
Applying Explainable AI to Taxi Driver

Classification

Major Qualifying Project

Authors:
William Burke
Ian Coolidge
Jin Ryoul Kim

Advisor:
Yanhua Li, Ph. D

This report represents the work of one or more WPI
undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these
reports on the web without editorial or peer review.

24 March 2023

1

Contents

1 Introduction 3

2 Background 4
2.1 Dataset . 4
2.2 Recurrent Models . 5

2.2.1 Varying Sequence Length 6
2.2.2 Long-Short Term Memory Networks 7

3 Methodology 8
3.1 Data Processing Pipeline . 8

3.1.1 Describing the Dataset . 9
3.1.2 Data Selection . 9
3.1.3 Data Cleaning . 10
3.1.4 Feature Engineering . 12

3.2 Training the Deep Learning Model 14
3.2.1 Model Architecture . 14
3.2.2 Training Process . 15

3.3 Explainable Methods . 16
3.3.1 Tabular Feature Importance 16

4 Results and Conclusion 17
4.1 Model Results . 17
4.2 Explanation Results . 23

4.2.1 Takeaways . 24
4.2.2 Future Work . 25

4.3 Conclusion . 25

2

1 Introduction

The world has been undergoing rapid urbanization and the placement of
better technology in urban environments has allowed for a step towards more
advanced cities. Nowadays technology is becoming increasingly necessary in the
lives of individual residents, with smartphones putting readily-available infor-
mation about traffic, safety, health services, and community news into millions
of hands. Furthermore our ability to measure, store, and analyze data on large
scales has increased the capacity to which information can be leveraged in count-
less domains, including smart cities.

Machine learning has become a crucial tool for smart cities. It is able to
consume huge amounts of data generated by running and monitoring urban
centers with the help of technologies such as the internet of things becoming
more common. Machine learning models can process this data, producing ac-
tionable results to be used to reach solutions to several urban problems. For
example, it can be used to propose solutions related to resource management,
traffic patterns, infrastructure, or really any problem backed by sufficient data.

However, as data becomes more complex and more powerful deep learning
architectures are used, the methods used to reach a solution become much less
interpretable on the surface level. For example, when utilizing the power of a
deeper model like a neural network, it’s common to either reach a solution or
a shortcoming without fully understanding which components and patterns of
the data lead to that outcome.

In recognition of such an issue, more developers are starting to incorporate
explainable AI into their complex solutions in order to make these problems
more understandable. This places more emphasis on human understanding,
which is certainly crucial to a problem due to the degree of complexity that the
most powerful solutions introduce. Furthermore, our research aims showcase
the application of explainable AI to a complex and hard to interpret solution in
the urban intelligence domain, specifically related to traffic. In this paper, we
build a deep classification model with the goal of predicting the identity of a
driver responsible for a taxi trip, train it on complex data, and use explainable
AI to better interpret the results of this model.

3

2 Background

2.1 Dataset

We used a dataset of taxi trips representing the rides given by 442 different
taxi drivers over the course of 1 year. Additionally, this data was collected in the
city of Porto, Portugal between July 2013 to June 2014. Our group chose this
dataset due to the versatile features it includes, as well as the fact that there are
more than enough entries to reliably train a model. More specifically, each data
sample corresponds to one completed trip, containing a total of nine features.
Most notably among these features is a list of gps coordinates representing the
taxi’s trajectory for that trip, which we refer to as the trip’s ’polyline’.

Polyline. The polyline field drew the largest amount of attention from us, as
it is the only field that can be described as spatial-temporal data, and is by
far the most complex. The polyline is a sequential list of gps coordinates, with
these gps coordinates being measured at 15-second intervals in the format (lon-
gitude, latitude). The longitudinal component is used interchangeably with the
”x” component, which fell into the range of [-5, -13] for this dataset, and the
latitudinal component is used interchangeably with the ”y” component, which
fell into the range of [38.5, 42.5]. Because it is a sequential list, the first coordi-
nate pair represents the trajectory’s start location and the last coordinate pair
represents its end location. The visual below is an example of a trip’s polyline
from our dataset, visualized over the actual location using OpenStreetMaps and
Matplotlib.
Other Fields. The 8 remaining fields in the dataset are the following, as
described by the dataset’s publisher:

• TRIP ID: A string containing a unique identifier for each trip.

• CALL TYPE: A char from ’A’, ’B’, ’C’ used to identify the method of
demanding the trip’s service.

– A: Trip was dispatched from the central

– B: Trip was demanded directly to a taxi driver on a specific stand

– C: Otherwise (i.i. a trip demanded on a random street)

• ORIGIN CALL: An integer uniquely identifying the phone number which
was used to demand, at least, one service. Identified only if the CALL TYPE
is ’A’

• ORIGIN STAND: An integer uniquely identifying the taxi stand. Identi-
fies the starting point only if the CALL TYPE is ’B’

• TAXI ID: An integer containing a unique identifier for the taxi driver
that performed each trip. This was the target class of our classification
problem.

4

Figure 1: Visualizing a polyline in the city of Porto, Portugal.

• TIMESTAMP: An integer representing the unix timestamp in seconds
that identifies the trip’s start time and date.

• DAY TYPE: A char that identifies if the trip was started on a holiday,
day before a holiday, or otherwise. This field was largely unpopulated, so
we were not able to make much use of it.

• MISSING DATA: A boolean, false when the GPS data stream is complete,
true if one or more locations are missing.

2.2 Recurrent Models

Recurrent neural networks, or RNNs, are neural networks designed to process
sequential data in which information computed from previous values of a time
series can impact the model’s prediction on future values. RNNs differ from
traditional, or feedforward, neural networks in the addition of a recurrence:
some quantity that is propagated forward through the network from cell to cell.

5

Recurrent neural networks are a natural choice for processing sequential
data due to their ability to assemble predictions based on data propagated from
previous features. In the case of the polyline taxi trajectory data set, recurrent
networks can retain information about previous points in the trajectory while
processing future points.

Figure 2 shows the basic structure of an RNN, illustrating the recurrence
concept. Note that there are various implementations for the prototypical re-
current cell Rj , and each cell produces an output Hj . Depending on the imple-
mentation of the overall network, some recurrent models may only make use of
the final output Hn, while others make use of every output Hj . In the case of
our model, we generally choose to only use the final output Hn, where n is the
overall length of the polyline.

Figure 2: Prototypical structure of a recurrent neural network. Part a) shows
the repeated recurrence, and part b) demonstrated the ”unrolled” RNN.

2.2.1 Varying Sequence Length

One particularly useful feature built into many RNN architectures is the
fact that they use a single cell repeated an arbitrary number of times. This
means that these RNNs can take input sequences of varying lengths, rather
than constraining their input to batches of fixed-size samples. In the case of the
polyline dataset, the length of a polyline is directly proportional to the total
ride time, and various rides will have different lengths.

While RNNs are generally capable of handling these various lengths during
training, they are unable to handle batches of sequences of different lengths. To
remedy the problem and train the RNN on varying sequence lengths, several
options are available:

• Find the maximum length N of all sequences, and pad all sequences in
the training set with zeroes or the mean to length N . This has the disad-
vantage of potentially losing information about each sequence’s length.

• Create batches in such a way that all sequences in each batch have the
same length, e.g. by sorting sequences by their length. This is the most
flexible option, but can lead to inconsistent batch sizes. In addition, for

6

the polyline trajectory problem, it is likely that few polylines will have
the exact same length leading to a small maximum batch size.

• Constrain the batch size parameter to 1. This is the simplest option, but
potentially increases training time by requiring many batches per training
epoch.

For simplicity and understandability, in our experiments we chose to con-
strain the LSTM batch size to 1. In addition to causing a moderate slowdown
in training speed, this constraint can lead to suboptimal local minima; how-
ever, due to the complexity of the other options and the difficulty of dividing by
polyline length, we found this option to be both relatively simple and relatively
powerful compared to the other two solutions.

2.2.2 Long-Short Term Memory Networks

LSTMs, or Long-Short Term Memory networks, are one of the most com-
mon and powerful implementations of the RNN architecture. LSTMs attempt
to simulate human memory via the implementation of a ”forget gate”. The
forget gate is used to mitigate the effect of the vanishing and exploding gradient
problems, in which the long-term sequential nature of an RNN leads to gradients
that become excessively small or excessively large. Via the ability to learn how
to forget information that came from sufficiently earlier in the sequence, LSTM
networks provide a solution to the vanishing and exploding gradient problems.

7

3 Methodology

The methodology of our research question can be categorized into three
sections, which include the data processing pipeline, training the deep neural
network, and the use of explainable AI techniques to make the model more
interpretable. In the diagram below, their abstract relationship is outlined,
which more specific details shown in the respective sections. The first aspect is
our data processing pipeline which consists of steps executed to transform the
original dataset into one that fits our needs of feeding samples with meaningful
features into the model. Next, we trained a deep neural network with the
major internal mechanism being an LSTM layer for the polyline features, which
feeds into the final layer that also makes use of the remaining tabular features.
Finally, we explored a series of explainable AI techniques with the aim of making
this deep model more interpretable, which typically involved retraining and
extracting information from the training process.

Figure 3: Diagram showing components of methodology.

3.1 Data Processing Pipeline

As mentioned above, this section with outline the steps taken to transform
the raw Kaggle dataset to the final dataset that is used in our neural network’s
training and testing processes. This pipeline starts with data selection to narrow
the number of drivers to 5 to fit our classification problem. Next, we clean the
dataset to remove unusable data or extreme outliers, including geographical
filtering. Finally, we do feature engineering to create new features based on
polylines and tabular data related to the trip, where we also transform certain
features so they can seamlessly be fed into our machine learning model.

8

Figure 4: Diagram showing data processing pipeline.

3.1.1 Describing the Dataset

After downloading our dataset from Kaggle, we had to do an initial analysis
to better understand the contents of the data before actually shaping and select-
ing it to fit our needs. One of the actionable insights we gained from doing this
was a distribution showing the number of rides given by the drivers represented
in the dataset. We discovered that the majority of drivers had given between
3,000 and 6,000 rides, and that a small minority gave below 1,000 or over 8,000
rides. This information would prove very useful to our data selection process.

Figure 5: Histogram showing totals of drivers across number of rides given

3.1.2 Data Selection

The goal of our model was to take a sample taxi trip and use it to predict
which driver gave that trip. Since it seemed impractical to make a prediction
model based on hundreds of possible drivers, and therefore hundreds of classes,
we decided that our research question could be answered with a subset of 5

9

drivers. When selecting these 5 drivers, we wanted to choose 5 that had similar
representation in the data, meaning that they had given a similar, and reason-
able, amount of rides. Therefore, we chose 5 drivers that had around 4,000 rides
given, landing them in the middle of the distribution shown in the previous sec-
tion. This was done to ensure that a selected driver would not vary too much
from the standard we set on what is a “normal” driver, while also eliminating
the possibility of a class imbalance when training the classification model. To
recap, we selected a subset of trips distributed roughly equally across 5 drivers,
while ensuring that each driver had a similar, reasonable amount of rides given.

3.1.3 Data Cleaning

After doing data selection to narrow our working sample to 5 drivers and
their respective trips, the next step was to make sure the data set was clean. We
did this by removing any ‘outlying trips’ which we defined as any trip without
a polyline, or any trip with a poly outside of a defined geographical square.
Although the vast majority of the data was kept, this process ensured that
some samples that could have skewed the results of our analyses or model were
removed.

The first process of dropping records that had outlying polyline fields was
relatively straightforward. Since the polyline field is one of the main areas of
interest in our research question, it was necessary to remove any trip that did
not have a polyline, despite what data the other fields contained or why the
trip did not have a polyline. Expanding upon this, we decided to remove any
polyline that had less than 5 points, because that polyline length would indicate
that the trip lasted 1 minute or less, and was likely an outlier. This process was
relatively straightforward, as we could simply drop any records where the length
of the polyline field was less than 5, which ended up being a very insignificant
portion of the dataset at less than 0.01%.

The data-cleaning process of removing polylines outside a defined geograph-
ical square was more complex, as it required more technical steps and careful
consideration of the points removed. The motivation behind a geographical
square was to create an upper and lower boundary for latitude (geographic Y
coordinate) and longitude (geographic X coordinate), which contained the ma-
jority of polylines in the samples of 5 drivers, while also filtering out extreme
outliers. For example, an outlier trip may be extended into the ocean due to a
measurement error, extend out of the country, or simply go far outside of the
geographic area we decided to focus on.

The first step in this process was to visualize the distribution of points, both
for their latitude and longitude. This would allow us to see what an outlier
looked like on the lower and upper end of both dimensions, so we could then set
a reasonable upper and lower boundary for each dimension to filter out outliers.
The following visuals show the distribution of longitude and latitude for points
contained in polylines in the dataset.

10

Figure 6: Figure showing distribution of latitude of points

Figure 7: Figure showing distribution of latitude of points

We used these visuals to set the upper and lower boundaries for latitude and
longitude, ultimately using a latitude range of [41.1, 41.3] and longitude range
of [-8.7, -8.5]. From there we flagged any trip with a polyline containing at
least one point outside these limits, allowing us to filter the dataset to remove
any flagged trips. Below using OpenStreetMap, we were able to visualize the
geographical region contained within these boundaries.

11

Figure 8: Region containing all points after data cleaning.

This entire process of data cleaning allowed us to remove 579 outlying sam-
ples that could have impacted our results. This left us with 97.4% of the un-
cleaned dataset of 5 drivers, or 21,660 samples to be analyzed, transformed, and
used for modeling.

3.1.4 Feature Engineering

The final step of our data processes was feature engineering, where we cre-
ated more meaningful features based on the baseline set of features we had, and
transformed some of the features so they could be better interpreted by our
neural network. These features include a normalized polyline, start, end, and
various other coordinates, polyline length, distance traveled, average distance
between points, call type one hot encoded, day of week one hot encoded, and

12

transformed time of day.

Normalized Polyline. One of the first processing steps we took was to normal-
ize all coordinate points contained in polylines on a [-1,1] scale. The motivation
for this was to scale down the longitude and latitude numbers so they could
be interpreted by the model more easily, with the added benefit of making the
data more interpretable and workable to us. Since the normalization of points
requires a minimum and maximum in each direction, we were able to use the
boundaries of the geographical square that we used in the data-cleaning step.
Furthermore, after this step, it was more appropriate to refer to points as ‘x’
and ‘y’, rather than longitude and latitude. The resulting polylines containing
normalized ‘x’ and ‘y’ coordinates were then used for the feature engineering of
any polyline-related features, as well as being the input for the LSTM compo-
nent of our model.

Single Point Features The first feature we extracted from the normalized
polylines was the start location of the trip. The motivation behind this was that
the geographical location of where a driver started their trip could potentially
be an insightful piece of information that could help the model differentiate the
drivers. Following this logic, we later decided to incorporate the first 5 points
of the polyline, in addition to the last coordinate of the polyline representing
where they ended their trip. Additionally, when feeding a single point into the
model (ex: start location), we had to split it into separate ‘x’ and ‘y’ features,
meaning that we had 12 features total representing these points relative to the
driver’s path.

Whole Polyline Features The next features we engineered from the polyline
were its length, representing how long the ride took, the distance covered, and
the average difference between points. Since each polyline’s data points were
collected exactly 15 seconds apart, the length of a polyline is directly correlated
with how much time the trip took. For this feature, we simply took the num-
ber of coordinate pairs in each polyline, which ranged from 7 to around 200.
Additionally, we wanted to predict a close estimate of how much distance was
covered by a trip because intuitively, the distance covered in a trip could factor
into a prediction of who was driving. To do this, we calculated the distance
between each connected pair of points in the normalized polyline and summed
them together, resulting in a number that closely, but not perfectly, represents
the physical distance traveled by the car. Finally, an average delta feature was
calculated by computing the average distance between points, as opposed to
sum of distances in the previously mentioned feature.

Categorical features. The next set of features that we needed to prepare for
the model were the categorical features that were provided by the dataset. The
only categorical feature in the original kaggle dataset was call type, with a value
of ‘a’, ‘b’, or ‘c’, which we one hot encoded resulting in one feature for each of
the possible categories.

13

Datetime features.Another one of the features provided by the Kaggle dataset
was a DateTime object representing the date and time of the start of the trip.
First, we wanted to incorporate the day of the week that the trip occurred into
the model, which we did by extracting the weekday from the DateTime object,
then one hot encoding it into 7 features representing the days of the week. Next,
we extracted the time of day from the DateTime object, which required more
transformation due to the cyclical nature of time of day. We transformed the
time of day to a decimal representation, then applied sine and cosine and scaled
it down to be between -1 and 1. This resulted in two features (with a minimum
value of -1 and a maximum of 1) representing time of day, one for sine and one
for cosine. This practice is common when trying to preserve the cyclical nature
of certain fields like time because it preserves the fact that 23:00 is closer to
1:00 than 1:00 is to 4:00 etc.

3.2 Training the Deep Learning Model

3.2.1 Model Architecture

Our model consists of two primary components: an LSTM operating on
the polyline data, and a feedforward neural network operating on the tabular
features extracted from the data as described in Section 3.1.3. The architecture
of our neural network model is demonstrated in 9.

Figure 9: High-level overall neural network architecture

The recurrent section of the architecture is a single-layer LSTM with a hid-
den layer size of 200. Our experiments found that multi-layer LSTMs generally
provided small to non-existent performance increases over a single-layer LSTM
at the cost of significant performance, and as a result we chose to constrict our
experiments to a single LSTM layer. We choose to only consider the output of
the final unit of this LSTM layer.

14

The remaining neural network architecture consists of a 20-dimensional vec-
tor corresponding to the various tabular features effecting the network’s per-
formance. This vector is concatenated with the two-dimensional output of the
LSTM and fed into a 100-dimensional feedforward network layer, followed by
a 5-dimensional softmax layer corresponding to the five drivers. By definition
of the softmax function, the output of our model is a 5-dimensional probability
distribution consisting of likelihoods that the polyline belongs to a given driver.

This model notably contains many simplifications which improve training
performance at the cost of complexity in the model which may improve overall
accuracy. These include, but are not limited to:

1. Using only a single LSTM layer rather than a deep multi-layer LSTM.

2. Only considering the final output of the LSTM layer, rather than every
intermediate output or a subset of the intermediate outputs.

3. Only including one ReLU-activated hidden layer before the softmax output
layer.

4. Using relatively small (100-200) feedforward layer sizes.

We performed several experiments on our model in order to see the effect
of relaxing any of these conditions, however none of these experiments led to
results that performed noticeably better than the simple model. Given the
limited computing power of the WPI Turing Cluster, we thus chose to use one
of the simplest possible models to produce our predictions.

3.2.2 Training Process

Weminimized a cross-entropy loss over our model’s output. For each training
period as described in Section 3.3.1, we trained for 100 epochs. We used an
Adam optimizer for adaptive training, using default PyTorch hyper-parameters
and a learning rate of 5e-5. This learning rate was chosen via a train-validation
split with all features, with 10 percent of the training set used for validation. Via
this validation, we found that changes to other hyperparameters had minimal
impact on the model’s overall performance.

Our training and feature importance calculation was performed on a single
GPU on the WPI Turing Cluster, with a job allocated the following specs:

• 8 GB RAM

• NVIDIA A100 GPU

• 8-hour time allocation

We found 8 hours of training sufficient to train each model involved in the
tabular feature importance process.

15

3.3 Explainable Methods

3.3.1 Tabular Feature Importance

Our primary goal in explaining the results of the model described was to
determine the relative contributions of the various model inputs, including the
polyline LSTM, tabular features provided by the dataset, and features extracted
manually from the polylines. We define a feature of the model to mean some
subset of the data columns. For example, the ”Start Location” feature consists
of the x and y coordinates of the start location, and thus consists of two columns.
Given N features we extracted an importance score for each feature via the
following process.

First, we train the model as normal with all features according to the training
process described in Section 3.2.2, obtaining a percent accuracy Acontrol. For
each feature ϕ = {c1, . . . , cℓ} that we wish to compute an accuracy score for, we
then retrain the model after shuffling each of the columns cj that is part of the
feature. This yields an adjusted accuracy score Aϕ for each feature ϕ, with the
expectation that 0 < Aϕ < Acontrol for each feature ϕ.

To compute the feature importance score Iϕ for each feature ϕ, we then
apply the following formula:

Iϕ =
Acontrol −Aϕ

Acontrol − 1
c

Here c represents the number of classes, and thus 1
c is the expected accuracy

of a fully random classifier. This score represents the percentage loss in accuracy
resulting from shuffling the feature ϕ. The calculation has the property that,
assuming Aϕ ranges from 1

c to Acontrol, the feature importance score will lie in
the interval [0, 1]. In particular, if Aϕ ≈ Acontrol, then removal of the feature ϕ
does not significantly impact the accuracy and Iϕ ≈ 0 as expected. Similarly,
if Aϕ ≈ 1

c , then removal of the feature ϕ reduces the accuracy to near zero in
which case Iϕ ≈ 1 as expected.

This process and analysis shows that, by computing Iϕ for each feature
over the course of N + 1 training applications of the model, we obtain relative
importance indices for each feature.

16

4 Results and Conclusion

4.1 Model Results

Overall, our trained model correctly classified about 58.4% of samples in the
testing set. However, being a multi-class classification problem, there is more
information beyond overall accuracy to show more specifically how the model
performed and where it fell short. As a result, we used the previously trained
PyTorch model to make predictions on the test set, and saved those results
containing the actual and predicted class of every sample trip. With this, we
were able to do an analysis and got the following results.

The first, and most basic piece of information beyond overall accuracy is
accuracy per class, which is the percentage of samples correctly classified for
each class. As shown by the table below, some classes have a relatively high
proportion of correctly classified samples (around 70%), and others are unusually
low (49.5% and 26%). This is an interesting result, as it suggests that the model
was really accurate when classifying drivers 1, 3, and 4, but did a very poor job
at predicting drivers 0 and 2.

Table 1: Percent correctly classified.
Driver 0 Driver 1 Driver 2 Driver 3 Driver 4
49.5% 76.7% 26.0% 69.2% 73.4%

Another one of the results we derived from the dataset of predictions was
the amount of times that class was predicted, compared to the number of trips
that actually belong to that class. As shown in the visual below, class 2 was the
least frequently predicted class, while simultaneously having the highest actual
amount of samples in the testing set. This is very strange because although
it had the most training examples to train the model, it still was guessed at
a significantly lower amount than any of the other classes. Another point of
information worth noting is that the actual class distribution is relatively even,
while the model’s predicted class distribution is less so with class 2 having signif-
icantly fewer predicted values. This would suggest that the model was trained to
slightly over-predict classes 0,1, 3, and 4, while severely under-predicting class
2.

17

Figure 10: Predicted classes (top) and actual classes (bottom) on test set.

Next, we used a confusion matrix to gain a more specific breakdown into the
class-by-class predictions. This confusion matrix below shows the specific count
of predicted vs. actual guesses for each pair of classes. This matrix shows more
detail about how class 2 was under-predicted, and where that class’s samples
were distributed. Notably, 0 was predicted as the class value when the actual
class was 2 400 times, exceeding the number of correct classifications for class 2
by 147 samples. This is very interesting because as the only major inconsistency
in the confusion matrix, it suggests that classes 0 and 2 had a similar feature
space that would cause this large of a discrepancy.

Figure 11: Confusion matrix showing predicted and actual class confusion.

18

So far, the information has revealed that not all classes were predicted with
the same success as others, which is valuable information in itself. It shows
that the model was significantly more accurate for certain classes compared to
others, which raises the question of what patterns in the input data or lack
thereof caused this. This is inherently due to the patterns data that were fed
into the model to represent each of these classes, which we can begin to take a
look at. To elaborate on this, we will compare key geographical features of two
classes that were not confused at all, and two classes that were confused often.

First, we’ll compare classes 0 and 2, which were two of the most confused
classes. As seen in the confusion matrix, they were confused a total of 500
times (400 and 100). Looking at the features that were fed into the model, one
can begin to understand why the classes were not easily differentiable. In the
following series of graphs, plotted on a normalized x-y geographical plain, all
polylines or start locations belonging to a driver are displayed, separated by
correctly classified and incorrectly classified samples. To the human eye, it’s
clear that there is a minor difference between the correctly classified samples
as expected, while the incorrectly classified samples appear to have very similar
information.

19

Figure 12: Graphing classified and misclassified polylines on normalized x-y
plane.

20

Figure 13: Graphing classified and misclassified start locations on normalized
x-y plane.

Next, we’ll compare two of classes that were not mistaken nearly as much
as others, classes 0 and 1. As you can see in the confusion matrix above, classes
0 and 1 were confused for each other a total of 97 times (62 and 35), which is
very small compared to other classes. Contrary to the previous example, one
can begin to see a significantly greater difference in properly classified samples
while the misclassified samples still reveal little information, but show a more
unique shape compared to the previous example.

21

Figure 14: Graphing classified and misclassified polylines on normalized x-y
plane.

22

Figure 15: Graphing classified and misclassified start locations on normalized
x-y plane.

4.2 Explanation Results

The overall testing accuracy of our control network was Acontrol = 0.5836.
Using this baseline value we were able to compute a feature importance index
for each feature. These are tabulated in 2. The calculation of Iϕ for each feature
was done according to the computation in Section 3.3.1.

Our tabular feature importance calculation returned the following accuracy
values and feature importance scores for each feature:

23

Feature Accuracy Aϕ Feature Importance Iϕ
call-type 0.4776 0.2763

day-of-week 0.5238 0.1559
time-of-day 0.5392 0.1157

distance-traveled 0.5258 0.1507
speed 0.5302 0.1392

start-loc 0.4548 0.3358
end-loc 0.5602 0.0610
mid-loc 0.4335 0.3913
polyline 0.4610 0.3196

Table 2: Accuracy and feature importance values for each feature ϕ.

4.2.1 Takeaways

We noted minimal to statistically insignificant improvement in performance
for certain features leading to low feature importance scores. This demonstrates
that our model was able to identify features that were useful predictors of the
taxi driver, as well as features which had little relevance to the overall output.
In particular, the end location, speed, and time of day features had negligible
importance.

Due to the high feature importance scores for start location and middle
location, we expect that the end location feature is highly correlated with these
features, meaning it provides little additional contribution to the overall model.
We were surprised to find that the time of day had little impact on the model’s
output, and the likely conclusion from this is that the five drivers we arbitrarily
chose tended to give rides at similar times of day. Finally, the lack of importance
for speed is relatively expected for two reasons: first, speed is directly correlated
to other features such as distance traveled and the length of the polyline, and
second, in an urban environment it is relatively unlikely that there will be high
variations in traffic speed. This is particularly true in the case of strict traffic
laws that taxi drivers may be required to follow in this city.

We were encouraged to see that the polyline feature, which was the LSTM
output, had a relatively nontrivial feature importance comparable to several
of the other highly correlated features. Future research would be needed to
determine whether this is due to the polyline containing trivially obtainable
information such as the start and end locations of the ride, or whether the
model gleaned nontrivial information from the LSTM layer. Either way, this
is an encouraging result that shows that sequential data can be successfully
processed through recurrent models.

Further, we noted significant variance in the ability of the model to accu-
rately predict drivers depending on the driver in question. This suggests that
certain drivers have distinct route patterns, while others may be more difficult to
identify. This makes intuitive sense. Due to the large amount of data discarded
from our dataset, future research on this dataset should consider attempting to
train the model on other sets of drivers to see if the performance is better, or

24

worse, than the dataset we extracted.

4.2.2 Future Work

This project represents a significant body of work towards understanding
sequential data. In particular our primary conclusion that tabular features had
a significantly larger contribution to the output than the polyline itself is a
hypothesis that can be tested further. In order to improve the overall results
of our model as well as provide a more convincing explanation of our features,
we provide several improvements that could be made to our model and training
process in the future.

1. Evaluating the performance of the LSTM model with a more complex
recurrent neural network, such as a multi-layer or stacked LSTM.

2. Applying sequence-level feature engineering on the polyline, e.g. comput-
ing the differences between subsequent polyline points and using them as
supplemental inputs to the LSTM.

3. Applying state-of-the-art sequential saliency mapping techniques to under-
standing the polyline LSTM as a whole. Due to the fact that the LSTM
overall had a low feature importance score, any saliency mapping on the
LSTM would have yielded statistically unimportant results, but this may
help future research to understand the LSTM’s poor performance.

4. Utilizing outputs from the LSTM other than the final output hN .

5. Resampling the data to select a different combination of 5 drivers, or a
different number of drivers.

6. Utilizing other methods to allow mini-batches of size greater than 1 during
training, which would lead to more consistent convergence of the model
and less random variance in the final output accuracies.

7. Including regularization and dropout in our model to prevent overfitting,
particularly in the relatively complex LSTM layer.

4.3 Conclusion

In conclusion, our project was able to obtain strong correlations between
polyline features and taxi driver classes. Our results show that a combination
of recurrent processing on the polyline along with tabular feature extraction cre-
ates a model with better overall performance than either of these components
individually. Further, by applying a linear tabular feature importance calcu-
lation, we were able to discern differences in importance between the various
tabular features including the polyline itself. This has allowed us to develop
a rich understanding in the features that induce differences between the taxi
drivers in question.

25

Our work lends itself to future work, in which future research could involve
delving into the polyline itself to determine which aspects of the recurrent model
have significant impacts on the output.

26

References

[1] Brownlee. J. (2016). Sequence Classification with LSTM Recurrent Neural
Networks. Retrieved from: https://machinelearningmastery.com/sequence-
classification-lstm-recurrent-neural-networks-python-keras/

[2] Jose. G (2019). Predicting Sequential Data using LSTM. Retrieved from:
https://towardsdatascience.com/time-series-forecasting-with-recurrent-
neural-networks-74674e289816

[3] Rojat. T., Puget. R., Filliat. D. (2021). Explainable Artificial Intelligence
(XAI) on Time Series Data. Cornell University; arXiv.

[4] Srivastava. P. (2020). Deep Learning: Introduction to LSTM. Retrieved
from: https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-
deep-learning-introduction-to-lstm/

27

