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ABSTRACT 
 

 
The human immunodeficiency virus (HIV) infects approximately 5,000 new people daily. 

Of people infected, only a minor population act as disease controllers. The goal of this project was 
to determine which humoral factors are correlated with HIV controllers and progressors. Through 
the use of multivariate and univariate statistical and exploratory data analyses, the two sub-
populations of HIV-infected individuals were compared using observed HIV-specific IgG 
subclasses from subjects’ plasma over four time points during the acute stage of infection. Results 
showed the multivariate approach was more effective in differentiating controllers from 
progressors, suggesting no single IgG subclass is predictive of disease control. 
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1. INTRODUCTION 
 

A successful vaccine must be designed 
and administered in order to terminate the 
spread of the human immunodeficiency virus 
(HIV). Although new cases of HIV infections 
have dropped by approximately thirty six 
percent over the past eighteen years, the virus 
was still the cause of death for over 900,000 
people in 2017 (WHO 2018). The large-scale 
infection and mortality rates of this infection 
have decreased through the use of drug 
therapies and widespread educational 
campaigns; however, those statistics could be 
lowered further through the discovery of a 
successful vaccination.  

Other diseases, such as small pox and 
polio, have been eradicated through the use of 
vaccinations, but HIV has unique 
characteristics which make traditional methods 
in vaccination production difficult (Banerjee, 
& Mukhopadhyay, 2016). Since traditional 
methods will not work, new approaches are 
being established by research institutions. The 
traditional methods for vaccine trials involve 
measuring antibody levels through titers and 
neutralization, and though these measurements 
have been previously successful, they are not 
the best indicators of protection among HIV 
subjects. Instead of only accounting for these 
factors, researchers have gone a step further by 
including the functional components of 
antibodies as correlates in vaccine trials. These 
components could include pathogen life cycle 
and a pathogen’s structural components 
(Arnold & Chung, 2017). 

This strategy of examining multiple 
components of antibody function and humoral 
immunity features has been termed “Systems 
Serology” (Ackerman, Barouch, & Alter, 

2017). This approach allows for a more 
extensive array of parameters to be collected 
about antibody function and structure which 
can be viewed as a unique profile for each 
antibody; which also means high dimensional 
datasets will be compiled. The challenge with 
the high dimensional dataset is finding the best 
way to analyze that data. One solution is to 
further analyze the antibody profiles through 
machine learning and other statistical tools 
(Ackerman, Barouch, & Alter, 2017). Research 
for this project analyzed system serology 
datasets containing both biophysical assay and 
functional assay information in order to further 
study antibody profiles of progressors and 
controllers. Progressors of HIV are individuals 
in which the virus can take a typical infectious 
course and eventually become AIDS, where as 
non-progressors or controllers have a natural 
immunity to the infection and are able to live 
fairly normal lives with low viral loads after 
initial infection and without any treatment.  

Programming tools, specifically 
MatLab and Python, were used to analyze the 
high throughput datasets studied in this project. 
The first dataset, from a non-human primate 
vaccine study, was used to become familiar 
with various statistical techniques. It contained 
25 features including glycan levels from a 
biophysical assay (20) and antibody effector 
functions (5) from functional assays for 34 
non-human primates from two different 
vaccine trials. This dataset was analyzed to try 
and observe the correlation of antibody glycan 
features and antibody functions to protection or 
infection after administering a vaccination. 
Results for this dataset are still being analyzed 
as signal for the multivariate analysis was 
extremely low. The second dataset, which was 
previously studied in an earlier paper 



  5 

(Sadanand, et al., 2018), contained measured 
levels of HIV-specific IgG subclass titers and 
multiple antibody-dependent effector functions 
as part of antibody profiles for nineteen acutely 
infected individuals. The levels for these 
features were measured at 4, 12, 24, and 48 
week time points after initial infection. After 
the study, ten of the individuals were deemed 
progressors and nine were deemed natural 
controllers of the virus. A high-dimensional 
dataset was then constructed and analyzed 
using similar machine learning and univariate 
exploratory analysis techniques as the first 
analyzed dataset. The second dataset was 
analyzed with the goal of discovering key 
antibody differences in progressors and 
controllers on individuals who have yet to seek 
treatment in order to better understand 
controllers’ natural “immunity” to the virus. 

Results from the different analyses had 
similar conclusive observations. The first 
dataset had weak signals for the multivariate 
approach yet had multiple features observed for 
univariate Mann Whitney U tests at low p-
values. The second dataset, which was 
previously analyzed picked up on similar 
features as the original paper (Sadanand, et al., 
2018) while adding one other antibody effector 
function as a correlated feature to predicting 
progressor versus controller status. A 
univariate analysis extended the previously 
published results from the paper by carefully 
looking at changes in biophysical and 
functional antibody features over time. This 
exploratory analysis revealed much less 
variability in the features of controllers than 
that of progressors. This may suggest that 
keeping several antibody features contained 
within a controlled range of values is important 
to disease control.  

The goal of this project was to examine 
antibody profiles of subjects infected with HIV 
through means of ‘machine learning’ 
multivariate analyses, univariate analyses, and 
exploratory analyses, in order to discover how 
the various humoral factors may correlate to 
natural disease control, and how those insights 
may help lead to new discoveries for vaccine 
design. 

 
 
2. BACKGROUND 

 
The Immune System 

On a daily basis, the human body’s 
natural defense mechanism, the immune 
system, comes into contact with millions of 
potential pathogens (Alberts et al, 2002). It 
battles these pathogens in complex processes to 
prevent infection of various microbes that 
could cause deadly illnesses. The two 
subgroups of the immune system include the 
innate and adaptive immune systems. Both are 
utilized in order to protect the body. When 
potential infection toxin comes into contact 
with the body, the first step is for the innate 
immune system to respond quickly to try and 
slow down the pathogen’s infective rate. This 
initial response then allows other immune 
responses to become activated (Nicholson, 
2016). The adaptive immune system works to 
fight pathogens in a more targeted approach. 
Utilizing both B-cells and antibodies for 
humoral or antibody-mediated responses, and 
T-cells for cell-mediated responses, the 
adaptive immune system fights infection in a 
more specific manner than that of the innate 
immune system (Clem, 2011). The two 
subclasses of the immune system are further 
depicted in Figure 2.1. Research has been, and 
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continues to be, conducted on all forms of the 
immune system, in order to move towards 
treatments and protection against infectious 
diseases. One consistently studied form of 
treatment is vaccination. Vaccines work to 
engage and train the adaptive immune system 
to respond to potentially fatal pathogens. 

The first successfully recorded vaccine 
was created by Edward Jenner in 1798 when he 
used cowpox to inoculate and prevent smallpox 
in humans (Clem A. S., 2011). Since then, 
consistent research and discoveries have been 
made on how and why vaccines are both cost-
effective and successful in protecting against 
pathogens (Pulendran & Ahmed, 2011). Today, 
vaccine trials are being tested in order to find 
preventative measures against some of the most 
difficult diseases and illnesses to battle such as 
the human immunodeficiency virus (HIV). 

The Human Immunodeficiency Virus (HIV) 
The world suffered an unprecedented 

HIV outbreak in 1981, which caused scientists 
to research treatments and vaccinations for the 
virus (German Advisory, 2016). For the past 30 
years, information about the virus has been 
discovered but there is still no cure due to how 
the virus affects the immune system. HIV is a 
retrovirus; it is able to integrate a DNA copy of 
its RNA genome into its host cell genome. The 
virus targets the body’s CD4 immune cells, 
which are part of the adaptive immune system. 
Figure 2.2 shows the structure of HIV as Figure 
2.3 displays the process of cellular infection, 
integration of genetic material, and production 
of new viral proteins.  

Figure 2.1: This diagram divides the innate and adaptive immunity mechanisms (Betts, 2019). 
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The process of HIV infection 
begins with the viral capsid of the 
virus entering the host cell. To enter 
the cell, the virus must first attach 
through a receptor to the host cell. The 
HIV protein envelope (spike), 
comprised of mature surface 
glycoprotein 120 and transmembrane 
glcoprotein41 (gp120 and gp41), 
attaches to the CD4 receptor of the 
host cell, causing a conformational 
change in the HIV protein envelope 
and fusion of the viral and immune 
cell membranes (German Advisory, 
2016). This fusion permits genetic 
material within a capsid contained in 
the virus to be transferred into the host 
cell. Enzymes and genetic material 
from the capsid are then used to 
integrate the viral genetic material into 
the host cell’s DNA (German 
Advisory, 2016). Reverse 
transcriptase creates viral DNA and 
then integrase is used to integrate that genetic 
material into the cell’s DNA. The integrated 
viral DNA will produce viral transcripts and 
proteins. The viral immature proteins and RNA 
genome then bud from the cell with the help of 
viral protease (German Advisory, 2016). Once 
out of the cell, the viral particle will mature into 
an infectious virion.  
 
Importance and Roles of Glycoproteins 

The goal of a virus is to infect host cells. 
For HIV, infecting the host cell is only possible 
through the use of its glycoprotein envelope. 
Glycoproteins surrounding the virus allow for 
viral and cell binding, fusing, and DNA 
integration (Checkley, Luttge & Freed, 2011). 
The specific glycoproteins associated with HIV 

are gp160, gp120, gp41 and gp140. During 
infection, the gp160 unit is cleaved into the 
mature surface gp120 and transmembrane gp41 
(Kwong, 1998). The gp140 unit is derived from 
the gp160 unit by removing the transmembrane 
and cytoplasmic domains so that the 
glycoprotein becomes soluble. The gp140 unit 
is treated similarly to the gp160 unit and can be 
cleaved into stable trimer forms to produce 
gp120 and gp41 units (Khattar, Samal, 
LaBranche, Montefiori, Collins, et al., 2014). 
Gp120 allows binding to occur between host 
CD4 cells and the virus. Gp41 supports gp120 
in infecting the host cell by aiding in the fusion 
of the membrane (Banerjee, & Mukhopadhyay, 
2016). 

 
 

Figure 2.2: Simplified depiction of HIV. The spike shows the 
glycoproteins 120 and 41 located on the viral membrane which 
will help with attachment and fusion of the viral membrane to the 
protein receptors of the target host CD4 cell (Betts, 2019). 
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HIV and The Body’s Response 
 Once infected by HIV, the body goes 

through phases at which different symptoms 
are observed. These stages include acute 
infection, clinical latency infection, and 
eventually AIDS. Acute infection is the stage 
from initial infection up to clinical latency 
where viral load peaks and CD4 cell counts 
decrease. This acute infection sees such 
decreases in immune cells and increases in viral 
load since the virus is actively infecting the 
immune cells (Kwong, 1998). Symptoms 
similar to that of the flu are often associated 

with the acute infection stage. Clinical latency 
is defined as the stage at which HIV is latent or 
dormant and infected individuals are 
asymptomatic. This stage is often maintained 
with antiretroviral therapies (ART) (Sadanand 
et al., 2018). During clinical latency, cells are 
still being infected but not as rapidly as in the 
acute infection stage. Eventually, the immune 
system becomes too compromised to remain at 
clinical latency and the disease will progress to 
AIDS. Figure 2.4 shows how levels of HIV 
RNA and CD4 cells vary at each stage of an 
HIV infection.  

Figure 2.3: The diagram shows the process in which HIV infects CD4 cells within the body. (1) 
Binding, (2) Penetration, (3) Reverse transcriptase creates viral DNA, (4) Integrase allows for 
the viral DNA to integrate into the host cell’s genetic material, (5) Viral RNA is now used to 
create viral proteins, (6) Immature viral proteins reach the surface of the host cell, (7) The virus 
is released from the host cell and begins to mature into an infectious virus (Betts, 2019). 
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Typically, infected individuals will 

follow the previously described stages and 
these people are known as disease progressors. 
Interestingly, a small subpopulation of infected 
individuals are known as non-progressors or 
controllers. These people naturally control the 
infection and live for many years with low viral 
loads (the red line in Figure 2.4) even without 
antiretroviral therapy(ART) treatments 
(Sadanand et al., 2018). Figure 2.5 shows the 
viral loads and CD4 T Cell counts for subjects 
from the dataset used for this project. 
Researchers are using various techniques in 
order to better understand what determines 
controller and progressor status. Researchers 
have also found new insights that non-
neutralizing antibodies may be factors in 
controlling the virus (Sadanand et al., 2018). 
 
Nonneutralizing Antibodies and Antibody 
Effector Functions 

Researchers previously have focused 
on neutralizing antibodies as key determinants 

in HIV protection. These neutralizing 
antibodies begin to develop months after initial 
infection, which could mean their role in initial 
control of the disease is limited (Sadanand et 
al., 2018). Studying non-neutralizing 
antibodies may help better understand early 
stages regarding early viral replication. These 
HIV-specific non-neutralizing antibodies have 
been found to induce activation of 
macrophages and natural killer cells (Margolis, 
Koup, and Ferrari, 2017). In addition, 
nonneutralizing antibodies are also capable of 
protecting against viral infection by processes 
such as phagocytosis and mediating virolysis. 
This is due to the fact that nonneutralizing 
antibodies are able to activate different immune 
complement factors and engage Fc-receptor 
cells, or cells that are capable of antibody 
reception (Mayr, Su, & Moog, 2017). For HIV, 
these cells are induced by the Fc regions of 
various antibody subclasses, where some 

Figure 2.4: The stages of HIV. The blue lines show levels 
of the body’s CD4 cells and the red shows levels of HIV 
RNA copies within the blood (Bhatti, Usman, & Kandi, 
2016).  Figure 2.5: CD4 counts and viral loads from the 

second and main dataset analyzed throughout 
this project. 
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subclasses hold higher affinities for the 
receptors such as IgG1 and IgG3 (Overbaugh, 
& Morris, 2012). These subclasses are more 
capable of inducing responses of antibody-
dependent (AD) effector functions such as 
antibody-dependent cellular viral inhibition 
(ADCVI) and antibody-dependent cellular 
cytotoxicity (ADCC) ( Margolis, Koup, and 
Ferrari, 2017). These responses vary from other 
infection responses where IgG2 is integral as a 
controlling factor (Overbaugh, & Morris, 
2012). The HIV-specific IgG non-neutralizing 
antibodies used in this analysis can be seen in 
Table 2.1. In order to find a more effective 
treatment and potentially a cure for HIV, it is 
important to understand how HIV-envelope 
specific IgGs and AD effector functions 
correlate to HIV infected controllers natural 
immunity. 

 
Table 2.1: Four subclasses of IgG specific to 
three glycoproteins associated with HIV 
infection were measured to create the antibody 
profiles for the dataset. This is in addition to 
the six antibody effector functions (Sadanand et 
al., 2018).  

Gp120 IgG1 Gp120 IgG2 Gp120 IgG3 Gp120 IgG4 

Gp41 IgG1 Gp41 IgG2 Gp41 IgG3 Gp41 IgG4 

Gp140 IgG1 Gp140 IgG2 Gp140 IgG3 Gp140 IgG4 

 
Systems Serology Approaches 

Researchers have created a new 
approach to studying HIV infection, vaccines, 
and antibody responses called ‘systems 
serology’ (Ackerman, Barouch, & Alter, 
2017). This new approach to understanding 
humoral immune responses and their 
correlation to protection against viral infections 
helps to analyze high-throughput datasets 

containing unique antibody profiles composed 
of both biophysical and functional antibody 
assay measurements (Arnold, & Chung, 2017). 
The goal of systems serology is to 
quantitatively understand correlations between 
the various antibody features both biophysical 
and functional, and the clinical outcomes of a 
study. In order to research and understand these 
high-dimensional datasets, or datasets which 
contain more features than it has subjects, of 
antibody profiles, different statistical and 
computational approaches must also be 
implemented. 

 
Computational Components 

 Large datasets require data driven 
computational techniques in order to be 
properly analyzed. Systems serology utilizes 
“machine learning” computational approaches 
in order to better understand correlations 
between antibody profiles (Ackerman, 
Barouch, & Alter, 2017), antibody dependent 
functions, and outcomes such as protection due 
to vaccine or, as in the case of this study, a 
controller’s ability to have natural immunity to 
the virus. For this study, supervised 
multivariate approaches were used, meaning 
the outcomes of the data, in this case, viral 
progressor versus viral controller status, was 
used to create a model that helped select 
features that may correlate to viral control [17]. 
Various supervised learning approaches can be 
used to help determine associations of features 
and outcomes of large datasets such as LASSO 
(least-absolute square shrinkage operator) or 
PLSDA (partial least squares discriminant 
analysis). The methodology of this report 
explains how the LASSO model was utilized as 
part of the machine learning model analysis for 
this project. These machine learning techniques 
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are able to highlight features from high-
dimensional datasets that are most associated 
with the dataset outcomes. Due to the 
advancements made with systems serology and 
its associated machine learning computational 
techniques, deeper understandings of the 
humoral immune system continue to be found. 

 
3. METHODOLOGY 

 
Various statistical approaches and tools 

were used in order to analyze two datasets. The 
first dataset, the nonhuman primate vaccine 
dataset, held information about 34 nonhuman 
primates, each with 25 associated glycan 
counts. This dataset showed little to no signal 
in the data when trying to analyze using various 
correlate analyses and is currently in the 
process of being reevaluated with other 
approaches. Due to the low signal in the 
analyses, the first dataset was not further 
analyzed over the duration of this project. The 
second dataset, referred to as the natural 
immunity dataset, containing information from 
four time points throughout the acute stages of 
infection for 19 subjects (10 of which were 
progressors of HIV and 9 which were deemed 
controllers), was analyzed using a variety of 
analyses both multivariate, univariate, and 
exploratory, in order to observe antibody 
features that correlate to disease controllers and 
their ability to have natural immunity. 
 
Data Organization and Preprocessing 

The natural immunity dataset was first 
retrieved as an excel sheet of size 76x20 (19 
subjects with features at four different time 
points). Viral load and CD4 cell counts were 
then excluded from the feature dataset to avoid 
losing signal in later analyses of other antibody 

features that could correlate to disease 
progression and natural viral control. The 
dataset was then transformed so that each 
subject had features at the four time points, or 
76 features. This created a dataset with 
dimensions 19x76, making the dataset high 
dimensional and thus requiring analysis by a 
technique suited for high dimensional data such 
as LASSO. The dataset was further pre-
processed with MatLab to impute any missing 
data in order to avoid any run-time errors that 
could arise when coding statistical models and 
tests in both MatLab and Python. Missing data 
was imputed using the KNN-impute built-in 
MatLab method using the Euclidean distance 
setting.  The dataset was then analyzed using 
the multivariate model and univariate 
exploratory analyses techniques. 

 
Variate Testing 

The original paper laid out many 
approaches in order to analyze the dataset. The 
first step to this study was to replicate and try 
to reproduce the multivariate model results. 
Then, from those results, further questions 
arose and were analyzed using univariate 
exploratory approaches.  

 
Least Absolute Shrinkage and Selection 
Operator and Support Vector Machine 
Model 
A regression model was created to 

predict which features were most correlated to 
an infected individual’ s ability to obtain 
natural viral control. The dataset was 
manipulated similarly to that of the original 
paper (Sadanand et al., 2018) by averaging 
early (weeks 4 and 12) and late (weeks 24 and 
48) time points, so that the dataset had 
dimensions 19x36. The model consisted of a 
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Figure 3.1: The graphic displays how the multivariate model was designed to be used to help 
determine features that correlated to viral controller versus progressor status of infected 
individuals.  
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 LASSO regression feature selector and 
an SVM classifier. The model was 
programmed using MatLab. The built-in 
LASSO function was optimized and used to 
select features from the dataset. LASSO works 
to find a subset of features which can 
accurately predict outcomes (natural control 
versus progression) for the entire dataset. 
LASSO reduces the dimensionality of the 
dataset by adding a constraint to all features 
which forces a majority of features to become 
zero. The remaining non-zero features are then 
used in a classification model that will try to 
predict the outcomes of the data without having 
to use the entire dataset. The LASSO feature 
selector also utilized a stability component in 
order to make sure a similar number of features 
were selected with each LASSO iteration. This 
was done by running the LASSO model ten 
times and recording which features were 
selected with each run, and then using only the 
features selected five or more times as the 
LASSOs final selected features that would be 
used in a model for classification. The LASSO 
feature selector was paired with an SVM 
classifier. The SVM classifier was 
programmed using the built-in SVM fit 
function in Matlab. This was customized using 
a linear kernel function. The results from the 
classifier were then compared to that of the true 
outcomes during each fold of the cross 
validation to produce a series of percentages 
that represented accuracies. The five accuracies 
were then averaged to produce the model’s 
accuracy. This process was repeated 100 times 
and plotted using a violin plot. 

To understand if this model’s accuracy 
was more successful than that of a random 
model, a permutated model was created. This 
used the same dataset; however, the outcomes 

(progressors versus controller status) were 
randomized so that they did not match the 
correct HIV infected subject. Figure 3.1 
illustrates how the model was designed. 

 
Mann-Whitney U Testing 
Non-parametric univariate statistical 

testing was also used to analyze the natural 
immunity dataset. A univariate Mann-Whitney 
U Test was performed using MatLab . This 
approach was used to observe variations 
between progressors and controllers for each 
feature at the averaged early and late time 
points as in the multivariate analysis. Because 
this was an exploratory analysis, the Mann-
Whitney U test threshold for the p-value was 
set to 0.1, and no correction was made for 
multiple comparisons.   
 
Visualizations 

Visualizations helped provide further 
understanding of the multivariate and 
univariate analyses. The visuals used in this 
analysis included heat maps, violin plots, line 
graphs, boxplots, and paired boxplots. These 
were all important to observing patterns in the 
changes of antibody features over the four time 
points. For example, violin plots were used to 
observe the accuracies in the multivariate 
model, as boxplots were used to better 
understand variations of features among 
progressors and controllers at early and late 
time points. All of the visuals were constructed 
using Python plotting and graphing tools. 
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4. RESULTS 
 

Using multiple statistical and 
computational approaches, the natural 
immunity dataset was analyzed. This dataset’s 
analyses helped support information from the 
original paper (Sadanand et al., 2018).  as well 
as bring insight on other correlates potentially 
involved with the determination of controller 
versus progressor status for infected 
individuals.  

Initial Data Analysis 
The dataset analyzed contained 

antibody profiles consisting of HIV specific 
antibody IgG subclass counts and antibody 
effector function counts recorded at 4, 12, 24, 
and 48 week time points after initial infection 
for 19 subjects for which ten were determined 
to be progressors and nine were determined to 
be controllers. The dataset was z-scored and 
visualized in a heat map as seen in Figure 4.1. 
This heat map visualizes how levels of the 

Figure 4.1: The heat map on the left shows the breakdown of the z-scored dataset for the two groups 
of HIV infected individuals. The two groups are seen in the first column labeled status with the top 
block representing progressors, the bottom controllers. For each group, four different time points were 
observed. These are labeled in column two (week) with the darkest square representing week 4 and the 
lightest representing week 48. The remaining columns represent the various antibody features. The 
heat maps on the right show Pearson correlation matrices for progressor features (top) and controller 
features (bottom). The correlation matrix shows the different IgG subclasses as well as effector 
functions being clustered. 
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features changed over the time points; 
however, the counts of different features 
showed no obvious patterns of change. 
Variability is seen more often in the progressor 
region than that of the controller region. A 
Spearman’s correlation matrix was used for 
each group of infected individuals to better 
understand how features may correlate for each 
group. Figure 4.1 shows this matrix in heat 
maps  (right heat maps) and, as would be 
expected, many features show high correlation 
to other features, but the most correlated 
features are those within the same HIV-specific 
IgG subclass. This was done as part of an 
exploratory analysis to better understand the 
features of the high-dimensional data. 
 
Lasso/SVM Model Analysis 

Further analysis was done using the 
averaged early time points (weeks 4 and 12) 
and the averaged late time points (weeks 24 and 

48) in a multivariate statistical analysis which 
used a least-absolute square shrinkage operator 
(LASSO) as a variable selector and a support 
vector machine (SVM) for classification. The 
machine-learning model approach was used try 
and reduce the dimensionality of the dataset. 
LASSO was used in order to reduce the high 
dimensional dataset by selecting the features 
that when used in a classifying model could 
accurately predict controller and progressor 
outcomes without using the same dataset. 
Ideally, the goal of the analysis is to identify 
which features can support the model with the 
least amount of data but provide a similar 
amount of information about the dataset in 
order to predict outcomes. LASSO was also 
used as the feature selector in the original 
paper’s multivariate correlate analysis.  

The selected features in the original 
paper included three features; gp120 B IgG2, 
gp41 B IgG3, and gp140 B IgG2. The new 

Figure 4.2: Multivariate models were used to analyze the data; the model’s accuracies are 
displayed above in violin plots. The left plot is from the original paper (Sadanand et al., 2018) and 
the right plot was a replicated model using LASSO/SVM. The accuracies were not as high yet 
feature selection was reproduced. Each model ran 100 rounds using a 5-fold cross-validation. 
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model was able to reproduce these features and 
due to differences in optimization also selected 
ADCVI. The new model did not work at the 
same accuracy as the original model as seen in 
Figure 4.2. The figure shows accuracies from 
the original paper (on the left) and the new 
model (on the right). The new model was only 
able to predict outcomes slightly better than a 
randomized model, so further research and 
model optimization would be necessary for 
generating more accurate and conclusive 
results. 

 

Exploratory Analysis: Univariate 
 Exploratory analyses were conducted 
with univariate approaches to better understand 
each feature and how those features changed 
over time. Figure 4.3 show feature by feature 
line plots of the median values at each time 
point for progressors and controllers. From 
this, it is observed that controllers often seem 
to maintain values over time while progressors 
have large variations in median values, 
especially in the IgG2’s and IgG3’s. The 
features that visually had the greatest variations 
were among specific IgG2 and IgG3 
antibodies. Gp120 IgG1 also showed variance 
at the late time points but was not selected as a 

Figure 4.3: Exploratory analysis of features over time. Line graphs were plotted for each feature using 
medians for progressors (red) and medians for controllers (blue) at each recorded time point (4, 12, 24, 
and 48 weeks). 
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feature in either the univariate or multivariate 
analyses. Gp 41 IgG4 also showed changes at 
later time points but was not selected as a 
feature in the multivariate analysis. For effector 
functions, ADCVI was the only function 
selected. It was selected in both univariate and 
multivariate analyses. 

A Mann Whitney U test was performed 
for all features comparing progressor and 
controller values at both the early and late time 
points (averaged as in the multivariate 
analysis). Because this was an exploratory 
analysis, p-value was set to p<0.1, with the 
understanding that for the number of features 
being analyzed the statistical significance is 
diminished. The non-parametric U test found 

several features with p-values within the 
threshold that varied between progressors and 
controllers, either at the early or late time 
points. These features included the four 
features from the multivariate analysis as well 
as gp41 IgG2, gp41 IgG4, and gp140 IgG3. The 
statistically significant features from the U-
Test were visualized using boxplots (removing 
outliers). These graphs can be seen in Figure 
4.4. 
 It was also observed for the features 
selected from the model and the significant 
features from the Mann-Whitney U test that 
there were significant decreases between the 
averaged early time points and late time points. 
A series of bar plots for each of these features 

Figure 4.4: The boxplots 
show features selected 
from both the univariate 
and multivariate 
analyses. The 
multivariate features are 
displayed in the left 
column and the additional 
univariate on the right. 
Red, progressors; blue, 
controllers. 
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is shown in figure 4.5. Each plot reveals the 
median value for the early and late time points 
for progressors and controllers. The 
comparison seen in the bar graphs helps 
visualize how controller values stay constant 
through the study and progressors change 
drastically.  The graphs also help to see how 
ADCVI variations over time seem to correlate 
with the increase of IgG2s and the decrease of 
IgG3s. 
 

5. CONCLUSION 
 

 Researchers continue to study HIV 
infection due to the fact that it is still affecting 
people all around the world (Bhatti, Usman, & 
Kandi, 2016). Due to a rise in the interest in 
nonneutralizing antibodies, this analysis 
focused on HIV-specific IgG subclasses and 
antibody-dependent effector functions. The 
original paper focused on understanding the 
multivariate quantitative results obtained by 
using machine learning techniques. The 
original study concluded that maintenance of 
gp-120 specific and gp140 specific IgG 3 may 
be associated to disease control if obtainable in 
the acute stage of infection (Sadanand, Das, 
Chung, Schoen, Lane, Suscovich, …Alter, 
2018). After further analysis, this conclusion 
was supported and extended. 

 The multivariate analysis selected 
similar features as to that of the original 
analysis of the data. The selected features 
included both Env-specific IgG2 and IgG3 
antibody subclasses. The combination of these 
antibodies being selected together show 
correlations and new insights on potentially 
significant changes of the antibody profile, and 
how those changes can predict natural 
immunity outcomes. The results also show that 
not only could the antibody subclass counts 
play a role in predicting disease outcomes, but 
also antibody-dependent functions may 
contribute as well, specifically ADCVI.  
 Patterns observed about specific 
features from the univariate testing and 
visualizations also lead to new insights about 
the dataset and what contributes to viral 
control. Patterns were observed with HIV-
specific IgG2s, IgG3s, and ADCVI. The 
changes in these HIV-specific IgGs could 
correlate to changes in the effector function 
ADCVI. Decreases in ADCVI occurred in 
progressors but not as significantly in 
controllers. Decreases were recognized with 
other trends in the subclasses. IgG 3 antibody 
counts were seen to decrease over time 
similarly to that of the ADCVI, where IgG2 
antibody counts increased from the early to 
later time points. The boxplots show how, for 
some IgGs and effector functions, variance 
among levels of these features is much greater 
in progressors than in controllers. This 

Figure 4.5: The bar plots show how levels of selected features from both the univariate analyses and the 
multivariate analyses changed over time. Early and late week medians of the averaged early and late time 
points were taken from each group for each feature and graphed. The variations of controllers and 
progressors are observed. 
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imbalance of IgGs may also correlate to 
progressor or controller outcomes. Overall, 
trends were not seen in any one subclass or 
Env-specific HIV antibody; however, multiple 
trends were observed supporting the idea that 
there are multiple correlates that contribute to 
controller functionality. More specifically, 
stable levels of IgG2 and IgG3 antibody 
subclasses could be a determinant of preserving 
control over the disease. 
 In order to best understand 
nonneutralizing antibodies, antibody- 
dependent effector functions, and how they 
work together to contribute to disease control, 
other approaches may want to be considered. In 
the future, genomic data for each patient and 
their specific antibodies may also be an 
important factor maintaining IgG subclass 
levels which could ultimately lead to natural 
disease control. Other HIV studies have also 
found significant correlation between 
glycosylation and disease control outcomes. 
These studies found that different glycan 
combinations and glycan shield formations 
correlate with antibody neutralization breadth 
(Wagh et al., 2018). Adding more depth to the 
antibody profiles for each subject may help in 
generating more insightful and conclusive 
results regarding HIV disease control. 
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