
Increasing the Variety of Problem Designs and Human
Computer Interaction of the MathSpring Intelligent Tutoring

System for Students

An Interactive Qualifying Project Report
Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

By

Paris Lopez

Approved: __
 Professor Ivon Arroyo, Project Advisor

This report represents the work of WPI undergraduate students submitted to the faculty as
evidence of completion of a degree requirement. WPI routinely publishes these reports on its
website without editorial or peer review. For more information about the projects program at
WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

http://www.wpi.edu/academics/ugradstudies/project-learning.html

Table of Contents

Abstract 2

1. Introduction 3

2. Background Research 5
2.1 Assessments in America 5
2.2 Past Research of MathSpring.org 6
2.3 Improvements of MathSpring.org 7

3. Methodology 9
2.1 Definition of Task 9
2.2 Programming Language 10
2.3 Method of Classification and Development 10

4. Results 12
3.1 Results of Classification 13
3.2 Process of Development 19

5. Discussion 40

References 42

1

Abstract

The goal of this research study is to investigate and develop a new variety of problem

types for the online intelligent tutor MathSpring.org as opposed to the more traditional multiple

choice or short answer items currently available. During this study, I also looked to understand

whether this new variety of problem type design can assist students in comfort and familiarity

with the problem types and improve education and standardized test taking ability. Throughout

this project, I researched seven designs for new problems including Drop Down Menu,

Coordinate Plane, Check All that Apply, Make a Model, Number Line, Drag and Drop, and

Construct an Equation. Of these seven problem types, I developed the first five with the

application of HTML, CSS, and ReactJS. By creating one or two problems of each type, future

developers are able to apply my work to the pre-existing math content authoring tool.

2

1. Introduction

The goal of this research study is to investigate and develop a new variety of problem

types for the online intelligent tutor MathSpring.org as opposed to the more traditional multiple

choice or short answer items currently available. During this study, I also look to understand

whether this new variety of problem type design can assist students in comfort and familiarity

with the problem types and improve education and standardized test taking ability.

This is an important development for Mathspring.org because as the presence of

computers and online testing pervade the classroom, schools should be able to provide practice

for standardized testing in a format similar to the exams. By developing a new environment to

match the updated testing environments, students will be able to not only learn the necessary

material in an exciting way but will become experienced in how to interact with new forms of

designs of the exam, demonstrating their math skills in a variety of ways, and learning new ways

of interaction with math learning and assessment activities. Similar to SAT preparation courses,

the advancement of problem design on Mathspring.org presents an opportunity for students to

gain a deeper understanding of the types of problems that will appear in high-stakes tests.

In order to understand whether this new variety of problem type designs available on the

intelligent tutor MathSpring.org can assist students in comfort and familiarity with the problem

types and improve education and standardized test taking ability, I first gathered a variety of

novel types of problems available in computer-based statewide standardized tests, in particular

the Massachusetts Comprehensive Assessment System (MCAS) to replicate for

Mathspring.org. With a folder of past MCAS problems to base my work on, I developed multiple

new templates for different kinds of question types that require a variety of forms of

human-computer interaction.

3

In order to answer the question about whether this would be feasible, I developed these

problem types: “Drop Down,” “Coordinate Plane,” “Check All,” “Make a Model,” and “Number

Line.” Respectively, the problems include one or multiple drop down menus, a coordinate plane

on which to place a point, boxes to check all that apply, the construction of a shape divided into

equal parts, or a number line on which to mark a point. The next sections will better describe the

development of these problems, their use as templates, the results obtained, and conclusions

drawn from this research study.

More specifically, the GOALS of this research study are to:

● Investigate the most current types of math problems used by standardized tests within

the current years, specifically MCAS and National Center for Education Statistics

(NCES), as opposed to the more traditional multiple choice or short answer items.

● Develop these new kinds of problem designs for MathSpring.org, generating new

opportunities for student interaction with computer tutoring systems, and maybe deeper

thinking while taking tests;

● Start to understand whether this new variety of problem type designs available on the

intelligent tutor MathSpring.org can assist students in comfort and familiarity with the

problem types and improve education and standardized test taking ability.

The next sections will explain the research method, the results obtained, and conclusions drawn

from this research study.

4

2. Background Research

2.1 Assessments in America

Beginning with the No Child Left Behind Act of 2001, state and national assessments

within schools direct students and teachers toward setting high standards and establishing

measurable goals. These educational directives aim to bring all students to a particular

proficiency levels, especially in subjects such as math and reading. As the presence of digital

technology grows in classrooms, educational departments transfer various forms of high-stakes

testing from paper-based to digital formats. In 2003 a validity studies panel of one national

assessment, the National Assessment of Educational Progress (NAEP), evaluated the

implications of electronic technology in the testing of students and addressed concerns

stemming from the growing use of devices in the classroom (Durán, 2003). Within years of this

study, the NAEP “began piloting digital reading and math assessments in 2015 by having small

groups take the online reading and math assessments while the majority of students were still

using the old format” (Jacobson, 2017). As of 2018, not only are basic reading and math a part

of online assessments, but the NAEP introduces civics, geography and U.S. history tests to the

digital world (Jacobson, 2017).

In addition to national assessments, state testing is being transferred to an online format.

The Massachusetts Comprehensive Assessment System (MCAS) has been moved to a digital

test with online practice problems and final test scores available on the website (Massachusetts

Department of Elementary and Secondary Education, 2018). Similar to NAEP, MCAS provides

an online format for reading, science and math high-stakes testing to evaluate the level of

proficiency of students throughout Massachusetts. As these assessments continue to move

onto the web, the level of interactivity and variety of problems become more expansive. With a

5

developing education system, the tools one uses to support students at this time should reflect

the assessments testing those students.

2.2 Past Research of MathSpring.org

A supplementary tool for mathematical high-stakes assessments, MathSpring.org

provides students with an intelligent system to practice their skills and refine their knowledge.

Currently, MathSpring.org supplies only short answer and multiple choice questions which is

inconsistent with the level of human-computer interaction presented through the previously

mentioned MCAS and NAEP. While it is currently expanding to not only new topics but new

languages, MathSpring is limited in its user interface by not providing other methods of

expressing the answer to a mathematical problem.

Figure 1. A multiple choice question from MathSpring.org

6

Figure 2. A short answer question from MathSpring.org

Past studies of MathSpring have discussed an upgraded version of the user interface to

benefit students and teachers. The researchers from “Improving User Interface and User

Experience of MathSpring Intelligent Tutoring System for Students” study the benefits of

improving the system through the landing page, a place for students to access logins and forms;

the login page, a place for students to either register or login; and the dashboard, where

students may access their problem progress. As an extension of this research, the user

interface of the problems themselves can also be updated to improve the learning experience of

the students.

2.3 Improvements of MathSpring.org

While the study succeeded in introducing a new interface to MathSpring.org,

improvements to the websites can continue in the form of interactive problems. As previously

7

mentioned, the current multiple choice and short answer problems can be augmented by

modelling them like those found on the MCAS or NAEP websites. These organizations

constantly release problems from past examinations that allow teachers and students to review

the structure and content of the questions. By applying these problems to MathSpring.org, the

user experience can improve the testing experience for students everywhere.

8

3. Methodology

2.1 Definition of Task

This project aims to provide a variety of new problems to Mathspring users which will

better prepare them for high-stakes testing. To complete this goal, I considered which

programming language and libraries to utilize and the design of these new problem types. After

evaluating the design of these problems, I created multiple versions of a problem type to find

similarities in the code. This process will allow other developers to extract these similarities and

add them to the problem designing tool. Already available for short answer and multiple choice

problems, rather than a math content developer programming a new problem each time from

scratch, a problem authoring tool (currently at: http://rose.cs.umass.edu/msadmin) allows

content developers to define some parameters and automatically generate new instances of

math problems using repeated code that is stored in a database.

Figure 3. The MathSpring Problem Authoring Tool

9

http://rose.cs.umass.edu/msadmin/

2.2 Programming Language

Because this project only includes the front-end development rather than fully integrating

new problems into the website, I needed primarily Hypertext Markup Language (HTML) and

Javascript. I also use ReactJS, a Javascript library, because it includes a virtual DOM which

allows for quicker rendering of objects on a single webpage. ReactJS also permits a

component-based structure which simplifies the design of each problem as they gain

complexity. Because I am inexperienced with ReactJS, I use online tutorials to help understand

the library. On websites like Codecademy.com and w3schools.com, I am able to take short

courses and answer my questions pertaining to ReactJS. When I felt comfortable in my ability to

create these new problems, I continued to the design aspect of this project. Because I aimed to

make problems similar to those found on standardized tests, I visited the MCAS website to

review past computer-based problems.

2.3 Method of Classification and Development

To construct a variety of new problem types for Mathspring.com, I first needed to gather

the design of these problems from a preexisting high-stakes tests. By observing already present

questions from the MCAS, made available by the Massachusetts Department of Education at

https://mcas.digitalitemlibrary.com/home, I was able to analyze and classify the different kinds of

questions that I could potentially create, which would resemble items that a student might see in

a future exam.

After gathering approximately twenty examples with a variety of mathematical topics, I

was able to classify them based on the topic and their theoretical code structure. After

generalizing the basic idea of the question, I first specified which of the twenty questions

10

gathered from the standardized tests would be best to develop. Second I classified the problem

types based on the complexity of the interface and the human-computer interaction. Because

certain forms would be more lengthy and difficult to complete, I began with the simplest of the

problem types and develop each problem. When a problem type had no more examples to

replicate, I moved onto the following type as noted in a spreadsheet.

With a system for development in place and the problems classified and placed in the

spreadsheet, I began to code problems using ReactJS within the following classifications: Drop

Down Menu, Coordinate Plane, Check All that Apply, Make a Model, and Number Line. Each of

these are described in the Results Section. For each problem, I iteratively produced the code. I

began with the simplest design possibly and gradually increased the complexity of the problem

until it fully represented the design. By generating problems one feature at a time, I simplified

the development of each problem. Throughout this process, I recorded any issues or errors that

could be resolved at a later date into a spreadsheet.

11

4. Results

Throughout this project I gathered examples of problems from past standardized tests to

replicate for the use of MathSpring.org and stored them in a spreadsheet with information

including their level of difficulty to create, their category, the link to the original problem, and any

problems I experienced when writing the code. A simplified spreadsheet tracking the problems I

created is included in Figure 4.

Figure 4. A spreadsheet noting each of the problems in order of completion, their category, and

their difficulty with 1 being the easiest and 4 being the most difficult.

Note: Problems listed below the thick line were not completed within project time frame.

12

3.1 Results of Classification

Figure 4 marks the classifications of each problem I acquired from the MCAS database

and decided to recreate. First deciding the category, I divided each problem based on their

structure and the common components they would require during development. Following this

division, I based the difficulty ranking of the categories on the number of components and the

level of interactivity compared to other categories. I decided the “Check All” category would be

easiest to code because it only requires checkboxes next to a series of options. With few

components and little interactivity, the “Check All” category was decisively easiest, while “Drop

Down” followed. This category involved a drop-down menu being placed within a problem,

prompting appropriate symbols to be chosen. Based on its increased amount of interactivity

compared to the prior problem while still maintaining a fairly limited amount of variability in

results, “Drop Down” was also ranked as a “1” in difficulty.

Figure 5. An example of a CheckAll problem type.

13

Figure 6. An example of a CheckAll problem type.

Figure 7. An example of a DropDown problem type including possible student response.

Figure 8. An example of a DropDown problem type including possible student response.

Because the “MakeModel” category includes a few more components, such as a shape,

the division of that shape, and several buttons, and these components each have their own

interactions available, this category is labelled a “2.” This category requires the division of a

specific shape and shading of those divisions based on a given fraction. Comparing

“MakeModel” to the next problem type, “NumberLine,” there are no discernable differences in

14

difficulty based on the number of components and level of interactivity; but because the latter

has large similarities in code structure to “CoordLine,” I decided to build the one “NumberLine”

problem after the “MakeModel” problems.

Figure 9. An example of a MakeModel problem type including possible student response.

Figure 10. An example of a MakeModel problem type including possible student response.

The “NumberLine” category consists of a simple number line with the ability to mark a

given number. Slightly more complex, the “CoordPlane” category introduces problems that

15

require the user to plot a point, line, or shape. With a complex design of interactivity and the

most components necessary thus far, this category earns a “3” in difficulty.

Figure 11. An example of a NumberLine problem type including possible student response.

Figure 12. An example of a CoordPlane problem type including possible student response.

16

Figure 13. An example of a CoordPlane problem type including possible student response.

The “ConstructEquation” category includes short-answer questions that allow users to

include specific symbols from a table that would not otherwise be accessible. This inclusion of

symbols in a textbox requires a large number of buttons, each with their own response, thus

sustaining a larger number of components and level of interactivity consistent with a difficulty

ranking of “3.”

Figure 14. An example of a ConstructEquation problem type.

17

The final category, “DragDrop,” asks that users drag an object with the mouse pointer to

an appropriate location to answer a given question. This category allows for a great amount of

variation between problems and their possible components, as well as a high level of

interactivity. Each problem requires several mouse events dependant on the object with which

the user is interacting. Though the resulting data itself would look similar to the responses to a

multiple choice question, the visual effects would be the most difficult to create. Compared to

the other categories, this one would require the most work which earns this problem type a “4.”

After comparing and ranking each of these problems, I was able to conclude the classification

and begin coding each problem.

Figure 15. An example of a DragDrop problem type including possible student response.

18

3.2 Process of Development

By classifying these examples, I was able to use ReactJS, HTML, and CSS to generate

several problems that will provide other developers with an idea of how to incorporate

abstracted versions of the problem types into MathSpring’s question designing tool. Each

problem includes a main description as well a submit button outlined by a light gray border with

a box shadow. With the necessary components included in the App.js file located in each

appropriate project, each problem is rendered by the statement in Figure 16.

Figure 16. A line of code that uses the ReactDOM to render the App object.

CheckAll Problem Number One

Because I was not familiar with ReactJS at the beginning of this project, I created the

first problem with only HTML and CSS. This first problem, including a table of checkboxes,

inquired whether three numbers were multiples of 4, multiples of 7, or both. Using HTML, I

constructed a simple table with these options in the appropriate locations. Inside each cell, I

included an input component with its type defined as a “checkbox,” as shown in Figure 17.

Figure 17. HTML representing a table of checkboxes regarding the multiples of 4 and 7

19

With a submit button included below, these components comprised a form that could

produce an output when the submit button was clicked. Because the HTML in Figure 17 defines

only the format and content of the table, I included style tags at the head of the page to

complete the desired format as shown in Figure 18.

Figure 18. The head of the HTML page including the style tags.

With the style tags and their child components in place, the final result of the first

problem is visible in Figure 19.

Figure 19. The final rendition of CheckAll Problem Number Two made with HTML.

20

CheckAll Problem Number Two

Using ReactJS, I developed the next problem by creating a list of options and iterating

through them while placing a checkbox next to each option. I began this process by creating a

list of the possible options as shown in Figure 20. Each item on this list becomes the label for a

designated checkbox.

Figure 20. A list of strings that represent each checkbox option.

With the options stored in the list, I created a separate file to define a “Checkbox”

component. This component class includes a label attribute, a key attribute, and a callback

function attribute shown in Figure 21. The label is the text that appears next to the checkbox,

and the key will be useful when the answer must be checked for correctness. The callback

function allows the “Checkbox” component to communicate with its parent component the

results of the clicked checkbox.

Figure 21. The creation of a checkbox component with the label, callback function, and key

attributes.

21

If the checkbox is clicked, the function “toggleCheckboxChange” within the Checkbox

component switches the isChecked value to true if it was unchecked and false if it was already

checked. Additionally, the function calls the defined callback method, referenced in Figure 21.

Shown in Figure 22, the attribute “handleCheckboxChange” calls “toggleCheckbox” from its

parent component to store the label of the selected checkboxes in a list if it does not already

exist and remove the label if it does. This list will be used later to confirm the correctness of the

student user’s answers.

Figure 22. The function “toggleCheckboxChange” that uses a callback function to share

information with a parent function.

When combined, the App and Checkbox components render a problem with a question,

choices accompanied by checkboxes, and a button for submission of the chosen answers.

Figure 23. The final rendition of CheckAll Problem Number Two built with ReactJS.

22

DropDown Problem Number One

After researching the components made available from the React library, I applied the

react-dropdown module to my own code. With this module I added three dropdown menu

objects each in between two numbers with options to define the equality of the values, as shown

in Figure 24. Following a problem description, each dropdown menu and its accompanying

numbers create an interactive problem.

Figure 24. The main code necessary to render three dropdown menus along with appropriate

labels.

Each dropdown menu required options and a function that would handle the user’s

selected option. To create the dropdown menu, I created a list of options, as shown in Figure

25, each with a symbol as the label and a textual representation of the symbol as the value.

With the value written as a word rather than a symbol, there will likely be less trouble when

checking the response against the correct answer that will be stored in the database.

23

Figure 25. A list of objects each with a value and a label.

When a student clicks a specific choice, the dropdown menu calls the function

“handleChange,” shown in Figure 26. This method takes the value chosen by the user and adds

it to a list of selected responses. When the student finishes selecting options from the dropdown

menus, they can submit their answers with the submit button.

Figure 26. A function that adds chosen values to a list in the App.js file.

The use of the react module “dropdown,” labels to clarify the question for the student,

and a submit button all exist in the App javascript file to render the problem shown in Figure 27.

Figure 27. The final rendition of DropDown Problem Number One.

24

DropDown Problem Number Two

Similar to DropDown Problem Number One, Problem Number Two utilizes the dropdown

React module with a set of options defined in a list, as shown in Figure 28. The only difference

between these two problems are the labels that define the question. The student would still

choose a value measuring equality; but rather than only comparing two numbers in each of the

three statements, the user will also use a second dropdown menu to explain this inequality.

Figure 28. A list of objects each with a value and a label.

The final product of DropDown Problem Number Two is shown in Figure 29.

Figure 29. The final rendition of DropDown Problem Number Two.

MakeModel Problem Number One

To create this problem, I created a static square in a new component class called

“SquareGroup” that is referenced in the App.js file. At the start this component comprised of a

simple square to visualize the structure of the problem. From there I developed a divisible

square by creating another module called Square shown in Figure 30.

25

Figure 30. The Square component class from the Square.js file.

The Square component includes a fixed height and a mutable width; so when a Square

is added to SquareGroup, the Square’s width can change to maintain the correct size of the

whole. Additionally, when the user clicks on a Square, it will change color. If the Square began

unshaded, it will turn blue; but if it was blue before, it will become unshaded. This interactivity,

shown by the code in Figure 31, allows users to create the numerator of a fraction. To create

the denominator, the user must change the number of parts through the buttons included in the

SquareGroup component.

Figure 31. A function that fills a square blue if it was originally white and white if it was blue.

26

Through the inclusion of three buttons in the SquareGroup class, the user controls the

number of parts of the square model. There is a “More” button to increase the number of parts,

as well as a “Less” button to reduce the number of parts. The final button is labelled “Reset” to

restart the fraction modelling process. The creation of these buttons are shown in Figure 32.

Figure 32. The code necessary to render the Squares and the buttons that control them in the

SquareGroup.js file.

With the provided ability to create more or less shadeable components, the App file

renders a final problem that allows users to effectively model a fraction as shown in Figure 33.

Figure 33. The final rendition of MakeModel Problem Number One with a possible student

response.

27

MakeModel Problem Number Two

Similar to MakeModel Problem Number One, this problem began with a static circle

rendered below the question. While I included the buttons here as well, they are disabled to

reflect the MCAS problem on which I was working. Much like the previous problem, this one

consists of a class called Circle with Arc components to represent the pieces of the whole. The

code to render the Circle component class is shown in Figure 34.

Figure 34. An excerpt from the Circle.js file to render the Circle component.

Rather than a fixed height and variable width, the radius is fixed and the degree of the

arc would change if the buttons were enabled. Similar to the Square of the former problem, the

Arcs can be shaded individually to represent the numerator of the desired fraction. The code

that renders the Arc is available in Figure 35.

Figure 35. The render function for the Arc component from the Arc.js file.

28

With these components working together, the user can model a desired fraction with a

circle and its pieces as shown in Figure 36.

Figure 36. The final rendition of the MakeModel Problem Number Two with a possible student

response.

NumberLine Problem Number One

To begin this problem, I created static elements such as the line to represent the number

line and multiple tick marks to represent each number. When the static outline was complete, I

began to abstract certain elements. I created a new class called TickMark to simplify the use of

that component and its interactivity. The function that renders this component is shown in Figure

37.

29

Figure 37. The render function for the TickMark component from the TickMark.js file.

With a TickMark component available, I created a loop to create multiple evenly-spaced

TickMarks on the number line. Seeing that the number line required a few static elements to be

complete, I also created a separate class for the NumberLine that would include the

arrowheads, TickMarks, and the line itself. The code that creates the NumberLine is shown in

Figure 38.

Figure 38. The render function for the NumberLine component from the NumberLine.js file.

30

Once the structure of the number line was complete, I added the desired interactivity to

the problem through the TickMarks. As shown in Figure 39, a TickMark includes three functions

that allow the user to interact with the number line. When a student hovers over a TickMark, a

dot appears and will disappear when the pointer leaves the proximity of the mark. When clicked,

the dot will remain.

Figure 39. The functions from TickMark.js file necessary to create a Dot on a number line.

There is a Dot class to assist in the functionality of the problem and avoid repetition of

code when rendering a dot. This class also includes two functions that assist in the interactivity

mentioned in the TickMark class called “hoverOver” and “hoverLeave.” The render function of

the Dot class is included in Figure 40.

31

Figure 40. The function that renders a Dot from the Dot.js file.

As I drew to the conclusion of this problem and finalized the App file, I began to abstract

qualities of each component and set them as global variables in App to show future developers

where variables can be set in the problem authoring tool. These variables are shown in Figure

41.

Figure 41. The final rendition of NumberLine Problem Number One with a possible student

response.

CoordPlane Problem Number One

To create the CoordPlane Problem Number One, I began with a static outline similar to

the number line. At the top of the designated workspace is the question, while the interactive

32

problem follows along with a submit button. To create the coordinate plane, I reused the loop

from the NumberLine code. Starting from the center, each x and y line is generated moving

outwards from the main axes. Designed as slightly thicker lines with arrowheads, the x-axis and

the y-axis are rendered separately from the other lines. Located in the component class

CoordPlane, the functions that create the lines that comprise the basic coordinate plane are

shown in Figure 42.

Figure 42. Three functions responsible for creating the x-axis, y-axis, and coordinated.

33

To simplify the creation of each line, I also created the XLine and YLine classes. By

separating the code necessary to design each line from the loops in CoordPlane, I can simply

create a new line with a given location without repeating the same information. The content of

these classes are shown in Figure 43.

Figure 43. The classes used to create the x-lines and y-lines from the XLine.js file and YLine.js

file, respectively.

Once the static setup was complete, I included the interactivity of the problem. Realizing

I could not design the problem the same way as one dimensional NumberLine Problem Number

One, I added small squares at each x-y coordinate. These square components, defined in the

HoverSquare class, are rendered as visible entities in Figure 44. With HoverSquares placed

behind the lines of the coordinate plane and colored white, I was able to include interactivity

similar to the NumberLine Problem. When the mouse pointer hovers over a square, a Dot

34

component appears, defined by the Dot class replicated from NumberLine Problem Number

One. If the user moves the pointer away, the Dot will disappear; but if the user clicks on the Dot,

it will remain there.

Figure 44. A rendition of the coordinate plane with the HoverSquares made visible.

With this new idea for interaction, I researched a way to prevent the lines of the

coordinate plane from interrupting the mouse pointer. During this search, I discovered the CSS

property “pointer-events.” By adding to the stylesheets “pointer-events: none” for each

component I did not want to disrupt the mouse pointer, I could control how the user interacts

with the problem. Figure 45 shows this property being utilized by various selectors which

prevent the appropriate components from interrupting the mouse pointer.

Figure 45. The application of the CSS Property “pointer-events.”

35

After discovering this CSS property, I realized I could apply it to previous problems rather

than attempt to create a convoluted form of logic that would result in a similar outcome. By

combining the static structure of the coordinate plane, the interactive HoverSquares, and the

application of this CSS property, I was able to create the CoordPlane Problem Number One as

shown in Figure 46.

Figure 46. The final rendition of CoordPlane Number One with a possible student response.

CoordPlane Problem Number Two

I chose to do CoordPlane Problem Number One first because it presented itself as a first

iteration of this problem. The coordinate plane and hidden squares remain the same, but the

second CoordPlane Problem required the ability to add a second Dot and the generation of a

line after the second Dot was created.

In CoordPlane Problem Number One, the number of Dots on the coordinate plane

remains at one. By creating a list of Dots and limiting its number of items to one, I was able to

maintain a specific number of Dot components. As I moved onto the next problem, I simply

36

increased the limit of this list to two. The code that reviews the size of this list to determine

whether a line should be added is shown in Figure 47.

Figure 47. An excerpt from the clickDot function that reviews the size of the list of Dots.

By measuring the Dot list, I am able to gauge when the second Dot is added. Once the

list exceeds one element, the makeArrowLine function is called and a dynamic line is generated

that extends through the two Dots. This function uses basic algebra to find the slope of the line

and the y-intercept between the two given points as shown in Figure 48. The arrowheads for the

arrowed line are generated using trigonometry to maintain a consistent angle between the lines

of the arrowhead and the line itself shown in Figure 49.

37

Figure 48. The algebra necessary to create the appropriate dynamic line on the coordinate

plane.

Figure 49. The trigonometry necessary to create the appropriate arrowheads on the dynamic

line.

Following the addition of the arrowed line, the components come together in the App file

to be rendered. The final result of this problem is shown in Figure 50.

38

Figure 50. The final rendition of CoordPlane Problem Number Two with a possible student

response.

39

5. Discussion

During this project, I aimed to develop new interactive problems for MathSpring, so

students could become more familiar with the advancing technologies in education and

high-stakes testing. While the classification of the problems was fairly simple, the development

process provided an opportunity to learn new technical skills and methods of approaching a

large project. Over these months of work, I evaluated languages new and old to me, maintained

my code through Git, and organized my tasks with spreadsheets. The beginning of my work with

designing new problems required a choice of programming language, so I researched the

javascript libraries and frameworks that would best apply to my project. This research improved

my knowledge as a student and a software developer.

As I built new problems, small issues would arise. I noticed during the development of

the “CheckAll” problems that the order of the selections could prove a challenge when checking

the work. After attempting to find a solution for a few hours, I realized it would not be worth my

time to focus on the perfection of each detail. It was in this moment I began recording the small

bugs I encountered so I could return to them later. Generally, I only chose to ignore an issue if it

did not deeply affect the functionality or interpretation of the problem; otherwise I noted errors or

ideas for each problem in my original spreadsheet. Due to my continuous learning of ReactJS,

the code of each problem became more intuitive and better planned than the last. While I

struggled to create the first problem programmed with React, the last few became more

organized and included ideas I had acquired along the way. As I learned to use React, I became

more eager to not only finish the problems I listed during the classification and planning phase,

but to return to the past problems and clean up the code. Deciding to create these problems in

40

iterations rather than focusing on each one until perfection, I was able to complete a larger

portion of the problems.

Throughout this project I applied my knowledge and research to create new problems for

MathSpring.org. The use of spreadsheets allowed for better organization and time

management, while my technical research founded new skills in software development. After

learning a great deal throughout this project, I plan to continue working on the development of

these problems for MathSpring.org. I look forward to completing new problems to aid in the

future of MathSpring and its users as well as returning to past problems for revision.

41

References

Durán, R. P. (2003). NAEP validity studies: Implications of electronic technology for the NAEP

assessment : Working paper series: NCES;2003 ASI 4826-23.87;no. 2003-16;NCES

working paper no. 2003-16. (). Retrieved from

https://statistical.proquest.com/statisticalinsight/result/pqpresultpage.previewtitle?docType=

PQSI&titleUri=/content/2003/4826-23.87.xml

Jacobson, L. (2017). Nation's report card transitions to digital format. Retrieved from

https://www.educationdive.com/news/nations-report-card-transitions-to-digital-format/50859

3/

MCAS resource center. (2018). Retrieved from mcas.pearsonsupport.com

42

https://statistical.proquest.com/statisticalinsight/result/pqpresultpage.previewtitle?docType=PQSI&titleUri=/content/2003/4826-23.87.xml
https://statistical.proquest.com/statisticalinsight/result/pqpresultpage.previewtitle?docType=PQSI&titleUri=/content/2003/4826-23.87.xml
https://www.educationdive.com/news/nations-report-card-transitions-to-digital-format/508593/
https://www.educationdive.com/news/nations-report-card-transitions-to-digital-format/508593/

