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Abstract

This research introduces Warden, a function-level control flow enforcement for web applications.
The goal of Warden is to strengthen the security of the Single Use-Server model by detecting attacks such
as code injection and remote code execution. Both of these attacks leverage vulnerabilities to allow a user
to execute arbitrary code on a server through a public facing website. Due to the nature of this, the code
executed can range from covert (such as cryptomining or leaking data) to overt (such as denial of service or
ransomware). While SuS architecture could prevent or mitigate damage from leaking and ransoming data,
an attacker with knowledge of the underlying system could craft code injection attacks that would not be
caught such as cryptomining. In addition to added security, Warden aims to answer the question of whether
an asynchronous and layered approach to control flow enforcement is viable. Traditionally, CFI enforcement
software uses a graph of function calls and blocks each time a new function is called to ensure that it is
valid (found in the underlying graph). Modern web applications often call thousands of functions from each
interaction with the user, and blocking on each one adds significant latency. The unique design of Warden
is intended to lessen this problem. Warden is able to detect remote code execution in all cases except that
which the malicious code was named the same as a valid function, called on the same line, and only used
functions that the overwritten function had, on the same lines. However, this added security also increases
overhead on the original system, on average increasing utilized CPU by 20%, memory by 8%, and latency
by 535%. Cursory optimizations were able to improve this overhead significantly and we believe that further
work would be able to increase the efficiency of threading in the application to reduce the overhead much
further.
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1 Introduction

Cybersecurity remains one of the most pressing concerns for organizations in today’s digital land-

scape. With modern web applications storing databases of potentially sensitive user information, security of

programmatic level execution is critical. Previous work developed the Single Use-Server model as a way to

prevent privilege escalation and to containerize users to mitigate the damage of any successful attack on the

web application [1, 2]. However, SuS is not without weaknesses. SuS is only able to detect a compromised

container once the container attempts to access data without the proper permissions. Specifically, attacks

such as code injection and remote code execution would go unnoticed by SuS’ security measures.

To fill this gap, we propose Warden, a web-based, function-level control flow enforcement for web

applications. Control flow integrity detection and enforcement has been used to increase the security of ap-

plications local to client machines, but is a relatively new innovation in terms of web applications [3]. Control

flow integrity comes at a cost: it can be computationally intensive and increase latency in the application

overall due to intercepting every function transfer. Warden combats this in two ways: asynchronicity and

a layered approach. Instead of intercepting each function transfer, Warden operates asynchronously to the

main application. Secondly, Warden uses set inclusion for primary validation, which will escalate to a lookup

table serving as the ground truth if a function transfer is not recognised.

The proposed approach is expected to provide lower latency, which will allow flexible code analysis.

Operating in parallel with the application comes at the cost of instant detection of anomalous behavior;

however, we believe that the benefits in responsiveness and latency outweigh this cost. Due to complete

control flow graphs for large scale applications being nearly impossible to create, the downside of parallel

execution is not really an issue, as stopping execution at any anomaly would likely inhibit normal functionality

of the application. The layered approach is also expected to decrease latency due to the use of a bloom filter,

as the first layer, instead of the normal approach of a complete graph of the system. Bloom filters operate

in constant time for adding and checking the existence of elements in a set. Additionally, bloom filters are

space efficient compared to most data structures as they do not need to store the data itself.

While there are other web based CFI implementations in existence, such as Ghostrail [4, 5, 6], a

web CFI implementation that forces users to navigate webpages according to expected flows, and ZenIDS, a

programatic level control flow enforcement for PHP, our proposed approach is distinct with use of a multi-

layered CFI system. In this multi-layered system the majority of benign traffic is approved by a lightweight

layer, and only suspicious traffic is elevated to a more computationally intensive second layer. This research
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aims to provide a comprehensive analysis of the proposed approach and its benefits, comparing it to existing

approaches and identifying areas of improvement.

1.1 Background

In cybersecurity, Control Flow Integrity (CFI) refers to forcing users to follow the intended flows

of execution when interacting with an application [3]. Many different types of attacks rely on control flow

redirection to alter code behavior. This can vary from injecting malicious code and tricking the application

into executing it (such as writing shellcode to an executable section of memory) to redirecting the process’

flow to functions that would not normally be callable (such as a common buffer overflow attack on a binary

application).

Enforcing CFI in compiled applications and binaries has been a field of significant interest in the

computer security community [3]. Multiple CFI defenses have been proposed and widely adopted in compiled

applications, from Address Space Layout Randomization (ASLR) [7], stack canaries [8] and PIE [9].

Control flow based attacks are not unique to compiled applications [10]. Many websites are sus-

ceptible to and often victim to control flow redirection attacks, from Cross-Site-Scripting (XSS), PHP code

injection and web-shell manipulation [11]. Unlike compiled programs, however, the web server model handles

computation in a “ad hoc” method, triggering different execution paths based on incoming HTTP requests

from many different clients, often handling many at a time. These levels of abstraction make implementing

the “traditional” CFI of compiled applications to web services difficult [3]. The ad hoc execution of scripts

and complexity in tracking individual user’s execution history (due to HTTP being a stateless protocol)

make web applications flexible, but also limit our ability to enforce expected control flow.

1.2 Project Description

We propose Warden, a system designed for the Single-Use-Server (SuS) web architecture [1, 2] that

aims to apply the tenets of CFI to web execution. The SuS architecture offers a significant advantage in

this endeavor, in that it allows us to monitor individual user’s execution. SuS operates by creating a unique

instance of a web server for each client connection in a Docker container. These containers are managed

by the system to defend against many privilege escalation and information leak attacks through back-end

proxies and correlating permissions to containers. The separation of client execution into neat containers

gives Warden the opportunity to identify and isolate suspicious and/or anomalous users.
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Warden is comprised of a two layer CFI system, with a fast and lightweight bloom filter CFI

detection system and a slower but more robust hashmap CFI system reserved for function calls labeled

suspicious by the lightweight system. In context of this project proposal, “lightweight” CFI systems will

refer to CFI systems that are lightweight and fast, but are not necessarily complete, meaning they can flag

a function call as suspicious, but not confirm whether the transfer is valid or not. A “robust” CFI system

will refer to a more computation intensive CFI system that can validate a function call by investigating

WordPress source code. Our implementation allows for experimentation related to the CFI method used,

rigidity and precision of the historical data collected, and associated memory, latency, and CPU overhead.

We believe that this work, while it will be engineered for the SuS architecture, could provide real

novelty to the field of web-based CFI. A lightweight and robust CFI system could be adapted to a traditional

web server architecture with some engineering.

1.3 Research Questions

Warden aimed to iterate on the concept seen in prior works [12] of using historical execution data

to detect anomalous execution, and did so using a novel layered approach to CFI detection. In order to

direct our efforts we developed two research questions, each with one sub-question:

1. Can historical execution context be effectively used to determine when execution becomes anomalous?

(a) How often would a system built around such context correctly identify malicious execution? How

often would it misclassify benign execution as malicious?

2. Does a resource-conscious “lightweight and robust” CFI approach such as Warden incur lower operating

costs than a more traditional, resource-apathetic CFI approach?

(a) What level of CPU, latency, and memory overhead is introduced by a layered “lightweight and

robust” CFI systems compared to both Single Use-Server systems and traditional LAMP archi-

tectures?

2 Related Work

Warden was designed to work within the SuS architecture, and builds off of previous efforts in the

field of web application CFI. To fully understand the environment Warden was built for and the goals it was

built around, an understanding of SuS and the state of web CFI must be attained.
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2.1 Single Use Servers

The SuS web-server model was first introduced as a way to prevent the confused deputy problem

and lateral attacks (attacks from one client against another)[2]. SuS uses Docker containers to prevent

interaction between clients and to confine one client to only the privileges that they should have. A user

would not be able to access resources outside their level of permission. This resource denial is handled by

middle boxes outside of the untrusted client containers that handle authentication and requests to access

data. SuS achieves this by using multiple “middle boxes,” or devices and processes that sit between different

server components such as the client, container, and database. These middle boxes allow SuS to divide traffic

on a user-level, monitor incoming traffic and enforce permissions when interacting with backend resources.

In addition to the security provided by the SuS architecture, one of the SuS middle boxes gener-

ates logs of static function calls (as opposed to dynamically generated calls) [1] [13]. To supplement this,

PEGASUS provides a PHP function profiling module that logs all function calls as well as some parameters

relating to the calls such as call location [13]. We modified this extension to enable Warden to inspect PHP

function call logs.

2.2 Control Flow Integrity

The “control flow” of an application typically refers to what functions and code segments are

executed as a result of user interaction and what order those segments of code are executed in relative to

one another [3]. CFI has been a popular area of cybersecurity research for over a decade. Many types of

attacks on compiled applications utilize Control-Flow Hijacking through memory corruption to manipulate

applications to execute in unexpected and possibly dangerous ways. CFI has traditionally been applied to

such compiled applications, using a variety of mechanisms and techniques to try and provide assurance of

CFI without sacrificing performance. In traditional compiled CFI, a custom compiler is built which performs

static analysis on a binary’s source code at compile time. It uses this to generate a Control Flow Graph

(CFG), which defines all expected behavior of the given application. The compiled binary is then built with a

security system that references this CFG to ensure the application does not deviate. The level of granularity

and completeness that CFI implementations can achieve significantly impact their effectiveness as stopping

Control-Flow Hijacking attacks. A CFI mechanism that achieves very coarse-grain enforcement can leave an

attacker more than enough room to hijack a program, while very fine-grained enforcement system can incur

significantly more overhead in either latency or memory, and can still remain exploitable [14]. The manner

in which a CFG is constructed and enforced can vary wildly and has been the topic of multiple research
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endeavors [3].

In January of 2018, Burow et al. published a survey of well known CFI implementations at the

time along with their respective benefits and shortcomings [3]. They explain how CFI is comprised of an

Analysis phase where a system learns from an application then approximates a CFG (or other ground-truth

data structure), followed by an Enforcement phase where the application is monitored in production and its

execution is compared to the approximate ground-truth. They explain how CFI does not solve the inherent

bug which allowed for Control-Flow Hijacking, but rather acts as guard rails of sorts, stopping vulnerable

programs from being manipulated to any significant degree.

The survey focused on traditional compiled CFI implementations, and distinguished different works

both qualitatively and quantitatively, as the researchers found many compiled CFI works incurred similar

performance overhead, ranging from 0%-20%. They found that even in compiled applications a theoretically

complete CFG could not be built for “nontrivial programs.” Many compiled CFI systems ended up overesti-

mating the CFG, allowing for unnecessary edges that attackers could utilize, and increasing the precision of

the mechanism (finer-grain enforcement) negatively impacted the system’s performance. They also acknowl-

edge the incremental nature of CFI technology advancement. Most mechanisms they researched were built

off of and inspired by the previous works.

As research into CFI has expanded, the methods and goals of the practice have been adapted to help

address some of the issues mentioned by Burow et al., such as performance, completeness, and complexity.

Coarse-Grained Syscall-Flow-Integrity (SFIP) [15] is a promising effort in the CFI field that takes a non-

traditional approach to its Analysis and Enforcement phases. SFIP focused on limiting a malicious actor’s

ability by enforcing CFI at a system call level. Similar to how Warden attempts to apply CFI to a PHP

function level, SFIP aimed to test if the concept of CFI could be applied to the user-kernel boundary. Like

those research by Burow et al., SFIP was a CFI enforcement system built for compiled programs. Unlike

many mechanisms, SFIP combined a syscall state machine and syscall origin mapping to achieve its own

form of CFI without needing to construct an entire CFG.

SFIP used static analysis of source code at compile time to create its CFI data structures, recording

where each syscall was located in memory and what syscall had preceded it, allowing the kernel to check

each syscall executed at runtime against trusted behavior. The researchers found that SFIP added a 13.1%

and 1.8% overhead in syscall execution time in micro- and macro-benchmark tests respectively. They also

found that compilation time of binaries was increased by a factor of up to 28.

While SFIP was not an attempt to enforce CFI at a web server level, the strategies and findings of
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the study are nonetheless helpful and related to our work with Warden. The overhead, complexity, and lack of

guarantees discussed by Burow et al. led the developers of SFIP to approach the problem using a trusted set

rather than a full model, and to apply the tenets of CFI to a different level of execution. SFIP offers insight

that CFI can be thought of and enforced using non-traditional methods. Rather than constructing a complete

CFG and validating full sequences of function transfers, SFIP looks to trade theoretical completeness for

performance and ease of use by recording only short sequences of syscalls and their location in memory.

Similarly, Warden aims to enforce a type of CFI using PHP function origination, that is verifying a function

call comes from a valid PHP script and expected line number. However, the methods used to obtain such

integrity and the definition of success must be adapted to the more volatile and dynamic environment of web

applications. Related fields such as anomaly detection have used methods like set-theory, virtualization, and

log analysis to detect deviations from expected behavior, and these methods may be useful when dealing

with web CFI [16, 17].

Burow et al. address the complications that arise when trying to apply CFI to code bases like

web applications. Just-in-time compiled and interpreted code lack many of the advantages than traditional

compiled code inherently has. They acknowledge that such programs are “inherently dynamic” and present

significant problems when trying to construct a complete CFG [3]. Features like dynamically executed strings

through functions like eval in Python or call user func in PHP restrict both static analysis’ effectiveness

and a CFG’s complexity drastically. It is for these reasons that works similar to Warden which try to

apply CFI principles to web applications have all utilized non-traditional methods in their Analysis and

Enforcement phases.

2.3 CFI in Web Applications

Web frameworks, specifically those like the common Linux, Apache, MySQL, PHP (LAMP) systems

utilizing PHP scripts for back-end computation, are not conducive to traditional CFI methods. In a compiled

binary, valid function transfers can be programmatically enumerated using a variety of methods, creating

partial Control Flow Graphs (CFG). Rules and security measures can be compiled into the binary to enforce

said CFG, and mark any function transfer that violates its paths. Web servers on the other hand often

respond to requests in a stateless manner, handling HTTP requests from multiple clients as they come in

and invoking functions from PHP scripts on the fly. This makes it difficult to create a definitive CFG and

track each client’s path along it.

For these reasons, implementing “traditional” CFI in a web framework has not been the subject
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of as many research projects as its compiled counterpart. However, there have been efforts to incorporate

the tenets of CFI to web development. Each project has brought its own methods of determining trust and

levels of monitoring granularity to the field. A simplified summary of these differences can be seen in Table 1.

Related Work Warden Saphire ZenIDS Ghostrail
Protection Detection Enforcement Detection Enforcement
Analysis Level PHP Function Calls Syscalls PHP Opcode Web Requests
Connection Context Per User None None Web-Session
False Positives None None Some 17%
False Negatives Adjustable Rate Unknown Unknown Unknown
Overhead 535% ≤2% 5%-10% 250-360 ms
CFI Method Historical Data Historical Data Learned CFG Sandboxing
Execution Env. PHP Runtime Kernel-User Space PHP Interpreter HTTP Requests

Table 1: Comparison to Related Web CFI Works

2.3.1 ZenIDS

ZenIDS is an intrusion detection system that aims to be effective against remote code execution

(RCE) attacks. Implemented as a PHP extension, ZenIDS builds a trusted profile of HTTP requests through

a pre-training period. The pre-training period consists of both static and dynamic analysis, much like

Warden. It is common in PHP for functions and scripts to be dynamically created via anonymous functions.

The execution is being monitored by 5 main PHP hooks [18]. Hook 1 is used to compile PHP code into an

opcode sequence, Hook 2 is used to evaluate if the compiled opcode exists within the trusted profile using

canonical-name and Hook 3 executes the opcode. Hook 4 and Hook 5 interact the with application state by

storing and loading the application state respectively.

When a PHP script is interpreted, the PHP code is converted into an opcode with H1 sequence

that is added to the trusted profile, with H2, as a control flow graph, detailing any jumps to other sections

of PHP code. Using these hooks, ZenIDS is able to detect any changes to the application state and will

initiate different phases based on how the privileged user changed the state, either a data expansion event

or a code expansion event. The data expansion event will add new control flow to the trusted profile. The

code expansion event is more complicated, involving checks to see if the code is trusted. H4 updates the

database during a code expansion event including information such as if the call stack was seen during the

training period and if the code generation was influence by user input.

ZenIDS has some similarities with WARDEN’s robust CFI implementation. ZenIDS builds a trusted

profile existing of PHP opcode control flow graphs while WARDEN stores trusted PHP function calls with
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line number granularity. WARDEN’s main feature is the preliminary lightweight CFI followed by the robust

CFI. It is entirely possible to re-engineer WARDEN’s robust CFI to utilize ZenIDS. While WARDEN utilizes

a PHP extension to ex-filtrate logs from within the SuS containers, ZenIDS lives exclusively in the PHP

environment.

2.3.2 Saphire

Saphire proposes another solution to increased web-application security by leveraging the principle

of least privilege (PoLP) specifically for interpreted languages [12]. Saphire profiles scripts and compiles a

set of system calls that each script needs to be able to execute when functioning correctly, and creates an

allow-list for the script. Then, using seccomp, a given script will be constrained to only have access to the

function calls in its allow-list.

Saphire’s main improvement over ZenIDS was eliminating false positives, with a minimal perfor-

mance overhead. Saphire was able to prevent all 21 tested arbitrary code execution vulnerabilities, while

throwing no false positives. However, one distinct weakness in Saphire that Warden attempts to address is

granularity. Saphire points out that attacks could be crafted that used the allowed system calls of a specific

script for malicious purposes. Specifically, because Saphire compiles a list of allowed system calls per script,

there is potentially a lot of room for illegitimate actions, such as writing to the file system from a script with

permission to do this.

2.3.3 Ghostrail

Ghostrail attempts to enforce CFI on web applications by securing yet another attack vector: HTTP

requests [4]. Rather than enforcing server-side computation flow integrity, Ghostrail attempts to limit the

GET and POST requests malicious users are able to submit to the site in such a way that they are forced

to follow expected behavior. The work has been iterated on multiple times by the original researchers, but

as of its most recent publication focuses on eliminating HTTP request race conditions, parameter poisoning,

and unsolicited request forgeries [5, 6].

Ghostrail enforced its version of CFI by analyzing the DOM object for a given user session and

keeping track of the previous HTTP request and web page accessed. It uses this information to determine

whether any incoming request has expected paramaters and is a reachable request from the page the user

was previously on. This acted as a sort of “static analysis,” forcing users to follow links and make requests

in the expected order. There are however many valid dynamically crafted requests (often created using Ajax
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or JavaScript) that such static analysis would not recognize. To accommodate for this, the user mouse

clicks and inputs were monitored through injected code and replicated in a controlled server side replica, or

“sandbox.” Ghostrail would then compare the HTTP requests generated by the trusted sandbox web page

with the requests received from the user’s browser. If they matched exactly then the request was considered

safe and allowed.

As mentioned previously, Ghostrail has gone through many iterations, but was originally imple-

mented as a reverse proxy using Node.js. When tested for effectiveness, the researchers found Ghostrail to

have an average false positive rate of 17.57% with a maximum recorded rate of 60%. This means on average

approximately 1 in every 5-6 valid HTTP requests were seen as malicious and blocked. The authors attribute

this to the dynamic nature of web applications and customized elements unique to the web application. Some

applications included features like client fingerprinting and random numbers seeded with system attributes

in their HTTP requests, both of which caused the sandbox and real user to generate different requests with

the same actions. The researchers also found that users experienced a round trip latency overhead of around

250-360ms per web page while Ghostrail was active. On top of this, due to Ghostrail’s need to validate each

HTTP request and record the client’s previous location, the Cache-Control: no-cache header was added

to every response sent to the client to keep their browser from caching web pages. This ensured any latency

added due to Ghostrail was experienced for every request.

Ghostrail is one of the only formal attempts at enforcing web CFI at the HTTP request level

and provides a clear example of the difficulties of adapting CFI to the dynamic field of web applications.

Due to the event-driven nature of web languages like JavaScript, Ajax, and PHP the researchers found it

necessary to include dynamic analysis in the form of sand boxing user interaction. In contrast, Warden

aims to leverage historical execution data to enforce CFI on the PHP function level. Dynamic analysis

through historical data can be implemented in a variety of ways and does not require the simulation of the

sand boxing method. Additionally, by operating in the PHP layer rather than the HTTP layer, Warden

does not have to accommodate for many of the issues Ghostrail encountered, such as fingerprinted HTTP

requests unique to each client. Works like Ghostrail are important as they highlight the fact that web CFI

can be applied to entirely separate layers of architectures, with HTTP request filtering taking the role of a

“front-end” CFI and works like ZenIDS, Saphire, and Warden enforcing “back-end” CFI.
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3 Design

We built Warden with three design goals in mind: Speed, Administrator-Friendliness, and Ef-

fectiveness. We wanted Warden to introduce as little latency as possible so that it is able to be implemented

without affecting the user experience. In a similar vein if the system is not administrator friendly then it

would be difficult to justify implementation. Finally we built Warden to be effective, correctly identifying

anomalous execution and efficiently warning administrators.

We address the first design goal, speed, with our “layered CFI” approach, which aims to alleviate

some of the overhead CFI enforcement systems by using a fast “lightweight” system which approves the

majority of traffic, and only elevating to the slower “robust” system in suspicious cases. Secondly, we

designed Warden to be an administrator friendly system. Security systems can quickly become cumbersome

to administrators if they have a high false positive rate, that is, raise alarms about events that are actually

perfectly benign. Not only do false positives waste analysts’ time, but they promote an environment where

security alerts are taken less seriously since they have a chance to be false alarms.

3.0.1 Threat Model

Warden is a system implemented within the SuS architecture, but is designed to be usable in tradi-

tional LAMP servers. It is intended to detect anomalous PHP execution by leveraging historical execution

data. We assume an attacker acting within a compromised SuS container. The attacker has the ability to

execute arbitrary PHP code, and can download, upload, and edit PHP source files on the container. We as-

sume the SuS architecture is operating as intended, meaning the attacker is not able to perform any privilege

escalation attacks and cannot influence a system outside if their container. We exclude client-side remote

code execution attacks, such as Cross-Site Scripting. Warden is a server-side monitoring system, intended

to detect injected or altered code running on the web server. Finally, we exclude attacks against our trusted

computing base (TCB). The TCB consists of the operating system and all components of the modified SuS

architecture shown in Figure 1, including the Warden log parsing and CFI processes.

3.0.2 Design Components

The Warden system adds a few new components to the SuS architecture, shown in red in Figure

1. We edited and used the PHP profiling module from prior SuS work to intercept PHP function calls and

exfiltrate them out of containers as logs. The extension serialized each log and sent to a server which parsed
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them and added them to a processing queue.

Figure 1: Modified SuS Architecture, with Warden system outlined in red

When we first instantiate SuS, a managing process creates a threadpool of CFI worker threads. As

the parsing server generates logs, the manager assigns them to worker threads for investigation. Each thread

then starts by running lightweight CFI (bloom filter shown in the diagram) on the function call. If the

“lightweight” CFI system marks the function call as suspicious, it elevates the call to the “robust” hashmap

CFI.

For each function call executed, the PHP log constructed by the PEGASUS [13] PHP extension

contains callee name, caller script, line number, IP address of web server, and function parameters. Warden’s

CFI systems inspect the function and script names as well as the line number, giving us line number

granularity. Warden could record the parameters of the function call for increased context sensitivity, though

the set of trusted function calls stored by Warden would increase in size, incurring additional overhead.

The “lightweight” CFI was implemented as a bit array bloom filter, chosen for its small size and

speed. The filter will check if each incoming log has been serialized in the bit array previously and elevate

the log to hashmap CFI if it is not found. More information on the bloom filter data structure and rationale
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can be found in the implementation section.

The hashmap CFI will then check its historical data to see if the function call is valid. If the

function call is not found in the trusted set, the worker thread will investigate the WordPress source code

to determine if the function call’s name appears along the expected line in the PHP script. If the function

call is found to be valid, the hashmap CFI updates the lightweight data structure to trust the function call,

and the thread moves onto its next assignment. If the thread deems the function call invalid, the event is

recorded for future investigation, although the system could be configured to halt the malicious container

immediately. A comparison of the hashmap and bloom filter implementations’ features can be see in Table

2

Feature Hashmap Bloom Filter
Line No. Granularity
Source Code Analysis X
Pre-Populated X
Ground Truth X
False Positives N/A X
False Negatives N/A
Mutex Required X

Table 2: Comparison of our CFI Implementations

The CFI systems can be trained beforehand with dynamic analysis. Dynamic analysis refers to run-

ning the system with benign background traffic and recording all function calls that are received, saving them

as trusted for reference later when in enforcement mode. In order to avoid marking anomalous/malicious

execution as trusted, system admins must perform dynamic analysis in a pre-production testing environment.

Admins can utilize techniques similar to the methods discussed in the Saphire paper [12], including but not

limited to:

1. Replaying HTTP requests from users sessions on a monitored browser

2. Running any test suites released with web applications.

3. Web crawling the application, with both an authenticated and unauthenticated agent

4. Releasing the web application in a pre-production manner, giving access to only trusted users

Ideally, Warden would be trained on a set of functions calls as close to the complete trusted

functionality of a web application as possible. We trained our model using Apache JMeter, an industry

standard for simulating web traffic and stress testing systems. We recorded HTTP requests made during
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a human-driven session on the site, then replayed that traffic to simulate benign user interaction. In order

to simulate Warden learning from a complete set of function calls we performed some experiments on the

subset of site functionality that our simulated traffic covered.

4 Implementation

We implemented Warden in C with some utilities written in Python. The researchers in PEGASUS

[13] designed a PHP extension that profiled execution by recording a log every time a function was called

in the PHP runtime. A PHP environment with a modified version of the same profiling extension sends

function logs to a log-catching process listening on the host machine. This tool allows Warden to operate

outside of the client containers, which are not a part of our TCB. These logs are then added to a queue of

logs ready for CFI processing. This is depicted in Figure 2.

Figure 2: Warden System Implementation
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The manager process is multi-threaded in order to handle the volume of incoming logs. On startup,

it instantiates a threadpool of CFI worker threads. Each thread waits for the logs to be received, then

removes a log and begins the CFI analysis. A high level algorithm for a Warden CFI worker thread can be

seen in Algorithm 1.

Algorithm 1 Warden CFI Worker Thread

1: procedure checkCFI
2:

3: LightweightCFI:
4: functionCallLog← dequeuePHPLog()
5: if inBloomFilter(functionCallLog) then
6: end
7: else
8: goto RobustCFI

9:

10: RobustCFI:
11: if inHashmap(functionCallLog) then
12: updateLightweightCFI(functionCallLog)
13: end
14: else
15: if reactiveAnalysis(functionCallLog) then
16: updateLightweightCFI(functionCallLog)
17: updateHashmap(functionCallLog)
18: end
19: else
20: logIncident(functionCallLog)
21: end

First, the worker runs the lightweight CFI on the function call in the log (in the diagram the

lightweight implementation used is bloom filter). If the worker finds the function call in the bloom filter, it

considers the log valid and the thread waits for its next assignment. If the function call is not found in the

bloom filter, the thread elevates the log to robust CFI.

In order to make the robust CFI as fast as possible, a hashmap is utilized to store function calls that

have been investigated previously (either during production or during the training phase) and are trusted.

The script name is used as a key to hash, and the value is a linked list of function calls that are allowed.

If the function call is found in the hashmap, it is considered trusted, and the bloom filter is updated so

that future calls of the same kind will not be elevated to robust CFI. The thread then waits for its next

assignment.

If the worker does not find the function call in the bloom filter, the hashmap CFI begins the more

computationally intensive process of investigating the application’s source code to determine if the log data

is valid. The worker first parses the application’s root directory to determine if the script filename given in

14



the log exists. If it does, it opens the file and scans to the line number given by the log. It then searches the

line for the function call given in the log. If all of these steps are passed, the worker thread considers the

log valid and updates the data structures to avoid future false positives before getting its next assignment.

If the source code analysis finds that the function call is not valid, Warden logs the event. Here Warden can

act as the system administrator desires. Warden could halt the SuS container, monitor it more closely, or

just kill it outright in order to stop any further abnormal behavior.

4.1 Data Structures and Rationale

When deciding how to organize the multi-layered CFI system, we considered five performance goals.

1. Security. The Warden process responsible for identifying whether a function call is anomalous must

be within our TCB.

2. Speed. The goal of a multi-layered CFI system to is to allow benign traffic to be quickly approved by

the first layer, and only incur the speed loss when traffic is deemed suspicious.

3. Lightweight. The memory overhead associated with Warden scales with number of users without

overwhelming the system.

4. Low False Positive Rate. A false positive correlates to Warden raising an alert over a function call

that was not anomalous. In order to make the system as trustworthy and administrator friendly as

possible, the false positive rate remains low.

5. Controllable False Negative Rate. A false negative correlates to Warden approving a function call

that should have been marked as anomalous. The false negative rate of the system should remain as

low as possible, and is ideally controllable, allowing for administrators to trade off system resources

for a lower false negative rate or vice versa.

Warden handles all CFI processing and data storage outside of the container running PHP. This

in turn incurs certain overheads associated with sending log data to an external process. Regardless of this,

we deemed it preferable to run Warden outside the PHP runtime in order to conserve memory and keep the

system within our TCB.

In the SuS architecture, each client Docker container has a unique PHP runtime instance, meaning

each container will be running a unique copy of the PHP profiling extension, which do not share process

memory. If Warden was to be written as a PHP extension, each container would either have to have a
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unique copy of the data structures used for CFI. Allocating the memory to give each container its own copy

of the CFI data structures would quickly become memory intensive, especially as SuS is applied to larger

and larger applications with many clients. The duplicate bloom filters and hashmaps would also quickly lose

synchronicity, as each would only learn from a single client’s behavior.

Secondly, and arguably more importantly, if we implemented Warden as a PHP extension, we

would have to write it to operate entirely within the container, which is not part of our TCB in the SuS

architecture. If an attacker compromised the PHP runtime of the container, they could easily turn off or

silence Warden. Therefore, we elected to implement Warden outside of the containers, running instead on

the SuS host machine. This allows us to share single copies of our data structures between threads while

operating within our trusted computing base.

The bloom filter data structure was chosen for the “lightweight” CFI due to its speed, small size,

and inability to produce false positives. A bloom filter is populated using a set of “entries.” The filter can

then be used to test if an entry was not a member of the original set it was trained on. A bloom filter

maintains an array of bits (set to 0 initially) of size m , and has a predetermined number of unique hash

functions, k . For a given entry, X , each hash function is run on X and mapped to an index in the bit array.

If X is being inserted into the array, each bit it hashed to is set to 1. An example of adding X to a m ,k

bloom filter is shown in Figure 3.

In the case that the bit of an entry’s hash is already set to 1, nothing is changed. In order to test

if an entry was present in the set the bloom filter was trained on, Warden simply runs each hash function

on the entry and checks if each corresponding bit is set to 1. This structure allows for false negatives. A

false negative would equate to checking if an entry Y was in the set {X , Z} and getting the response that

Y is in the set. This could happen if the union of the hashed indices of X and Z contained all the hashed

indices of Y , that is:

∀ hk(Y ) : hk(Y ) ∈ (h(X) ∪ h(Z)) (1)

Where h( X ) represents all hashed indices of entry X. This is visually represented in Figure 4, where a false

negative’s occurrence becomes clearer.

In terms of our work, this correlates to an illegal PHP function call appearing as valid when checked

against the bloom filter. This is clearly a security concern, however the theoretical false negative rate of a

bloom filter can be calculated and controlled using the the following equation [19]:
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Figure 3: Entry X being added to bloom filter with k hash functions and m bits.

P = (1− [1− 1

m
]kn)k (2)

Where P is the probability of a false negative, m is the size of the bit array, k is the number of hash

functions, and n is the expected number of entries that the filter is trained on. This fulfills our goal of a

controllable false negative rate, as it allows the administrator to control the false negative rate of the bloom

filter, trading increasing filter size in order to lower the number of anomalous functions going unnoticed.

The real advantage of using a bloom filter comes from its inability to report a false positive. A false

positive occurs when an entry that was in the original set is tested and the filter reports that it was not in

the set. If all bits associated with an entry’s hashes are not set to 1, the bloom filter can report with 100%

certainty that said entry was not in the set the filter was trained on. In the context of Warden, this means

the bloom filter will only ever raise an alert and elevate a function call to robust CFI if the function call it

received was not a trusted call, and will never raise a false alarm over a benign function call.

This is a significant part of making Warden an administrator friendly security system likely to

be deployed in a production network. False positive alerts are sources of constant annoyance for security

analysts, and can often cause confusion and clutter, possibly to the point that genuine alerts are overlooked
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Figure 4: A false negative occurs when Y is queried on a bloom filter with {X,Z}

by overwhelmed administrators. If the rate of false negatives can be controlled and remains relatively small,

some system admins may prefer to have a low false negative rate and no false positive rate instead of no

false negative rate and a high false positive rate.

The bloom filter also provides the benefit of being extremely lightweight. The structure itself is

composed of a bit array which can be expanded without becoming a burden on the system. The number

of hash functions run for each entry is the main bottleneck in terms of latency, but the hash functions do

not have to be cryptographically sound as long as they are decently sparse for index marking, so they can

be chosen to be very fast. The bloom filter offers a unique set of features to CFI computation, as it has

a controllable false negative rate, a 0% false positive rate, and is lightweight both in terms of memory and

computation time.

Finally, we implemented a hashmap which robust CFI would check before performing source code

analysis. This was done in order to alleviate the performance costs associated with the increased computation

and to let the system learn dynamically generated functions in PHP. The hashmap used script names as keys

and a linked list of valid function calls as values. As the system was run, it would populate the hashmap

with function calls it found trustworthy, or was told to consider trustworthy by system administrators. For

an application with an exhaustive set of legal function calls, this would minimize the amount of repeated

computation and speed up normal traffic on the web server.
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5 Evaluation and Results

In order to evaluate Warden as a system we looked at its effect on performance when compared to

the original Single-Use-Server system as well as when the PHP profiling extension is enabled. In addition

to the performance of Warden we are interested in examining its effectiveness. We evaluated effectiveness

by simulating different methods of server side code injection to ensure Warden recognized the anomalous

execution. We also measured a theoretical false positive rate by running Warden with normal traffic and

recording its behavior.

5.1 Performance

To assess Warden’s performance, we conducted a series of experiments that analyzed its impact

on latency, server-side CPU and memory (RAM) usage. By using Apache JMeter we were able to simulate

user activity on a web-server running WordPress 5.1.1. We conducted these experiments in four phases

consisting of an increasing number of simulated users, in the order of 1, 10, 25, and 50 users. The means,

medians, and standard deviations of each test are found separated by testing class in the Appendix A.

Our goal of determining if a multi-layered web-based CFI system is viable drove us to a particular testing

methodology. We tested both SuS with Warden and SuS with only the PHP extension and log exfiltration

system separately to better understand how much each component contributes to latency and overhead.

Refer to Figures 5, 6 and 7 to see how the different components of Warden contribute to its performance in

the four testing phases. We ran the tests on a virtualized machine with 16GB of RAM and a 2.200 GHz Intel

Xeon Skylake-Server-IBRS CPU with 4 cores. We configured Warden to run with a 10 MB bloom filter and

5 hash functions. For a liberal estimated range of 1 - 5 million unique possible function calls, a theoretical

bloom filter yeilds a false negative rate of 8.2e−5% to 0.139% respectively.

5.1.1 Baseline SuS

To establish a baseline, we collected performance data on the Single-Use-Server Model with Warden

completely disabled. When testing with 1, 10, 25, and 50 containers, we observed average latencies ranging

from 68.71-278.09ms across 7 different endpoints as well as ranges of 21.71-98.61% CPU utilization and

1985-3020MB of RAM usage. As more users were added, we observed a slight increase in latency shown in

Figure 5. CPU utilization and memory consumption followed a similar trend seen in Figures 6 and 7.
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(a) One Container (b) Ten Containers

(c) Twenty-five Containers (d) Fifty Containers

Figure 5: Latency in ms

5.1.2 PHP Profiling Extension

The next component we observed was the PHP profiling extension. As this extension works on

top of the SuS architecture we expect it to perform worse when compared to baseline SuS. Seen in Figure

5 there is a significant increase in latency when the extension is introduced into the system. There are a

few culprits in the extension implementation that are responsible for this. The first is the socket type used

to ex-filtrate logs from within the container to Warden’s manager system. We used a TCP socket in the

AF INET family to send the logs over the network in favor of a UNIX socket in order to avoid modifying the

SuS Docker settings [1]. Another suspect is the lack of multi-threading in the extension to send to logs. We

had initially designed the extension to exfiltrate the logs in a multi-threaded fashion through the use of the

POSIX library function pthread create, however due to complications with our environment we were unable

to get pthread create to run as expected and had to send the logs in series rather than in parallel, increasing

latency. Other example environments have shown that pthread create can work in PHP extensions. In
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(a) One Container (b) Ten Containers

(c) Twenty-five Containers (d) Fifty Containers

Figure 6: CPU utilization in percentage

the future, an optimization could involve reconfiguring Warden to support pthread create in PHP runtime

extensions.

5.1.3 Warden at Full Capacity

The final component enabled was Warden’s full CFI capabilities. We built the CFI to run in parallel

with the users activity as to minimize the effect on latency. It is apparent from the CDFs that the curves

for the PHP extension and Warden are nearly identical for latency as shown in Figure 5. The CPU was

near 100% utilization for every test with 10 or more users. However, the CDF of CPU utilization with 1

user shown in Figure 6 shows the CPU usage of the PHP extension to be 42.00%, and the CPU usage of

Warden to be 53.14%, implying a significant portion of Warden’s CPU overhead is accumulated during the

exfiltration and parsing of PHP logs. However, Warden’s CFI requires significantly more memory to store

the function calls in the hashmap. We decided to allow for Warden to store the function relations instead of
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(a) One Container (b) Ten Containers

(c) Twenty-five Containers (d) Fifty Containers

Figure 7: RAM utilization in megabytes

performing static and dynamic analysis for every log the system encounters, favoring higher memory usage

rather than CPU utilization.

5.2 Effectiveness

The version of WordPress that we trained Warden on (v. 5.1.1) did not have any publicly doc-

umented exploits to inject and execute arbitrary PHP code server side. Prior versions of WordPress and

their associated plugins however had multiple vulnerabilities which allow for such server side code injection.

Server side code injection has many forms, all of an adversary can exploit if they have Arbitrary File Down-

load (AFD) and Arbitrary File Upload (AFU) capabilities. Both AFD and AFU vulnerabilities have been

published in prior versions of WordPress and WordPress extensions. For example, in version 1.48 of the

Files plugin unauthenticated users were able to upload files from their machine to the server [20]. Similarly,

version 1.1.1 of the History Collection plugin neglected to filter HTTP requests in such a way that it allowed
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unauthenticated users to download any file from the server [21]. The combination of AFD and AFU would

allow any attacker to inject PHP scripts and modify existing scripts on a web server.

5.2.1 Testing Code Injection

In order to test Warden’s effectiveness against the different code injection methods, we separated

such attacks into different “classes” of code injection based on the criteria Warden monitors: PHP script

name, function name, and line number of function calls. The classes represent different kinds of code

injections and different levels of “stealthiness.” Stealthiness refers to the adversary attempting to hide the

injected code amongst normal execution, whether that be by using valid script names, function names, or

line numbers in their injected code. We decided that our “simulated” attacker would have the proof of

concept goal of creating and writing to a server side file as a Proof of Concept (POC). The code injection

classes included:

1) Exploiting the include and require keywords. PHP scripts can use the built-in functions

include and require to execute code from another script before executing their own, similar to the import

statement in Python. Attackers with the ability to inject code or file paths can use these functions to cause

a benign PHP script to call a malicious PHP script of their choice. This is called a Remote File Inclusion

(RFI) attack. CVE 2021-24472 documented an RFI vulnerability in both a WordPress plugin and theme

which would have allowed for this kind of code injection [22]. To simulate this class of code injection, we

modified index.php to include a malicious script placed on the server.

2) Injecting a malicious PHP script. AFU vulnerabilities such as the one mentioned previously

allow an attacker to inject a malicious PHP script to a server’s home directory. By then visiting the associated

URL, the attacker could cause the server to execute the code. In order to test this class, we uploaded our

POC script and visited the newly created URL.

3) Replacing a valid script with a malicious script of the same name. Should an attacker

attempt to replace a valid script with their own functionality, Warden should still detect the injection and log

the function calls that the imposter script makes. To test this class, we replaced index.php’s functionality

with our POC script instead of loading the site.

4) Injecting a function call into a valid script. An attacker may not remove any functionality

from a valid script, but rather append to it in an attempt to hide their malicious function calls in amongst

the normal execution of the script. To test this class, we injected code from our POC script into index.php

in such a way as to allow the site to load normally.
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5) Injecting code without custom functions into a valid script. Should an attacker have

knowledge of Warden’s presence, they may attempt to inject code into a script that does not make any

function calls, so as to not alert Warden. This code could for example reassign the value of some local

or global variables in order to change the execution of conditional statements. Warden may still catch

this injection as it monitors execution at a line number granularity, meaning any valid function calls that

were moved due to the injected code would be marked as suspicious. To test this class, we added variable

declarations into wp-login.php, moving function calls in the rest of the script down a line.

6) Replacing a valid script with valid function names called on the right line numbers.

Finally, assuming an attacker with complete knowledge of the server source code and how Warden monitors

execution, they may write a malicious script with a valid name and define malicious functions with the same

names as valid functions in that script. If they ensure all functions are only called on the line numbers they

are expected, they should be able to fool Warden.

The results of our simulated code injections can be seen in Table 3.

Injection Class Detected
1) include()
1) require()
2) Script Injection
3) Script Replacement
4) Function Injection
5) Wrong Line Number
6) Hidden Injection X

Table 3: Effectiveness of Warden Detection

Warden was able to correctly identify malicious code injection in every case except for when the

injected script used valid script names, function names, and line numbers, as was expected. However, in

order to execute an attack of this class, an attacker would have to replace the functionality of a valid script

on the server, which would likely be noticed and investigated quickly. This class could be made significantly

harder to exploit if Warden was configured to also take parameters passed to function calls into account

since the PHP logs include parameters. This would significantly increase the size of Warden’s trusted set of

function calls however, and further complicate obtaining a complete set of functionality. Future work could

further restrict the attacker by tracking previously inspected function calls to ensure functions are being

executed in the expected order in each script.
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5.2.2 False Positives

We trained Warden using a combination of static and dynamic analysis, analyzing WordPress

source code and simulating trusted traffic on the site. However, the task of exhaustively enumerating a web

application’s functionality is complex and difficult, as execution branches can change depending on a number

of factors including browser, user authentication level, state of application caches, and external sites. Ideally,

Warden would be trained on a complete test suite of the site’s functionality. Depending on the application

the developers may have such a test suite available, or other methods to improve dynamic analysis, such as

those discussed in Section 3.0.2.

In order to test Warden’s false positive rate when trained properly, we simulated traffic on a

subsection of WordPress’ functionality that we’d trained and tested on. We used Apache JMeter to constrain

the end user’s browser type and authentication level. We then recorded the number of logs seen, number of

logs elevated to hashmap CFI, and number of false positives raised by Warden. Out of the 10,003 requests

made, 32,386,535 logs were seen, 12 logs were elevated to hashmap CFI, and 0 false positives were raised.

As was expected, Warden’s multi-layered CFI model allowed the vast majority of traffic (> 99.99%)

to be quickly approved by the lightweight bloom filter, only elevating 3.7 × 10−7% of traffic to the slower

and more computationally intensive hashmap CFI. From this we conclude that Warden, or another system

trained using historic execution data would be able to perform with a very low false positive rate if trained

on a complete enough training set. Any attempt to generate the training set through simulation would

need to be diverse in its level of user authentication, method of contacting the site (browser, command line,

Apache JMeter), and time of requests in order to account for the complex conditional execution of large web

applications.

6 Conclusion and Future Work

In this work we introduce Warden, a multi-layered approach to PHP web application CFI that

aims to leverage historical execution data to identify anomalous activity while quickly approving benign

traffic. In our testing site (WordPress 5.1.1), Warden only incurred constant memory overhead (∼ 200 MB)

when compared to baseline SuS, regardless of the number of users. We show that a historically trained

multi-layered approach to CFI is able to correctly identify anomalous traffic similar to common Remote

Code Injection and Execution attacks without raising many false positives, given that it is trained on a large

enough training set.
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We found that acquiring a complete training set for complex web applications such as WordPress

can be difficult due to the dynamic nature of web applications. Functionality surrounding caching/decaching,

user-authentication functions, and user-driven execution (i.e. eval and call user func) further complicate

collecting a complete set of function calls.

While Warden did add significant latency overhead to the SuS system, we found that the vast

majority of this overhead was accumulated during the creation, extraction, and parsing of PHP function

logs from the container’s PHP runtime to the Warden manager process running on the host. This implies

that Warden’s CFI functionality may add very little overhead if implemented alongside a more efficient data

extraction method, though this hypothesis remains to be tested.

We made many cursory optimizations throughout the development of Warden, decreasing overhead

and simplifying systems. By simply altering the policy Warden used to wake up worker threads, CPU usage

with 1 container dropped by 20%. Future work could certainly make similar advancements, implementing a

more complex time-based approach to waking and sleeping worker threads, decreasing CPU utilization even

further. As described above, performance in terms of both CPU usage and latency would likely improve

drastically if a method was found to make the extraction and parsing of logs (both on the PHP extension

and Warden side) more efficient and reliable. Complications in our testing environment prevented us from

using threading in the PHP extension. This is likely a cause of a significant portion of the latency overhead

and could certainly be investigated and fixed with future work.

Many web CFI technologies such as Warden, Saphire, and ZenIDS rely on building a trusted set of

benign activity, whether it be in terms of PHP function calls, PHP opcode or system calls [12][18]. Future

work may investigate the feasibility of exhaustively enumerating or simulating arbitrarily complex web

applications’ functionality. Both enumerating and simulating functionality would provide CFI systems with

the trusted set they need through static or dynamic analysis respectively. Finally, future work could integrate

Warden’s multi-layered system into other web CFI implementations, swapping out the rough hashmap CFI

described in this paper for a more advanced system such as those described in the Saphire and ZenIDS

papers.

The sub-field of web application CFI is still relatively unexplored compared to its compiled coun-

terpart. While Warden in its current state is not feasible for deployment to larger web servers, we conclude

that the principles of using multi-layered CFI to improve performance and leveraging historical data to ac-

commodate for the dynamic environment of the internet are promising tools that future works can utilize

and improve on.
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Appendices

A Test Statistics

Average CPU Usage (%)
User Count Nginx Baseline SuS PHP Ext. Warden
1 14.10 21.71 42.00 53.14
10 66.11 76.47 99.47 97.93
25 87.84 94.40 99.79 98.93
50 88.42 98.61 99.85 99.51

Median CPU Usage (%)
User Count Nginx Baseline SuS PHP Ext. Warden
1 12.97 22.12 41.58 52.74
10 66.88 76.10 99.52 98.05
25 88.50 94.75 99.78 99.03
50 88.59 98.80 99.80 99.56

CPU Usage Standard Deviation (%)
User Count Nginx Baseline SuS PHP Ext. Warden
1 3.91 3.94 4.23 3.74
10 5.40 2.33 0.33 0.67
25 4.42 3.37 0.20 0.43
50 1.60 1.86 0.16 0.26

Average RAM Usage (MB)
User Count Nginx Baseline SuS PHP Ext. Warden
1 1452 1985 2015 2155
10 1456 2172 2200 2343
25 1459 2475 2549 2697
50 1458 3020 3126 3282

Median RAM Usage (MB)
User Count Nginx Baseline SuS PHP Ext. Warden
1 1450 1985 2016 2156
10 1457 2172 2201 2343
25 1458 2477 2549 2695
50 1459 3022 3128 3282
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RAM Usage Standard Deviation (MB)
User Count Nginx Baseline SuS PHP Ext. Warden
1 9.60 8.13 8.61 9.28
10 8.32 7.73 6.75 7.96
25 5.89 10.50 7.47 9.49
50 7.38 8.63 11.01 10.61

Average Latency (ms)
User Count Nginx Baseline SuS PHP Ext. Warden
1 62.74 68.71 110.05 113.09
10 61.88 83.98 442.95 443.84
25 91.13 156.35 1038.03 1022.34
50 191.73 278.09 2012.7 2011.62

Median Latency (ms)
User Count Nginx Baseine SuS PHP Ext. Warden
1 62.00 68.00 107.00 110.00
10 61.00 81.00 445.00 445.00
25 91.00 153.00 1049.00 1023.00
50 191.00 263.00 2004.00 1998.00

Latency Standard Deviation (ms)
User Count Nginx Baseline SuS PHP Ext. Warden
1 4.15 5.56 13.95 15.54
10 7.73 17.40 127.49 129.16
25 10.04 40.22 232.39 228.07
50 12.48 99.00 377.65 384.37
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