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Abstract 

In-database analytics is a technique to process data directly inside of a database. The 

opportunity to compute analytical data directly inside of a database is a high value venture for 

large data warehouses. This investigation examined the value of using Apache MADlib for 

analytical operations versus developing functions and procedures for the same purpose using 

PostgreSQL and PL/SQL, without external dependencies such as Python (used by MADlib). The 

functions examined in this investigation were K-Nearest Neighbors, Floyd Warshall Algorithm, 

Logistic Regression, Matrix Factorization, Naive Bayes, and K-Means Clustering, each function 

was chosen arbitrarily. After implementation of each function was complete, performance testing 

was conducted to examine the accuracy and runtime of each PL/SQL function against its 

MADlib counterpart. Results showed that the initial overhead for setup and installation of 

MADlib is far from user friendly and lacking in up-to-date documentation; for usability however 

using MADlib can be significantly advantageous for thorough data processing compared to 

direct implementation. Manually implementing analytical functions could be efficient for smaller 

queries however as the sample size increases, MADlib handled queries significantly more 

efficiently.  
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Executive Summary 

Problem Statement 

The ability to analyze large database warehouses is a valuable tool for data scientists and 

businesses to employ. Database analytics provide valuable information that can be used to 

support business intelligence. However, analyzing large databases can be complex and very 

difficult especially depending on the architecture of the database itself. Apache MADlib is an 

open-source library that was built to help people easily use analytical functions within the 

Postgres or Greenplum database management systems. This report investigates the practicality 

of using MADlib for In-database analytics as a substitute for manually creating functions 

for analytical purposes as well as investigating the accuracy and efficiency of the user made 

functions against MADlib.  

Objective  

Implement the K-Means Clustering, K-Nearest Neighbors, Floyd Warshall Algorithm, 

Logistic Regression, Matrix Factorization, Naive Bayes and MADlib functions using PL/SQL. 

Determine if the MADlib functions are more efficient and accurate than the PL/SQL analytical 

functions.  

Goals 

In order to focus our investigation, the team developed 3 succinct goals to help achieve our 

objective.  

1. Implement the MADlib functions in PL/SQL.  

2. Test the MADlib functions vs PL/SQL functions for accuracy and efficiency. 

3. Provide recommendations on performing In-database analytics. 
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Methodology  

The team began the investigation by taking time to research and understand the MADlib 

functions. Team members took approximately ⅓ of the project time to grasp the logic of the 

algorithms, learn the syntax of the PL/SQL language, and install the MADlib software and 

PGAdmin tool for development. After successfully installing MADlib and PGAdmin, the team 

then started writing the functions in Python to aid in understanding of the behavior of the 

algorithms. For each function, the team focused on developing their own optimal implementation 

to be comparable or better than its respective MADlib counterpart. As a result of the 

optimization efforts, the team tried to utilize the PL/SQL language to improve the runtime of the 

functions.  

Once development was complete the team chooses three data sets to conduct base testing. 

Those datasets were the Iris dataset (500 attributes), The Anuran Calls dataset (7195 attributes) 

and the Online Retail dataset (78095 attributes). The MADlib and team made functions were 

both tested using the three datasets. After calculating the average of the test trials, the team used 

the results to deliver the recommendations of the project’s investigation. 
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Conclusion 

PL/SQL is a powerful and efficient tool that exploits block statements allowing for the capability 

to perform powerful processes. The language provides a powerful platform to develop efficient queries. 

MADlib provides a simpler way to perform accurate analytical functions on sample sizes of any size. 

MADlib is a new open source software that is still developing but offers valuable functionality to data 

scientists and common analytical persons. The expansion of MADlib’s functionality is a notable stock to 

pay attention to during its continued development. One who wishes to conduct their own analytical 

processing should consider MADlib a reliable, powerful, and accurate tool if a proper installation can be 

complete. 
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1. Introduction 

  

 Performing analytical operations inside of a database (or In-Database Analytics) is a 

powerful method used in various data warehousing infrastructures. In-database processing allows 

analytical functions to be used inside of a database, without the need to transform data and 

transport it between the database and outside applications. Open-source libraries such as Apache 

MADlib offer powerful analytical functions within a database, but configuring and using similar 

libraries may be difficult for the average user. PL/SQL is a language designed to allow users to 

easily select and manipulate data from a database without having extensive knowledge of 

programming concepts.  

This report focuses on the team’s investigation of the utilization of the MADlib library 

versus PL/SQL functions within the PostgreSQL database management system. Eight functions, 

defined in MADlib, were chosen arbitrarily to be examined against a similar PL/SQL 

implementation to compare their runtimes and accuracy (if applicable) in order to determine 

which set of functions produced more accurate and efficient results. The functions discussed in 

this report are K-Nearest Neighbors, Floyd Warshall Algorithm, Logistic Regression, Matrix 

Factorization, Naive Bayes, and K-Means Clustering. The process of implementing each 

function and testing its benchmarking is detailed in the subsequent sections.  
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2. Background 

There are three main ways data-intensive analytics tools can be integrated with traditional 

relational data management systems (RDBMS); establishing a client-server connection, 

performing analysis inside databases (also known as in-database processing), and embedding a 

database within an analytical tool. Each implementation has various constraints that can affect 

usability and performance, depending on the characteristics of the specific RDBMS and 

configuration. Users’ use cases will determine the advantages and disadvantages of each method.  

Client-Server Connection    

An analytical tool can be combined with an RDBMS through a client-server connection. 

This method allows the database and analytical tool to be two separate entities. After being 

authenticated, the data in the database can be exported from the server to the client, where any 

processing will take place. Figure 1.1 (Raasveldt 2018) shows the process of the server 

processing queries using a client server connection. 

 

 

 

 

 

 

 

Figure 2.1 Communication between a client and server 
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Establishing a client-server connection can be problematic when a large amount of data 

needs to be serialized and transferred to the client. A large dataset may not fit in the clients’ 

memory, which may result in a failure of the data transfer. Efficient storage of data in the 

database can help improve the transfer time to the client. This method is most optimally used for 

analyzing small amounts of data. Open Database Connectivity (ODBC) or Java Database 

Connectivity (JDBC) interfaces can connect to almost any database and have a simple 

implementation process. Using a client-server connection allows for easy integration into 

existing pipelines by loading only the necessary files instead of entire datasets (Raasveldt, 2018).  

 

Embedded Database 

Figure 2.2 Interaction between an embedded application and database 

 

 

A database can also be embedded inside of an analytical tool client program. This method 

does not require a user to have a running database server and costs less time for users to install, 

tune, and maintain. SQLite is a commonly used embedded database however, it is designed for 

transactional workloads and is not the best for analytical purposes. MonetDB is another open-

source embedded database that is more suited for analytics and handling large datasets 
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(Raasveldt, 2018). Figure 1.2 shows the interaction between the database and embedded 

application. Queries can be sent from the database and processed within the embedded 

application by utilizing Postgres tables and other functions. 

In-database Processing 

 

In-database processing is the method of performing analytics inside of a database server, 

which omits the process of exporting the data from a database. Block (b) in Figure 2.3 shows the 

theory behind in-database processing. It is difficult to express most data analysis, data mining, 

and classification operators in SQL because of the limited amount of scalar functions and their 

complexity to implement on large data sets. The current solution to this problem is implementing 

the analytical functions using user-defined functions in procedural programming languages. This 

method requires a significant amount of manual labor from the user to rewrite existing analytical 

functions in SQL. Users will need to have a significant amount of knowledge about the 

database's internal and execution model. Because of the complexity of this approach, our team 

aims to develop a more efficient solution to the overhead of this approach (Raasveldt, 2018). 

 

MADlib Library 

 

Overview 

Apache MADlib is an open-source library for scalable in-database analytics. It provides 

several data-parallel implementations of mathematical, statistical, data science, and machine 

learning algorithms. MADlib can be configured with PostgreSQL to analyze large datasets. 
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MADlib is useful for various analytical functions like clustering, regression models, graph 

analysis, and more.  

The architecture of MADlib can be described in three main components as illustrated in 

Figure 2.3. The three main parts of MADlib are Python driver functions, C++ implementation 

functions, and a C++ abstraction layer. The python functions act as the main entry point from the 

user input and flow control of the algorithms. The second layer is a collection of C++ functions  

Figure 2.3 The different ways to integrate analytics with relational databases  

and aggregates needed for certain functions. They are implemented in C++ to improve 

performance. Third is the C++ database abstraction layer that abstracts Postgres internal 

functions as well as initializes a user interface. 
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Figure 2.4 MADlib architecture 

Technical Requirements 

To successfully deploy MADlib, a machine must be running either macOS or CentOS; 

and must have PostgreSQL or Greenplum installed. The team ran macOS and PostgreSQL when 

installing and testing  MADlib. It is extremely important to configure the PostgreSQL 

installation with Python. A machine will not be able to create the plpython (PL / Python) 

loadable language extension without proper configuration. 

Installation 

The successful deployment must be completed on Apple MacBooks running macOS 

Mojave, utilizing the default Python 2.7 installation. PostgreSQL can be installed via Homebrew 

[1], although it was necessary to tap a different repository [2] to properly configure the 

installation with Python [3]. Once Postgres is installed on a machine, the server will need to be 

started [4], and the MADlib binary [5] should be installed on the machine. Once this is complete, 
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MADlib can be installed into a specific database via the command line [6]. If the installation is 

successful the MADlib functions should be a part of the database’s schema and therefore 

available for use. PgAdmin 4 [7] as a visual interface and testing tool that can be used for the 

deployment of MADlib. PgAdmin allows users to visually click through database schema and 

create/drop servers, databases, and tables using a built-in query editor [8]. 

Procedural Language for SQL (PL/SQL) 

PL/SQL is an extension of SQL that allows for the query language to use block 

statements. Combining a database engine with block statements increases the processing speed 

and decreases traffic of the function. Figure 2.4 details the architecture of PL/SQL into three 

main components. At the top level is the block where the actual code is written. The block 

statements are then processed in the engine direct SQL code is sent straight to interact with the 

database while the PL/SQL segment is processed. The dual engine utilization accounts for the 

high performance and optimization of the language (GeeksforGeeks, 2018). 
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Figure 2.5 PL/SQL architecture 

 

Analytics Functions 

 

The team worked with various analytical functions in order to understand their logic, 

implementation, and efficiency. The functions were chosen from the MADlib library based on 

their potential to provide the team with useful analytical information. 

K-Mean Clustering 

 K-Mean Clustering is one of the simplest and most popular unsupervised machine 

learning algorithms used in data mining. Given N points, the goal of the method is to position k 

centroids so that the sum of distances between each point and its closest centroids is minimized 
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(K-Mean Clustering, 2019). A cluster refers to a collection of aggregated data points by their 

closest centroids (i.e. their closest centroids are the same).  

 This method begins with deciding on the initial centroids and then performing iterative 

calculations to optimize the positions of the centroids. MADlib offers four ways to invoke the 

process: the random centroid seeding method, the k-means centroid seeding method, supplying 

an initial centroid set in a relation (identified by the rel_initial_centroids argument) and 

providing an initial centroid set as an array expression in the inital_centroids argument. In our 

specific case, K -- the number of clusters, is pre-defined. I choose to use the k++ centroid 

method as the seeding method for our initial demo (K-Mean Clustering, 2019). First, we assign 

each point to the cluster whose mean has the least squared Euclidean distance. Then we calculate 

the new means of the point in the new cluster. The repetition stops when the number of iterations 

reaches a certain number or the difference between the last two iterations has become smaller 

than a certain value. This method cannot make sure to find the most optimal clustering and it’s 

time complexity can be roughly calculated as O(n^(dk+1)), where n is the number of points to be 

clustered and k (number of clusters) and d (dimensions) are pre-defined. According to the 

MADlib document, with this method, the users are able to know the final calculated centroids 

positions and the number of iterations, etc. 
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 Figure 2.6.1 K-Mean clustering main functions 

As the picture shown below, K-means algorithm is an iterative algorithm that tries to 

partition the dataset into K pre-defined distinct subgroups where each data point belongs to only 

one group. It assigns data points to a cluster such that the sum of the squared distance between 

the data points and the cluster’s centroid which is the arithmetic mean of all the data points that 

belong to that cluster. The less variation we have within clusters, the more similar the data points 

are within the same cluster. Figure 2.4.1 is one example of a graphic version of the clustering 

result. Indicating that there are three different groups of data with three distinctive centroids 

points.  
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Figure 2.4.2 K-Mean clustering with three major clusters and three centroid points 

K-Nearest Neighbors (KNN) 

The KNN algorithm is a simple method in the supervised learning realm that is primarily 

used for classification. It is a function used for finding the (k) nearest points of a given point in 

the data set (K Nearest Neighbors, 2019). The data points are vectors in a multidimensional 

feature space and the number of dimensions the data has will affect the efficiency of the 

algorithm’s execution. The KNN algorithm takes in a set of data called training data and the 

second set of data called testing data. The sets of data are then classified using the K value to 

approximate nearest neighbors while the value of K should be dependent on the data size. An 

optimal K can be determined by segregating the training and testing set from the original dataset 

and for the purpose of analytics, K remains constant across the different implementations of the 

algorithm.  
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Figure 2.7 Illustrates a KNN search for a point q  

 

KNN must scan through an entire dataset to see which points lie close to each other. The 

point proximity is often calculated using the Euclidean distance [10]. The prediction phase can 

speed up the implementation of appropriate data structures at runtime. A K-dimensional (KD) 

tree is a commonly used data-structure that the MADlib library utilizes to improve execution 

time. However, it can be costly to ensure the accuracy of the solution. The KD tree divides the 

training dataset sequentially into multiple regions that correspond to a leaf node of a tree. It will 

then look for the nearest neighbors in a subset of the regions contrary to the entire dataset. If 

there is a high number of dimensions, the accuracy of execution may suffer because a point may 

be in a different subset than expected. To construct an optimal KD tree, the number of 

dimensions should follow N > 2K where N is the number of dimensions (Bentley, 1975). 

Floyd Warshall Algorithm 

 The Floyd Warshall algorithm is used to find the shortest path between all pairs of 

vertices inside of a weighted graph. The algorithm works for directed and undirected graphs with 
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positive or negative edges. However, it does not work with negative cycles. It takes in a matrix 

function that can be inputted as a table in PL/SQL and MADlib. After computing the shortest 

path over the table an updated cost matrix is outputted. 

MADlib utilizes the principles of matrix multiplication to iterate through the algorithm. 

Because the path from every vertex must be found, it is very expensive. The worst-case run-time 

of the MADlib implementation is O(V2 * E) where V is the number of vertices and E is the 

number of edges. Figure 2.6 shows the Floyd-Warshall algorithm traveling through each node if 

a graph. 

 

 

Figure 2.8 Example of Floyd Warshall Algorithm 

 

Naive Bayes Classification 

 Naive Bayes Classification is an analytics training and classification mechanism 

developed from Bayes’ Theorem (Joyce, 2003). Bayes Theorem presents an algorithm used to 

calculate conditional probabilities [9]. 
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This concept is easier to understand in context, so imagine there exists a set of data that 

contains information about whether or not a person playing golf (Yes/No) on a given day. The 

dataset also includes information about the weather (Sunny/Cloudy/Raining), and the wind 

(None/Moderate/Windy). Using the initial dataset one could calculate the probabilities of each 

individual attribute (P(weather) = ⅓, P(wind) = ⅓, P(played golf) = ½); and using Bayes’ 

Theorem we could calculate the probability that this person will golf given that the weather is 

sunny → [i.e. P(Yes | Sunny) = P(Sunny | Yes) * P(Yes) / P(Sunny)]. 

Naive Bayes Classification is often used as a preliminary training algorithm in Machine 

Learning contexts. It’s very useful for generally classifying new data based on a training dataset. 

Naive classification is naive because of the assumption of independence. This means that the 

algorithm used assumes that all the attributes (columns) used to classify the data are independent 

of one another -- i.e. each attribute has an equal and independent contribution to the outcome of 

the calculation (Naive Bayes Classifiers, 2019). While this is not usually true in most empirical 

data sets, the classification provided by Naive Bayes can still be useful, especially on large 

datasets. Naive Bayes Classification must also contend with the issue of zero frequency. Zero 

frequency is the issue that arises when an attribute present in a classifying dataset was not 

present in the training dataset. This causes the probability of the aforementioned tribute equaling 

zero in the calculation which can lead to inaccurate results and/or dividing by zero. This issue 

can be handled in practice using Gaussian smoothing or  Laplacian smoothing (Cornell, 2018). 

These smoothing methods are just a means of estimating a function outcome to avoid zero 

frequency in the context of Naive Bayes. 

MADlib contains multiple functions to train, classify, and calculate the probabilities of 

different classes within a dataset based on Bayes’ Theorem. There are two implementations of 
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each function (training, classification, and probability) for datasets with purely categorical 

attributes, and for datasets with categorical and numerical attributes. The training functions allow 

users to pass datasets for training which pre-calculate feature probabilities and class priors. The 

classification and probability functions take the pre-calculated data, along with a new dataset to 

classify, and perform classification / calculate the probabilities of the new dataset based on the 

training set. MADlib also offers the ability to run the classification and probability functions ad-

hoc, meaning no pre-calculations are done, where all calculations are done at the time of the 

function call; the MADlib documentation provides specific instructions on what needs to be 

passed into the function to compute these values successfully in an ad-hoc manner (Naive Bayes 

Classification, 2019). 

Matrix Factorization 

 Matrix factorization refers to the process of dividing an input matrix into its factors, 

which can afterward be multiplied which results in the original input matrix. In the case of a 

machine learning function, the use case extends further than simply factoring a matrix. In our 

case, our input matrix is incomplete, meaning that every space in the matrix does not contain a 

number. Matrix factorization is used to guess what the factors of the input matrix are, given what 

numbers are given in the matrix, and from there we can guess what the original matrix would be 

if it were filled with numbers.  

 There are several different methods of performing matrix factorization. In this 

investigation singular value decomposition (SVD) was focused one. The SVD of an m by n 

matrix M results in matrices of the form M=UV where U is an m by m matrix, 𝛴 is a m by n 

rectangular diagonal matrix, V is an n by n matrix, and U and V are orthogonal. For the purpose 

of this project, this equation is simplified to 𝑀 = 𝑈𝑉. Removing the diagonal matrix from the 
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equation does not is okay in this instance because it simply acts as a scaler for either U or V. In 

order to find the values that make up the factors of M, we must find the optimal vectors for each 

matrix given the values that are given in M. This is done using stochastic gradient descent 

(SGD). The SGD algorithm gives us the following update rules: pu←pu+α⋅qi(rui−pu⋅qi), and 

qi←qi+α⋅pu(rui−pu⋅qi), where α is the learning rate, and pu and qi make up the rows and 

columns of U and V respectively. Running the algorithms a number of times will result in 

optimized values for the vectors of U and V, which together create the matrices U and V, which 

can then be used to construct a completed matrix M.  
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3. Methodology 

In order to succinctly analyze the efficiency of the different machine learning algorithms, 

the team implemented the functions in PostgreSQL. Our implementations of various algorithms 

were then tested against the MADlib implementation of the corresponding functions to compare 

the efficiency of their application. The process of the implementation and benchmarking is 

described in this section. 

Functions vs Stored Procedures 

 PostgreSQL supports the creation and use of both functions and stored procedures (SPs); 

the difference being that functions return a value, while SPs do not (PostgreSQL Tutorial, 2020). 

Stored procedures allow users to write code that utilizes control structures (i.e. FOR loops, IF 

statements, etc.) via the built-in PL/SQL procedure language.  

Although functions and SPs are similar, stored procedures were preferred in our project 

development because of basic design differences that best suit the classifiers. SPs are better for 

exception handling and support the use of table variables, temporary tables, and database 

transactions. Our functions could not be implemented without the native support for procedural 

operations provided by Postgres; for this reason, our team chose to utilize stored procedures 

where applicable as a basis for our function development. The LOOP function was found to be 

useful to iterate through the tables during function development.  

Datasets 

 The three base datasets used are the iris data set (500 attributes). The Anuran Calls 

dataset (7195 attributes) and finally the Online Retail dataset (541909 attributes). The iris dataset 

is a popular multivariable dataset often used for machine learning classifiers. The Anuran dataset 
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is used in several machine learning classification tasks. It contains relevant data for the challenge 

of recognizing the anuran species through their distinct calls. It is a multi-label dataset with three 

columns of labels. The dataset was created by segmenting 60 audio records belonging to 4 

different families, 8 genus, and 10 species. The Online Retail dataset is transactional data taken 

from a store in the United Kingdom between 01/12/2010 to 09/12/2011 Depending on the 

functions input parameters, there may have been additional datasets used in testing to support the 

functionality of the classifier.  Each of the datasets was uploaded into Postgres using a copy 

statement. Once they are stored into a table the datasets were available for testing. Each dataset 

was taken from the UCI Machine Learning Repository which is accessible publicly online. 

 

Function Development 

 

K-Mean Clustering 

 There were three stages of developing the K-mean function using the language plpgsql. 

At the pre-stage, the python version of the function was written then the similar algorithm was 

translated into plpgsql. Then there were two stages for the function written in plpgsql, the final 

version is the most concise with three helper functions and has met all the expectations.  

 The main function takes in a k value, which is the number of clusters the user wanted to 

classify the date into. Then it takes a number of max iterations as one of the stopping points. The 

main function also takes an E value which represents the difference of calculated Euclidean 

distance measured between two iterations. This has been used as the prior stopping mechanism. 

If the E value is calculated to be zero, the function stops clustering. The function will also stop at 

the number the user put in for the max iterations. 
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 There are three helper functions that execute the K-means clustering. The first one is 

calculating the Euclidean distance, Then the centroid and group functions are used to calculate 

the centroids and to form groups as clusters. The final result, the function will create different 

labels for the datasets to represent the different clusters they are in.  

 There will be two final output for this function. One of the output is a table of all the 

centroid points depending on the number of centroids the user put as input. The other output is 

the column of value attached to the data indicating which cluster the data value got assigned to.  

K-Nearest Neighbors 

 Using a query language like PL/SQL for the purpose of finding the nearest neighbors is 

plausible because of the fundamental principles of query languages. of query languages 

fundamental principles. The procedure needed to take in any dataset, extract features from it and 

run and order by statement. The features in the column were ordered by the Euclidean distance 

from a user-defined point and the ‘k’ number of points were returned in the table.  

 To aid implantation, an iterative process of development was utilized. By beginning with 

hardcoding the query to work with the Iris dataset, the code was able to be modified to take 

various inputs. The first implementation used a view to store a table of the dataset with the 

purpose of being able to run the query on the virtual table. Because of the versatility of the 

procedure’s ability to take in different datasets, and optimal efficiency preferred views were 

omitted from the final implementation. The main component of the dataset was to extract 

specific columns to conduct the KNN searching. By abstracting the columns defined by the user 

then running the SELECT statement on those columns, the function was able to be constructed. 

The pure implementation is PL/SQL calculates the nearest neighbors by traversing through the 
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entire dataset. Depending on the size of the dataset, this approach can be very inefficient.  To 

improve the efficiency of this the extension PostGIS was utilized in implementation. 

PostGIS 

 PostGIS is an extension for PostgreSQL that provides support for spatial objects, 

allowing storage and query of information about location and mapping of data. By turning 

PostgreSQL into a spatial database, spatial functions can be used to analyze geometric 

components, determine spatial relationships, and manipulate geometries. PostGIS utilizes an r-

tree data structure to efficiently store spatial data indexes in an efficient method.  

The PostGIS extension implements the K-Nearest-Neighbor search by traversing through 

the index, the search finds the nearest candidate geometries that do not require an index 

constraint. This makes the technique suitable for extremely large tables with high variable data 

dimensions. Figure 2.1 shows the KNN query by utilizing PostGIS. The query requires five 

inputs as parameters. The kx_value and ky_value take in the attribute column name of the input 

table. Table_name is the name of the table used to find the K nearest neighbor. X and Y serve as 

the K value of the desired search point. L is an integer of how many results should be returned. 

The datasets are formatted as a point table in PostGIS to provide accurate results.  
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Figure 3.1 KNN Query 

Floyd Warshall Algorithm  

 MADlib calculates the cost matrix of the input table. After obtaining a comprehensive 

understanding of the algorithm, the development of the function was completed iteratively. To 

begin, 2 tables’ r_table and sol_table are initialized. The relationships between all paths needs to 

be established from the input cost matrix. The input cost matrix is put into the r_table directly. 

By using value acting as infinity inside a insert statement the entire source and destination table 

was generated. Next to calculate the weights from each path the logic of the algorithm 

pseudocode was constructed: 
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   Floyd-Warshall Pssudocode (Taken from Tutorials Point)[11] 

Begin 

for k := 0 to n, do 

      for i := 0 to n, do 

         for j := 0 to n, do 

            if cost[i,k] + cost[k,j] < cost[i,j], then 

               cost[i,j] := cost[i,k] + cost[k,j] 

Three variables were defined m1,m2, and m3 all of type double precision[] that act as the 

i,j, and k from the pseudocode. Three loops are used to execute the procedure. Once the smallest 

weight is found it is stored inside the sol_table for output. 

Naive Bayes Classification 

 After reviewing MADlib’s implementation of the Naive Bayes algorithm, which includes 

functions for training, probability, and classification, it became clear that multiple functions 

would be necessary for the implementation within PostgreSQL. However, we were more 

concerned with classification, over class probabilities, the two functions implemented were a 

training function called nb_training, and a classification function nb_classify.  

Training 

The nb_training function takes three parameters (training table [regclass], class column 

[varchar], and an array of attribute columns [varchar(s)]). This function takes a table of training 

data (with the assumption that the table exists within the given database), and uses the class 

column and array of attribute columns to compute the training model which will be used to 

classify test data. A reference table (ref_table) is created which contains all unique classes from 

the class column, and an assigned numerical value (key). This reference table is then used to 
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calculate the mean and standard deviation for each attribute and class combination, creating a 

model for classification in a new table (summary_table). 

Classification 

The nb_classify function takes one parameter (test table [regclass]), i.e. name of the SQL 

table containing the unclassified data. The function then translates the given data into the 

test_attrs table, which contains only one column containing an array of the attribute values 

(data type of array elements →  double precision) for each row in the test table. The function 

then loops through each row, class (or label), and array value to calculate each class probability. 

The highest probability for each row is selected and stored in the prob_table with its 

corresponding class number (data type → integer). Due to the naive assumption of 

independence within this function, the initial probability of each class is set to be 1.0. This will 

affect the precision of the resulting probability, but not the accuracy in identifying the most 

likely class. The initial probability is then multiplied by the gaussian probability n times, where 

n is the number of attributes in the array(s) of attribute values from the test_attr table. The 

gaussian prob. is calculated using a simple helper function I wrote called gaussian_probability-- 

takes an x value, mean, and standard deviation of the given attribute and class; and applies the 

following function: 
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Figure 3.2 Gaussian Probability Function 

A Gaussian probability is calculated for each attribute for each class, a very expensive but 

necessary process to calculate the probability that a given attribute belongs to a class. This 

process is repeated for each row of test data; after iterating through all attribute values in a given 

row the highest probability/ class prediction is selected and stored in the prob_table. This 

function returns void. 

Matrix Factorization 

 MADlib provides two different implementations of matrix factorization: low-rank matrix 

factorization, and singular value decomposition (SVD). For the purposes of this project only an 

implementation of SVD was created.  
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 Input data for the matrix_factorization function is given in sparse-matrix format (value, 

row, column) which is inserted into a table in Postgres. This input format was less time 

consuming and more efficient than requiring a user to input every entry of the matrix, especially 

for larger matrices. The matrix_factorization function takes 6 parameters: (_table [regclass], 

num_rows [integer], num_cols [integer], k [integer], iterations [integer], alpha [double 

precision]). The parameter k refers to the number of factors that will be found, i.e. the number of 

columns and rows in the output matrices. The parameter alpha refers to the learning rate of the 

algorithm. The two output tables are initially created and populated with random floats between -

1 and 1, in order to remove bias from the stochastic gradient descent (SGD) optimization 

procedure. The SGD algorithm is run a given number of times, determined by the iterations 

parameter, on the input data and for each iteration, the random values of the output tables are 

updated based on the results of the algorithm, using the records available in the input table. Once 

all iterations of the SGD algorithm have run, our resulting matrices should approximately be 

factors of the original input matrix. If multiplied by each other, we should obtain an 

approximation of a completed matrix based on the original input data that was given.  

 

 MADlib Benchmarking -- Testing against MADlib Analytics Library 

Each MADlib function we are testing with has a specific set of parameters and formatting 

for inputs that must be satisfied in order for the function to run (MADlib documentation, 2019) 

So it is important to note the degree to which we needed to modify data tables to run MADlib 

functions, as a contrast to our own functions. Therefore, testing methodologies varied in 

execution with an overarching goal of comparing execution time and result accuracy (against the 

corresponding MADlib function(s)). 
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Testing Methodology K-Means Clustering 

 The testing began with a naive data set I created with less than 20 rows of data pre-inserted into 

the database in a form of table. To test K-Mean clustering, There were three data sets used in testing. The 

Iris dataset, The Anuran Calls dataset, and the Online Retail dataset. The clustering function was 

developed based on the three columns out of these data sets we randomly chose. For both testing 

and MADlib the data sets were pre inserted to the database as tables with only the chosen 

columns. Then we can compare the results from my testing in PgAdmin with results from 

MADlib functions. Then we recorded the running time displayed on PgAdmin to do the 

comparison between the efficiency for both functions. 

Testing Methodology K-Nearest Neighbors 

To test both sets of  KNN functions, three datasets were used. The Iris dataset, The Anuran 

Calls dataset, and the Online Retail dataset. Each dataset was put into a table that was formatted 

for their respective language. For MADlib each attribute was inserted into a table as a double 

precision array. For PL/SQL to utilize the PostGIS POINT geometry, each attribute was 

converted into spatial data allowing the RDMS to execute queries using geographical data. Both 

sets of functions ran the test datasets three times, the average runtime for each dataset was then 

calculated. The results of each query were recorded to compare the accuracy of both functions. 

Testing Methodology Floyd Warshall Algorithm 

 To test the Floyd Warshall Algorithm a cost matrix needs to be taken in as an input. For 

straightforward testing the test matrix used in the MADlib documentation was used for the 

testing purposes of this investigation. The query was run 3 times and the average of the 

experiment was recorded. 
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Testing Methodology Naive Bayes 

 To test the Naive Bayes functions against MADlib’s, I ran three sets of data through the 

functions, maintaining a consistent number of records and attributes for each dataset: 

Table 3.3 Record and Attribute Count for Naive Bayes Algorithm Testing 

 Small Dataset 

(Iris) 

Medium Dataset 

(Frogs) 

Large Dataset  

(Online Retail) 

Number of Records 150 7190 541909 

Number of Attributes 4 4 2 

 

I ran each function five times and averaged the five iteration times to get a mean execution time 

for each function. This means five runs of nb_training(), create_nb_prepared_data_tables(), 

nb_classify(), and create_nb_classify_view(). I then tested the accuracy of the training results via 

query, comparing my training model to MADlib’s on an attribute basis (i.e. comparing my 

calculated attribute variance and attribute mean to MADlib’s). Figure 3.4 is an example of how I 

accomplished this using my summary_table and MADlib’s numeric_attr_params tables. This 

query utilizes the use of a subquery where I get the absolute value of the difference between the 

calculated attribute variance from MADlib’s model (n.attr_var), and my calculated variance of 

the corresponding attribute (i.e. unit_price_stddev 2 ). The query then counts the number of 

results where the difference is within a tolerance of one (+/- 1), which is cast as a numeric to then 

be divided by the total number of records from the training model, and finally multiplied by 100 

to get the percentage of attribute records within the training model which are correctly calculated 
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within the aforementioned tolerance.

 

Figure 3.3 Query for comparing accuracy of Naive Bayes Training Model(s) 

If given more time I would’ve liked to abstract out a function to be used to test the accuracy of 

the models. However, I just manually repeated this query by changing the attribute names, and 

numbers (i.e. MADlib’s n.attr) for all attribute variances and means. 

 For the classification functions, I wrote a similar query to attempt joining my 

classification table (prob_table) with MADlib’s (nb_classify_view_fast), which worked well in 

the case of the small Iris dataset, but due to my implementation there were cases with the larger 

sets that didn’t correctly represent the true accuracy of the results. It was during this testing 

process that I developed many of my recommendations and recognized the shortcomings of my 

own functions-- See Naive Bayes Results sections for more information. Figure 3.5 shows the 

query used to compare classification predictions of the classification functions: 

 

Figure 3.4 Query for comparing accuracy of Naive Bayes Training Model(s) 
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This query accurately calculates the percentage of matching predictions (mine vs MADLib’s) for 

the Iris dataset since the class labels are all categorical and therefore need to be assigned a 

numerical key in order to be processed by the algorithm in the case of both training functions.  

However, if the class label was already numerical my function may assign a numeric key 

of ‘1’ to class label ‘7’ for example. This is because while designing to allow the use of non-

numerical class labels I did not write any contingency code to handle cases where the class labels 

are already numeric but may not be in numerical order. This may lead to the aforementioned case 

of a ‘1’ class key for a numeric class label of ‘7’. Where MADlib will just use the class label in 

this case as the numeric key (i.e. if the class label is ‘7’ the class key will also be ‘7’). So when 

trying to compare accuracy the results were misleading because of mismatched class keys and 

class labels (between mine and MADlib’s models) which made it difficult to properly compare 

results. 

It is also worth noting the particular formatting expected by MADlib in regards to its 

training and classification functions. MADlib’s functions expect a table with an integer id 

column, class label column (numerical or categorical), and a column with an array of the 

corresponding attributes for any given row (of size n, where n is the number of attributes). 

Therefore, to test against MADlib’s results and ensure both my functions and MADlib’s were 

receiving the same information, I needed to create tables from the original datasets with the 

aforementioned formatting for use in the MADlib functions (denoted in my test code by 

ml_[dataset name]_train and  ml_[dataset name]_classify). 
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Figure 3.4.1 Create, Populate, and Query Formatted SQL Tables for use in MADlib Functions 

 

Figure 3.4.2 Result of Select Statement from ml_iris_train 

Testing Methodology Matrix Factorization 

 Testing for the matrix factorization function utilized two randomly generated matrices of 

two sizes: a 5x5 matrix and a 15x15 matrix. Each matrix was sparsely populated with a total of 

four and seventeen values occupying the two matrices respectively. Both our function and 

MADlib’s implemented function were run on both matrices. The 5x5 matrix was given 100 

iterations to run through both  
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functions, and the 15x15 matrix was given 25 iterations. Each matrix was run through each 

version of the function three times, and the average runtime was calculated for each matrix.  

4. Results and Recommendations 

After the development of each function was completed, the team then moved into testing 

and analyzing the functions performances vs the MADlib library. The results of each function is 

described in the following section; 

Results K-Means Clustering  

In Figure 4.1.1, it shows a screenshot when the Iris data was used as the testing data and 

we performed clustering based on the sepal_length and pedal_length. It can clearly seen that over 

around 200 samples, when the user wants them to categorize into two clusters, the difference 

between two lengths over 2 units were clusters into the first cluster and the difference less than 

or equal to 2 units were clusters into the second cluster. By calling function kmeans(K), the user 

is able to find out the centroid points for K clusters. K can be defined as any integer by the user.  

The next table is showing the time result comparison between the PL/SQL function and the 

MADlib functions. The PL/SQL function runs longer when the data set gets bigger due to the 

fact that there were several for loops in the functions that can be costly when the input gets large.   
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Figure 4.1.1 K-Mean query and cluster results from PL/SQL 

 

Table 4.1.1 K-Mean Clustering centroid points results when the cluster is set to 2 

 

Table 4.1.2 K-Mean Clustering Runtime for MADlib and PL/SQL in Milliseconds 

Dataset PL/SQL MADlib 

Iris 534msec 233 msec 

Anuran Calls 680 msec 380msec 

Online Retail 1432 msec 680msec 
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Results K Nearest Neighbors 

MADlib 

 

The MADlib function reported the nearest neighbors for the test points accurately. For 

the Iris dataset a test point a [5,5] was chosen for K. As seen in Figure 3.1 the results returned 

points 16[5.7,4.4], 33[5.2,4.1], and 34[5.5,4.2]. The query was completed in 111 milliseconds. 

For the Anuran (MFCCs) dataset a test point of [0.15,0.15] was chosen for K. The results 

returned points 3477[0.2670,0.2184], 1515.[0.2011,0.1561], and 4607[0.599,0.1498]. The query 

was completed in 121 milliseconds. Finally to test the Online Retail dataset a test point of [5.99] 

was chosen for K. The results returned points 7729[5.95], 5023[5.95], and 12449[5.95]. The 

query was completed in 166 milliseconds. 

Figure 4.2 KNN query using MADlib 
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PL/SQL 

The results for the PL/SQL trials were identical to the MADlib function. For the Iris 

dataset the results were the same as seen in Figure 3.2. Points 16,33,and 34 were returned 

matching the result from MADlib. The results for the Anuran and Online Retail Datasets also  

Figure 4.3 KNN query using PL/SQL 

 

produced the same results. 2 out of the 3 PL/SQL functions test on average was faster than 

MADlib.  

Table 4.1 KNN Runtime for MADlib and PL/SQL in Milliseconds 

Dataset PL/SQL MADlib 

Iris 124 msec 132 msec 

Anuran Calls 139 msec 121 msec 

Online Retail 153 msec 166 msec 

 

Results Floyd Warshall Algorithm 

 In comparison with MADlib’s sample data [12], the results for the PL/SQL data is 

detailed in this section: 

MADlib 
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The table contains four columns: the e_src, dest, and e_weight. The results are detailed in 

this section. The query was executed three times with an average runtime of 225 milliseconds: 

0 0 0  

0 1 1  

0 2 1  

0 3 2  

0 4 10  

0 5 2  

0 6 3  

0 7 4  

1 0 4  

1 1 0  

1 2 2  

1 3 3  

1 4 14  

1 5 3  

1 6 4  

1 7 5  

2 0 2  

2 1 3  

2 2 0  

2 3 1  

2 4 12  
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2 5 1  

2 6 2  

2 7 3  

3 0 1  

3 1 2  

3 2 2  

3 3 0  

3 4 11  

3 5 3  

3 6 4  

3 7 5  

4 0 -2 

4 1 -1  

4 2 -1  

4 3 0  

4 4 0  

4 5 0  

4 6 1  

4 7 2  

5 0 Infinity 

5 1 Infinity 

5 2 Infinity 

5 3 Infinity 
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5 4 Infinity 

5 5 0  

5 6 1  

5 7 2  

6 0 Infinity 

6 1 Infinity 

6 2 Infinity 

6 3 Infinity 

6 4 Infinity 

6 5 Infinity 

6 6 0  

6 7 1  

7 0 Infinity 

7 1 Infinity 

7 2 Infinity 

7 3 Infinity 

7 4 Infinity 

7 5 Infinity 

7 6 Infinity 

7 7 0  

 

PL/SQL 
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 The solution table is formatted into three columns; source, destination, and weight. The 

results for PL/SQL procedure are detailed in this section: 

0 0 8 

0 1 1 

0 2 1 

0 3 11 

0 4 10 

0 5 11 

0 6 11 

0 7 11 

1 0 8 

1 1 11 

1 2 2 

1 3 10 

1 4 20 

1 5 11 

1 6 11 

1 7 11 

2 0 1 

2 1 4 

2 2 5 

2 3 1 

2 4 13 
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2 5 1 

2 6 3 

2 7 4 

3 0 1 

3 1 2 

3 2 3 

3 3 2 

3 4 11 

3 5 2 

3 6 2 

3 7 2 

4 0 -2 

4 1 -1 

4 2 0 

4 3 -1 

4 4 8 

4 5 -1 

4 6 -1 

4 7 -1 

5 0 -1 

5 1 2 

5 2 3 

5 3 2 
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5 4 11 

5 5 2 

5 6 1 

5 7 2 

6 0 -1 

6 1 2 

6 2 3 

6 3 2 

6 4 11 

6 5 2 

6 6 2 

6 7 1 

The query was run three times, executing at an average runtime of 995 milliseconds. The 

construction of the solution table was successful however the logic providing the correct weights 

is significantly different than the MADlib results. The accuracy of the algorithm suffered in the 

logic of the nested four loops. The syntax and performance of LOOP in PL/SQL could be 

culpable in the accuracy of the procedure. The PL/SQL language does not have the most optimal 

execution code for loops compared to other languages. 

Results Naive Bayes 

 The results of testing the natively implemented Naive Bayes functions against MADlib’s 

are as follows: 
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Runtime Tests 

 The runtime or execution time testing of all Naive Bayes algorithms are shown in Figure 

4.3, native functions are denoted by my_training and my_classify while the MADlib functions 

are denoted by ML_training and ML_classify. Figure 4.3.1 displays the timing in milliseconds of 

each trial, or iteration, which were then averaged as can be seen in Figure 4.3.2. 

 

Figure 4.3.1 Raw Runtime Data for Naive Bayes Algorithms 
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Figure 4.3.2 Averaged Runtime Data for Naive Bayes Algorithms 

The data from Figure 4.3.1/ Figure 4.3.2 was used to create Figure 4.4.1 and Figure 4.4.2 which 

graphically represent the difference in runtime between the native training / classification 

functions versus MADlib’s training / classification functions. 

Figure 4.4.1 Naive Bayes Training Function Execution Time Graph (in milliseconds) 

 

Figure 4.4.2 Naive Bayes Classify Function Execution Time Graph (in milliseconds) 
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The native training algorithm is very comparable to it’s MADlib counterpart in terms of runtime 

as Figure 4.4.1 shows; the time differences are milliseconds to seconds and the highest mean 

runtime was approximately five seconds.  

This is not the case with the native classification algorithm however. The exponential 

increase in execution time is due to bottlenecking via three nested for loops in my classification 

algorithm. This issue is exacerbated further when there is both a large number of records and 

class labels. For each new record being tested, or each new attribute that is another three 

iterations due to the nested nature of the loops (i.e. Ω3 in terms of algorithmic complexity with 

respect to Omega). 

Accuracy Tests 

 To test the accuracy of the algorithms I performed various queries as mentioned in the 

Methodology section. A few visual comparisons are also provided below from queries joining 

the training models, however as the datasets get larger this clearly is an improbable way to 

compare results. 

 

Figure 4.5.1 Visual Comparison of Small Set Training Accuracy for Naive Bayes Algorithms 



44 
 

 

Figure 4.5.2 Visual Comparison of Medium Set Training Accuracy for Naive Bayes Algorithms 
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The results of queries comparing the accuracy of the algorithms are displayed in Table 4.3.1: 

 

Attribute Name Accuracy (within +/- 1.0) 

sepal_length_avg 100.00% 

sepal_length_stddev 100.00% 

sepal_width_avg 100.00% 

sepal_width_stddev 100.00% 

petal_length_avg 100.00% 

petal_length_stddev 100.00% 

petal_width_avg 100.00% 

petal_width_stddev 100.00% 

 

Table 4.3.1 Naive Bayes Training Accuracy Results for Small Data Set (Iris) 

 

 

Attribute Name Accuracy  (within +/- 1.0) 

MFCCs2_avg 100.00% 

MFCCs2_stddev 96.67% 

MFCCs3_avg 100.00% 

MFCCs3_stddev 96.67% 

MFCCs4_avg 100.00% 

MFCCs4_stddev 96.67% 

MFCCs5_avg 100.00% 

MFCCs5_stddev 96.67% 

 

Table 4.3.2 Naive Bayes Training Accuracy Results for Medium Data Set (Frogs) 
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Attribute Name Accuracy  (within +/- 1.0) 

quantity_avg 100.00% 

quantity_stddev 100.00% 

unit_price_avg 100.00% 

unit_price_stddev 100.00% 

 

Table 4.2.3 Naive Bayes Training Accuracy Results for Large Data Set (Online Retail) 

 

Once again the native training function proves to be comparable with MADlib’s training 

function as the models are almost identical value-wise in terms of accuracy within a +/- 1.0 

tolerance. Based on the results of both runtime and accuracy testing, the native training function 

is equally as viable as MADlib’s implementation. 

 

Figures 4.6.1 - 4.6.3 show the queries used to compare the classification results of the 

native implementation vs MADlib’s results (i.e. nb_classify_view_fast). Figures 4.6.1 and 4.6.2 

are written to calculate percentage correct between my results and MADlib’s results, while 4.6.3 

is comparing MADlib’s results to the actual class labels of the first 10,000 records.  

4.6.3 actually shows that MADlib only correctly predicted 7.72% of the class labels of 

the 10,000 record test subset.  

 

Other factors to consider when reviewing these results are, 

1) MADlib’s Naive Bayes functions are still experimental, and therefore not finalized versions, 

so there could be some improvements to be made. 
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2) I arbitrarily chose the class value for this set as the country with the numerical attributes being 

quantity and unit price. It would be fair to assume that these attributes and classifications are 

unrelated and therefore could not accurately be used to predict the class label. 

 

 
 

Figure 4.6.1 Naive Bayes Classification Accuracy Results for Large Data Set (Iris) 

 

 
 

Figure 4.6.2 Naive Bayes Classification Accuracy Results for Medium Data Set (Frogs) 
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Figure 4.6.3 Naive Bayes Classification Accuracy Results for Large Data Set (Online Retail) 

 

Future Development / Takeaways 

 There was a lot to be learned through the planning, developing, and testing of these Naive 

Bayes functions, and if given more time there are three main areas to give more time and thought 

to. 

 The first would be greater foresight and planning with regard to required formatting of 

input data. A concept that may seem frivolous at the beginning of development, but proves to be 

a very powerful means of eliminating unknowns during the development process. Complete 

understanding of the data types, and formatting of the data being input gives a developer a lot 

more power to transform data effectively, and debug more efficiently. Specifically when 

developing the classification function, which required the use of a gaussian distribution function, 

had I known that the double precision data type only supported up to 15 decimal places it 

would’ve been clear that numeric or decimal would have been better options as they offer much 

more storage space and compatibility with mathematical functions such as round(). 

 The second area of focus would be better planning in terms of looping through data, 

specifically to avoid the three nested loop bottleneck created in the nb_classify function, while at 

least ⅔ loops are unavoidable, there is definitely more that could be done to optimize the 

algorithm. 

Lastly I would use more arrays and less loops, particularly nested loops as they are, ironically, 

the quickest way to slow down a function. Arrays allow for cleaner data storage and parsing into 
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other forms. Arrays are conceptually fairly universal when it comes to computer science, 

therefore the understanding is very transferable and there is plenty of documentation and built-in 

functions to support more nuanced use of such data structures [13]. 

Results Matrix Factorization 

 

PL/SQL 

 The trials in PL/SQL all produced matrices that were reasonable factors of the original 

input matrix. They were not the same as those produced by MADlib due to the nature of the 

optimization algorithm that was implemented and the randomization of the initial values of the 

output matrices. The factored matrices will likely end up in different local maxima resulting in 

differing matrices. The 5x5 matrix finished its query in an average of 2524 milliseconds for its 

100 iterations and the 15x15 matrix finished its query in an average of 98 seconds for its 25 

iterations. Table 3.2 shows the runtime for each matrix and each function. 
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Figure 4.7 Matrix Factorization query using PL/SQL 
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Table 4.3 Matrix Factorization Runtime for MADlib and PL/SQL in Milliseconds 

Matrix PL/SQL MADlib 

5x5 2524 msec 350 msec 

15x15 98 sec 35 msec 

 

Recommendations 

 By recognizing the findings of the investigation, the team was able to assess the 

versatility of MADlib. Despite PL/SQL having high performance and productivity MADlib 

outperformed the PL/SQL functions significantly. MADlib typically executed a more efficient 

query than one constructed in PL/SQL. The limitation of using MADlib best runs on macOS, 

using another operating system can be difficult and perchance impassable. Figure 4.8 shows the 

collective PL/SQL functions performance vs. the MADlib functions. MADlib is still early in 

development and is working to improve and add new features to it platform. In its early days of 

usage this investigation found MADlib to be a viable and useful tool for in-database processing. 

The ease of use and documentation make performing in-database analytics achievable for a 

common data scientist. 

  Figure 4.8 illustrates a graph the team developed to help assess the performance of the 

MADlib functions vs PL/SQL. Each test procedure was scored between a range from 1-3 where 

3 was awarded for accurate and efficient testing. Scores were awarded by the developer 

retrospectively to assess a clear interpretation of the functions performance. 
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Figure 4.8 Charting performance of MADlib Functions vs. PL/SQL 

 

5. Conclusion 

 PL/SQL is a powerful and efficient tool that exploits block statements allowing for the capability 

to perform powerful processes. The language provides a powerful platform to develop efficient queries. 

MADlib provides a simpler way to perform accurate analytical functions on sample sizes of any size. 

MADlib is a new open source software that is still developing but offers valuable functionality to data 

scientists and common analytical persons. The expansion of MADlib’s functionality is a notable stock to 

pay attention to during its continued development. One who wishes to conduct their own analytical 

processing should consider MADlib a reliable, powerful, and accurate tool if a proper installation can be 

complete. 
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Appendix 

[1] Homebrew link 

[2] Tap used to Install Postgres with Python: 

 

[3] Configure Postgres with Python 

[4] Server Start-up From Command Line: 

 

[5] MADlib binary 

[6] command to install MADlib into a database 

[7] pgAdmin4 link 

[8] pgAdmin Query Editor

 

 

[9] Bayes' Theorem 

https://brew.sh/
https://stackoverflow.com/questions/38062512/install-plpython-on-mac-with-python-2-7
https://www.postgresql.org/docs/current/plpython-python23.html
https://madlib.apache.org/download.html
https://cwiki.apache.org/confluence/display/MADLIB/Installation+Guide
https://www.pgadmin.org/
https://miro.medium.com/max/1378/1*LCoOH68FcIqiOcFApNQZtA.jpeg
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[10]  Euclidean Distance 

 

[11]Floyd Warshall Algorithm 

 

[12] MADlib Floyd Warshall  

 

[13] PostgreSQL documentation 

 

https://www.tutorialspoint.com/Floyd-Warshall-Algorithm
https://www.postgresql.org/docs/

