Advancing Massachusetts’ Technology, Talent and
Economy Reporting System (MATTERS)

A Major Qualifying Project to be submitted to the faculty of Worcester Polytechnic
Institute in partial fulfillment of the requirements for the Degree of Bachelor of Science.

By:
Alex Fortier
Long Hoang Nguyen Duc
Kevin Mee

Westley Russell

Date:
April 30, 2015

Submitted to:

Prof. Elke A. Rundensteiner

Worcester Polytechnic Institute



Table of Contents

TADIE OF CONENTS ...t et b e bbbt e ettt bbb e 1
TADIE OF FIQUIES ...ttt ettt et e st e bt e seeebe e beenbeeneesbeeneeareenbeannens 3
AADSTTACT ...t bbb Rttt bt bbb n e 1
ACKNOWIBAGEMENTS ...ttt et e e te et e ere e s beesbesneesteeeesreenreeneens 2
EXECULIVE SUMMIAIY ...ttt sttt sttt e et e be et e sbeenbeeneesbe e beeneenneenas 3
R | 01 oo [0 Tox o] USRS P U P PR TRPRRIN 5
2 Background and Related WOTK...........ccooiiiioiiiicce e 6
2.1 SYSEEM ATCNITECIUIE .......iiiiieiieece bbb 6
2.1.1  Data EXIraCtOr/MWIaPPEE ...cc.eeveeieiieecteete sttt et sta et teete e e saeenesreenraeneeas 7
2.1.2  DAla ClBANEL......eivieiieiesie ettt ettt bbbt s et e bbb benrenreas 7

P G T B - L B I 10y o] 1 1 S PSSRS 7
2.1.4  DAla LOAUET ... .cueeiieiieiesie sttt ettt bbbttt ettt bbb reas 7

2.2 Requirement ENCItAtION ........ccooiiiiiiicce e 7
2.2.1  AAMINISTIAtIVE TOO .....iiiiiieiice e nre e 7
2.2.2 Data PIPEliNES ......oo oo 13

2.3 Extract, Transform, and Load (ETL) .....cccveviiiiiieie e 14
2.3.1  OPEN SOUICE ETLS...ciiiiiiiieiieie e 15

X B |V =11 1o (o] (oo Y OSSR 18
TR A I =10 o RSP PRTRR 18
3.1.1  Selection Of TalENd .......cuviieiieeee e 19
3.1.2  Learning Of TalENG........ccuoiieiieice e 19

3.2 (DL VA 0] o[- £ PR 25
321 IPEDS ... ettt et ne e 25
3.2.2 HTML Table SCIaper......ccvi ettt 28
3.2.3  Data.gOV AP WIaPPE .....eeie ettt ettt e e e e nnae e nneas 28

3.3 AAMINISIIAIVE CBNTET .....eiiieie ettt ettt seesraesee e e sseeneesneees 29
3.3.1  Database EXPIOTEN .......cuviiiieic ittt 29
3.3.2  Manual Upl0ad...........ccoiiiiiiiiie e 30
3.3.3  PIPEIING MEANAGET .....oeitiiiiiiiieeee e bbb b 31

KT B0 Tor T L1 [ OSSR 32
3.3 REPOIS .. ettt ae e bt e e b nneeenes 33

4 Testing, Results, and EVAIUALION..........cccvciiiieiiiie e 36
4.1  Software Quality Assurance Evaluation Code Wash Report — MITRE ....................... 36



4.2 COUEPIO ANAIYEIX . ..eiiiiiieieeie e 38

T L] = (o1 (0] ] T SR 38
A.3.1 IMOOEIS. ...ttt 39
4.3.2 Data ACCeSS ODJECES (DAD) ...eiiueiiieeeiiieie ettt 39
£.3.3  SBIVICES ..veiuiiieiteite ettt ettt sttt b bbbttt b bbbttt b bbb 39

4.4  Post-refactoring Evaluation by MITRE ..........cccooviiiiiiiie e 40

45 TaENT TESTING ..ottt bbbttt r e bbb 41
4.5.1 Documentation USEr STUAY ........c.civeieiieiieie et sees et 41
4.5.2 Pipeline RODUSINESS TESHING ....ccvveivieieiiecie e 42

ST O] o o 1171 o o ISR 43
RS (= =T [o0 LSRR 44
Appendix A: Analysis of ETL Software by Jeff Manning ...........cccccoveviiieiicicccce e, 46
Appendix B: Talend DOCUMENTALION .........oiviiiiiiriirieiiseeeiee e 52
Appendix C: MITRE Code Evaluation Report - January 30, 2015..........cccevvevveveiieieeie e 142

Appendix D: MITRE Code Evaluation Report — April 21, 2015.......ccccoevvvieveeieceece e 143



Table of Figures

Figure 1 - Data Pipeline System Architecture for MATTERS Dashboard..............ccccccoviiinnnnnen. 6
Figure 2 - Talend Administration Center WelCOmMe SCIreeN...........cccvevveieiieeieeie i see s 10
Figure 3 - Talend Administration Center Job Conductor VIEW.............ccoovriiiiieieienenc e 11
Figure 4 - SB Admin Dashboard TemPIate ..........cccccveiiiiiiieie e 12
Figure 5 - Metronic DashDOAIT..........ccoiiiiiiiie e 13
Figure 6 - EXample OF ETL FIOW.......ccvoiiiiiece st 14
Figure 7 - EXample Of CIOVEIETL .....oc.oiiiiiieic e 15
Figure 8 - Example of Pentaho Data INtegration .............ccccoveiiiiieiic i 16
Figure 9 - Talend OPen STUAIO. .......ociiiiiiiiieiei e 17
Figure 10 - Example Of KNIIME .........coooiiiiiec ettt 17
Figure 11 - Example of data in EXCel fOrmMat..........ccocoiiiiiiiiiiie e 20
Figure 12 - Talend Open Studio PIPEHINE.......cooiviiiiiiece e 21
Figure 13 - Talend cleaning fUNCLIONS ..........ccooiiiiiiiiiiiii e 21
Figure 14 - Talend tMap COMPONENT .........ccoeiieiiieie e e e esae e 22
Figure 15 - Complete Talend pipeling JOD ..o 22
Figure 16 - Talend pipeline with 10gging fEAtUrES...........cceieeieiie i 23
Figure 17 - Example custom code for HTTP POST within Talend..........c.ccoovveiiieniniiincnnn 24
Figure 18 - IPEDS Custom Data File download..............cccccoveviiiiiiiiiicc e 26
Figure 19 - Data Format for IPEDS WIAPPET ........ccuiiiiiriiiiiiieieie et 27
Figure 20 - MATTERS Administration Center Welcome Page ..........ccoeeveveeveiie v e 29
Figure 21 - MATTERS Administration Center Database EXpIOrer...........cccovoiiiciiiciiinnnne. 30
Figure 22 - MATTERS Administration Center Manual Upload ..............cccccooveviiiiiiciciiccees 31
Figure 23 - MATTERS Administration Center Pipeline Manager...........ccoccovviiiiienenc i 32
Figure 24 - MATTERS Administration Center SCheduler ............ooooveiiiiiciecce e 33
Figure 25 - MATTERS Administration Center REPOIS..........couvieriiriienenisiseeeee e 34
Figure 26 - Detailed logs for a Specific PIpeliNg..........covcviiieiiiie e 35
Figure 27 - High-Level Analysis Of MHTC PrOJECt ........ccccuviiiriiiiieie e 37
Figure 28 - Example CodePro violations found within MHTC project..........ccccccooeviveveiieiiennns 38
Figure 29 - Database connectivity before refactoring..........ccccooeveiiniiiiiiisce e 38
Figure 30 - Database connectivity after refactoring ..........cccccoevevii i 40

Figure 31 - Breakdown of Talend PIPEIINES .........ccoiiiiiiiiiiciceese e 42


file:///E:/School%20work/MQP%20Data/Advancing_MATTERS_master.docx%23_Toc417923526

Abstract

The goal of this project is to improve the data integration and administration center for
the MATTERS Dashboard for the Massachusetts High Technology Council (MHTC), a pro-
technology advocacy and lobbyist organization. Our system is comprised of two parts: the data
integration pipeline manager and an administration center. Talend Open Studio is used as a core
enabler for integrating data from a variety of online web sources. The Administration Center
allows for future MHTC administrators to easily upload and view economy, talent, and ranking
data, thus further impacting policies created in Massachusetts.

1|Page



Acknowledgements

We would like to thank the following individuals, organizations, and institutions for their support
and assistance throughout our project:

e Massachusetts High Technology Council for starting this project and partnering with
Worcester Polytechnic Institute, thus providing us this great opportunity.

e Jeff Manning of MITRE for assisting us throughout the project and providing valuable
feedback and resources.

e Professor Elke Rundensteiner, from WPI for her feedback and guidance throughout the
project.

e Caitlin Kuhlman, WPI, for her support throughout the entirety of the project,
specifically working with MHTC to provide direction and feedback for team.

e Worcester Polytechnic Institute, for providing us the opportunity to be able to work on
this project and make this MQP possible.

2|Page



Executive Summary

Big data comes in many different shapes and sizes, from many different sources all
across the web. Analyzing and gathering this data is currently a complex and intriguing problem
due to the variety of sources it comes from, each with a different way of representing it. Some of
this data that is openly available on the web can be used to influence lawmakers and companies
create policies within their states in order to improve and foster a period of economic and
technological growth. With this in mind the Massachusetts High Technology Council (MHTC)
set forth in creating MATTERS dashboard, the Massachusetts Technology, Talent, and
Economic Reporting System. The MATTERS dashboard is a web-based tool to be used to
explore a large collection of data from a variety of publicly available online sources. With it one
could view trends in the economy of a given state; compare economic cost and talent
competiveness across years, states and sectors; and evaluate the current potential of STEM
graduates to meet the demands of the industry.

The goal of our project was to improve the data integration aspect and the administration
center of the MATTERS website in order to further MHTC’s goal to make Massachusetts one of
the most competitive locations to operate a high tech business. In order to reach this goal we
accomplished the following objectives:

Integrate 20 new data sources into the MATTERS Dashboard

Automate the process of updating data as much as possible

Enable future users to easily add new data sources

Develop the administration center into a working tool for non-technical users to maintain
the system.

e Improve the look and feel of the Dashboard

The original pipeline architecture consisted of many custom components that needed to be
recreated every time a new data source was added any could be very difficult for non-technical
users to complete. In order to remedy this we investigated different Extract, Transformation, and
Load (ETL) software. ETL software is excellent at manipulating, moving, and as the name
suggests transforming data. We selected Talend Open Studio to be our software of choice out of
all the others due the nice visual representation of the data flow and because it is open source.
Talend allowed us to create pipelines to pull data from a variety of web sources; using both it’s
components and our own custom components. These pipelines were able to download new data
from these sources and upload it to the database used to populate the information the MATTERS
Dashboard. Since these pipeline require no coding experience it makes it easy for future MHTC
administrators to be able to quickly and easily add new data sources.

While we were creating these pipelines we were also improving the MATTERS
administration center. The administrated center we created is made up of a few different pages,
each created to help future administrators maintain and improve the data on the MATTERS
dashboard. The administration center consists of: a database explorer, for viewing the data
without having to write code; a manual upload page, to upload files already in the appropriate
format; a pipeline manager, for uploading the created Talend pipelines and executing them on
the server; a scheduler tab for executing the pipelines at a future date for when new data becomes
available; and a reports tab to view any errors that may occur in during the pipeline.

3|Page



While we were creating these pipelines we experienced a lack of online documentation
for Talend that would be essential for future administrators to easily create these pipelines. We
developed a tutorial and documentation on how to create these pipelines. Finally, we also tested
its utility out on a few users and we found that using it allowed the users to create a new pipeline
easily and in an efficient manner.

With all of this in place MHTC will be able to continue to easily add new data sources
and update existing sources in order to identify and advance pro-growth economic policies to
help foster the growth of Massachusetts.

After completing the project we compiled a list of recommendations for future developers
and for MHTC. The recommendations are as follows:

For future MATTERS developers:

e Develop a robust testing framework for future deployments of MATTERS. This is to
ensure that for future deployments there is a set system in place to ensure the website will
never crash during a deployment.

e Improve the Administrative Center by incorporating visual debugging tools. This will
allow administrators to see more appropriately what is going wrong during the pipeline
execution process. It would also allow them to see if there is any bad data in a much
more visually appealing format than the current way of tracking errors.

For MHTC:

e Perform user studies on front end, Talend documentation, Administrative Center to
ensure that all aspects of MATTERS are user friendly and easy to use. This will allow
the system to grow and be properly maintained.

4|Page



1 Introduction

Big data has become a difficult, yet intriguing problem in the world of computing. Data is
readily available on the Internet for nearly anyone to use, both structured and unstructured. But
how can this raw source of information be analyzed and used for the benefit of people?
Interpreting data from across different sources and displaying it in a visually-appealing format
may seem trivial, but the implementation of such a vast, expansive system can prove difficult to
build.

The Massachusetts High Technology Council (MHTC) is an organization dedicated to
making Massachusetts one of the “most competitive locations to operate a high tech business”.
Members include CEOs and senior executives representing the business and higher education
and research sectors in Massachusetts is dedicated to making Massachusetts one of the “most
competitive locations to operate a high tech business”("Mass High Technology Council
Overview," 2014). As a part of this ongoing effort, MHTC brought together students and
professors at WPI along with a number of council members to develop the Massachusetts’
Technology, Talent, and Economy Report System, a web- based data analytics dashboard. Using
this tool, data from across heterogeneous online sources could be accessed in one place, helping
to “measure and to evaluate Massachusetts’ current competitive position while providing policy
makers with the information critical to developing public policy” ("Massachusetts' Technology,
Talent and Economic Reporting System - MATTERS - Mass High Technology Council," 2014).

The MATTERS dashboard is defined by a process called Extract, Transform, and Load
(ETL). Simply put, ETL extracts data from various sources, transforms the data to a format that
is uniform for the system, and loads it into a data warehouse. Applying this process to
MATTERS was necessary because the sources identified by MHTC varied from federal agencies
to tech companies, all of which needed to be incorporated.

Since MATTERS was a fast-paced idea, a prototype was rapidly built order to provide a
basis for the dashboard. Built upon the Spring MVC framework, the initial dashboard included
publicly available data sets from six sources, user were able to perform simple side-by-side
number comparison as well as more complex line and bar charts. The initial system required
custom-built components to integrate the data sources. An administrative tool was created add
new datasets by manually uploading Excel spreadsheets.

Very early on, the MQP team identified a number of steps to progress the system further.
First, the existing system code needed to be reevaluated with object-oriented design principles in
mind. Second, MHTC identified many other sources that would add value to the dashboard and
allow for more insights into the economic competitiveness of the commonwealth. Third, an
evaluation of existing open-source ETL tools must be made in order to determine if the
development of this proprietary system continue. Fourth, the administrative tool must be
completed to a state that will allow any end-user the ability to upload data sets from Excel
spreadsheets without any unexpected errors or issues. Fourth, documentation and training
materials were needed to allow a non-technical person to use the Administrative tool to add new
sources.

5|Page



2 Background and Related Work

The groundwork for the Massachusetts’ Technology, Talent and Economy Reporting
System (MATTERS) was initially developed with a group of students completing their
Interactive Qualifying Project (IQP) in conjunction with other teams of WPI graduate students.
The IQP team extensively researched the front-end visual aspect of the MATTERS dashboard,
incorporating the use of colors, charts, and tables to represent data in an intuitive and quick
analytics. The graduate students quickly developed the back-end of the system to allow for data
to be extracted from a site, cleaned and parsed, then uploaded to a database.

2.1 System Architecture

The structure of this system, as it was currently received, can be found in Figure 1. This
structure will be referred to as the data pipeline for the MATTERS dashboard. The data pipeline
consists of 4 main components:

Data Extractor/Wrapper
Data Cleaner

Data Transformer
Database Loader

We will expand on each of these components as they are essentially to the function of the

MATTERS dashboard.
4 p B\
Data Extractor Data Cleaner
Data
Sources

Database
Warehouse

Database Data
Loader Transformer

Figure 1 - Data Pipeline System Architecture for MATTERS Dashboard
6|Page



2.1.1 Data Extractor/Wrapper

The data extractor component, or more commonly known as “wrappers,” is responsible
for gathering the requested data from MHTC and entering it into the system. These can be as
simple as accessing existing Application Programming Interfaces (APIs), or as complex as data
scraping a website that contains the information. For example, the U.S. Energy Information
Administration (EIA) has an available API to use. These wrappers are essential to the
MATTERS dashboard as they provide a means to incorporate wanted outside data into the
system.

These extracted sources are typically in the form of Excel files, but can also be CSV,
XML, or JSON. As defined with the original development of the system, a base unit of data
consists of a state, a year, and a metric value.

2.1.2 Data Cleaner

The data cleaners are responsible for taking the extracted data and ensuring its quality. If
a state is misspelled due to human error, the data cleaner will find the error, use a spell checker
and match the misspelled name to the closest actual match. If a state abbreviation contains
extraneous characters, such as “M.A.” for MA (Massachusetts), the cleaner will also remove
these unneeded characters.

2.1.3 Data Transformer

The data transformer, also known as a “parser,” is responsible for parsing the file into a
structure that can then be used to upload the data to the database. Due to the guaranteed
inconsistency between different files from different sources (it’s not reasonable to assume that
every federal organization would format their data sheets the same), the parsers are highly
specialized pieces of code that pertain to a specific source. Each source, in theory, will need its
own parser.

On a general level, each parser identifies the necessary information in each file and forms
tuples that consist of a year, a state and a metric value for the associated category. These
currently need to be hand-written for each file, but there may be a potential solution to upload an
Excel spreadsheet, select the desired rows or columns, and generate code.

2.1.4 Data Loader

The data loader is solely responsible for saving the many tuples created from a source file
and storing them in the database, where they can later be used for visual analytics.

2.2 Requirement Elicitation

2.2.1  Administrative Tool

An important aspect of this project is the ability for end-users to complete maintenance
on the MATTERS dashboard without the help of someone with a technical background. In order

7|Page



to make the system intuitive enough for any user, it was decided that an administrative tool
would be essential.

An administrative tool, in context of this project, would be a console that would be a
visual curator integrated with admin capabilities. The following lists the ideal abilities the
administrative tool would have. Admin capabilities can include, but are not limited to:

1. Manual upload of a file

o

As an end-user, | want the ability to upload a file, such as an Excel spreadsheet or
a comma-separated values file, and have the data contained within the file be
stored in the database and available for use on the MATTERS dashboard.

From there, an end-user can select the source (where it came from), the category
of the file, as well as the metrics associated.

A visual representation of the file would appear, allowing for the end-user to
manually select the cells that would correspond with the three data dimensions
(state, year, metric) that are stored in the database, as well as specifying units for
the metric(s).

The system would then be able to clean the data, generate an appropriate parser,
and then transform the data.

Any errors would be reported to the user, and would give suggestions and
recommendations to potentially fix any error.

If the file cannot be uploaded, the system would let the user know, and then
prompt the user to re-upload the file after the user has done the proper cleaning
and transforming.

During loading, if one tuple is found to be corrupt, the system would print out a
message to the user and fix it on-the-fly.

2. Visual (or script) tool to build a data pipeline

o

An end-user would be able to point the administrative tool to an online source and
be provided with options for how to extract the data (download file, select data
displaying in an HTML table, etc.).

The file would then be passed through the same process that the manual upload
goes through.

3. Visual inspection of the data warehouse

o

o

To ensure data integrity, a navigable visual representation of all sources, category
hierarchy, and associated metrics currently stored in the database would be ideal.

After selecting a particular source file or category, an end-user should be able to:
1. Get a data table of what is in the database

2. See when the data was uploaded
8|Page



3. See what file the data was extracted from
4. See where that file came from (which wrapper)
4. Visual tracking of data pipelines that are in place

o A status menu would contain each pipeline that would show when the pipeline
last ran, whether it was successful, and if not successful, an error report
containing detail information as to why it was unsuccessful with possible
resolutions.

o An end-user may want to set up a scheduler for a certain pipeline, as an
organization may update their data sets every month.

These are all ideal aspects that we’d like the administrative tool for the MATTERS dashboard to
contain, but we recognize that many of these are much harder to implement than describe.

Talend Administration Center

Talend’s paid-for products offer a built-in web-based administrative center for managing
custom-built pipelines. Some services that are offered by Talend Administration Center are
administrative settings, such as user and project management, a job conductor (similar to a
scheduler), a dashboard for running real-time analysis of the current pipelines, as well as auditing
capabilities.

9|Page



i‘f Adrniniskrator

<« C | ¥¢ htp:/locahost:B080/ts400/Administrator htmizocale=en » O~ F-
Menu “® w E LCO M E & Integranon Suite
= 4 Settings talend
g‘.'Users
@3, Projects Welcome toTalend Data Quality Enterprise Edition MPX
::.‘-Projec‘ts authorizations
éjpmieds references Administration Center is the centralized place where you can manage:
Locks
;;;License J’-" Settings: Manage users, projects, license hd
d ] Configuration
[ Matification (-) Job Conductor: Deploy, run and plan job executions on distant servers hd
= () Jab Canductor
Job Conductar .! SOA Manager: Expose your jobs as Web Services and manage them -
Bf|Servers
| 5| Wirtual servers |2 Dashboard: See jobs performance analyses -
504 Manager
= @Dashboard »  Error recovery management: Error recovery management offers an execution restore -
& Connections facility for Jobs executed with errors
2 Job=s anatyses
508, @ Real time statistics: Real time statistics for jobs executed -
= ‘._E]Task executions monitoring
] Grid {=| Audit: Audit a Talend project -
|| Graphic
35 At -7 User settings: Change your password and s¥n account -
-~ User settings
Administrator, Administrator wou have currently subscribed to a license with S users, and you are using 1 users,
8 Administrator If vou need to add wsers to your license, you may contact your Talend account manager,

=y |
ala |7

ﬂJ Logout

Welcome ng; Client log

Figure 2 - Talend Administration Center Welcome Screen
User and Project Management

Many software engineering products use version control, which is easy to track changes
between remote users. With this in mind, Talend created an easy interface for administrators to
create a project (which may be the equivalent of a single pipeline, or a multitude of jobs) and
grant access to certain users. For our simplified system, we ideally would only have a low-level
implementation of this, where a user either has access to the entirety of the administration center,
or no access at all. However, the ideas projected here are certainly important to keep in mind as
this project progresses and moves forward.

Job Conductor

The Job Conductor module is responsible for scheduling certain tasks to run. A user (with
proper access) would be able to generate a schedule, inputting the tasks required to run on the
certain, and at what point in time.

10|Page



JOB CONDUCTOR

% Refresh ik Q)Add =) Duplicate @ Delete | G| Generate (g Deploy I Run @ Kil | Wy Pause task(s) W Resume task(s) | ® - Recove

Status Erro... Label Trigg... Tim... Lastscript genera... Project Branch Version Context Co...  Server

= Project: projl (1 item)

Ready to deploy collect_stats o) 2012-09-2517:09:_.. projl trunk 0.2y (Default) 5.2.... runtime
D Project: tac (5 items)

Ready to deploy collect_logs v 2012-08-2517:24: . tac trunk Latest Default 5.2.... runtime
Ready to run generate_customer_data = 2012-08-2517:27.... tac trunk Latest Default 5.2.... runtime
Ready to run replicate_data v 2012-08-2517:26:... tac trunk Latest Default 5.2.... runtime
Ready to deploy merge_customer_data o 2012-09-2517:28:... tac trunk Latest Default runtime
Ready to generate split_data [C] 18h... tac trunk Latest Default runtime

Figure 3 - Talend Administration Center Job Conductor View

This page gives some general statistics about the scheduled task, such as when it is
scheduled to run, when it last ran, which branch the task may have been on, etc. This dashboard
view provides an easy overview for any administrator to get a quick understanding of the status
of the scheduling component of the pipelines. Our system will look to include something
similar, which will give functionality to the user to create a schedule for certain uploaded
pipelines to be run on the server and view the status of each pipeline.

Examples of Good Administrative Tools/Dashboards

Unlike products such as ETL tools, administrative dashboards have to be custom-built to
tailor to the needs of the user. But, since our application is looking at a web-based dashboard, we
can search for templates that are based off of HTML and other web technologies. A simple
search for administrative dashboard will produce many templates that are open-source and can
be used for nearly anything.

In terms of criteria, an admin dashboard should provide a level of management for any
type of function the site performs. For instance, if we were running a community forum, we
would want our admin dashboard to provide stats, the ability to manage users and their accounts,
as well as moderation tools for the many different threads that the forum contains. We will
analyze a few of the readily-available administrative dashboards to see the commonalities
between them.

11|Page



Dashboard

® e .=

i Area Chan

— Donut Chart © Tasks Pane! @ Transactions Panel

[ pust sow | Order  Order Order Amount
. Date Time (usD)

@ Commected o4 8 post aarD

3326 10242013 320PM $a21 33
B . X Y ————

Figure 4 - SB Admin Dashboard Template (Bootstrap [25])

Figure 4 represents a well-developed and intuitive admin dashboard template, called SB
Admin. Solely built upon HTML and Twitter’s Bootstrap CSS framework, SB Admin also
includes extra functionality, such as the ability to make charts, as seen above. To break down this
dashboard, we see a common header at the top that contains the logged in user, as well as space
for other icons to allow for quick access to other potential components, such as messages or
reminders. Additionally, there is a navigation bar located on the left-hand side of the dashboard,
to change different views and data of the dashboard.

The information in this template is laid out in a manner that any end-user who would be
accessing the administrative dashboard could easily identify the different parts. SB Admin uses a
minimalistic color approach, by only color-coding important categories (from the example, the
categories would be “tasks”, “comments”, “orders”, and “support tickets”). This simple approach
reduces eye strain and information overload for the end-user.

12|Page



Dashboard repors & =

Home > Dashboard

{nt Dashboard

1349 12,5M$ 549 +89%

New Feedbacks Total Profit New Orders Brand Popularity

VIEW MORE &) VIEW MORE =] =] VIEW MORE [©]

L Site Visits New  Returning « Revenue Filter v

$13,234 $134,900 $1,134 235090

£ Recent Activities

You have 4 pending tasks.

ed with [ P ELFE]
Technical ment Meeti
ending membership that requires a quick review

dware needs to be upgraded

Figure 5 - Metronic Dashboard (Metronic [21])

Figure 5 is another example of an admin dashboard template, built upon the same
frameworks as SB Admin. Doing a side-by-side comparison, it’s easy to see the similarities
between the two dashboards. Both contain a header that shows a branding, and the current user’s
potential inbox messages, reminders, as well as account settings. Each contain a navigation bar
location on the left hand side of the page, as well as similarly designed color themes for
categories.

Many administrative dashboard templates out there are built upon the same Bootstrap
CSS framework, and boast the same functionality. At this point, it’s a matter a personal
preference, but nearly every administrative dashboard can accomplish the same task. In the end,
these are merely visually, and do not provide that much functionality in terms of tools.
Regardless, the visual aspect can greatly impact the efficiency of an end-user.

2.2.2 Data Pipelines

The other part of this project is for the end user to be able to continue to add and update
data to ensure we are providing up to date information. However this needs to be done in a way
that is simple and intuitive enough to be able to easily add data sources to the application. In
order to do this there are a few capabilities required:

1. Small Overhead to Add a New Data Source

13|Page



o Since not everyone will have a degree in computer science the software needs to be
simple enough for the end user to be able to add a new data source to our database
with having to do much coding or preferably any at all.

o It may also be necessary to add a new file every year for the same data source so the
software will also need to be easily changed each year or be able to update itself in
the best case.

2. Visual Representation of Data Flow

o The end user should be able to view and create the pipeline from data source to
database in a graphical interface as opposed to pure code.

3. Ability to Run Autonomously

o The end user should be able to create a pipeline and then upload it to the admin panel
where it will be able to run whenever scheduled to in order to get new data.

2.3 Extract, Transform, and Load (ETL)

Extract, Transform and Load (ETL) refers to a process in database/data warehouse usage
that extracts data from data sources, transforms the data into a proper format for storing, or
structure for querying and analysis, and loads it into the final target, typically a data
warehouse. Typically, all three phases execute at the same time since data extraction takes
time. While one piece of data is being loaded, the previous piece is being transformed so that
there is always something ready to load into the database. Each step in the process is very
important and an error in any step can cause the entire pipeline to fail. In today’s market there
are many tools that implement this process. Some free to use examples of these tools are
KNIME, Talend, and Clover ETL. These tools implement the ETL architecture and allow users
to develop their own pipelines in a graphical manner. This saves both time and money by
eliminating the need for a software engineer when constructing or adding to a data
warehouse. However, these tools must meet specific requirements in order to deliver optimal
results to their users.

Profiling
Analyzing Monitoring Cleansing

\ 4 lr!

Data Sources Data Staging Data Presentation

»
Dimensional

Ext(act > Transform Lojdx )
L )

Model (DW)

[ ——————————————————————————-

S S PO S A P S S S —————————

Figure 6 - Example of ETL Flow (Syncsort [11])

14|Page



The first part of this process is the extraction. This is deemed one of the most
challenging aspects of ETL since this sets the stage for the rest of the process. The goal of
extraction is to convert the data into a single format that is ready for transformation. Once the
data is extracted from the source the next step is transformation. During the transform phase a
series of rules or business logic is applied to the data to derive the data to be loaded into the
database. This brings us to the final phase: the load phase. During this phase the data is loaded
into the end target, typically a data warehouse. For this phase the data needs to match the
schema of the table it will be loaded into otherwise the operation will fail.

2.3.1 Open Source ETLs

We began to investigate a number of open source ETLSs that could be incorporated within
the MATTERS system. We looked into using Clover, Talend and Pentaho; all of which were
recommended to us from some of the staff at MITRE. We spent numerous hours using each
program, read documentation and also viewed help forums for each in order to decide which
software would best fit our needs. After comparing all of the positives and negatives for each, we
came to the conclusion that Talend would be the best option for our team in developing
pipelines.

CloverETL

CloverETL was fairly easy to use and understand. However, the free software version
could not achieve what we were looking for in a free to use software. CloverETL offers a
number of versions of software including Community, Designer, Server, and Cluster. We looked
into the Community version first because it didn’t cost anything, but we also downloaded the
Designer for a 45-day free trial to see if it was something that we wanted to find funds for.

¥t Disable debug
Debug properties

£ View data (PackageDelivery:Sum Shipmentsfout:0]) . Viewdata L\\"

z  stationCode batchld aggregateValue

1 CDG 80000206 2320000
2 PRG BO000O01  15710.50
3 PRG B000000Z 31415

Figure 7 - Example of CloverETL (CloverETL [22])

15|Page



Pentaho Data Integration

Pentaho Data Integration was found by a few searches for ETL’s. Similar to CloverETL,
Pentaho offered a free trial of their software, which we downloaded to experiment with. The
software seemed to cover our basic needs but seeing how there was some other software that
achieved the same results but were free to use, we decided to not look into Pentaho any further.

Spoon - mongo_data_merge (changed) B mm ty 4) 4.09PM & pentaho
(Sl =] Perspective: |1 Data Integration ili Model 7] Visualize
a View | /" Design « Welcome mongo_data_merge
Steps [ 2 kP | & | & [100%
Big Data
=z, Cassandra Input
# Cassandra Output

HBase Input Calc Mn/YT
@2 Hadoop File Input Sales Data

#2 Hadoop File Qutput
@ HBase Input

# HBase Output E c 2@ O o
§~ MapReduce Input ! N\ ”

A  MapReduce Output Add Count Sort country/date Group by country/date  Lookup Sales Table output
. MongoDb Input

A MongoDb Output
Input
QOutput |@
Figure 8 - Example of Pentaho Data Integration (Pentaho [23])

Talend

Talend is an open source software vendor (Manning [3]). They provide many products to
users including those that focus on data integration, data management, enterprise application
integration and big data. Their product Talend Open Studio for Big Data combines big data
technologies into a unified open source environment simplifying the loading, extraction,
transformation, and processing of large and diverse data sets. This software provides a graphical
interface for users to set up what it calls jobs. These jobs are used to extract data from various
sources, transform it and then it can load the transformed data into a variety of outputs. This
software also generates java code for any job that you create.

16|Page



| 1SQIN0-lalA- 2P

o O s G A & Caxhaser

(1D *Resosrony 1 e%lan'-n@

101§ v exceiTo08 0.3 1

LOCAL: Test
Rm“
¥ {5 Job Designa

A exCHTO0RTest 0.1
b howTaserfie 0.1

31 rows e 0.248
215

—®

matrics

'm-.mnm’un—-g.iiu
G2TR rowly 2D rowss

states, oskisns

| BromiagiZ00. 616.65119 418 4136158
| remiag|3Mee 610 45110 918 1366

AT
010 Y

Fob wreelTel® ended % 33 04 TI/TO/E006 [enit eodesd|

] Une o (300 ]

W

KNIME

Figure 9 - Talend Open Studio (Talend [8])

KNIME was another recommendation by MITRE (Manning [3]), as well as a few other
people in various fields of work. At first glance, we liked that KNIME was open-source. We
dove into testing out the features it presented and was overall happy with the software. We used
this in comparison with Talend to make a decision on which software we wanted to move

forward with.

Figure 10 - Example of KNIME (KNIME [24])

17|Page



3 Methodology

Our main goal for our system is to enable a future MHTC admin to be able add a new
data source to their system easily and without any prior coding experience, as well as be able to
visualize the data in the database. We will be accomplishing these tasks through the use of an
Administration Center, which is part of the main MHTC MATTERS site, and Talend Open
Studio.

Using Talend, a user can create pipelines in order to take a data source and transform the
file they receive from said source so that it will be in an acceptable format for entry into the
database. Talend Open Studio provides a graphical-user interface for creating these pipelines,
which provides an easier approach than having to manually code these pipelines.

In order to gather data from certain sites, specific code functions were written to
download these files, which are called data wrappers. Although Talend has functionality for
downloading files directly, some sites use specific APIs that require a bit more complex code.
Since these data wrappers were written in Java, we were able to incorporate them directly into
the Talend pipelines as custom code snippets.

Once the pipeline is complete, the user can then login to the Administration Center on the
MATTERS website and upload the pipeline on the Pipeline Manager tab. The user can then use
the Scheduler to run the pipeline immediately or at a set date. Once the pipeline has finished, the
admin can use the Reports tab to view any messages the pipeline sent and will be able to tell if it
completed successfully. The admin can also upload data through the Manual Upload tab if the
data in a file is already in the specified format. If this is a new metric to be added the admin can
create new metrics in the database from the Administration Center instead of having to run a
query, and they can also use the Database Explorer to check for data consistency or see if any
data is already there that they may try to enter. The following sections will give an in depth
overview of each component of our system starting with Talend Open Studio, moving into the
data wrappers and ending with the MATTERS Administration Center.

3.1 Talend

Talend is used by a number of big businesses in order to represent their data in a way that
is quick and effective (Talend.com). We will be using Talend to create pipelines that will be able
to grab the data from various websites and push it through a cleaner and eventually into our
database, where it can be accessed from our website in a number of ways including graphs, heat
maps and of course in data tables.

Our ultimate goal is to incorporate Talend into the MATTERS Administration Center and
not have the end user worry about it. However, the issue with this may be that the URL’s we are
pulling the data from might change in the future, the data could be in a different format, or a new
data source might want to be added. Having these limitations makes us believe that Talend will
have to be used concurrently with our system. With this in mind, clear and proper documentation
will be provided as well as a number of template jobs that the end user can manipulate in order to
gather information from a new web address.

18|Page



3.1.1 Selection of Talend

After reviewing all of the ETL software listed previously, we came to the conclusion that
Talend would fit our needs best. We compared each of the ETL software to each other in order
to determine which one would best suit our needs. During this time we found that Talend
seemed to be used more widely amongst companies thus providing more documentation than the
other ETLs could. From our own research, we also found that Talend seemed much easier to
learn immediately than the others; however, we did notice that for more advanced features, there
was somewhat of a steeper learning curve than others. Even with this factor, all of them seemed
to be very similar to us during our initial research.

To help us reach a conclusion on a specific ETL to use, our contact at MITRE, Jeff
Manning, was able to do a high level analysis of each of the software in question. Talend
contains all the core capabilities we were searching for, supports a large number of data extract
formats, and was the ETL cited most by small and medium enterprises (Manning). After reading
his analysis of each existing ETL and rating Talend as the most viable ETL for MHTC and our
team to use, we selected Talend as our ETL of choice. The full analysis can be found in
Appendix B.

3.1.2 Learning of Talend

Once Talend had been chosen, we delved into it in order to start creating pipelines, a way
to move the data from a file, clean and transform it, and insert it into the database. The first
thing we did was to search for any tutorials on Talend that would help us get started. We came
across a few, however, the documentation was not as complete as we originally thought and the
tutorials were not as detailed as we had hoped. Due to this, we decided to switch gears towards
jumping in and just attempting to get a pipeline up and running through trial and error. We
began with what we thought would be a simple Excel file, but would cover most of the things we
would need to do in future pipelines. It had multiple metrics, a header that would need to be
removed and either blank spaces or missing information for certain metrics, as seen in Figure 11.

19|Page



[ NON 7 state_unemp_rate.xls

TR a2 3.-. @

A Home ‘ Layout ’ Tables ‘ Charts ] SmartArt ] Formulas | Data l

Edit : Font Alignment Number Format Cell:

@ _ (Calibri(Body) v 10 |+

: o M@l ... [@@]o Jitio =
Paste @ I U J | = & J Align % /0 ) Conditional Styles Actio
A2

: Date \' <%" | ) ...T...
=> :

v

Formatting
1O & (= £
] A | B | © [ D l E [F] G

1 |9-May-13
= !

3 State Unemployment Tax Rates, 2013
4|
5_ Siata Wages Subject to | Minimum Rate | Maximum Rate | New Employer Rate

6 Tax [1] [1] [2]

7
"8 |Alabama $8,000 0.59% 6.74% 2.7%
"9 |Alaska $36,900 1.3% 5.4% 2.38%
10 |Arizona $7,000 0.02% 6.38% 2.0%
11 |Arkansas $12,000 1.2% 7.1% 4.0%
12 |california $7,000 1.5% 6.2% 3.4%
13 |colorado $11,300 1.0% 5.4% 1.7%
T Connecticut $15,000 1.9% 6.8% 4.2%
T Delaware $10,500 0.3% 8.2% 3.1%
16 |District of Columbia $9,000 1.6% 7.0% 2.7%
17 |Florida $8,000 1.51% 5.4% 2.7%
18 |Georgia $9,500 4.0% 8.1% 2.62%
19 |Hawaii $39,600 1.2% 5.4% 4.0%
20 |1daho $34,800 0.96% 6.8% 3.36%
21 |illinois $12,900 0.55% 9.45% 4.35%
22 |indiana $9,500 0.5% 7.4% 2.5%
23 |lowa $26,000 0.0% 9.0% 1.5%
24 |Kansas $8,000 0.11% 9.4% 4.0%
25 | Kentucky $9,300 1.0% 10.0% 2.7%
26 |Louisiana $7,700 0.10% 6.2% Industry Avg
27 |Maine $12,000 0.88% 8.10% 3.08%
28 |Maryland $8,500 22% 13.5% 2.6%
29 |Massachusetts $14,000 1.26% 12.27% 2.83%
30 |Michigan $9,500 0.06% 11.05% 2.7%
31 |Minnesota $29,000 0.673% 10.87% 3.572%
32 | Mississippi $14,000 0.95% 5.4% 1.15%
33 | Missouri $13,000 0.0% 9.75% 3.51%
34 |Montana $27,900 0.82% 6.12% Industry Avg
'35 | Nebraska $9,000 0.0% 6.49% 2.49%
36 |Nevada $26,900 0.25% 5.4% 2.95%
37 |New Hampshire $14,000 2.60% 7.0% 3.7%
38 |New Jersey $30,900 0.6% 6.4% 3.1%
39 |New Mexico $22,900 0.05% 5.4% 2.0%
40 | New York $8,500 0.9% 8.9% 3.4%
41 |North Carolina $20,900 0.0% 6.84% 1.2%
‘42 |North Dakota $31,800 02% 9.91% 1.36%
4 e 2013 J S%g(ioz P 201f’7j 2010 J #3609 ”| 28

= Normal View Ready

Figure 11 - Example of data in Excel format

Once we had the file, we began attempting to transform it in Talend. We initially kept
the file stored locally for Talend to access due to issues that we encountered when attempting to
download a file from the Internet using Talend. Talend’s visual editor made learning through
example much easier than trying to use the incomplete documentation online. Figure 12 shows
the editor for Talend Open Studio along with the pipeline created from the file in Figure 11.

20|Page



@ ¥ = B £ <yob BLSEmployemnt 0 £3 Job ipedsNumberOtCol £ Job Ipedsswitch 0.1 & DBO.1 58\ "% = 0| patette 3 Olg

Designer | Code

5= 5o JovlexcarTons 0.1) 2 Gontextstiob excefToDB 0.1) (> Aun (Job excarToD) | = Component 33 ., Mocues

Subjob

Figure 12 - Talend Open Studio pipeline (Talend [8])

Talend uses components, which can be added to the job designer in the center from the
Palette window on the right. Each component has a different function. Some of the main
features are getting data, processing the data, analyzing the data, and sending it to some
output. Talend moves the data from one component to another by row. That is, each row is
individually passed from component to component, for that component to perform its function
upon the row. During the learning process we found that our main components for transforming
the data would be the tReplace, tFilterRow, and tMap components.

1y /

- e SRR
% oW Filtar) 3-8 e (Wiain - Ph"é

{FilerRow_4 " {Replace 2 ' ' 1'r.1a.:i_1\

Tk :."Il'r:' 1hit

Figure 13 - Talend cleaning functions (Talend [8])

These three components were able to complete most of the transforming that was needed,
with the tMap being the most useful component. The tFilterRow component was used to filter
out any rows that were not necessary to be inserted into the database. The tReplace was then
used to remove any bad data such as having words in columns for numbers or removing any
percent signs or other punctuation. The tMap allows you to make different connections by
moving the variables from the input and any variables created inside the tMap over to different
output tables that can then be sent to various components. Figure 4 shows the editor for the
tMap with the input tables on the left, variables in the center and the output tables on the right.

21|Page



|5

¥ Nullab|Date Pattem (Cul+:Length  Precision |Default |Comment Column Key Type
2 0

H

Figure 14 - Talend tMap component (Talend [8])

5 Nullab Date Partem (Crri+: Length

Precision | Default |Comment

By using the tMap, we were able to take multiple metrics from one file and separate them
into different outputs to be inserted into the database. We were also able to manipulate the data
in order to get each row into our format of a state ID, a metric ID, the metric value, and the
year. From here, we used Talend’s database components in order to insert each row into our

database.

{Postgresdlingut 2

—
1PostgresglConnection! :h&m?:‘sm»\. ®

1Postgresqglinput_1

whgesFiter  tPostgresglOuiput_2

1y -
1
g E

tMag 1

- 3 s 3 5

e
row2 (Filter) 3-8

{Replace 2

AT o
5 § rowS (Filtar)

maxRateFiter tPostgresqlOuiput_1

tFiterRow_4
EmpRate (W
Y
i rowd (Filter) ca
newEmpRateFitertPostgresqlOutput_3
<

minfateFiter tPastgreaqiOutput 4

Figure 15 - Complete Talend pipeline job (Talend [8])

. S
tLogRow_1

7 oy

-~
tLogRow_ 3

Sy

5 -~
tLogRow_4

Once we had finished creating this pipeline, we felt as though we had a good
understanding of how Talend worked and could move onto creating pipelines for the sources that

MHTC had requested.

At the same time, we also had a few more goals in order to improve the pipelines. The
first was to figure out how to run the pipeline on a server. Next, we wanted to add the ability to

log and view any errors or status updates that may occur during the pi

peline. We also needed a

way to incorporate the download of a file from a website through Talend. Finally, we wanted to

22 |Page



create documentation in order to help future users learn the process in a much easier and more

efficient manner.

The first step we took was to add logging features to all of our pipelines. Talend has its
own components that are used to create log messages, as well as a component that catches any
log messages created. The two components we use to create log messages are the tWarn
component and the tDie component. The tWarn simply creates a message when it is triggered.
The tDie component however ends the pipeline when it is triggered in addition to creating a log
message. These components are triggered when a certain component is either successful or fails.

=
tavalthmponentOk-fezger i} ﬁ =
. )
tWarn_1 mﬂ(c_localOnSub\JED&‘ﬁ & Q L
///
OnComponentQk (order:1) OnCompérentError “metrics” “states” /ﬂ)ie_?l
\ /
= 0 etrics L ) states (Lookug Ommgo/-mt[vro}
R » /[ |
5 tDie_2 OseCa
)\ e, ez 030 :
tWarn_2 [ rped,éCoum tMap_loutl (Maind rowZ (MainPostgresqlCommit_1
/" i row3 (Filter) ':ﬁ \
/ tFilterRow_1 = tPostgresqlOutput_1 OnCompapentOk =
OnCompgnentError rowd/Main N
[ = » 5 ‘
v digws (Mai ‘ ¥ .
0 tLogCatcher_1 tMap_2 D'—.—j'l tWarn_3
-
tDie_1 A tLogRow_1
ET
T ==
! “Tows Va8
tLogRow_2 tJavaRow_1

Figure 16 - Talend pipeline with logging features (Talend [8])

Once all the tWarn and tDie components were in place and all our log messages were set,
we then needed a way to send them to the Administration Center for viewing by an MHTC
admin. To implement this, we created a subjob in our pipeline that would catch all the logs and
then send them to the Administration Center. Talend’s tLogCatcher component listens for any
log messages created for the duration of the pipeline. This will get all the information for each
log and then we used a tMap in order to filter out any extraneous information. From there, the
data is sent to a tJavaRow component, which allows the user to run custom Java code on
individual rows. The code we are running is a simple HTTP POST method.

This is done inside of a routine, which is a way to create a Java class inside of Talend and
be able to call functions using the custom code components. This routine takes in the URL to
post to, and all the information from the tMap. We originally tried to use the HTTP component
inside of Talend, however, during this time, the current release of Talend had a bug that affected
the HTTP component. More information on the logging process can be found in Appendix B.

23|Page



i public class SendlLogs {

e url you are sending the log messages to
the location of the file the logs were written to
I0Exception
* This function takes in an url and a file location and then reads the file, takes the data and puts it into a

* http post message that is then sent to the specified url

public static void sendlLogs(String address, String message, Date moment, int priority, String job, String origin, int code)
URL url = new URL(address);
Map<String,Object> params = new LinkedHashMap<String, Object>();
params.put("moment”, moment.toString());
params.put("message", message);
params.put("priority"”, priority);
params.put("job", job);
params.put("origin", origin);
params.put("code", code);
StringBuilder postData = new StringBuilder();
for (Map.Entry<String,Object> param : params.entrySet()) {
if (postData.length() != @){
postData.append('&');
¥
postData.append(URLEncoder . encode(param.getKey(), "UTF-8"));
postData.append('=");
postData.append(URLEncoder . encode(String. valueOf(param.getValue()), "UTF-8"));
}
byte[] postDataBytes = postData.toString().getBytes("UTF-8");
HttpURLConnection conn = (HttpURLConnection)url.openConnection();
conn.setRequestMethod("POST");
conn.setRequestProperty("Content-Type", "application/x-www-form-urlencoded");
conn.setRequestProperty("Content-Length", String.valueOf(postDataBytes.length));
conn.setDoOutput(true);
conn.getOutputStream().write(postDataBytes);

Reader in = new BufferedReader(new InputStreamReader(conn.getInputStream(), "UTF-8"));
for (int c; (c = in.read()) >= @; System.out.print((char)c));

Figure 17 - Example custom code for HTTP POST within Talend

After we had finished with add logging capabilities to pipelines, we then moved onto
creating a way to download the file from an external website rather than getting the data from a
local file. When we originally tried to download a file from the Internet, we encountered various
encoding errors with the files, however with the knowledge of routines gained from creating the
logs we now had a new way to access the files.

Using routines, we were able to add the data wrappers that were originally written in Java
to grab the sources, as well as new wrappers to get new sources and some generic downloaders
for scrapping data from an HTML table. Using these wrappers, we were able to grab files from
the web, save them locally where the job is stored, and then access them to run the pipeline to
transform the data. More information on data wrappers in Talend can be found in Appendix B.

Once we no longer had to worry about having the files with the pipeline to run the
pipeline, we moved onto the major task of how to run these pipelines. This task became very
simple with the addition of data wrappers as routines in the pipelines. Talend allows you to build
the job as an executable, which you can run through the command line or any scripting
language. With this we were able to upload pipelines to the server through the Administration
Center, which could then later be accessed by other parts of the Administration Center, such as
the Scheduler.

Finally, we created documentation for the use of Talend. This was to ensure that future
admins of MHTC would have an easy time adding new sources through the use of Talend. The
documentation is mainly a tutorial on how to build a pipeline, detailing each of its parts. It also

24 |Page



contains more information on logging, routines, and information on each specific pipeline that
was created. This documentation can be found in Appendix B.

3.2 Data Wrappers

3.2.1 IPEDS

IPEDS Datacenter is a web service that provides extraction of data from the National
Center for Education Statistics. A user must navigate through the website, picking Institutions
and interested variables. After a few steps, the user will be able to reach the download page. The
process is time-consuming, and the interface is not user-friendly.

After each query, the IPEDS Datacenter webpage will send a POST request to a query
builder. The query builder is intelligent enough to prevent non-legitimate access with cookie and
request validation. However, this can be circumvented with some patterns in the POST requests.

We used a Firefox plugin called Firebug (the Net function — explained in the appendix
section) and Tamper Data to monitor the flow of data between the client and server. Next, we
will simulate the web browser by sending a correct POST request to the appropriate webpage
location. Here are some key properties of the request we must consider:

e For the POST request
o POST requests for every page change (the browser goes to another page from
pressing Continue/Submit button)
o POST requests have the _ VIEWSTATE parameter (a must)
o POST requests have the _ VIEWSTATEGENERATOR parameter (there are some
cases that the request doesn’t contain this)
o POST requests must contain data from our selection.
e Request headers
o The headers must have the referrer parameter. A correct parameter value for each
request is necessary.
o The headers should contain standard web browser headers (Host, User-Agent,
Connection, etc.)
o Set of cookie data accumulated from the querying steps. This is very important.

An engineer maintaining this wrapper should pull those request parameters by manually
navigating through the IPEDS Datacenter website. Every time the browser changes the page, the
engineer should examine the POST request send at the moment of button press or page change.
The engineer will need to extract EVERY request header. Cookies can be temporarily ignored
thanks to a Java library, JSoup (JSoup [10]).

At the end, IPEDS Datacenter will render a “Download” page which will give you the
option to download a CSV file. Please note that, it is zipped.

Wrapper Design and Implementation

Here are the steps to download the data manually:

25|Page



1.
2.
3.

o ok

o N

10.
11.
12.
13.
14.
15.
16.

17.
18.
19.

Select “DOWNLOAD CUSTOM DATA FILES”
Use final release data and press Continue
Select Institutions By Variables and then select Browse/Search Variables

Download custom data files

Provisional Release Data (Change)

1. Select Institutions 2. Select Variables 3. Output

My Comparison Institution - None Selected B [ Aoo |

Select Variables - Total 0 variables selected

How would you like to select institutions to include in your data file/report?

0 By Names or UnitIDs B By Groups | B By Variables | B By Uploading a File

| B Browse/Search Variables @ Choose from My Vvariables B Create Derived Variables B Upload Variables |

Enter either an institution name or UnitlD (or a comma separated list of UnitIDs) in the text box below. As you begin
typing, a list of matching institutions will appear. You can select a single institution by clicking on it from the list, or, if you
want all institutions on the list, click "Select”.

Institution Name

Figure 18 - IPEDS Custom Data File download

Select “Frequently used/Derived variables”
Select Institutions
Select Year and in List of variables select “State Abbreviation” and “Degree granting
status”
Press Continue
Press Continue
Click State abbreviation to select the state. (Can select multiple states but in end would
get multiple files)
Click Save
Click “Degree granting status” and select “Degree granting”
Click Save
Press Submit
Click Continue
In Select variables, select Year and then select Completions
In Select Qualifying Variables
a. Select CIP Code- 2010 Classification: select CIP two digit codes (11,14,15, 27,
40)
b. In Award Level Code select all from Associate degree to “Doctor’s degree”, Save.
In Select from List of Variables select “Grand Total”
Click Continue
Save the file

26|Page



unitid institution name year C2012_A.First or Second Major C2012_A.CCipTitle C2012_A.Award Lev C2012_A.Grand total  IDX_C

164447 American International 2012 First major 11" Computer Bachelor's degree 0 -2
164447 American International 2012 First major ‘26" Biclogical Bachelor's degree 16 -2
164447 American International 2012 First major 27 Mathemat Bachelor's degree 0 -2
164447 American International 2012 First major ‘40" Physical $ Bachelor's degree 1 -2
164447 American International 2012 Second major ‘26" Biclogical Bachelor's degree 0 -2
164447 American International 2012 Second major 27 Mathemat Bachelor's degree 0 -2
164465 Amherst College 2012 First major 11' Computer Bachelor's degree 11 -2
164465 Amherst College 2012 First major ‘26" Biological Bachelor's degree 53 -2
164465 Ambherst College 2012 First major 27 Mathemai Bachelor's degree 10 -2
164465 Amherst College 2012 First major ‘40" Physical § Bachelor's degree 21 -2
164465 Amherst College 2012 Second major 11' Computer Bachelor's degree 2 -2
164465 Ambherst College 2012 Second major '26' Biological Bachelor's degree 7 -2
164465 Amherst College 2012 Second major 27 Mathemat Bachelor's degree 12 -2
164465 Amherst College 2012 Second major ‘40" Physical S Bachelor's degree 12 -2

Figure 19 - Data Format for IPEDS wrapper

From line 32 to 51, we will do step 1-2 above — Logging in the IPEDS Datacenter
system. On line 31 to 48, we have customized the POST request with headers and data
parameters to send to_http://nces.ed.gov/ipeds/datacenter/login.aspx. As a result, IPEDS
Datacenter will return some session cookie data that we need to save (line 51.) Please note that
every POST data and header parameters must be completed in order to simulate a real browser
request. Otherwise, IPEDS Datacenter will reject your request and send back a starting HTML
page — which means you had done something wrong. A tip: Write the HTML content into a
separate file and track those files step-by-step to make sure that the process goes smoothly.

In the POST request, parameters such as __ VIEWSTATE and __ EVENTVALIDATION are
unchanged, while ibtnLoginLevelOne.x is not. The engineer should investigate multiple times to
determine the constants and focus on making them right. The non-constants do not seem to affect
the overall result. The easiest way to do this is to imitate the request exactly the same as those of
the browser.

This wrapper covers 6 crucial steps — with the last step involve downloading the zipped
file. For each step, the engineer needs to simulate the browser’s request just like explained
above. However, be extremely careful about COOKIES.

IPEDS Datacenter website tells the browser to save cookie data differently on each query
page, so we must build the cookie data step-by-step. On line 72, there is a cookieMerge
operation that merges the response cookie assignment from Step 2 to those of Step 1. The same
principle is applied to each step. The engineers should also track the cookies for each step,
validate to see if the cookie returned by the JSoup library is sufficient and correct
(JSoup.Response.cookies() method.)

Finally, step 6, IPEDS Datacenter will render a page that contains the link to download a
zipped CSV file, JSoup also supports jQuery-style element. The engineer should investigate the
source of the download page to pick out the most suitable CSS selector, and grab the correct
download link. After that, use JSoup to download the file, don 't forget the cookies and the
request headers!

.gnoreContentType(true) — line 174 is also necessary for JSoup to download the zip file.
By default, JSoup will only parse HTML/XML content. That method will tells JSoup to ignore
and save the content as bytes. Finally, use FileOutputStream to write the JSoup’s response body
in bytes from the last step. After that, we can extract the downloaded zip file with the UnZip
class.

27|Page


http://nces.ed.gov/ipeds/datacenter/login.aspx

3.2.2 HTML Table Scraper

This is a universal wrapper for HTML-based tabular data. Each HTML table in a web
page will have a unique element identifier, which differentiate itself from other elements in the
DOM tree. The HTML Table Scraper utilizes this property to extract the data in those tables.

Wrapper Design and Implementation

This wrapper makes use of a Java library called JSoup. JSoup grants us the ability to
perform a CSS-selector query to access the HTML elements and its contents. The wrapper will
treat the first <tr>/ <th> as a table header, and subsequent rows as data. Because JSoup queries
every <tr>element in the table, the wrapper can then extract the text content from each <td>
elements belong to the current <tr> element. This information will be written to a Microsoft
Excel file and saved to a temporary folder of the web server.

Example:

We have this page:_http://www.cnbc.com/id/100824779, which contains a table tag:

<table class="csvData data table-sorter" cellspacing="0">

</table>

Since the CSS selector of this table is .csvData.data.table-sorter, we will need to call the wrapper
with the URL, the CSS-selector, the Excel file path we want to save to, and a list of column
index we want to ignore (start from zero).

WebTableWrapper.download("http://www.cnbc.com/id/100824779",
".csvData.data.table-sorter", "tmp/cnbc-13-overall-ranks.x1ls", Arrays.asList(-

1));
3.2.3 Data.gov APl Wrapper

Data.gov provides a wide variety of data for users to extract information from. The
website supports SQL-query to extract customized data and provides original document or
spreadsheet files available to download. The wrapper itself is very simple. It gives the developer
an ability to download a JSON file generated from a SQL query that was sent to the data.gov
website. The wrapper also offers a “smart” download function that intuitively looks for a
Download button, extracts the URL from it and use a HTTP Downloader to retrieve the file.

Wrapper Design and Implementation

The wrapper offers two functions to extract data from data.gov. Generally, they are an extended
class of HTTP Downloader class. For the query, it’s important to understand the table structure
from the webpage in order to write a precise query to retrieve the data in JSON format.

data_gov_downloader.smartDownload("https://inventory.data.gov/dataset/032e19b4
-5290-41dc-83ff-6e4cd234f565/resource/38625c3d-5388-4c16-a30f-d105432553a4",
"tmp/ipeds.csv");

28|Page


http://www.cnbc.com/id/100824779

// Download using query: Select data from database 38625c3d-5388-4cl16-a30f-
d105432553a4 (IPEDS number of college and universities)

data_gov_downloader.queryDownload("SELECT \"STABBR\", COUNT(*) from
\"38625c3d-5388-4c16-a30f-d105432553a4\" GROUP BY \"STABBR\"",
"tmp/ipeds_count.json");

3.3 Administrative Center

The Administrative Center was created to allow an MHTC employee the ease of doing
multiple tasks without needing the knowledge of programming. Within the Administrative
center, the admin can explore data that is contained within the database, upload data files,
manage pipelines, schedule events and view reports. One of our goals is to make the
administrative center easy to use and mobile-friendly. We have used many third-party libraries in
order to achieve this. Some technologies used for this section were Bootstrap, jQuery,
DataTables library, (DataTables [9]) Quartz Scheduler library (Quartz [16]), and the jQuery
Lightbox extension (JQuery [26]).

B MATTERS: Administratior % W

€ 5 @ fi [ locahost0so/mhic/admin OB+ =
MATTERS: Administration Center & Backto Dastboard &

@ Adnin Dashboars

® patese Bt Welcome to MATTERS: Administration Center!

& Manual Upload
Welcome to the MATTERS: Administration Center! This tool provides provides administration access to the MATTERS Dashboard with
& Pipeline Manager capabilities, such as

= Adding a new datasource manually
« Exploring the contents of the database
« Mananging the current pipelines in place, as well as adding new ones
(31 Reports = Creating a schedule for the pipelines to run
- Reporting services to check the status of each pipeline

© Scheduler

These functions can be selected from the navigation bar buttons on the left. If you are unsure about how to perform a task, please click on
the & icon located at the top right of the page, and select Help

To logout, please select the same & icon and select Logout. This will bring you back to the main MATTERS Dashboard

Figure 20 - MATTERS Administration Center Welcome Page
3.3.1 Database Explorer

The Database Explorer allows the user to view the current data in the database. These
data are pulled from the “statistics” table in the PostgreSQL (Postgres [17]) database. They also
have the option of selecting metrics to filter the data. This process allows the user to make SQL
queries without actually needing to know SQL. After executing a pipeline or manually uploading
a unified format data file, MHTC administrators can use this functionality to verify that
everything is imported into the database properly.

29|Page



MATTERS: Database Explc X

« C f [ localhost:8080/mhtc/admin_dbexplorer

MATTERS: Administration Center

@ Admin Dashboard

& Database Exporer Database Explorer

& Manual Upload

possible metrics along the x-axis.

Statistic Data Metric Information

Choose a category: | National

Show 10 v entries

State “  Metric Name
Alabama High Tech Employment
Alabama High Tech Employment
Alabama High Tech Employment
Alabama High Tech Employment
Alabama High Tech Employment
Alabama High Tech Employment
Alabama High Tech Employment
Alaska High Tech Employment

.3 P\DENHE Manager reveal further information, such as:

« The Talend job name of the pipeline for this category
@ Scheduler + When the pipeline was last run

« Whether it was successful or not
B Reports

~OmQMO #E =

€ Back to Dashboard

The Database Explorer provides an in-depth look into the contents of the database. Please select a category and subcategory. which will

From there, you can then select a year for data in this category. which will populate the table with states along the y-axis. and the various

¥ | Choose a subcategory: \ Percentage of Workforce in High Tech Business v

Metric Value

152879

158927

162197

160545

162713

168098

164889

21851

Search:

Year

2003

2004

2006

2007

2008

2009

2010

2003

Figure 21 - MATTERS Administration Center Database Explorer

3.3.2 Manual Upload

Users can also upload a data source that cannot be automatically downloaded and
imported by the system. The system will parse the uploaded Excel file, consistent with the
Unified Format model, and import them into the database, available to be viewed in the
Database Explorer page. We created this function in order to help parsing irregular data sources
where data wrapper and Talend pipelines cannot be built.

30|Page



BB MATTERS: Manual Uploac % Y}

« C' A [J localhost:8080/mhtc/admin_upload 7| O q] o &

MATTERS: Administration Center € Back to Dashboard a-

& Admin Dashboard

£ Database Explorer Manual Upload

L Manual Upload
The Manual Upload page provides an easy way for administrators to upload a datasource that isn't readily available for automation into the
# Pipeline Manager system. The constraints for this upload are as follows:

« The datasource to be uploaded must be an Excel spreadsheet (. xIsx or xlIs extension)
+ The category/subcategory and metric names must be already in the database
+ The datasource to be uploaded must be consistent with the Unified Format model (for an example, please click here)

© Scheduler

3 Reports
If for some reason the upload is unsuccessful, error reporting will be available.

Choose a category: The possible metrics for category "Technology and Innovation
Rank" are
+ Top States for Business: Technology & Innovation

Talent

Choose a subcategory:

Technology and Innovation Rank

File Input

Choose File | No file chosen

A Overwrite data in database

X Upload File

Add Category Add Metric

Figure 22 - MATTERS Administration Center Manual Upload
3.3.3 Pipeline Manager

This page allows administrators to upload compressed Talend pipelines to the system.
The system will automatically detect the Operating System it is running on, and determine which
executable file to run. For example, Windows Tomcat server can only run .bat script while
UNIX-based systems should run shell .sh scripts. These pipelines can be executed to
automatically retrieve external resources, parse and import them into the database. The pipelines
are listed in a table and can be configured to run manually. After these pipelines are executed,
they will communicate with the web server to log their actions. We created this functionality to
help MHTC administrators easily manage pipeline in a scientific manners. They will also have a
total control of the Talend pipelines loaded into the system, and decide when to execute, update
or remove the pipeline at their own will.

31|Page



MATTERS: Administration Center

& Admin Dashboard
£ Database Explorer
& Manual Upload

% Pipeline Manager
© Scheduler

3 Reports

3.3.4 Scheduler

Pipeline Manager

€ Back to Dashboard &~

The Pipeline Manager page provides administrators the ability to upload new Talend pipeline scripts, check on which Talend pipeline scripts
have been uploaded, as well as download and delete Talend pipeline scripts on the server. When uploading pipeline scripts, please upload

the exporied file from Talend in the zip format!
Choose a category:

-- Select a category --

Choose a subcategory:

- Select a subcategory —

Choose a metric:

-- Select a metric --

Enter a name for the pipeline:

Enter a brief description of the pipeline:

File Input
Choose File | No file chosen

& Upload Script

Add Category Add Metric

Pipelines
Show| 10 v entries Search
Pipeline Pipeline Date Uploaded
Name Description Filename Added -’ by Delete Execute
as TechAndTotalEmployment_local.zip  2015-04-04 wpi % Run
16:23:03.933
WF BS_workforce_local zip

Showing 1 to 2 of 2 entries

2015-04-04 wpi %
15:59:14 045
Previous - Next

Figure 23 - MATTERS Administration Center Pipeline Manager

The Scheduler allows the administrators to schedule a Talend pipeline to run in a future
date. The functionality allows one-time schedule or cron-job schedule, which runs repetitively
based on the administrator’s choice. The Scheduler makes use of Java Quartz Scheduler 2.2.1
library (Quartz [16]). We created this function in order to allow MHTC administrators to
effectively organize the flow of data sources in the system. With this tool, they have a complete
control of the process. Specifically, they can make the pipelines to execute periodically without

human intervention to grab latest data from source sites.

The Quartz Scheduler is multi-threaded. Therefore, it has the ability to execute multiple
pipeline jobs at a same time. The Scheduler also boots up along with the Tomcat Web server,

which allows non-interrupted job scheduling and making.

32|Page



[ MATTERS: Scheduler
<« C A [ localhost:8080/mhtc/admin_scheduler

@ Admin Dashboard
£ Database Explorer
& Manual Upload

4 Pipeline Manager
Scheduler

3 Reports

localhost:8080/mhtc/admin_dbexplorer

MATTERS: Administration Center

Scheduler

The Scheduler provides a way to schedule a pipeline job to run on a determined interval/point of time

e o

Schedule name Schedule time Pipeline Job Job Description

test Completed as

~ORMOFES =

€ Back to Dashboard [ 24

Action

©Stop/Remove

3.3.5 Reports

Figure 24 - MATTERS Administration Center Scheduler

Administrators can view the recent logging information sent by executed Talend
pipelines. It offers various logging capabilities, such as error and notice logging. This is very
helpful for the administrator to know if the pipelines are running successfully or not, and to
know which components encounter critical error that needs immediate attention. Not many
administrators have technical knowledge to connect to the Tomcat Web server using SSH and
view the log file written by Tomcat itself. We created this interface so that Talend pipeline can
redirect its output and debugging flow into our PostgreSQL database instead of Tomcat Standard

Output Stream.

33|Page



Twg 22

B MATTERS Reporting. % |}

€ - C # [} localhost8080/mhtc/admin_reports

MATTERS: Administration Center

@ Admin Dashboard

€ Database Explorer Re po rts

& Manual Upload

Availabe Logs
% Pipeline Manager

0 Scheduler Show| 10 v entries
[3) Reports i
Pipeline Name Recent Message
BS_workforce java.lang.NullPointerException:null
cnbcOverallRanks2013 Pipeline has finished
EIAElectricityRate The pipeline has started

ipedsNumberOfCollegesandUniversities ~ Pipeline has started

IpedsStemDegrees 0rg.postgresql.util PSQLEXception:FATAL: password
authentication failed for user "postgres”

TechAndTotalEmployment Pipeline has started

Showing 1 to 6 of 6 entries

“OQEO#EN:

€ Backto Dashboard &~

Search:

Log View
counts  detail

10 View

3 View

3 View

7 View

12 View

6 View

Previous n Next

Figure 25 - MATTERS Administration Center Reports

The log is also very detailed for experienced system administrator who knows a little bit
of coding to identify the cause of the problem and propose a solution to fix that. Some error
codes are in Java Exception format. They will help the developers who wrote the wrapper

integrated in the pipeline find the error in the integration process:

34|Page



MATTERS: Reporting X

€ - C A [ localhost:8080/mhtc/admin_reports_detail?job=IpedsStemDegrees

MATTERS: Administration Center

& Admin Dashboard

& Manual Upload

Pipeline Log Explorer
£ Pipeline Manager

© Scheduler Show 10 v entries
[l Reports Log ,
ID Origin Code
30 tWarn_7 12
31 Die_2 4
32 tPosigresgiConnection_1 1
33 tWarn_7 42
34 1Die_2 4

Message

Sat Apr 04
16:13:36 EDT
2015

Sat Apr 04
16:13:36 EDT
2015

Sat Apr 04
16:13:36 EDT
2015

Sat Apr 04
16:15:23 EDT
2013

Sat Apr 04
16:15:24 EDT

A I EEEE

€ Back to Dashboard

CRe——— Logs for pipeline job IpedsStemDegrees

Search:

Date and Time

successfully downloaded file

unable to connect to db

org.postgresql.util PSQLException:FATAL:

password authentication failed for user "server"

successfully downloaded file

unable to connect to do

Priority

&~

Figure 26 - Detailed logs for a specific pipeline

3B |Page



4  Testing, Results, and Evaluation

In order to evaluate our newly designed system, we were able to have our code base
benchmarked by MITRE, which included an in-depth report on areas such as robustness,
performance, security, transferability, and changeability. Following this feedback received, we
entered an iterative process to refactor our code. In conjunction with the report from MITRE,
CodePro Analytix (CodePro [6]), a static code analysis, was used to find further violations per
standard coding rule sets. Following refactoring, we were able to resubmit our code to MITRE to
provide a comparison from the previous report. Due to time constraints, only manual testing
could be conducted on the code base following a process of deploying the system to a
development server before pushing it into production.

4.1 Software Quality Assurance Evaluation Code Wash Report — MITRE

Following completion of all new major functionality to the project, our code was
submitted to MITRE to perform a performance evaluation. Based upon Common Vulnerabilities
and Exposures (CVE) and Common Weakness Enumeration (CWE) currently maintained by
MITRE, the evaluation provided a wide range of coverage for our code base.

The CAST Application Intelligence Platform (AIP) Analysis is an off-the-shelf static
analysis tool used by MITRE to evaluate software systems before they are put into
production. Initial analysis by this tool, before any refactoring had been completed,
characterized the project as “small” with a Total Quality Indicator (TQI) of 2.59 on a scale of 4.
For commercial applications, a high score would be above 3.5. Due to the scale of the project
and its academic background, the focus of the report was not on the various different indicators
used, but rather the learning experience for identifying common code vulnerabilities and
violations to help us, as software engineers, improve our quality of work.

36|Page



2.1.1 Application Characteristics

Tor 5 TECHNOLOGIES TECHNICAL SIZE
JEE 41,729 kLOCs 42
Files 197
Classes 86
SQL Art. 0

JEE
41,729 Tables 0
J
2.1.2 Summary of Quality Indicators MHTC
Robu. Efcy. Secu. Trans. Chang.
ATfo Eval Version 273 178 215 284 2380
“ 3 A
7S TQl=> Total Quality Index
s 2 - Robu => Robustness
S 1 s —7 8 Perf=> Performance
a0 /“ Secu => Security
\ \ / Trans => Transferability
25 &/ Chang => Changeability
"/
Effi’ Rbst

Figure 27 - High-Level Analysis of MHTC project

Figure 27 supplied additional indicators regarding our system, breaking it down into
robustness, performance, security, transferability, and changeability. Our system contained
nearly 42,000 lines of code, with roughly 2.35 critical violations per 1,000 lines of code. Other
risk drivers included expensive calls within loops, which negatively impacted efficiency scores,
and lack of multi-layered data access. 31 CWEs were identified within the application.

To provide a bit more detail regarding risk mitigation, there were no critical violations for
all 48 of our high-complexity functions, with object level dependencies and OS and platform
independence well maintained.

In a presentation of the results by MITRE, some violations were marked as high-impact
areas:

o Efficiency

e Use of Style sheets

e Documentation

e Automated documentation

e Security

e Error and Exception handling

For more information regarding specific details of the report, please check Appendix C.

37|Page



4.2 CodePro Analytix

In order to supplement the code review from
MITRE with further analysis tools, we chose to use
CodePro Analytix auditing with a custom-built rule set
from a previous class taken at WPI (CS 4233, Object
Oriented Analysis and Design). On initial run, without
doing any refactoring to the system, we received 39 High
violations, 730 Medium violations, and 974 Low
violations.

These violations are purely static, and are able to
point to the exact line of offending code. Usually, fixes
are suggested by the actual violation, so turnaround time
is extremely low. Many of these violations were
completed after refactoring.

4.3 Refactoring

b % Assignment In Condition [5]

> % Close Where Created [13]

» % Code in Comments [20]

» % Declare As Interface [9]

b % Empty Catch Clause [1]

> % Hiding Inherited Fields [2]

b ¥ Initialize Static Fields [2]

» % Method Javadoc Conventions [351]
b % Missing Update in For Statement [1]
> ¥ Obsolete Modifier Usage [49]

Figure 28 - Example CodePro violations found within
MHTC project

After receiving initial feedback on the quality and robustness of the system, we planned
to address the most critical violations (those that impacted the score highly) as well as those that
would be a quick turnaround. In addition to addressing code violations, there was also a
fundamental design flaw with the system, specifically with data persistence.

{lava Connection})

Figure 29 - Database connectivity before refactoring

38|Page



The project is based upon the Spring MVC framework, with a PostgreSQL database.
Spring contains functionality and base classes for database interaction through Java database
connectivity (JDBC). These classes were in use by the front-end, specifically used for grabbing
the statistic data from the database.

When the Administration Center was first developed, the previous version used standard
Java Connection objects to connect with the database, followed by other JDBC standards.
Although this was not initially a problem, it was determined that it would make sense for one
framework to be used to access the database, as to mitigate security issues and other bugs. Figure
29 shows a rough outline of the database connectivity before refactoring.

We decided to use Spring’s implementation of JDBC, as it provided more abstractions
and management rather than using standard JDBC. Following guidelines from Spring’s
documentation, we were able to convert all instances of database connectivity not using Spring’s
built-in framework. This was able to eliminate some of the violations found by both CodePro
Analytix and MITRE’s evaluation.

For a little more detail on refactoring, we were able to develop certain layers of
abstraction for the project. Layers included:

« Models
o Data Access Objects (DAO)
e Services

4.3.1 Models

Models represent the most basic object in the Spring MVC platform. They are essentially
the containers of information for particular parts of the entire project. In the case of refactoring,
many classes have fields directly corresponding to columns in a particular table in the database.

4.3.2 Data Access Objects (DAO)

Data Access Objects (DAO) contains the actual methods responsible for creating and
making queries on the database. Most DAQOs contain methods such as save(), get(), and delete().
These are all standard functions that someone may want for updating a table in the database, or
for retrieving information from a database.

A DAO is created for each particular model. For instance, a Metric model would have a
MetricDAO, which would be responsible for populating a list of Metrics, or deleting a certain
Metric from the database.

433 Services

Services contain business logic responsible before a database query is run. Although in
our case, many of the methods found in a Service simple call the corresponding DAO method,
Services are useful for doing certain checks (i.e. make sure a Metric with a certain ID doesn’t
already exist, or make sure a Metric object has an ID of 0 if it is going to be saved to the
database).

39|Page



Once this structure was in place, each of the Service implementations had to be initialized
by a Controller. Overall, this structure was able to reduce the amount of required code within the
methods in a Controller and centralized all database code to one particular package.

Figure 30 - Database connectivity after refactoring
4.4 Post-refactoring Evaluation by MITRE

After completing refactoring and addressing as many violation outlined by MITRE’s
initial report, we were able to resubmit the code base to MITRE to get a post-evaluation of our
efforts. Refactoring took roughly 2 months.

Our Total Quality Indicator (TQI) was increased from 2.59 to 2.83. Each quality area
measured received an increase, with the larger increases occurring in the robustness,
efficiency/performance, and security. All of these were areas we decided to focus on after
receiving the initial feedback from MITRE. Even though we reduced many redundant
functionality and classes when refactoring occurred, our code base increased by roughly 4,000
lines of code. However, it was noted that our technical debt was increased, due to an increase in
functions with high complexity, most likely due to the increase of Spring-managed classes.

Quality Area Percent Increase \
Total Quality Index 6.8%
Robustness 14.9%
Efficiency/Performance 13.5%
Security 13.6%

40|Page



Transferability 8.4%
Changeability 2.8%

Table 1 - Second Evaluation Results from MITRE

4.5 Talend Testing

Once all the pipelines had been created and the documentation was finished, we wanted
to test the usability and robustness of our newly created Talend pipelines. Since the system will
be used and maintained by MHTC administrators, we wanted to gauge the quality of the Talend
software for someone who many not be a computer scientist, as well as the quality of our
supporting documentation, so that the same administrator can create a new pipeline on their own.

4.5.1 Documentation User Study

To determine usability, we gathered participants who would be willing to test the
software. Each participant was given the task to generate a pipeline for the metric “IPEDS
Number of Colleges and Universities”. This metric was taken from a CSV file that contained the
number of colleges for each state. The participant would have to take this file and transform it in
order to map the state to a state 1D, get a metric ID, the year, and the value to be inserted into the
database using Talend. The participants were randomly selected and split into two groups. The
first group was given only the Talend Help Center website as a way to guide them and the
second group was given the documentation created by our team. They were also given a file
explaining the task assigned to them and the file they needed to transform.

The specific instructions can be found in Appendix B.

Each participant was timed to see how long it would take someone to complete a pipeline
when first encountering Talend. Due to the lack of documentation online, everyone in the first
group gave up before completing the pipeline with the longest attempt being 4 hours and 3
minutes. However, all participants in the group with documentation were all able to finish a
pipeline after reading the documentation in under 3 hours. This time did not include the time it
took for them to read through the documentation. The timer was only started once they began
attempting to make the pipeline. Each participant was alone when attempting this task except for
a member of our team, who was only there as an observer and could not help or answer any
questions about the task. Below you can see a table showing each participant’s time and whether
or not they had documentation:

Participant Time (Hours, Minutes) Given Documentation (Yes/No) Completed (Yes/No)

1 4h 3m No No
2 2h 27m Yes Yes
3 1h 46m Yes Yes
4 2h 39m No No
5 2h 12m Yes Yes
6 43m Yes Yes
7 12m No No
8 28m No No

41|Page



Table 2 - Talend Documentation User Study Results

Since participants were so successful when given the documentation, we were able to
conclude that with the documentation our team has created, future MHTC admins will be able to
learn Talend in a quick and effective manner. This will decrease the learning curve and allow
them to be able to start adding new sources much faster.

4.5.2 Pipeline Robustness Testing

We also needed to test the usability of the entire process of using Talend to pull down
data (via a data wrapper), extract and transform it, then load it into a database. To do this, we
decided to analyze each pipeline created that included a data wrapper and uploaded them via the
Administration Center to a development environment (similar set up to that of the production
environment) to see if they were able to run successfully without any issues.

Of the 20 pipelines created, 7 were able to run successfully on a server-like environment,
and 1 contained issues at runtime. The other 12 pipelines were not tested as they did not contain
a data wrapper; however, we’d like to note that all data uploaded into the MATTERS Dashboard
over the period of this project was done so either through the Talend pipelines or through the
Manual Upload functionality of the Administration Center.

Talend Pipelines

B No Wrapper
i Has Wrapper and Failed
1 Has Wrapper and Succeeded

Figure 31 - Breakdown of Talend Pipelines

42|Page



5 Conclusion

After 21 weeks of work spent into this project we not only gained knowledge about a
number of technologies, but also created a system whose purpose is to help keep technology
companies in Massachusetts, which coincidentally helps everyone in the team when they
eventually search for a job.

The use of this tool will help give visual representation of a wide range of data ranging
from tax rates to performance in sciences by the 8th grade class. This information will be used to
compare data between states to help policy makers determine incentives for technology
companies to keep them in the state of Massachusetts.

Throughout this project we had some great experiences. In particular, we got to see first-
hand the process of improving a system from a very early alpha version into a large, fully-
function application. We were able to work on and utilize so many different technologies, which
was a great experience even though it required us to spend hours researching and learning new
things. Another opportunity we received was research in the context of a real-world application.
We spent weeks going through different technologies that we were interested in implementing
into our system and had to do an analysis to determine if we thought it was worth putting in extra
time to bring in another technology.

As with many systems, there is always a need for future work. The majority of our work
was on the backend, which means the front end could use some additional work to implement
new features. There is always the option of creating more pipelines for additional data sources.

Spending three terms on a project was pretty intense, but also provides a sense of pride
because we know this system will be used and is not just some assignment for one of our classes.
We hope that this does get used and improved upon because we spent a lot of time and effort on
it. The project was a great experience and we are happy with how everything came together to
present a working product for MHTC.

43|Page



References

1.

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.

20.

"Connecting TheData-Driven Enterprise.” Integration Software Leaders. Web. 26 Apr.
2015. <http://www.talend.com/about-us>

"Talend by Example." -. Web. 26 Apr. 2015. <http://www.talendbyexample.com/>
Manning, Jeff. "ETL Tool Analysis." E-mail interview. 1 Oct. 2014.

"TalendForge Tutorials." TalendForge Tutorials. Web. 26 Apr. 2015.
https://www.talendforge.org/tutorials/menu.php

"If You're Looking for Help, You're in the Right Place!" Welcome. Web. 27 Apr. 2015.
https://help.talend.com/display/HOME/Welcome

CodePro - https://developers.google.com/java-dev-tools/codepro/doc/
Talend -
https://help.talend.com/display/TalendAdministrationCenterUserGuide521EN/4.3+Mana

ging+Job+Conductor

Talendforge -
https://www.talendforge.org/tutorials/tutorial.php?idTuto=54&nbrFields=10
DataTables - https://datatables.net

JSoup - http://jsoup.org/
"New ETL World Record: 5.4 TB Loaded in Under 1 Hour - Syncsort"
"Mass High Technology Council Overview," 2014

"Massachusetts' Technology, Talent and Economic Reporting System - MATTERS -
Mass High Technology Council,” 2014
Firebug - http://getfirebug.com/whatisfirebug

Tamper Data - https://addons.mozilla.org/en-us/firefox/addon/tamper-data/

Quartz - http://quartz-scheduler.org/

Postgres - http://www.postgresgl.org/

Spring - http://spring.io/

Maurizio Lenzerini (2002). "Data Integration: A Theoretical Perspective" (PDF). PODS
2002. pp. 233-246.

Kimball, The Data Warehouse Lifecycle Toolkit, p 332

44|Page


https://help.talend.com/display/HOME/Welcome
https://developers.google.com/java-dev-tools/codepro/doc/
https://help.talend.com/display/TalendAdministrationCenterUserGuide521EN/4.3+Managing+Job+Conductor
https://help.talend.com/display/TalendAdministrationCenterUserGuide521EN/4.3+Managing+Job+Conductor
https://www.talendforge.org/tutorials/tutorial.php?idTuto=54&nbrFields=10
https://datatables.net/
http://jsoup.org/
http://www.syncsort.com/Portals/0/Resources/Solution/DMX_Solution_WorldRecord.pdf
http://getfirebug.com/whatisfirebug
https://addons.mozilla.org/en-us/firefox/addon/tamper-data/
http://quartz-scheduler.org/
http://www.postgresql.org/
http://spring.io/
http://www.dis.uniroma1.it/~lenzerin/homepagine/talks/TutorialPODS02.pdf

21. Metronic - http://themeforest.net/item/metronic-responsive-admin-dashboard-
template/4021469
22. CloverETL - http://www.cloveretl.com/

23. Pentaho - http://www.pentaho.com/product/product-overview
24. KNIME - https://www.knime.org/
25. Bootstrap - http://getbootstrap.com/

26. JQuery - https://jquery.com/

45|Page


http://themeforest.net/item/metronic-responsive-admin-dashboard-template/4021469
http://themeforest.net/item/metronic-responsive-admin-dashboard-template/4021469
http://www.cloveretl.com/
http://www.pentaho.com/product/product-overview
https://www.knime.org/
http://getbootstrap.com/

Appendix A: Analysis of ETL Software by Jeff Manning

Introduction

Organizations grapple with the extract, transform, and load (ETL) quandary every day. As
organizations’ needs grow, their data needs grow. Unfortunately, so do their respective ETL
projects grow increasingly more complex (and unwieldy). Organizations face a painful choice:
continue in-house development of custom solutions or leverage a data integration frameworks.
The focus of this report is to analyze and rank the current (F/OSS) ETL market for possible
inclusion in the MATTERS project. Here F/OSS refers to Free and Open Source Software.

ETL systems “offload” tedious, time consuming, one-0ff custom data integration coding to a
streamlined framework (both engines and graphical user interfaces). In short, ETL traditionally
refers to the following core capabilities:

1. Extract. The process of extracting data from external (to the system) sources. These can
include, but are not limited to, files (csv, Excel, reports, tar, zip), URLs, Web services,
and other databases (e.g. SQL query).

2. Transform. The application of “transforming” the data, including cleaning, rules,
mappings, and functions required to transform disparate sources into operational form.

3. Load. Persistently store (insert, update) information (relational, data warehouse, or data
mart).

To motivate the analysis, a story board was generated.

A new data source is released somewhere on the Internet. Staff from Massachusetts High
Technology Council sees this source and wants to use it in the MATTERSs application. They will
either (1) submit a request for an admin to add the source or (2), if they have admin privileges,
they will go to add the source. The admin will navigate to the admin page and be able to add the
source to the application. By adding the source, the data will be scraped, cleaned, and loaded
into the data warehouse.

The story board is very general. New sources are squirreled away in local files. The local files
are parsed and eventually feed to the data warehouse. The above story board was analyzed and
generated the following additional levied (or derived) capabilities:

1. Allow nonprogrammers/software engineers to bring online new data sources.

2. Code Generation. Ability to export code to seamlessly integrate into the MATTERS data
pipeline. The MATTERS data pipeline is a custom, non-threaded ETL process for
importing data into the MATTERS system.? See Section 2 for details.

L1t is unknown at this writing whether the existing MATTERs pipeline will require additional modification to
support code execution. It is assumed the option does exist to modify/generalize the pipeline to incorporate
additional third (This seems incomplete)

46 |Page



3.

4.

Advanced Visualization (nice to have). Applied more advanced visualization techniques
including scatter plots and 3D capabilities. Visualizations for both the inbound data set
(external source), as well as operational databases.

Analytics (nice to have). Various data mining (DM) techniques including both
supervised and unsupervised methods. Analytic(s) apply to both the inbound data set
(external source), as well as operational databases.

The story board was generated under the following assumptions:

1.
2.

4.

Source addition (by privileged user) is assumed to update the production tables.

The IDEs (see capability 4) have some capability to test workflow before load stage
(debug).

Rollback/restart a new source is required (inserts can fail). Performance/Integrity is
important.

It is beyond the scope of this ETL treatise to “remove” previously added metric sources.

In addition to the above story, several software packages were identified for analysis (in no
particular order)?:

Talend Open Studio.
CloverETL

KNIME

North Concepts Data Pipeline,

It is beyond the scope of this analysis to integrate and demonstrate any specified product with
MATTERs. It is the focus of this report to collect market information, ascertain subject matter
expertise, and analyze product literature for matching capabilities. Once collected, analysis will
rank the products.

Challenges:

Just because a pipeline has started, does not mean it successfully completed. How will you
recover? In looking at the current implementation (quickly), I did not see any transaction
support. There is no rollback. | could be wrong, looked like a straight insert. Assuming no
transaction support, several questions are raised:

What happens if the super-user (or admin) resubmitted the file for pipeline process?
Does the pipeline know how to restart the job?

My assumption is this is a production database (no staging). What is the state of the
database if an import fails? What 10,000 rows were inserted?

2 This product list is not considered exhaustive or static. As new frameworks are identified, thy will be quickly
added and analyzed.

47|Page



e Can the conclusions be trusted? Do we even allow “analysis” to occur in this condition?

Perhaps the pipeline has a GUI that gives intermediate results (I did not look into the models to
WEB-INF). If not, it might be nice to provide the user some feedback (progress)).

The document presents the analysis in the following sections. Section 2 describes a high-level
architecture of the MATTERs data pipeline. It captures the salient ETL capabilities used by
MATTERs. Section 3 reviews in greater detail the aforementioned four ETL frameworks. The
section builds a product ranking. Section 4 recommends a way forward/next steps.

MATTERs Data Pipeline Architecture

The following figure represents the high-level MATTERSs data pipeline architecture (with respect
to core ETL capabilities).

A 4

Transform > Load

File
File —% IParser H ICleaner

Extract

BEADownload

‘ BLSDownload ’—P

HTTPDownload

DBConnector ‘

LineData insert
—> DBSaver ’—»
select
DBLoader Fi

Figure 32 - Existing MATTERs Pipeline Mapped to Logical ETL

The implementation leverages concrete classes to implement specific functions required to
achieve operational data integrity. There are some exceptions. The specifics of the file parsers
(IParser) and the types of ICleaners are left to run-time construction. The ICleaner run time
construction means that a class factory is used to construct the IParser for parsing. It is not
known until runtime which IParser (concrete implementation) is constructed (based on the file
passed to the class factory). The DBSaver inserts the collected metrics (represented in LineData)
into the Statistics table (Mhtc_Schema). Extract capabilities download data and store local files
(used by IParser).

Limitations:

e There is limited flexibility in the ETL flow. The process is a one directional process
from source to sink. Only parsers are tuned to the concrete file types. ICleaner is really a
subprocess within the IParser.parseALL().

e New sources will likely require new parsers (or the extraction process writes to csv file
formats). What if the new source is a web service? Will the existing tools work
here? What about an API (Wsdl)? Who wraps the protocol to get the data? It can be
argued that these are in the purview of the data access (extract block). However, this still
needs to be written. If the extractor (downloads) writes out the file in the intermediate
form that the parser can handle, then no new parser will have to be written. However, the

48 |Page



problem has just shifted to the extract capability to map the new format to the existing
(and all that it entails). Either way it is work.

e Extract creates local files for reading/parsing/inserting. IParser detects the correct parser
(factory pattern) based on the file.

e |ICleaner transforms are simple mappings (MASS to MA). Data values are cleaned with
regular expressions (remove spaces, commas, etc.). Current data sources require simple
transforms (normalization/standardization).

e Difficult for users to get a feel for ETL progress. Failures through terminating
exceptions. How do you restart a previously failed data source (from file)?

e Scale. The ETL flow is not multithreaded (not sure this was a consideration).

A logical model can be made available upon request. For the purposes of this report, the central
schema element is the STATISTICS table. The analysis focuses solely in the inserting of data
into this operational table (STATE, METRIC, and CATEGORY are already present). The
primary keys (Stateld, Metricld, and Year) are sufficient to maintain integrity (this was not
validated). The data element stored is VALUE (and the date the value was entered).

ETL Framework Analysis

Although the set of products was given for analysis, no set of discriminants (metrics or grading
criteria) were specified to evaluate the product list. Based on limited conversations (email) with
team members, the following metrics are used for evaluation:

1. All core capabilities
2. Ata minimum, the first two extended capabilities

3. Simple. Both GUI (drag/drop) and ETL engine framework with Java code generation
capabilities. Cannot have an arduous learning curve.

4. Scalable/performance. Multithreaded—extract, transform, and load are all individually
managed in a workflow pipeline.

5. Market adoption. ldeally, the framework has a vibrant community and a market
presence.

6. Subject matter experts (SME) were consulted for professional experience with specified
tools.

Any product not meeting both 1 and 2 was removed from consideration (there were none).

Some metrics were removed from a previously more exhaustive list. Most products considered
had an abundance of data access methods. The supported access methods not only covered
existing hand- coded techniques but all supported likely future data sources. Additional metrics
such as low impact to MATTERS current, custom ETL code base were likewise removed. The
MATTERSs pipeline is likely to see wholesale changes (or two separate, orthogonal,
complementary pipelines will be supported).

49|Page



The proposed discriminates are qualitative measures (subjective). In the event the grading
criteria is altered, the recommendation could possibly change.

Talend Open Studio

Talend is a comprehensive Open Source ETL.
e The off-the-shelf product supports all core capabilities (basic needs).
e Supports the following extended features:

e Does have a simple intuitive IDE to design “procedures.” Procedures can be tested in
IDE! Supports a large number of components.

e Eclipse-based tool; generated Java code (single threaded); encompasses the Java
ecosystem; no black box engine.

e Support a large number of data extract formats (future proof).
e Cannot determine whether nice-to-have features are supported.
e Cited most often from the SME pool but considered a “steeper” learning curve.
CloverETL

CloverETL is a lightweight, Java-based data integration framework. CloverETL can be used
either standalone or as and embedded framework. Analysis reveals several issues/concerns:

e The community version (F/OSS) does support the basic needs of the MATTERS project
(core requirements).

e Does have a simple interface
e Limited scaling (six readers, five writers, nine transformers).
e None of the “nice-to-have” capabilities are supported in the community (F/OSS) product.

e Necessary to get the same feature set as in other the community (F/OSS) version must be
upgraded to the designer product line (commercial product).

e Unsure as to market adoption; no SME queried previously used the product.
KNIME

KNIME is an advanced framework meeting all seven capabilities. KNIME provides ETL
capabilities. However, it is an advanced analytics package (i.e., similar to R, Orange, SAS).
KNIME advanced capabilities including but not limited to exploratory data analysis (EDA),
powerful analysis tools (regression, logistics, GLM, etc.), predictive analytic tools, visualization,
and reporting.

Analysis reveals:

e Powerful framework

50|Page


http://www.cloveretl.com/

e Depending on analysis needs, KNIME can augment existing analysis with additional
capability (beyond the scope of the immediate ETL needs).

e No SME recommendation. Acknowledged: the focus of the SME was ETL, not
predictive analytics.

North Concepts Data Pipeline
To be completed.
Recommendation

The research done to date largely involved reading documentation, consulting SMEs, and
reading various product reviews. Due to the time commitments and the number of solutions to
investigate, the products were ranked.

1. Talend Open Studio
2. KNIME
3. CloverETL

Next Steps

These frameworks present a compelling case for adoption. The simple, intuitive IDEs and code
generation can greatly reduce the impact of incorporating new data sources, thus free engineers
to work other critical capabilities.

The next steps are straightforward:
1. Download the trial software to validate the top-ranked product claims.

2. If successful, take a sample source and re-create the data pipeline, using the framework
(output to file not STATISTICS table).

3. Examine the Java code, performance, and scalability.
4. Investigate the incorporation of the Java code into the MATTERS pipeline.

Regardless of the selected tool, MATTERS pipeline is likely to see significant changes.
Alternatively, a second “pipeline” is developed, orthogonal and complementary to the existing
approaches. The goal would be to add new sources support, then back fill existing sources
(remove original ETL implementation).

As noted, minimal time was allocated to download trail-ware versions and validate claims. The
number of products and the time allocated to the effort could not support the full regression
testing. This effort is a necessary step. It validated the market and capabilities for the F/OSS
ETL market. Secondly, it honed the set of products to meet the current (and quite possibly)
future needs of the MATTERS project.

51|Page



Appendix B: Talend Documentation

Talend Documentation

Table of Contents

Table OF CONENES ..o 52
TaADIE OF FIGUIES ...ttt ettt e e e s e e sae e e e sraesreanee s 54
1.0 Creating @ Talend JOD .........coiiiiiiieee e 57
1.1 Setting UP TalEN .......oviiiieeee e 57
1.2 GEttING YOUI DALA......cuiiiiiiiiiiiieieiee et 57
1.3 Creating Your FirSt JOD ..o 58
N (o [T o W 1 TSSO 60
1.5 Transforming the Data...........cocooieiieii i 67
1.5.1 Extra Replace EXAMPIE........ccooiiiiiiiiiiiceee s 68

1.6 Displaying the OULPUL..........cuiiiieieieie e 69
1.7 THE TIMIAP ..t b bbb 70
1.8 Database LOOKUP ....ccveeveitieiie ettt ettt sttt e be e esreeneenne e 73
1.9 Inserting t0 the Database. ..........ccveieeiiiiiii e 81
IO T o To] £ 1] T TS SRS 83
1.10.1 Running with context variables. ..o 85

2.0 Moving From Development to Production: ..........cccceoeiereniiiiinieeeese e 85
3.0 TalENT ROULINES ...ttt ettt nne s 89
B L OVEIVIBW ...ttt bbbttt e n bbb 89
B2 ROULINES ...ttt bbbttt nb e 89
K30 R o oo |1 1 o PSPPSR 89
3.2.2 DAtA WIAPPETS ...ttt ettt e e 91
3.2.3 AAdING 10 PIPEIINE ..o s 91

4.0 TalENU LOGGING ..ttt t bbb nne s 92
4.1 OVEIVIBW: 1.tttk bbbttt b bt bbbt bttt nb bbb s 92
4.2 Creating the MESSAGES .....cveieiiieeiiiie e nie ettt sttt ste e reesbe e 93



4.3 Catching and Sending the IMESSAQES.........cviiiieierieieriesie e 94

5.0 TalENT JOBS .. 97
5.1 OVEIVIBW ...ttt bbbttt ettt 97
5.2 8" Grade ProfiCienCy iN SCIENCE..........ccveveieeeieeeieeeeeeeeee ettt 97
5.3 ANNUAL SEALE SUMVEY ...c.veeieceieciie ettt 100
5.4 Average Electric Annual............cccooiiiiiii 102
5.5 BS WOIKFOITE ...t 105
5.6 Electricity Sales Price ANNUA ............cooviiiiiiiis e 107
5.7 NSF Talent SUPPIY ...cuveieeee ettt 110
5.8 BLS EMPIOYMENT......c.oiiiiiecic ettt 113
5.9 Capital Gains TaX RALE ......cccueiieiiee et 115
5.10 Census Personal INCOME ..........cocoiiiiiiiieieeee e 119
5.11 CNBC OVErall RANKS.......cviiiiiiiiiiiisiiiieieee e 121
5.12 EIA EIECIIICITY ACCESS ....cuvireiieitisiesiisie sttt 125
5.13 Grade 8 Student Performance ..........ccoeoeiiireiiniieesese e 127
5.14 IPEDS Number of Colleges and UNiVersities...........ccceevvevieieeieiic s 130
5.15 IPEDS StEM DEQIEES .....vveeiiiie ettt ettt see e e s e nrneean 133
5.16 State and Local TaX BUIAEN..........cooiiiiiiiiieiee e 136
5.17 Tech and Total EMPIOYMENT.........cooiiiiiiiiieee e 138

53|Page



Table of Figures

Figure 1: Example Excel File for Talend t0 USE .........cccccovviiiieie i 58
Figure 2: Displays the Create a Job Button in Talend ............ccccoev e, 59
Figure 3: NeW JOD WIZAIG ........cooiiiiieieie s 59
Figure 4: The Palette Pane is POpulated ............cooieiiiiiiiiieeeee s 60
Figure 5: Creating an Excel File in Metadata ............ccccooeieiiiiniiiieeeec e 61
Figure 6: Excel File WiIzard StEP 2........coveieiieiiee st 62
Figure 7: Excel File Wizard SteP 3........oov it 63
Figure 8: Metadata Tab With NeW EXCel .......c.ccoooiiiiiiice e 64
Figure 9: Adding INPUE t0 the JOD .........coiiiiiiii s 64
Figure 10: Adding a Wrapper t0 the JOD..........coiiiiiii e 65
Figure 11: Component Body of tJava COMPONENt ..........cccccvveveeieiieieecececeee e 65
Figure 12: Editing the EXcel Input LOCAION..........ccccvveiieiiiiccece e 66
Figure 13: Setting the Input to Come From the Wrapper ..........ccccoovevvevecieieene e 66
Figure 14: Connecting the two COMPONENTS ........cveiriiirierierierieriieie e 67
Figure 15: Adding tReplace to the JOD ... 68
Figure 16: Component Tab of the tRePIaCE..........cccveieiiiii 68
Figure 17:Patterns for Removing Non-Numeric Characters ...........ccccocovvveveieeiecvieseenne. 69
Figure 18: Adding a tLogRow to Display OQULPUL ...........cceeieieeiiiie e 69
Figure 19: Adding the tMap to the JOD .........coveiiiic e 70
Figure 20: INSIAe the tIMAP .......coiiiiieee s 70
Figure 21: Adding an Output t0 the tIMap........ccoovririiiee s 71
Figure 22: Adding Variables to the tMap ..........coueiiiiiiii 71
Figure 23: Moving the Data From Input t0 QUEPUL...........ccovviiiiiiiiciececcc e, 72
Figure 24: Adding the Year to the QULPUL .........c.eeviiiiieiiece e 73
Figure 25: Step 1 of the Database Wizard ...........ccccevveiieiieciic e 73
Figure 26: Database Connection DetailS............covieiiiiiiiiiieee s 74
Figure 27: Adding the Database CONNECLION ...........cccueiieiieiiieieee e 75
Figure 28: Retrieving the Database SCheMa..........ccoccevieve i 76



Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 57:
Figure 59:

Selecting the Tables to IMPOIT..........cooiiiiiiiee e 77
Adding Database INPULS .........ccooiiiiiiiecee s 77
Connecting the Database COMPONENELS .........ccccveveeiieieeii e 78
Mapping the State Names t0 IDS.........cccveveiieeiieie e 79
Getting the MELIIC ID ......ccuveieiie e 80
Adding the tFITErROW..........ociiiiiiiiieeee s 80
Component Pane of the tFIItErROW ..o 81
Adding the Database OULPUL ...........cocuiiriiiiiie s 82
Schema to match the Output to the Database............c.cccevvveveiieviciciiecece 82
Committing to the Database ...........ccceeveieeii i 83
FINISNE PIPEIING ......eeiiiieee e 84
Building the JOD 10 EXPOIt.........cccoiiiiiiiiiicce s 84
BUIld JOD WIZAIT.......ooiiiiiee s 85
File Input Component PANE........cc.ooiiiiiiiiiiicee e 86
Database Connection Component Pane .........ccc.ccceveeieeiieiiese e 86
Example of Database Input Component Pane.........c.ccccocevvievveieiecse e, 87
tJavaRoOW COmMPONENT PANE........cccvoiiiieiiiieiiiee e 87
Example of Inside 0f @ tMaP ......ooveviiiiiiiee e 88
Close up of Variable Part of tMap..........cooveiiiiiiieneeeeeee e 88
Close up of Code Section of Repository Pane ..........c.ccccevveveiieveciesieseee 89
SENALOYS ROULINE ....oveiiiecie ettt are e 90
How to Add Routines to PIPeline..........cccoevveiiiiiii i 91
Routines t0 Be AddEd..........ccoveiiiiiiieseee e 92
Example of a Pipeline With LOgQing..........cccuvirieiiniiinenece e 93
The Catcher and Sender Subjob for LOgging.........ccoovvvriiinieiinencseiescins 94
tMAP TOF LOGOING .vviiiieiie et 95
tJavaRoW ComMPONeNnt PAnE.........ccoiiiieiiiiieiiie e 96
8th Grade Proficiency In Science PIpeling.........ccocevviiininieiinneeie e 99
Annual State SUrvey PIpeling........ccccoeiiiiiie e 101



Figure 61: Average Electric Annual PIpeling ..o 104

Figure 63: BS Workforce PIPeline...........cccooiiiiiiiiice e 106
Figure 65: Electricity Sales Price Annual Pipeling..........ccccovvveiiieii i 108
Figure 67: NSF Talent SUpply PIpeling........cccooieiieii i 112
Figure 68: BLS EMpIOYMENt tMap........ccciieiiiieiiese e 113
Figure 69: BLS Employment PIPEIINE ..o 114
Figure 70: Capital Gains Tax Rate tMap .........cccoueieiieiirieierisree e 115
Figure 71: Captial Gains Tax Rate PIpeline ... 117
Figure 72: Census Personal INCOmMEe tMap .........ccccveiiiieieeie e 119
Figure 73: Census Personal Income Pipeling...........cccooeiieiiic i 120
Figure 74: CNBC Overall Ranks tMap.........ccccooviveiiiiieieese e 121
Figure 75: CNBC Overall Ranks PIpeling ..........cooeiiiiiiiiiiieeeeee e 124
Figure 76: EIA EIeCtriCity ACCESS tIMAP .......ceiuiiiiiiiieieiesie s 125
Figure 77: EIA Electricty AcCess PIPElINe .........coviiiiiiiiiiieeeeee e 126
Figure 78: Grade 8 Student Performance tMap ...........cccccvveveieii e 127
Figure 79: Grade 8 Student Performance Pipeling ..........cccccovoveiieviiicciece e 129
Figure 80: IPEDS Number of Colleges and Universities tMap..........c.ccceeveveieeineennenn. 130
Figure 81: IPEDS Number of Colleges and Universities Pipeline ...........cccocvvninnnnnns 131
Figure 82: IPEDS Stem Degrees tMap for OQUIPUL .........ccoceiiiiiiiiiieee e 133
Figure 83: IPEDS Stem Degrees PIPeling ........ccccoveviiiiieece e 134
Figure 84: IPEDS Stem Degrees tMap for INput..........ccccovieiiieiiiiiec e 135
Figure 85: State and Local Tax Burden tMap.........ccccovvvieiie i 136
Figure 86: State and Local Tax Burden Pipeline...........cccoociiiiiiiiininiiie e 137
Figure 87: Tech and Total Employment tMap.........cccooeieiiiiniiiiiinieee e 138
Figure 88: Tech and Total Employment Pipeling ..o 140

56 |Page



Creating a Talend Job
1.1 Setting up Talend

First you will need to have Talend installed on your machine. Talend can be found here:
https://www.talend.com/

Follow the site’s simple download and setup instructions to get Talend up and running on
your machine. Once you have Talend installed you can start creating jobs. A job is a workflow
that you create for Talend to execute. This can be as simple as reading a file or can get more
complicated to clean data from a file, transform it and insert into either a new file or a database.
In this example we will be taking an excel file and inserting it into our database. Along the way
we will also be cleaning the data so it fits our database schema.

1.2 Getting Your Data

First before you can begin you will need to have your excel file that you plan to load
somewhere you can access it whether it be on your machine, some shared file system or being
downloaded by one of our wrappers. More information on wrappers can be found in section
3.2.2. In this example we will be using the 8" grade student performance in Math and Science
file.

Below you can see what the file looks like:

57|Page


https://www.talend.com/

T 8th_¢
TED B G-t e F.-=. & -

#& Home Layout Tables Charts SmartArt Formulas
Edit Font Alignment
“ﬁ‘ . Arial ~|10 |~ B | abc - & Wrap Text
|
P B I | U = Merge
Al A
- {
e 2011
Z AR NA 34
3 AL 18 19
4 |AR 24 26
5 Az 22 23
6 |cA 20 22
7 _co 36 42
& CT 35 35
9 DC NA 8
10 DE 25 28
11 |FL 25 28
12 GA 27 30
13 (HI 17 22
14 1A 35 35
15 D a7 38
a6 I 28 26
i7 |IN 3z 33
18 |KS NA as
19 Ky 34 34
20 |LA 20 22
21 |MA 41 44
22 |MD 28 32
23 |ME 35 37
24 (Ml 35 38
25 |MN 40 42
26 |MO 36 36
27 |MS 16 19
28 |MT 43 44
29 |NC 24 26
30 ND 42 45
31 |INE NA 38
32 INH 38 a2
33 NJ 34 34
34 NM 21 22
35 NV 20 23
36 |NY a1 29
37 OH a7 38
S8 OK 25 26
39 OR 35 as
30 |PA s 3
a1 |PR NA NA
az |RI 26 31
43 |sc 23 28
44 |sD 40 42
as |TN 28 31
a6 |TX 29 32
a7 |us 29 31
a8 Ut 38 43
49 (VA 36 40
50 |vT __NA i 43
90 VTN sheno. )
Normal View Ready

Figure 33: Example Excel File for Talend to Use

As you can see this file is not in a proper format to be entered into our database and has some
data missing so we will need to fix that using Talend.

1.3 Creating Your First Job

Now that we have Talend installed and we have our excel file we can move onto creating
a Job to put this data into our database. First from the Talend screen you are going to want to
right click on job designs and click create new job:

58 |Page



‘@00 Talend Enterprise Big Data (5.5.1.r118616) | Test (Connection: Local)
| & @00 i | A |7 ed | [ an Qg sk & Bxchane
2 BE&[emT=0|

LOCAL: Test
{#Business Models

» 1 Create job
"l Contexts ¢ Create Map/Reduce Job
:jgg‘:'nm ?g Create job from templates
» i Metadata — Create folder
»[& Documer  Expand/Collapse

[SjRecycle b & Build Job
%/ Import items
lag Export items

£2 Job [ 71 Contexts | 3% Component 33 "._UP Run Job | (51 Code Viewer

5% Outline 52 = 8| Pproperties not available.
An outline is not available.

Figure 34: Displays the Create a Job Button in Talend

You will then be prompted with a New Job Wizard seen in the image below. The only
required field is the name field however writing in a purpose and description will help future
users understand the pipeline better.

|8 0O 0 Mew Job
New Job
-:’i‘:- It is inadvisable to leave the purpose blank. &

Mame | JobFerDocumentation| ]

Purpose [ |

Description

Author test@talend.com

Locker

Version 0.1 [m ] [ m |

Status [v]

Path | Select |

[ Cancel | E Finish |

Figure 35: New Job Wizard

59|Page



The first thing you may notice after creating a job is that the Palette pane has populated,
this is where you can find all the components Talend has to offer and is how we will build our

job.
b Job excelToDBTest 0.1 2% = B |5 palene £3

" || Find component...

|~ Big Data
. | = Business Intelligence
= Business
(= Cloud
. |l Custom Code
= Data Quality
| Databases
(= DotNET
(= ELT
"Nz ese
(= File
(= FileScale (Deprecated)

= Internet
Designer | Code | Jobscript

L= Logs & Errors
0 JoblexcelToDBTest 0.1) Contexts(Job excelToDBTest 0.1) | %# Component &3 B Run (Job excelToDBTest) | | Code Viewer =0 (= Misc

(= Orchestration
Properties not available. = Processing

= System

= Talend MDM

= Unstructured

(= XML

Figure 36: The Palette Pane is Populated
1.4 Adding a File

Now that we have our Job the first thing we will need to do is to pull in the data from our
excel file. However in order to ensure that this file can be used in other jobs as well we are
going to create a template for it in Talend. To do this: expand the Metadata tab in the

Repository pane. Then right click File Excel and click Create file Excel.

60|Page



® 00 Talend Enterprise Big Data (5.5.1.r118616) | Test (¢

MR QO & ea v \m Learn i’\g&k # Exchange

L

= | e Y = E\ <0 Job excelToDBTest 0.1 23

LOCAL: Test
 [i#Business Models
» {}Job Designs
i35 Joblet Designs
[} Contexts
» |2 Code
» L[ sQL Templates
v & Metadata
» J#§ Db Connections
B SAP Connections
» i) File delimited
[& File positional

[® File regex
[ Fite xml

~ | File Excel
File ,d "7 Create file Excel

[Q) Fite Json 5 Create folder
LDAP Expand/Collapse
B salesforce & Import items

» [ii] Generic schemat
&’ Talend MDM
» () Rules Management g — — =
" Hadoop Cluster <1 Job(excelToDBTest 0.1) | .} Contexts(Job excelToDBTest 0.1) | =& Component &2 Ok
‘EW Copybook

g Export items
pm2signer Code | Jobscript

B Outline 82 t 7 = O/ properties not available.

Figure 37: Creating an Excel File in Metadata

This opens up a wizard for creating the excel file. The first screen is self-explanatory,
just enter a name and optionally a purpose and description. Then on the next page you will need
to browse to the location of the excel file you wish to use and select the sheets for Talend to use.
Some times a file will have multiple sheets and you will need to select which sheet to base the
schema off of for this example there is only one sheet so just select that one.

6l1|Page



File - Step 2 of 4

Add a Metadata File on repository

Define the path of the file and the format settings

File Settings
Server Localhost 127.0.0.1
File JUsers/wdrussell/Documents /talendFiles/8th_grade_performance.xls Browse...

_| Read excel2007 file format(xlsx)

Generation mode | Memory-consuming(User mode) -

File Viewer and Sheets setting

Set sheets parameters Please select sheet (Sheet structure as schema guide) |SheetD
v ¥All sheets/DSelect sheet A B [
v Sheet0 State 2009 2011
AK NA 34
AL 19 19
AR 24 26
AZ 22 23
CA 20 22 {
co 36 42 |
cT 35 35 i
DC NA 8
DE 25 28
FL 25 28
CA 27 30
HI 17 22
1A 35 35
. T v
< Back Next > | Cancel Finisk

Figure 38: Excel File Wizard Step 2

Then on the next page you can define the column names of the excel file. You can set
limits on where the sheet starts and ends both for columns and rows. It also provides a preview
of what it will look like. You can also adjust where you want the file to start. For this example
we just need to set the heading row as column names which takes the first row in the excel file
and makes that cell the column name. Below you can see what this looks like:

62|Page



8 00 Edit an existing Excel File

File - Step 3 of 4

Add a Metadata File on repository

Define the setting of the parse job

File Settings Rows To Skip

Encoding |UTF-8 :| If any rows must be ignored, specify the following parameters

| Advanced separator{for number) Header M |1 -

Thousands separator: ' Footer [_|

Decimal separator:

Metadata column setting Limit Of Rows
First column: 1 If the number of lines must be limited, specify this number

Last column: Limit ] =

Preview | Output

 Set heading row as column names | Refresh Preview |

State 2009 2011
AK NA 34
AL 19 19
AR 24 26
AZ 22 23
ca 20 22
CO 36 42
cT 35 35
DC NA B8
DE 25 28
Fl 25 2R

| Export as conte» | Revert Conte»

< Back Next > | Cancel | Finish

Figure 39: Excel File Wizard Step 3

As you can see the preview now displays the appropriate column names in the header.
Then in the final panel you can update the schema. To keep things simple we will be leaving this
alone. Then just hit finish and you should now see the excel file you created under the Metadata
tab in the file excel section.

63|Page



8606

| 1 8@ O || b

i SR

LOCAL: Test
{1# Business Models
» £ Job Designs
il Joblet Designs
I3 Contexts
> = Code
» LI'sQL Templates
¥ i) Metadata
» Ji§d Db Connections
BV SAP Connections
» ) File delimited
[ File positional
R File regex
[ Fite xmi
¥ ] File Excel
» | %] testTaxes 0.1
(&) File 1dif
[Q3) Fite Json
LDAP
@D salesforce
» [[]] Generic schemas
&7 Talend MDM
» () Rules Management

Designe

(=] Fite

5% Outline 53 B ® © 0| Ppropen

Figure 40: Metadata Tab With New Excel

Now you can drag the excel file you just created and drag it from the Repository Pane
into your main Job window and make sure to select tFilelnputExcel.

eno Talend Open Studio for Data ion (5.6.0.20141024_1545) | Matters (Connection: Local)
BIQNO | P2fa A& 8@ ¢ [100% (v | (W Leam vg sk G Uoorade! & Exchange 7 | £} Integration
{3} *Repository 33 =% |$ MY < 0|[&ws £3 Job £t Job excelToDE 0.1 £ Job ElectricitySales w___z i+ Palette 53 =08
LOCAL: Matters "
¥
» L sat Templates
¥ {43 Metadata Find component 4
> I§Job C
>[5 Fil (> Big Data
B L= Business Intelligence
‘r‘ (> Business
B
v File Excel £2Clovwd
» (5 Unemploymentinsurance (= Custom Code
» [3] AnnuaiStateSurvey2013 0.1 (= Data Quality
» 3] averageElectricAnnual 0.1 (= Databases
» 3] BeAPersonalincome 0.1
» %] BLSEmployment 0.1 = (5 DoET,
» 5] bs_workforce1 0.1 =ar
» [¥] CapitalGainsTaxRate 0.1 > S8
» (5] CensusPersonalincome 0.1
» (5] cbcOveralRankings2013 0.1 gradesStudentPerfomanceMathScience &Hfle
» 5] ElectricitySalesPriceAnnual 0.1 > Internet
» %] grade8StudentPerfomanceMathScience (&> Logs & Errors.
TCHIstori 8
» [3] STCHistoricalDB8 0.1 + tAssert

» [3] TechAndTotalEmployment 0.1
» [3] testTaxes 0.1

2= Outline 82 G Code Viewer

<8

Designer Code

=Y ion 0.1) | 72 Co Job 0.1) | P> Run (job JobForDocumentation) | > Component 3 7, Modules

L1

» cience(tF 1)

‘Basic settings Property Type  Repository [¥] [EXCEL grade8StudentPerfomanceMathscienc |
R Read excel2007 file format(xisx)
Onamicsawngs o ™' */Users/wd /8th_grade. s
View v All sheets
Documentation Header 1 o Footer |0 Umit
Affect each sheet(header&footer)
Die on error
First column 1 o Last column
Schema Repository ¥ [EXCEL aradesStudentPerfomanceMathscien Edit schema |

Figure 41: Adding Input to the Job

i

4y tAssentCatcher
€4 tChronometerStart
(3 tChronometerStop
Q wie
1 tFlowMeter
By tFlowMeterCatcher
"‘_ tlogCatcher
T 00RO
2 Misc
(= Orchestration
(= Processing
(= System
L= Talend MDM
(& Unstructured
(XML

Now your job should look something like this. However we are still not done. We have
a data wrapper for this file, which we can use to download it for the job so it doesn’t have to
point to somewhere locally. In order to set up the data wrapper we want to add a tJava
component, which can be found under Custom Code in the Palette Pane. Below you can see the
job with the added component.

64|Page



]

Ll

tJava_l

m

grade8StudentPerfomanceMathScience

Designer | Code

Figure 42: Adding a Wrapper to the Job

For the tJava component to do anything we need to edit its component tab to use our data
wrapper. (For more information on data wrappers visit the routine documentation in section 3.2)
In the component pane you are going to want to enter the following code in order to call the
routine to download the file:

DataWrapperMain.createDirectory();
DataWrapperMain.EightGradePerformanceDownload();

Then your component body should look like this:

4 Job{jobForDocumentation 0.1) I 77 Contexts{job JobForDocumentation 0.1) | LI Run (job JobForDocumentation) m‘% Modules| =E

-;:@ tava_1 o=t
|

Code DataWrappertiain, crestelirectory();

Basic settings
9 DataMrappertiain. EightGradePer fornancelommload() ;|

Advanced settings
Dynamic settings
View

Documentation

Figure 43: Component Body of tJava Component

65|Page



Next you need to edit in the tinputExcel the file path. Select the component and then
click inside the box. You will be prompted to either view the repository setting or change to
built in connection. Click on the change to built in property radial and then continue

tava_l

| ® O O Edit parameter using repository

Please choose one option, or cancel.
&
—eu

option

| 3 Rt ) 3 Change to built-in proj .
grade&StudentP;rfom;nceMathScl © i Drapeity

L:) Update repository connection.

m[ Code[

b(JobForDocumentation 0.1) ‘ ! Contexts(Job JobForDocumentation 0.1) ‘I:IP Run (Job JobForDocumentation) ‘ ¢ Component 237 ?5 Modules

grade8StudentPerfomanceMathScience(tFileinputExcel_1) 75%’
‘ rty [Repository [¥] | &
R \{ . =
© settings Property Type £pository EXCEL:grade8StudentPerfomanceMathScienc [

———————— | | Read excel2007 file format(xIsx)
nced settings ‘

- - o " *
\mic settings ‘ File name/Stream "/Users/wdrussell/Documents/talendFiles/8th_grade_performance.x|s Q
| v All sheets

imentation Header 1 o Footer [0 |y Limit
|| Affect each sheet(header&footer)
|_| Die on error

Figure 44: Editing the Excel Input Location

Then you are going to want to change the file name field to be
wrapperDownloadLocation/<filename> so for this example it would look like it does in the
image below:

£} Job(obForDocumentation 0.1) | "7 Contexts{Job JobForDocumentation 0.1) TP Run (Job JobForDocumentation) = Component 53% Modules =t

g grade8StudentPerfomanceMathScience(tFilelnputExcel_1)
| B ¥
Basic settings Property Type Bullt-In E

Advanced settings ("] Read excel2007 file format(xlsx)
Dynamic settings File name/Stream  “wrapperDownloadLocation/8th_grade_performance.xls” * :|

View @ All sheets

Documentation

= (B

Header 1 Footer |0 Limit
(] Affect each sheet(header&footer)

(| Die on error

1
First column 1 Last column
T=1 - v 1 —

Figure 45: Setting the Input to Come From the Wrapper

66 |Page



Finally you need to right click on the tJava component and go to Trigger and select on
component ok and attach that to the excel file so the pipeline wont start until the file has been
properly downloaded. Now are pipeline should look like this:

el

tlava_1
D'TCD'TTD‘O" entOk
g
=2

' grade8StudentPerfomanceMathScience

Figure 46: Connecting the two Components

1.5 Transforming the Data

First we are going to start by going over to the Palette tab and expanding the processing
bar. From here click on the tReplace and add one into the job. Connect the main output of the
file to the tReplace in order to feed the data long the pipeline from one component to the next.

67|Page



tava_l

0“-:3»1p"(.w:---z(3«

R
B A

gr:LdnBSluduntP(.erfnm;n(aMnthS(lén[!Repla(n_l

Figure 47: Adding tReplace to the Job

Now click on the tReplace component and got to its component tab in the bottom pane.
For this file there are a few ‘NA’ in it instead of a number. We are going to need to replace these
in order to transform the data later on so you will want to click the green plus sign in the
tReplace to add a new rule to the component. (For this example you need to add two rules, one
for each column) In the rule you are going to want to set it to the appropriate column and then
have the search for be “NA” and in this example we will be replacing it with “0”. Below you
can see what the component should look like once you are done.

‘I,-z (Sl
FE3 tReplace_1 EE

Basic settings Schema Built-In __ [¥] Edit schema Sync columns
Advanced settings \ZT Simple mode

Dynamic settings Search/Replace  [jnputColumn Search Replace with v| whole word || Case Sensitive [ | Glob expressio Comment
_009 NA ‘0" ~ ] O
Documentation _011 "NAT 0" o~

View

Figure 48: Component Tab of the tReplace

Sometimes there are some more things that may need to be removed or replaced such as

commas or percent signs. Below is an example from another job so you can see some other rules
you can set to help you clean your data files.

1.5.1 Extra Replace Example

Check the advanced mode check box so we can use regex to remove certain symbols. In
here add four new rules. We want to replace any non-number characters in the wages column
and percent signs from any of the percentage columns. Here are the patterns to do so:

68|Page



A=
i~§ tReplace_1 |

Basic settings
Advanced settings
Dynamic settings (. .

View .
@ Advanced mode ( search with regexp pattern )

Documentation

validation Rules Regexp patterns soyrce Pattern Replace Comment
Wages_Subject_to_Tax "\\D* -
Minimum_Rate__1_ %" -
Maximum_Rate__1_ %" =

New_Employer_Rate_2_ %"

Figure 49:Patterns for Removing Non-Numeric Characters

The \\D just removes any non-numeric character and in the replace column we swap it for
nothing. The other three rules are just searching to remove percent signs from the cells.

1.6 Displaying the Output

At any point during the process of creating your job you can stop and check what the
current output is. To do this in the Palette Pane go to Logs and Errors and add a tLogRow to your
job and connect it to your pipeline. This will allow you to see the current output. To run your
job, in the bottom pane click on the run tab and then click the run button. After doing so your
job should look something like this:

Find component...
(= Big Data
.| [= Business Intelligence
= Business
"|| &= Cloud
.|| > Custom Code
(== Data Quality
' = Databases
(= DotNET
= ET

101 rows in 0.15s
691.78 rows/s

rowl (Main)

51 rows in 0.15s 51 rows in 0.15s
349.32 rows/s .Q-vz 349.32 rows/s
5 row2 (Filter) 3-B
tReplace_1

%
tLogRow_1

demoExcel

row3 (Main)

tFilterRow_1

(= ESB

- || = File

) (== FileScale (Deprecated)
(= Internet

Designer | Code | Jobscript

(= Logs & Errors

o — L TLNroNOMsmEm
<} Job(excelToDBTest 0.1) | . Contexts(job excelToDBTest 0.1) | =& Component Wgﬁ Code Viewer =g “u -
) tDie
Job excelToDBTest
Default [ tFlowMeter
- Execution .
Basic Run Name A [, tFlowMeterCatcher
Debug Run r Run | Kill |5 Clear | %_tLogCatcher
Advanced settings e s v tLogRow
Target Exec Arkansas|12000(1.2]|7.1]4.0
California|7000|1.5]6.2|3.4 A, tstatCatcher
Colorado|11300(1.0]5.4]1.7
Connecticut|15000]1.916.8]4.2 — 1, tWam
Delaware|10500(0.318.23.1
District of Columbia |3000]1.6]7.0]2.7 - (= Mise
Florida|B8000|1.51]5.4]2.7
Georgia|9500(4.0]8.1]2.62 (= Orchestration
Hawaii|39600|1.2]5.4[4.0 =
Tdaho |34800|0.96]6.8]3.36 [ Processing
T1linois|12900|0.55(9.45/4.35 =
Tndiana|9500]0.5]7.4]2.5 (= System
Towa|26000(0.019.0]1.5 \
Kansas|G000]0.11]9.4[4.0 iST8lend MOM
) Line limit | 100 ™ wrap (= Unstructured
=T

Figure 50: Adding a tLogRow to Display Output

69|Page



1.7 The tMap

Now that you have checked your output at this point you can remove the tLogRow and
we can continue on with the pipeline. Now we want to go back to the processing section in the
Palette Pane and select the tMap component and add one to our job. Then connect the tReplace
component to the tMap.

ﬁ || ’.;‘_{-Eq. _ Main) FB%;

gr;ldl:BS(uden(Paﬁnmancththclenc!RT:place-__l ’ tMap_1

Figure 51: Adding the tMap to the Job
With the tMap component we can extract the information we want and select what we

want to go into the database. Double click on the tMap component and you should see a screen
like this:

Figure 52: Inside the tMap

Here you can see three columns. The column all the way to the left is the input column.
These are all the components feeding into our tMap. The middle column is for variables. This
column lets you manipulate your input fields. Then on the right is the output column. Here is
where you select what you want to be outputted from the tMap. To start lets first click the plus
sign in the output column to create a new output and name it outl.

70|Page



Find & 45 + x £ Auto map!

row2 + | & var ¥ = 1 * | &
Column Expression Type Nu Variable Expr Colum
State String va
_008
o1
Schema editor _Expression editor
rowz outd
Column Key | Type ] Nullab Date Pattern (Ctrl+!Length  Precision | Default | Comment Column Key |Type ] Nullab Date Patter (Ciri+!Length  Precision  Default Comment
State String 2 o
009 String v H 0
_o11 String v 2 o
4 ™ @ Ld L] x

Figure 53: Adding an Output to the tMap

The tMap allows you to make different connections by moving the variables from input
and variables over to different output tables so you can get just the data you want. For this we
are going to need the value of minimum rate however currently it is set as a string and the
database wants it as a floating-point number. To make this change lets first click the plus sign
on the variable table to add a new variable and then drag _009 into that variable. Make sure to
set the variable as a float. Once you drag it in you can see that a yellow line appears to show you

where the input is going.

BAa Find - L4 & X & | Auto map!
row3 L Var TRY V| minRate ya s
Column Expression Type Nu Variable Expression Column

State row3 Minimum Rate_L_____[[PRALE G @ minkate |

Wages_Subject_to_Tax

Minimum_Rate_1_

Maximum_Rate_1_
New_Employer Rate_2_

Figure 54: Adding Variables to the tMap

71|Page



However this does not automatically change the input from a string to a float. First we
need to write a little expression. Click on the variable and then in the lower left click on the
Expression Editor tab. In here you can use various java functions to manipulate your data. For
our purposes we want to make sure that there is data there and that we can turn it into a float to
do so paste:

Float.parseFloat(row2._009)/100

into the expression editor. The parseFloat call turns the string into a float and we divide by 100
because these are percentages that we want to enter into the database as decimals. Once you have
done this drag the variable into the output table we created earlier. Another yellow line should
appear to show the connection.

Find > X 57| Auvto mapt

row2 * o Var hd had autl - o
Column Expression Type Nu Variable Expression Column
Stae Float parseFloat(row2._009)/100  float _ valog Var.valo9

Figure 55: Moving the Data From Input to Output

Now we only need three more items in output: the Stateld, metricld, and year. Lets first
get the year since it’s the easiest. Add another Variable to the variable column and then for the
name call it year and for the expression type 2009 and make sure the variable is set to an int.
Finally drag the variable to the output.

72|Page



D& Find

row2 » | & Var

Column Expression
— Float.parseFloat(row2._009)/100
_o09 )
_o11

Figure 56: Adding the Year to the Output

1.8 Database Lookup

Column
Valog
year09

Fu |8

Now to deal with the Stateld and Metricld, for these we will need to pull in some data
from our database. To do so first we need to create a database connection. Under Metadata on
the Repository, right-click DB Connections and select Create Connection, this will open up a
wizard to create your connection. First just fill out the name of the connection.

|
H SR ]QO: i ]2 fa New Database Connection on repository - Step 1/2

= [ @~ =0y © Nameis amay.
LOCAL: Test i
¥ (7 Business Models R
v Job Designs
Fyao. Purpose
£ er 0. Description
» |5 Code
» L] sQL Templates Author
¥ i Metadata - Locke
T Db Connections
» ol demobtysql 0.1 G
Stan
Path
xce
¥ (3] testTaxes 0.1
» 5] torialExcel 0.1
@ File Idif
) File Json Des
LDAP 21
|
B salesforce l;!-]
5E Outline £ |3 Code Viewer| |B|&F = O ° |
P tFileinputExcel_1 (tutorialExcel) eal
b tFilterRow_1
»tMap_1 L |
¥ tReplace_1 |
e
L. |
S o—

Figure 57: Step 1 of the Database Wizard

) 45 Debug -

o Palette B2

Find component...

(= Big Daua

.| (= Business Intelligence

[ Business

= Cloud

. | &2 Custom Code

(= Dara Quality
(= Databases
(= DotNET

Ear

(> E5B

(= File

¥ Internet.

(= Logs & Errors

L= Mise

| Orchestration

(= Processing
(2 Fields
= raggregateRow
£ rAggregateSortedRow
¥, WonveriType
= thaernalSarRow
¥ tFilterColumns
" tFilterRow
Ly goin
B thap

(= System

| Talend MDM

L= Unstructured

(2 XML

73|Page



Then on the next page you will fill out all of the connection details. For this I will be
using my local database.

800 Database Connection
MNew Database Connection on repository - Step 2/2 )
Define the connection parameters %i
DB Type | PostgreSOL Y
Db Version | Prior to v 4]

String of Connection | jdbc:postgresgl://localhost:5432/mhtc_local

Login postgres
Password sense
Server . Iocalhosﬂ
Port 5432
DataBase mhtc_local
Schema mhtc_sch

| Check | v |
Database Properties
S0L Syntax | S0L 92 = String Quote | * MNull Char 000
| Export as contes | Revert Contex
How to install a driver
| < Back | Next > | Cancel | [ Finish ]

Figure 58: Database Connection Details

Once you have entered your information click the check button to make sure everything
is right and you can establish a connection. Once done select Finish and then select your new
connection from your DB Connections, drag it into the job window and select
tPostgresqlConnection. This component will establish an initial connection to your database for
use by other database components.

74|Page



&

= : mhtc_local

F

tava_l

OnC:J-‘wpl‘uthOk
*  A=2 N :
=X rowl (Main) ‘i‘_‘ row2 (Main) -[ﬁi

grade8StudentPerfomanceMathScienceReplace_1 tMap_1

Figure 59: Adding the Database Connection

Next to make our lives a bit easier we are going to add some more items to our database
connection. Right click your new DB Connection and click Retrieve Schema. This will let
Talend know everything it needs to about the schema of all the tables in the database. It will
open up a new wizard. On the First window just click next.

75|Page



Schema

Filter for the Table.

Select Filter Conditions
(+) Use the Name Filter (_) Use the Sql Filter

Select Types
v TaBLE (v viEw (v SYNONYM

Set the Name Filter:

% | New... )
| Edit... |
| Remove... |

Set the Sql Filter:

[ SELECT TNAME FROM TAB WHERE TNAME LIKE 'BAL¥'
< Back Next > | Cancel | Finish

Figure 60: Retrieving the Database Schema

Then on the next page we want to select all the tables to import so click the check box at
the highest level to select all and click Next.

76|Page



800 Schema
New Schema in connection "a"
Add a Schema on repository @

Select Schema to create

Name Filter:
Name Type Column number Creation status
s mhtclocal _________________________Jomwoe | | |
™  ¥mhtc_sch SCHEMA
[QI categories TABLE 6 Success
@ categoriesxmetrics TABLE 2 Success
EI deleted_statistics TABLE 5 Success
EI metrics TABLE 10 Success
EI permissions TABLE 2 Success
@ states TABLE 4 Success
@ statistics TABLE 5 Success
=4 test TABLE L Success
= testStats TABLE s Success
= usergroups TABLE 2 Success
= usergroupsxpermissions TABLE 2 Success
= users TABLE 7 Success
| Select A | | Select Non | | Check Connectio |
| <Back Next > | Cancel Finish

Figure 61: Selecting the Tables to Import

Then on the last pane just select finish unless you want to edit any of the existing
schemas, which we do not in this tutorial. Now that we have the tables in Talend you want to
drag in both the States table and the Metrics Table into our Job and set them as tPostgresqlinput
and on both check their component property “Use an existing Connection”

" b B . | Bt | ! . . S
mhte_local states ‘metrics

,\f:

tava_T [ ’ i : : : : i ’
OnCompdgentOk o=
(L)
. . . . -_1 7 ned |
B " rowl Main) " §e-  row2 (Main) E q

grade8StudentPerfomanceMathScienceReplace_1 tMap_1

Figure 62: Adding Database Inputs
77|Page



These inputs select all items in the table. Next right click each and connect them to the
tMap to be used as lookups. We also want to ensure that these don’t run before the database
connection has been made so right click the tPostgresSglConnection hover over trigger and
select onSubJobOk and connect that to the states input.

"Cll OnSubjobOk ';b b

mHtc_IcéaI ’ “states” ’ ’ “metrics”

ﬂ'E row3 (Lookup) rowd (Lookup)

: : : : : : : A pE
it >
———— =+ & T
rowl (Main) 3-B row? (Main)
grade85StudentPerfomanceMathScienceReplace_1 tMap_1

Figure 63: Connecting the Database Components

Next open up the tMap again so we can add our final two elements to the Output. The
first thing we need to do is associate the state id with the State. Click on the state and drag it to
match the Abbreviation field in your states input. This creates a link between The State input
from the excel sheet and the state names in the database. Next drag the ID from the state input to
the output.

78|Page



o Find y + " &1 | Auto map!

w2 w | & vai i outl & |8
Column Expression Type Nu Variable Expression Column
State Float.parseFloatirow2._009)/100  float Valog Var.valog Valoo
009 2009 int year0d Var.year09 year09
on row3.id Qud
row3 S|
Expr. key Column
ay’]
&, row2 State Abbreviat ttion
Name
IsPeerStat
row4 +*
Expr. key Column
Qid
Name
Visible
IsCalculated
DataType
DisplayName
URL
Source
DisplayQrder
TrendType

Schema editor . Expression editor

row3 outl

Column Key Type ] Nullab) Date Partern (Ciri+:Length  Precision  Default |Comment Column Key | Type | Nullab Date Pattern (Curi+!Length  Precision Default  Comment
Q10 o int 10 0 valoa float

Abbreviation String 2 (] year09 nt

Name String 10 0 = & it 10 0

IsPeerState boolean 1 0 ‘false
) LK { ® @ LK ) LR | ) L@l Lk

Figure 64: Mapping the State Names to I1Ds

Now we only need the metricld to get this we need to know what our metric is. For this
you can go to the admin panel and navigate the database to find what metric is associated with
the source you using. The metric should match the column name you are using. Once we have
the metric name we can then create a new variable to add it. For this Variable we are going to
make it an int and use the expression:

Row4.Name.equals("Proficiency in 8th Grade Science ") ? row4.1d : 0

This expression checks to see if the name equals Proficiency in 8th Grade Science and lets that id
pass through otherwise it sets the id to 0. Once you have this drag the new variable into our
output. Now our output table is complete and is almost ready to be inserted into the database.

79|Page



row2

Column
State
_009
_on1

row3

Expr. key

&, row? State

rowd

Expr. key

Schema editor | Expression editor
Var.metricld

Fp=]

Column
id
Abbreviation
Name
IsPeerState

Column

Cyid
Name
Visible
IsCalculated
DataType
DisplayName
URL
Source
DisplayQrder
TrendType

Find

var

Expression Type
Float.pars Var atlrow2._009)/100  float

2009 int
Rowd.Name.equals(*Proficiency in 8th| [SIRL o8

;X 5
Nu variable
Valog
year0s
v DIET T —

= X £ | Auto map!

outl & " (.
Expression Column
var.vaios valoa
Var.year0d yeard9
w3 ld d
Var.metricld metricld

Figure 65: Getting the Metric ID

Now that we have our mapping done we just need to remove a bit more. When we
mapped the metric id we brought in every metric id except anyone that isn’t minimum rate had
their id set to 0 so we need to remove all of these before inserting into the database. To do so we
are going to add another tFilterRow component. Once you add it to the job you will then want to
connect the tMap row minRate (the output we created) to the new tFilterRow.

OnCompdgentDk

| grade&Slui:IentPérFomi{nceM athScie nctRepIace'_l tMap_

'C\I OnSubjobOk "h&

mﬁtc_loéal

“states”

“mietrics”

row3 (Lpokup) rowd (Eookup)

Rig
rowl (Main)

A2 . . 3
et & —————¥ g%
§=B rowd Main)

outl (Main)

.

" tFilterRow_1

Figure 66: Adding the tFilterRow

On the filter you want to add a new condition and set the properties of it to those seen in the

picture below.

80|Page



& tFilterRow_1 S

=
Basic settings Schema Built-Ir Y| Editschema || | Sync columns

Advanced settings Logical operator used to combine conditions And [¥*

Dynamic settings Conditions InputColumn Function Operator Value
View metricld Absolute value Not equal to 0
Documentation

Use advanced mode

Figure 67: Component Pane of the tFilterRow

The tFilterRow reads in each row and checks it against a set of rules that are defined in
the component pane. In this example we remove anything with a metricld of 0. It then filters

out anything that does not meet the criteria giving us our final data ready to be inserted into the
database.

1.9 Inserting to the Database

Now we are ready to add our data to the database. First we are going to need to add the
component tPostgresglOutput to our job, which can be found in the Palette under databases in the
PostgreSgl section. Once the component is in the job connect the filter row to the
tPostgresqlOutput and on the tPostgresqlOutput select use an existing connection on the
component tab.

8l|Page



.Jl OnSubjobOk ’9 9

' mhtc_local "states” ' ' “metrics"

row3 (Lpokup) rowd (Lookup)

ava_1™,
N

OnCom p\bq‘e ntOk

R S : N S .
N P
e rowl (Main) ,,_‘ row2 (Main) outl (Main) rowS5 (Filter]
gradeaStudentPérfomanceMathEcienclRepla(e;l tMap_1 tFiIterRow_l tPns!gresqIOutpnt_rl

Figure 68: Adding the Database Output

Next on the component tab we need to set the table property to be the statistics table.
Click on the button next to the table field and browse to the statistics table. Also make sure to
set the Action on data field to “Insert or update” Then we need to edit the schema to make sure it
aligns with the database. Click on edit schema and make sure that you edit yours to match the db
columns such as in the picture below.

8enon Schema of tPostgresglOutput_1
FilterRow_1 (Input - Filter) tPostgresglOutput_1 (Output)
Column Key |Type || Nullab Date Patte: Lengtt Precisi Defai Comn Column Db Column | Key Type DB Type | i¥| Nullab Date Pat Leng Preci Defa
Valog float Val0og Value float FLOAT4
year09 int Q,year09  Year ™ int INT4
Q,d int 10 0 =8| Q,1d Stateld ™ int INT4 10 0
metricid it [ & metricid [Mewicd | © lme INT4 | @ | | | | |
=0
Gl H | | Ty | Gg P 3

OK Cancel

Figure 69: Schema to match the Output to the Database

Finally add the component tPostgresqlCommit to commit these changes to the database.
On the component make sure close connection is unchecked. Connect the output to the commit
component by using the OnComponentOKk trigger. In a pipeline you will only need one commit
component and you should attach it to the last output you have in order of execution. So if you
had two outputs branch it off the second one and both will be committed. In the picture below
we also added a tLogRow to the end in order to see what the output is that we are inserting into
the database. At this point if you hit run you should be able to insert your data into the database.

82|Page



.'l OnSubjobOk "‘9 9

“states” ' “metrics"

" mhtc_local

row3 (Lookup) row4 (Lookup)
N
tava_l L
N
OnCo-“pbu‘e-*tOk
b C AR . N S . . .
| =+, =0
XF ————pt & = SRl — ] ——y ———
rowl (Main) ’4_' ow2 (Mair =g = outl (Main) Y row5 (Filter] ~_fowb Main)
grade8StudentPerfomanceMathScienceéReplace_1 tMap_1 tFilterRow_1 tFustgresqlDutht‘_-L‘r tLogRow_1 =
OnComponeqtOk
8

tPustgr;sqICc:mmit_]

Figure 70: Committing to the Database

In order to ensure that all of the data gets entered into the database for the job and not just some
of it you will need to add one last component. To ensure this add a tPostgresqlRollback
component to the pipeline and attach all tPostgresqlOutputs to it with the OnComponentError
Trigger. This will make sure that if one of the outputs fails to load the data none of the data from

the current transaction will be entered.

1.10 Exporting

At this point you have done everything you need to take data from a file and put it into
the database. The next steps after this are to add logging to the pipeline (view the logging

83|Page



documentation found in section 4.0) and to add the other output to the pipeline. Once done with
that it should look something like the image below:

Oncmmﬁb}}}r 1) =
taval 1 [ i ‘ ’ =
\ 'mw’. =2
mhtc_| = “metrics" “states” FAY
OnCompa&entError _!ﬁ
: ; ; Wabn.3
OnComponentOk (order:2) 0 OnComp nentError
: : \\ tDie_ 1 i ‘metrics Loblcl'..n‘ﬁ's !,Loo‘k.xm

\\ - g row5 (Filter) ':, row3 (Main) D&

=’ \ [Fulterkow 2 lPostgresquu!pu! 1 tLogRow_1
\ 9 p OutlMdin order:1)

l,, — 4t & z s =
/ .Onaomponent rowl (Main) ~§ea@ row2 (Main) S

tWamR 8StudentPerfgmanceMathScienceReplace_1 tMap_l out2 (Main order2) ] ‘ . ‘ » |
g rows (Filter) 'H’ rowd (Main) E@

' = ftFilterRow_3 tPostgrésqlOutput_2 " tlogRow_ 2 ’
OnCompdnentError
1 = ’ ’ [ | ’ | OnCompérerdBEompanentOk = =
!LogCatcher 1
0 out Vf ain) »! &omponent!rg
tDie_2 [ ' ' [ | ’ tWarn_4 tPostgresg)Commit_1  tDie_3
D@ ww‘i (Main) @
’ ’ ’ ’ ’ tLogRow_3 " tlavaRow_ ‘OnComponent®k’

Figure 71: Finished Pipeline

Next once you job is all set and done you will need to export it in order for it to be

uploaded to the admin tool to do so navigate to the repository pane and right click on the job and
select build job:

LA AL PWIRLL LT

{1 Business Models Dﬂcf
4 Job Designs | o
£ averageElectricAnnual 0.1

< BLSEmployerrmnt O, 1

i BS workforce 0.1

iy CapitalGainsTaxRate2013 0.1
4+ CensusPersonallincome 0.1

— OnCon
iy Cleaner 0.1 | .

iy cnbecOverallRanks2013 0.1
4+ DataWwrapper O.1
<y ELAElectricityRate 0.1

'Eb ElectricitySalesPriceAnnual O.1 | n )

5y excel ToDB O. 1L | & -é«l’l&

- M r—
5 Open another version t

-‘Eb ipedsMNumbe o b

& IpedsStemDe ‘o Open Job Hierarchy

faJobForDocun = Setup routine dependencies

iy StateandLocs & Edit properties
iy TechaAndTot:

2 Delete
i Unemployem y
- A Contexts = Copy
- Code o Duplicate
' <3 Run job

3= outline 52 M= (‘I'" Build Job

> tDie_ 1L *&n Generate Doc As HTML ]
b tDie_2 eyl Export items le
- rDie_3 P )

Figure 72: Building the Job to Export

On the next screen you want to make sure that it is set to standalone job and then save it
to the location of your preference. The default format is a zip file however you may select
extract the zip file, which will extract it for you. Then hit finish and it will create an executable

84|Page



to run your job, which you can do so by typing ./<jobname> where job name is the name of the
executable.

To archive file: | GradeB8StudentPerfomance_0.1.zip - | Browse... |

Job Version

Select the Job version | 0.1

Bulild type

Select the build type | Standalone Job : | [ Extract the =zip file

Options

~ Shell launcher | An : )
[+ Context scripts | Default | || Apply Context to children Jobs

| Owerride parameter's values |

[~ Java sources
|~ Items

| Cancel | | Finish |

Figure 73: Build Job Wizard

1.10.1 Running with context variables.

Sometimes in a job you will have a context variable, this is a variable that is passed in when you
try to run the job either as an input box from talend or as a command line argument. The way to
run a job with passing in context is to run the command like so:

context_demo_run.bat <param-name>=<param-value>

where context_demo_run.bat is an example script name to run the job param-name is the name
of the parameter and param-value is the value you pass into that parameter

2.0 Moving From Development to Production:

85|Page



1. The File Source (Only if a wrapper is not used)

On most pipelines the current location of the file is set to a local path on a users
machine. This will need to change to where the file will be uploaded to on the server or
if possible a download URL. Below you can see an input excel component where the file
name will need to be changed.

Property Type Repository | Y| | EXCEL-gradeB8StudentPerfomanceMathScienc
Read excel2007 file format(xlsx)

File name/Stream | “fUsers fwdrussell/Documents/talendFiles/8th_grade_performance.x|s” I
All sheets
L)

Header 1 0 Footer |0 v Limit

=)

Affect each sheet(header&footer)

Die on error
First column 1 e Last column 7
Schema Repository | Y| | EXCEL:grade8StudentPerfomanceMathscien[* | | Edit schema

Figure 74: File Input Component Pane
2. The database connection and anything that pulls from the database

Currently we are using local test databases for the jobs. These will need to be
changed in each job to the appropriate production database connection. Below is the
component for the tpostgreSQL_Connection component that needs to be changed to hold
the appropriate information.

Property Type Repository [T | DB (POSTGRESQL):mhtc_local

DE Version w3.X Yig

Host “localhost” 5 Port | “5432° M
Database “mhtc_local” ; Schema |“"mhtec_sch"” 0
Username "postgres” 5 Passward | e M

Use or register a shared DB Connection

Figure 75: Database Connection Component Pane

This next image is of the component for a tPostgreSQL Input component. This
holds a query to the database that will need to be changed to match the production
databases name.

86|Page



LQ] Use an existing connection Component List |tPostqresglConnection 1 - mhtc local [ ¥/*

Schema Repository | Y| | DB (POSTGRESQL):mhtc_local - metrics | Edit schema
Table N “metrics”

anle Name & ' The variable attached to this parameter is: _ SCHEMA__
Query Type Built-In i Guess Query | | Guess schema |

Query “SELECT * -
V'mhtc_lecaly " mbhte_schy "\ "merricsy " dy Y,
V'mhtc_lecalh .\ "mhte_schy".\"metrics}".\"Name\",
V'mhtc_lecalh".\"mhte_schy".\"metrics}".\"Visible\",
Vimhte_localy"  "mhte_schl "\ "metricsy " IsCalculatedy”,
V'mhtc_localh ™.\ *mhtc_schy".\"metrics\".,"DataType\",
V'mhtc_localh .\ "mhte_schy".\"metrics\".}"DisplayName\",

Figure 76: Example of Database Input Component Pane

You also need to ensure that all database components have their Use an existing
connection checkbox checked as seen above and that that connection is for the production
database. You can double check this by looking in the query pane seen above and make
sure that the query is using your database.

3. The output and input file for Logging.

During Logging we use a tJavaRow component. This component calls a routine
we created to send data in an http message (more information on routines can be found in
the routine documentation). For the tJavaRow you will need to change the URL to that
of the route for logging on the mhtc website. Below you can see an image of the
component. The first String is the URL and the following variables (which don’t need to
be changed) are the information that is sent in the message to the website.

—-—

o =0
5 YavaRow_1 =
Basic settings Schema Built-ln_[¥! Egit schema | | | Sync columns
Advanced settings | Code

—— | Generate code |
Dynamic settings —
View //Code generated according to dnput schena and outpn TTY 10 generate sample code for this component

: output_row. nionent = input_row. moment;

Documentation oubput_row.nessage = inpub_row.nessage;

output_row. priority = input_row pricrity;
gutpuk_row. job = inpub_row. job;
output_row.origin = input_row.origin;
gutput_row.code = inpuk_row.code;

SendLogs. sendlogs("http: //locelbost: B020/nkte/post_reports”, output_row. message, outpub_tow.noment,
output_row. priority, output_row. job, output_row origin, output_row code);

Figure 77: tJavaRow Component Pane

4. The metric names in t_map components.

87|Page



When testing on your local database your metric names may not match up to that
of those in the production server all the time. If this is the case then you will need to
ensure that everywhere you get a metric id in the tmap to make sure that it is the proper
name of the metric in the production database. Below you can see an image of the t_ map
trying to match the metric id based upon the name.

=) Find : & e X £ | Auto map!

outl Py |5

|
row13 v |8 Var a
Column Expression Type Nu Variable Expression Column
year row21 Name.equals(bachelor's degree’? row21d: 0 int [ Metricld Integer parselntronL3_year_replacel\"") | _year_
_C2013_A _First_or_Second_Major_ rowl3._C2013_A_Grand_total_ _C2013_A_Grand_total_
_C2013 A CIP_Code__2010_Classification_ rowl4.ld Qld
_CipTitle_ Var.Metricld Metricld
_C2013_A_Award_Level code_
_C2013_A_Grand _total _
_HD2013_State_abbreviation_
vl m
rowld y 4| &
Expr. key Column
@

Abbreviation
\ row13._HD2013_State_abbreviation_r¢  Name
IsPeerState

ha)

row2l 7 %
Expr. key Column
Qi
Name
Visible
IsCalculated
DataType
DisplayName
URL

Figure 78: Example of Inside of a tMap

This is the inside of at_map. In order to get the metric id we check to see if the
metric has the name we want in the variable column and if it is the appropriate metric
then we send its id to the output table. Below is a closer look at the variable table to see
the expression. The part that needs to be changed is the string in parenthesis after the
equals. Make sure that your metric name is surrounded by quotes in the expression.

Var G | L4
Expression Type Nu Variable
row2 1.Mame.equals("bachelor's degree”)? row21.1d : O int | | Metricld

Figure 79: Close up of Variable Part of tMap

88|Page



3.0 Talend Routines

3.1 Overview

Talend Routines are a way to write java code once, which can then be called many times
from within the same job or different jobs. In our pipelines we use routines to send the post
messages with the logs and routines are used for the data wrappers in order to download the files.
This document will give you an overview of our routines for more information on routines visit:
http://www.talendbyexample.com/talend-code-routines-reference.html

Routines can be found in the repository pane under code as seen below

¥ =4 Routines
P [ system
» [ DataWrappers
> T )sON
2 Sendlegs 0.1
F.=_r SOL Templates

[ = i [

Figure 80: Close up of Code Section of Repository Pane

In order to create a new routine you can right click on routines and select create new routine and
from there you can edit the file to create your functions to be called in your job.

3.2 Routines

3.2.1 Logging

Currently we have two purposes for routines. First is for logging with the SendLogs
routine. This routine is used to take in all the information for a log message as well as a website
and send it to the website for the logs to be displayed there. Below you can see the routine as an
example of what it looks like. Routines are called in the job by using any of the custom
components. From inside the code window you call the routine by the class name then the
function name. So for the send logs routine you would type:

SendLogs.sendLogs("http://localhost:8080/mhtc/post_reports”, output_row.message,
output_row.moment, output_row.priority, output_row.job, output_row.origin,
output_row.code);

89|Page


http://www.talendbyexample.com/talend-code-routines-reference.html

This calls the routine sendLogs from the SendLogs class with the appropriate variables. More
information on Logging can be found in section 4.0.

24 public class Sendlogs {

25
68 /¢
27 ¥ sendlogsFronFile
28 ¥ Bparan webAddress the url you are sending the log messages to
2 ¥ Bparan fileLocation the location of the file the logs were written to
30 ¥ Bthrows I0Exception
3l X
32 ¥ This function takes in an url and a file location and then reads the file, takes the data and puts it into a
33 ¥ http post message that is then sent to the specified url.
34 ¥/
3
36
375 public static void sendlogs(String address, String message, Date moment, int priority, String job, String origin, int code)
38 URL url = new URL(address);
3 Map<String,Object> params = new LinkedHashMap<String, Object=();
49 parans.put("moment”, moment.toString());
41 parans. put("message”, message);
42 params.put("priority”, priority);
43 params.put("job", job);
44 parans.put("origin", origin);
45 parans.put("code”, code);
7 StringBuilder postData = new StringBuilder();
48 for (Map.Entry<String,Objects param : params.entrySet()) {
49 if (postData.length() != 0){
50 post0ata.append('&');
51 }
52 postData. append(URLEncoder . encode(param. getKey(), "UTF-8"));
53 postData.append('=");
54 postData. append(URLEncoder. encode(String. valueOf(param. getValue()), "UTF-8"));
55 }
56 byte[] postDataBytes = postData.toString().getBytes("UTF-8");
57
58 HttpURLConnection conn = (HttpURLConnection)url.openConnection();
59 conn. setRequestMethod("POST");
60 conn. setRequestProperty("Content-Type", "application/x-www-form-urlencoded");
6l conn. setRequestProperty("Content-Length", String.value0f(postDataBytes.length));
b2 conn. setDolutput(true);
63 conn. getOutputStream() . write(postDataBytes);
b4
65 Reader in = new BufferedReader(new InputStreamReader(conn.getInputStrean(), "UTF-8"));
b6 for (int ¢; (c = in.read()) »= ; System.out.print((char)c));

pn )

£

Figure 81: SendLogs Routine

N|Page



3.2.2 Data Wrappers

The folder labeled datawrappers contains all the routines required to download the files
from various sites in order to run these pipelines. If a new wrapper is added to the code base it
should also be added in talend to ensure that all wrappers are there for the pipelines. The main
Class is DataWrapperMain. This has all the functions to run the various wrappers. These
wrappers do make use of external jars that talend does not have. These jars need to be added to
your version of Talend by opening the module view and clicking the add external jars button.
The jars required can be found in the repository under documentation in the folder jarfiles. Once
these are added to your Talend application your routines will work fine.

3.2.3 Adding to Pipeline

In order to get your routines to work in a pipeline however there is one extra step you
must take. In the repository pane you need to right click the pipeline and select edit routine
dependencies as seen below

{31 *Repository E3 B &|$EE~ = 0| Talend
LOCAL: Matters i '
i# Business Models
¥ iipJob Designs

“py averageElectricAnnual 0.1 |
44 BLSEmployemnt 0.1
{1y BS_workforce 0.1 | |
£ CapitalGainsTaxRate2013 0.1 taval
+p CensusPersonallncome 0.1
gy Cleaner 0.1
@ cnbcOverallRanks2013 0.1
iy DataWrapper 0.1
@ ElAElectricityRate 0.1
“py ElectricitySalesPriceAnnual 0.1
g excelToDE Q.1
’_aGradeBStudentPerFomance 0.1 !
<gipedsNumberOfCellegesandUniversities 0 | tWarn,
i lpedsStemDegrees 0.1
“p StateandLocalTaxBurden 0.1
“p TechAndTotalEmployment 0.1 1y Job{Umi

T Ont

Cesigner

£ Edit job

p
[ Contexts ] B
¥ [£ Code & Read job

¥4 Routines £ Open another version

' 4% Open Job Hierarchy

oF Outline B2 i3 Setup routine dependencies

# Edit properties
b tDie_1 1 ¥ Delete
FtDie_2 = Copy

»tDie_3 Dunlicat
FtFilelnput)SOM_ a uplicate

P tFilterRow_1 “n Run job

Ftjava_1l S Bui
— «m Build Job
P tjavaRow_L i J
»tLogCatcher_1 ‘& Generate Doc As HTML

> tlogRow_1 Lyl Export items 5
P tLogRow_2 —
Vs, 1 T R Installe

R Installe

m A @ @ m m m @ @ @° o A Mm@

[

Figure 82: How to Add Routines to Pipeline
91|Page



Once here you are going to want to click the green plus sign and add all the routines you
will use in the pipeline. For the data wrapper you need to include main and routine that main
uses. If you just want to be safe you can add them all. Then click ok and you are now ready to
run your pipeline with routines.

® O O  Setup routine dependencies

User routines System routines

BEADownload

BLSDownload lﬂ:—'
DEConnector

CataGovDownload

ElaDownload

IPECSDownload

Wrapper

State

URLDownload

UnZip

LR WP S, R T PR N P ——

| Cancel | |_ OK J

Figure 83: Routines to Be Added

4.0 Talend Logging
4.1 Overview:

For our logging purposes we use talend to create and send our own log messages tailored
to our needs. To do so we add components such as tWarn and tDie to create messages whenever
they are reached. Below you can see an example of a job with logging in place. (Each new
component used for logging will be explained in a later section)

92|Page



= = =
aﬁ —

uﬁa@:"‘po-‘é-“’:@t@;&ri. =
1 | SN
Y tWarn_1 m tc_loca\OnSutﬂBDGk*& & 0
" OnComponentQk (order:1) OnCompérantError “metrics" “states” ie_3
=] N, 0 metrics{Lookup) * states {Lookup) OnCompénentError
| B _ . > . . . . . . !
tDie_2 hra
! % 'l(_(:'ﬂrl[,'l(-'llﬂll_% owl (Main) PE&@ — "&
tWarn_2 ipedsCount ’ ’ tMap_loutl (Wi ' ’ ’ __——row?Z (MainPostgresqlCammit_1
f ; row3 (Filter) ':a \
/ tFilterRow_1= tPostgresglOutput_1 OnComphpentOk =
OnCompgnentError rowd/{Main) .
= y} 2 / 1
* digws (Main) L ¥ .
0 | ' ’ tLogCatcher_1 tMap_2 | ' IIF,D ’ tWarn_3
tDie_1 out (Main) tLogRow_1
=, =i
rowt (Main) o
tLogRow_2 tlavaRow_1

Figure 84: Example of a Pipeline with Logging
4.2 Creating the Messages

Here as you can see there are tWarn and tDie components coming off of certain other
components. For the purpose of our logging we have one tWarn on the input file for saying the
file was downloaded and one tWarn on the tJava component for saying the pipeline has started
and one. The onComponentOK trigger triggers these. We also have tDie coming off that
component where if the file can’t be found the pipeline will die and send the message that the file
could not be downloaded. The next tDie is for the database connection; this ends the pipeline if
it cannot connect to the database. Finally there is the tDie on the commit which if the pipeline is
unable to commit to the database it ends. There is also a tWarn where upon completion of the
pipeline will create the message that the pipeline has finished. You can add as many tWarns and
tDies as you wish depending on how much logging you want done on the pipeline but these are
the recommended ones to be used. In the tWarn and tDie components there is a place where you
can set the code in the component. Below you can see a table that displays what each code we
have defined corresponds to.

Code Message
1 Pipeline has Started
2 Pipeline has Finished

93|Page



Successfully Downloaded File

Unable to Connect to Database

Unable to Commit to Database

Unable to Download File

Error in Database Output Component

| N o O b~ W

Error in tMap Component

The codes 1, 2, 3, and 7 are used in tWarns and codes 4, 5, 6, and 8 are used in tDie components
due to the severity of the message.

4.3 Catching and Sending the Messages

Next after you have all your tWarn and tDie components in place you need a way to
catch these messages. This is done using the sub job at the bottom of the picture above. Below
you can see a zoomed in version of that part of the job.

9w BN S5
v5 "-1'nr'||

th:g Carc her 1 ' tl"-'l

fain)

‘-m
ru

h_.;;‘ rows (M '||r‘| i}
tLogRow_2 ’

ﬂavaﬁc-w i

Figure 85: The Catcher and Sender Subjob for Logging

This part of the job is what catches all the log messages compiles them and then sends it
to a server. The tLogCatcher sits and listens to any messages sent by tWarn or tDie components
and then sends them into the tMap. The tMap structure can be seen below.

94 |Page



s =] Find ] X £ | Aute map!

nnnnnnnn

Column Key Type | Nullab Date Pattern (Curl+ Length
moment Date & ywy-MM-dd HH:n
pid String 5] 20

recision  Default Comment Column Key Type ] Nullab Date Pattern (Ctri+!Length  Precision  Default  Comment
moment Date [ “Yyyy-MM-dd HH: 0
255 0
3 0
0
0

message String

priority Integer

iob string
g String

father_pid String ™ 20 255

255

ARRRE

job string o 28

Figure 86: tMap for Logging

This map gives us control over the data we want from the log. For our purposes we only
need the moment (the time the message was created), the message, the priority (IMPORTANT:
This is the type of message being sent. 1 = Trace, 2= Debug, 3 = Info, 4 = Warning, 5 = Error, 6
= Fatal), the job it came from, the origin, which is what tWarn or tDie sent it and the code
associated with the message which is declared in the tWarn or tDie component. This information
is then sent into the tJavaRow component. This component calls a java routine that we have
created to make an http post request to a specified URL and sends data from the tMap (More
information on routines can be found in section 3.2). Below you can see the component
information for the tJavaRow.

95 |Page



Yoy =0
= tavaRow_1 e

Basic settings Schema Built-ln ¥} Fgit schema || |Sync columns

Advanced settings | Code

— Generate code
Dynamlc settings -
View /iCode generated according to inpub schema and output schems

: oukput_rom.moment = input_row. monent ;
Documentation output_rom message = inpuk_rom message;

output_rom. priority = inguk_row. priority;
output_rom, job = input_row. job;
output_row. origin = input_row. origin;
output_row.code = input_row.code;

Sendlogs. sendLogs(“http: //localbost :B020/ubtc/post_reports”, output_row.message, oubput_row. monent,
oukput_row. priority, outpuk_row.job, oukput_row.origin, oubput_row.code);

Figure 87: tJavaRow Component Pane

This calls the method sendLogsFromFile from the class SendLogs. The parameters are
used for calling this are the location of the file and then each variable that was output from the
t map. The top half is the mapping of the variables from input to output and then the lower half
is the call the sendLogs function. The order for the variables is URL, message, moment, priority,
job, origin, and code. This sub job of logging (the tLogCatcher, tMap, tJavaRow, and tLogRow)
can be copied and pasted into each new job because none of the information is job specific.

9% |Page



5.0 Talend Jobs
5.1 Overview

This section details each pipeline that has been created. Each section is a different
pipeline. Each section will follow the pattern of first showing the tMap (more information on
tMaps can be found in section 1.7) of the pipeline and then an image of the entire pipeline and
will include any extra information that may be necessary to understand the pipeline. However

the pipelines are very similar and really only differ in their cleaning of the file or if they use
multiple files.

5.2 8" Grade Proficiency in Science

Columa

..........

Figure 88 8th Grade Proficiency in Science tMap

Name: 8" Grade Proficiency in Science

97|Page



Source: NSF

Columns: State, Year, 8" Grade Proficiency

rowl --
o excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (row2)
e metric is being used in the output (Proficiency in 8th grade science)
row2 --
« state id is being used in the output
rowa --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database. This
lookup is required to make sure that the data being inserted is both correct and in the right format.

98 |Page



e e L,

‘]l OnSubjobOk '. .

mhtc_local “metrics” ' ' “states”

row3 (Lbokup) row2 (Lookup)

=
‘-% LI?D
: = - * ¥
| . ! ! . .'OW] ‘.Mﬂn-'. . . Predficient8thGradeSciencePercentage (Malh) | L
NSF_8thGradeProfScience thap_1 tFilterRow_1

rowd [Filter)

tPostgrés IOthput, ,'I
" rows {Main)

tljostgrésqlcdmmit,',i

Figure 89: 8th Grade Proficiency In Science Pipeline

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some

unnecessary information before inserting into the database.

99|Page



5.3 Annual State Survey

.......

DisplayOraer
TrondType

10
256
1

1 0
20 ]
si2 0
255

coooaa

10
255 0

Figure 90: Annual State Survey tMap

The above Figure shows the tMap of the pipeline that maps the data from the excel spreadsheet
to the database after looking up some information that is contained in the database. This lookup
is required to make sure that the data being inserted is both correct and in the right format.

row2 --
« excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (row?2)

e metric is being used in the output (Total tax, Property tax, Gross Sales tax, License tax,
income tax, and other tax)

row3 --
o state id is being used in the output

row4 --

100 |Page



metric name is being looked at to see if it exists in database. If yes, then passing the

°
metriclD.
—=
=]
.‘J OnSubjobOk '. .
mhtc_local “states" “metrics”
[ rowStidatgresqlOutput_1
row3 (Lookup) row4 (Lookup) - a
£ . : : S : 5 z ; 2 8 . e N
AnnualStateSurvey2013 ’ ' ' ' ' : "totalTax-{iain order:1) ’
row1 (Mainj____ ) 4y e ——————
~ 2 order:2) tPostgresglOutput_2

] ) el _propenyTax (Main orde
row2 (Main) TN —

tFilterColumns_1 tMap_t
\

Tax (Maim-ecder:3)

licens®Jax (Main order:4 tPostgresalOutput_3

|
otherTax (Mhirirrdmedhx (Main order:5) 2
3 1 z ¢ g

anowe (Filter;':,

tFilterRow_4 tPostgresglOutput_4

Y S )

@jrows (Filter,
" tFilterRowh6 ' " tFilterRow_5 tPostgresglOutput 5
row10 (Rjter)

(Postgrésqlohput 6

row11 .U‘,’Ju-w

Al

tPostgresglCommit_1

Figure 91: Annual State Survey Pipeline

The figure above shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some

unnecessary information before inserting into the database.

101 |Page



5.4 Average Electric Annual

]
I
i
i
i

oooooooood
I
e

() (x) (el (e) (e e)(a)(e)la) () (x)(¢)(a)(p)(a)(a)(@)la)

Figure 92: Average Electric Annual tMap

Name: Average Electric Annual
Source location: http://www.eia.qov/electricity/data/state/avgprice annual.xls

Columns: State, Year, Total rate

rowl --

102 |Page


http://www.eia.gov/electricity/data/state/avgprice_annual.xls

o excel spreadsheet being read in
« State being used as a foreign key for the State table from the database (row2)
e metric is being used in the output (Total Electric Sales average)
row2 --
« state id is being used in the output
rowa --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right
format.

103 |Page



'Cll OnSubjobOk ’b

m Htc_loéal “States”

row2 (Lookup)

»

“metrics”

row3 (Eookup)

rowl (Main)
ave rag eElectricAnnual ’ ’ '

wh ,.{%“' '
g7 (Main)

| tLogCatcher_1 tMap 2
out (Maia)
- e ._--
- row8 (Main) q.tE

tLogRow_2

t;la'\rallow_l

..]?]
averagePrice_centsPerKilowatthour (Main) N

tMap_1 ' ' ' " tFilgérRow_1
rowdfFilter}

"tFilterC urﬁns_l i
rowt [Main)

Q

tLogRow_1

rows (Main)’
L

3

= ' ' ' ' ' " tPostgresglOutput_1

Figure 93: Average Electric Annual Pipeline

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database.

104 |Page



rowiz
Column
tate
2000
2001
2002
2003
2004
2008
2008
2007
2008
2009
2010
2011

Expr. koy

Expr. key

5.5 BS Workforce

&, row12 State

Scnama editor
rowi2
Column

2000
2001
2002
2003
2004
2005
2008

2008
2000
2010

Exprassion editar

Talend Open Studio for Data Integration - thap - thiap_1

Fing X & auto mapt
» 2 Var * I3 =
Expression Tyee Nu variatie Expression
2000 it yearzoo Varyoar2000
200 yoarz001 rowd.id
2002 year2002 Vor workforceld
2003 yearzoo3
2004 ® yoarz004
2005 year2005 =
2008 y0ar2008
200 year200:
2008 i yoar2008 ourd
2009 int yoar2008
2010 yoarzo10 outd
201 int yoar2011
rowa2, Name.squals{Wrkforca with Bachelors Degrea int rorktorcold s
o ous
S | B
Catumn oun?
o
Hame outs
Visith
isCalculated ourn
DataType
DispiayName —
uRL
Source
DispiayOrder b
TrendTypa
ounz
Fe B
Catumn
Qo
Apbreviatio
Name
1sPoorSt
outt
& Nullab Date Pattarn (Ctri+Space ar Lengtn Pracision Defaun  Comment Column Key Typs ¥ Husan Data Pamtern (Gri«Space a Lengt
0 year int
a 2 Qia int 10 ]
o workforceld int
o
4+ o
4+ o
4 2
4 2
4 2
. 2
4 2
-] 4 2
Ge. @ K L. ) I

Figure 94: BS Workforce tMap

Name: B.S degrees in the workforce (1990-2011)

Column
yoar

worklorceld

s

4

s

s
'
T
&
7w

ra:

Source location: http://www.nsf.qgov/statistics/seind14/index.cfm/state-data/download.htm

Columns needed: State, Year, BS in workforce

rowl --

row2 --

row3 --

excel spreadsheet being read in
State being used as a foreign key for the State table from the database (row2)

metric is being used in the output (Workforce with Bachelors Degree)

state id is being used in the output

105|Page

ko]

in] Ru) Kn] En] Ku] Ru] Ru] Ko} Ku] f] Rof



http://www.nsf.gov/statistics/seind14/index.cfm/state-data/download.htm

metriclD.

metric name is being looked at to see if it exists in database. If yes, then passing the

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right

format.

il ﬂana

I Run

e ® !
O e Sitates® o ot
) v ; rowd (Filter) %
< Jloc i i : ““FilterRow_1 tPostgre: squu utL3gRox =
ntError
s
(Mes
> —
S, : = : .
Do~ carZ TR tFilierRow_3 ano tgr waqiOuion
-0 ’PT/; g,‘ -
tReplace 1 b ¥ ’ A
1 rth -
/1 |\ AT Fomentiwam 13
= .
3y 10 tFilierRow_5 tPostgresglOutputibgRow ]l
30 order/A0) | \ i . tWarn_12
Autd (Mail e A7 AN coded YVaickpsdiMEin\qrde OnComaGnentError
] | = S
- =

FilierRow. 6 tPostgresglOutoutiégRow 4

row} tl: v *
tWarmFostgresqiCommit 1 il mm.m , ? ?
nCompapentErmsy w.mwe 10utput_11 rowl #Filier)  * Fils, chn 4fFilierBow 2 fFilter : : muno 8 Filte rRuw\V\
‘__], 14fiFilter)  row13 [Filter)  rowl0 [Filter) ’ rowd (Kjter St
O entErn
Die3 11 = Postgreis I() put, 1 W tPostgre: sqlodmu! E LR
r o.;ahm a
: = tHostgresg|Ohgput tgv yats Du ;Ou m,ir.wm - tLogRow_ 5
! w A l g o = i
tWarn_3 tLlogRow_10 tWarn_6 o lE tLogRow_6
|
: " tLogRow 9 A% Mm 8 agﬂow 7 tWArr\ a Warn_10 =
Warn_7 8372
T »X3
tLogCatcher_1 tMap '@
" ‘ﬁ‘
— 30 Man) LHB
thogRow 13 tlavaRow_1

Figure 95: BS Workforce Pipeline

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database.

106 |[Page



5.6 Electricity Sales Price Annual

R P Avomap

nooooooood
HHEH
ooeead
i[!i!i

() (x) (g2l (c) @)zl (a)(al(a) () (x)(2)(e) (@) el (&) (@) ()

Figure 96: Electricity Sales Price Annual tMap

107 |Page



rowl --
o excel spreadsheet being read in
« State being used as a foreign key for the State table from the database (row?2)
e metric is being used in the output (Total)
row2 --
o state id is being used in the output

row3 --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right
format.

‘] OnSubjobOk '9 9

mﬁtc_loéal ' “states” ’ ' “mietrics”

rowe (Lgokup) row3 (Lookup)

y

tFilterdlolumns_1

. . . . . . . h LA Ctows Mata)_ .
X - E
rowl (Main) ) .
ElectricitySalesPriceAnnual tMap_L ™. rowd (Filter) tPostgresglOutput_1
" total (Main)
.

W %Eﬁ o tFilerRow 1l
lhigw6 (Main)

' tLogCatcher_1 tMap 2

out (Waia)
- =
= row? (Main) P
tlogRow_1 ' ' ' ' " tJavaRow_l

Figure 97: Electricity Sales Price Annual Pipeline
108 |Page



The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database.

109 |Page



5.7 NSF Talent Supply

zéggii
|

éﬁ?

H
il

!

i

D00DD000000000000000

i

00000 JDJDJ‘
I

€3 3 £ E3 ) O

Figure 98: NSF Talent Supply tMap

row2 --
« excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (row3)

e metrics is being used in the output (Employment in HighTech, Total Employment,
HighTech per Total)

row3 --
o state id is being used in the output

row4 --

110|Page



e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right

=
l] OnSubjobOK =. .
mhtc_local "metrics" "states”
row3 (Lookup) row2 {Eookup)
=0 >4
| . . ! . _|'ow1 {_Mﬂ n]_ . . Predicient8thGradeSciencePercentage (Malh) | |
NSF_athGradeProfScience tMap_1 tFiltetRow_1

row4 [Filter)

tlf'ostgrés IOLllput_ 1

" row5 {Main)

tPostgresglCGommit_1

format.

111 |Page



S

. 1] OnSubjobOk

mhtc_local

R

NSF_8thGradeScience

®

“states”

»

tFilterColumns_1

“metrics”

) ’?J row5 (Filter) a

tFilterRow _1 Output_1

ommit_1

tFilterRow_2 Output 3

-
3) ? rows (Filter) ‘:a ow8 (Main) &

ommit_2

“

i row7 (Filter) a row10 (Main) &

tFilterRow_3 g Output 5

Figure 99: NSF Talent Supply Pipeline

ommit 3 [

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some

unnecessary information before inserting into the database.

112 |Page



5.8 BLS Employment

1= ] Find 4 45 &+ X I 5| Aute map!
rawl | & Var - d Total_Emplayment P | &
Colum Type Nu Variable Expression Column
Cod als("Total Employment int employld row2.d @i
Sta als{"Unemployment Raint unemplayld rowl Year Ye
e 1= nullrowl.rate/100:0  float UnempRate row1.employment_total employment_total
var.employid employid

UnemploymentRate P | &
Colum:
[2¥”]
ar Yea
Var.UnempRate rate
Var.unemployld unemployld
rowz * | &
Expr. key Colum:
Tyia
Abbreviati
&, rowl St Nam
IsPeerStat
row3 | &
Expr. key Column
Tia
Name
Visible
IsCalculated
Schema edits Exp! jon edit
rowl Total_Employment
Column Key Type 7| Nullab Date Partern (Ctri+ Length  Precision  Default  Comment Column Key Type | Nullab Dae Pattern (Ctri+: Length  Precision Default  Comment
Code. String o H o Qe & im 10 a
State String [ 20 o Year Integer 4 4 o
Integer E s o employment_total Imeger & 8 o
Integer o ] L] employld int
Integ =4 8 o
Float o) 2

r @ ) Ukl

&
1=
-

Figure 100: BLS Employment tMap
Name: BLS Employment
Source: BLS — http://data.bls.gov/oes/

Columns: State, Year, Total Employment, Unemployment Rate
rowl --
o excel spreadsheet being read in
« State being used as a foreign key for the State table from the database (row?2)
e metric is being used in the output (Total Employment, Unemployment Rate)
row2 --
o state id is being used in the output
row3 --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

Total_Employment —
e StatelD (row2)
e Year (input file)
e Employment Total (input file)

113|Page


http://data.bls.gov/oes/

e employlID (row3, database lookup)
UnemploymentRate

e StatelD (row2)

e Year (input file)

e Unemployment rate (computed from input file)

e unemployID (row3, database lookup)

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right
format.

.W.i OnSubjobOk &
mhtc_local “states” “metrics”
OnCompohentError= =
=
1 tDie_1 tWarn®4
. OnCompoNentError
tWarn_¥_ ?
OnCom (orde «y
ComponentQk (order:1) LY . row4 (Filter) C, |
= .}% Emptoyment (Main eFiicerRow_1 tPos!gresqIOutput 1 !LogRow 1
Towl (Mair ¥l
On C‘) M @pTTe wlﬁé(’smwm\,hcr@ tMap_1 =
OﬂCompqmntError
tWarn_2 ploymentRate(Ma der:2)
&ompmeﬂf
’ : tDie_2 w (Postgrg!qICommlt 1 tDie_3
= OnCmmmcn(Ok
tFilterRow_2 owsm
= ilterRow. =5 ’.
7[ % A Cmm/wmgiesznmtpux 2 (LogRow 2
s (Main 4 S = -
tLogCatcher_1 tMap_2 tWarn_5
hE
tLogRow_3 tJavaRow_1

Figure 101: BLS Employment Pipeline

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the

114 |Page



physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database.

5.9 Capital Gains Tax Rate

= =) Find & o & X 57 | Auto map!
S = = Var Ratea Ratea
row3 & Var s fas Var.Rateld Rateld
Column Expression Type Nu Variable
Column0 row3.Capital_Gains_income__Thousan float capGains —
Rate context.Year int Year localRate s | &8
\ocl.Rika (row3 Rate length() > 0)2(Float.parseF float Ratea Binreion g
Coptal. Galnis JcorR. ThoE (row3.Local_Rate length( > 0)7(Float. float localRate o Qid
i o ol Rk oo (row3.Combined_Rate length( > 0)7(f float CombinedRate aevear L
Lo = o metrics.Name equals(‘Rate") ? metrics int Rateld
Deduction. metrics.Name.equals('Local Rate’) 7 m int LocalRateld [Var Jocalndie localnare
Comblnad_Rate metrics.Name.equals('Capital Gains I int CapitalGainsid VarLocateid Locuateld
W.R metrics.Name.equals("Combined Rate’ int CombinedRateld
Column8 metrics.Name.equals(‘Share of Capital int ShareOfGainsRateld > | O
Columng metrics.Name.equalsCWR') 7 metrics.| int WRId Spimigsis rw|s
Column10 Expression Column
states.id Qu
——= Var.capGains capGains
states Fe & Var.Year Year
e — Var CapitalGainsid CapitalGainsid
Qi
Abbreviation combinedrate e | &
&, row3.Column0 Name
R Expression Column
states.id Qi
Var.Year Year
—e P Var.CombinedRate CombinedRate
Var.CombinedRateld CombinedRateld
Expr. key Column
aw —
Name shareofgains S e | &
Visible Expression Column
IsCalculated states.id Qu
DataType Var.Year Year
DisplayName row3.Share_of_Capital_Gains_Income Share_of_Capital_Gains_inc
URL Var ShareOfGainsRateld ShareOfGainsRateld
Source
DisplayOrder —
TrandTuna wr Fe B

Figure 102: Capital Gains Tax Rate tMap
Name: Capital Gains Tax Rate

Source: Tax Foundation - http://taxfoundation.org/article/high-burden-state-and-federal-capital-
gains-tax-rates

Columns: State, Year, Rate, Local Rate, Capital Rate, Combined Rate, Share of Capital Gains,
WR

row3 --

115|Page


http://taxfoundation.org/article/high-burden-state-and-federal-capital-gains-tax-rates
http://taxfoundation.org/article/high-burden-state-and-federal-capital-gains-tax-rates

o excel spreadsheet being read in

« State being used as a foreign key for the State table from the database (states)

e metric is being used in the output (Local Rate, Capital Rate, Combined Rate, Share of

Capital Gains, WR)
states --
 state id is being used in the output

metrics --

e metric name is being looked at to see if it exists in database. If yes, then passing the

metriclD.
localRate —
e StatelD (states)
e Year (context of input file)
e Local rate (input file)
e Local rate ID (metrics, database lookup)

CapitalRate —

StatelD (states)

Year (context of input file)

Capital rate (input file)

Capital rate ID (metrics, database lookup)
CombinedRate —

e StatelD (states)

e Year (context of input file)

e Combined rate (input file)

e Combined rate ID (metrics, database lookup)
Share of Capital Gains —

e StatesID (states)

e Year (context of input file)

e Share of Capital Gains (input file)

e Share of capital gains ID (metrics, database lookup)

116 |Page



WR —
e StatesID (states)
e Year (context of input file)
e WR (input file)
e WRID (metrics, database lookup)

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right
format.

£ ;
= tham 7 R
OnCompopeftOk (ot@lie B OnSubjobOk . b
i mhte_loc “states® ‘metrics
tava )\ f " OnCompoigntError =
mponentQk (order:2) 0
N\ ’ tDie_1 |
\l ‘ - | 4
-
@ » — - 3 X
] Tow2 (Filter] © §eal® y - =
CapitalCafriTaxRate tFilterRow_1 Replace 1 Map), 1 " ns (Maln order3i—___}
[ \ row? o
OnCgmpolentError = : : : 7 \ ’ ’ ilterRow_4
I ™ der-4
| : ;
| 3
OnCan .é"r-:io shareafgains (Al 5 !
| . . . . 3 5 : e, . L.
/ tDie_3 tWarn_3 =
1? » TP
/ ¥ rowt (F Ixcﬁ‘a 3 (Mair -
| =’ . : | i =’ | T tFilierRow 5 =PostgresglOudnyt 4 =" tlogRow 4
v ‘ ‘ ? ¥ | OnCompohgqtError | ) |
\ tFilterBow 7 A A A
: rowd ilter) __w /3 \M :
tWarn_9 f 3 G ComFonentiwarn 6 " fFilterRowoiVs ( rEas TG oot tWarn_4
BpetrssglOatat L " tPostgrésqlOutput_Sww14 Ty i)
OnCogefonentOk XKL ‘L‘
tLogRow 6 tLogR&m S
Vg 33
it =
tLogCatcher_1 tMap_2
. -
-~ . [se=]
tLogRow_7 YavaRow 1

Figure 103: Captial Gains Tax Rate Pipeline

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database.

117 |Page



118 |Page



5.10 Census Personal Income

(= =] Find : { v & X IL | B | Auto map!
|3 var & 5 Tax_Rate_For_Medium_State_Income Fe|B
Expression Type Nu Variable Expression Column
rowd.Name.equals(Tax Rate for Medi int medstatelD row3.Id Qu
rowa. Name.equals(Tax Rate for US A int UsAvgiD Var.medstatelD medStatelD
rowa Name. equals(“Personal Income T int personallD varYear Year
2013 int Year Var SingleTopRateMedian SingleTapRateMedian
Float. parseFloatirow? Single_Top_Rate flaat SingleTopRateMedian
Float.parseFloatirow? Single_Top_Rat float SingleTopRateA,
S P b T el e —
Married_Top_Rate_Median oat-parseFloatirow2.Graduate ot raduate Tax_Rate_For_US_Avg_lIncome ‘| &
Expression Column
- row3.Id G
rowd S|k Var.USAvgiD UsAvgiD
Var.Year Year
. 1
Exprokay Coums VarSingle TopRateAvg SingleTopRateAvg
Qi
Name
Visible Personal_Income_Tax_Rate Fe | B
IsCalculated
Column
DataType
personalld
DisplayName an
AL ‘\:Ye“u
Source Graduated
DisplayOrder
TrendType
row3 & | &
Expr. key Column
Qyid

Figure 104: Census Personal Income tMap
Name: Census Personal Income

Source: Tax Foundation -
http://taxfoundation.org/sites/taxfoundation.org/files/docs/State%20Individual%20Income%20T
ax%20Rates%2C%202000-2014.x1sx

Columns: State, Year, Medium State Income, US Average Income, Personal Income Tax Rate

Row?2 --
o excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (row3)
e metric is being used in the output
row3 --
o state id is being used in the output
row4 --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

Tax Rate For Medium State Income —

e StatelD (row3)

e medStatelD (row4, database lookup)
e year (variable)

e single top rate medium (input file)

Tax Rate For US Avg Income

119|Page


http://taxfoundation.org/sites/taxfoundation.org/files/docs/State%20Individual%20Income%20Tax%20Rates%2C%202000-2014.xlsx
http://taxfoundation.org/sites/taxfoundation.org/files/docs/State%20Individual%20Income%20Tax%20Rates%2C%202000-2014.xlsx

e StatelD (row3)

e USAvgID (row4, database lookup)

e Year (variable)

e SingleTopRateAvq (input file)

Personal Income Tax Rate

e StatelD (row3)

e personallD (row4, database lookup)

e year (variable)
e graduated (input file)

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right

format.

“states”

mhtc Iocal \
OnsSu b;obe)\
OnCompdnentEnror "‘\ne

v
A->2 0e
o¢ ump ntok 1 w2 (Maimar ¥

tWarn_1 Ce susPe rs| .:u ncome tRepla(c 1 tMap_1
OnCompdn

tDie_2 =

tLogCarchers 2\ Main) N vn)
BT

tMap_2
¢ ai
oS e

tLogRow_4 tavaRow_1

“metrics”

RN Yor US Avg_income O

1
twatn_3
OnCompgnentError

> ; Tows (Filten) ":s

tFilterRow_1 tPostgresglOutput_1 ==

R

Main) tLogRow_1

mimon
; Fowe (Filten x E

tFilterRow_2 tPostgr esqrompm 2 tlogRow_2

-

tFilterRow_3 tPostgresdlOuBpGn M ponentQl ComponentEtDie_1

w180NGempdnentErrar
» v

OnC: o O
InCompdqentOk
i S

tLogRow_3 tWarn_5

tPostgresglCormmit_1

L
tWarn_6

Figure 105: Census Personal Income Pipeline

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the

120|Page



physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database.

5.11 CNBC Overall Ranks

== Find y B 4 % 8| 5| Aute map
rowl w |8 var - = overall & |5
Column Expression Type Expression Column
Overall_Rank I states.Id =X}
State Var.Year Year
Cost_of_Doing_Business rowl. Overall_Rank Overall_Rank
Var Overallld Overallid

in ost
metrics.Name.equals("Access to Capit int ccessTaCapitalld
states | Economy e | &
xpression n
Expr. key Colum: Exppaeioy jcoluny
G id states.ld G
. va Yea
Abbreviati
owL.Econamy Economy
A rowt state arn Var Econormyld Economid
IsPeerState v v
metrics & | & *
Column
Expr. key Colum Qud
=N Year
Nam rowL.Infrastructure Infrastructure
Schema editor - Expression editor
Wl owenl 1]
Column Key Type ¥| Nullab Date Pattern (Ctri+ Length Precision Default Comment Column Key Type vl Nullab Date Pattern (Ctrl+! Length Precision Default |Comment
Overall_Rank Integer o 2 0 Qi & i 10 o
State String o 14 0 Year int
Cost_of_Doing_Business Integer o H ] Overall_Rank Integer o 2 a
Economy Integer ™ 2 0 Overallid int
Infrastructure Integer o 2 (]
Workforce Integer o 2 (]

Figure 106: CNBC Overall Ranks tMap
Name: CNBC Overall Ranks
Source: http://www.cnbc.com/id/100824779

Columns: State, Year, Overall Rank, Cost of Doing Business, Economy, Infrastructure,
Workforce, Quality of Life, Technology, Business, Education, Cost of Living, Access to Capital

rowl --
o excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (states)
e metric is being used in the output
states --
o state id is being used in the output

metrics --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

Overall —
e StatesID (states)

e Year (context of input file)
121 |Page


http://www.cnbc.com/id/100824779

e Overall_Rank (input file)

e OveralllD (metrics, database lookup)
CostOfDoingBusiness

e StatesID (states)

e Year (context of input file)

e Cost_of _doing_business (input file)

e CostOfDoingBusinessID (metrics, database lookup)
Economy

e StatesID (states)

e Year (context of input file)

e Economy (input file)

e EconomylD (metrics, database lookup)
Infrastructure

e StatesID (states)

e Year (context of input file)

e infrastructure (input file)

e infrastructurelD (metrics, database lookup)
Workforce

e StatesID (states)

e Year (context of input file)

e workforce (input file)

e workforcelD (metrics, database lookup)
Quality of Life

e StatesID (states)

e Year (context of input file)

e Quality_of_life (input file)

e QualityOfLifelD (metrics, database lookup)
Technology

122 |Page



StatesID (states)
Year (context of input file)
Technology (input file)

TechnologyID (metrics, database lookup)

Business

StatesID (states)
Year (context of input file)
Business (input file)

BusinessID (metrics, database lookup)

Education

StatesID (states)
Year (context of input file)
Education (input file)

EducationID (metrics, database lookup)

Cost of Living

StatesID (states)

Year (context of input file)

Cost_of_living (input file)
CostOfLivinglD (metrics, database lookup)

Access to capital

StatesID (states)
Year (context of input file)
Access_to_capital (input file)

AccessToCapitalID (metrics, database lookup)

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.

123|Page



This lookup is required to make sure that the data being inserted is both correct and in the right

format.

.
i i tWarn_3
OnCo nentEerr

? rowZ (Filtes) '-, Main) EET
T | e I ' ' : : ' ' ' fi}ﬂrnan’ 1 :Pns:;resmc-u:uun toghow 1 i
ri .
=1 «iﬁ;:-imupr' ¥ ' L | ror thamn d =
Eﬂl Oi'l . ; F Tow3 (Filter) '-a H. >
’ #Rlavall  mhtc |u£;1;:h?€mﬁ' i ’ ’ T Cmetrics” ’ _r’f tFjflerRow_2 tPD;tgre;qlDutput Z  tloglow 2 ’
sn:mp:rwé;f-:ord 1) . ;S !
: : [ : : states” : : : : T | overall '\jﬁr y{e 1} 1 ror tharn 5 =)
L ri // F rowd (Filter) '-’ Hl r
tharn_1 OnComponenlDk lorder:2) T ' ' uv-&ﬂlﬂmﬂnaﬁ s /ﬂm ' Fnstgresqltlutuut 3 tLoghow 1
st L s (Lbekup) ri s -
. . L " Becighydng ain arder 9 o Mﬁ;ﬁ =
e o ? rows5 (Filter) '—’ w LG {Main)
g S nenthuce ot TWain aftlierbow 4 tPostgresglOutout £ tLogRow 4

ror tharn_7 =

rowl (Main)

cnboOwg#iliRankings2013
OnCaggonentOk

1

:

tWarn_3

|
(EnE',
ror tWarn_8

.. . M
? row7 (Filter) '—’ e LB (Wi )

aw_TiFilierRow & thostgrésglOutout & tloghow &

' fFilerRow 11
" rowlZ [Filter)

tFilzerRow_10
" rowll [FilterdFilierBow_9 rowd Filter) rowe Filter)
rowl ilter) E ¥

. tFilterfow_BiFilier

V'Qw:-: [Main]
© = togCatcherl = tMapd o
u |'i’::m;x
. . e
EET‘ row 25 hiain] lﬁ
| toghow 12 ' : tavaRow 1

tie 3

:
tarn_14

Figure 107: CNBC Overall Ranks Pipeline

The above figure shows an idea of what the pipeline looks like. It may seem
overwhelming however it is similar to any other pipeline except that there is more data to move
from the file to the database in this one. There is a database connection, which is used to do
lookups on the states and metrics contained within the database. This is important to validate the
data that is being added to the database. The tMap contains the physical mapping between the
file and the database. tFilterRow is used to filter out some unnecessary information before
inserting into the database.

124 |Page



5.12 EIA Electricity Access

(== Find &4 & P X L3 | Auto map!
rowl & |8 var % f=] 3
Column Expression Type Nu Variable Colum!
StateAbrev rowl Rate/100 fioat Rate Y]
Year @, vear
Rate i Rate
metrics.id [2NBY
states P e | &
Expr. key Column
Qid
&, rowl. StateAbrey. Abbreviation
Name
IsPeerState
metrics Fo|a
Expr. key Columi
Qid
Name
Visible
IsCalculated
DataType
Displayname
URL
Source
DisplayOrder
TrendType
Schema editor - Expr dit
owl o8
Column Key Type | Nullab Date Pattern (Ctrl+! Length Precision  Default Comment Column Key Type il Nullab Date Pattern (Ctrl+! Length Precision Default  Comment
StateAbrev string =4 z 0 Qu o int 10 a
Year Integer wl 4 [] @, Year o Integer o 4 o
Rate Float o 3 4 Rate Float 4 3 4
Qa1 o int 10 a
C'J al @ Ukl L] = @ Uk

Figure 108: EIA Electricity Access tMap
Name: EIA Electricity Access

Source: eia - http://www.eia.gov/electricity/data/state/sales annual.xls

Columns: State, Year, Rate

rowl --
« excel spreadsheet being read in
« State being used as a foreign key for the State table from the database (states)
e metric is being used in the output
states --
o state id is being used in the output
metrics --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclID.

toDB —
e StatesID (states)
e Year (input file)
e Rate (input file, converted by /100)

e MetriclD (metrics, database lookup)
125|Page


http://www.eia.gov/electricity/data/state/sales_annual.xls

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right

format.
-
1
tWarn®2
.]I OnSubjobOk 9 Dk
=" mhtc_lpcal ' “states” ' metrics ' ' I '
" OnCompohentError= tLogRow_1
o
fava_1 | states (Lgokup) metrics.{Lookup : :
N\ row3 (Main)
OnS! joﬁOkComp\q-ﬁ:NOk tDie_‘l‘ [ : : : ) ) )
R S X S . k. o S .
=
! \@ rowl (Main) %E j{ | toDB (Main 'k‘-, row2 (Main) ?&
twarn_1 | ElAElectricityRates tMap_1 tPostgresqlOutput_1  tPostgresqlCommit_1
OnCompohgntError
’ i OnSulfjob@@nSubjokError = I ' ' L= 0
. . : . . ) | y,‘ ) . . | Dl 3
. “higw5 (Main) EN
tWarn_3 | tDie_1 tLogCatcher_1 tMap_2
out (Maia)_
- --
tLogRow_2 i YavaRow_1

Figure 109: EIA Electricity Access Pipeline

=

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some

unnecessary information before inserting into the database.

126 |Page



5.13 Grade 8 Student Performance

Ly - F-) LT I X 5|8 Ao map
e o8 var R outl Fe | B
Cohenn Type Expression Column
State 2009 int ) year09 states.id Qi
009 2011 int (O yeart1 Var.year09 yeardd
o Float parseFloatirow2._009)/100  float ) valog ar Valog valod
Float.parseFloatirow2. 011100 float () valnx metrics.id [EACE
metrics Fe B
Column oz S |8
Exor. key = Expression Columa
{m states.id Qi
Dame Varyearll yearll
s tated ‘Var.Valll valll
Mme metrics.id Qa1
DisplayName
URL
Source
DisplayOrder
TrendType

|Column Key Type |4 Nullab Date Pattern (Ctri+ Length | Precision  Default |Comment |Calumn Key Type - /I Nullab Date Pattern (Ctrl+! Length  Precision | Default  Comment
State 0 String 2 (] 1d o [5] 10 0
oo () string o 2 o year09 [ int o
on O swing El 2 o Valog O float 5]
Qi1 o i o 10 0
Figure 110: Grade 8 Student Performance tMap
Row2 --

« excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (states)

e metric is being used in the output

127|Page



states --
 state id is being used in the output
metrics --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

Outl —

StatesID (states)

Year (input file)
Val09 (input file)

metriclD (metrics, database lookup)
Out2 -

e StatesID (states)

e Year (input file)

e Valll (input file)

e metricID (metrics, database lookup)

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right
format.

128 |Page



:l\

Oncmn@h@dr 1)

tava) l =
\ ®—— P =
\ mhtc_ldgal = “metrics" “states” \
\\ OnComp&&en(Error ,!,‘
W 3
OnComponen{Ok (order:2) e OnCompgnentError
\ tDie_1 metrics (Looktgtes (Lookup) N
\ ,v?l row5 (Filter) "-a row3 (Main) @
=2 \\ ) ' tFilierRow_Z t?ostg resqlOutput_1 tLogRow_1
9 0 f:h[rl (Mdin order:1
/ A-2 = :
Eﬂiomponem@ rowl (Main) i’_‘ row2 (Main) ‘%" el
tWam 2 8StudentPerfgmanceMathScienceReplace_1 tMap_1 out2 (Main Grder2

OnCompgnentError

tLogCatcher_1 tMap_2

out -’v‘; n

-—
E@ row8 (Main) Eg

tLogRow_3 tJavaRow_1

tDie_2

.
rowé (Filter) row4 (Main)

=  tFilterRow_3 tPostgrésqlOutput_2 tLogRow_2
OnCompéner®BGomphnentOk =

4 ‘xﬁo

tDie_3

tWar:_‘i tPostgresgCommit_1
‘OnComplonent®k’
1
—
tWarn_5

Figure 111: Grade 8 Student Performance Pipeline

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database.

129 |Page



5.14 IPEDS Number of Colleges and Universities

(o= = Find & 4 5 & X £ | Auto map!
rowi |8 var # &8 out1 TG
Column Expression Type Nu Variable Expression Column
count context.year int Year states.ld Qe
STABBR Var Year Year
rowl.count count
- metrics.\d 6.1
metrics Fw & °
Expr. key Colum:
Qe
Nam
visible
IsCalculated
DataType
DisplayName
URL
Source
DisplayOrder
TrendType
states Fe | B
Expr. key Column
Q,id
&, rowl STAEBR Abbreviation
Name
IsPeerstate
Schema editor - Expression editor
rowl outl
Column Key Type ¥l Nullab Date Pattern (Ctrl+! Length Precision Default | Comment Column Key Type ] Nullab Date Pattern (Ctrl+! Length Precision Default  Comment t
count Integer o 3 [ Qi o int 10 [
STABBR String o 2 o Year it
count Integer 4 3 o
Qi & i 10 0
] W @) L] = e @) UH

Figure 112: IPEDS Number of Colleges and Universities tMap

Name: IPEDS

Source: Data.gov -- https://inventory.data.gov/dataset/032e19b4-5a90-41dc-83ff-
6e4cd2341565/resource/38625¢3d-5388-4¢16-a30f-d105432553a4

Columns: State, Year, Count

rowl --
o excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (states)
e metric is being used in the output

states --

o state id is being used in the output

130|Page


https://inventory.data.gov/dataset/032e19b4-5a90-41dc-83ff-6e4cd234f565/resource/38625c3d-5388-4c16-a30f-d105432553a4
https://inventory.data.gov/dataset/032e19b4-5a90-41dc-83ff-6e4cd234f565/resource/38625c3d-5388-4c16-a30f-d105432553a4

metrics --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

Outl -
e StatesID (states)
e Year (context of input file)
e count (input file)

e metricID (metrics, database lookup)

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.

This lookup is required to make sure that the data being inserted is both correct and in the right
format.

. — . . . —
o ——

uﬂa_mmpm;;-:?ot'ferger.i; . : : : =
. P

’ twarn_1 ' ' " mjftc_local OnSubjobiOk—u | ’ ' ’ ' ) |

" OnComponentQk (order:1) OnCompdmentError "metrics" “states” ie_3

= \‘\‘ 0 metrics {Lookup) states (Lookup) OnCompénentError

A o tDie_2 nes
% \ “OnComponentO owl (Main) | — _—
tWarn_2 |peq&Coun1 i tMap_loutl (Mais i __—rowZ MairPostgresqlCommit_L
| ; row3 (Filter) ':, \
’ f tFilterRow_l1= tPostgresglOutput_1 OnCom uhjwr:"t(]k =’
OnCompgnentError rowd/AMain) .
= y}, y A
dgw> (Main) ¥ .
| 0 | : tLogCatcher_1 tMap_2 I ’ : EE_F\F tWarn_3
tDie_1 i out (Main) " tLogRow_1
. . ¥ .
=
-—
ow6 (Main) ol
tLogRow_2 © tlavaRow_1

Figure 113: IPEDS Number of Colleges and Universities Pipeline

The above figure shows an idea of what the pipeline looks like. This pipeline is a bit
different in that it reads from a JSON file however it does not complicate it. There is a wizard to
create a JSON Metadata file just as there is for excel and csv files. There is a database

131|Page



connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database.

132|Page



5.15 IPEDS Stem Degrees

(= Find =" + X & | Aute map!
rowl3 e |8 var & ourl Fa |5
Column Expression Troe Nu Variable Expression Column
year_ row2 1. Name.equals("bachelor’s degre int Metricld Integer.parseintirowl3._year_replace("\ ") year_
€2013_A_First_or_Second_Major_ row13._C2013_A_Grand_total €2013_A_Grand_total
_€2013_A_CIP_Code___2010_Classification_ rowld.ld Qyld

_CipTide_ Var.Metrickd Metricld
_€2013_A_Award_Level_code_

-C2013_A_Crand_t _

_HD2013 State_abbreviation

rowld # ¥ | &

Expr. key Column
Qia
Abbreviation
&, row13._HD2013_State_abbreviation_rc  Name
IsPeerState

row21 .
Expr. key Column
Qid
Name
Visible
IsCalculated
DataType
DisplayName
URL
Schema editor - Expression editor
rowl3 outl
Column Key Type ¥ Nullab Date Pattern (Ctri+* Length Precision  Default | Commen Column Key Type | Nullab Date Pattern (Ctrl +! Length Precision Default Comment
_year_ string [ 6 0 _year_ Integer ) 6 0
_C2013_A_First_or_Second String i 14 0 _C2013_A_Grand_total _ Float o 5 L]
_C2013_A_CIP_Code___20 String = & 0 Qe o int 10 0
CipTitle,, String & 57 0 Metricld int
_C2013_A_Award_Level_co String o 40 0
_C2013_A_Grand_total_ Float c} 5 0
| L) Lk i E @ Uk

Figure 114: IPEDS Stem Degrees tMap for Output
Name: IPEDS Stem Degrees
Source: data.gov
Columns: State, Year, Bachelor’s degree in STEM, Grand Total
rowl3 --
« excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (row14)
e metric is being used in the output
rowl4 --
o state id is being used in the output
row21 --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metricID.

Outl -
e StatesID (states)
e Year (input file)
e Grand_total (input file)

133 |Page



e metricID (metrics, database lookup)

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet, after the data was joined based on the state and year to sum the total number of each
degree type, with the database after looking up some information that is contained in the
database. This lookup is required to make sure that the data being inserted is both correct and in
the right format. For this pipeline there are four of these similar to each other, one for each
degree type.

e . . . =
OnComgénentErro E
“mietrics”
Q '
= . . ows - . . . ocieus . . Ay
A = OnCompapentError
2 . . . . . .‘ L4 . . . .
" LD | »= R . . N
Componenttk s o W row3 (Filter order 1) =) T3 Maim) T Y = 1ow23 (Filter W2 M)
es arn_7 Filterfow_1 tAggregateRow 1 tMap_L tFilierRow 8 tPostgresalOutout 1 SogRow_ L
inCom tErfor i
- (-3 & !
Gates™.  “meics” tafh 4
il S (Lagwad fookur OnCampapentError
PP 4 ';'oﬂ Filter order 1) =)+ i TPy 22 Main '; rowZ3 mc":a-. W7 i),
e e S I : C O Wilierflow.2 =TIk Mapd " WilierRow_7 WostgresalOutpue?  toghow 2
OnCofhponenii (order:1 oy 1
:\r:o:;ArtE--: \ Map
o
Die 4

OnCompapent
; row2s (F \Iu.',;l,

tFilierRow_3  tPostgresalDul 4 tlogRow 4

Figure 115: IPEDS Stem Degrees Pipeline

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database. This also uses two files; below you
can see the tMap, which joins the files together to get the state name for the college. It also uses
the tAggregateRow component which is just used to sum all of the degrees of a certain type from
each college to give each college a total of all bachelors, masters, doctorates and associates
degrees separately to be entered into the database.

134|Page



R 0|5 o mapt
_unitid_

_institution_name_

_year_

_C2013_A_First_or_Second_Major_

_C2013_A_CIP_Code___2010_Classification_
CigTitle_

€2013_A_Award_Lavel code_

Figure 116: IPEDS Stem Degrees tMap for Input

135|Page



5.16 State and Local Tax Burden

(s Find L oF * X I | 53 | Auto mapt

& TaxBurdenC09 * | &
Expression Column
row2.Year Year
- row3.ld Q, state
taxBurdenPid Var taxBurdenC Total_Taxes
Var.taxBurdenPid taxBurdenCld

taxBurdenp

Figure 117: State and Local Tax Burden tMap
Name: State and Local Tax Burden

Source: Tax Foundation -- http://taxfoundation.org/article/state-and-local-property-tax-
collections-capita-state-2006-2010

Columns: State, Year, Tax Burden per Capita, Tax Burden Percent

Row?2 --
« excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (row3)
e metric is being used in the output
rowa --
o state id is being used in the output
row4 --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metricID.

TaxBurdenC09 —

e StatesID (row3)

e Year (input file)

e Total taxes (input file)

e totalTaxesID (metrics, database lookup)
TaxBurdenP

e StatesID (row3)
136 |Page


http://taxfoundation.org/article/state-and-local-property-tax-collections-capita-state-2006-2010
http://taxfoundation.org/article/state-and-local-property-tax-collections-capita-state-2006-2010

e Year (input file)
e taxBurdenP (input file)

e taxBurdenlD (metrics, database lookup)

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right

format.
= =
@& o — P =2
mbfc_tacal “states” “metrics”
! OnComczfem[rror !
AWarn_3 twabn_2
7 0 OnCompdnentError
OnCorponentOk tDie_S
[ﬁé = tFilterRow_3 tPostgresglOutput_2 tLogRow_1
= 3¢ 1
Yava_ 1 r:l
4 v
tWaln_S =0 =
OnSubjobOk ! > |
' Mwarn_4 OnComponentOk ':nap_x
nComgonentOk row2 (Main) row? (Lookup, Filter) '
—Q A-2 e TaxBurdenP (Main order: tWadn_1
X" —row1 vair "'i,_‘ @ row5 (Main *? " OnCompdnentError
STCH/stomcalDB tReplace_1 BEAR sonallncome tFilter®of (lookup, Filter)
O’\Com;{n‘e’lt[vror OnCovyﬁm[vror FW’C’ rowll (Ma "@
0 0 tFilterRow_5 tPostgresqlOdut_1 tLogRew_2
OnCompogentOk
tDie_4 tDie_3 [
R P
BEAPergonsgincome tFilterRow_2 = tPostgresg|CoMmit_1 '
OnCompgnentfrror OnCom:}NAmErroy
e‘COmpqre”ka = ”,~' .;% ‘OnComponent® o
Y | ey row47 (Mair | v
tDie_2 1 tLogCatcher_1 tMap_2 0 tDie_1
H ut gMair H
tWarn_6 @1 E@‘ tWarn_7
w48 (Main
tLogRow_3 tJavaRow_1

Figure 118: State and Local Tax Burden Pipeline

The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database. This also uses two files but only to

do some division that is done in the variables part of the tMap.

137|Page



5.17 Tech and Total Employment

= Pl Find T + X 57 | Auto map!
row2s |8 Var & HighTechEmployment03 P |8
Column Expression Type Nu Variable Expression Column
State 2003 t Year03 row2.\d Qud
_003 2004 * Yearod Var.year03 Year03
_004 2006 X Year0§ Var HighTechEmploymentid HighTechEmploymentid
006 $007 : Yan0z (floay) Integer.parselnt(row25._003) _003
03 2008 t Year08
- o e
H, int ‘ear’ P&
-009 row3.Name.equals("High Tech Employ int HighTechEmploymentic HgHTechEmplo G i o
_o10 row3 als(Total Employment int TotalEmploymentid Somn
Column8 row3.Name.equals(*High Tech as Perc int HighTechAsPercentTots S d
0031 Yearod
0041 Var HighTechEmploymentid HighTechEmploymentid
0061 Float.parseFloatirow25._004) 004
0071
0081 o
0091 HighTechEmployment06 e | &
o101 Expression Column
Column16 row2.ld Qud
0032 Var.Year06 Year06
_0042 Var HighTechEmploymentid HighTechEmploymentld
0062 Float.parseFloat(row25._006) 006
0072
0082 .
0092 HighTechEmployemnt07 e | &
0102 Expression Column
row2.Id Qd
— Var.Year07 Year07
row2 * | & VarHighTechEmploymentid HighTechEmploymentid
Schema editor - Expression editor
row2s HighTechEmployment03
Column Key Type ] Nullab Date Pattern (Ctrl+ Length Precision Default Comment t Column Key Type I Nullab Date Pattern (Ctri+! Length Precision  Default Comment
State String 4 20 0 Qd ™ int 10
_003 String o 10 [] Year03 int
_004 String 4 10 0 HighTechEmploymentid Int
006 String o 10 ] 003 Float o 10 0
007 String 4 10 (]
_008 String o 10 []
L % @) L 4 el @) Lk

Figure 119: Tech and Total Employment tMap
Name: Tech and Total Employment

Source: http://www.nsf.gov/statistics/seind12/c8/tt08-54.xIs

Columns: State, Year, High Tech Employment, Total Employment, High Tech as Percent
Row25 --
o excel spreadsheet being read in
o State being used as a foreign key for the State table from the database (row2)
e metric is being used in the output
row2 --
o state id is being used in the output
row3 --

e metric name is being looked at to see if it exists in database. If yes, then passing the
metriclD.

HighTechEmployment03 —
e StatesID (row2)
e Year (input file)
e 003 (input file)

138 |Page


http://www.nsf.gov/statistics/seind12/c8/tt08-54.xls

e HighTechEmploymentID (metrics, database lookup)
HighTechEmployment04 —

e StatesID (row2)

e Year (input file)

e 004 (input file)

e HighTechEmploymentID (metrics, database lookup)
HighTechEmployment06 —

e StatesID (row2)

e Year (input file)

e 006 (input file)

e HighTechEmploymentID (metrics, database lookup)
HighTechEmployment07 —

e StatesID (row2)

e Year (input file)

e 007 (input file)

e HighTechEmploymentID (metrics, database lookup)
HighTechEmployment08 —

e StatesID (row2)

e Year (input file)

e 008 (input file)

e HighTechEmploymentID (metrics, database lookup)
HighTechEmployment09 —

e StatesID (row2)

e Year (input file)

e 009 (input file)

e HighTechEmploymentID (metrics, database lookup)
HighTechEmployment10 —

e StatesID (row2)

139 |Page



e Year (input file)
e 0010 (input file)
e HighTechEmploymentID (metrics, database lookup)

The above figure shows the tMap of the pipeline that maps the data from the excel
spreadsheet to the database after looking up some information that is contained in the database.
This lookup is required to make sure that the data being inserted is both correct and in the right
format.

|
4
Or\l: rm':r

;.‘?';? wm ;ﬁ,. E;

e P r-:;.-n:pmq:.-:l u.pp.u-z .

I mwnm.- 4 deghrwd

™ =T nuﬂ =H - a

= = T " dFilueRire ETe r—:;. girpus_§ | deghow s
et s \ I ghrriendn !

a1 N e, - ; Filsarfioa 11T tFrang e M--I- Haghow 5

‘THH

R P I oy g T Hoghow 7

‘r‘ﬁﬁﬂH

- eFlerios 147 Fomgaghiupas_i dogioe B

*-ri'fﬁﬂ—"”ﬂ

FlzrRize 57 rFoag g " deghowd

*-r%ﬂ%*”ﬂ:

(B |:I Frangmghlupus_10

e P

el 1T RsirRe 10 FlRos 15 tPoamgre ghiumpas 11

Figure 120: Tech and Total Employment Pipeline

140 |Page



The above figure shows an idea of what the pipeline looks like. There is a database
connection, which is used to do lookups on the states and metrics contained within the database.
This is important to validate the data that is being added to the database. The tMap contains the
physical mapping between the file and the database. tFilterRow is used to filter out some
unnecessary information before inserting into the database. This pipeline may look
overwhelming but it is as simple as all the others there is just a lot of data to be inserted from this
file.

141 |Page



Appendix C: MITRE Code Evaluation Report - January 30, 2015

142 |Page



Appendix D: MITRE Code Evaluation Report — April 21, 2015

CAST Application Intelligence Platform (AIP) Analysis

Summary

The Application Assessment evaluates the overall quality of the MHTC421 application.
MHTCA421 is a small application and has a medium quality with a Total Quality Indicator (TQI)

of 2.83 on a scale of 1-4. Each of the additional health metrics and their scores are identified
below.

Application Characteristics

ToprP 5 TECHNOLOGIES TECHNICAL SI1ZE
| Name LOCs | | Name Number |
| JEE 44,916  kLOCs 45
Files 218
Classes 83
SQL Art. 0
Tables 0
J
Summary of Quality Indicators
TQl Robu. Efcy. Secu. Trans. Chang. k
Trsf Version 3 2.83 3.17 2.02 2.68 3.09 2.91

TQIl=> Total Quality Index
Robu => Robustness/Reliability
Perf =>  Performance/Efficiency
Secu => Security

Trans => Transferability
Chang =>Changeability

N
Assessment Highlights
Rule Names Count
STATISTICS ON VIOLATIONS
Name Number
Critical Violations 59
per File 0.27
per kLOC 1.31

Complex Objects 42

e .3 e 3 g8 o~




Complexity Distribution
1400
1200
1000
800
600
400

200

Low Average High Very High

Figure 121: Cyclomatic Complexity Distribution

Cyclomatic Complexit .
y P y Current total  Previous total % on total elements

Distribution

Low Complexity 1,003 819 87.9%
Average Complexity 96 97 8.41%
High Complexity 10 16 0.88 %
Very High Complexity 32 32 2.80 %

144 |Page



Technical Debt

The complexity of MHTC421 application has been converted into Technical Debt — the cost of
fixing the structural quality violations that cause serious business disruption. The data on technical
debt provides an objective, empirical frame of reference for the developer community. They also
provide a platform for characterizing the management tradeoffs between expending resources on
correcting weaknesses in the source code versus risking the problems these flaws may cause such
as outages or security breaches.

If necessary, this value can be benchmarked with The CAST Appmarq repository. The CAST
Appmarq repository provides a unique opportunity to calculate the Technical Debt across different
technologies, based on the number of engineering flaws and violations of good architectural and
coding practices in the source code. A parameterized formula for calculating the Technical Debt
of each application in Appmarq is based on the percent of violations to be remediated at each level
of severity, the time required to fix a violation, and the burdened hourly rate of a developer. Please
see the Appendix for details on how Technical Debt is calculated at CAST.

CAST AIP categorizes violations into low, medium and high severity. The technical Debt
calculation assumes that only 50% of high-severity violations, 25% of medium-severity violations,
and 10% of low severity violations require fixing to prevent business disruption. With this in mind,
the formula for technical debt becomes:

Technical Debt of MHTC421 = 231,338 $

300,000

250,000 -
44,916

200,000 -

150,000 -

Size (kLoC) 44916
100,000 -

Technical Debt (S)

50,000

O T T T T T 1
1.00 150 2.00 250 3.00 3.50 4.00

Technical Quality Indicator

145|Page



How Can Technology Address Application Quality Challenges?

The quality attributes of an application can be characterized by the quality attributes of its component parts no more
than the attributes of a molecule can be characterized by the attributes of its constituent atoms. Since high quality
components do not equate to a high quality system in any field of engineering, code quality, although necessary, is
not sufficient to ensure high quality applications. Organizations need the help of application quality diagnostic tools
which can discover inter-component issues and measure the internal quality of the application across its tiers.

There are numerous commercial, freeware, and open source tools available that measure code quality specific to a
programming language and are often integrated into Integrated Development Environments (IDEs). These tools are
becoming standard components of every developer’s toolset since they provide quick feedback during the coding and
unit test process. However, these tools are not sufficient to address application quality since they cannot evaluate
interactions across the various languages, technologies, and tiers of an application.

Technology that measures application quality analyzes the integrated software produced by a build once the code is
checked into a central repository by all the developers. In addition to analyzing each component, application quality
technology analyzes their interactions for the types of problems described in earlier sections. Moreover, application
quality trends can be compared across builds or releases to monitor the progress against application quality objectives
and evaluate the risks posed by the application.

Application gquality measurement tools provide several benefits for both the development team and management:

e  Visibility across application(s): Consistent and continuous analysis of all core business applications
provides executives with the metrics and information needed to better manage their portfolio of applications
and projects.

e Analysis of the internal quality of an application: Reviewing the integrated software system for quality in
order to detect architectural and structural problems that hide in interactions between tiers, provides
application or project managers with continual status about application quality and risk.

e Team performance: Since a detailed knowledge of the whole system is usually beyond any individual
developer’s capabilities, analyzing application quality helps improves developer skills, the team’s breadth of
application knowledge, and the efficiency of team performance.

Trsf TQl Robu. Efcy. Secu. Trans.  Chang.
4 Version 3 2.83 3.17 2.02 2.68 3.09 2.91

Secu Chng STATISTICS ON VIOLATIONS
Name Number
Critical Violations 59
per File 0.27
per kLOC 1.31
Complex Objects 42
with violations 0

Effi Rbst

J

A dynamic business environment, new technology, and multiple sourcing options, amplify the complexity of
business application software. Since even the most talented developers can no longer know all the nuances of all the
different languages, technologies, and tiers in an application, their capability needs to be augmented by automated
tools to evaluate the entire application. Without such assistance, defects hidden in the interactions between

146 |Page



application tiers will place the business at risk for the outages, degraded service, security breaches, and corrupted
data that are caused by poor quality applications.

Potential Points of Failures: Critical rules

The CAST AIP quality model assess automatically the application and raise the main issue of the application through
a weighted aggregation of more than +1000 rules across the different technology. The below list represent the different
rules which contain some violation on some component which can create some abnornal behavior during the execusion
of the application.

Potential Points of Failures: Transaction wide Risk Index

Transaction Wide Risk Index (TwRI) is an indicator of the riskiest

. i transactions of the application. The TwRI number reflects the cumulative
Transaction Risk Index (TRI) enables PP

risk of the transaction based on the risk in the individual objects

easy identification of the riskiset contributing to the transaction; in the below list the focus is on the

transactions within the application efficiency of the application. The TwRI is calculated as a function of the
r r rules violated, their weight/criticality, and the frequency of the violation
t ': ‘ C across all objects in the path of the transaction. TwRl is a powerful metric
ot s to identify, prioritize and ultimately remediate riskiest transactions and
) 0 their objects.
i
\ ¢ Transaction Entry Point TRI
) '

147 |Page



Potential Point of Failures: Propagated Risk Index

Propagated Risk Index (PRI) enables easy
identification of the riskiset

objects/artifacts within the application

The Top 14 objects with the highest PRI are:

Propagated Risk Index (PRI) is a measurement of the riskiest artifacts or
objects of the application along the Health Factors of Robustness,
Performance and Security.

PRI takes into account the intrinsic risk of the component coupled with
the level of use of the given object in the transaction. It systematically
helps aggregate risk of the application in a relative manner allowing for
identification, prioritization, and ultimately remediation of the riskiest
objects.

The PRI number reflects the cummulative risk of the object based on its
relationships and interdependencies. The PRI is calculated as a
function of the rules violated, their weight/criticality, and the frequency
of the violation.

Artefact Name PRI
edu.wpi.mhtc.util.persistence.PSqlStringMappedJdbcCall.buildQuery 3,200
edu.wpi.mhtc.util.helpers.UnZip.unZiplt 1,160
edu.wpi.mhtc.util.pipeline.wrappers.URLDownload.HTTPDownload 960
edu.wpi.mhtc.util.helpers.MD5.getMD5 800
edu.wpi.mhtc.util.pipeline.wrappers.IPEDSDownload.download 700
edu.wpi.mhtc.util.pipeline.wrappers.BLSDownload.getBLS 540
edu.wpi.mhtc.util.pipeline.scheduler.TalendJob.runPipeline 480
edu.wpi.mhtc.util.pipeline.wrappers.WebTableWrapper.downloadHtmIUnit 440
[E:\\CASTMS\MHTC421\Deploy\MHTC421\Package 360

3\src\main\webapp\WEB-INF\views\unifiedHeader.jsp]

148 |Page



edu.wpi.mhtc.dao.admin.ScheduleDAOImpl.getSchedStatus
edu.wpi.mhtc.dao.dashboard.StatsService]DBC.getDataForState
edu.wpi.mhtc.util.pipeline.wrappers.URLDownload.getText
edu.wpi.mhtc.util.pipeline.wrappers.WebTableWrapper.download

edu.wpi.mhtc.util.pipeline.parser.TextParser.getHeaderColumnNames

320
320
320
320
300

Strenghts and Weaknesses

Technical Criteria Name Grade
Architecture - Multi-Layers and Data Access 1.00
Architecture - Object-level Dependencies 3.37
Architecture - OS and Platform Independence 4.00
Architecture - Reuse 1.97
Complexity - Algorithmic and Control Structure Complexity 3.86

149 |Page



Measures of Robustness

The root causes of poor reliability are found in a combination of non- compliance with good
architectural and coding practices. This non-compliance can be detected by measuring the static
quality attributes of an application. Assessing the static attributes underlying an application’s
reliability provides an estimate of the level of business risk and the likelihood of potential
application failures and defects the application will experience when placed in operation.

Technical Criteria Name Grade
Architecture - Multi-Layers and Data Access 1.00
Architecture - Object-level Dependencies 3.37
Architecture - OS and Platform Independence 4.00
Architecture - Reuse 1.97
Complexity - Algorithmic and Control Structure Complexity 3.86

Measures: Assessing reliability requires checks of at least the following software engineering
best practices and technical attributes:

e  Application Architecture Practices
o Multi-layer design compliance
o  Coupling ratio
o  Component or pattern re-use ratio
. Coding Practices
o  Error & Exception handling (for all layers GUI, Logic & Data)
o  Compliance with Object-Oriented and Structured Programming best practices (when applicable)
e  Complexity
o  Transaction complexity level
o  Complexity of algorithms
o  Complexity of programming practices
o  Dirty programming

Depending on the application architecture and the third-party components used (such as external libraries or
frameworks), custom checks should be defined along the lines drawn by the above list of best practices to ensure a
better assessment of the reliability of the delivered software.

Rule Names Count

Measures of Performance & Efficiency

As with Reliability, the causes of performance inefficiency are often found in violations of good architectural and
coding practice which can be detected by measuring the static quality attributes of an application. These static
attributes predict potential operational performance bottlenecks and future scalability problems, especially for
applications requiring high execution speed for handling complex algorithms or huge volumes of data.

Technical Criteria Name Grade
Complexity - Dynamic Instantiation 4.00
Efficiency - Expensive Calls in Loops 1.47

150 |Page



Efficiency - Memory, Network and Disk Space Management 1.17

Measures: Assessing performance efficiency requires checking at least the following software
engineering best practices and technical attributes:

e Application Architecture Practices
o Appropriate interactions with expensive and/or remote resources
o  Data access performance and data management
o Memory, network and disk space management
. Coding Practices
o  Compliance with Object-Oriented and Structured Programming best practices
o  Compliance with SQL best practices

Measures of Security

Most security vulnerabilities result from poor coding and architectural practices such as SQL injection or cross-site
scripting. These are well documented in lists maintained by CWE http://cwe.mitre.org/, and CERT.

Technical Criteria Name Grade
Architecture - Multi-Layers and Data Access 1.00
Architecture - OS and Platform Independence 4.00
Efficiency - Memory, Network and Disk Space Management 1.17
Programming Practices - Error and Exception Handling 1.00
Programming Practices - Unexpected Behavior 4.00

151 |Page



Measures of Maintainability

Maintainability includes concepts of modularity, clarity, changeability, testability, reusability, and transferability from
one development team to another. These do not take the form of critical issues at the code level. Rather, poor
maintainability is typically the result of thousands of minor violations with best practices around documentation,

complexity avoidance strategy, and basic programming practices that make the difference between clean and easy to
read code vs. ugly and difficult to read code.

Transferability

Technical Criteria Name Grade
Architecture - Object-level Dependencies 3.37
Complexity - Algorithmic and Control 3.86

Structure Complexity
Complexity - Dynamic Instantiation 4.00
Complexity - OO Inheritance and 4.00

Polymorphism
Dead code (static) 2.15

Changeability

Technical Criteria Name Grade
Architecture - Multi-Layers and Data Access 1.00
Architecture - Object-level Dependencies 3.37
Architecture - OS and Platform Independence 4.00
Architecture - Reuse 1.97
Complexity - Algorithmic and Control 3.86

Structure Complexity

152 |Page



Measures: Assessing maintainability requires checking the following software engineering best
practices and technical attributes:

e Application Architecture Practices
o Multi-layer design compliance
o  Coupling ratio
o  Component or pattern re-use ratio
e  Programming Practices (code level)
o  Compliance with Object-Oriented and Structured Programming best practices (when applicable)
e  Complexity
o  Complexity level of transactions
o  Complexity of algorithms
o  Complexity of programming practices
o  Dirty programming
. Documentation
o  Code readability
o Architecture, Programs and Code documentation embedded in source code
o  Source code file organization cleanliness
e  Portability
o  Hardware, OS, middleware, software components and database independence

Security Assessment Overview

Here we list down all the security vulnerabilities identified by CAST AIP.

TOP TECHNICAL CRITERIA THAT MOST IMPACT THE SECURITY 2.68
Technical criterion name vicIZ:?olns Total check Grade
Programming Practices - Error and Exception Handling 133 10,216 1.00
Efficiency - Memory, Network and Disk Space Management 127 8,078 1.17
Secure Coding - Encapsulation 44 1,486 3.16
Architecture - OS and Platform Independence 25 6,770 4.00
Architecture - Multi-Layers and Data Access 2 277 1.00

Formula — Sum(rule weight x technical criterion weight) * (4 — technical criterion grade)

Rules list below display the most impacting rules for the current snapshot. Rules are sorted according to the grade
and the weight of the rule. In other terms, on top of the list, you will see the rules that have a big impact (low
grade * big weight) and the rules that are difficult to correct (lots of violations to be correct).

Top rules that most impact the SECURITY

Current

Rule Name Violations Grade
Avoid declaring throwing an exception and not throwing it 58 1.93
Declare as static all Methods not using Instance Fields 54 1.97
Pages should use error handling page 38 1.00

153 |Page



Use of style sheets

37 1.00

Avoid declaring Instance Variables without defined access type 28 1.83
Avoid using 'java.io.File' 21 3.86
Avoid using 'Throwable.printStackTrace()' within a try catch block 12 3.60
Avoid using 'System.err' and 'System.out' outside a try catch block 9 3.76
Close the outermost stream ASAP 8 1.17
Avoid large number of String concatenation 8 3.81

Formula — (quality rule weight x technical criterion weight) * (4 — rule grade)

Software Security Standards

CAST AIP is aligned to capture the Security requirements listed by CWE (http://cwe.mitre.org/), and

CERT as top Security weaknesses.

Summary of Security Violations

HIGH LEVEL AREA

NUMBER OF VIOLATIONS

& CWE (not part of top-25)

Insecure Interaction Between Component 0
Risky Resource Management 0
Porous Defences 0
Security vulnerabilities identified by OWASP 0

Mapping CAST Rules to CWE Most Dangerous Software Errors

The rules categorized into four high-level areas listed below:

Risky Resource Management
Porous Defenses

Insecure Interaction Between Components

Insecure Interaction Between Components

Security vulnerabilities identified by OWASP & CWE (not part of top-25)

These weaknesses are related to insecure ways in which data is sent and received between separate

components, modules, programs, processes, threads, or systems.

154 |Page




Rank CWEID Name Recommendation/Mitigation/Comments Corresponding CAST Rule

[1] CWE-89 Improper Checking for SQL Injection Avoid SQL injection
Neutralization of vulnerabilities
Special Elements used
in an SQL Command
('sQL Injection')
[2] CWE-78 Improper Checking for OS Command Injection Avoid OS command injection
Neutralization of vulnerabilities
Special Elements used
in an OS Command
('OS Command

Injection’)
[4] CWE-79 Improper Checking for Cross-site scripting Avoid cross-site scripting
Neutralization of Input vulnerabilities

During Web Page
Generation ('Cross-site

Scripting')
[9] CWE-434  Unrestricted Upload Input Validation Extend existing rules - Avoid non
of File with Dangerous standard file extensions, Avoid
Type file path manipulation
vulnerabilities, Avoid XPath
injection vulnerabilities
[12] CWE-352 Cross-Site Request Ensure that application is free of cross- Avoid cross-site scripting
Forgery (CSRF) site scripting issues (CWE-79), because vulnerabilities
most CSRF defenses can be bypassed
using attacker-controlled script.
[22] CWE-601  URL Redirection to Checking for Cross-site scripting Avoid cross-site scripting
Untrusted Site ('Open vulnerabilities
Redirect')

Risky Resource Management

The weaknesses in this category are related to ways in which software does not properly manage
the creation, usage, transfer, or destruction of important system resources.

Ran CWEID Name Recommendation/Mitigatio Corresponding CAST Rule
k n/Comments
[3] CWE- Buffer Copy without Perform input validation on Extend existing rules - Avoid using
120 Checking Size of Input any numeric input by getopt() function, Never use
('Classic Buffer Overflow') ensuring that it is within the sprintf() function or vsprintf()
expected range. Enforce that  function, Never perform C cast
the input meets both the between incompatible class
minimum and maximum pointers, Avoid using static_cast
requirements for the on class/struct pointers
expected range.
[13] CWE-22 Improper Limitation of a Checking for file path Avoid file path manipulation
Pathname to a Restricted manipulation vulnerabilities

Directory ('Path Traversal')

155 |Page



[14] CWE- Download of Code Without Check Download Code Extend existing rules - Avoid non
494 Integrity Check Integrity standard file extensions, Avoid
file path manipulation
vulnerabilities, Avoid XPath
injection vulnerabilities
[16] CWE- Inclusion of Functionality When the set of acceptable Extend existing rules - Avoid
829 from Untrusted Control objects, such as filenames or XPath injection vulnerabilities
Sphere URLs, is limited or known,
create a mapping from a set
of fixed input values (such as
numeric
IDs) to the actual filenames
or URLs, and reject all other
inputs.
[18] CWE- Use of Potentially Dangerous  Checking for programming Avoid using snprintf() function,
676 Function best practices Avoid using realpath() function,
Avoid using the scanf() function,
etc
[20] CWE- Incorrect Calculation of Perform input validation on Extend existing rules - Never use
131 Buffer Size any numeric input by sprintf() function or vsprintf()
ensuring that it is within the function, Never perform C cast
expected range. Enforce that ~ between incompatible class
the input meets both the pointers, Avoid using static_cast
minimum and on class/struct pointers
maximum requirements for
the expected range.
[23] CWE- Uncontrolled Format String Whenever possible, use Extend existing rules - Never use
134 functions that do not support  sprintf() function or vsprintf()
the %n operator in format function, Avoid using the scanf()
strings. function, etc
[24] CWE- Integer Overflow or Perform input validation on Extend existing rules - Avoid using
190 Wraparound any numeric input by getopt() function

ensuring that it is within the
expected range. Enforce that
the input meets both the
minimum and maximum
requirements for the
expected range.

Porous Defenses

The weaknesses in this category are related to defensive techniques that are often misused, abused,
or just plain ignored.

Rank CWEID Name Recommendation/Mitigation/Comments Corresponding CAST Rule

156 |Page



(5]

(6]

(7]

(8]

[10]

(11]

[15]

(17]

[21]

[25]

Security vulnerabilities identified by OWASP & CWE (not part of top-25)

CWE-306

CWE-862

CWE-798

CWE-311

CWE-807

CWE-250

CWE-863

CWE-732

CWE-307

CWE-759

CWE ID

Missing
Authentication for
Critical Function

Missing Authorization

Use of Hard-coded
Credentials

Missing Encryption of
Sensitive Data

Reliance on
Untrusted Inputs in a
Security Decision
Execution with
Unnecessary
Privileges

Incorrect
Authorization
Incorrect Permission
Assignment for Critical
Resource

Improper Restriction
of Excessive
Authentication
Attempts

Use of a One-Way
Hash without a Salt

Name

Avoid implementing custom
authentication routines and consider
using authentication capabilities as
provided by the surrounding

framework, operating system, or
environment.

Users should not be able to access any
unauthorized functionality or information
by simply requesting direct access to that
page.

Store passwords, keys, and other
credentials outside of the code in a
strongly-protected, encrypted
configuration file or

database that is protected from access by
all outsiders, including other local users
on the same system.

Periodically ensure that you aren't using
obsolete cryptography. Avoid using old
encryption techniques using MD4, MD5,
SHA1, DES, and other algorithms that
were once regarded as strong.

consider getcookies as unsafe

Checking for privileges being
appropriately implemented based on the
scenario/usecase. Perform extensive input
validation and canonicalization to
minimize the chances of introducing a
separate vulnerability.

consider getcookies as unsafe

Path manipulation

Check login implementation

Checking for programming best practices

Recommendation/Mitigation/Comments

Extend existing rules - Avoid
cross-site scripting
vulnerabilities, Avoid LDAP
injection vulnerabilities

Extend existing rules - Avoid
cross-site scripting
vulnerabilities, Avoid LDAP
injection vulnerabilities
Extend existing rules - Avoid
LDAP injection vulnerabilities

Extend existing rules - Avoid
cross-site scripting
vulnerabilities, Avoid LDAP
injection vulnerabilities

Avoid cross-site scripting
vulnerabilities

Extend existing rules - Avoid
cross-site scripting
vulnerabilities, Avoid LDAP
injection vulnerabilities

Avoid cross-site scripting
vulnerabilities

Avoid file path manipulation
vulnerabilities

Extend existing rules - Avoid
direct access to database
Procedures/Functions, User

Interface elements must not use

directly the database
Extend rules - Avoid using
Hashtable, Avoid classes
overriding only equals() or only
hashCode()

Corresponding CAST Rule

157 |Page



CWE-20:

CWE-116:

CWE-90
CWE-91
CWE-73:

CWE-99:

CWE-117:

Improper Input Validation

Improper Encoding or
Escaping of Output

LDAP Injection

XPATH Injection
External Control of File
Name or Path
Improper Control of
Resource Identifiers
('Resource Injection')
Improper Output
Neutralization for Logs

Avoid SQL injection vulnerabilities,
Avoid XPath injection vulnerabilities,
Avoid cross-site scripting
vulnerabilities

Avoid SQL injection vulnerabilities,
Avoid OS command injection
vulnerabilities, Avoid cross-site
scripting vulnerabilities

Avoid LDAP injection vulnerabilities
Avoid XPath injection vulnerabilities
Avoid file path manipulation
vulnerabilities

Avoid file path manipulation
vulnerabilities

Checking for best programming practices

Checking for best programming practices

Checking for LDAP injection
Checking for XPATH injection
Checking for file path manipulation

Checking for best programming practices

Checking for log forging Avoid Log forging vulnerabilities

Security Weaknesses Spotted

CAST AIP Assessment Approach Overview

Structural Quality
Governance Factbase

Quality Facts:
* Robustness
* Performance

| = Security
| * Changeability

| = Transferability

Y =)

57

Quantity Facts:

= Functional Size —
Function Points

= Technical Size —
Lines of Code, No.
of Files, Classes
etc.

~4 Application Analyzers

Delivered Source Code:

| = CICS, IMS, COBOL, DB2 z/0S, PL/I
* J2EE, .NET and all Major RDBMS

= Web Apps, BI, EAI, C/C++, VB, PB
= Siebel, SAP, PSFT, OBS, Amdocs

Health Factor

This assessment is an effort to determine the overall quality of the
application MHTC421 and identify any risks that may be inherent in
the application. The assessment looks at the implementation of
MHTC421 to determine whether the application is constructed
according to industry best practices, follows best practices for
software engineering, and is maintainable.

This assessment is focused solely on the Source code and Database
structure with no view to functionality provided by backend services.

The CAST AIP is the industry leading automated code analysis
platform, with coverage of all major development tools and languages.
CAST AIP automatically scans and analyzes all of the source code and
database elements that are part of an Enterprise system. CAST AIP
applies over 1000+ metrics based on standards and measurements
developed by the Software Engineering Institute (SEl), International
Standards Organization (I1SO), Consortium for IT Software Quality
(CISQ), and Institute of Electrical and Electronics Engineers (IEEE).
These metrics objectively measure software for the quality and
quantity of work.

CAST AIP provides Application Analysts the ability to examine and drill
down on critical application characteristics and attributes. The
primary Application Health Factors that are addressed are:

Description

Example business benefits

158 |Page



Robustness

Attributes that affect the
stability of the application
and the likelihood of
introducing defects when
modifying it

Improves availability of the business function or service
Reduces risk of loss due to operational malfunction
Reduces cost of application ownership by reducing rework

Performance Attributes that affect the e Reduces risk of losing customers from poor service or response
performance of an e Improves productivity of those who use the application
application e Increases speed of making decisions and providing information

e Improves ability to scale application to support business growth

Security Attributes that affect an e Improves protection of competitive information-based assets

application’s ability to
prevent unauthorized
intrusions

Reduces risk of loss in customer confidence or financial
damages

Improves compliance with security-related standards and
mandates

Transferability

Attributes that allow new
teams or members to quickly
understand and work with an
application

Reduces inefficiency in transferring application work between
teams

Reduces learning curves

Reduces lock-in to suppliers

Changeability

Attributes that make an
application easier and
quicker to modify

Improves business agility in responding to markets or
customers
Reduces cost of ownership by reducing modification effort

159 |Page



Understanding Quality Indicators, Quality Rules

CAST AIP has 1000+ quality rules and each rule produces a Grade. Depending on the impact the grades are
aggregated into high level Indicators: Quality indicators and Best practices indicators.

Each aggregation is a weighted average of the contributing metrics grades where certain metric grades are flagged
critical, i.e. it is nearly a defect. We talk about Critical Violations.

Quality Indicators

The structure, classification and terminology are from the 1SO 9126- 3 and the subsequent ISO 25000:2005 quality
model. The main focus is on internal structural quality. Subcategories have been created to handle specific areas like
business application architecture and technical characteristics such as data access and manipulation or the notion of
transactions. The dependence tree between software quality characteristics and their measurable attributes is
represented in the following diagram, where each of the 5 characteristics that matter for the user or owner of the
business system depends on measurable attributes: Application Architecture Practices, Coding Practices,
Application Complexity, Documentation, Portability, and Technical & Functional VVolume.

Quality Indicator Description
Performance / The source code and software architecture attributes are the elements that ensure high
Efficiency performance once the application is in run-time mode. Efficiency is especially important for

applications in high execution speed environments such as algorithmic or transactional
processing where performance and scalability are paramount. An analysis of source code
efficiency and scalability provides a clear picture of the latent business risks and the harm they
can cause to customer satisfaction due to response-time degradation.

Robustness [ An attribute of resiliency and structural solidity. Reliability measures the level of risk and the

Reliability likelihood of potential application failures. It also measures the defects injected due to
modifications made to the software (its “stability” as termed by I1SO). The goal for checking and
monitoring Reliability is to reduce and prevent application downtime, application outages and
errors that directly affect users, and enhance the image of IT and its impact on a company’s
business performance.

Security A measure of the likelihood of potential security breaches due to poor coding and architectural
practices. This quantifies the risk of encountering critical vulnerabilities that damage the
business and provides a list of prevention measures.

Transferability The effort necessary to diagnose the cause of a failure or section of code to be modified. It
establishes the level of dependency on specific developers

Changeability The effort necessary to modify the source code. It establishes the level of responsiveness to
business-driven change requests

TQl Total Quality Index (TQl) is computed on all the measures made by the CAST AIP

160 |Page



Best practices Indicators

Health Factor Description
Programming Measures the level of compliance of the application to coding best practices. Compliance to
Practices best practices reduces risks of failures in production and improves productivity through
increased readability and reduced debugging.
Architectural Measures the level of compliance of the application to software architecture and design rules.
Design Compliance to architecture rules improves productivity through better use of existing

frameworks and code and reduced debugging.

Documentation  Measures the level of compliance of the application to code documentation best practices.
Compliance to documentation best practices improves productivity through increased
readability and faster understanding of source code.

The risk level of a grade shall be assessed according to the below scale

Scale Risk Level

4 Low Risk

3 Moderate Risk
2 High Risk

|

Importance of measuring all layers of an application

Measuring the technical quality of business software applications is evolving from an art to a science with the
availability of software tools that automate the process of code analysis. However, it is critical to understand that there
are two categories of software quality with very different implications for operational performance. The first category
is Code Quality which measures individual or small collections of coded components written in a single language and
occupying a single tier (e.g., user interface, logic, or data) in an application. The second category, Application Quality,
analyzes the software across all of the application’s languages, tiers, and technologies to measure how well all an
application’s components come together to create its operational performance and overall maintainability.

Although the code quality of individual components is important, by itself it will not ensure the overall quality of the
application. Quality is not an intrinsic property of code: the exact same piece of code can be excellent in quality or
highly dangerous depending on the context in which it operates. Ignoring the larger context in which the code operates
— the multitude of connections with other code, databases, middleware, and APIs — will often generate a large number
of false positives.

Today’s business applications are complex, built in multiple languages on multiple technologies. Even more
challenging, these applications usually interact with other applications built on different technologies. Analyzing the
quality of modern applications is monstrously complex and can only be accomplished with automated software that
analyzes the inner structure of all components and evaluates their interactions in the context of the entire business
application.

Typical application quality problems are listed below to clarify the distinction between application and code quality.
Performance testing alone is not sufficient to detect these application quality problems.

Bypassing the Architecture.

Components in one tier of a multi-tier application are typically designed to access components in another tier only
through an intermediate “traffic management” component. Bypassing this traffic management component will usually
result in a cascade of problems.

161|Page



Failure to Control Processing Volumes.

Applications can behave erratically when they fail to control the amount of data or processing they allow. This problem
is often caused by a failure to incorporate controls in each of several different architectural tiers.

Application Resource Imbalances.

When database resources in a connection pool are mismatched with the number of request threads from an application,
resource contention will block the threads until a resource becomes available, tying up CPU resources with the waiting
threads and slowing application response times to a crawl.

Security Weaknesses.

Applications are vulnerable to security attacks when they lack appropriate sanitization checks on user inputs in all
relevant tiers of the application.

Lack of Defensive Mechanisms.

Since the developers implementing one tier cannot anticipate every situation, they must implement defensive code
that sustains the application’s performance in the face of stresses or failures affecting other tiers. Tiers that lack these
defensive structures are fragile because they fail to protect themselves from problems in their interaction with other
tiers. Each of these application quality problems will result in unpredictable application performance, business
disruption, data corruption, and make it difficult to alter the application in response to pressing business needs.

Reliably detecting these problems requires an analysis of each application component in the context of the entire
application as a whole — an evaluation of application rather than code quality.

Technical Debt Calculation in the CAST AIP
Purpose
Purpose of this specification is to add new indicators to the CAST AIP dashboard.

1) Total Technical Debt per Application

2) Total Technical Debt per Module

3) Technical Debt Added in Current Release of the Application

4) Technical Debt Removed in Current Release of the Application

Note: These should be calculated at module and application level and can be summed up to the
system level in the portal.

Calculation of Technical Debt per Module and Application

1) Total Technical Debt per Module and Application =

{ (% of low severity violations to be fixed X # of low severity violations in Application and
Module) X (Weighted time, in hours, for fixing low severity violations) +

(% of medium severity violations to be fixed X # of medium severity violations in Application
and Module) X (Weighted time, in hours, for fixing medium severity violations) +

(% of high severity violations to be fixed X # of high severity violations in Application and
Module) X (Weighted time, in hours, for fixing high severity violations) } X

162 |Page



Cost per staff hour to fix violations

2) Technical Debt Added in Current Release per Application =

{ (% of low severity violations to be fixed X # of low severity violations added in current
release of Application) X (Weighted time, in hours, for fixing low severity violations) +

(% of medium severity violations to be fixed X # of medium severity violations added in
current release of Application) X (Weighted time, in hours, for fixing medium severity

violations) +

(% of high severity violations to be fixed X # of high severity violations added in current release
of Application) X (Weighted time, in hours, for fixing high severity violations) } X

Cost per staff hour to fix violations

3) Technical Debt Removed in Current Release per Application =

{ (% of low severity violations to be fixed X # of low severity violations removed in current
release of Application) X (Weighted time, in hours, for fixing low severity violations) +

(% of medium severity violations to be fixed X # of medium severity violations removed in
current release of Application) X (Weighted time, in hours, for fixing medium severity

violations) +

(% of high severity violations to be fixed X # of high severity violations removed in current
release of Application) X (Weighted time, in hours, for fixing high severity violations) } X

Cost per staff hour to fix violations

Definition of Variables

Variable Name

Description

Configurable

Default Value

% of low severity
violations to be
fixed

Only a portion of the
low severity violations
will be fixed

Yes

0%

# of low severity
violations

Actual # of low severity
(level 1,2,3) violations
across all health factors

No (comes directly
from analysis)

Not Applicable

# of low severity
violations added in
current release

Actual # of low severity
(level 1,2,3) violations
across all health factors
added in current release

No (comes directly
from analysis)

Not Applicable

# of low severity
violations removed
in current release

Actual # of low severity
(level 1,2,3) violations
across all health factors
removed in current
release

No (comes directly
from analysis)

Not Applicable

163 |Page




Variable Name

Description

Configurable

Default Value

% of medium
severity violations

Only a portion of the
medium severity
violations will be fixed

Yes

50%

# of medium
severity violations

Actual # of medium
severity (level 4,5,6)
violations across all
health factors

No (comes directly
from analysis)

Not Applicable

# of medium
severity violations
added in current
release

Actual # of medium
severity (level 4,5,6)
violations across all
health factors added in
current release

No (comes directly
from analysis)

Not Applicable

# of medium
severity violations
removed in current
release

Actual # of medium
severity (level 4,5,6)
violations across all
health factors added in
current release

No (comes directly
from analysis)

Not Applicable

% of high severity
violations

Only a portion of the
high severity violations
will be fixed

Yes

100%

# of high severity
violations

Actual # of high
severity (level 7,8,9)
violations across all
health factors

No (comes directly
from analysis)

Not Applicable

# of high severity
violations added in
current release

Actual # of high
severity (level 7,8,9)
violations across all
health factors added in
current release

No (comes directly
from analysis)

Not Applicable

# of high severity
violations removed
in current release

Actual # of high
severity (level 7,8,9)
violations across all
health factors added in
current release

No (comes directly
from analysis)

Not Applicable

Weighted time, in
hours, for fixing
LOW severity
violation

Not all violations will need the same amount of time, hence we take the
weighted time to fix the violations. Weighted based on the distribution of
level of difficulty to fix violations. Violations will be categorized as

follows:
1) Easy
2) Hard
3) Very Hard

W1. time to fix low severity violations=

164 |Page




Variable Name

Description

Configurable

Default Value

(Low_%Easy X Low_Time_Easy) +
(Low_%Hard X Low_Time_Hard) +

(Low_%Very Hard X Low_Time_Very Hard)

Low_%Easy = % of
violations which are
GGEaSy’,

Yes

90%

Low_Time_Easy =
Time take for fixing
“Easy” violations

Yes

0.5 hour

Low_%Hard =% of
violations which are
“Hard”

Yes

9%

Low_Time_Hard =
Time take for fixing
“Hard” violations

Yes

1 hour

Low_%Very Hard =%
of violations which are
“Very Hard”

Yes

1%

Low_Time_Very Hard
= Time take for fixing
“Very Hard” violations

Yes

8 hours

Weighted time, in
hours, for fixing
MEDIUM severity
violation

Not all violations will need the same amount of time, hence we take the
weighted time to fix the violations. Weighted based on the distribution of
level of difficulty to fix violations. Violations will be categorized as

follows:
4) Easy
5) Hard
6) Very Hard

Wi. time to fix low severity violations=

(Medium_%Easy X Medium_Time_Easy) +
(Medium_%Hard X Medium_Time_Hard) +

(Medium_%Very Hard X Medium_Time_Very Hard)

Medium_%Easy = % of
violations which are
‘GEaSyﬁ’

Yes

90%

Medium_Time_Easy =
Time take for fixing
“Easy” violations

Yes

0.5 hour

Medium _%Hard =%
of violations which are
‘GHard'),

Yes

9%

165|Page




Variable Name Description Configurable Default Value
Medium _Time_Hard =
Time take for fixing Yes 4 hour

“Hard” violations

Medium _%Very Hard
= % of violations which | Yes 1%
are “Very Hard”

Medium

_Time_Very Hard =
Time take for fixing
“Very Hard” violations

Yes 16 hours

Weighted time, in
hours, for fixing
HIGH severity
violation

Not all violations will need the same amount of time, hence we take the
weighted time to fix the violations. Weighted based on the distribution of
level of difficulty to fix violations. Violations will be categorized as
follows:

7) Easy

8) Hard

9) Very Hard

W1. time to fix low severity violations=
(High_%Easy X High _Time_Easy) +
(High _%Hard X High _Time_Hard) +
(High %Very Hard X High Time Very Hard)

High _%Easy = % of

violations which are Yes 80%
‘GEasy,,

High _Time_Easy =

Time take for fixing Yes 1 hour

“Easy” violations

High %Hard = % of

violations which are Yes 19%
“Hard”

High Time_Hard =

Time take for fixing Yes 8 hours

“Hard” violations

High %Very Hard =
% of violations which Yes 1%
are “Very Hard”

High _Time_Very Hard
= Time take for fixing Yes 24 hours
“Very Hard” violations

Cost per hour of
developer time

Blended rate of different
people who may work | Y€S $75/hr
on a violation (architect,

166 |[Page




Variable Name

Description

Configurable

Default Value

lead, developer,QA
resource etc.)

167 |Page




