Mitigating Temporal Memory Safety Errors in the Linux Kernel
by

Jake Backer

A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
in

Computer Science

April 2023

APPROVED:

Professor Robert J. Walls, Major Thesis Advisor

Professor Craig Shue, Thesis Reader

Abstract

Temporal memory safety vulnerabilities can allow attackers to escalate privileges on
Linux based devices. This paper presents two solutions to temporal safety vulnerabili-
ties. First, we present the Bounce Allocator: A pool-based memory allocator designed
to mitigate temporal memory safety errors on ARMv8.5-A based Linux devices. Other
solutions do not effectively mitigate temporal memory safety errors or have large memory
and performance overheads that makes them unsuitable for production environments. The
Bounce Allocator achieves entropy comparable with other solutions while using signif-
icantly less memory and having improved runtime performance. The Bounce Allocator
is implemented on top of an existing allocator to help preserve kmalloc caching perfor-
mance.

This paper also presents Tag Exclusion Sets: A simple solution that deterministically
prevents a subset of temporal memory safety attacks in the Linux kernel. This solution
has little runtime overhead and no memory overhead and requires little change to the

memory allocator.

Acknowledgements

I would like to thank my advisor, Robert Walls, for his support and guidance through-
out this work and my studies. I also thank John Criswell and Ziming Zhao for their
valuable advice and collaboration this year. I thank Craig Shue for his support and ad-
vice throughout my time at WPI. Thanks to my family, friends, and loved ones for their
unwavering support. Finally, I thank my parents and grandparents for giving me the op-

portunity to make it to where I am today.

Contents

1 Introduction 1
2 Background 4
2.1 ARM Memory Tagging Extension 4

3 Bounce Allocator 6
3.1 Design. L 6
3.1.1 ThreatModel 6

312 DesignGoals 9

3.1.3 DesignOverview 10

314 BounceTable 11

315 ReadyFreeList. 12

3.1.6 Embedded Free List 13

3.1.7 Limitations 13

3.2 Performance Evaluation. 14
3.2.1 Methodology 14

322 Results 15

33 Memory Evaluation o 15

34 Security Evaluation o 16

3.5 RelatedWork 17

3.5.1 DieHard. 17

3.5.2 Kernel Address Sanitizero 19

3.6 Conclusions and Future Work 20

4 Tag Exclusion Sets 22
4.1 Threat Model 22
42 DeSi@N e e e 23
4.2.1 Alternative Solutions 25

43 Evaluation 25

5 Conclusions 26

I

List of Figures

3.1

32

33

4.1

Overview of the DirtyCred attack and CVE-2021-4154. This demon-
strates the three phases of the DirtyCred attack as well as the details for a
specific vulnerability. Lo
The top structure represents the bounce table and the bottom structure
represents the Ready Free List. Each arrow points from the table entry
containing the pointer to the address it points to. This diagram shows a
potential state of the allocator after one table entry from the ready list has
beenallocated. o
The DirtyCred attack and CVE-2021-4154 with the Bounce Allocator.
The number after fp: is the address tag and the numbers at the bottom
left of each block are memory tags. When the object is freed, the tag
is changed. This causes an exception to be thrown upon future probes.
The privileged object is randomly allocated into a different table entry,

causing the probe tofail. oL

DirtyCred attack presented in Figure 3.1 with the Tag Exclusion Set solu-

tion applied. The number after ‘fp:* is the address tag for the pointer and

the numbers at the bottom left of each memory block are the memory tags.

v

8

24

Chapter 1

Introduction

The Linux kernel is used on many types of devices and architectures from mobile de-
vices, application servers, and even personal computers for some users. Temporal mem-
ory safety errors that take advantage of memory allocators are widespread. DirtyCred is a
novel exploitation method for escalating privileges on Linux-based systems that takes ad-
vantage of temporal memory safety errors. DirtyCred swaps unprivileged and privileged
kernel credentials to gain further access on a system [7].

Lin et al. proposed a solution to the DirtyCred problem involving separating cre-
dential structures into non-overlapping memory regions based on the structure’s privilege
level [7]. This approach makes it hard for the Linux kernel to cache and reallocate objects.
This hurts the performance of the memory allocator. Kernel Address Sanitizer (KASAN)
is a feature built into the Linux kernel to dynamically find spatial and temporal memory
safety errors. In generic mode, KASAN has high memory and performance overhead [6].
KASAN also has a hardware tag-based mode that is significantly faster, but only distin-
guishes between freed and allocated memory. This causes reallocated memory chunks
to be accepted. Alternative memory allocators such as DieHard partially mitigate this

problem by randomizing the placement of new allocations in a large segment of memory.

Though DieHard provides significant security benefits, it has very high memory overhead
compared to conventional allocators [2].

In this paper, we propose alternative solutions that, depending on the scenario, can
be used to provide significantly increased security or performance compared to the solu-
tion proposed by Lin et al. First, we propose a solution that allows us to protect kernel
memory structures with high probability in all scenarios with little performance impact by
adding a level of indirection to pointer dereferences. Since smaller allocations are easier
to protect with randomization based approaches, a level of indirection to pointers allows
us to achieve higher entropy with the same amount of memory.

When designing this allocator, we aimed to allow setting a configurable amount of
minimum entropy to allow system administrators to trade off memory overhead for an
increased level of entropy. We also wanted to ensure that allocations and frees are done in
constant average time. Finally, we must ensure that attempts to probe the heap fail with a
high degree of certainty.

We also describe a solution that takes advantage of ARM Memory Tagging Exten-
sions (MTE) to deterministically prevent privilege escalation on ARM-based Linux sys-
tems. We reserve a set of tags for privileged data, a set for unprivileged data, and one
tag for freed data. By doing so, an invalid free would invalidate pointers and it would
not be possible for a privileged object to be allocated with the same tag as the previous,
unprivileged, object. This simple solution takes advantage of fast, hardware level features
in ARM devices to deterministically prevent privilege escalation.

Our contributions are as follows:

* We designed a system that provides efficient temporal memory safety error mitiga-
tion for the Linux kernel. This system can be used to protect any memory structure
that uses the kernel memory allocator to allocate instances and is not restricted to

protecting against privilege escalation attacks.

2

* We built an analogue to the system, designed to evaluate performance, in user space
that works on top of the glibc memory allocator instead of the kernel memory allo-

cator.

* We evaluated the performance and memory overhead of analogue design. The ana-
logue of the Bounce Allocator incurred a 50.31% performance overhead when com-
pared to the base glibc memory allocator without modifications. The analogue also
incurs a 8 byte overhead per allocated object, plus a static amount of memory used

for the ready list.

* We designed an alternative solution that deterministically prevents privilege escala-
tion vulnerabilities, such as those shown in the paper by Lin et al., on ARM based

systems with little performance overhead [7].

Chapter 2

Background

In this section, we talk about ARM architecture features used by the Bounce Allocator

and Tag Exclusion Sets designs.

2.1 ARM Memory Tagging Extension

Introduced in ARMv8.5-A, the ARM Memory Tagging Extension (MTE) adds hardware
features to increase spatial and temporal memory safety [5]. MTE consists of two major
components: Address tags and memory tags. All memory is broken into 16 byte granules.
Each granule has four bits of metadata associated with it. The actual location of this
metadata is determined by the hardware, but it is treated as in-band metadata in software.
This in-band metadata stores the memory tag. MTE takes advantage of Top Byte Ignore
(TBI), a feature of Armv8-A that ignores the top byte of all addresses during translation
to allow for in-pointer metadata. With TBI, MTE stores the address tag in the top byte
of pointers. Whenever a pointer is dereferenced, the address tag and memory tag for the
memory the address points to are compared in hardware. If they are equal, the dereference

occurs. If they do not match, an exception occurs according to the configuration, though

it is recommended to cause a process crash upon receiving an exception in a production

environment [5]. This is based on a lock-and-key approach to providing memory safety.
MTE tags can be controlled by software and can be used to store any metadata, but

are designed to be used by memory allocators to distinguish between allocated and freed

memory efficiently.

Chapter 3

Bounce Allocator

This chapter discusses the potential threats that our system aims to mitigate, our design
goals, as well as a design to solve temporal memory safety issues in the Linux kernel, as

presented in the DirtyCred paper [7].

3.1 Design

We designed the Bounce Allocator to protect Linux kernel memory structures from heap
based temporal memory safety attacks. Below, we describe the threat model, the design

goals, and the design of the Bounce Allocator’s primary components.

3.1.1 Threat Model

In our threat model, we are focusing on ARM-based Linux systems. Nearly all smart-
phones use ARM-based processors. More recently, Apple Silicon based Mac devices also
use ARM-based processors. We assume that the adversary has access to an an unpriv-
ileged user account and a heap memory error in the Linux kernel. We are focusing on

ARM based processors with MTE support. We discuss in Section 3.6 how this may be

done without MTE.

We assume the attacker can trigger object allocations in the kernel, deference allocated
objects, and free allocated objects. Further, we assume that the attacker can invalidly free
objects with a heap vulnerability to create a dangling pointer. We assume that the attacker
will create a dangling pointer to point to another valid memory structure. They cannot
craft arbitrary pointers and cannot arbitrarily write to memory. We consider the attacker’s
goal to perform a lateral movement attack and gain access to a different, non-root user.

Temporal memory errors are important to address because any heap memory error
can be pivoted to one useful to replace a credential structure in memory and therefore
escalate privileges [7]. This type of attack is demonstrated in DirtyCred. DirtyCred is
an exploitation method that takes advantage of existing heap vulnerabilities to swap valid
credential structures after they have been checked [7].

The details of this technique vary depending on the exact vulnerability that is be-
ing exploited. As a high level example, we can analyze the general flow of exploiting
CVE-2021-4154 [8]. This is shown in Figure 3.1. In essence, this vulnerability allows
the attacker to replace a valid, unprivileged structure in memory with a valid, privileged
structure. In this case, the attacker opens an unprivileged file, triggers the vulnerability,
and replaces it with a privileged file such as / etc /passwd. This allows the attacker to read
or write from the privileged file while acting as an unprivileged user.

Many Linux systems have privileged users other than root. The solutions presented in
Chapter 4 and the DirtyCred paper are effective at preventing privilege escalation attacks,
where an unprivileged user gains access to the root account on the system, but these

solutions do not prevent a lateral movement attack.

Step 1:
Allocate unprivileged
file

Step 2:
Check permissions of
file

Step 3:
Invalidly free object

Step 4:
Allocate privileged file

Allocated Freed
Memory Memory

fp

uid: 1
file:
/tmp/exploit

fp->uid == user->uid : true

fp

uid: 0
file:
/etc/passwd

Write to fp->file

Pivot
Vullnerability

Extend
Time
Window

Allocate
Privileged
File

Figure 3.1: Overview of the DirtyCred attack and CVE-2021-4154. This demonstrates
the three phases of the DirtyCred attack as well as the details for a specific vulnerability.

3.1.2 Design Goals

We designed an allocator to meet the following goals, in no particular order. By meeting
these goals, we mitigate the threats defined in the Threat Model. We discuss how the
Bounce Allocator meets these goals below.

Goal 1: The attacker cannot directly control which slot will be selected
If the attacker can control the slots provided by the allocator, they can cause the allocator

to provide a slot that had been recently invalidly freed by the attacker.

Goal 2: The allocator provides quantifiable minimum guarantees in preventing an
attacker from probing a slot
If the attacker has the ability to reliably probe a slot, they can perform allocations until

they allocate to the spot pointed to by a dangling pointer.

Goal 3: The allocator provides quantifiable minimum guarantees regarding the level

of entropy when selecting a slot
Goal 4: Minimize the amount of space used to manage the heap

Goal 5: Ensure consistent performance regardless of the number of objects allocated
If performance slows down when large numbers of objects are allocated, the Bounce

Allocator may not be viable in some use cases.

Goal 6: The allocator provides low runtime overhead for instrumentation
The Bounce Allocator should use very simple instrumentation to ensure dereferences do

not cause a significant performance impact.

Goal 7: Maintain caching performance and properties of existing allocators
The Bounce Allocator should not significantly impact the underlying allocators in such a

way as to cause a decrease in caching performance.

3.1.3 Design Overview

We built a pool-based allocator that works on top of existing memory allocators, satisfying
Goal 7. Our system consists of a large region of memory called the bounce table' and a

fixed sized array known as the ready free list.

l \2 ,—¢

Heap Pointer Heap Pointer

Allocated

Embedded
Free List

Ready List

Figure 3.2: The top structure represents the bounce table and the bottom structure repre-
sents the Ready Free List. Each arrow points from the table entry containing the pointer
to the address it points to. This diagram shows a potential state of the allocator after one
table entry from the ready list has been allocated.

On allocation, the allocator chooses a table entry from the ready free list, requests an
allocation from the underlying allocator, and stores the allocated pointer in the chosen
table entry. When the ready list is half empty, the list is refilled with table entries from
the bounce table and the contents are shuffled. This probabilistically prevents reuse of
table entries, making it more difficult to perform attacks such as DirtyCred. Since the
table entries we are randomizing are small, we can achieve significantly higher entropy
with lower memory overhead compared to other randomization based allocators, such as
DieHard or the Scudo Allocator [3] [9].

Upon freeing an object, the table entry is tagged as free and is added to the embedded

I Also known as the bounce house

10

free list within the bounce table. This prevents the use of dangling pointers due to the tag
mismatch. Since table entries are allocated probabilistically, there is an unknown amount
of allocations until reuse of the table entry. Additionally, the embedded free list acts as a
quarantine list and delays the use of objects as much as possible without wasting memory.
This makes it significantly more difficult to perform attacks such as DirtyCred due to the
inability to probe table entries and the unknown nature of the randomized table entries.
When objects are dereferenced, the memory and address tags are checked in hardware
to ensure the pointer is valid. This allows the allocator to verify the table entry is allocated
with minimal overhead. Dereferencing the object a second time will result in the actual
structure. With the Bounce Allocator, ARM memory tags are used which cause dangling
pointers to become invalid and cause a fault upon derefernece, making it impossible to

probe the pointer.

3.1.4 Bounce Table

The bounce table is broken into 16 byte table entries. The Bounce Allocator must distin-
guish between previously used and new table entries. This could be achieved by tagging
data with ARM MTE tags, or by using a separate bit map. Each table entry is always
in one of three states: New, allocated, or freed. In our current implementation, these
states are encoded in MTE tags which allows the hardware to ensure that pointers never
access the wrong state. This incurs minimal runtime overhead and no memory overhead.
New table entries have never been allocated. Freed table entries were allocated previously
and have since been freed. Allocated table entries contain heap pointers provided by the
underlying memory allocator.

When allocating an object in the Bounce Allocator, we request an allocation from
the underlying allocator and store its address in the table entry chosen. We then return

a pointer to the table entry. This layer of pointer indirection gives the Bounce Allocator

11

greater control of the pointers associated with allocations without modifying the under-
lying allocator. Upon freeing a table entry, it is marked with the free tag. This causes
any dangling pointers to the table entry to generate an exception when dereferenced. This
prevents Use After Free vulnerabilities from being used and satisfies Goal 2.

The Bounce Allocator reserves a large segment of address space at initialization for
the bounce table, but only allocates pages as needed. By doing so, the system will not
physically assign memory to the requested regions that are not allocated. The purpose of
allocating a large, contiguous segment of address space is to reduce calculations needed

to find fragmented chunks of the heap.

3.1.5 Ready Free List

The ready free list contains pointers to the table entries of the bounce table. When filled,
the ready list is shuffled to provide the main source of entropy for our allocator. The
size of the ready list provides a configurable, minimum amount of entropy provided by
the system, satisfying Goal 3. The randomized order of the ready list causes the order
in which table entries are allocated to be probabilistic. This makes the reuse of table
entries unpredictable with a minimum level of entropy, effectively preventing dangling
pointers from pointing to newly allocated, attacker controlled memory, satisfying Goal 1.
The ready free list also allows allocations to be completed in constant time on average to
partially satisfy Goal 5.

The Bounce Allocator makes use of amortized data structures and algorithms. The
ready free list allows the Bounce Allocator to delay costly operations of randomizing or-
der and copying data to achieve constant time average performance. The Bounce Alloca-

tor uses the Fisher-Yates algorithm for shuffling data, allowing for O(N) time complexity.

12

3.1.6 Embedded Free List

The bounce table also contains an embedded free list of objects, where a freed table entry
contains a pointer to the next freed table entry. This allows us to conserve memory while
tracking all previously used objects. This list also preserves the order in which objects are
freed, which allows for delaying the reuse of objects until it is necessary to reuse them
for memory saving reasons. When an element is freed, the Bounce Allocator adds it to
the tail of the embedded linked list. This is done by writing the address of the table entry
to the previously freed table entry. This also helps prevent memory sparsity as described
in Section 3.1.7. Since this is integrated into the free space in the bounce table, this
minimizes the space used to store this metadata, therefore satisfying Goal 4. Adding to

the embedded free list can also be completed in constant time to solve Goal 5.

3.1.7 Limitations

There are several limitations in the prototype of the Bounce Allocator. First, the extra
layer of memory accesses increases pressure on the Translation Lookup Buffer (TLB)
and CPU caches. This could significantly increase the performance impact in real world
applications, but initial evaluation shows promising results as seen in Section 3.2. Our
current design makes use of huge pages to reduce the strain on the TLB, but future work
should be completed to investigate the performance impact [4].

Due to the randomized nature of the Bounce Allocator, large spikes in the number of
allocations could result in sparse pages, where very few objects are allocated in a given
page at any given time. This increases the overall memory overhead. A potential solution
to this is marking pages that have few objects allocated as ready fo be freed and deferring
the allocation of objects in that page by tagging the table entry and moving the pointer

to the end of the linked list. This increases the chance all objects in a given page will

13

be freed, allowing for the whole page to be released, but still falls short when there are
persistent objects that are not freed. This is not a problem unique to the Bounce Allocator.
Other allocators, such as the Linux SLAB allocator, also have this issue [1]. At a basic
level, the SLAB allocator handles this by freeing pages that are empty, but there is also

support for callbacks to free pages more aggressively if the OS requests more memory.

3.2 Performance Evaluation

We estimate that the primary source of overhead will be the additional pointer dereference
on every object dereference. To serve as a rough estimation of this overhead, we evaluated
an analogue of the bounce table to test this additional instrumentation.

Another consideration to make is the size of the ready list for the system. Depending
on the frequency that objects are allocated, the size of the ready list can affect perfor-
mance. If objects are frequently allocated but the ready list is small, then the list must be
refilled more frequently. This may cause more slowdowns, however we leave evaluations

to future work.

3.2.1 Methodology

We modified a simple merge sort program to use an analogue of the bounce table. We
chose this as our benchmark application since it involves a significant amount of alloca-
tions and pointer deferences. Since this application contains very few other operations, we
are considering this a worst case application for our benchmarks. This program allocates
8000000 objects with random integer values and performs merge sort on them, measur-
ing the time it takes to complete these operations in milliseconds using the gettimeofday
function.

To represent the code with the Bounce Allocator, we created an analogue of the

14

bounce table that contains a large array of table entries. On allocation, malloc allocates
the space to store the actual object and the address of allocation is stored in the chosen
table entry. Then, the table entry’s address is returned. We manually added the instrumen-
tation to follow the bounce table entry. We ran the unmodified baseline and the version

with the Bounce Allocator 1000 times and averaged the results.

3.2.2 Results

In this program, the majority of runtime is spent on memory dereferences of heap objects.
Therefore, in the worst case we would expect a doubling of runtime due to the duplicated
dereferences, however our results show a smaller overhead. On average, the unmodified
baseline took 3643.13 seconds and the transformed design took 5476.01 seconds. This

results in an approximately 1.5x performance overhead.

3.3 Memory Evaluation

We estimate the memory overhead of the Bounce Allocator as follows. There are two
components to consider for memory overhead: the bounce table and the ready free list.
The ready free list is statically sized. The size of the list can be adjusted to provide more
entropy and can be decided when implementing this allocator. The size of the bounce
table is directly proportional to the maximum number of objects allocated. The bounce
allocator adds 16 bytes of overhead per allocated object. This results in an overhead
roughly equal to 16N + R bytes, where N is the number of objects allocated and R is the
size of the ready list. This results in significantly less overhead when compared to other
solutions such as DieHard, especially in systems where many larger objects are allocated.
Due to its over-provisioning, DieHard requires at least a 2x memory overhead, defined by

its over-provisioning factor M.

15

3.4 Security Evaluation

To evaluate the Bounce Allocator’s provided security, we investigate the capable actions
of an attacker and show how our system protects against these threats. We show the
security guarantees of the system and how they apply to the DirtyCred attack. Here, we
consider the attacker’s goal to cause a dangling pointer in the Linux kernel to point to a
data structure that the attacker chooses.

As described in Section 3.1.1, an attacker has four primitive operations from which
temporal memory safety attacks in the kernel are constructed: Allocate, validly free, in-
validly free, and dereference. The attacker is limited to these operations due to the barrier
between kernel and user space. These operations involve calling syscalls that derefer-
ences, frees, or allocates memory internally. The Bounce Allocator instruments each of
these operations to add security guarantees.

Upon dereferencing a dangling pointer, a memory tag check will fail since the corre-
sponding table entry will be marked with the free tag while the pointer will still be marked
with the allocated tag. This failure causes a hardware fault, typically causing a crash in
most systems. An attacker cannot probe to check if a table entry has been reallocated
without a high chance of failure. This effectively prevents attacks such as DirtyCred [7].

When an object is freed, the table entry is marked with the free tag and it is added
to the end of the embedded free list. Adding to the end (as opposed to adding to the
start) of the embedded free list increases the time until reuse without causing increases
in memory overhead. This table entry is only reused after all previous table entries in
the embedded free list are used. If an object is invalidly freed, any dangling pointers will
have a mismatched tag and do not have the ability to match until the object is re-allocated.
This happens in an indeterminate amount of time due to the randomization of the ready

free list and the difficult to predict nature of allocating many objects in the kernel.

16

Finally, requesting a new object from the allocator pulls a table entry from the ready
free list. This list is randomized and provides a minimum level of entropy. The entropy

provided by the ready free list is as follows:

loga(S);S = Number of free table entries

Due to this, the adversary’s likelihood of success without causing a noticeable signal,
such as a process crash due to a tag mismatch exception, is 1/S. The ready free list is
refilled and randomized once it is half empty. This ensures there is always a minimum
level of entropy, but there will likely be more entropy due to the delayed use of table
entries:

loga(R/S); R = Size of the ready list

Overall, the Bounce Allocator makes it significantly harder for attackers to predict
and manipulate the allocator to perform temporal memory safety attacks. The system
randomizes the ordering of table entries with a configurable, minimum amount of entropy

and prevents probing table entries to test if an allocation worked.

3.5 Related Work

3.5.1 DieHard

DieHard is a randomization based memory allocator that provides significant security
guarantees at the cost of significant memory overhead. DieHard creates mini heaps, which
are increasingly large chunks of memory that contain memory objects of exactly one size.
Each new mini-heap is a factor M larger than the previous mini-heap. When a mini-
heap’s ratio of allocated objects to total objects reaches 1/M, a new mini heap is created.

This O(logN) bits of entropy from the allocator [3]. A key feature to DieHard is the fact

17

Step 1:
Allocate unprivileged
file

Step 2:
Check permissions of
file

Step 3:
Invalidly free object

Step 4:
Allocate privileged file

Figure 3.3: The DirtyCred attack and CVE-2021-4154 with the Bounce Allocator. The
number after fp: is the address tag and the numbers at the bottom left of each block are
memory tags. When the object is freed, the tag is changed. This causes an exception to
be thrown upon future probes. The privileged object is randomly allocated into a different

Allocated Freed
Memory Memory
fp:1 Heap
A
0x103 0x113 0x123 0x123 0x133
uid: 1
file:
1 1 1 2 2 /tmp/exploit
fp->uid == user->uid : true
. Tag does
fp:t not match
Y
0x103 0x113 0x123 0x133
uid: 1
file:
1 1 2 2 2 /tmp/exploit
fp:1
\ 4
0x103 0x113 0x133 0x123 0x133
uid: 1 uid: 0
file: file:
1 1 2 2 1 /tmp/exploit |/etc/passwd

Probe causes exception.
Address tag and memory
tag do not match.

table entry, causing the probe to fail.

18

that the number of free chunks is always proportional to the number of allocated objects,
N [3]. This ensures that the probability of returning the most recently freed chunk is at
most 1 /MN.

In allocators such as the base DieHard, Scudo, or the Linux SLAB allocator, it is
possible to probe if a temporal safety attack occured by dereferencing a dangling pointer.
With these systems, it is possible to dereference a pointer and observe its value without
crashing the process or otherwise causing a fault behavior. This causes these allocators to
fail to meet Goal 2. Since DieHard and Scudo are replacements for the existing memory

allocators, they also fail to meet Goal 7.

3.5.2 Kernel Address Sanitizer

Tools such as Kernel Address Sanitizer (KASAN) and other sanitizers can deterministi-
cally detect some temporal memory safety errors at the cost of significant memory and
performance overhead. KASAN has three different modes that provide different security
guarantees and drawbacks. In Generic mode, KASAN uses shadow memory, redzones,
and significant compiler instrumentation to detect memory errors. This mode has a 2x
runtime overhead and a memory overhead roughly equal to (1/8 RAM)+ (1/32 RAM) +
1.5 %« NumSlabs due to the use of shadow memory [6]. Due to this, KASAN in generic
mode is only intended to be used during testing to fuzz for memory safety errors and
fails to meet Goals 4 and 6. To prevent immediate reuse, KASAN puts freed objects
into a quarantine queue to delay reuse. KASAN’s software based tagging mode uses
ARM Top Byte Ignore to reduce the memory overhead and the hardware based tagging
mode reduces the memory overhead even further and reduces the performance overhead
to < 10%, but these modes only distinguish between freed and allocated memory and
cannot effectively be used to prevent attacks on live systems and are intended to enable

live reporting of memory safety vulnerabilities on live systems. Due to this, KASAN also

19

fails to meet Goal 1.

3.6 Conclusions and Future Work

In this chapter, we discussed a solution to help mitigate temporal memory safety attacks
in the Linux kernel. We focused on DirtyCred: an exploitation method that uses tempo-
ral memory safety errors in the kernel along with a race condition to replace credential
structures and escalate privileges. We developed a promising solution that makes attacks
such as DirtyCred more difficult and provides a minimum amount of entropy with low
memory and performance overhead without modifying the underlying memory alloca-
tors. We showed that by adding a layer of indirection to pointer dereferences, we can gain
stronger control of pointers. We determined that small objects are easier to protect with
randomization based methods.

There are several areas for future work to further develop this system into one usable
in production environments. First, a better solution to freeing unneeded pages should be
investigated. Currently, our solution can result in pages with a small number of used table
entries that are persistent and will not be freed. This increases overall memory overhead
after a long runtime of this system. A potential area of investigation could be strategic
placement of objects that are expected to stay allocated for large periods of time.

Another area for future research is investigating the design and performance of this
system implemented without ARM MTE to allow for support on x86 based systems.
MTE is currently used to efficiently enforce freed and allocated states as it adds nearly
zero performance or memory overhead, but this prevents the allocator from running on
systems other than ARMvV8.5 or newer. Many personal computing devices and servers are
based on x86 which does not have hardware memory tagging support. Implementing the

Bounce Allocator without hardware tagging should be investigated to expand support.

20

The multi-threading safety of the Bounce Allocator should also be investigated. Cur-
rently, race conditions are possible on some boundary conditions where one thread may
allocate a table entry from the free list while another thread starts re-filling it. A simple
lock based solution here would prevent this problem, but would cause significant per-
formance impact and effectively force all allocations to be single threaded. A counting
semaphore could be used to improve upon this, allowing all threads to allocate without
blocking, but this would still cause blocking when a thread must re-fill the ready free list.

Finally, the Bounce Allocator should be benchmarked in kernel space. Our evaluation
of the allocator was done purely in user space to get a rough estimate of the performance
impact of the system, but it should be tested in the kernel while running real world ap-
plications. This would provide a much more accurate measurement of the performance

impact if this were to be implemented in the Linux kernel.

21

Chapter 4

Tag Exclusion Sets

This chapter discusses Tag Exclusion Sets: Another solution to protect against the Dirty-
Cred attack. Unlike the Bounce Allocator, this solution is deterministic with almost no
runtime or memory overhead, however it only addresses the DirtyCred attack and does

not address temporal memory safety issues in general.

4.1 Threat Model

Similar to the threat model described in Section 3.1.1, we are focusing on ARM-based
Linux systems. For this chapter, we investigate a reduced scope problem where an at-
tacker aims to gain access to the root account specifically. We do not consider lateral
movement, where an attacker moves to another non-root account. Further, we only aim to
prevent low privilege file structures from being swapped with a high privilege file struc-

ture, as shown in the DirtyCred attack [7].

22

4.2 Design

To combat the DirtyCred attack, we propose a solution taking advantage of ARM MTE
to protect Linux kernel structures on 64-bit ARM systems. Our solution, Tag Exclusion
Sets, assigns tags 0 through 7 for unprivileged objects, tags 8-14 for privileged objects,
and tag 15 for freed objects. The SLAB allocator will assign a tag to the region following
these rules: Privileged objects will never share a tag with unprivileged objects, objects
will never share a tag with adjacent objects, and objects will never share a tag with freed
memory. Since unprivileged and privileged objects can never have the same tags, it is
impossible for a pointer previously pointing to an unprivileged object to continue to be
valid after an object swap.

When memory for a structure is allocated, the allocator sets the memory and address
tags. Whenever the pointer is dereferenced, the hardware checks the tags. If the tags do
not match, an exception will be thrown. The pointer will no longer be valid when an
object is freed or reallocated with an object of a different privilege, as the tags will not
match. This deterministically prevents the kernel from using swapped credentials.

Swapping between two different low privilege objects yields a different result. There
are only 8 tags for unprivileged objects and 7 for privileged objects. Due to the low
number of tags, there is a high probability that an attacker could manipulate the system to
perform the DirtyCred attack to swap two objects of the same privilege level.

If the structure is the same privilege as the previous one, there is either a 1/6 chance
for unprivileged structures and a 1/5 chance for privileged structures to be allocated with
the same tag. The outcome of a same-privilege swap is less severe than a privilege esca-
lation, therefore this is considered somewhat acceptable, but due to the high probability,
an attacker could manipulate a system to perform this attack. On some systems, there

may be non-root accounts that have similar privileges to root accounts (such as admin

23

accounts). These accounts would not be sufficiently protected by this solution.

Unprivileged Exclusion Set:
8-15
Allocated Freed
Lo Memory Privileged Exclusion Set: 0-
7,15
fp:3
Y
uid: 1
Step 1: file:
Allocate unprivileged /tmplexploit
file
4 6 3 15 15
Step 2: fp->uid == user->uid : true
Check permissions of P ’
file f0:3 Tag does
P not match
Y
Step 3:
Invalidly free object
4 6 0 15 15
fp:3
A 4
uid: 0
Step 4: file:
Allocate privileged file letc/passwd
4 6 13 15 15

Address tag and memory tag do
not match. Exception thrown

Figure 4.1: DirtyCred attack presented in Figure 3.1 with the Tag Exclusion Set solution
applied. The number after ‘fp:* is the address tag for the pointer and the numbers at the

bottom left of each memory block are the memory tags.

24

4.2.1 Alternative Solutions

The solution described in the paper by Lin et al. targets the same scope as the solution
described here, but it is done entirely in software without hardware tagging support [7].
Their solution separates privileged and unprivileged objects into entirely separate mem-
ory regions, preventing them from ever interacting. Though their paper shows there is
very little performance overhead with their proposed design, modifications to the kernel
allocator can cause issues with object caching in some applications. Their solution also
does not provide any protections against lateral movement attacks.

Other solutions that function similarly to our proposed solution do not provide the
same security benefits as described here. Kernel Address Sanitizer’s (KASAN) hardware
tagging mode uses MTE tags to mark freed and allocated memory regions, but it does
not distinguish between objects of high and low privilege. Our proposed solution does

distinguish between these objects due to its deeper inspection of allocated objects.

4.3 Evaluation

This solution, though not as robust as the solution described in Chapter 3, determin-
istically prevents privilege escalation attacks following the DirtyCred attack with little
overhead. Minimal instrumentation is added to add the tags to the corresponding memory
regions and addresses during allocation. No instrumentation is needed to check the tags
due to the hardware implementation of MTE. This allows for an efficient implementa-
tion of a lock and key mechanism that distinguishes between objects of different privilege

level with minimal instrumentation and no memory overhead due to the use of MTE.

25

Chapter 5

Conclusions

Temporal memory safety attacks, such as DirtyCred, can be used to escalate privileges in
the Linux kernel. Current solutions do not effectively mitigate this type of attack or are
not efficient enough to be used in production environments. We proposed two solutions
that could be used to mitigate two subsets of temporal memory safety issues with little
overhead when compared to alternative solutions.

The proposed Bounce Allocator works on top of existing allocators to provide quan-
tifiable, probabilistic security guarantees against temporal memory safety attacks. Though
the Bounce Allocator shows promise in providing sufficient levels of performance to be
viable for production environments, future work is needed to investigate the performance
impact in real world applications. Another limitation of the allocator is the use of ARM
MTE. This restricts the use of the allocator to systems using ARMv8.5-A or newer. Fu-
ture work should be done to expand support to systems without hardware tagging support,
such as x86 based systems.

The Tag Exclusion Sets solution provides an efficient way to prevent swapping kernel
file structures of different privilege level, as is done in the DirtyCred attack. This solution

works with little performance overhead and no memory overhead, but is very limited in

26

scope compared to other solutions. Future work could be completed to investigate the use

of ARM MTE tags to protect kernel structures.

27

Bibliography

(1]

(2]

(3]

(4]

J. Bonwick, “The slab allocator: An Object-Caching kernel,” in USENIX Summer
1994 Technical Conference (USENIX Summer 1994 Technical Conference), Boston,
MA: USENIX Association, Jun. 1994. [Online]. Available: https://www.usenix.
org/ conference /usenix - summer - 1994 - technical - conference / slab -

allocator-object-caching-kernel.

E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory safety for unsafe lan-
guages,” en, ACM SIGPLAN Notices, vol. 41, no. 6, pp. 158-168, Jun. 2006, ISSN:

0362-1340, 1558-1160. DOI: 10.1145/1133255.1134000.

G. Novark and E. D. Berger, “Dieharder: Securing the heap,” en, in Proceedings
of the 17th ACM conference on Computer and communications security, Chicago
[linois USA: ACM, Oct. 2010, pp. 573-584, 1SBN: 978-1-4503-0245-6. DOI: 10.
1145/1866307 . 1866371. [Online]. Available: https://dl.acm.org/doi/10.

1145/1866307.1866371.

A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually useful,” en, in
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, Williamsburg VA USA: ACM,
Mar. 2018, pp. 679-692, 1SBN: 978-1-4503-4911-6. DOI: 10 . 1145 /3173162 .
3173203. [Online]. Available: https://dl.acm.org/doi/10.1145/3173162.

3173203.

28

[5]

[6]

[7]

[8]
[9]

Arm, “Armv8.5-a memory tagging extension,” White Paper, Aug. 2019. [Online].
Available: https://developer.arm. com/-/media/Arm},5C%20Developer%5CY

20Community/PDF/Arm_Memory_Tagging Extension_Whitepaper.pdf.

A. Konovalov, Sanitizing the linux kernel: On kasan and other dynamic bug-finding
tools, Bilbao, Spain, Sep. 2022. [Online]. Available: https://www.youtube. com/

watch?v=KmFVPyHyfqQ.

Z. Lin, Y. Wu, and X. Xing, “Dirtycred: Escalating privilege in linux kernel,” en, in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security, Los Angeles CA USA: ACM, Nov. 2022, pp. 1963-1976, ISBN: 978-
1-4503-9450-5. DOI: 10 . 1145/3548606 . 3560585. [Online]. Available: https :

//dl.acm.org/doi/10.1145/3548606.3560585.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2021-4154.

[Online]. Available: https : //1lvm . org/docs /ScudoHardenedAllocator .

html.

29

