
Computational Methods for Parametrization of

Polytopes

Steve Kelly

April 28, 2016



Contents

1 Introduction 1
1.1 A Geometric Intuition of a Polytope . . . . . . . . . . . . . . . . 1
1.2 Flexibility of Polyhedra . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Personal Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Mathematical Definitions 5
2.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Combinatorial Representation of a Polyhedra . . . . . . . . . . . 6
2.3.1 Simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1.1 Orientation on the two-simplex . . . . . . . . . . 7
2.3.2 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Computational Definitions and Grammar 9
3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Mutability and Data Packing . . . . . . . . . . . . . . . . 13
3.4.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2.1 Parametric Functions . . . . . . . . . . . . . . . 15
3.5 Macros and Generated Functions . . . . . . . . . . . . . . . . . . 16
3.6 Numerical Robustness . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Implementation 18
4.1 Survey of Available Packages . . . . . . . . . . . . . . . . . . . . 18

4.1.1 GeometryTypes.jl . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 FileIO.jl and MeshIO.jl . . . . . . . . . . . . . . . . . . . 18
4.1.3 Meshing.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.4 Meshes.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.5 ParametricPolyhedra.jl . . . . . . . . . . . . . . . . . . . . 19
4.1.6 GeometricalPredicates.jl . . . . . . . . . . . . . . . . . . . 19

4.2 GeometryTypes.jl Implementations . . . . . . . . . . . . . . . . . 20
4.3 Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 HomogenousMesh Type . . . . . . . . . . . . . . . . . . . . . . . 21

1



4.5 Polytope Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.0.1 Functions . . . . . . . . . . . . . . . . . . . . . . 22

4.5.1 Signed Distance Fields . . . . . . . . . . . . . . . . . . . . 22
4.6 Parametric Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6.1 ParametricTriangle . . . . . . . . . . . . . . . . . . . . . . 23
4.6.2 ImplicitTriangle . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusion 28

2



Abstract

The combinatorial and geometric realization of polytopes are outlined in math-
ematical and computational terminology. With these two representations in
hand, various parametric forms may be constructed using vertex locations, edge
angles, and symbolic values. We have implemented software which represents
polytopes in a way useful for combinatorial inspection and solid modeling us-
ing the Julia programming language. These packages have been published
to GitHub and are accessible to mathematical researchers around the world
through the Julia package manager.



Chapter 1

Introduction

Our objective is to develop a computational environment for the exploration
of parametric polytopes. A computational environment is one in which we can
apply rigorous definitional constraints on symbolic constructions, and likewise
manipulate them to reveal properties that may be of interest. A parametric
polytope is the union of two concepts. The first is the idea of parameters, which
are our unknown constraints in a system. The second is a polytope, which is
a some what geometric construction. We will build an intuition of a polytope
in this section, and formally define it in the next chapter. Parameters will be
applied in the computation realm and are expanded in Section 3.

1.1 A Geometric Intuition of a Polytope

A polytope is a geometrically realizable graph composed of linearly connected
vertices[1]. A “graph” is meant in the combinatorial sense of a structure com-
posed of vertices and edges that show connectivity. Thus a geometric realization
of a graph with linearly connected vertices is highly analogous to how we would
traditionally draw a graph. Figure 1.1 shows a graph in with vertices labeled
with numbers and edges between them.

Figure 1.1: An example of a graph.

The informal term “flat” implies the path between two vertices on our poly-
tope are connected by line segments. Thus for something to be considered
geometrically realizable, we must be able to assign tuple values to the vertices.

1



An N-polytope then exists in the corresponding euclidean space dimension. For
our purposes we will primarily use the real numbers, RN , for an N-polytope.

Figure 1.2 shows a two dimensional polytope, more commonly known as a
polygon. The polgons we will primarily consider are 1-cycle graphs. 1-cycle
implies that given any point there exist one path that exits then returns to
the starting point. In three dimensions, polytopes are commonly known as a
polyhedra. Figure 1.3 shows a polyhedral representation of a dolphin. Using
this picture as reference, we see that given a vertex on a polyhedra there may
be multiple cycles, or paths that exit then return to the vertex. Thus many
assumptions about the properties of polytopes are contingent upon their di-
mensionality. Polytopes may have properties of convexity, connectedness, and
closure associated with them. In order to study these properties we will eluci-
date a combinatoric and geometric representation in the coming sections. More
importantly we will do so rigorously! These representations are somewhat dis-
tinct and we will see the implications as we later develop a computational type
framework.

Figure 1.2: Polygons, or two dimensional polytopes

Figure 1.3: A polyhedral representation of a dolphin, or a three dimensional
polytope

2



1.2 Flexibility of Polyhedra

Our initial problem comes via the flexibility of polyhedra. In order to understand
flexibility of polyhedra it may be easier first to introduce the concept of rigidity.
In this case we will be concerned with 3-dimensional polytopes, polyhedra, and
observing the shape of the faces. If we give each edge (connection between
vertices) a fixed length and the freedom to pivot around the vertex, a rigid
polyhedra will not be able to deform. Cauchy’s Ridgidity theorem proves this
for any convex polyhedra[2]. If we allow the same degrees of freedom on the
edges and the shape of the faces does not change it is called flexible[3].

In 2015 Maria Hempel presented an analysis of this problem using a repre-
sentation of a polyhedra with edges and faces specified via angles and lengths
[4]. Such representations may be useful in a variety of disciplines, but our fo-
cus will be strictly structural and for enhancing the foundations for discovering
flexible polyhedra. We will expand on the significance of this representation in
later sections.

1.3 Personal Perspective

This section will outline the personal motivation for this project. My hope is
that this section will show where I would like this project to go in the future,
and the potential impact I believe it could have.

In 2009 I first became interested with 3D printing. One of the key promises of
3D printing is localized and personalized production. This very quickly lead me
into the world of generative geometry and in particular OpenSCAD. OpenSCAD
is a solid modeling application which generates solids from scripts. Generative
geometry from software allows ua designer to expose parameters for a user to
manipulate, thus allowing many designs to be created from one structure and a
user to make a solid that fits their unique needs or ecology. Many in this space
call such a process ”appropriate design”.

One notable difficulty of OpenSCAD is that it includes its own program-
ming language. In search of deeper understanding I began to work on my own
replacements for OpenSCAD. In 2013 this began with the TextCAD project,
which allowed one to use the principles of Object Oriented Programming (OOP)
via Python 1. Concurrently, Christopher Olah was working on ImplicitCAD, a
pure Haskell implementation of a solid modeler2. I had realized that TextCAD
had solved, to some extent, the expressibility issue with OpenSCAD but did not
solve the complexity issue. Christopher Olah and I were on parallel paths with
the expressibility issue, but he had approached the problem from a mathemat-
ical perspective of functionally defined solids. In fact, Haskell is a functional
language which made this approach intrinsic. After spending some time test-
ing TextCAD, I discovered the principles of OOP to be insufficient for correct
representations of solids. One of the key insights made by Christopher was the
importance of maintaining functional definitions of solids.

I strongly felt that one of the balances a good generative modeler should pos-
sess is readability. Many functional languages, including Haskell and Lisp are
difficult for someone to parse. OpenSCAD may read very similar to a markup

1https://github.com/textcad
2https://github.com/colah/ImplicitCAD

3

https://github.com/textcad
https://github.com/colah/ImplicitCAD


language. For a year TextCAD sat until I heard about Julia. I began to use
it as a replacement for MATLAB, but quickly realized it has all the require-
ments to be a functional programming language. This lead me to contribute
to the geometry ecosystem in hopes of developing a solid modeling framework.
Later in 2014 I joined the Lewis Research Group to develop a path planner
for 3D printers, and later took a position at their spin-off company Voxel8 to
continue my work. This afforded me the opportunity to spend most of my time
researching and writing computational geometry software on polygonal meshes
and polygons. I found an even deeper passion for the algorithms and theory
behind computational geometry.

After leaving Voxel8 I began to pursue my work on solid modeling again.
One of the most apparent issue was how to increase performance and propagate
parameters in the model. The requirements laid out for computing the flexibility
problem were parallel to my challenges. Much of my work in the middle of 2015
was collaborating with people working in the visualization space, so I had a
good understanding of polygonal meshes. My hope was that I could make a
contribution to this problem in the computational realm. Of course much of
this work is nascent and I hope the structure of the data and packages will
provide a good base for projects to come. It builds on much of what I have
learned in the past 5 years of research in computational geometry. One notable
absence from this report is the progress made in the functional representation
of solids. Especially towards the convergence of combinatorial and functional
polytopes. This work is embedded in the packages we used for this project, and
some of the possibilities will be discussed in the conclusion.

4



Chapter 2

Mathematical Definitions

We are interested in constructing parametric polytopes for mathematical explo-
ration. An informal geometric picture of a polytope has already been developed.
In this chapter we will develop a mathematical perspective of our problem such
that we can focus clearly on the computational aspects in the following sections.

2.1 Vector Spaces

Given a field (in the algebraic sense) of numbers, a vector of dimensionality N is
formed by an N-tuple of numbers in the field. A vector space must be closed un-
der element-wise addition with another vector and element-wise multiplication
by a scalar value. Symbolically, given s ∈ F where F is a field, and X,Y ∈ V
where V is the vector space over F then X + Y ∈ V and s ∗ x ∈ V implies
our closure property. In this paper we will primarily use the real numbers in
euclidean N dimensional space, denoted as RN . The term “point” will generally
be used to describe a vector that may described using numerical values.

2.2 Polytopes

To quote H.S.M. Coxeter, “A polytope is a geometrical figure bounded by por-
tions of lines, planes, or hyperplanes”. We have already introduced the notion
that a polytope generalizes the notions of polygons and polyhedra, objects that
have been studied since antiquity. If we interpret a polytope in one dimension,
we may say that it is a line segment. Based on our previous geometric intuition
of these objects we may see that a polygon is constructed from line segments and
a polyhedron constructed from polygons. It is common a common occurrence in
geometrical definitions that a construct of dimensionality N will use objects of
dimensionality N − 1. We will formally define a polygon and polyhedron now.

2.2.1 Polygons

A polygon is a circuit of line segments formed by points. Let us define our
number of points, N, as V1, V2, ...VN . We will call these points “vertices”, and
form the line segments between vertices by V1V2, V2V3, ...VNV1 and call these
“edges”. For our purposes we will only consider vertices existing in the same

5



plane [1]. A polygon forms an interior region and exterior region in the plane
of the polygon. The interior region is of finite volume, and is bounded by the
edges of the polygon.

2.2.2 Polyhedra

A polyhedron will be defined by a finite set of polygons. Given polygons
F1, F2, ..., FN a polyhedron is a finite region bounded by these polygons. These
polygons are called faces of the polyhedron.

2.3 Combinatorial Representation of a Polyhe-
dra

Our initial intuition and definitions of polytopes are far from concrete enough
to implement in a computational environment. In this section we will define
a polytope using simplices, which are more constrained and allow us to more
easily infer properties of the polytopes.

2.3.1 Simplices

A simplex (plural simplices) in N dimensional space is the minimal set of points
whose convex hull form a closed subset in a space of dimensionality N. In set
notation, for M linearly independent points (P ) a simplex is the linear combi-
nation of these points.

{
M∑
n=1

sn · Pn|
M∑
n=1

sn = 1} (2.1)

It is often thought of as the generalization of a tetrahedra into N dimen-
sions. In one dimensional space, this is a closed interval or line segment. In
two dimensions it is the triangle, and in three it is the tetrahedra. These are
called a 1-simplex, 2-simplex, and 3-simplex respectively. Figure 2.1 shows some
examples of the connectivity between vertices in simplices.

We notice that the 1-simplex is formed by two 0-simplices, a 2-simplex is
formed by three 1-simplices, and the 3-simplex by four 2-simplices. The com-
ponents of these compositions are called “faces”, in a similar manner to the
polyhedra. The 0-face is often called a vertex and the 1-face an edge. If we
tabled the quantities of each M-face in an N-simplex out, they form Pascal’s
triangle and thus follow the binomial coefficient in equation 2.2. This is due to
the convex hull and the uniqueness of each point, thus each M-simplex is formed
as a constraint on the dimensions.(

N + 1

M + 1

)
(2.2)

Simplices will be our most basic geometry used for formulating the combi-
natorial form of a polytope. In fact, the two- and three-simplices are already
polytopes in R2 and R3 respectively. To generalize independent of a vector, we
will define a self-referential abstract form. In order to accomplish this we will
introduce a notation of a simplex using a syntax that will be expanded in the
computation section. We will let the order or dimensionality, N , of a simplex be

6



Figure 2.1: Examples of Simplices

denoted by Simplex{N}, where the brackets are the parameter for the dimen-
sionality. Given a set of points P , let Simplex{0}(P1) = P1. A Simplex{N} is
constructed by a point with the convex hull of a Simplex{N − 1} in for a total
quantity of points

(
N+1
N

)
. Thus given a set of points, P , we may make a recur-

sive construction for a Simplex based on the convex hull outlined in Equation
2.1:

Simplex{N}(P ) = (P1, Simplex{N − 1}(P2, Simplex{N − 2}(P3, ...))) (2.3)

Such a construction terminates since a Simplex{0} is a point. Indeed we
also see that this is equivalent to the set of points in the simplex. So simply put
in words again this recursive definition for a Simplex{N} is the convex hull of
a Simplex{N − 1} plus an additional point, which is ostensibly the convex hull
of all points.

2.3.1.1 Orientation on the two-simplex

Before we proceed to construct a polytope with simplices we will discuss ori-
entation on a simplex. The orientation of a simplex is the direction an edge
assumes from the ordering. This is simplest to explain in terms of the two-
simplex. Given points 1, 2, and 3, we may order then in two ways 123, or 132.
Thus our edges have an induced ordering.

7



Figure 2.2: The two possible orientations of a triangle given 3 points.

2.3.2 Polygons

In our original definition of a Polygon we said the edges were implicitly formed
by the ordering of the points. With the language of Simplices we may explicitly
state this as follows. Let P be a set of points defining a polygon. Then a
set S of one simplices may be formed from the edges in the polygon, namely
P1P2, P2P3, ...PNP1, where S1 = P1P2, S2 = P2P3, ...SN = PNP1. Thus a
polygon may be validly described by the set of one-simplices, S.

2.3.3 Polyhedra

Our original definition for a polyhedra was based on polygons. We previously
showed that a polygon may be described by a set of one-simplices. Since a
two-simplex is a polygon with three points, this definition is much less tedious.
Given a set, S, of two-simplices in R3, we may also form a polyhedra from
S given the two-simplices for a closed space and are consistently oriented. A
simple check for consistent orientation in a polyhedra is to check that for each
edge (line segment) there exists only one of opposite orientation induced by
another face.

8



Chapter 3

Computational Definitions
and Grammar

Programming languages are the grammar and syntax a computer presents to a
user. This project is fundamentally exploratory in nature and seeks to generate
understanding of geometric relationships using the intersection of mathematical
and computational rigor. We have chosen to use the Julia programming lan-
guage due to comfort of development, and an abundance of supporting libraries
for mathematical computation. In this chapter we will give a brief introduction
to many computing concepts and illustrate how Julia advances them to meet
our needs well.

3.1 History

Julia is a programming language first released in early 2012 by a group of de-
velopers from MIT. The language targets technical computing by providing a
dynamic type system with near-native code performance. This is accomplished
by using three concepts: a Just-In-Time (JIT) compiler to target the LLVM
framework, a multiple dispatch system, and code specialization[5] [6]. More
simply, the language is designed to be dynamic in a way that allows rapid pro-
totyping of code and understandable to a reader, yet provides a design amicable
to performance optimizations and specialization. Dynamic type systems allow
the programmer to ignore or selectively specify type information, such as the
bytes in an integer, and allow the compiler to infer this information based on
the input types. JIT compilation means code is compiled during runtime which
allows functions to be recompiled and thus optimized for various data types.
The syntactical style is similar to MATLAB and Python. The language imple-
mentation and many libraries are available under the permissive MIT license.1

Benchmarks have shown the language can consistently perform within a
factor of two of native C and FORTRAN code.2 This is enticing for a solid
modeling application and for numerical analysis, as the code abstraction can
grow organically without performance penalty. In fact, the authors of Julia

1http://opensource.org/licenses/MIT
2http://julialang.org/benchmarks

9

http://opensource.org/licenses/MIT
http://julialang.org/benchmarks


call this balance a solution to the “two language problem”. The problem is
encountered when abstraction in a high-level language will disproportionately
affect performance unless implemented in a low-level language. In the next
sections we will compare the expressibility and performance to other languages.

3.2 Comparisons

Many languages are as fast as Julia but sacrifice expressibility. In Figure 3.1
we can see some comparisons to other programming languages. This was de-
veloped by the Julia core team, and illustrates that Julia is highly competitive
in performance. Again, these results stem from the compiler and language de-
sign. In Figure 3.2 we can see these results normalized against code length.
The Julia code is quite short, yet consistently achieves good performance. Thus
the programmer may write less code and spend less time waiting for results in
an interactive environment, which makes Julia a great choice for exploratory
programming. Much of this comes down to the innovated type and function
system.[7] We will discuss these more in depth later.

language
Julia R Python Octave Matlab Mathematica Lua JavaScript Java Go Fortran

mandel
parse_int
pi_sum
printfd
quicksort
rand_mat_mul
rand_mat_stat

benchmark

10
-1

10
0

10
1

10
2

10
3

10
4

ti
m
e

Figure 3.1: A comparison of programming languages and performance.

In 1972 Alan Kay introduced the terms “class” and “object” to describe a
coupling of data and functionality.3 An object is an instance of a class, which
contains the definitions of functions and member data. Computer Scientists
call this ”Object Oriented Programming” (OOP). Languages such as C++,
Java, and Python all subscribe to this paradigm. In Python this looks like the
following:

class Foo:
foo1
foo2
def add_to_foo1(self , x):

3http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html

10

http://gagne.homedns.org/~tgagne/contrib/EarlyHistoryST.html


Normalized amount of lines of code

0.0 0.5 1.0

c
fortran
go
java
javascript
julia
lua
mathematica
matlab
octave
python
r

language

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

d
 B

en
ch

m
ar

k 
T

im
e

Figure 3.2: The results in Figure 3.1 normalized for code length. (Courtesy of
Simon Danish)

self.foo1 += x

This system positively enables specialization of functionality, but due to the
coupling of data with functions it becomes a challenge to extend functionality.
Languages for scientific computing generally avoid the “traditional” notions of
OOP, preferring rather to separate data from functionality. In Table 3.3 we can
see a comparison of type systems used in scientific computing languages. Here
“Type system” can be either dynamic or static, where in a static system the
programmer needs to specify to the program compiler how data is transformed
in a function. Generic functions allow a single function name, for example
sum, to have multiple definitions with execution contingent upon the matching
of argument types. Many programmers may first encounter generic functions
through the term “overloaded” function as well. The definition of a parametric
type is more nuanced, but generally means that the definition of a type may
vary based on the types of it’s member data. We will dedicate a section to
the explanation of type parameters. In the next few sections these ideas will
hopefully be clarified and the implications of multiple dispatch and the relation
to OOP will be developed further.

Figure 3.3: A comparison of functions, typing, and dispatch.
Language Type system Generic functions Parametric types
Julia dynamic default yes
Common Lisp dynamic opt-in yes (but no dispatch)
Dylan dynamic default partial (no dispatch)
Fortress static default yes

11



3.3 Functions

Julia is an experiment in language design. Much of the advancement revolves
around the representation of data and the execution of functions. The language
is optionally or dynamically typed, which means function specialization on types
is inferred by the compiler without user intervention. This is an idea first utilized
in the Hadley Milner’s “ML” which was created to develop theorem provers[8].
The compiler analyzes program flow and is able to infer the types of variables
and function returns. A basic example of inference in Julia is shown below:

julia > increment(x) = x + 1
increment (generic function with 1 method)

julia > increment (1)
2

julia > increment (1.0)
2.0

4 The increment function was defined for any x value. When the 1, an integer
type was passed as an argument, an integer was returned. Likewise when a
floating point, 1.0 was passed, the floating point 2.0 was returned.

Let’s see what happens when we try a string:

julia > increment ("a")
ERROR: MethodError: ‘+‘ has no method matching +(:: ASCIIString , :: Int64)
Closest candidates are:

+(::Any , ::Any , ::Any , ::Any ...)
+(:: Int64 , :: Int64)
+(:: Complex{Bool}, ::Real)
...

in increment at none:1

The problem is that the + function is not implemented between the ASCIIString
and Int64 types. We need to either implement a + function which might be am-
biguous, or specialize the function for ASCIIString. A specific implementation
is preferable in this case:

julia > function increment(x:: ASCIIString)
ASCIIString ([ increment(c) for c in x])

end
increment (generic function with 2 methods)

The line x::ASCIIString is called a “type annotation” and states that x must
be a subtype of ASCIIString. This allows one to control dispatch of types
to functions, since Julia will default to the most specific implementation for
the type. SinceASCIIString is a series of 8 bit characters, we can iterate over
the string and increment each character individually. The [] indicates we are
constructing an array of characters to pass to be passed to the ASCIIString

type constructor. Now we see our example works:

julia > increment ("abc")
"bcd"

What was demonstrated here is the concepts of specialization and multi-
ple dispatch, both are highly coupled topics. Each function call in Julia is
specialized for types if possible. This means the author only has to write a
few sufficiently abstract implementations of functions. If special cases occur,

4The REPL (Read-Eval-Print-Loop) allows interactive evaluation of Julia code. It is highly
useful for exploration and testing of ideas in the language. Blocks starting with ”julia>”
represent input and the preceding line represents output of the evaluated line.

12



multiple functions with different arity or type signatures can be implemented.
Explicitly this is called multiple dispatch. In practice by the user this looks
like abstracted or generic code if done well so many types can be handled by
one function. To the computer, this means choosing or generating the most
specific and performant method5 Let’s go back to the integer and floating point
example. Below is the LLVM assembly generated for each method:

julia > @code_llvm increment (1)

define i64 @julia_increment_21458(i64) { // <return type > <function name >(<arg type >)
top:

%1 = add i64 %0, 1
ret i64 %1 // return <return type > <return id >

}

julia > @code_llvm increment (1.0)

define double @julia_increment_21466(double) {
top:

%1 = fadd double %0, 1.000000e+00
ret double %1

}

Note we have annotated the LLVM code so this is understandable. The only
real similarity is the line count. Each one of these functions are generated by
the Julia compiler at run time.

Many of the concepts used for performance also serve as methods for express-
ibility. In this case, multiple dispatch used by the compiler for specialization of
functions reveals itself as a way for the user to specialize over many types. In
summary, the basic steps in generating native computer code from a function
are to:

1. Parse the expression

2. Infer type information

3. Generate native machine code and optimizations

3.4 Types

3.4.1 Mutability and Data Packing

Types and immutables are containers of data. The primary difference between
the two is the notion of “mutability”. Types are mutable, immutables are
immutable. What does this mean? Let’s break something first via the REPL:

julia > type FooIsMutable
a

end

julia > f = FooIsMutable (1)
FooIsMutable (1)

julia > f.a
1

julia > f.a = 2
2

5Functions and methods are distinct in Julia. A function may be thought of in the math-
ematical sense. A method is a function specialized on types with unique machine code.

13



julia > f.a
2

julia > immutable FooIsImmutable
a

end

julia > f = FooIsImmutable (1)
FooIsImmutable (1)

julia > f.a
1

julia > f.a = 2
ERROR: type FooIsImmutable is immutable

Our error shows that immutable objects may not have their data (fields)
modified. Conversely our mutable object which is an instance of a type (i.e. f),
can have its fields (i.e. a) changed. An immutable object cannot ever change.
The immutable contract helps develop a notion of functional purity. To the user
this means immutables are defined by their values. This can be of great benefit
to avoid errors and establish concrete equality between types, such as vectors.
Practically this can be of great benefit to the compiler to determine invariants
and eliminate pointers in a datatype. For example:

julia > a = (1,2,3)
(1,2,3)

julia > b = typeof(a)
Tuple{Int64 ,Int64 ,Int64}

julia > isbits(b)
true

julia > a = ([1] ,[2] ,[3])
([1] ,[2] ,[3])

julia > b = typeof(a)
Tuple{Array{Int64 ,1}, Array{Int64 ,1}, Array{Int64 ,1}}

julia > isbits(b)
false

isbits ask the question “will this type be tightly packed in memory without
pointers to values”? A Tuple is a fixed-length set of linear, ordered, data. It
has syntax for construction with (). In computations we want our data be close
together for fast access. In modern times we call such data “cache friendly”,
or “cache localized”, which means the computer may store the data in registers
closer to the CPU. Immutability helps us achieve this by ensuring our data is
concretely defined and not a reference to another piece of memory. Let’s look
that the types inside the 3-tuples and see their isbits status:

julia > isbits(Array{Int64 ,1})
false

julia > isbits(Int64)
true

Why is this the case? We see that Int64 is bits, because it is literally 64 bits.
In Julia a bitstype behaves similar to an immutable, and is identified by value.
For example the definition for Int64 is bitstype 8 Int64 which means an
Int64 is 8 bytes long. Array{Int64,1} is a mutable data type that can vary in
size. This means the Tuple needs to store the arrays as references to memory, in
this case a pointer. When iterating over a data set, such a “pointer dereferences”

14



(this is jargon for accessing the data in memory pointed to by a pointer), can be
costly. Modern CPUs excel when data is linearly packed and pointer-free. The
data can be brought into the CPU’s memory cache and registers only once and
computed without shuffling between cache and RAM. The cost of lookup time
between the cache and RAM generally differs by several orders of magnitude.

3.4.2 Parameters

We have already seen a rough notion of type parameters in the Array{Int64,1}
type. The curly brackets, {}, denote the type’s parameters, which are separated
by commas. For example:

julia > [1]
1-element Array{Int64 ,1}:
1

julia > [1.0]
1-element Array{Float64 ,1}:
1.0

julia > [1 2;3 4]
2x2 Array{Int64 ,2}:
1 2
3 4

julia > [1. 2.;3. 4.]
2x2 Array{Float64 ,2}:
1.0 2.0
3.0 4.0

So here we see Arrays are parameterized on the numeric type and dimen-
sionality. We may construct our own type that will take any type:

julia > type Para{T}
a::T

end

julia > Para (1)
Para{Int64 }(1)

julia > Para (1.0)
Para{Float64 }(1.0)

julia > Para ([])
Para{Array{Any ,1}}( Any [])

3.4.2.1 Parametric Functions

The same way a type may be parameterized we my parameterize a function.
For example we may only want to handle arrays of different numeric types
separately:

julia > function whoami{T<: AbstractFloat }(:: Array{T})
print("I am an array of floats !")

end
whoami (generic function with 1 method)

julia > function whoami{T<: Integer }(:: Array{T})
print("I am an array of integers !")

end
whoami (generic function with 2 methods)

julia > whoami ([1])
I am an array of integers!
julia > whoami ([1.])
I am an array of floats!

15



3.5 Macros and Generated Functions

Julia is a descendant of the Lisp family of programming languages. Lisp is a
portmanteau for “List Processing”. The language was designed to address the
new notion of “types”, specifically in application to Artificial Intelligence (AI)
problems[9]. The notion of an “S-Expression” was introduced in McCarthy’s
seminal work, “Recursive functions of symbolic expressions and their compu-
tation by machine”. These statements use parenthesis to denote functions and
arguments. Below is an an example of S-Expressions for addition and multipli-
cation.

> (+ 1 1)
2

> (* 3 4)
12

This syntax is noted for it’s mathematical purity. However it can be a syn-
tactic difficulty for many. Most of the current popular programming languages
use variants of ALGOL syntax, which is noted for being more readable [10]. Ju-
lia also uses ALGOL syntax, but is converted to S-Expressions after parsing 6.
This enables many of the mathematically pure relations we seek to achieve. In
addition S-Expressions are highly conducive to source transforms. This devel-
ops a notion of “Homoiconicity”, where the representation of program structure
is similar to the syntax. In Julia we use this property to make “macros” which
enable source code to be transformed based on the syntactical structure before
compilation.

Generated functions perform a similar function as macros, but at the func-
tion level. They enable source code to be procedurally generated based on
types. This allows the user fine-tuned control of the compilation process, and
will allow optimizations to be performed that are not currently available in the
compiler. Surveys of Computer Science literature show that such a concept is
new in a programming language that uses type inference 7. However the use
of generated functions is generally frowned upon by the Julia community since
it makes compilation more difficult since type inference has to be run multiple
times before compilation may happen. This often slows down trivial functions
by several orders of magnitude, and should be only used if a method is called
many times and performance is critical.

We will omit an introduction of macros and generated functions as they
are advanced language features. For our purposes a basic understanding of the
terminology will be sufficient. However we may expand our initial compilation
pipeline to include macros and generated functions:

1. Parse the expression

2. Run macros on the syntax tree

3. Infer type information

4. Allow generated functions to create function bodies

5. Generate native machine code and optimizations

6https://www.youtube.com/watch?v=osdeT-tWjzk
7http://docs.julialang.org/en/release-0.4/manual/metaprogramming/

16

https://www.youtube.com/watch?v=osdeT-tWjzk
http://docs.julialang.org/en/release-0.4/manual/metaprogramming/


3.6 Numerical Robustness

Numerical robustness is a perennial problem in computational geometry[11].
Multiple approaches exists for various numeric types. Floating points are by
far the most difficult to deal with. Tools such as Gappa have been developed
so algorithm writers can check their invariants when using floating points[12].
Such tools complicate software development and are not an accessible option
for the casual researcher.

One of the most common problems formulated is to determine whether or
not a point is collinear with a line segment. Shewchuk has one of the most
pragmatic and robust treatments on this topic[13]. Kettner, et. al. have also
developed more examples where numerical robustness is critical[14].

Julia’s GeometricalPredicates package 8 uses the approach outlined by Volker
Springel, which requires all floating point numbers to be scales between 1 and
2[15]. This has the downside of significantly reducing the available resolution
to 50% of the available floating point numbers.

A simpler, although less applicable, approach is to work within integer
space. Developing a system around this is of interest. For example, it should
be possible to specify a minimum unit (e.g. microns) and perform all com-
putations in integer space assuming this does not exceed the needed resolu-
tion. More importantly, modern CPUs have integrated 128 bit Integer support.
170141183460469231731687303715884105727 is a lot of microns.

8https://github.com/JuliaGeometry/GeometricalPredicates.jl

17

https://github.com/JuliaGeometry/GeometricalPredicates.jl


Chapter 4

Implementation

In this section we will begin to outline the implementation of various forms of
parametric polytopes.

4.1 Survey of Available Packages

In chapter 3 we outlined the rationale for using Julia for mathematical com-
puter programming. An additional impetus was the familiarity of the geometry
packages. There will be various references to these and they are outlined below
so the reader may become familiar with the utilities available.

4.1.1 GeometryTypes.jl

GeometryTypes.jl provides datatypes and basic operations for computational
geometry. This package began as a unification of types located in HyperRect-
angles.jl, Meshes.jl, and GLAbstraction.jl. The initial types were polygonal
meshes and bounding boxes, but now encompasses datatypes for solid modeling,
data visualization, and geographic information systems. With the introduction
of this package the community made some initial progress on designing types
that can be used for computation on the CPU and GPU, however GPU targets
are rapidly evolving and the focus has shifted from geometric operations to ar-
ray operations. Much of our basic combinatorial analysis operations and data
types have be contributed to this package.

https://github.com/JuliaGeometry/GeometryTypes.jl

4.1.2 FileIO.jl and MeshIO.jl

FileIO.jl is a package that unifies various file loaders that existed in the Julia
package ecosystem under one import. The purpose is to allow users to simply call
the save and load functions with file information inferred from file extensions,
magic numbers, or data types. MeshIO.jl is one such package that provides file
loaders for polygonal mesh data. The file formats supported as of this writing
include obj, stl, ply, off, and 2dm. This package may be useful for importing
polytope data from other programs such as Blender or AutoCAD, or generating
large data sets.

18

https://github.com/JuliaGeometry/GeometryTypes.jl


It should be noted that Julia has a serialize function, which will save a
datatype in full fidelity and in compact binary. Since Julia is yet to reach a 1.0
release, this function is considered unstable. Once serialize is stable, it will
be the preferred method of saving data sets to the computers storage drive.

https://github.com/JuliaIO/FileIO.jl

https://github.com/JuliaIO/MeshIO.jl

4.1.3 Meshing.jl

Meshing.jl provides algorithms for converting signed distance field (SDF) data
into polytopes. Many algorithms for generating polyhedra from an SDF ex-
ist. The most common are Marching Tetrahedra, Marching Cubes, and Dual
Contours[16][17][18]. The two algorithms currently provided are the Marching
Cubes (MC) and Marching Tetrahedra (MT) algorithms. For this project we
added the Marching Cubes algorithm1 which is twice as fast as the Marching
Tetrahedra algorithm. The import difference between the two is performance
and manifold mesh generation. The MT algorithm generates manifold meshes,
but generates more faces (costing memory) and is slower. It is useful for generat-
ing meshes from noisy data or applications where manifold meshes are required
such as finite element analysis and 3D printing. The Marching Cubes algo-
rithm is less costly for the computers resources, and is helpful for visualization
applications where user experience is important.

https://github.com/JuliaGeometry/Meshing.jl

4.1.4 Meshes.jl

Meshes.jl is currently a meta-package2 that imports elements on Geometry-
Types.jl, FileIO.jl, and Meshing.jl. It is one of the older packages in the Julia
package ecosystem and was an early center of collaboration before the scopes
began to expand. Releases before Meshes.jl became a meta-package are main-
tained for institutional users3. The name space is held to allow for a center for
experimentation as stability in the base packages becomes more necessary.

https://github.com/JuliaGeometry/Meshes.jl

4.1.5 ParametricPolyhedra.jl

ParametricPolyhedra.jl is a package used for solving constraints on triangular
faces of a polyhedra. The intention of this package is to allow polyhedra to
be specified via angles and edge lengths. It draws heavily from the resources
available in GeometryTypes. Since it uses algorithms to define the types and is
some what domain specific at this point, we opted to make it a separate package.

https://github.com/sjkelly/ParametricPolyhedra.jl

4.1.6 GeometricalPredicates.jl

GeometricalPredicates.jl is a package that provides numerically robust primi-
tives and algorithms for computing incircle, circumcircle, and intriangle calcula-

1https://github.com/JuliaGeometry/Meshing.jl/pull/2
2Meta-package means little or no code is contained in the package besides imported code

from other packages. It is often used for version stability or usability purposes.
3https://github.com/JuliaGeometry/Meshes.jl/tree/v0.1.x

19

https://github.com/JuliaIO/FileIO.jl
https://github.com/JuliaIO/MeshIO.jl
https://github.com/JuliaGeometry/Meshing.jl
https://github.com/JuliaGeometry/Meshes.jl
https://github.com/sjkelly/ParametricPolyhedra.jl
https://github.com/JuliaGeometry/Meshing.jl/pull/2
https://github.com/JuliaGeometry/Meshes.jl/tree/v0.1.x


tions. The approach to numerical robustness is used by the Illustric Simulation,
and outlines in Volker Springel’s paper ”Galiliean-invariant cosmological hydro-
dynamical simulations on a moving mesh”[15]. The essence of the approach is
to restrict values in 64 bit floating points between 1 and 2 since the exponent
component is constant. This allows 128 bit integers to be used for overflow
calculations.

https://github.com/JuliaGeometry/GeometricalPredicates.jl

4.2 GeometryTypes.jl Implementations

4.3 Simplex

We began by implementing a Simplex type in GeometryTypes.jl, defined as
follows:

"""
A ‘Simplex ‘ is a generalization of an N-dimensional tetrahedra and can be thought
of as a minimal convex set containing the specified points.

* A 0-simplex is a point.
* A 1-simplex is a line segment.
* A 2-simplex is a triangle.
* A 3-simplex is a tetrahedron.

Note that this datatype is offset by one compared to the traditional
mathematical terminology. So a one -simplex is represented as ‘Simplex{2,T}‘.
This is for a simpler implementation.

It applies to infinite dimensions. The sturucture of this type is designed
to allow embedding in higher -order spaces by parameterizing on ‘T‘.
"""
immutable Simplex{N,T} <: AbstractSimplex{N,T}

_:: NTuple{N,T}
end

With the definition in GeometryTypes, we afford ourselves two notions of
dimensionality. Our first parameter N gives us the total dimensionality of the
simplex. We will notice that our convention is offset by positive one compared
to the mathematical terminology. This is due to Julia not allowing arithmetic
in type definitions. There are a few approaches to circumvent this issue, but
they either make the datatype larger or sacrifice strong type inference.

The second parameter, T is the type of the points. We will see that point may
be symbolic in nature, or have their own dimensionality expressed independent
of N. For example in Julia we may prefix a colon to an identifier and make it a
symbolic value which is reflected in the type information:

julia > using GeometryTypes

julia > Simplex (:x,:y,:z)
GeometryTypes.Simplex{3,Symbol }((:x,:y,:z))

In this example we have created a 2-simplex with symbols :x, :y, :z. N

is 3, and T has become Symbol. Symbolic representation will allow us to create
simple combinatorial analysis. Likewise we can construct concrete types:

julia > Simplex(Point (0,0,0), Point (1,1,1))
GeometryTypes.Simplex{2, FixedSizeArrays.Point{3,Int64 }}(
(FixedSizeArrays.Point{3,Int64 }((0,0,0)), FixedSizeArrays.Point{3,Int64 }((1 ,1 ,1))))

This last example illustrates how N and T may give us two notions of dimen-
sionality in the Simplex. Here we have constructed a line segment in 3D space.

20

https://github.com/JuliaGeometry/GeometricalPredicates.jl


The Simplex is of size two but the space it occupies is three dimensional. This
way it acts similar to a fixed size vector, but the type implies all points are on
the convex hull. Unfortunately it may also be possible to construct a Simplex
using points of dimension less than that of the Simplex, which would not hold
to our contract of linear independence. More so we may also decompose its

Below is an example of a high performance implementation of Simplex de-
comosition:

"""
Decompose an N-Simplex into a tuple of Simplex {1}
"""
@generated function decompose{N, T1, T2}(:: Type{Simplex{1, T1}},

f:: Simplex{N, T2})
v = Expr(:tuple)
append !(v.args , [:( Simplex{1,$T1}(f[$i])) for i = 1:N])
v

end

4.4 HomogenousMesh Type

Prior to this project, GeometryTypes primarily provides for Polygonal Mesh
type that is well tuned for operations on the CPU and GPU. It is defined as
follows:

"""
The ‘HomogenousMesh ‘ type describes a polygonal mesh that is useful for
computation on the CPU or on the GPU.
All vectors must have the same length or must be empty , besides the face vector
Type can be void or a value , this way we can create many combinations from this
one mesh type.
This is not perfect , but helps to reduce a type explosion (imagine defining
every attribute combination as a new type).
"""
immutable HomogenousMesh{VertT , FaceT , NormalT ,

TexCoordT , ColorT ,
AttribT , AttribIDT} <: AbstractMesh{VertT , FaceT}

vertices :: Vector{VertT}
faces :: Vector{FaceT}
normals :: Vector{NormalT}
texturecoordinates :: Vector{TexCoordT}
color :: ColorT
attributes :: AttribT
attribute_id :: Vector{AttribIDT}

end

The first thing to note is the provisions for attributes, colors, and textures.
These are used for mapping textures and/or colors to polygons via visualization
software such as OpenGL. We do not need these in a rigorous mathematical
definition. Likewise, in a HomogenousMesh we structure the realization as fol-
lows: 1. Insert all vertices of the mesh into vertices 2. Construct faces of at
least 3 indices referencing the points in vertices.

This gives us certain properties that are nice for computation. Primarily
this allows us to observe the combinatorial properties of the mesh by analyzing
the faces. In addition, this compacts the data representation of vertices since
shared vertices can be represented with a common face index. Affine transforms
only need to operate on the vertices, and if it is closed and faces share many
vertices this may be up to 3 times faster.

However the most important issue with this type is that it is not parame-
terized as a Polytope, and simply as a polyhedral mesh.

21



4.5 Polytope Type

We implemented a Polytope to address some of the issues with the HomogenousMesh
type4. It is defined as follows:

"""
A ‘Polytope ‘ is an ‘N‘ dimensional object with elements ‘T‘ of the same type.
For example typealias ‘Polygon ‘ and ‘Polyhedron ‘ exist for dimensions 2 and
3 respectively.
"""
type Polytope{N,T} <: AbstractPolytope{N,T}

elements :: Vector{T}
end

The supertype AbstractPolytope type is not implied in the mathematical
sense, but rather to allow more granular definitions as needed for different com-
putational challenges. The Polytope type is parameterized by N, the order of
the polytope. The following aliases exist for Polytopes with specified values for
N:

"""
A ‘Polygon ‘ is a ‘Polytope ‘ realizable with only two dimensions.
Generally this will be composed of ‘Points ‘ or ‘LineSegment ‘s.
"""
typealias Polygon{T} Polytope{2,T}

"""
A ‘Polyhedron ‘ is a ‘Polytope ‘ realizable with only three dimensions.
Generally this will be composed of ‘Face ‘s or two -simplices (‘Simplex {3} ‘).
"""
typealias Polyhedron{T} Polytope{3,T}

The final parameter, T, is the type of the elements. This may simplify
many representations, and allow more liberty in Polyhedron representation. For
example, constructions of polygons are straight forward and may be a Vector

of Symbol or Point. However a Polyhedron may be constructed from Simplex

or Polygon. In this way it behaves as a wrapper of a Vector with special type
information associated. Of course, nonsensical constructions may be made, but
with sufficiently parameterized functions they will not be operable.

4.5.0.1 Functions

Along with defining a Polytope we have added calculations for area, volume,
centroids, and various decomposition functions.

https://github.com/JuliaGeometry/GeometryTypes.jl/pull/27

4.5.1 Signed Distance Fields

A signed distance field (SDF) is a uniform sampling of an implicit function. It
was implemented earlier as a Below we can see this in action over the definition
of a circle.

julia > f(x,y) = sqrt(x^2+y^2) - 1
f (generic function with 1 method)

julia > v = Array{Float64 ,2}(5 ,5) # construct a 2D 5x5 array of Float64

julia > for x = 0:4, y = 0:4
v[x+1,y+1] = f(x,y)

end

4https://github.com/JuliaGeometry/GeometryTypes.jl/pull/27

22

https://github.com/JuliaGeometry/GeometryTypes.jl/pull/27
https://github.com/JuliaGeometry/GeometryTypes.jl/pull/27


julia > v
5x5 Array{Float64 ,2}:
-1.0 0.0 1.0 2.0 3.0
0.0 0.414214 1.23607 2.16228 3.12311
1.0 1.23607 1.82843 2.60555 3.47214
2.0 2.16228 2.60555 3.24264 4.0
3.0 3.12311 3.47214 4.0 4.65685

The results of v might be confusing since the matrix is oriented with the
origin in the top left corner. At coordinate (0, 0), or entry v[1,1], we see that f
is equal to -1. Likewise we can see (0, 1) and (1, 0) are points on the boundary
since the value is 0 and everywhere else is positive.

Distance fields are interesting since they provide an intermediate represen-
tation between functional space and discrete-geometric space. However they
are a very memory hungry data structure. We have created a data type called
SignedDistanceField, defined below.

"""
A ‘SignedDistanceField ‘ is a uniform sampling of an implicit function.
The ‘bounds ‘ field corresponds to the sampling space intervals on each axis.
The ‘data ‘ field represents the value at each point whose exact location
can be rationalized from ‘bounds ‘.
The type is parameterized by:
* ‘N‘ - The dimensionality of the sampling space.
* ‘SpaceT ‘ - the type of the space where we will uniformly sample.
* ‘FieldT ‘ - the type resulting from evaluation of the implicit function.
Note that decoupling the space and field types is useful since geometry can
be formulated with integers and distances can be measured with floating points.
"""
type SignedDistanceField{N,SpaceT ,FieldT} <: AbstractSignedDistanceField

bounds :: HyperRectangle{N,SpaceT}
data:: Array{FieldT ,N}

end

4.6 Parametric Polyhedra

The purpose of Parametric Polyhedra is to allow a polytope to be represented
with angles and edge lengths.

4.6.1 ParametricTriangle

In order for us to start we must parameterize a triangle. Our first definition is
as follows:

type ParametricTriangle{T}
# edge lengths
a:: Nullable{T}
b:: Nullable{T}
c:: Nullable{T}
# angles (radians)
alpha:: Nullable{T}
beta:: Nullable{T}
gamma:: Nullable{T}

end

It uses the Nullable type to give values the additional property of being
known or unknown. A Nullable often checked with the isnull function, over-
loaded as follows:

function Base.isnull(p:: ParametricTriangle)
isnull(p.a) || isnull(p.b) || isnull(p.c) ||
isnull(p.alpha) || isnull(p.beta) || isnull(p.gamma)

end

23



In order to check the configuration space of the ParametricTriangle as
valid we needed to check all of the values are defined and follow the sine and
cosine relations:

"""
Test if a ParametricTriangle has a valid configuration.
"""
function Base.isvalid(p:: ParametricTriangle)

# underdetermined case
isnull(p) && return false
# otherwise check constraints since all values exist
a = get(p.a)
b = get(p.b)
c = get(p.c)
alpha = get(p.alpha)
beta = get(p.beta)
gamma = get(p.gamma)
return a*cos(beta) + b*cos(alpha) - c == 0 &&

b*sin(alpha) - a*sin(beta) == 0 &&
alpha + beta + gamma - pi == 0

end

# version with isapprox for floats
function Base.isvalid{T<: AbstractFloat }(p:: ParametricTriangle{T};

rtol=sqrt(eps(T)),
atol=zero(T))

# underdetermined case
isnull(p) && return false
# otherwise check constraints since all values exist
a = p.a.value
b = p.b.value
c = p.c.value
alpha = p.alpha.value
beta = p.beta.value
gamma = p.gamma.value
return isapprox(a*cos(beta) + b*cos(alpha) - c,0,

rtol=rtol ,atol=atol) &&
isapprox(b*sin(alpha) - a*sin(beta),0,

rtol=rtol ,atol=atol) &&
isapprox(alpha + beta + gamma - pi ,0,

rtol=rtol ,atol=atol)
end

If some of the edge values in a triangle are unspecified, the following function
may complete the ParametricTriangle.

"""
Given an underdetermined ParametricTriangle , compute the missing values
and return a new ParametricTriangle
"""
function Base.fill(p:: ParametricTriangle)

# all angles must be specified
if isnull(p.alpha) || isnull(p.alpha) || isnull(p.gamma)

error(" Cannot fill in values for this triangle. All angles must be specified ")
end
alpha = get(p.alpha)
beta = get(p.beta)
gamma = get(p.gamma)
# no edges given , use circumcircle =1
if isnull(p.a) && isnull(p.b) && isnull(p.c)

e = edges(alpha ,beta ,gamma)
return ParametricTriangle(e[1],e[2],e[3],p.alpha ,p.beta ,p.gamma)

else
# find the circumcircle
D = !isnull(p.a) ? get(p.a)/sin(alpha) :

!isnull(p.b) ? get(p.b)/sin(beta) :
get(p.c)/sin(gamma) # one must be specified because of prior check

# we only need to figure one side that is specified
# so we can (re)compute the other two
if !isnull(p.a)

return ParametricTriangle(p.a, _edge(beta ,D), _edge(gamma ,D),
p.alpha , p.beta , p.gamma)

24



elseif !isnull(p.b)
return ParametricTriangle(_edge(alpha ,D), p.b, _edge(gamma ,D),

p.alpha , p.beta , p.gamma)
elseif !isnull(p.c)

return ParametricTriangle(_edge(alpha ,D), _edge(beta ,D), p.c,
p.alpha , p.beta , p.gamma)

end
end

end

4.6.2 ImplicitTriangle

The purpose of the implicit triangle is to use the law of sines to validate a given
triangle configuration. The law of sines is given in Equation 4.1, with values
correspond to those given in Figure 4.1.

a

sin(A)
=

b

sin(B)
=

c

sin(C)
= d (4.1)

The common value, d, is the triangle’s circumcircle diameter. Thus if we
are given 3 edge lengths (a, b, c) we may compute this value directly with the
following:

d =
2abc√

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)
(4.2)

Figure 4.1: A triangle corresponding to the law of sines given in Equation 4.1.

Since we know edge lengths will be strictly positive, and sine is positive in the
range of 0 to π. Thus by subtracting the computed circumcircle with Equation
4.2 from the value computed by the law of sines we will have a number strictly
less than or equal to zero if A + B + C = π. The configuration space may be
mapped with the following function:

function implicit_triangle(a,b,c,alpha ,beta ,gamma)
r = a*b*c/sqrt((a+b+c)*(a-b+c)*(a+b-c)*(b+c-a))
min(sin(alpha)/a - 2r,

sin(beta)/b - 2r,
sin(gamma)/c - 2r)

end

The purpose of the min function is to choose the worst error in the configu-
ration space. For example, this function may be mapped over the range of angle
values using a SignedDistanceField.

25



using GeometryTypes

res = 0.1

s = SignedDistanceField(HyperRectangle(Vec(0,0.),Vec(pi*1,pi*1)), res) do v
implicit_triangle (3,3,3,v[1],v[2],pi/3)

end

For our purposes a global minima search may be performed fairly quickly
and is implemented as follows:

"""
Find the value closest to zero and return the linear index of the element.
"""
function find_zeros{T}(mat::Array{T})

x = typemax(T)
ind = 0
# find the value closest to zero
@inbounds for i = 1: length(mat)

val = abs(mat[i])
if val < x

ind = i
x = val

end
end
ind

end

Other iterative techniques may also be used for solving the configuration
space such as gradient descent and the BFGS algorithm. Given more time this
is the preferable method, and readily optimized algorithms exist in Optim.jl5.

4.7 Visualization

One aspect of this project was the visualization of Polyhedra. The requirements
are as follows:

1. 3D previews of polyhedra geometry

2. Interface with sliders

3. Code/data input and expandable visualizations

One of our strongest collaborators, Simon Danisch is the lead developer of
GLVisualize.jl. GLVisualize.jl meets these goals and has the best performance.
However it is still highly experimental and we struggled to achieve stability for
this project. This is due to the rapidly changing nature of GPU computing and
the OpenGL interface in particular.

Our second option was to leverage the web technologies available. In partic-
ular we will be using Interact.jl to provide sliders, ThreeJS.jl to provide 3D pre-
views, and Jupyter notebooks for dynamic evaluation of code. Jupyter, formerly
known as IPython, provides a “notebook” for editing code with rich presenta-
tion of the code, text, LATEX, and graphics[19]. Figure 4.2 shows an example of
Jupyter notebooks used for interactive Julia development.

At the time ThreeJS.jl was not connected to the datatypes in Geometry-
Types.jl. We submitted pull request #12 6 which added the ability to load and
preview a HomogenousMesh from GeometryTypes.jl. However the latest update

5https://github.com/JuliaOpt/Optim.jl
6https://github.com/rohitvarkey/ThreeJS.jl/pull/12

26

https://github.com/JuliaOpt/Optim.jl
https://github.com/rohitvarkey/ThreeJS.jl/pull/12


Figure 4.2: An example of using Jupyter notebooks with Interact and the 2D
plotting package Gadfly to make interactive visuals.

of Jupyter notebooks cannot display plots from ThreeJS.jl. We were able to
make specialized interactive webpages that display mesh data with sliders shown
in Figure 4.3. As we progress into summer of 2016 it is likely contributions and
bug fixes will help accelerate this portion of the project.

Figure 4.3: An interactive visualization of a mesh with scaling.

27



Chapter 5

Conclusion

Overall this project has lead to a stronger mathematical perspective of the ge-
ometry packages available for Julia. We have identified the weak points in our
existing data types and created new ones to achieve better performance and
mathematical correctness. Progress was made in the various fronts of combi-
natorics, numerics, and visualization, and in many cases we brought packages
together through this process. Our work is carefully unit tested and available
in the Julia package ecosystem. Overtime we hope that this work will progress
further with more contribution and continue to progress openly. Computational
geometry has been my passion for many years and I am thankful to all who have
let me pursue it.

28



Bibliography

[1] H. S. M. Coxeter, Regular Polytopes. Dover Publications, 1973.

[2] H. Gluck, Almost all simply connected closed surfaces are rigid, p. 225–239.
Springer, 1975.

[3] R. Connelly, “A counterexample to the rigidity conjecture for polyhedra,”
1977.

[4] M. Hempel, “An attack on flexibility and stoker’s problem,” arXiv preprint
arXiv:1512.05230, 2015.

[5] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A fast dy-
namic language for technical computing,” arXiv preprint arXiv:1209.5145,
2012.

[6] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computin,” arXiv preprint arXiv:1411.1607, 2014.

[7] J. Chen and A. Edelman, “Parallel prefix polymorphism permits par-
allelization, presentation & proof,” in Proceedings of the 1st Workshop
on High Performance Technical Computing in Dynamic Languages, (New
York, NY), ACM, 2014.

[8] R. Harper, Programming in standard ML. 1997.

[9] J. McCarthy, “4e. recursive functions of symbolic expressions and their
computation by machine, part i,” Programming systems and languages,
p. 455, 1966.

[10] C. Hoare, “Hints on programming language design.”

[11] M. I. Shamos, The Early Years of Computational Geometry—a Personal,
vol. 223, p. 313. American Mathematical Soc., 1999.

[12] http://gappa.gforge.inria.fr/.

[13] J. Shewchuk, “Fast robust predicates for computational geometry.”

[14] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap, “Classroom ex-
amples of robustness problems in geometric computations,” Computational
Geometry, vol. 40, p. 61–78, May 2008.

29

http://gappa.gforge.inria.fr/


[15] V. Springel, “E pur si muove: Galiliean-invariant cosmological hydrody-
namical simulations on a moving mesh,” Monthly Notices of the Royal As-
tronomical Society, vol. 401, p. 791–851, Jan 2010. arXiv: 0901.4107.

[16] H. Müller and M. Wehle, Visualization of Implicit Surfaces Using Adaptive
Tetrahedrizations, vol. 0, p. 243. IEEE Computer Society, 1997.

[17] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,”
Computers & Graphics, vol. 30, p. 854–879, Oct 2006.

[18] SIGGRAPH 95 conference proceedings: August 6 - 11, 1995, [Los Angeles,
California]. Computer graphics Annual conference series, ACM, 1995.

[19] F. Pérez and B. E. Granger, “IPython: a system for interactive scientific
computing,” Computing in Science and Engineering, vol. 9, pp. 21–29, May
2007.

30


	Introduction
	A Geometric Intuition of a Polytope
	Flexibility of Polyhedra
	Personal Perspective

	Mathematical Definitions
	Vector Spaces
	Polytopes
	Polygons
	Polyhedra

	Combinatorial Representation of a Polyhedra
	Simplices
	Orientation on the two-simplex

	Polygons
	Polyhedra


	Computational Definitions and Grammar
	History
	Comparisons
	Functions
	Types
	Mutability and Data Packing
	Parameters
	Parametric Functions


	Macros and Generated Functions
	Numerical Robustness

	Implementation
	Survey of Available Packages
	GeometryTypes.jl
	FileIO.jl and MeshIO.jl
	Meshing.jl
	Meshes.jl
	ParametricPolyhedra.jl
	GeometricalPredicates.jl

	GeometryTypes.jl Implementations
	Simplex
	HomogenousMesh Type
	Polytope Type
	Functions
	Signed Distance Fields

	Parametric Polyhedra
	ParametricTriangle
	ImplicitTriangle

	Visualization

	Conclusion

