
1

In-Database Analytics

A Major Qualifying Project report to be submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the Degree of Bachelor of Science

Submitted By:

Justin Amevor

Junyu Lyn

Tyrone Patterson

Bailey Schmidt

Advisor:

Mohamed Eltabakh

March 8th 2020

2

Abstract

In-database analytics is a technique to process data directly inside of a database. The

opportunity to compute analytical data directly inside of a database is a high value venture for

large data warehouses. This investigation examined the value of using Apache MADlib for

analytical operations versus developing functions and procedures for the same purpose using

PostgreSQL and PL/SQL, without external dependencies such as Python (used by MADlib). The

functions examined in this investigation were K-Nearest Neighbors, Floyd Warshall Algorithm,

Logistic Regression, Matrix Factorization, Naive Bayes, and K-Means Clustering, each function

was chosen arbitrarily. After implementation of each function was complete, performance testing

was conducted to examine the accuracy and runtime of each PL/SQL function against its

MADlib counterpart. Results showed that the initial overhead for setup and installation of

MADlib is far from user friendly and lacking in up-to-date documentation; for usability however

using MADlib can be significantly advantageous for thorough data processing compared to

direct implementation. Manually implementing analytical functions could be efficient for smaller

queries however as the sample size increases, MADlib handled queries significantly more

efficiently.

3

Table of Contents

Abstract 2

Table of Contents 3

Table of Figures 5

Table of Tables 6

Acknowledgments 7

Authorship 8

Executive Summary 9

1. Introduction 1

2. Background 2

Client-Server Connection 2

Embedded Database 3

In-database Processing 4

MADlib Library 4

Overview 4

Technical Requirements 6

Installation 6

Procedural Language for SQL (PL/SQL) 7

Analytics Functions 8

K-Mean Clustering 8

K-Nearest Neighbors (KNN) 11

Floyd Warshall Algorithm 12

Naive Bayes Classification 13

Matrix Factorization 15

3. Methodology 17

Functions vs Stored Procedures 17

Datasets 17

Function Development 18

K-Mean Clustering 18

K-Nearest Neighbors 19

PostGIS 20

Floyd Warshall Algorithm 21

4

Naive Bayes Classification 22

Matrix Factorization 24

MADlib Benchmarking -- Testing against MADlib Analytics Library 25

Testing Methodology K-Means Clustering 26

Testing Methodology K-Nearest Neighbors 26

Testing Methodology Floyd Warshall Algorithm 26

Testing Methodology Naive Bayes 27

Testing Methodology Matrix Factorization 30

4. Results and Recommendations 31

Results K-Means Clustering 31

Results K Nearest Neighbors 33

MADlib 33

Results Floyd Warshall Algorithm 34

Results Naive Bayes 40

Results Matrix Factorization 49

Recommendations 51

5. Conclusion 52

Bibliography 53

Appendix 54

5

Table of Figures

2.1 Communication between a client and server……………………………………………….…2

2.2 Interaction between an embedded application and database……………………………….....3

2.3 The different ways to integrate analytics with relational databases…………………………..5

2.4 MADlib architecture…………………………………………………………………………..6

2.5 PL/SQL architecture…………………………………………………………………………..8

2.6.1 K-Mean clustering main functions…………………………………………………………10

2.7 KNN search for a point q………………………………………………………………...…..12

2.8 Example of Floyd Warshall Algorithm………………………………………………..……..13

3.1 KNN Query ………………………………………………………………………………… 21

3.2 Gaussian Probability Function………………………………………………………….…....24

3.3 Query for comparing accuracy of Naive Bayes Training Model(s)……………………...….28

3.4 Query for comparing accuracy of Naive Bayes Training Model(s)………...……………….28

3.4.1 Create, Populate, and Query Formatted SQL Tables for use in MADlib Functions………30

3.4.2 Result of Select Statement from ml_iris_train………………………………………….….30

4.1.1 K-Mean query and cluster results from PL/SQL……………………………………...…...32

4.1.2 K-Mean Clustering centroid points results when the cluster is set to 2……………………32

4.2 KNN Query using MADlib………………………………………………………..………....33

4.3 KNN Query using PL/SQL……………………………………………………..……………34

4.3.1 Raw Runtime Data for Naive Bayes Algorithms……………………………….………….42

4.3.2 Averaged Runtime Data for Naive Bayes Algorithms…………………………………….42

4.4.1 Naive Bayes Training Function Execution Time Graph (in milliseconds)………………..43

4.4.2 Naive Bayes Classify Function Execution Time Graph (in milliseconds)……......……….32

4.5.1 Visual Comparison of Small Set Training Accuracy for Naive Bayes Algorithms……….43

4.5.2 Visual Comparison of Medium Set Training Accuracy for Naive Bayes Algorithms……44

4.6.1 Naive Bayes Classification Accuracy Results for Large Data Set (Iris)…………..………45

4.6.2 Naive Bayes Classification Accuracy Results for Medium Data Set (Frogs)………..……45

4.6.3 Naive Bayes Classification Accuracy Results for Large Data Set (Online Retail)……..…46

4.7 Matrix Factorization query using PL/SQL……………………………………………….…50

4.8 Charting performance of MADlib Functions vs. PL/SQL…………………………….……52

6

Table of Tables

3.1 Record and Attribute Count for Naive Bayes Algorithm Testing………………………..….27

4.1.1 K-Mean Clustering Runtime for MADlib and PL/SQL in Milliseconds………………..…32

4.2 KNN Runtime for MADlib and PL/SQL in Milliseconds……………………….…………..35

4.3.1 Naive Bayes Training Accuracy Results for Small Data Set (Iris)……………………...…46

4.3.2 Naive Bayes Training Accuracy Results for Medium Data Set (Frogs)…………….……..46

4.3.3 Naive Bayes Training Accuracy Results for Large Data Set (Online Retail)……………...47

4.4 Matrix Factorization Runtime for MADlib and PL/SQL in Milliseconds…………………...51

7

Acknowledgments

The team would like to thank our advisor Mohamed Eltabakh for his support and guidance

throughout the project. We would also like to thank Worcester Polytechnic Institute’s computer

science department for their support and acceptance of this investigation.

8

Authorship

Section Written by Edited by

Abstract Justin Bailey

Executive Summary Justin Tyrone

Introduction Justin Tyrone

Background All All

Client Server Connection Justin & Junyu Tyrone

Embedded Database Justin Junyu

In-Database Processing Junyu Justin

MADlib Overview Justin Junyu

Technical Requirements Bailey Justin

Installation Bailey Justin

Procedural Language for SQL (PL/SQL) Justin Bailey

K-Mean Clustering/Methodology & Results Junyu Bailey

K-Nearest Neighbors (KNN)/Methodology & Results Justin Bailey

Floyd Warshall Algorithm/Methodology & Results Justin Junyu

Naive Bayes Classification/Methodology & Results Bailey Junyu

Matrix Factorization/Methodology & Results Tyrone Bailey

Methodology All All

Problem Formulation Justin Bailey

Functions Vs. Stored Procedures Bailey & Justin Tyrone

Datasets Justin Bailey

MADlib Benchmarking Bailey & Justin Tyrone

Recommendations Justin Bailey

Conclusion Justin Bailey

9

Executive Summary

Problem Statement

The ability to analyze large database warehouses is a valuable tool for data scientists and

businesses to employ. Database analytics provide valuable information that can be used to

support business intelligence. However, analyzing large databases can be complex and very

difficult especially depending on the architecture of the database itself. Apache MADlib is an

open-source library that was built to help people easily use analytical functions within the

Postgres or Greenplum database management systems. This report investigates the practicality

of using MADlib for In-database analytics as a substitute for manually creating functions

for analytical purposes as well as investigating the accuracy and efficiency of the user made

functions against MADlib.

Objective

Implement the K-Means Clustering, K-Nearest Neighbors, Floyd Warshall Algorithm,

Logistic Regression, Matrix Factorization, Naive Bayes and MADlib functions using PL/SQL.

Determine if the MADlib functions are more efficient and accurate than the PL/SQL analytical

functions.

Goals

In order to focus our investigation, the team developed 3 succinct goals to help achieve our

objective.

1. Implement the MADlib functions in PL/SQL.

2. Test the MADlib functions vs PL/SQL functions for accuracy and efficiency.

3. Provide recommendations on performing In-database analytics.

10

Methodology

The team began the investigation by taking time to research and understand the MADlib

functions. Team members took approximately ⅓ of the project time to grasp the logic of the

algorithms, learn the syntax of the PL/SQL language, and install the MADlib software and

PGAdmin tool for development. After successfully installing MADlib and PGAdmin, the team

then started writing the functions in Python to aid in understanding of the behavior of the

algorithms. For each function, the team focused on developing their own optimal implementation

to be comparable or better than its respective MADlib counterpart. As a result of the

optimization efforts, the team tried to utilize the PL/SQL language to improve the runtime of the

functions.

Once development was complete the team chooses three data sets to conduct base testing.

Those datasets were the Iris dataset (500 attributes), The Anuran Calls dataset (7195 attributes)

and the Online Retail dataset (78095 attributes). The MADlib and team made functions were

both tested using the three datasets. After calculating the average of the test trials, the team used

the results to deliver the recommendations of the project’s investigation.

11

Conclusion

PL/SQL is a powerful and efficient tool that exploits block statements allowing for the capability

to perform powerful processes. The language provides a powerful platform to develop efficient queries.

MADlib provides a simpler way to perform accurate analytical functions on sample sizes of any size.

MADlib is a new open source software that is still developing but offers valuable functionality to data

scientists and common analytical persons. The expansion of MADlib’s functionality is a notable stock to

pay attention to during its continued development. One who wishes to conduct their own analytical

processing should consider MADlib a reliable, powerful, and accurate tool if a proper installation can be

complete.

1

1. Introduction

 Performing analytical operations inside of a database (or In-Database Analytics) is a

powerful method used in various data warehousing infrastructures. In-database processing allows

analytical functions to be used inside of a database, without the need to transform data and

transport it between the database and outside applications. Open-source libraries such as Apache

MADlib offer powerful analytical functions within a database, but configuring and using similar

libraries may be difficult for the average user. PL/SQL is a language designed to allow users to

easily select and manipulate data from a database without having extensive knowledge of

programming concepts.

This report focuses on the team’s investigation of the utilization of the MADlib library

versus PL/SQL functions within the PostgreSQL database management system. Eight functions,

defined in MADlib, were chosen arbitrarily to be examined against a similar PL/SQL

implementation to compare their runtimes and accuracy (if applicable) in order to determine

which set of functions produced more accurate and efficient results. The functions discussed in

this report are K-Nearest Neighbors, Floyd Warshall Algorithm, Logistic Regression, Matrix

Factorization, Naive Bayes, and K-Means Clustering. The process of implementing each

function and testing its benchmarking is detailed in the subsequent sections.

2

2. Background

There are three main ways data-intensive analytics tools can be integrated with traditional

relational data management systems (RDBMS); establishing a client-server connection,

performing analysis inside databases (also known as in-database processing), and embedding a

database within an analytical tool. Each implementation has various constraints that can affect

usability and performance, depending on the characteristics of the specific RDBMS and

configuration. Users’ use cases will determine the advantages and disadvantages of each method.

Client-Server Connection

An analytical tool can be combined with an RDBMS through a client-server connection.

This method allows the database and analytical tool to be two separate entities. After being

authenticated, the data in the database can be exported from the server to the client, where any

processing will take place. Figure 1.1 (Raasveldt 2018) shows the process of the server

processing queries using a client server connection.

Figure 2.1 Communication between a client and server

3

Establishing a client-server connection can be problematic when a large amount of data

needs to be serialized and transferred to the client. A large dataset may not fit in the clients’

memory, which may result in a failure of the data transfer. Efficient storage of data in the

database can help improve the transfer time to the client. This method is most optimally used for

analyzing small amounts of data. Open Database Connectivity (ODBC) or Java Database

Connectivity (JDBC) interfaces can connect to almost any database and have a simple

implementation process. Using a client-server connection allows for easy integration into

existing pipelines by loading only the necessary files instead of entire datasets (Raasveldt, 2018).

Embedded Database

Figure 2.2 Interaction between an embedded application and database

A database can also be embedded inside of an analytical tool client program. This method

does not require a user to have a running database server and costs less time for users to install,

tune, and maintain. SQLite is a commonly used embedded database however, it is designed for

transactional workloads and is not the best for analytical purposes. MonetDB is another open-

source embedded database that is more suited for analytics and handling large datasets

4

(Raasveldt, 2018). Figure 1.2 shows the interaction between the database and embedded

application. Queries can be sent from the database and processed within the embedded

application by utilizing Postgres tables and other functions.

In-database Processing

In-database processing is the method of performing analytics inside of a database server,

which omits the process of exporting the data from a database. Block (b) in Figure 2.3 shows the

theory behind in-database processing. It is difficult to express most data analysis, data mining,

and classification operators in SQL because of the limited amount of scalar functions and their

complexity to implement on large data sets. The current solution to this problem is implementing

the analytical functions using user-defined functions in procedural programming languages. This

method requires a significant amount of manual labor from the user to rewrite existing analytical

functions in SQL. Users will need to have a significant amount of knowledge about the

database's internal and execution model. Because of the complexity of this approach, our team

aims to develop a more efficient solution to the overhead of this approach (Raasveldt, 2018).

MADlib Library

Overview

Apache MADlib is an open-source library for scalable in-database analytics. It provides

several data-parallel implementations of mathematical, statistical, data science, and machine

learning algorithms. MADlib can be configured with PostgreSQL to analyze large datasets.

5

MADlib is useful for various analytical functions like clustering, regression models, graph

analysis, and more.

The architecture of MADlib can be described in three main components as illustrated in

Figure 2.3. The three main parts of MADlib are Python driver functions, C++ implementation

functions, and a C++ abstraction layer. The python functions act as the main entry point from the

user input and flow control of the algorithms. The second layer is a collection of C++ functions

Figure 2.3 The different ways to integrate analytics with relational databases

and aggregates needed for certain functions. They are implemented in C++ to improve

performance. Third is the C++ database abstraction layer that abstracts Postgres internal

functions as well as initializes a user interface.

6

Figure 2.4 MADlib architecture

Technical Requirements

To successfully deploy MADlib, a machine must be running either macOS or CentOS;

and must have PostgreSQL or Greenplum installed. The team ran macOS and PostgreSQL when

installing and testing MADlib. It is extremely important to configure the PostgreSQL

installation with Python. A machine will not be able to create the plpython (PL / Python)

loadable language extension without proper configuration.

Installation

The successful deployment must be completed on Apple MacBooks running macOS

Mojave, utilizing the default Python 2.7 installation. PostgreSQL can be installed via Homebrew

[1], although it was necessary to tap a different repository [2] to properly configure the

installation with Python [3]. Once Postgres is installed on a machine, the server will need to be

started [4], and the MADlib binary [5] should be installed on the machine. Once this is complete,

7

MADlib can be installed into a specific database via the command line [6]. If the installation is

successful the MADlib functions should be a part of the database’s schema and therefore

available for use. PgAdmin 4 [7] as a visual interface and testing tool that can be used for the

deployment of MADlib. PgAdmin allows users to visually click through database schema and

create/drop servers, databases, and tables using a built-in query editor [8].

Procedural Language for SQL (PL/SQL)

PL/SQL is an extension of SQL that allows for the query language to use block

statements. Combining a database engine with block statements increases the processing speed

and decreases traffic of the function. Figure 2.4 details the architecture of PL/SQL into three

main components. At the top level is the block where the actual code is written. The block

statements are then processed in the engine direct SQL code is sent straight to interact with the

database while the PL/SQL segment is processed. The dual engine utilization accounts for the

high performance and optimization of the language (GeeksforGeeks, 2018).

8

Figure 2.5 PL/SQL architecture

Analytics Functions

The team worked with various analytical functions in order to understand their logic,

implementation, and efficiency. The functions were chosen from the MADlib library based on

their potential to provide the team with useful analytical information.

K-Mean Clustering

 K-Mean Clustering is one of the simplest and most popular unsupervised machine

learning algorithms used in data mining. Given N points, the goal of the method is to position k

centroids so that the sum of distances between each point and its closest centroids is minimized

9

(K-Mean Clustering, 2019). A cluster refers to a collection of aggregated data points by their

closest centroids (i.e. their closest centroids are the same).

 This method begins with deciding on the initial centroids and then performing iterative

calculations to optimize the positions of the centroids. MADlib offers four ways to invoke the

process: the random centroid seeding method, the k-means centroid seeding method, supplying

an initial centroid set in a relation (identified by the rel_initial_centroids argument) and

providing an initial centroid set as an array expression in the inital_centroids argument. In our

specific case, K -- the number of clusters, is pre-defined. I choose to use the k++ centroid

method as the seeding method for our initial demo (K-Mean Clustering, 2019). First, we assign

each point to the cluster whose mean has the least squared Euclidean distance. Then we calculate

the new means of the point in the new cluster. The repetition stops when the number of iterations

reaches a certain number or the difference between the last two iterations has become smaller

than a certain value. This method cannot make sure to find the most optimal clustering and it’s

time complexity can be roughly calculated as O(n^(dk+1)), where n is the number of points to be

clustered and k (number of clusters) and d (dimensions) are pre-defined. According to the

MADlib document, with this method, the users are able to know the final calculated centroids

positions and the number of iterations, etc.

10

 Figure 2.6.1 K-Mean clustering main functions

As the picture shown below, K-means algorithm is an iterative algorithm that tries to

partition the dataset into K pre-defined distinct subgroups where each data point belongs to only

one group. It assigns data points to a cluster such that the sum of the squared distance between

the data points and the cluster’s centroid which is the arithmetic mean of all the data points that

belong to that cluster. The less variation we have within clusters, the more similar the data points

are within the same cluster. Figure 2.4.1 is one example of a graphic version of the clustering

result. Indicating that there are three different groups of data with three distinctive centroids

points.

11

Figure 2.4.2 K-Mean clustering with three major clusters and three centroid points

K-Nearest Neighbors (KNN)

The KNN algorithm is a simple method in the supervised learning realm that is primarily

used for classification. It is a function used for finding the (k) nearest points of a given point in

the data set (K Nearest Neighbors, 2019). The data points are vectors in a multidimensional

feature space and the number of dimensions the data has will affect the efficiency of the

algorithm’s execution. The KNN algorithm takes in a set of data called training data and the

second set of data called testing data. The sets of data are then classified using the K value to

approximate nearest neighbors while the value of K should be dependent on the data size. An

optimal K can be determined by segregating the training and testing set from the original dataset

and for the purpose of analytics, K remains constant across the different implementations of the

algorithm.

12

Figure 2.7 Illustrates a KNN search for a point q

KNN must scan through an entire dataset to see which points lie close to each other. The

point proximity is often calculated using the Euclidean distance [10]. The prediction phase can

speed up the implementation of appropriate data structures at runtime. A K-dimensional (KD)

tree is a commonly used data-structure that the MADlib library utilizes to improve execution

time. However, it can be costly to ensure the accuracy of the solution. The KD tree divides the

training dataset sequentially into multiple regions that correspond to a leaf node of a tree. It will

then look for the nearest neighbors in a subset of the regions contrary to the entire dataset. If

there is a high number of dimensions, the accuracy of execution may suffer because a point may

be in a different subset than expected. To construct an optimal KD tree, the number of

dimensions should follow N > 2K where N is the number of dimensions (Bentley, 1975).

Floyd Warshall Algorithm

 The Floyd Warshall algorithm is used to find the shortest path between all pairs of

vertices inside of a weighted graph. The algorithm works for directed and undirected graphs with

13

positive or negative edges. However, it does not work with negative cycles. It takes in a matrix

function that can be inputted as a table in PL/SQL and MADlib. After computing the shortest

path over the table an updated cost matrix is outputted.

MADlib utilizes the principles of matrix multiplication to iterate through the algorithm.

Because the path from every vertex must be found, it is very expensive. The worst-case run-time

of the MADlib implementation is O(V2 * E) where V is the number of vertices and E is the

number of edges. Figure 2.6 shows the Floyd-Warshall algorithm traveling through each node if

a graph.

Figure 2.8 Example of Floyd Warshall Algorithm

Naive Bayes Classification

 Naive Bayes Classification is an analytics training and classification mechanism

developed from Bayes’ Theorem (Joyce, 2003). Bayes Theorem presents an algorithm used to

calculate conditional probabilities [9].

14

This concept is easier to understand in context, so imagine there exists a set of data that

contains information about whether or not a person playing golf (Yes/No) on a given day. The

dataset also includes information about the weather (Sunny/Cloudy/Raining), and the wind

(None/Moderate/Windy). Using the initial dataset one could calculate the probabilities of each

individual attribute (P(weather) = ⅓, P(wind) = ⅓, P(played golf) = ½); and using Bayes’

Theorem we could calculate the probability that this person will golf given that the weather is

sunny → [i.e. P(Yes | Sunny) = P(Sunny | Yes) * P(Yes) / P(Sunny)].

Naive Bayes Classification is often used as a preliminary training algorithm in Machine

Learning contexts. It’s very useful for generally classifying new data based on a training dataset.

Naive classification is naive because of the assumption of independence. This means that the

algorithm used assumes that all the attributes (columns) used to classify the data are independent

of one another -- i.e. each attribute has an equal and independent contribution to the outcome of

the calculation (Naive Bayes Classifiers, 2019). While this is not usually true in most empirical

data sets, the classification provided by Naive Bayes can still be useful, especially on large

datasets. Naive Bayes Classification must also contend with the issue of zero frequency. Zero

frequency is the issue that arises when an attribute present in a classifying dataset was not

present in the training dataset. This causes the probability of the aforementioned tribute equaling

zero in the calculation which can lead to inaccurate results and/or dividing by zero. This issue

can be handled in practice using Gaussian smoothing or Laplacian smoothing (Cornell, 2018).

These smoothing methods are just a means of estimating a function outcome to avoid zero

frequency in the context of Naive Bayes.

MADlib contains multiple functions to train, classify, and calculate the probabilities of

different classes within a dataset based on Bayes’ Theorem. There are two implementations of

15

each function (training, classification, and probability) for datasets with purely categorical

attributes, and for datasets with categorical and numerical attributes. The training functions allow

users to pass datasets for training which pre-calculate feature probabilities and class priors. The

classification and probability functions take the pre-calculated data, along with a new dataset to

classify, and perform classification / calculate the probabilities of the new dataset based on the

training set. MADlib also offers the ability to run the classification and probability functions ad-

hoc, meaning no pre-calculations are done, where all calculations are done at the time of the

function call; the MADlib documentation provides specific instructions on what needs to be

passed into the function to compute these values successfully in an ad-hoc manner (Naive Bayes

Classification, 2019).

Matrix Factorization

 Matrix factorization refers to the process of dividing an input matrix into its factors,

which can afterward be multiplied which results in the original input matrix. In the case of a

machine learning function, the use case extends further than simply factoring a matrix. In our

case, our input matrix is incomplete, meaning that every space in the matrix does not contain a

number. Matrix factorization is used to guess what the factors of the input matrix are, given what

numbers are given in the matrix, and from there we can guess what the original matrix would be

if it were filled with numbers.

 There are several different methods of performing matrix factorization. In this

investigation singular value decomposition (SVD) was focused one. The SVD of an m by n

matrix M results in matrices of the form M=UV where U is an m by m matrix, 𝛴 is a m by n

rectangular diagonal matrix, V is an n by n matrix, and U and V are orthogonal. For the purpose

of this project, this equation is simplified to 𝑀 = 𝑈𝑉. Removing the diagonal matrix from the

16

equation does not is okay in this instance because it simply acts as a scaler for either U or V. In

order to find the values that make up the factors of M, we must find the optimal vectors for each

matrix given the values that are given in M. This is done using stochastic gradient descent

(SGD). The SGD algorithm gives us the following update rules: pu←pu+α⋅qi(rui−pu⋅qi), and

qi←qi+α⋅pu(rui−pu⋅qi), where α is the learning rate, and pu and qi make up the rows and

columns of U and V respectively. Running the algorithms a number of times will result in

optimized values for the vectors of U and V, which together create the matrices U and V, which

can then be used to construct a completed matrix M.

17

3. Methodology

In order to succinctly analyze the efficiency of the different machine learning algorithms,

the team implemented the functions in PostgreSQL. Our implementations of various algorithms

were then tested against the MADlib implementation of the corresponding functions to compare

the efficiency of their application. The process of the implementation and benchmarking is

described in this section.

Functions vs Stored Procedures

 PostgreSQL supports the creation and use of both functions and stored procedures (SPs);

the difference being that functions return a value, while SPs do not (PostgreSQL Tutorial, 2020).

Stored procedures allow users to write code that utilizes control structures (i.e. FOR loops, IF

statements, etc.) via the built-in PL/SQL procedure language.

Although functions and SPs are similar, stored procedures were preferred in our project

development because of basic design differences that best suit the classifiers. SPs are better for

exception handling and support the use of table variables, temporary tables, and database

transactions. Our functions could not be implemented without the native support for procedural

operations provided by Postgres; for this reason, our team chose to utilize stored procedures

where applicable as a basis for our function development. The LOOP function was found to be

useful to iterate through the tables during function development.

Datasets

 The three base datasets used are the iris data set (500 attributes). The Anuran Calls

dataset (7195 attributes) and finally the Online Retail dataset (541909 attributes). The iris dataset

is a popular multivariable dataset often used for machine learning classifiers. The Anuran dataset

18

is used in several machine learning classification tasks. It contains relevant data for the challenge

of recognizing the anuran species through their distinct calls. It is a multi-label dataset with three

columns of labels. The dataset was created by segmenting 60 audio records belonging to 4

different families, 8 genus, and 10 species. The Online Retail dataset is transactional data taken

from a store in the United Kingdom between 01/12/2010 to 09/12/2011 Depending on the

functions input parameters, there may have been additional datasets used in testing to support the

functionality of the classifier. Each of the datasets was uploaded into Postgres using a copy

statement. Once they are stored into a table the datasets were available for testing. Each dataset

was taken from the UCI Machine Learning Repository which is accessible publicly online.

Function Development

K-Mean Clustering

 There were three stages of developing the K-mean function using the language plpgsql.

At the pre-stage, the python version of the function was written then the similar algorithm was

translated into plpgsql. Then there were two stages for the function written in plpgsql, the final

version is the most concise with three helper functions and has met all the expectations.

 The main function takes in a k value, which is the number of clusters the user wanted to

classify the date into. Then it takes a number of max iterations as one of the stopping points. The

main function also takes an E value which represents the difference of calculated Euclidean

distance measured between two iterations. This has been used as the prior stopping mechanism.

If the E value is calculated to be zero, the function stops clustering. The function will also stop at

the number the user put in for the max iterations.

19

 There are three helper functions that execute the K-means clustering. The first one is

calculating the Euclidean distance, Then the centroid and group functions are used to calculate

the centroids and to form groups as clusters. The final result, the function will create different

labels for the datasets to represent the different clusters they are in.

 There will be two final output for this function. One of the output is a table of all the

centroid points depending on the number of centroids the user put as input. The other output is

the column of value attached to the data indicating which cluster the data value got assigned to.

K-Nearest Neighbors

 Using a query language like PL/SQL for the purpose of finding the nearest neighbors is

plausible because of the fundamental principles of query languages. of query languages

fundamental principles. The procedure needed to take in any dataset, extract features from it and

run and order by statement. The features in the column were ordered by the Euclidean distance

from a user-defined point and the ‘k’ number of points were returned in the table.

 To aid implantation, an iterative process of development was utilized. By beginning with

hardcoding the query to work with the Iris dataset, the code was able to be modified to take

various inputs. The first implementation used a view to store a table of the dataset with the

purpose of being able to run the query on the virtual table. Because of the versatility of the

procedure’s ability to take in different datasets, and optimal efficiency preferred views were

omitted from the final implementation. The main component of the dataset was to extract

specific columns to conduct the KNN searching. By abstracting the columns defined by the user

then running the SELECT statement on those columns, the function was able to be constructed.

The pure implementation is PL/SQL calculates the nearest neighbors by traversing through the

20

entire dataset. Depending on the size of the dataset, this approach can be very inefficient. To

improve the efficiency of this the extension PostGIS was utilized in implementation.

PostGIS

 PostGIS is an extension for PostgreSQL that provides support for spatial objects,

allowing storage and query of information about location and mapping of data. By turning

PostgreSQL into a spatial database, spatial functions can be used to analyze geometric

components, determine spatial relationships, and manipulate geometries. PostGIS utilizes an r-

tree data structure to efficiently store spatial data indexes in an efficient method.

The PostGIS extension implements the K-Nearest-Neighbor search by traversing through

the index, the search finds the nearest candidate geometries that do not require an index

constraint. This makes the technique suitable for extremely large tables with high variable data

dimensions. Figure 2.1 shows the KNN query by utilizing PostGIS. The query requires five

inputs as parameters. The kx_value and ky_value take in the attribute column name of the input

table. Table_name is the name of the table used to find the K nearest neighbor. X and Y serve as

the K value of the desired search point. L is an integer of how many results should be returned.

The datasets are formatted as a point table in PostGIS to provide accurate results.

21

Figure 3.1 KNN Query

Floyd Warshall Algorithm

 MADlib calculates the cost matrix of the input table. After obtaining a comprehensive

understanding of the algorithm, the development of the function was completed iteratively. To

begin, 2 tables’ r_table and sol_table are initialized. The relationships between all paths needs to

be established from the input cost matrix. The input cost matrix is put into the r_table directly.

By using value acting as infinity inside a insert statement the entire source and destination table

was generated. Next to calculate the weights from each path the logic of the algorithm

pseudocode was constructed:

22

 Floyd-Warshall Pssudocode (Taken from Tutorials Point)[11]

Begin

for k := 0 to n, do

 for i := 0 to n, do

 for j := 0 to n, do

 if cost[i,k] + cost[k,j] < cost[i,j], then

 cost[i,j] := cost[i,k] + cost[k,j]

Three variables were defined m1,m2, and m3 all of type double precision[] that act as the

i,j, and k from the pseudocode. Three loops are used to execute the procedure. Once the smallest

weight is found it is stored inside the sol_table for output.

Naive Bayes Classification

 After reviewing MADlib’s implementation of the Naive Bayes algorithm, which includes

functions for training, probability, and classification, it became clear that multiple functions

would be necessary for the implementation within PostgreSQL. However, we were more

concerned with classification, over class probabilities, the two functions implemented were a

training function called nb_training, and a classification function nb_classify.

Training

The nb_training function takes three parameters (training table [regclass], class column

[varchar], and an array of attribute columns [varchar(s)]). This function takes a table of training

data (with the assumption that the table exists within the given database), and uses the class

column and array of attribute columns to compute the training model which will be used to

classify test data. A reference table (ref_table) is created which contains all unique classes from

the class column, and an assigned numerical value (key). This reference table is then used to

23

calculate the mean and standard deviation for each attribute and class combination, creating a

model for classification in a new table (summary_table).

Classification

The nb_classify function takes one parameter (test table [regclass]), i.e. name of the SQL

table containing the unclassified data. The function then translates the given data into the

test_attrs table, which contains only one column containing an array of the attribute values

(data type of array elements → double precision) for each row in the test table. The function

then loops through each row, class (or label), and array value to calculate each class probability.

The highest probability for each row is selected and stored in the prob_table with its

corresponding class number (data type → integer). Due to the naive assumption of

independence within this function, the initial probability of each class is set to be 1.0. This will

affect the precision of the resulting probability, but not the accuracy in identifying the most

likely class. The initial probability is then multiplied by the gaussian probability n times, where

n is the number of attributes in the array(s) of attribute values from the test_attr table. The

gaussian prob. is calculated using a simple helper function I wrote called gaussian_probability--

takes an x value, mean, and standard deviation of the given attribute and class; and applies the

following function:

24

Figure 3.2 Gaussian Probability Function

A Gaussian probability is calculated for each attribute for each class, a very expensive but

necessary process to calculate the probability that a given attribute belongs to a class. This

process is repeated for each row of test data; after iterating through all attribute values in a given

row the highest probability/ class prediction is selected and stored in the prob_table. This

function returns void.

Matrix Factorization

 MADlib provides two different implementations of matrix factorization: low-rank matrix

factorization, and singular value decomposition (SVD). For the purposes of this project only an

implementation of SVD was created.

25

 Input data for the matrix_factorization function is given in sparse-matrix format (value,

row, column) which is inserted into a table in Postgres. This input format was less time

consuming and more efficient than requiring a user to input every entry of the matrix, especially

for larger matrices. The matrix_factorization function takes 6 parameters: (_table [regclass],

num_rows [integer], num_cols [integer], k [integer], iterations [integer], alpha [double

precision]). The parameter k refers to the number of factors that will be found, i.e. the number of

columns and rows in the output matrices. The parameter alpha refers to the learning rate of the

algorithm. The two output tables are initially created and populated with random floats between -

1 and 1, in order to remove bias from the stochastic gradient descent (SGD) optimization

procedure. The SGD algorithm is run a given number of times, determined by the iterations

parameter, on the input data and for each iteration, the random values of the output tables are

updated based on the results of the algorithm, using the records available in the input table. Once

all iterations of the SGD algorithm have run, our resulting matrices should approximately be

factors of the original input matrix. If multiplied by each other, we should obtain an

approximation of a completed matrix based on the original input data that was given.

 MADlib Benchmarking -- Testing against MADlib Analytics Library

Each MADlib function we are testing with has a specific set of parameters and formatting

for inputs that must be satisfied in order for the function to run (MADlib documentation, 2019)

So it is important to note the degree to which we needed to modify data tables to run MADlib

functions, as a contrast to our own functions. Therefore, testing methodologies varied in

execution with an overarching goal of comparing execution time and result accuracy (against the

corresponding MADlib function(s)).

26

Testing Methodology K-Means Clustering

 The testing began with a naive data set I created with less than 20 rows of data pre-inserted into

the database in a form of table. To test K-Mean clustering, There were three data sets used in testing. The

Iris dataset, The Anuran Calls dataset, and the Online Retail dataset. The clustering function was

developed based on the three columns out of these data sets we randomly chose. For both testing

and MADlib the data sets were pre inserted to the database as tables with only the chosen

columns. Then we can compare the results from my testing in PgAdmin with results from

MADlib functions. Then we recorded the running time displayed on PgAdmin to do the

comparison between the efficiency for both functions.

Testing Methodology K-Nearest Neighbors

To test both sets of KNN functions, three datasets were used. The Iris dataset, The Anuran

Calls dataset, and the Online Retail dataset. Each dataset was put into a table that was formatted

for their respective language. For MADlib each attribute was inserted into a table as a double

precision array. For PL/SQL to utilize the PostGIS POINT geometry, each attribute was

converted into spatial data allowing the RDMS to execute queries using geographical data. Both

sets of functions ran the test datasets three times, the average runtime for each dataset was then

calculated. The results of each query were recorded to compare the accuracy of both functions.

Testing Methodology Floyd Warshall Algorithm

 To test the Floyd Warshall Algorithm a cost matrix needs to be taken in as an input. For

straightforward testing the test matrix used in the MADlib documentation was used for the

testing purposes of this investigation. The query was run 3 times and the average of the

experiment was recorded.

27

Testing Methodology Naive Bayes

 To test the Naive Bayes functions against MADlib’s, I ran three sets of data through the

functions, maintaining a consistent number of records and attributes for each dataset:

Table 3.3 Record and Attribute Count for Naive Bayes Algorithm Testing

 Small Dataset

(Iris)

Medium Dataset

(Frogs)

Large Dataset

(Online Retail)

Number of Records 150 7190 541909

Number of Attributes 4 4 2

I ran each function five times and averaged the five iteration times to get a mean execution time

for each function. This means five runs of nb_training(), create_nb_prepared_data_tables(),

nb_classify(), and create_nb_classify_view(). I then tested the accuracy of the training results via

query, comparing my training model to MADlib’s on an attribute basis (i.e. comparing my

calculated attribute variance and attribute mean to MADlib’s). Figure 3.4 is an example of how I

accomplished this using my summary_table and MADlib’s numeric_attr_params tables. This

query utilizes the use of a subquery where I get the absolute value of the difference between the

calculated attribute variance from MADlib’s model (n.attr_var), and my calculated variance of

the corresponding attribute (i.e. unit_price_stddev 2). The query then counts the number of

results where the difference is within a tolerance of one (+/- 1), which is cast as a numeric to then

be divided by the total number of records from the training model, and finally multiplied by 100

to get the percentage of attribute records within the training model which are correctly calculated

28

within the aforementioned tolerance.

Figure 3.3 Query for comparing accuracy of Naive Bayes Training Model(s)

If given more time I would’ve liked to abstract out a function to be used to test the accuracy of

the models. However, I just manually repeated this query by changing the attribute names, and

numbers (i.e. MADlib’s n.attr) for all attribute variances and means.

 For the classification functions, I wrote a similar query to attempt joining my

classification table (prob_table) with MADlib’s (nb_classify_view_fast), which worked well in

the case of the small Iris dataset, but due to my implementation there were cases with the larger

sets that didn’t correctly represent the true accuracy of the results. It was during this testing

process that I developed many of my recommendations and recognized the shortcomings of my

own functions-- See Naive Bayes Results sections for more information. Figure 3.5 shows the

query used to compare classification predictions of the classification functions:

Figure 3.4 Query for comparing accuracy of Naive Bayes Training Model(s)

29

This query accurately calculates the percentage of matching predictions (mine vs MADLib’s) for

the Iris dataset since the class labels are all categorical and therefore need to be assigned a

numerical key in order to be processed by the algorithm in the case of both training functions.

However, if the class label was already numerical my function may assign a numeric key

of ‘1’ to class label ‘7’ for example. This is because while designing to allow the use of non-

numerical class labels I did not write any contingency code to handle cases where the class labels

are already numeric but may not be in numerical order. This may lead to the aforementioned case

of a ‘1’ class key for a numeric class label of ‘7’. Where MADlib will just use the class label in

this case as the numeric key (i.e. if the class label is ‘7’ the class key will also be ‘7’). So when

trying to compare accuracy the results were misleading because of mismatched class keys and

class labels (between mine and MADlib’s models) which made it difficult to properly compare

results.

It is also worth noting the particular formatting expected by MADlib in regards to its

training and classification functions. MADlib’s functions expect a table with an integer id

column, class label column (numerical or categorical), and a column with an array of the

corresponding attributes for any given row (of size n, where n is the number of attributes).

Therefore, to test against MADlib’s results and ensure both my functions and MADlib’s were

receiving the same information, I needed to create tables from the original datasets with the

aforementioned formatting for use in the MADlib functions (denoted in my test code by

ml_[dataset name]_train and ml_[dataset name]_classify).

30

Figure 3.4.1 Create, Populate, and Query Formatted SQL Tables for use in MADlib Functions

Figure 3.4.2 Result of Select Statement from ml_iris_train

Testing Methodology Matrix Factorization

 Testing for the matrix factorization function utilized two randomly generated matrices of

two sizes: a 5x5 matrix and a 15x15 matrix. Each matrix was sparsely populated with a total of

four and seventeen values occupying the two matrices respectively. Both our function and

MADlib’s implemented function were run on both matrices. The 5x5 matrix was given 100

iterations to run through both

31

functions, and the 15x15 matrix was given 25 iterations. Each matrix was run through each

version of the function three times, and the average runtime was calculated for each matrix.

4. Results and Recommendations

After the development of each function was completed, the team then moved into testing

and analyzing the functions performances vs the MADlib library. The results of each function is

described in the following section;

Results K-Means Clustering

In Figure 4.1.1, it shows a screenshot when the Iris data was used as the testing data and

we performed clustering based on the sepal_length and pedal_length. It can clearly seen that over

around 200 samples, when the user wants them to categorize into two clusters, the difference

between two lengths over 2 units were clusters into the first cluster and the difference less than

or equal to 2 units were clusters into the second cluster. By calling function kmeans(K), the user

is able to find out the centroid points for K clusters. K can be defined as any integer by the user.

The next table is showing the time result comparison between the PL/SQL function and the

MADlib functions. The PL/SQL function runs longer when the data set gets bigger due to the

fact that there were several for loops in the functions that can be costly when the input gets large.

32

Figure 4.1.1 K-Mean query and cluster results from PL/SQL

Table 4.1.1 K-Mean Clustering centroid points results when the cluster is set to 2

Table 4.1.2 K-Mean Clustering Runtime for MADlib and PL/SQL in Milliseconds

Dataset PL/SQL MADlib

Iris 534msec 233 msec

Anuran Calls 680 msec 380msec

Online Retail 1432 msec 680msec

33

Results K Nearest Neighbors

MADlib

The MADlib function reported the nearest neighbors for the test points accurately. For

the Iris dataset a test point a [5,5] was chosen for K. As seen in Figure 3.1 the results returned

points 16[5.7,4.4], 33[5.2,4.1], and 34[5.5,4.2]. The query was completed in 111 milliseconds.

For the Anuran (MFCCs) dataset a test point of [0.15,0.15] was chosen for K. The results

returned points 3477[0.2670,0.2184], 1515.[0.2011,0.1561], and 4607[0.599,0.1498]. The query

was completed in 121 milliseconds. Finally to test the Online Retail dataset a test point of [5.99]

was chosen for K. The results returned points 7729[5.95], 5023[5.95], and 12449[5.95]. The

query was completed in 166 milliseconds.

Figure 4.2 KNN query using MADlib

34

PL/SQL

The results for the PL/SQL trials were identical to the MADlib function. For the Iris

dataset the results were the same as seen in Figure 3.2. Points 16,33,and 34 were returned

matching the result from MADlib. The results for the Anuran and Online Retail Datasets also

Figure 4.3 KNN query using PL/SQL

produced the same results. 2 out of the 3 PL/SQL functions test on average was faster than

MADlib.

Table 4.1 KNN Runtime for MADlib and PL/SQL in Milliseconds

Dataset PL/SQL MADlib

Iris 124 msec 132 msec

Anuran Calls 139 msec 121 msec

Online Retail 153 msec 166 msec

Results Floyd Warshall Algorithm

 In comparison with MADlib’s sample data [12], the results for the PL/SQL data is

detailed in this section:

MADlib

35

The table contains four columns: the e_src, dest, and e_weight. The results are detailed in

this section. The query was executed three times with an average runtime of 225 milliseconds:

0 0 0

0 1 1

0 2 1

0 3 2

0 4 10

0 5 2

0 6 3

0 7 4

1 0 4

1 1 0

1 2 2

1 3 3

1 4 14

1 5 3

1 6 4

1 7 5

2 0 2

2 1 3

2 2 0

2 3 1

2 4 12

36

2 5 1

2 6 2

2 7 3

3 0 1

3 1 2

3 2 2

3 3 0

3 4 11

3 5 3

3 6 4

3 7 5

4 0 -2

4 1 -1

4 2 -1

4 3 0

4 4 0

4 5 0

4 6 1

4 7 2

5 0 Infinity

5 1 Infinity

5 2 Infinity

5 3 Infinity

37

5 4 Infinity

5 5 0

5 6 1

5 7 2

6 0 Infinity

6 1 Infinity

6 2 Infinity

6 3 Infinity

6 4 Infinity

6 5 Infinity

6 6 0

6 7 1

7 0 Infinity

7 1 Infinity

7 2 Infinity

7 3 Infinity

7 4 Infinity

7 5 Infinity

7 6 Infinity

7 7 0

PL/SQL

38

 The solution table is formatted into three columns; source, destination, and weight. The

results for PL/SQL procedure are detailed in this section:

0 0 8

0 1 1

0 2 1

0 3 11

0 4 10

0 5 11

0 6 11

0 7 11

1 0 8

1 1 11

1 2 2

1 3 10

1 4 20

1 5 11

1 6 11

1 7 11

2 0 1

2 1 4

2 2 5

2 3 1

2 4 13

39

2 5 1

2 6 3

2 7 4

3 0 1

3 1 2

3 2 3

3 3 2

3 4 11

3 5 2

3 6 2

3 7 2

4 0 -2

4 1 -1

4 2 0

4 3 -1

4 4 8

4 5 -1

4 6 -1

4 7 -1

5 0 -1

5 1 2

5 2 3

5 3 2

40

5 4 11

5 5 2

5 6 1

5 7 2

6 0 -1

6 1 2

6 2 3

6 3 2

6 4 11

6 5 2

6 6 2

6 7 1

The query was run three times, executing at an average runtime of 995 milliseconds. The

construction of the solution table was successful however the logic providing the correct weights

is significantly different than the MADlib results. The accuracy of the algorithm suffered in the

logic of the nested four loops. The syntax and performance of LOOP in PL/SQL could be

culpable in the accuracy of the procedure. The PL/SQL language does not have the most optimal

execution code for loops compared to other languages.

Results Naive Bayes

 The results of testing the natively implemented Naive Bayes functions against MADlib’s

are as follows:

41

Runtime Tests

 The runtime or execution time testing of all Naive Bayes algorithms are shown in Figure

4.3, native functions are denoted by my_training and my_classify while the MADlib functions

are denoted by ML_training and ML_classify. Figure 4.3.1 displays the timing in milliseconds of

each trial, or iteration, which were then averaged as can be seen in Figure 4.3.2.

Figure 4.3.1 Raw Runtime Data for Naive Bayes Algorithms

42

Figure 4.3.2 Averaged Runtime Data for Naive Bayes Algorithms

The data from Figure 4.3.1/ Figure 4.3.2 was used to create Figure 4.4.1 and Figure 4.4.2 which

graphically represent the difference in runtime between the native training / classification

functions versus MADlib’s training / classification functions.

Figure 4.4.1 Naive Bayes Training Function Execution Time Graph (in milliseconds)

Figure 4.4.2 Naive Bayes Classify Function Execution Time Graph (in milliseconds)

43

The native training algorithm is very comparable to it’s MADlib counterpart in terms of runtime

as Figure 4.4.1 shows; the time differences are milliseconds to seconds and the highest mean

runtime was approximately five seconds.

This is not the case with the native classification algorithm however. The exponential

increase in execution time is due to bottlenecking via three nested for loops in my classification

algorithm. This issue is exacerbated further when there is both a large number of records and

class labels. For each new record being tested, or each new attribute that is another three

iterations due to the nested nature of the loops (i.e. Ω3 in terms of algorithmic complexity with

respect to Omega).

Accuracy Tests

 To test the accuracy of the algorithms I performed various queries as mentioned in the

Methodology section. A few visual comparisons are also provided below from queries joining

the training models, however as the datasets get larger this clearly is an improbable way to

compare results.

Figure 4.5.1 Visual Comparison of Small Set Training Accuracy for Naive Bayes Algorithms

44

Figure 4.5.2 Visual Comparison of Medium Set Training Accuracy for Naive Bayes Algorithms

45

The results of queries comparing the accuracy of the algorithms are displayed in Table 4.3.1:

Attribute Name Accuracy (within +/- 1.0)

sepal_length_avg 100.00%

sepal_length_stddev 100.00%

sepal_width_avg 100.00%

sepal_width_stddev 100.00%

petal_length_avg 100.00%

petal_length_stddev 100.00%

petal_width_avg 100.00%

petal_width_stddev 100.00%

Table 4.3.1 Naive Bayes Training Accuracy Results for Small Data Set (Iris)

Attribute Name Accuracy (within +/- 1.0)

MFCCs2_avg 100.00%

MFCCs2_stddev 96.67%

MFCCs3_avg 100.00%

MFCCs3_stddev 96.67%

MFCCs4_avg 100.00%

MFCCs4_stddev 96.67%

MFCCs5_avg 100.00%

MFCCs5_stddev 96.67%

Table 4.3.2 Naive Bayes Training Accuracy Results for Medium Data Set (Frogs)

46

Attribute Name Accuracy (within +/- 1.0)

quantity_avg 100.00%

quantity_stddev 100.00%

unit_price_avg 100.00%

unit_price_stddev 100.00%

Table 4.2.3 Naive Bayes Training Accuracy Results for Large Data Set (Online Retail)

Once again the native training function proves to be comparable with MADlib’s training

function as the models are almost identical value-wise in terms of accuracy within a +/- 1.0

tolerance. Based on the results of both runtime and accuracy testing, the native training function

is equally as viable as MADlib’s implementation.

Figures 4.6.1 - 4.6.3 show the queries used to compare the classification results of the

native implementation vs MADlib’s results (i.e. nb_classify_view_fast). Figures 4.6.1 and 4.6.2

are written to calculate percentage correct between my results and MADlib’s results, while 4.6.3

is comparing MADlib’s results to the actual class labels of the first 10,000 records.

4.6.3 actually shows that MADlib only correctly predicted 7.72% of the class labels of

the 10,000 record test subset.

Other factors to consider when reviewing these results are,

1) MADlib’s Naive Bayes functions are still experimental, and therefore not finalized versions,

so there could be some improvements to be made.

47

2) I arbitrarily chose the class value for this set as the country with the numerical attributes being

quantity and unit price. It would be fair to assume that these attributes and classifications are

unrelated and therefore could not accurately be used to predict the class label.

Figure 4.6.1 Naive Bayes Classification Accuracy Results for Large Data Set (Iris)

Figure 4.6.2 Naive Bayes Classification Accuracy Results for Medium Data Set (Frogs)

48

Figure 4.6.3 Naive Bayes Classification Accuracy Results for Large Data Set (Online Retail)

Future Development / Takeaways

 There was a lot to be learned through the planning, developing, and testing of these Naive

Bayes functions, and if given more time there are three main areas to give more time and thought

to.

 The first would be greater foresight and planning with regard to required formatting of

input data. A concept that may seem frivolous at the beginning of development, but proves to be

a very powerful means of eliminating unknowns during the development process. Complete

understanding of the data types, and formatting of the data being input gives a developer a lot

more power to transform data effectively, and debug more efficiently. Specifically when

developing the classification function, which required the use of a gaussian distribution function,

had I known that the double precision data type only supported up to 15 decimal places it

would’ve been clear that numeric or decimal would have been better options as they offer much

more storage space and compatibility with mathematical functions such as round().

 The second area of focus would be better planning in terms of looping through data,

specifically to avoid the three nested loop bottleneck created in the nb_classify function, while at

least ⅔ loops are unavoidable, there is definitely more that could be done to optimize the

algorithm.

Lastly I would use more arrays and less loops, particularly nested loops as they are, ironically,

the quickest way to slow down a function. Arrays allow for cleaner data storage and parsing into

49

other forms. Arrays are conceptually fairly universal when it comes to computer science,

therefore the understanding is very transferable and there is plenty of documentation and built-in

functions to support more nuanced use of such data structures [13].

Results Matrix Factorization

PL/SQL

 The trials in PL/SQL all produced matrices that were reasonable factors of the original

input matrix. They were not the same as those produced by MADlib due to the nature of the

optimization algorithm that was implemented and the randomization of the initial values of the

output matrices. The factored matrices will likely end up in different local maxima resulting in

differing matrices. The 5x5 matrix finished its query in an average of 2524 milliseconds for its

100 iterations and the 15x15 matrix finished its query in an average of 98 seconds for its 25

iterations. Table 3.2 shows the runtime for each matrix and each function.

50

Figure 4.7 Matrix Factorization query using PL/SQL

51

Table 4.3 Matrix Factorization Runtime for MADlib and PL/SQL in Milliseconds

Matrix PL/SQL MADlib

5x5 2524 msec 350 msec

15x15 98 sec 35 msec

Recommendations

 By recognizing the findings of the investigation, the team was able to assess the

versatility of MADlib. Despite PL/SQL having high performance and productivity MADlib

outperformed the PL/SQL functions significantly. MADlib typically executed a more efficient

query than one constructed in PL/SQL. The limitation of using MADlib best runs on macOS,

using another operating system can be difficult and perchance impassable. Figure 4.8 shows the

collective PL/SQL functions performance vs. the MADlib functions. MADlib is still early in

development and is working to improve and add new features to it platform. In its early days of

usage this investigation found MADlib to be a viable and useful tool for in-database processing.

The ease of use and documentation make performing in-database analytics achievable for a

common data scientist.

 Figure 4.8 illustrates a graph the team developed to help assess the performance of the

MADlib functions vs PL/SQL. Each test procedure was scored between a range from 1-3 where

3 was awarded for accurate and efficient testing. Scores were awarded by the developer

retrospectively to assess a clear interpretation of the functions performance.

52

Figure 4.8 Charting performance of MADlib Functions vs. PL/SQL

5. Conclusion

 PL/SQL is a powerful and efficient tool that exploits block statements allowing for the capability

to perform powerful processes. The language provides a powerful platform to develop efficient queries.

MADlib provides a simpler way to perform accurate analytical functions on sample sizes of any size.

MADlib is a new open source software that is still developing but offers valuable functionality to data

scientists and common analytical persons. The expansion of MADlib’s functionality is a notable stock to

pay attention to during its continued development. One who wishes to conduct their own analytical

processing should consider MADlib a reliable, powerful, and accurate tool if a proper installation can be

complete.

53

Bibliography

Apache MADlib. (2019, July 2). Main Page. Retrieved from

https://madlib.apache.org/docs/latest/index.html.

Bentley, J. L. (1975). "Multidimensional binary search trees used for associative searching"

Cornell. (2018). Bayes Classifier and Naive Bayes. Retrieved from

http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html.

Joyce, J. (2003, September 30). Bayes’ Theorem. Retrieved from

https://plato.stanford.edu/entries/bayes-theorem/.

Logistic Regression. (2017, May 16). Logistic Regression. Retrieved from

 https://madlib.apache.org/docs/v1.11/group__grp__logreg.html.

K-Mean Clustering.(2019, January 16). Retrieved from

https://madlib.apache.org/docs/latest/group__grp__kmeans.html

K-Nearest Neighbors. (2019, July 2). Retrieved from

https://madlib.apache.org/docs/latest/group__grp__knn.html.

Rodriguez, G. (2007). Lecture Notes on Generalized Linear Models. Retrieved from

https://data.princeton.edu/wws509/notes/c3.pdf.

McQuillan, F. (2015, November 14). Apache Software Foundation. Retrieved from

https://cwiki.apache.org/confluence/display/MADLIB/Architecture

MADlib Documentation (2019, July 2). Apache Software Foundation..Retrieved from

https://madlib.apache.org/docs/latest/index.html

Naive Bayes Classification. (2019, July 2). Retrieved from

https://madlib.apache.org/docs/latest/group__grp__bayes.html#related.

Naive Bayes Classifiers. (2019, January 14). Retrieved from

https://www.geeksforgeeks.org/naive-bayes-classifiers/.

 PL/SQL Introduction. (2018, April 3). Retrieved from https://www.geeksforgeeks.org/plsql-

introduction/

 PostgreSQL Tutorial. (2020). Introduction to PostgreSQL Stored Procedures. Retrieved 2020,

 from https://www.postgresqltutorial.com/introduction-to-postgresql-stored-procedures/

 Raasveldt, Mark (2018), Integrating Analytics with Relational Databases,

 Amasterdam, Netherlands.

https://madlib.apache.org/docs/latest/index.html
http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html
https://plato.stanford.edu/entries/bayes-theorem/
https://madlib.apache.org/docs/v1.11/group__grp__logreg.html
https://madlib.apache.org/docs/latest/group__grp__kmeans.html
https://madlib.apache.org/docs/latest/group__grp__knn.html
https://data.princeton.edu/wws509/notes/c3.pdf
https://madlib.apache.org/docs/latest/group__grp__bayes.html#related
https://www.geeksforgeeks.org/naive-bayes-classifiers/
https://www.geeksforgeeks.org/plsql-%20%20introduction/
https://www.geeksforgeeks.org/plsql-%20%20introduction/
https://www.postgresqltutorial.com/introduction-to-postgresql-stored-procedures/

54

Appendix

[1] Homebrew link

[2] Tap used to Install Postgres with Python:

[3] Configure Postgres with Python

[4] Server Start-up From Command Line:

[5] MADlib binary

[6] command to install MADlib into a database

[7] pgAdmin4 link

[8] pgAdmin Query Editor

[9] Bayes' Theorem

https://brew.sh/
https://stackoverflow.com/questions/38062512/install-plpython-on-mac-with-python-2-7
https://www.postgresql.org/docs/current/plpython-python23.html
https://madlib.apache.org/download.html
https://cwiki.apache.org/confluence/display/MADLIB/Installation+Guide
https://www.pgadmin.org/
https://miro.medium.com/max/1378/1*LCoOH68FcIqiOcFApNQZtA.jpeg

55

[10] Euclidean Distance

[11]Floyd Warshall Algorithm

[12] MADlib Floyd Warshall

[13] PostgreSQL documentation

https://www.tutorialspoint.com/Floyd-Warshall-Algorithm
https://www.postgresql.org/docs/

