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Abstract

The boundary conditions (BCs) in quantum mechanical scattering are examined in the con-

text of scattering in finite, nanoscale systems, together with the corresponding need for and the

implementation of derivative BCs within a finite domain. We have shown earlier that scattering

boundary conditions can be consistently used with the principle of stationary action to solve for

the scattered wave everywhere in one-dimensional (1D) and two-dimensional (2D) problems, and

that mixed (Cauchy) BCs are essential in a variational (action integral) approach. These bound-

ary conditions are non-trivial to implement for finite domains, and more so in open domains. We

introduce the idea of totally absorbing regions, or “stealth regions,” whose material properties are

adjusted to convert the Cauchy BCs into the simpler Dirichlet BCs. The action integral for scat-

tering is directly discretized within the framework of the finite element method (FEM) to obtain

numerical results using stealth finite elements. This approach provides excellent results for both

open domains, as well as those with confined geometries. In 1D, we provide concrete examples and

demonstrate the high accuracy achieved by this method. In the 2D examples, confined waveguide

geometries, we show the efficacy of the method to obtain results that go beyond the traditional

perturbative or approximate calculations by obtaining the waveguide transmission coefficients; the

explicit form of the scattered wavefunction for complex scattering shapes are given. We compare

these with the traditional partial wave analysis where such results are known. The methodol-

ogy presented here is applied to multiple scattering from randomly placed scattering centers as a

precursor to studying localization phenomena.
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I. INTRODUCTION

Important features of quantum mechanics arising from the wave nature of particles are

manifested in the phenomena of barrier penetration and scattering.1–5 The tunneling of

carriers through semiconductor resonant tunneling heterostructures, quantum cascade laser

structures, scanning tunneling microscopes, and tunneling resistance devices provide prac-

tical applications of the effect. These are just a few recent examples in a long series of

developments based on quantum mechanical scattering.

The theoretical calculation of scattering amplitudes and cross-sections in quantum me-

chanical scattering employs prepared states for incoming waves and implements scattering

boundary conditions (BCs) for the outgoing probability current in open systems.6–9 In the

open domain, the scattered wave is represented in terms of out-going Hankel functions. The

fact that Hankel functions H
(1)
n (kr) of all orders n have the same asymptotic behavior allows

a substantial simplification in the application of the probability current boundary conditions.

This traditional procedure of applying asymptotic boundary conditions, however, requires a

re-examination in the context of scattering in finite nanoscale and meso-scale systems, and

the corresponding implementation of derivative boundary conditions within a finite domain.

We have shown that scattering boundary conditions can be consistently used with the

principle of stationary action to solve for the scattered wave everywhere in one-dimensional

(1D) and two-dimensional (2D) problems, and that mixed (Cauchy) BCs are essential in a

variational approach.10 We discuss this briefly in the following for the case of 1D scattering

to illustrate the variational scheme. This is followed by its application to 2D calculations.

In general, the mixed BCs are difficult to implement for scattering in open domains, and

for that matter in confining geometries in 2D and 3D systems. Here we show that the use

of absorbing material around the scattering region (or the active region) provides a unique

way of reducing the Cauchy BCs to the much simpler Dirichlet BCs. We first show that

the procedure is remarkably effective in 1D, then extend it to 2D electron waveguides, and

follow this with calculations for scattering from potentials in open domains. We employ the

finite element method (FEM), which may be thought of as the discretization of the action

integral in our numerical work. Within the variational-FEM approach, the absorbing finite

elements, which have been called “stealth elements,” have their material properties modified

so as to provide damping of the scattered waves that impinge on them. Their properties are
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altered in a smooth manner as we go into the stealth region such that we have no reflected

waves from the stealth regions.10 This naturally leads to the substantially simpler Dirichlet

BCs, ψ(r) = 0, on the periphery without affecting the solution in the interior.

The concept of stealth elements draws on the idea of “perfectly matched layers” used in

the modeling of electromagnetic scattering, and was adapted to the quantum mechanical

scattering in 200210 . We show that the accuracy of the calculations is substantially enhanced

by the use of C1-continuous interpolation polynomials in each finite element in 1D and 2D/

In Sec. II, we show how the action integral for scattering in 1D can be set up with Cauchy

BCs, and how the problem can be transformed to one with Dirichlet BCs. This is followed by

the theory of stealth finite elements, and the example of a double barrier resonant tunneling

is considered. In Sec. III, we show that the electron waveguide analysis can be reduced to

Dirichlet BCs with the use of stealth elements at the input and output ports. Results on

scattering from an arbitrarily shaped scattering center in a 2D waveguide, such as a circle

and square, are presented in Sec. III G, and the concluding remarks are given in Sec. IV.
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II. SCATTERING BCS IN 1D

A. The action integral and a variational approach

FIG. 1. A plane wave of wavevector kI =
√

2mE/~2 is incident from the left on a rectangular

barrier of height V0. The boundary conditions in regions I and III are displayed. Here kI = kIII

for the flat potential profile.

We first show that the scattering problem can be cast in a variational form. One dimen-

sional scattering from a barrier is particularly simple since the incident wave, ψI(x) = a exp(ikx),

launched at x = −∞ in region I in Fig. 1, and the states representing the scattered waves,

ψR(x) = r exp(−ikx) in region I and ψT (x) = t exp(ikx) in region III, are readily identified.

These may be viewed as a single mode of a wave incident from the left being scattered into a

single reflected mode and a transmitted mode. While most textbooks treat this directly by

using matching boundary conditions at the scattering potential, we employ the principle of

stationary action to evaluate the reflection and transmission coefficients. The Schrödinger

action is given by

A0 =

∫ T

0

dt

∫ xb

xa

dx

[
∂ψ∗(x)

∂x

(
~2

2m

)
∂ψ(x)

∂x

]
+ ψ∗(x) [V (x)− E]ψ(x) (1)
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We will express this in a more compact form with a new notation,

A0 =

∫ T

0

dt

∫ xb

xa

dx ψ∗(x)

[
←
∂

(
~2

2m

)
→
∂ +V (x)−E

]
ψ(x). (2)

Here, the partial derivatives
←
∂ and

→
∂ act on functions to the left and to the right of them,

respectively.

In the steady state, with a stream of particles incident on the barrier, the integration

over time is performed trivially. The boundary conditions for the scattering are determined

as follows. The total wavefunction at xa in region I and its derivative

ψI(xa) = a exp(ikIxa) + r exp(−ikIxa),

ψ′I(xa) = ikI [a exp(ikIxa)− r exp(−ikIxa)] , (3)

can be used to eliminate the reflected wave so that

ψ′I(xa) + ikIψI(xa) = 2ia exp(ikIxa). (4)

Similarly, the boundary condition at xb in region III is given by

ψ′III(xb)− ikIIIψIII(xb) = 0. (5)

Here kI and kIII are the wavevectors in regions I and III, respectively. These mixed boundary

conditions of the Cauchy type can be used in the variational treatment of the scattering.

The above derivative boundary conditions, Eqs. (4) and (5), require that the original action

be modified by “surface terms.” A variation of A0 with respect to ψ∗(x) followed by the

usual integration by parts leads to

δψ∗(A0/T )=

∫ xb

xa

dx δψ∗
[
− ~2

2m

d2

dx2
ψ(x)(V (x)− E)ψ(x)

]

+

(
~2

2m

)[
δψ∗(xb)

dψ(x)

dx

∣∣∣∣
xb

−δψ∗(xa)
dψ(x)

dx

∣∣∣∣
xa

]
. (6)

Here, neither ψ(xa,b) nor ψ′(xa,b) vanish. Since the surface terms are not zero at xa and at

xb we cannot deduce Schrödinger’s equation from the integral in Eq. (6). To remedy this, it

is usual11 to add derivative-dependent surface terms to A0 such that the modified action is

given by

A/T=

∫ xb

xa

dxψ∗(x)

[
←
∂

(
~2

2m

)
→
∂ +V (x)−E

]
ψ(x)

−
(

~2

2m

)[
ψ∗(xb)

dψ(xb)

dx
+ ψ∗(xa)

dψ(xa)

dx

]
. (7)
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Now the variation of A permits us to generate the equation of motion as the surface terms get

eliminated. In the above, the derivatives ψ′(xb) and ψ′(xa) can be written in terms of ψ(xb)

and ψ(xa) using Eqs.(4,5), and we see that the action depends on the incoming amplitude a

that determines intensity of the scattering. In this sense, the boundary conditions are built

into the action A.

Similar boundary conditions can be set up for electron propagation in 2D waveguides.

The extension to 2D scattering in open domains is nontrivial and alternate methods would

be welcome. In the following, we show how the use of absorbing (stealth) regions around the

scattering region can resolve the problem of implementing scattering boundary conditions.

In the FEM, we discretize the action into small elements in each of which the original

principle of stationary action holds. The wavefunctions in Eq. (2) are replaced by interpo-

lation polynomials multiplied by coefficients associated with local “nodes” in each element.

Thus, for example in 1D, in the ith element with linear interpolation we have

ψ(x) =
(xi+1 − x)

(xi+1 − xi)
ψi +

(x− xi)
(xi+1 − xi)

ψi+1. (8)

With the assumed polynomial form in each element the spatial dependence of the action

can be integrated out. We apply the variational method to the resulting bilinear form in the

nodal coefficients in order to obtain the simultaneous equations that represent the discretized

Schrödinger equation. In our calculations we use Hermite interpolation polynomials10 with

C1 or derivative continuity to improve on the above example, Eq. (8), and to obtain excellent

accuracy in numerical calculations.

B. Stealth finite elements in 1D scattering

1. The source term

Let us suppose that we place stealth regions on either end of the scattering region over

xL ≤ x ≤ xa and xb ≤ x ≤ xR. In 1D, we then require a source term at say x = x0 inside

the “active” region xa < x0, with x0 located away from the localized potential (see Fig. 1).

The wavefunction at xL and xR will be set to zero as it is completely absorbed in the stealth

regions:

ψ(xL) = 0 = ψ(xR). (9)
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We consider the Schrödinger equation for the Green’s function with a source term,

−S ~2

2m
δ(x− x0), (10)

at x0 such that the Green’s function represents waves

G(x− x0)=


a exp(ik0(x− x0)), for x > x0;

a exp(−ik0(x− x0)), for x < x0,

(11)

emanating in both directions from the source in the physical region. Here

k2
0 = 2mE/~2. (12)

We now identify the source coefficient S using the usual Fourier transform method. With

G(x−x0) =
1

2π

∫ ∞
−∞
dk g(k) exp(ik(x− x0)) (13)

inserted into the differential equation

− d

dx

(
~2

2m

d

dx
G(x− x0)

)
− EG(x− x0) =−S ~2

2m
δ(x−x0), (14)

we obtain

g(k) = − S

2k0

[
1

k − k0

− 1

k + k0

]
, (15)

leading to

G(x−x0)=− S

2k0

1

2π

∫ ∞
−∞
dk

(
eik(x−x0)

k − k0 − iδ
− eik(x−x0)

k + k0 + iδ

)
. (16)

While Fourier transforming back, we have to build in the boundary conditions by closing

the contour in the upper-half plane for the first term when x > x0, and in the lower-half

plane for the second term when x < x0. The integration contours are shown in Fig. 2. We

then have

G(x− x0) =
S

2ik0


exp(ik0(x− x0), x > x0;

exp(−ik0(x− x0), x < x0.

(17)

The coefficient of the δ-function source term is then determined to be S = (2ik0a).

We are then able to construct the action using Dirichlet BCs at xL, xR in the form

A

T
=

∫ xR

xL

dxψ∗(x)

[
←
∂

(
~2

2m

)
→
∂ +V (x)−E

]
ψ(x)

+

∫
dxψ∗(x)

(
−2ikIa

~2

2m
δ(x− x0)

)
. (18)
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FIG. 2. The contours on the complex k-plane used to determine the Green’s function are shown.

For x > 0, we close the contour with a large semicircle in the upper-half plane enclosing the pole

at k0 + iδ. For x < 0, the pole at −(k + iδ) is enclosed with the contour closed in the lower half

plane.
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FIG. 3. Transmission and reflection at a stealth material interface is shown. Conditions are

determined for making the surface reflection to be zero.
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2. The condition for no reflection at the stealth interfaces

As the scattered/incoming wave approaches the interface between the propagating region

and the stealth boundary, to ensure the wave does not reflect back into the waveguide. We

attenuate the wave with a stealth parameter, α, that effectively adds a damping factor to

the wave to simulate propagation to infinity. A cubic polynomial is introduced to ensure a

smooth transition of the waves stealth parameter.

In 1D let us suppose that we have an interface at x = 0 between region I, with no potential,

and a region II, with a uniform stealth potential whose strength is to be determined, as

shown in Fig. 3. Suppose that electrons are incident on the interface from region I with an

amplitude a. We wish to determine the conditions for no reflection from the stealth region;

we allow for absorption of the incident waves in region II. This is accomplished by adjusting

the material properties of this region.

(i) First let us consider a uniform stealth region. We replace the electron’s effective m

by

m = m(1 + iα). (19)

Here α is related to the damping factor for the wavefunction in the stealth region. Let the

wavefunctions on the two sides be as follows, with the reflected and transmitted amplitudes

r and t.

ψI(x) = a exp(ik0x) + r exp(−ik0x), x < 0;

ψII(x) = t exp[ikIIx], x > 0. (20)

The differential equations satisfied by these wavefunctions are

d2

dx2
ψI(x) + k2

0ψI(x) = 0, x < 0;

d

dx

1

m/m

d

dx
ψII(x) + k2

0βψII(x) = 0, for x > 0. (21)

The parameter β is chosen below so as to eliminate the reflection from the interface at x = 0.

At the boundary x = 0, we have the continuity of the wavefunction and of the mass-

derivative of the wavefunction, so that

a+ r = t,

i
k0

m
(a− r) = i

kII
m
t. (22)

13



Hence the ratio of the reflection amplitude to the incident amplitude is

r

a
=
k0m− kIIm
k0m+ kIIm

, (23)

and the condition for no reflection is

m =
kII
k0

m. (24)

The wavevector kII in the stealth region is seen to be k0 multiplied by a complex number,

kII = k0(1 + iα(x)), so that the transmitted wave is damped out in that region. The

parameter β is now determined by the dispersion relation for region II

−m
m
k2
II + k2

0β = 0, (25)

leading to β = (1 + iα).

(ii) We now consider α(x) such that it is a smooth continuous function, increasing as we

go further into the stealth region. The differential equation in the stealth region, Eq. (21),

is then

d

dx

(
1

(1 + iα(x))

d

dx
ψII(x)

)
+k2

0(1 + iα(x))ψII(x) = 0, for x > 0, (26)

with a solution

ψ(x) ∼ exp

[
±ik0x− k

∫ ±x
0

α(x′)dx′
]
. (27)

At any point x > 0, we can again consider incident, reflected and transmitted waves in the

stealth region. An integration of Eq. (26) across x over a small range from x − δ to x + δ

yields

1

1 + iα(x)

dψII(x)

dx

∣∣∣∣
x−0+

=
1

1 + iα(x)

dψII(x)

dx

∣∣∣∣
x+0+

(28)

showing that the derivative of the wavefunction has a discontinuity that vanishes if α(x+

0+) = α(x − 0+). For the same condition, the reflection amplitude also vanishes. In other

words, if α(x) is a continuous function we have no reflection throughout the stealth region.

Similar conditions for no reflection can be derived for propagation in straight wave guides.

14



3. Parameter α(x) for the stealth region

The stealth regions, xL ≤ x ≤ xa and xb ≤ x ≤ xR, contain no scattering potential or

source terms. In these regions we require the electrons to satisfy Schrödinger’s equation

with a complex mass

m = m(1 + iα(x)), (29)

and a complex wavevector k = k0(1 + iα(x)). We wish to have a smooth transition from

the scattering region to the stealth region to avoid reflection of the wave incident on this

region. We assume that α(x) is a cubic Hermite interpolation polynomial connecting the

value α = 0 in the scattering region to a high value at xL and xR. The actual maximum

value of α is determined by testing out the relation T = 1, for Transmission coefficient in

the absence of a scattering potential over the range of energies of interest. We note that a

choice of α can be made for all energies by replacing α→ α/(E/E0), where E0 is an energy

scaling parameter. We have not done so in the calculations presented here. The maximum

value of α was 100/2π in the following 1D calculations.

To determine the choice of α when we moved on to the case of scattering in a waveguide,

we tested various values of α to see which one completeley absorbs the transmitted and

reflected wave, thereby giving the most accurate results. Figure 4 shows how the R+T

coefficient varies as a function of stealth parameter, α. We compared the R+T line with a

line with a y-coordinate of 1. The value of α that had R+T closest to 1 was chosen for the

scattering calculation.

C. Results for 1D tunneling in a double barrier resonant tunneling structure

We consider a double barrier resonant tunneling structure with barriers of GaAlAs of

thickness 100Å enclosing a well region of 100Å. The barrier height was chosen to be 0.3

eV, and the effective mass m = 0.067m0 corresponding to the conduction band effective

mass in GaAs, was used in the calculations. The geometry is shown in Fig. 5, with the

location of the esource and the stealth regions on either end of the active region. The

stealth parameter, α(x), is specified by a cubic Hermite interpolation polynomial. In Fig. 6,

we show the incident wave moving to the right of the source. The wave emanating from the

source towards the −x-direction does not affect the scattering in the “active region,” and is

15



FIG. 4. A plot of the sum of reflection plus transmission coefficient as a function of stealth

parameter α is shown. This plot shows the variation of R+T and what values of α give accurate

results. The value α which made R+T closest to 1 was chosen for our calculations.

absorbed in the stealth region on the left. One of the above-barrier localized wavefunction

is also shown. The transmission coefficient for the structure is shown in Fig. 7, including

the resonant peaks due to the above-barrier localized states.
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FIG. 5. A double barrier structure with 100Å barriers and 100Å well region is shown. The stealth

region is shown (dash-dot curve) where the parameter α is not zero. It has been assumed to be a

cubic in order to provide a smooth barrier for absorption. The carrier effective mass corresponds to

the electron mass in the conduction band of GaAs. The source is located at x0 and is represented

as a dashed line.
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FIG. 6. The source is shown as a vertical (dash-dot) line with waves moving to the right as well as

the left from it. The potential profile of a double barrier structure with 100Å barriers of height 300

meV and a well of width 100Å is shown. The probability density (dashed curve) of an above-barrier

resonant state localized above the barriers is shown, with it dropping to zero in the stealth region.

The curve has been shifted upwards to suggest that its energy is above the barrier.
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FIG. 7. The resonances observed for a potential profile of a double barrier structure with 100Å

barriers of height 300 meV and a well of width 100Å are shown. Two insets are shown, one for the

lowest resonant state at 0.034 meV and the other for the nearly degenerate above-barrier resonances

at ∼0.355 eV.
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III. 2D SCATTERING AND STEALTH FINITE ELEMENTS

A. Action Integral and Stealth Parameters in the Waveguide

In a waveguide of width L, the potential energy in the launch and detection regions away

from the scattering center are taken to be

V (x, y) =

 0, 0 ≤ y ≤ L,

∞, y < 0 or y > L
(30)

In these regions Schrödinger’s equation is separable with

φ(x, y) =
∑
n=1

ψn(y)
(
ane

iknx + rne
−iknx

)
, (31)

where

ψn(y) =

√
2

L
sin
(nπy
L

)
(32)

In effect the motion of carriers can be represented as a quasi-1D wave progagation and these

correspond to the prepared initial state at x = x0. The action integral for the steady state

problem is given by

A/T =

∫ Ly

0

dy

∫ xb

xa

dx φ∗(x, y)

[
←
∇

~2

2m

→
∇ −E

]
φ(x, y). (33)

in the region free of any scattering potential.

1. Source Term in a 2D waveguide

As in the 1D case, we will require a source term close to the active region so that an

incident wave can be launched in the 2D waveguide once absorbing regions are employed

to simplify the BCs. Let us suppose that in the region with the source term there is no

potential, and the waveguide has width L along transverse direction, y. Then we use a

variant on the 1D derivation of the source term. The Schrödinger equation in this region

becomes

− ~2

2m
∇2ψ = Eψ. (34)
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We want to add a source term −~2/(2m)Sδ(x− x0), which will generate plane waves of the

form

ψ(x, y) = A exp(ikx|x− x0|)φ(y), (35)

where φ(y) is a superposition of the bound states of the inifinte well of length L. Now, we

add the source term to the right hand side of Eq. (34) and substitute ψ from Eq. (35) to

get

− ~2

2m
Sδ(x− x0) = − ~2

2m
∇2ψ − Eψ (36)

Sδ(x− x0) =

(
∂2

∂x2
+

∂2

∂y2
+ k2

0

)
ψ(x, y) (37)

Sδ(x− x0) =

(
∂2

∂x2
− k2

y + k2
0

)
ψ(x, y), (38)

Integrating both sides over x = x0 we have

S = lim
ε→0

∫ x0+ε

x0−ε
dx

(
∂2

∂x2
− k2

y + k2
0

)
ψ(x, y) (39)

S = lim
ε→0

∂

∂x
A exp(ikx|x− x0|)φ(y)

∣∣∣∣x0+ε0

x0−ε0
(40)

S = 2Aikxφ(y). (41)

Where k2
y = n2π2/2mL2 and k2

0 − k2
y = k2

x. The form of the source term in 2D is analogous

to its 1D counterpart with the addition of the φ(y) term.

B. Double quantum barrier in a waveguide

As proof-of-concept, we compare scattering off a double Quantum barrier in 1D to scat-

tering off the same barrier in a 2D waveguide with the barriers extending fully across the

waveguide. The mesh used for this model is shown in Fig. 8. Since the potential barrier

extends along the entire waveguide, the Schrödinger equation describing the scattering of

both the double and single quantum barrier are separable in the x− and y− directions.

Due to this, the solution in the y− direction will only add a transverse energy to the total

energy, meaning that the plot of transmission coefficient vs energy will have the same shape.

The only difference should be that in the 2D case the plot is shifted by the energy of the

incident mode in the transverse direction. This can be seen in Fig. 9. As a result of the
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FIG. 8. The mesh used for the FEM calculation of the double quantum barrier in a waveguide is

shown. The scattering centers are in red, the stealth region is in grey, and the propagation region

is in blue.

waveguide confining the electron in the transverse direction, we get the solution, in the y

direction, of the infinite potential well. Thus the total incident energy, Einc, is the sum of

the energy in the x− direction and y− direction, such that

Einc = Ex + Ey (42)

Einc = Ex +
~2n2π2

2m∗L2
(43)

Additionally, with the finite element method, the wavefunction for the below barrier reso-

nances can be obtained in the same manner as in the 1D case. The wavefunction for an

incident wave with transverse mode n=3 in the second below barrier resonant state is shown

in Fig. 10 and Fig. 11. The above barrier resonant states can be obtained as well, the first

two are shown in Fig. 12 and Fig. 13.
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FIG. 9. The plot of transmission coefficient as a function of energy for the 1D double barrier and

the 2D double barrier are shown. We see that the transmission coefficients in the 2D transmission

coefficient is shifted by the energy identical with the shifted energy used for 2D. This verifies the

separability of the Shrödinger equation for the waveguide.
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FIG. 10. Plot of the wave function for the second below barrier resonant state of the double barrier

is shown. The wavefunction is confined between the two barriers and has even symmetry.

FIG. 11. Top-down view of the same wavefunction.
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FIG. 12. The first above barrier resonant state is shown. The wavefunction here is even, so there

is constructive interference between the barriers.

FIG. 13. The second above barrier resonant state is shown. The wavefunction here is odd, so there

is destructive interference between the barriers.
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C. Modal decomposition of wavefunction

It has been shown by Bagwell13 that near the scattering center, evanescent modes exist.

Scattering calculations in textbooks employ asymptotic boundary conditions, which calcu-

late the scattered wave at infinity. In the asymptotic region, the evanescent modes have

diminished and are not accounted for. Also, these evanescent modes do not contribute to

the probability current in any region, asymptotic or finite. The finite element method al-

lows contributions from these evanescent waves to be calculated. We do this by performing

a Fourier decomposition of the wavefunction obtained.

The transmission and reflection coefficient are calculated from the probability current

density, J, given by the form,

J =
~

2m∗i

(
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

)
. (44)

We can find R and T from this by

R =
Jrefl

Jinc

(45)

T =
Jtrans

Jinc

(46)

where the subscripts represent reflected, incident and transmitted waves. We also know that

propagating waves are of the form

ψ(x, y) = Aeikx|x−x0| sin(kyy) (47)

and evanescent waves are of the form

ψ(x, y) = Aeκ|x−x0| sin(kyy) (48)

where, κ, is the evanescent wavevector given by

κ =

√
2m∗(V − E)

~
. (49)
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FIG. 14. This plot shows the modulus squared of the Fourier coefficients as a function of distance

in the waveguide. The non-evanescent mode, mode 1, propagates through the waveguide without

any decay. However mode 3 and mode 5 are evanescent modes which decay very rapidly. Here we

can see that after a few hundred angstroms when the wave moves past the scatterer, the evanescent

modes have diminished. The large oscillation on the left hand side of the figure is the portion of

the wave that has been reflected from the scatterer.
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FIG. 15. The figure of a bilaterally symmetric wavefunction scatterer, S, in a bilaterally symmetry

waveguide. We have that ψi is the incoming wavefunction, ψt is the transmitted wavefunction, ∂e2

is the operater in the respective cartesian direction.

D1 ε m

R+ 1 1

R− 1 -1

TABLE I. Character Table for the dihedral group of order two, D1, is shown.

D. Scattering from a bilateral symmetric potential in a waveguide

Let us consider an incident plane wave in a waveguide, ψi, scattering off a potential, S,

which results in a scattered wavefunction ψt. If ψi approaches S, a quantum barrier, well

or both, with a trajectory such that S has bilateral symmetry, then we can ask how the

symmetry of ψt is determined by the symmetries of ψi and S, as shown in Fig. (15).

The bilateral symmetry group is also called D1, the dihedral group of order two. The

group is made of the identity, ε, and mirror, m, operations, and two irreducible representa-

tions. The character table is shown in Table I The transmitted wavefunction is approximately

determined by the application of the Hamiltonian H = (∂2 +S) on the incident wavefunction

ψi. Where the factor of (−~2/2m) has been factored into ∂2 since we are only concerned
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with the symmetry of the operator. Then ψt must have a symmetry determined by

R(ψt) = R(∂2 + S)⊗R(ψi) (50)

=
[
R(∂2) +R(S)

]
⊗R(ψi) (51)

The symmetry of ∂2 that is of interest here has only to do with the component of ∂2

orthogonal to the mirror line. As seen in Fig. 15, the vector ∂ĵ transforms according to the

irreducible representation R−, since ε∂ĵ = ∂ĵ, and m∂ĵ = −∂ĵ. The irreducible representation

of ∂2
ĵ

can be calculated from that of ∂ĵ through the characters of the direct product of

χ(∂2
ĵ
)(Ci) =

[
χ(∂ĵ)(Ci)

]
∗
[
χ(∂ĵ)(Ci)

]
(52)

where χ stands for character and Ci stands for an operation in class i. Thus

χ(∂2
ĵ
)(ε) = 1 ∗ 1 = 1, and (53)

χ(∂2
ĵ
)(m) = (−1) ∗ (−1) = 1, so (54)

R(∂2
ĵ
) = R+ (55)

Combining Eq. 51 and Eq. 55 we get,

χ(ψt)(Ci) =
[
χ(∂2

ĵ
)(Ci) + χ(S)(Ci)

]
∗ χ(ψi)(Ci) (56)

= [χ(R+)(Ci) + χ(S)(Ci)]] ∗ χ(ψi)(Ci) (57)

With Eq. 57 we can analyze the following situations.

In the first case we have that the scatterer is symmetric about the mirror plane, and the

incident wave function is symmetric about that same plane, then we can say

R(S) = R+ (58)

R(ψi) = R+ (59)

R(ψt) = (R+ ⊕R+)⊗R+ = 2R+ (60)

The factor of two in the R(ψt) tells us that there will be two modes both of symmetry R+.

Since we are ignoring one of the dimensions of the problem this analysis is only approximate,

so we should make the less specific claim that there will be more modes in ψt than in ψi, all

of the same symmetry.
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In the second case we have an antisymmetric incident wave scattering off a symmetric

scatterer. We have

R(S) = R+ (61)

R(ψi) = R− (62)

R(ψt) = (R+ ⊕R+)⊗R− = 2R− (63)

Again ψt has the same symmetry as ψi, but with more modes.

Now consider a scattering potential that has R− symmetry. Such a potential could be

realized by having a barrier on one side of the mirror plane with a potential well on the

other side of the mirror plane. We then obtain

R(S) = R− (64)

R(ψi) = R− (65)

R(ψt) = (R+ ⊕R−)⊗R− = R− ⊕R+ (66)

R(S) = R− (67)

R(ψi) = R+ (68)

R(ψt) = (R+ ⊕R−)⊗R+ = R+ ⊕R− (69)

Thus for an antisymmetric scattering potential, the transmitted wavefunction will have

modes of both parity no matter what the parity of the incident wavefunction is.

E. Arbitrary shapes for scattering potentials: circle and square

In the case of a scattering potential that does not extend across the entire waveguide,

we still have a transverse energy present in the incident wave; however it cannot be easily

separated. Thus for an antisymmetric scattering potential, the transmitted wavefunction

will have modes of both parity no matter the parity of the incident wave function. from

the action integral. Also, there is no one-dimensional analogy for the finite width arbitrary

scattering center, so we cannot easily predict or compare the results, as was done before

in the previous section for the double quantum barrier. Here the cases for both the circle

and square are presented, due to similar types of symmetry. The square and circle are
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both present in a 300 Åẇaveguide. The square has sides of 100 Å, while the circle has a

diameter of 100 Å. Both scatterers have a barrier height of 300 meV. They are placed in

the center of the waveguide such that the configuration is symmetric. The meshes used for

their calculations are shown in Fig. 16 and Fig. 17.

FIG. 16. The mesh used for the FEM calculation of the square scattering center in a waveguide is

shown. The scattering center is in red, the stealth region is in grey, and the propagation region is

in blue.

FIG. 17. The mesh used for the FEM calculation of the circle scattering center in a waveguide is

shown. The scattering center is in red, the stealth region is in grey, and the propagation region is

in blue.

In this case we exhibit a modal decomposition, using Fourier decomposition of the solved

wavefunction, obtained through our calculation. This allows us to examine the individ-

ual modal contributions to the probability current and transmission/reflection coefficients.

Using the decomposed wavefunction, we can see when new channels in the waveguide are
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opened, since we can plot each mode individually. Another indication of a channel opening

is the rapid oscillations in the T vs. E plot at the thresholds. Thus shown in Fig. 18,

these thresholds are indicated by dashed vertical lines, which correspond to the threshold

energy levels. are indicated by the dashed vertical lines, which correspond to the energy

levels of the These rapid oscillations are not due to numerical error because we can see that,

except for low energies, the R+T is essentially unity, in agreement with scattering theory

and conservation of energy. First we show the T vs. E plots for the square case.

Various incident modes have been examined, up to n = 4. In the case of odd transverse

modes, we do not see any even modes present in the waveguide, as seen in Fig. 18. This

is due to the symmetry of the mode being preserved. In the case when an even mode is

injected into the waveguide, we see that only the even modes are present. The differences

between the square and the circle are minor, due to the different types of symmetry for

them; however the T vs. E plots for the two cases are different.

An interesting observation is that when we introduce an even mode into the waveguide

with a circular scatterer, the T vs. E plot resembles that of a lens scatterer. This can be

seen that Fig. 21 and Fig. 43. This is because the n=2 mode makes the circular scatterer

resemble a lens.
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FIG. 18. The incident transmission versus energy plot for the square scatterer, with an incident

plane wave in mode n=1 is shown. Here we can see contribution from only odd modes due to

the symmetry of the incident mode being preserved by the bilaterally symmetric square scatterer

in the waveguide. The thresholds for each transmitted mode correspond to new a channel being

opened. These thresholds are indicated by the vertical dashed lines.

33



FIG. 19. The incident transmission versus energy plot for the square scatterer, with an incident

plane wave in mode n=2 is shown. Here we can see contribution from only even modes due to

the symmetry of the incident mode being preserved by the bilaterally symmetric square scatterer

in the waveguide. The thresholds for each transmitted mode correspond to new a channel being

opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 20. The incident transmission versus energy plot for the circular scatterer, with an incident

plane wave in mode n=1 is shown. Here we can see contribution from only odd modes due to

the symmetry of the incident mode being preserved by the bilaterally symmetric square scatterer

in the waveguide. The thresholds for each transmitted mode correspond to new a channel being

opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 21. The incident transmission versus energy plot for the circular scatterer, with an incident

plane wave in mode n=2 is shown. Here we can see contribution from only even modes due to

the symmetry of the incident mode being preserved by the bilaterally symmetric square scatterer

in the waveguide. The thresholds for each transmitted mode correspond to new a channel being

opened. These thresholds are indicated by the vertical dashed lines.
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F. Arbitrary scattering potential: lens

FIG. 22. The mesh used for the FEM calculation of the lens scattering center in a waveguide. The

scattering center is in red, the stealth region is in grey, and the propagation region is in blue. We

rotated the lens scatterer in increments of 45 degrees.

The lens is another type of scattering center that can have interesting scattering effects.

Here different rotations of the lens have been examined to inspect the different effects of

lens orientation. The first orientation examined is the zero ( or 180 ) degree orientation of

the lens scatterer.

The transmission versus energy plot for different incident modes are shown in Figs. 23,

43, 44, and 45. An obvious pattern to notice is that when an odd mode is incident, only

odd modes are present in the waveguide. When an even mode is incident, only even modes

contribute. Another thing to notice is that when n=2 is incident, mode 2 has a large presence

in the waveguide while the other modes do not. This happens when an odd mode is incident,

but not as drastically as in the case of an even incident mode.

Next, the transmission versus energy plot for a rotation of 90 degrees, same as a 270

degree rotation, is shown in Fig. 24, 46 47, and 48 Since more of the scatterer is exposed to

the incident wave in the x-direction, more interesting Energy versus Transmission plots are

produced. The same kind of symmetry where odd incident modes produce only odd modes

in the waveguide, and likewise for even incident modes, occurs here as well.

In the case of a 45 degree rotation, we get the same results as if the lens were rotated 135,

225, and 315 degrees. Every mode is present in the waveguide due to the rotation of the

lens causing a break in the even and odd symmetry. However, it is easily seen that when a

certain mode is incident, that mode is the most dominant contributor to the wavefunction.
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FIG. 23. The incident transmission versus energy plot for the lens scatterer, with no rotation, with

an incident plane wave in mode n=1 is shown. Here we can see contribution from only odd modes

due to the symmetry of the incident mode being preserved by the bilaterally symmetric square

scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a channel

being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 24. The incident transmission versus energy plot for the lens scatterer, rotated 90 degrees,

with an incident plane wave in mode n=1 is shown. Here we can see contribution from only odd

modes due to the symmetry of the incident mode being preserved by the bilaterally symmetric

square scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a

channel being opened. These thresholds are indicated by the vertical dashed lines.

39



FIG. 25. The incident transmission versus energy plot for the lens scatterer, rotated 45 degrees,

with an incident plane wave in mode n=1 is shown. Here we can see contribution from only odd

modes due to the symmetry of the incident mode being preserved by the bilaterally symmetric

square scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a

channel being opened. These thresholds are indicated by the vertical dashed lines.
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G. Arbitrary scattering center: circular diffraction grating

FIG. 26. The mesh used for the FEM calculation of the circular diffraction grating in a waveguide.

The scattering centers are in red, the stealth region is in grey, and the propagation region is in

blue.

In order to obtain an analytical solution for the geometry presented in Fig. 26 asymptotic

boundary conditions, perturbation theory, and the First Born Approximation are used to

obtain a solution. Even in the cases where a solution is obtainable, it rarely is ever in closed

form. The finite element method allows for such a geometry to be modeled. Here we will

show the results for incident modes up to N=3 for each arrangement of scattering centers,

one row, two rows, and three rows of scatterers as shown in Fig. 26.
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FIG. 27. The Incident Energy versus Transmission plot one row of circle scatterers, with incident

mode of n=1. Here we can see contribution from only the odd modes, due to the symmetry of the

incident mode being preserved. The threshold is the point at which new channels are opened, it

corresponds to the energy levels of the cross-quantized modes.
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FIG. 28. The incident transmission versus energy plot for the diffraction grating with one row

of scatterers, with an incident plane wave in mode n=2 is shown. Here we can see contribution

from only even modes due to the symmetry of the incident mode being preserved by the bilaterally

symmetric square scatterer in the waveguide. The thresholds for each transmitted mode correspond

to new a channel being opened. These thresholds are indicated by the vertical dashed lines.

43



FIG. 29. The incident transmission versus energy plot for the diffraction grating with one row

of scatterers, with an incident plane wave in mode n=3 is shown. Here we can see contribution

from only odd modes due to the symmetry of the incident mode being preserved by the bilaterally

symmetric square scatterer in the waveguide. The thresholds for each transmitted mode correspond

to new a channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 30. The incident transmission versus energy plot for the diffraction grating with two rows

of scatterers, with an incident plane wave in mode n=1 is shown. Here we can see contribution

from only odd modes due to the symmetry of the incident mode being preserved by the bilaterally

symmetric square scatterer in the waveguide. The thresholds for each transmitted mode correspond

to new a channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 31. The incident transmission versus energy plot for the diffraction grating with two rows

of scatterers, with an incident plane wave in mode n=2 is shown. Here we can see contribution

from only even modes due to the symmetry of the incident mode being preserved by the bilaterally

symmetric square scatterer in the waveguide. The thresholds for each transmitted mode correspond

to new a channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 32. The incident transmission versus energy plot for the diffraction grating with two rows

of scatterers, with an incident plane wave in mode n=3 is shown. Here we can see contribution

from only odd modes due to the symmetry of the incident mode being preserved by the bilaterally

symmetric square scatterer in the waveguide. The thresholds for each transmitted mode correspond

to new a channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 33. The incident transmission versus energy plot for the diffraction grating with three rows

of scatterers, with an incident plane wave in mode n=1 is shown. Here we can see contribution

from only odd modes due to the symmetry of the incident mode being preserved by the bilaterally

symmetric square scatterer in the waveguide. The thresholds for each transmitted mode correspond

to new a channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 34. The incident transmission versus energy plot for the diffraction grating with three rows

of scatterers, with an incident plane wave in mode n=2 is shown. Here we can see contribution

from only even modes due to the symmetry of the incident mode being preserved by the bilaterally

symmetric square scatterer in the waveguide. The thresholds for each transmitted mode correspond

to new a channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 35. The incident transmission versus energy plot for the diffraction grating with three rows

of scatterers, with an incident plane wave in mode n=3 is shown. Here we can see contribution

from only odd modes due to the symmetry of the incident mode being preserved by the bilaterally

symmetric square scatterer in the waveguide. The thresholds for each transmitted mode correspond

to new a channel being opened. These thresholds are indicated by the vertical dashed lines.
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H. Curved waveguides

The finite element method allows arbitrary geometries to be computed easily. This makes

FEM a good technique for doing computations on curved waveguides. The results for a

waveguide with inner radius .1 angstroms, outer radius 100.1 angstroms with a 180 degree

bend are given below.

1. Boundary conditions

FIG. 36. The Geometry of the curved waveguide, showing the stealth region and source.

Fig. 36 shows the geometry being used. Stealth elements are placed on the left to simplify

the BCs in that region. On the curved section, the BCs require the wavefunction and

its derivatives along the boundary to vanish. This is accomplished by approximating the

tangent of the curve by the line connecting a boundary node to its nearest neighboring

boundary node. Once this tangent line is obtained, we must ensure that the function, and

its derivatives, perpendicular to it, are set to zero.

2. Results

Goldstone and others12,13,15–18 have shown that there exists a bound state in such a

waveguide. In fact it has been determined that there will be a bound state in any curved
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waveguide,12 however, we found that for certain curve radii, the resonant states do not reach

full resonance, which would correspond to a reflection coefficient of 100%. When considering

device design, these radial lengths would be an ineffective choice if a total reflection is desired.
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FIG. 37. The transmission coefficient as a function of incident energy for the curved waveguide is

shown.

Fig. 37 shows a plot of transmission versus energy through the bent waveguide. This data

was collected by running an FEM simulation for each energy sampled and calculating the

reflection and transmission using the calculated wavefunction. As expected, several resonant

states corresponding to the bound states are shown. The probability current of the ground

state wave function is shown in Fig. 38. In this instance the dips in transmission can be

thought of as anti− resonances.
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FIG. 38. The probability current for the first resonant state in the curved waveguide is shown.

Note the localization of the waveguide due to the bend, leading to total reflection.
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I. Additional Results

FIG. 39. The incident transmission versus energy plot for the square scatterer, with an incident

plane wave in mode n=3 is shown. Here we can see contribution from only odd modes due to

the symmetry of the incident mode being preserved by the bilaterally symmetric square scatterer

in the waveguide. The thresholds for each transmitted mode correspond to new a channel being

opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 40. The incident transmission versus energy plot for the square scatterer, with an incident

plane wave in mode n=4 is shown. Here we can see contribution from only even modes due to

the symmetry of the incident mode being preserved by the bilaterally symmetric square scatterer

in the waveguide. The thresholds for each transmitted mode correspond to new a channel being

opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 41. The incident transmission versus energy plot for the circular scatterer, with an incident

plane wave in mode n=3 is shown. Here we can see contribution from only odd modes due to

the symmetry of the incident mode being preserved by the bilaterally symmetric square scatterer

in the waveguide. The thresholds for each transmitted mode correspond to new a channel being

opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 42. The incident transmission versus energy plot for the circular scatterer, with an incident

plane wave in mode n=4 is shown. Here we can see contribution from only even modes due to

the symmetry of the incident mode being preserved by the bilaterally symmetric square scatterer

in the waveguide. The thresholds for each transmitted mode correspond to new a channel being

opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 43. The incident transmission versus energy plot for the lens scatterer, with no rotation, with

an incident plane wave in mode n=2 is shown. Here we can see contribution from only even modes

due to the symmetry of the incident mode being preserved by the bilaterally symmetric square

scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a channel

being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 44. The incident transmission versus energy plot for the lens scatterer, with no rotation, with

an incident plane wave in mode n=3 is shown. Here we can see contribution from only odd modes

due to the symmetry of the incident mode being preserved by the bilaterally symmetric square

scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a channel

being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 45. The incident transmission versus energy plot for the lens scatterer, with no rotation, with

an incident plane wave in mode n=4 is shown. Here we can see contribution from only even modes

due to the symmetry of the incident mode being preserved by the bilaterally symmetric square

scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a channel

being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 46. The incident transmission versus energy plot for the lens scatterer, rotated 90 degrees,

with an incident plane wave in mode n=2 is shown. Here we can see contribution from only even

modes due to the symmetry of the incident mode being preserved by the bilaterally symmetric

square scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a

channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 47. The incident transmission versus energy plot for the lens scatterer, rotated 90 degrees,

with an incident plane wave in mode n=3 is shown. Here we can see contribution from only odd

modes due to the symmetry of the incident mode being preserved by the bilaterally symmetric

square scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a

channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 48. The incident transmission versus energy plot for the lens scatterer, rotated 90 degrees,

with an incident plane wave in mode n=4 is shown. Here we can see contribution from only even

modes due to the symmetry of the incident mode being preserved by the bilaterally symmetric

square scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a

channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 49. The incident transmission versus energy plot for the lens scatterer, rotated 45 degrees,

with an incident plane wave in mode n=2 is shown. Here we can see contribution from only even

modes due to the symmetry of the incident mode being preserved by the bilaterally symmetric

square scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a

channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 50. The incident transmission versus energy plot for the lens scatterer, rotated 45 degrees,

with an incident plane wave in mode n=3 is shown. Here we can see contribution from only odd

modes due to the symmetry of the incident mode being preserved by the bilaterally symmetric

square scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a

channel being opened. These thresholds are indicated by the vertical dashed lines.
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FIG. 51. The incident transmission versus energy plot for the lens scatterer, rotated 45 degrees,

with an incident plane wave in mode n=4 is shown. Here we can see contribution from only even

modes due to the symmetry of the incident mode being preserved by the bilaterally symmetric

square scatterer in the waveguide. The thresholds for each transmitted mode correspond to new a

channel being opened. These thresholds are indicated by the vertical dashed lines.

67



IV. CONCLUDING REMARKS

The usual picture of scattering as presented in books on quantum mechanics is to envision

simple prepared states at r → −∞ that get scattered by a scattering center, and then those

scattered waves are detected at r → ∞. The ratio of the probability current density in

the asymptotic region per unit incident flux of particles is defined as a measure of the

scattering process. In nanoscale systems this concept requires major alterations since the

asymptotic region is no longer obtained in actual structures. The complexity generated by

the boundaries of the physical region in such systems being close to the active scattering

region requires the new approach presented here. Only one textbook has explicitly shown

the connection between variational methods , the action, and scattering theory.10The fact

that the scattering boundary conditions can be incorporated into the action integral provides

us with a powerful and universal variational approach to scattering. When this method is

implemented in the finite element framework, we are able to convert the Cauchy BCs into

Dirichlet BCs through the use of stealth elements. In summary, we have that

(i) Quantum scattering can be cast in an action integral framework with Cauchy BCs.

(ii) The use of stealth or absorbing regions transforms the Cauchy BCs to Dirichlet BCs

at the periphery with a substantial reduction in the computational complexity of the

scattering problem at hand. The stealth parameter, α, is increased in a smooth manner

(a cubic polynomial is used), so that no reflected wave is generated back into the

waveguide.

(iii) By introducing a source term we can have any wavefunction incident on the scattering

region.

(iv) The scattered wave, in both 1D and 2D scattering, is isolated so that partial wave

analysis (Fourier decomposition into modes) can be performed a posteriori .

(v) The use of interpolating polynomials with derivative continuity yields solutions with

very high accuracy. The test calculations reported here yield transmission coefficients,

wavefunctions, and evanescent modes with exquisite detail. Being a variational calcu-

lation, the level of accuracy can be improved systematically.

68



(vi) With the analysis being based on the action integral and its discretization into finite

elements, we are able to consider scatterers of complex geometry, bent waveguides, and

the open domain. This calculation results in a solution which goes beyond the First

Born Approximation.

It is clear from the above that one has improved beyond the traditional First Born

approximation and are able to treat multiple scatterers in a natural manner. We thus have

at hand an excellent means of expanding scattering theory to its fullest details, and we hope

to pursue this program of work even further.
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18 Jens U. Nöckel and A. Douglas Stone, Phys. Rev. B 50, 17415 (1994).

70


