce Allocator.

The number after fp : is the address tag and the numbers at the bottom

left of each block are memory tags. When the object is freed, the tag

is changed. This causes an exception to be thrown upon future probes.

The privileged object is randomly allocated into a different table entry,

causing the probe to fail. 18

4.1 DirtyCred attack presented in Figure 3.1 with the Tag Exclusion Set solu-

tion applied. The number after ‘fp:‘ is the address tag for the pointer and

the numbers at the bottom left of each memory block are the memory tags. 24

IV

Chapter 1

Introduction

The Linux kernel is used on many types of devices and architectures from mobile de-

vices, application servers, and even personal computers for some users. Temporal mem-

ory safety errors that take advantage of memory allocators are widespread. DirtyCred is a

novel exploitation method for escalating privileges on Linux-based systems that takes ad-

vantage of temporal memory safety errors. DirtyCred swaps unprivileged and privileged

kernel credentials to gain further access on a system [7].

Lin et al. proposed a solution to the DirtyCred problem involving separating cre-

dential structures into non-overlapping memory regions based on the structure’s privilege

level [7]. This approach makes it hard for the Linux kernel to cache and reallocate objects.

This hurts the performance of the memory allocator. Kernel Address Sanitizer (KASAN)

is a feature built into the Linux kernel to dynamically find spatial and temporal memory

safety errors. In generic mode, KASAN has high memory and performance overhead [6].

KASAN also has a hardware tag-based mode that is significantly faster, but only distin-

guishes between freed and allocated memory. This causes reallocated memory chunks

to be accepted. Alternative memory allocators such as DieHard partially mitigate this

problem by randomizing the placement of new allocations in a large segment of memory.

1

Though DieHard provides significant security benefits, it has very high memory overhead

compared to conventional allocators [2].

In this paper, we propose alternative solutions that, depending on the scenario, can

be used to provide significantly increased security or performance compared to the solu-

tion proposed by Lin et al. First, we propose a solution that allows us to protect kernel

memory structures with high probability in all scenarios with little performance impact by

adding a level of indirection to pointer dereferences. Since smaller allocations are easier

to protect with randomization based approaches, a level of indirection to pointers allows

us to achieve higher entropy with the same amount of memory.

When designing this allocator, we aimed to allow setting a configurable amount of

minimum entropy to allow system administrators to trade off memory overhead for an

increased level of entropy. We also wanted to ensure that allocations and frees are done in

constant average time. Finally, we must ensure that attempts to probe the heap fail with a

high degree of certainty.

We also describe a solution that takes advantage of ARM Memory Tagging Exten-

sions (MTE) to deterministically prevent privilege escalation on ARM-based Linux sys-

tems. We reserve a set of tags for privileged data, a set for unprivileged data, and one

tag for freed data. By doing so, an invalid free would invalidate pointers and it would

not be possible for a privileged object to be allocated with the same tag as the previous,

unprivileged, object. This simple solution takes advantage of fast, hardware level features

in ARM devices to deterministically prevent privilege escalation.

Our contributions are as follows:

• We designed a system that provides efficient temporal memory safety error mitiga-

tion for the Linux kernel. This system can be used to protect any memory structure

that uses the kernel memory allocator to allocate instances and is not restricted to

protecting against privilege escalation attacks.

2

• We built an analogue to the system, designed to evaluate performance, in user space

that works on top of the glibc memory allocator instead of the kernel memory allo-

cator.

• We evaluated the performance and memory overhead of analogue design. The ana-

logue of the Bounce Allocator incurred a 50.31% performance overhead when com-

pared to the base glibc memory allocator without modifications. The analogue also

incurs a 8 byte overhead per allocated object, plus a static amount of memory used

for the ready list.

• We designed an alternative solution that deterministically prevents privilege escala-

tion vulnerabilities, such as those shown in the paper by Lin et al., on ARM based

systems with little performance overhead [7].

3

Chapter 2

Background

In this section, we talk about ARM architecture features used by the Bounce Allocator

and Tag Exclusion Sets designs.

2.1 ARM Memory Tagging Extension

Introduced in ARMv8.5-A, the ARM Memory Tagging Extension (MTE) adds hardware

features to increase spatial and temporal memory safety [5]. MTE consists of two major

components: Address tags and memory tags. All memory is broken into 16 byte granules.

Each granule has four bits of metadata associated with it. The actual location of this

metadata is determined by the hardware, but it is treated as in-band metadata in software.

This in-band metadata stores the memory tag. MTE takes advantage of Top Byte Ignore

(TBI), a feature of Armv8-A that ignores the top byte of all addresses during translation

to allow for in-pointer metadata. With TBI, MTE stores the address tag in the top byte

of pointers. Whenever a pointer is dereferenced, the address tag and memory tag for the

memory the address points to are compared in hardware. If they are equal, the dereference

occurs. If they do not match, an exception occurs according to the configuration, though

4

it is recommended to cause a process crash upon receiving an exception in a production

environment [5]. This is based on a lock-and-key approach to providing memory safety.

MTE tags can be controlled by software and can be used to store any metadata, but

are designed to be used by memory allocators to distinguish between allocated and freed

memory efficiently.

5

Chapter 3

Bounce Allocator

This chapter discusses the potential threats that our system aims to mitigate, our design

goals, as well as a design to solve temporal memory safety issues in the Linux kernel, as

presented in the DirtyCred paper [7].

3.1 Design

We designed the Bounce Allocator to protect Linux kernel memory structures from heap

based temporal memory safety attacks. Below, we describe the threat model, the design

goals, and the design of the Bounce Allocator’s primary components.

3.1.1 Threat Model

In our threat model, we are focusing on ARM-based Linux systems. Nearly all smart-

phones use ARM-based processors. More recently, Apple Silicon based Mac devices also

use ARM-based processors. We assume that the adversary has access to an an unpriv-

ileged user account and a heap memory error in the Linux kernel. We are focusing on

ARM based processors with MTE support. We discuss in Section 3.6 how this may be

6

done without MTE.

We assume the attacker can trigger object allocations in the kernel, deference allocated

objects, and free allocated objects. Further, we assume that the attacker can invalidly free

objects with a heap vulnerability to create a dangling pointer. We assume that the attacker

will create a dangling pointer to point to another valid memory structure. They cannot

craft arbitrary pointers and cannot arbitrarily write to memory. We consider the attacker’s

goal to perform a lateral movement attack and gain access to a different, non-root user.

Temporal memory errors are important to address because any heap memory error

can be pivoted to one useful to replace a credential structure in memory and therefore

escalate privileges [7]. This type of attack is demonstrated in DirtyCred. DirtyCred is

an exploitation method that takes advantage of existing heap vulnerabilities to swap valid

credential structures after they have been checked [7].

The details of this technique vary depending on the exact vulnerability that is be-

ing exploited. As a high level example, we can analyze the general flow of exploiting

CVE-2021-4154 [8]. This is shown in Figure 3.1. In essence, this vulnerability allows

the attacker to replace a valid, unprivileged structure in memory with a valid, privileged

structure. In this case, the attacker opens an unprivileged file, triggers the vulnerability,

and replaces it with a privileged file such as / etc /passwd. This allows the attacker to read

or write from the privileged file while acting as an unprivileged user.

Many Linux systems have privileged users other than root. The solutions presented in

Chapter 4 and the DirtyCred paper are effective at preventing privilege escalation attacks,

where an unprivileged user gains access to the root account on the system, but these

solutions do not prevent a lateral movement attack.

7

uid: 1
file:
/tmp/exploit

Freed
Memory

uid: 0
file:
/etc/passwd

fp

fp

fp

fp->uid == user->uid : true

Write to fp->file

Allocated
Memory

Step 1:
Allocate unprivileged

file

Step 2:
Check permissions of

file

Step 3:
Invalidly free object

Step 4:
Allocate privileged file

Pivot
Vullnerability

Extend
Time

Window

Allocate
Privileged

File

Figure 3.1: Overview of the DirtyCred attack and CVE-2021-4154. This demonstrates
the three phases of the DirtyCred attack as well as the details for a specific vulnerability.

8

3.1.2 Design Goals

We designed an allocator to meet the following goals, in no particular order. By meeting

these goals, we mitigate the threats defined in the Threat Model. We discuss how the

Bounce Allocator meets these goals below.

Goal 1: The attacker cannot directly control which slot will be selected

If the attacker can control the slots provided by the allocator, they can cause the allocator

to provide a slot that had been recently invalidly freed by the attacker.

Goal 2: The allocator provides quantifiable minimum guarantees in preventing an

attacker from probing a slot

If the attacker has the ability to reliably probe a slot, they can perform allocations until

they allocate to the spot pointed to by a dangling pointer.

Goal 3: The allocator provides quantifiable minimum guarantees regarding the level

of entropy when selecting a slot

Goal 4: Minimize the amount of space used to manage the heap

Goal 5: Ensure consistent performance regardless of the number of objects allocated

If performance slows down when large numbers of objects are allocated, the Bounce

Allocator may not be viable in some use cases.

Goal 6: The allocator provides low runtime overhead for instrumentation

The Bounce Allocator should use very simple instrumentation to ensure dereferences do

not cause a significant performance impact.

Goal 7: Maintain caching performance and properties of existing allocators

The Bounce Allocator should not significantly impact the underlying allocators in such a

way as to cause a decrease in caching performance.

9

3.1.3 Design Overview

We built a pool-based allocator that works on top of existing memory allocators, satisfying

Goal 7. Our system consists of a large region of memory called the bounce table1 and a

fixed sized array known as the ready free list.

Heap Pointer Heap Pointer

Allocated

Embedded
Free List

Ready List

Figure 3.2: The top structure represents the bounce table and the bottom structure repre-
sents the Ready Free List. Each arrow points from the table entry containing the pointer
to the address it points to. This diagram shows a potential state of the allocator after one
table entry from the ready list has been allocated.

On allocation, the allocator chooses a table entry from the ready free list, requests an

allocation from the underlying allocator, and stores the allocated pointer in the chosen

table entry. When the ready list is half empty, the list is refilled with table entries from

the bounce table and the contents are shuffled. This probabilistically prevents reuse of

table entries, making it more difficult to perform attacks such as DirtyCred. Since the

table entries we are randomizing are small, we can achieve significantly higher entropy

with lower memory overhead compared to other randomization based allocators, such as

DieHard or the Scudo Allocator [3] [9].

Upon freeing an object, the table entry is tagged as free and is added to the embedded

1Also known as the bounce house

10

free list within the bounce table. This prevents the use of dangling pointers due to the tag

mismatch. Since table entries are allocated probabilistically, there is an unknown amount

of allocations until reuse of the table entry. Additionally, the embedded free list acts as a

quarantine list and delays the use of objects as much as possible without wasting memory.

This makes it significantly more difficult to perform attacks such as DirtyCred due to the

inability to probe table entries and the unknown nature of the randomized table entries.

When objects are dereferenced, the memory and address tags are checked in hardware

to ensure the pointer is valid. This allows the allocator to verify the table entry is allocated

with minimal overhead. Dereferencing the object a second time will result in the actual

structure. With the Bounce Allocator, ARM memory tags are used which cause dangling

pointers to become invalid and cause a fault upon derefernece, making it impossible to

probe the pointer.

3.1.4 Bounce Table

The bounce table is broken into 16 byte table entries. The Bounce Allocator must distin-

guish between previously used and new table entries. This could be achieved by tagging

data with ARM MTE tags, or by using a separate bit map. Each table entry is always

in one of three states: New, allocated, or freed. In our current implementation, these

states are encoded in MTE tags which allows the hardware to ensure that pointers never

access the wrong state. This incurs minimal runtime overhead and no memory overhead.

New table entries have never been allocated. Freed table entries were allocated previously

and have since been freed. Allocated table entries contain heap pointers provided by the

underlying memory allocator.

When allocating an object in the Bounce Allocator, we request an allocation from

the underlying allocator and store its address in the table entry chosen. We then return

a pointer to the table entry. This layer of pointer indirection gives the Bounce Allocator

11

greater control of the pointers associated with allocations without modifying the under-

lying allocator. Upon freeing a table entry, it is marked with the free tag. This causes

any dangling pointers to the table entry to generate an exception when dereferenced. This

prevents Use After Free vulnerabilities from being used and satisfies Goal 2.

The Bounce Allocator reserves a large segment of address space at initialization for

the bounce table, but only allocates pages as needed. By doing so, the system will not

physically assign memory to the requested regions that are not allocated. The purpose of

allocating a large, contiguous segment of address space is to reduce calculations needed

to find fragmented chunks of the heap.

3.1.5 Ready Free List

The ready free list contains pointers to the table entries of the bounce table. When filled,

the ready list is shuffled to provide the main source of entropy for our allocator. The

size of the ready list provides a configurable, minimum amount of entropy provided by

the system, satisfying Goal 3. The randomized order of the ready list causes the order

in which table entries are allocated to be probabilistic. This makes the reuse of table

entries unpredictable with a minimum level of entropy, effectively preventing dangling

pointers from pointing to newly allocated, attacker controlled memory, satisfying Goal 1.

The ready free list also allows allocations to be completed in constant time on average to

partially satisfy Goal 5.

The Bounce Allocator makes use of amortized data structures and algorithms. The

ready free list allows the Bounce Allocator to delay costly operations of randomizing or-

der and copying data to achieve constant time average performance. The Bounce Alloca-

tor uses the Fisher-Yates algorithm for shuffling data, allowing for O(N) time complexity.

12

3.1.6 Embedded Free List

The bounce table also contains an embedded free list of objects, where a freed table entry

contains a pointer to the next freed table entry. This allows us to conserve memory while

tracking all previously used objects. This list also preserves the order in which objects are

freed, which allows for delaying the reuse of objects until it is necessary to reuse them

for memory saving reasons. When an element is freed, the Bounce Allocator adds it to

the tail of the embedded linked list. This is done by writing the address of the table entry

to the previously freed table entry. This also helps prevent memory sparsity as described

in Section 3.1.7. Since this is integrated into the free space in the bounce table, this

minimizes the space used to store this metadata, therefore satisfying Goal 4. Adding to

the embedded free list can also be completed in constant time to solve Goal 5.

3.1.7 Limitations

There are several limitations in the prototype of the Bounce Allocator. First, the extra

layer of memory accesses increases pressure on the Translation Lookup Buffer (TLB)

and CPU caches. This could significantly increase the performance impact in real world

applications, but initial evaluation shows promising results as seen in Section 3.2. Our

current design makes use of huge pages to reduce the strain on the TLB, but future work

should be completed to investigate the performance impact [4].

Due to the randomized nature of the Bounce Allocator, large spikes in the number of

allocations could result in sparse pages, where very few objects are allocated in a given

page at any given time. This increases the overall memory overhead. A potential solution

to this is marking pages that have few objects allocated as ready to be freed and deferring

the allocation of objects in that page by tagging the table entry and moving the pointer

to the end of the linked list. This increases the chance all objects in a given page will

13

be freed, allowing for the whole page to be released, but still falls short when there are

persistent objects that are not freed. This is not a problem unique to the Bounce Allocator.

Other allocators, such as the Linux SLAB allocator, also have this issue [1]. At a basic

level, the SLAB allocator handles this by freeing pages that are empty, but there is also

support for callbacks to free pages more aggressively if the OS requests more memory.

3.2 Performance Evaluation

We estimate that the primary source of overhead will be the additional pointer dereference

on every object dereference. To serve as a rough estimation of this overhead, we evaluated

an analogue of the bounce table to test this additional instrumentation.

Another consideration to make is the size of the ready list for the system. Depending

on the frequency that objects are allocated, the size of the ready list can affect perfor-

mance. If objects are frequently allocated but the ready list is small, then the list must be

refilled more frequently. This may cause more slowdowns, however we leave evaluations

to future work.

3.2.1 Methodology

We modified a simple merge sort program to use an analogue of the bounce table. We

chose this as our benchmark application since it involves a significant amount of alloca-

tions and pointer deferences. Since this application contains very few other operations, we

are considering this a worst case application for our benchmarks. This program allocates

8000000 objects with random integer values and performs merge sort on them, measur-

ing the time it takes to complete these operations in milliseconds using the gettimeofday

function.

To represent the code with the Bounce Allocator, we created an analogue of the

14

bounce table that contains a large array of table entries. On allocation, malloc allocates

the space to store the actual object and the address of allocation is stored in the chosen

table entry. Then, the table entry’s address is returned. We manually added the instrumen-

tation to follow the bounce table entry. We ran the unmodified baseline and the version

with the Bounce Allocator 1000 times and averaged the results.

3.2.2 Results

In this program, the majority of runtime is spent on memory dereferences of heap objects.

Therefore, in the worst case we would expect a doubling of runtime due to the duplicated

dereferences, however our results show a smaller overhead. On average, the unmodified

baseline took 3643.13 seconds and the transformed design took 5476.01 seconds. This

results in an approximately 1.5x performance overhead.

3.3 Memory Evaluation

We estimate the memory overhead of the Bounce Allocator as follows. There are two

components to consider for memory overhead: the bounce table and the ready free list.

The ready free list is statically sized. The size of the list can be adjusted to provide more

entropy and can be decided when implementing this allocator. The size of the bounce

table is directly proportional to the maximum number of objects allocated. The bounce

allocator adds 16 bytes of overhead per allocated object. This results in an overhead

roughly equal to 16N +R bytes, where N is the number of objects allocated and R is the

size of the ready list. This results in significantly less overhead when compared to other

solutions such as DieHard, especially in systems where many larger objects are allocated.

Due to its over-provisioning, DieHard requires at least a 2x memory overhead, defined by

its over-provisioning factor M.

15

3.4 Security Evaluation

To evaluate the Bounce Allocator’s provided security, we investigate the capable actions

of an attacker and show how our system protects against these threats. We show the

security guarantees of the system and how they apply to the DirtyCred attack. Here, we

consider the attacker’s goal to cause a dangling pointer in the Linux kernel to point to a

data structure that the attacker chooses.

As described in Section 3.1.1, an attacker has four primitive operations from which

temporal memory safety attacks in the kernel are constructed: Allocate, validly free, in-

validly free, and dereference. The attacker is limited to these operations due to the barrier

between kernel and user space. These operations involve calling syscalls that derefer-

ences, frees, or allocates memory internally. The Bounce Allocator instruments each of

these operations to add security guarantees.

Upon dereferencing a dangling pointer, a memory tag check will fail since the corre-

sponding table entry will be marked with the free tag while the pointer will still be marked

with the allocated tag. This failure causes a hardware fault, typically causing a crash in

most systems. An attacker cannot probe to check if a table entry has been reallocated

without a high chance of failure. This effectively prevents attacks such as DirtyCred [7].

When an object is freed, the table entry is marked with the free tag and it is added

to the end of the embedded free list. Adding to the end (as opposed to adding to the

start) of the embedded free list increases the time until reuse without causing increases

in memory overhead. This table entry is only reused after all previous table entries in

the embedded free list are used. If an object is invalidly freed, any dangling pointers will

have a mismatched tag and do not have the ability to match until the object is re-allocated.

This happens in an indeterminate amount of time due to the randomization of the ready

free list and the difficult to predict nature of allocating many objects in the kernel.

16

Finally, requesting a new object from the allocator pulls a table entry from the ready

free list. This list is randomized and provides a minimum level of entropy. The entropy

provided by the ready free list is as follows:

log2(S);S = Number of free table entries

Due to this, the adversary’s likelihood of success without causing a noticeable signal,

such as a process crash due to a tag mismatch exception, is 1/S. The ready free list is

refilled and randomized once it is half empty. This ensures there is always a minimum

level of entropy, but there will likely be more entropy due to the delayed use of table

entries:

log2(R/S);R = Size of the ready list

Overall, the Bounce Allocator makes it significantly harder for attackers to predict

and manipulate the allocator to perform temporal memory safety attacks. The system

randomizes the ordering of table entries with a configurable, minimum amount of entropy

and prevents probing table entries to test if an allocation worked.

3.5 Related Work

3.5.1 DieHard

DieHard is a randomization based memory allocator that provides significant security

guarantees at the cost of significant memory overhead. DieHard creates mini heaps, which

are increasingly large chunks of memory that contain memory objects of exactly one size.

Each new mini-heap is a factor M larger than the previous mini-heap. When a mini-

heap’s ratio of allocated objects to total objects reaches 1/M, a new mini heap is created.

This O(logN) bits of entropy from the allocator [3]. A key feature to DieHard is the fact

17

0x103

1

0x113

1

0x123

1 2

Freed
Memory

0x103

1

0x113

1 2 2

0x103

1

0x113

1

0x133

12

fp:1

fp:1

fp:1

fp->uid == user->uid : true

Probe causes exception.
Address tag and memory

tag do not match.

Allocated
Memory

Step 1:
Allocate unprivileged

file

Step 2:
Check permissions of

file

Step 3:
Invalidly free object

Step 4:
Allocate privileged file

2

2

2

Tag does
not match

0x123

uid: 1
file:
/tmp/exploit

0x133

Heap

...

0x123

uid: 1
file:
/tmp/exploit

0x133

...

0x123

uid: 1
file:
/tmp/exploit

0x133

uid: 0
file:
/etc/passwd

...

Figure 3.3: The DirtyCred attack and CVE-2021-4154 with the Bounce Allocator. The
number after fp : is the address tag and the numbers at the bottom left of each block are
memory tags. When the object is freed, the tag is changed. This causes an exception to
be thrown upon future probes. The privileged object is randomly allocated into a different
table entry, causing the probe to fail.

18

that the number of free chunks is always proportional to the number of allocated objects,

N [3]. This ensures that the probability of returning the most recently freed chunk is at

most 1/MN.

In allocators such as the base DieHard, Scudo, or the Linux SLAB allocator, it is

possible to probe if a temporal safety attack occured by dereferencing a dangling pointer.

With these systems, it is possible to dereference a pointer and observe its value without

crashing the process or otherwise causing a fault behavior. This causes these allocators to

fail to meet Goal 2. Since DieHard and Scudo are replacements for the existing memory

allocators, they also fail to meet Goal 7.

3.5.2 Kernel Address Sanitizer

Tools such as Kernel Address Sanitizer (KASAN) and other sanitizers can deterministi-

cally detect some temporal memory safety errors at the cost of significant memory and

performance overhead. KASAN has three different modes that provide different security

guarantees and drawbacks. In Generic mode, KASAN uses shadow memory, redzones,

and significant compiler instrumentation to detect memory errors. This mode has a 2x

runtime overhead and a memory overhead roughly equal to (1/8 RAM)+(1/32 RAM)+

1.5 ∗NumSlabs due to the use of shadow memory [6]. Due to this, KASAN in generic

mode is only intended to be used during testing to fuzz for memory safety errors and

fails to meet Goals 4 and 6. To prevent immediate reuse, KASAN puts freed objects

into a quarantine queue to delay reuse. KASAN’s software based tagging mode uses

ARM Top Byte Ignore to reduce the memory overhead and the hardware based tagging

mode reduces the memory overhead even further and reduces the performance overhead

to < 10%, but these modes only distinguish between freed and allocated memory and

cannot effectively be used to prevent attacks on live systems and are intended to enable

live reporting of memory safety vulnerabilities on live systems. Due to this, KASAN also

19

fails to meet Goal 1.

3.6 Conclusions and Future Work

In this chapter, we discussed a solution to help mitigate temporal memory safety attacks

in the Linux kernel. We focused on DirtyCred: an exploitation method that uses tempo-

ral memory safety errors in the kernel along with a race condition to replace credential

structures and escalate privileges. We developed a promising solution that makes attacks

such as DirtyCred more difficult and provides a minimum amount of entropy with low

memory and performance overhead without modifying the underlying memory alloca-

tors. We showed that by adding a layer of indirection to pointer dereferences, we can gain

stronger control of pointers. We determined that small objects are easier to protect with

randomization based methods.

There are several areas for future work to further develop this system into one usable

in production environments. First, a better solution to freeing unneeded pages should be

investigated. Currently, our solution can result in pages with a small number of used table

entries that are persistent and will not be freed. This increases overall memory overhead

after a long runtime of this system. A potential area of investigation could be strategic

placement of objects that are expected to stay allocated for large periods of time.

Another area for future research is investigating the design and performance of this

system implemented without ARM MTE to allow for support on x86 based systems.

MTE is currently used to efficiently enforce freed and allocated states as it adds nearly

zero performance or memory overhead, but this prevents the allocator from running on

systems other than ARMv8.5 or newer. Many personal computing devices and servers are

based on x86 which does not have hardware memory tagging support. Implementing the

Bounce Allocator without hardware tagging should be investigated to expand support.

20

The multi-threading safety of the Bounce Allocator should also be investigated. Cur-

rently, race conditions are possible on some boundary conditions where one thread may

allocate a table entry from the free list while another thread starts re-filling it. A simple

lock based solution here would prevent this problem, but would cause significant per-

formance impact and effectively force all allocations to be single threaded. A counting

semaphore could be used to improve upon this, allowing all threads to allocate without

blocking, but this would still cause blocking when a thread must re-fill the ready free list.

Finally, the Bounce Allocator should be benchmarked in kernel space. Our evaluation

of the allocator was done purely in user space to get a rough estimate of the performance

impact of the system, but it should be tested in the kernel while running real world ap-

plications. This would provide a much more accurate measurement of the performance

impact if this were to be implemented in the Linux kernel.

21

Chapter 4

Tag Exclusion Sets

This chapter discusses Tag Exclusion Sets: Another solution to protect against the Dirty-

Cred attack. Unlike the Bounce Allocator, this solution is deterministic with almost no

runtime or memory overhead, however it only addresses the DirtyCred attack and does

not address temporal memory safety issues in general.

4.1 Threat Model

Similar to the threat model described in Section 3.1.1, we are focusing on ARM-based

Linux systems. For this chapter, we investigate a reduced scope problem where an at-

tacker aims to gain access to the root account specifically. We do not consider lateral

movement, where an attacker moves to another non-root account. Further, we only aim to

prevent low privilege file structures from being swapped with a high privilege file struc-

ture, as shown in the DirtyCred attack [7].

22

4.2 Design

To combat the DirtyCred attack, we propose a solution taking advantage of ARM MTE

to protect Linux kernel structures on 64-bit ARM systems. Our solution, Tag Exclusion

Sets, assigns tags 0 through 7 for unprivileged objects, tags 8-14 for privileged objects,

and tag 15 for freed objects. The SLAB allocator will assign a tag to the region following

these rules: Privileged objects will never share a tag with unprivileged objects, objects

will never share a tag with adjacent objects, and objects will never share a tag with freed

memory. Since unprivileged and privileged objects can never have the same tags, it is

impossible for a pointer previously pointing to an unprivileged object to continue to be

valid after an object swap.

When memory for a structure is allocated, the allocator sets the memory and address

tags. Whenever the pointer is dereferenced, the hardware checks the tags. If the tags do

not match, an exception will be thrown. The pointer will no longer be valid when an

object is freed or reallocated with an object of a different privilege, as the tags will not

match. This deterministically prevents the kernel from using swapped credentials.

Swapping between two different low privilege objects yields a different result. There

are only 8 tags for unprivileged objects and 7 for privileged objects. Due to the low

number of tags, there is a high probability that an attacker could manipulate the system to

perform the DirtyCred attack to swap two objects of the same privilege level.

If the structure is the same privilege as the previous one, there is either a 1/6 chance

for unprivileged structures and a 1/5 chance for privileged structures to be allocated with

the same tag. The outcome of a same-privilege swap is less severe than a privilege esca-

lation, therefore this is considered somewhat acceptable, but due to the high probability,

an attacker could manipulate a system to perform this attack. On some systems, there

may be non-root accounts that have similar privileges to root accounts (such as admin

23

accounts). These accounts would not be sufficiently protected by this solution.

4 6

uid: 1
file:
/tmp/exploit

3 15

Freed
Memory

0

uid: 0
file:
/etc/passwd

13

fp:3

fp:3

fp:3

fp->uid == user->uid : true

Address tag and memory tag do
not match. Exception thrown

Allocated
Memory

Step 1:
Allocate unprivileged

file

Step 2:
Check permissions of

file

Step 3:
Invalidly free object

Step 4:
Allocate privileged file

Unprivileged Exclusion Set:
8-15

Privileged Exclusion Set: 0-
7, 15

Tag does
not match

15

15 15

15 15

4 6

4 6

Figure 4.1: DirtyCred attack presented in Figure 3.1 with the Tag Exclusion Set solution
applied. The number after ‘fp:‘ is the address tag for the pointer and the numbers at the
bottom left of each memory block are the memory tags.

24

4.2.1 Alternative Solutions

The solution described in the paper by Lin et al. targets the same scope as the solution

described here, but it is done entirely in software without hardware tagging support [7].

Their solution separates privileged and unprivileged objects into entirely separate mem-

ory regions, preventing them from ever interacting. Though their paper shows there is

very little performance overhead with their proposed design, modifications to the kernel

allocator can cause issues with object caching in some applications. Their solution also

does not provide any protections against lateral movement attacks.

Other solutions that function similarly to our proposed solution do not provide the

same security benefits as described here. Kernel Address Sanitizer’s (KASAN) hardware

tagging mode uses MTE tags to mark freed and allocated memory regions, but it does

not distinguish between objects of high and low privilege. Our proposed solution does

distinguish between these objects due to its deeper inspection of allocated objects.

4.3 Evaluation

This solution, though not as robust as the solution described in Chapter 3, determin-

istically prevents privilege escalation attacks following the DirtyCred attack with little

overhead. Minimal instrumentation is added to add the tags to the corresponding memory

regions and addresses during allocation. No instrumentation is needed to check the tags

due to the hardware implementation of MTE. This allows for an efficient implementa-

tion of a lock and key mechanism that distinguishes between objects of different privilege

level with minimal instrumentation and no memory overhead due to the use of MTE.

25

Chapter 5

Conclusions

Temporal memory safety attacks, such as DirtyCred, can be used to escalate privileges in

the Linux kernel. Current solutions do not effectively mitigate this type of attack or are

not efficient enough to be used in production environments. We proposed two solutions

that could be used to mitigate two subsets of temporal memory safety issues with little

overhead when compared to alternative solutions.

The proposed Bounce Allocator works on top of existing allocators to provide quan-

tifiable, probabilistic security guarantees against temporal memory safety attacks. Though

the Bounce Allocator shows promise in providing sufficient levels of performance to be

viable for production environments, future work is needed to investigate the performance

impact in real world applications. Another limitation of the allocator is the use of ARM

MTE. This restricts the use of the allocator to systems using ARMv8.5-A or newer. Fu-

ture work should be done to expand support to systems without hardware tagging support,

such as x86 based systems.

The Tag Exclusion Sets solution provides an efficient way to prevent swapping kernel

file structures of different privilege level, as is done in the DirtyCred attack. This solution

works with little performance overhead and no memory overhead, but is very limited in

26

scope compared to other solutions. Future work could be completed to investigate the use

of ARM MTE tags to protect kernel structures.

27

Bibliography

[1] J. Bonwick, “The slab allocator: An Object-Caching kernel,” in USENIX Summer

1994 Technical Conference (USENIX Summer 1994 Technical Conference), Boston,

MA: USENIX Association, Jun. 1994. [Online]. Available: https://www.usenix.

org/conference/usenix- summer- 1994- technical- conference/slab-

allocator-object-caching-kernel.

[2] E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory safety for unsafe lan-

guages,” en, ACM SIGPLAN Notices, vol. 41, no. 6, pp. 158–168, Jun. 2006, ISSN:

0362-1340, 1558-1160. DOI: 10.1145/1133255.1134000.

[3] G. Novark and E. D. Berger, “Dieharder: Securing the heap,” en, in Proceedings

of the 17th ACM conference on Computer and communications security, Chicago

Illinois USA: ACM, Oct. 2010, pp. 573–584, ISBN: 978-1-4503-0245-6. DOI: 10.

1145/1866307.1866371. [Online]. Available: https://dl.acm.org/doi/10.

1145/1866307.1866371.

[4] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually useful,” en, in

Proceedings of the Twenty-Third International Conference on Architectural Support

for Programming Languages and Operating Systems, Williamsburg VA USA: ACM,

Mar. 2018, pp. 679–692, ISBN: 978-1-4503-4911-6. DOI: 10 . 1145 / 3173162 .

3173203. [Online]. Available: https://dl.acm.org/doi/10.1145/3173162.

3173203.

28

[5] Arm, “Armv8.5-a memory tagging extension,” White Paper, Aug. 2019. [Online].

Available: https://developer.arm.com/-/media/Arm%5C%20Developer%5C%

20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf.

[6] A. Konovalov, Sanitizing the linux kernel: On kasan and other dynamic bug-finding

tools, Bilbao, Spain, Sep. 2022. [Online]. Available: https://www.youtube.com/

watch?v=KmFVPyHyfqQ.

[7] Z. Lin, Y. Wu, and X. Xing, “Dirtycred: Escalating privilege in linux kernel,” en, in

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-

tions Security, Los Angeles CA USA: ACM, Nov. 2022, pp. 1963–1976, ISBN: 978-

1-4503-9450-5. DOI: 10.1145/3548606.3560585. [Online]. Available: https:

//dl.acm.org/doi/10.1145/3548606.3560585.

[8] [Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2021-4154.

[9] [Online]. Available: https : / / llvm . org / docs / ScudoHardenedAllocator .

html.

29

