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ABSTRACT

The purpose of this work is to develop a continuum theory that may be used to
predict the effects of anisotropic boundary vibrations on loose granular assemblies. In
order to do so, we extend statistical averaging techniques employed in the kinetic theory
to derive an anisotropic flow theory for rapid, dense flows of identical, inelastic spheres.
The theory is anisotropic in the sense that it treats the full second moment of velocity
fluctuations, rather than only its 1sotropic piece, as a mean field to be determined. In this
manner, the theory can, for example, predict granular temperatures that are different in
different directions. The flow theory consists of balance equations for mass, momentum,
and full second moment of velocity fluctuations, as well as constitutive relations for the
pressure tensor, the flux of second moment, and the source of second moment. The
averaging procedure employed in deriving the constitutive relations 1s based on a
Maxwellian that is perturbed due to the presence of a deviatoric second and full third
moment of velocity fluctuations. Because the theory i1s anisotropic, it can predict the
normal stress differences observed in granular shear flows, as well as the evolution to
1sotropy in an assembly with granular temperatures that are initially highly anisotropic.

In order to complement the theory, we employ similar statistical techniques to
derive boundary conditions that ensure that the flux of momentum as well as the flux of
second moment are balanced at the vibrating boundary. The bumps are hemispheres
arranged in regular arrays, and the fluctuating boundary motion is described by an
anisotropic Maxwellian distribution function. The bumpiness of the surface may be
adjusted by changing the size of the hemispheres, the spacing between the hemispheres in

two separate array-directions, and the angle between the two directions. Statistical



averaging consistent with the constitutive theory yields the rates at which momentum and
full second moment are transferred to the flow. In order to present results in a form that
is easy to interpret physically, the statistical parameters that describe the boundary
fluctuations are related in a plausible manner to amplitudes and frequencies of sinusoidal
vibrations that may differ in three mutually perpendicular directions, and to phase angles
that may be adjusted between the three directions of vibration.

The focus of the results presented here is on the steady response of unconfined
granular assemblies that are thermalized and driven by horizontal bumpy vibrating
boundaries. In a first detailed study of the effects of the boundary geometry and
boundary motion on the overall response of the assemblies, the anisotropic theory is
reduced to a more familiar isotropic form. The resulting theory predicts the manner in
which the profiles of 1sotropic granular temperature and solid volume fraction as well as
the uniform velocity and corresponding flow rate vary with spacings between the bumps,
angle of the bump-array, energy of vibration, direction of vibration, and phase angles of
the vibration.

In a second study, we solve the corresponding, but more elaborate, boundary
value problem for anisotropic flows induced by anisotropic boundary vibrations. The
main focus in presenting these results is on the differences between granular temperatures
in three perpendicular directions normal and tangential to the vibrating surface, and how
each is affected by the bumpiness of the boundary and the direction of the vibration. In
each case, we calculate the corresponding nonuniform velocity profile, solid volume

fraction profile, and mass flow rate.
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Figure 6.53

Figure 6.54
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CHAPTER 1
Introduction

Granular materials or bulk solids is the term given to an assembly of discrete solid
particles, which are in contact or near contact with cach other. For example, sand, rice,
nuts, ball bearings, powders are all granular materials. Raw materials or final products in
many industries are in granular form. For example, at DuPont, more than 60% of their
products are found to be powders, crystalline solids, granules, flakes, dispersions, slurries
and pastes. (Studt, 1995). It is estimated that about 10% of the world’s energy
consumption is spent on transporting or processing granular materials. Flows of such
materials are termed granular flows and occur in many industrial applications commonly
encountered in the abrasives, mining, food, pharmaceutical, plastic and chemical
industries.

Granular materials can demonstrate both solid-like and fluid-like behaviors.
When the motion of granular materials is slow, the particles keep in contact with each
other during the movement, and the inter-particle friction force becomes dominant factor.
As a result, granular materials demonstrate solid-like behavior and can withstand certain
amount of deformation without starting to flow. On the other hand, when motion of
granular particles is fast, flow particles interact with each other through abrupt collisions
and granular materials demonstrate fluid-like behavior. Many variables influence the
motion of granular materials including size, shape, density, surface roughness and contact
stiffness of particles, flow depth and most importantly, interaction of particles with

confining boundaries.



Granular flows include gravity driven or vibrationally enhanced chute flows,
vibrationally driven flows in spiral elevators and “linear” conveyors. In such granular
flows, interaction of particles with themselves and with boundaries that contain them are
typically complex and not very well understood. Consequently, these flows have been
the subject of much recent research. In past few years, several researchers have
conducted experiments, performed numerical simulations and developed theories to try to

better understand the behavior of granular materials.

1.1 Review of Previous Work

One of the earliest scientific study of granular materials was done by Sir
Osbourne Reynolds (1885). He put forth principles of granular dilatancy which
explained drying of wet beach sand around one’s foot, when stepped on. Modern
granular flow research began with the classic work of Bagnold (1954) on the flow
behavior of granular materials. He suspended wax spheres in a glycerin-water-alcohol
mixture and sheared them in a coaxial cylinder rheometer which measured both shear and
normal forces on the walls. From his experiments he demonstrated that both, shear stress
and normal stress, are proportional to the square of mean shear rate. He argued that this
was because both, momentum exchanged in a collision and frequency of collisions, are
proportional to the mean rate of shear. The work demonstrated importance of granular
collisions in explaining non-Newtonian characteristics of rapid granular flows.
Bagnold’s findings stirred a lot of interest in scientific community and after that many
attempts were made to write a mathematical theory to describe behavior of granular

materials, including Mandl and Fernadez (1970), Goodman and Cowin (1971), Cowin



(1974), Ackermann and Shen (1978), Blinowski (1978), Cowin (1978), McTigue (1978),
Ogawa (1978), Jenkins and Cowin (1979), Savage (1979), Ogawa et. al. (1980), Jenkins
and Savage (1981), Savage and Jeffrey (1981), Ackermann and Shen (1982) and Haff
(1983). At the same time, experimental investigations done by Tovama (1970), Arthur
and Menzies (1972), Savage (1978), Savage and McKeown (1983), Hanes and Inman
(19835) and Savage and Sayed (1984) helped to better understand the behavior of granular
materials.

Theoretical analysis of granular flows demands intricate mathematical models
because of the complexities involved. However these models will not admit analytical
solutions. In order to reveal major physical mechanisms and be able to make future
predictions, good mathematical approximations must be employed. Kinetic theory
method 1s one such approach based upon the analogy between motion of granular
particles and motion of gas molecules. It accounts for the effects that fluctuations of
particles” velocities have on the transfer of momentum, energy and higher order
quantities within the flow. However, inelasticity of granular collisions makes major
difference between gas and granular materials. Kinetic energy is lost in collisions
between pairs of grains and hence those results in kinetic theory, obtained using the
reversibility of collisions, must be re-derived. Jenkins and Savage (1983) took such an
approach and applied methods of averaging employed in the kinetic theory to a dense
system of identical, smooth, nearly elastic spheres experiencing a rapid flow. Their
calculations were based on a physically plausible but ad hoc characterization of the
probability of collision between two particles. These calculations were improved by Lun

et. al. (1984) and, Jenkins and Richman (1985 a). Jenkins and Richman extended method



of moments used by Grad (1949) for determining single particle velocity distribution
function in dense system of inelastic particles whereas Lun et. al. used simpler but cruder
moment method described, for example, by Reif (1965). Lun et. al. and Jenkins and
Richman applied these theories to shear flows of granular materials with prescribed shear
rate. The theories successfully predicted the shear behavior of granular materials.

A dissipative mechanism for exchange between translational and rotational
energies of colliding bodies was proposed by Richman (1984). He also studied evolution
of the roughness coefficient. Jenkins and Richman (1985 b) formulated kinetic theory for
plane dense flows of identical, rough, inclastic circular discs, in which they introduced an
additional temperature to measure kinetic energy of particle rotation.

To apply the kinetic theory to flows other than shear flows with prescribed shear
rate, required development of consistent boundary conditions. Jenkins and Richman
(1986) developed a set of boundary conditions for two-dimensional smooth, identical,
circular disk flows in the neighborhood of a bumpy wall. Later this work was extended
to flows of spherical particles by Richman (1988) who used an improved Maxwellian
velocity distribution function and calculated the rates at which momentum and energy are
transferred across bumpy boundaries and obtained conditions that ensured the balance of
momentum and energy at such boundaries. He also applied these boundary conditions to
shear flow of granular material driven by bumpy boundaries and obtained explicit
dependence of slip velocity and resulting stresses on boundary roughness. Richman and
Marciniec (1990) applied these more formal boundary conditions to inclined flows.
Richman and Chou (1988) derived boundary conditions for granular shear flows of

smooth disks by incorporating a more accurate velocity distribution function. Richman



and Chou (1989) derived a kinetic theory for homogeneous granular shear flows of
identical spheres in which collisions between particles result in small fractures on their
peripheries and, over time, effectively reduce their average diameter. Richman (1992)
developed boundary conditions that ensured momentum and energy balance at
isotropically vibrating bumpy boundaries. Richman and Martin (1992, 1993) improved
upon this work by considering boundaries whose fluctuating motion was anisotropic, but
restricted their attention on assemblies with uniform velocity. Martin (1993) further
extended the work to include effects of spatial variation of mean velocity. Richman and
Martin (1992) provided a continuum description of a vibro-fluidized system where the
constitutive relations were adapted from Jenkins and Richman (1985 a). Kumaran (1998
a) further investigated the problem and theoretically calculated velocity distribution
function for a two-dimensional vibro-fluidized bed of particles using asymptotic analysis
for nearly elastic assemblies with small density gradients. He also studied the anisotropy
of granular temperature due to vibro-fluidization. Kumaran (1998 b) examined scaling of
temperature of a granular material fluidized by external vibrations. Richman and Wang
(1995, 1996) derived the boundary conditions for granular flows that passed through the
vibrating sieves. Jenkins and Askari (1991) calculated stress and energy flux in
amorphous solid of nearly elastic spheres and used their continuity at the interface with a
dense granular flow to obtain boundary conditions for the flow. Jenkins (1992)
determined boundary conditions for a flat, frictional wall by employing coulomb friction
and both, tangential and normal restitution. Jenkins and Hanes (1993) derived the
boundary condition for the balance of momentum and energy at an interface between

colliding and freely flying grains in an inclined, rapid granular flow. Jenkins and Louge



(1997) considered a flow of colliding spheres that interacts with a flat, frictional wall and
calculated the flux of fluctuation energy. Jenkins and La Ragione (2001) demonstrated
the necessity of distinguishing the average rotation of the spheres about their centers from
average rotation of the aggregate. Yoon and Jenkins (2005) developed kinetic theory for
flows of slightly friction and nearly elastic discs. Jenkins et. al. (2006) derived a stress-
strain relation for static deformations of a random array of identical discs that interact
through elastic, frictional contacts.

Computer simulations of rapidly flowing granular material are used as research
tools to investigate the macromechanics and micromechanics. Campbell and Brennen
(1984) implemented numerical schemes and studied flows of granular materials.
Campbell (1989) studied in detail the complete stress tensor for assembly of spheres and
Campbell (1993) discussed the effect of boundary roughness on granular flows. Walton
and Broun (1986 a, 1986 b) and Walton (1989) studied the effect of highly dissipative
interactions of particles on pressures and velocity distribution in assemblies undergoing
uniform shear. The simulations predicted that the normal stresses in the direction of flow
and perpendicular to it are not even close. This indicated that the granular temperatures
in those directions must also be different. This was theoretically established by Jenkins
and Richman (1988) and Richman (1989) who demonstrated that the differences increase
with inelasticity. Campbell (1994) performed discrete particle simulations to measure
the impulses that particles experience while undergoing rapid shear. Potapov and
Campbell (1996) described two-dimensional simulations of hopper flows. Sadjadpour
and Campbell (1999) analyzed cohesionless granular flows in inclined open channels to

give insight into effect of chute geometry on clogging of chutes. Campbell (2002)



performed simulations to study dense granular materials where particles are in persistent
contact with their neighbours. Campbell (2005) examined stress controlled granular
flows and found that they behave very differently from flows at fixed concentration.
Rosato and Kim (1994) performed particle dynamics simulations to characterize the
effects of boundary geometry on the flow of dry granular materials composed of smooth,
inelastic spheres between parallel, bumpy walls in the absence of gravity. Lan and
Rosato (1995) performed three-dimensional, granular dynamics simulations to investigate
macroscopic behavior of assembly of smooth inelastic, uniform spheres subjected to
vibrations through sinusoidally oscillating boundary. Lan and Rosato (1997) performed
3d discrete element simulations to investigate behavior of shallow bed of inelastic,
frictional spheres which are energized by floor oscillations. Rosato and Yacoub (2000)
modeled densification of frictional, inclastic spheres under the action of floor oscillations.
Rosato et. al. (2002) performed simulations and proposed that “void-filling” beneath
large particles promotes segregation while convection helps mixing in a non-uniform
particle size mixture. Liu and Rosato (2003) carried out 3d, steady discrete element
simulations of a single large spherical intruder in a gravity-free granular Couette flow and
studied the effect of high pressure near the wall on intruder particle’s motion.
Development of theoretical models needs quantitative experiments which
investigate properties of granular materials. Several such experiments were performed by
Kudrolli and his co-workers. Kudrolli and Henry (2000) showed that velocity
distribution in a system of steel spheres rolling on a tilted rectangular two dimensional
surface and excited by periodic forcing of one of the side walls, is far from Gaussian.

Blair and Kudrolli (2001) studied the correlations of particle velocities over long



distances whereas Blair and Kudrolli (2003 a) obtained collision properties including
path length, collision time, distributions of particles and the inelasticity parameter.
Experiments of Samadani and Kudrolli (2000) reported one of the first systematic studies
of segregation transition of bidisperse granular mixtures in the presence of liquids.
Samadani and Kudrolli (2001) showed the importance of viscosity of the liquid in
determining the angle of repose of the pile formed after pouring the wet granular mixture.
Blair and Kudrolli (2003 b, 2004) studied the effects of long range interactions on the
phases observed in cohesive granular materials. Blair, Neicu and Kudrolli (2003)
investigated the effect of anisotropy of the constituent particles on the packing and
dynamics of granular matter. Nowak, Samadani and Kudrolli (2005) developed a new
liquid bridge model which takes into account the nature of the grain contacts and the
cohesive force due to liquid bridges.

During recent years, vibro-fluidization of granular materials has received a lot of
attention from researchers and several experiments have been carried out bringing into
light a plethora of unusual phenomenon. For example, in the low magnitude regime, the
vibrations constitute sound propagation as investigated by Liu and Nagel (1994). As the
amplitude of vibration increases heaping and convection rolls are observed, as reported
by Evesque et. al. (1989) and Ehrichs et. al. (1995). At larger vibration amplitudes,
Douady et. al. (1989) observed period doubling instabilities leading to standing waves,
whereas Pak and Behringer (1993) observed traveling waves. Goldshtein et. al. (1995),
Clement et. al. (1993) and Luding et. al. (1994) studied the transition of granular flows

from liquid-like condensed state to gas-like fluidized state.



Measuring granular temperatures inside granular flows is a difficult task. Ahn et.
al. (1991) and Hsiau and Hunt (1993) employed fibre-optic probe technology to measure
velocity fluctuations and calculated granular temperature in steamwise direction. Drake
(1991) employed high speed photography and image technology to measure the two-
dimensional fluctuations in gravity driven chute flows. Natarajan, Hunt and Taylor
(1996) employed image technology to measure the two-dimensional fluctuations in
vertical channel granular flows. Warr et. al. (1994, 1995) used high speed photography
to obtain experimental information on the velocity distribution functions for a two
dimensional array of spheres. These experiments yielded information on the moments of
the velocity distribution and spatial pair correlation function in these materials. Hunt
(1997) performed a study of effective thermal conductivity and self-diffusivity for
granular flows. Zenit, Hunt and Brennen (1997) carried out experiments to measure the
collisional particle pressure in cocurrent and countercurrent flows of liquid and
particulate mixtures. Karion and Hunt (2000) studied granular shear flows where the
upper and lower bounding walls are flat and frictional, with the focus on wall stresses.
Wassgren et. al. (2002) experimentally investigated the discharge of granular material
from a hopper subjected to vertical oscillations. Muite, Hunt and Joseph (2004) carried
out experiments to investigate the effects of interstitial fluid on the discharge of granular
material within an hourglass.

Many experiments to investigate in detail the transmission of stress in granular
materials were performed by Behringer and his co-workers. Howell, Behringer and Veje
(1999) performed experiments on a slowly sheared granular material and found that there

is a critical value of packing fraction around which network of stress chains changes



structure. Behringer (2002) discussed about the possibility to tie granular temperature to
grain mobility and diffusion. Hartley and Behringer (2003) experimentally investigated
the rate dependence of stress in a slowly sheared system of photoelastic disks and
determined forces on the granular scale. Peidong and Behringer (2005) characterized the
effect of loading on a model soil-like system to find statistical and mean properties of
model soil response. Majymudar and Behringer (2005) reported measurements of the
normal and tangential grain-scale forces inside a system of photoelastic disks that are
subject to pure shear and isotropic compression. Daniels and Behringer (2006) carried
out experiments on monodisperse spherical particles in an annular cell geometry, vibrated
from below and sheared from above.

A number of studies have been done on mean velocity in granular flows which
have revealed many unusual and baffling phenomenon, and a clear understanding of flow
properties is still far from achieved. Gallas et. al. (1992) simulated transport of particles
on a belt having vertical and horizontal vibrations. Using molecular dynamics, they
calculated velocity profiles in assembly of uniform spheres and found that velocity
increased away from boundary. Derenyi et. al. (1998) experimentally investigated
horizontal transport of an assembly of granular particles in a vertically vibrated system
that has a sawtooth-shaped base. They observed that the direction of flow depended on
the shape of sawtooth and increasing the mass hold-up reversed the direction of flow.
Farkas et. al. (1999) performed event driven molecular dynamics simulations which
agreed with the results of Derenyi et. al. (1998) and further showed that the direction of
flow also reverses with driving frequency of vibrations. Levanon and Rapaport (2001)

performed discrete particle simulations of vibration-induced flow of granular material
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and found that the transport velocity varied as a function of height and could even change
directions with height. Contrary to Gallas et. al. (1992), molecular dynamics simulations
of Wambaugh et. al. (2002) showed that the transport velocity monotonically decreased
away from the boundary. Grochowski et. al. (2004) used an annular, flat base conveyor,
instead of sawtooth-shaped base, and subjected it to both vertical and circular oscillations
and observed that the flow direction reversed with increasing vibration frequency. El hor
et. al. (2005) performed similar experiments for straight, linear conveyor subjected to
both vertical and horizontal vibrations and noticed reversal of flow direction with
increasing vibration frequency.

Such studies of slip velocity have also been done for inclined granular flows. For
example, Hanes and Walton (2000) experimentally measured velocity profiles for flows
down inclines. Poschel (1993) and Zheng and Hill (1996, 1998) studied velocity and
density profiles for flows down inclines, using molecular dynamics simulation.
Baldassarri et. al. (2001) carried out simulations of inclined flows enhanced by boundary
vibrations and studied temperature, density and velocity profiles.

Most recently, several new arcas are being explored by researchers and the study
of granular materials is getting broader every day. Forterre and Pouliquen (2001)
reported a new instability observed in rapid granular flows down inclined planes that
leads to the spontaneous formation of longitudinal vortices, and Forterre and Pouliquen
(2002) showed that the kinetic theory is able to capture the formation of longitudinal
vortices. Chehata et. al. (2003) experimentally studied dense granular flow around a
cylinder and found that the mean drag force acting on the cylinder is independent of the

mean flow velocity, contrary to what is expected from any ordinary fluid. Silbert et. al.
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(2002) uncovered strong analogies between the jamming of the grains and the liquid-
glass transition based on large-scale, three-dimensional chute flow simulations of
granular systems. Corwin et. al. (2005) investigated whether there is a structural
signature of the jammed granular state that distinguishes it from its flowing counterpart
and found that there is a qualitative change in the force distribution at the onset of
jamming. Hsiau and Lu (2003) studied numerically the effect of electrostatic force on
granular assembly by defining electrostatic number Es as the ratio of the electrostatic
force to the particle weight. The simulation results demonstrate that the granular
temperatures increase linearly with the increasing Es. Mayor et. al. (2005) developed a
non-equilibrium version of the classical Brownian motion experiment by observing the
motion of a torsion oscillator immersed in an externally vibrated granular medium and
found the motion to be Brownian-like. Huang et. al. (2006) experimentally studied the
formation of shockwave and its propagation in vertically vibrated quasi-2d granular
material. Pohlman et. al. (2006) carried out experiments to show that nanoscale surface
roughness can affect the flowability and angle of repose of granular matter without
driving de-mixing of bulk granular material.

Wildman and Parker (2002) showed that two granular temperatures can coexist in
binary systems and the dissipative and non-equilibrium nature of granular flows does not
allow the interdispersed granular gases to relax towards a single temperature. Montanero
and Garzo (2002) studied steady, simple shear flow of a low-density binary mixture of
inelastic smooth hard spheres and showed that the partial temperatures of each species
are different even in the weak dissipation limit. Galvin et. al. (2005) numerically

simulated rapid granular flows undergoing segregation and revealed that the more
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massive particle may exhibit a lower species temperature than its lighter counterpart,
contrary to-previous observations in non-segregating systems.

Makse and Kurchan (2002) numerical modeled slow, enduring contact flows, by
considering particles of different sizes in a slowly sheared dense granular system and
extracted an effective temperature from a relation connecting their diffusivity and
mobility. Santos et. al. (2004) studied the rheology of granular fluids under a uniform
shear flow with uniform temperature and density, and observed that the temperature in
the unsteady state increased depending on whether the viscous heating of the initial state
was larger than the collisional cooling. Bose and Kumaran (2004) analyzed the velocity
distribution for the shear flow of a granular material using an event driven simulation for
a wide variation in the coefficients of restitution and the Knudsen number. Montanero
and Garzo (2003) numerically studied energy non-equipartition in a sheared granular
mixture. Liu and Rosato (2005) reported on the behavior of uniform granular particles
undergoing a gravity-free shear flow induced through parallel bumpy boundaries that
move in opposite directions at constant velocity and found that a non-uniform local shear
rate produces an imbalance in the contact distribution of particles in the vicinity of the
walls so that they drift toward the geometric centre of the flow. Cordero et. al. (2005)
used Newtonian molecular dynamics to study a gas of inelastic hard disks subject to shear
between two planar parallel thermal walls and observed significant non-Newtonian
behavior as non linear viscosity, shear thinning and normal stress differences. Xu et. al.
(2005) performed molecular dynamics simulations of frictionless granular systems
undergoing boundary driven planar shear flow and determined the conditions under

which they will have linear velocity profiles and when they will develop highly localized
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velocity profiles. Khain and Meerson (2006) theoretically investigated steady, plane and
very dense Couette flow of inelastic hard spheres under constant pressure and studied
shear-induced crystallization,i.e. formation of solid-like crystals of spheres.

Strumendo and Canu (2002) developed a method of moments for the dilute
granular flow of inelastic spheres. Zhang and Rosato (2004) numerically examined the
dynamic states of granular material vibrated vertically with special consideration of
particle roughness, inelasticity and structure of assembly before vibrations started.
Changfu et. al. (2004) presented the directly measured experimental data of collision rate
in vertical two-phase flow and claimed that the theoretical correlations based on kinetic
theory overestimate the collision rate in the gas-particle flows. Massoudi and Anand
(2004) have presented the governing equations for the flow of granular materials down an
incline, taking into account the heat transfer mechanism. Massoudi (2006) emphasized
that for complex non-linear materials it is the heat flux vector which should be studied
rather than proposing generalized form of the thermal conductivity. He showed that the
heat flux vector in addition to being proportional to the temperature gradient (the
Fourier's law), could also depend on the gradient of density and the symmetric part of the
velocity gradient. Kumaran (2006) derived the constitutive relations for granular flow of
rough spheres in the limit where the energy dissipation in a collision 1s small compared to

the energy of particle.

1.2 Summary of Approach

The theoretical work described in this dissertation makes two major contributions.

It derives a constitutive theory for flows of granular materials that can have anisotropic
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temperatures in different directions, and it gives boundary conditions for anisotropically
vibrating bumpy boundaries that ensure balance of not only momentum and energy, but
also the complete second moment. This anisotropic theory together with the boundary
conditions can make very detail predictions of effect of surface roughness and boundary
motion on assemblies of granular material.

The constitutive theory for flow is an extension of the pioneering work of Jenkins
and Richman (1985 a). They had derived a very detailed constitutive theory using an
isotropic Maxwellian distribution function. Here, we extend that work using a
distribution function that is anisotropic and includes perturbations in Maxwellian
distribution due to the presence of deviatoric second moment and complete third moment.
We extend the work of Richman and Martin (1993) who derived boundary conditions for
randomly fluctuating bumpy boundaries with random array of boundary particles. Here,
we derive boundary conditions where the array pattern of boundary particles is fixed and
can be adjusted. Also, we derive relations for change of momentum as well as complete
second moment at these vibrating, bumpy boundaries.

In Chapter 2, we derive the general constitutive theory for rapid, dense flows of
identical, inelastic, smooth spheres. First, we write down the balance laws. In order to
predict the anisotropy of temperatures, we use a velocity distribution function that
includes corrections to Maxwellian distribution due to presence of second moment and
third moment. Using such a distribution, we carry out statistical averaging over all
possible collisions to calculate the change of properties in collisions and we also calculate
change in property due to transport of particles between the collisions. We make

assumptions that are consistent with the constitutive theory of Jenkins and Richman
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(1985 a). Particularly, we assume that the gradients of second moment, velocity and
density are small. After deriving the constitutive relations, we study the relaxation
behavior to equipartition of second moment. We also look at simple homogenous
shearing of granular particles. In the end, we also derive the individual velocity
distributions.

Chapter 3 is devoted to formulating the effects of a randomly fluctuating, bumpy
boundary on an assembly of granular particles. Here, we first write down the momentum
and full second moment boundary conditions, in their most general form. Then, we
analyze a bumpy boundary, determine the limits in which the analysis is valid and study
the characteristics of such boundary, particularly the accessible area of boundary bumps.
Then, we write down the expressions for transfer rates by statistically averaging the
changes in a collision over all possible collisions between boundary particles and flow
particles. We also make approximations consistent to the constitutive theory used in the
flow and simplify the expressions for constitutive relations to the extent possible. We
also write down the boundary conditions at free surface.

In Chapter 4, we write down the general non-dimensional boundary value for free
surface flows of granular materials over vibrating, bumpy boundaries. We focus on
flows that are steady, parallel and fully-developed. Also, the mean fields in these flows
are functions of only normal direction. We use balance laws and constitutive theory
derived in Chapter 2 and boundary conditions and transfer rates derived in Chapter 3,
consistent with the approximations made in Chapter 2 and Chapter 3.

Chapter 5 discusses the boundary value problem when the flow is isotropic and

the boundary vibrations are anisotropic. In this case, the induced mean motion is uniform
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the individual temperatures are equal. Here, we primarily focus on the effects of
boundary roughness and boundary vibration on the thermalization and induced mean
motion in the flow. We look at the profiles of granular temperature and solid volume
fractions. We study the variation of temperature, solid volume fraction and flow heights.
We also look at the effects of this on mean motion of the assembly.

Chapter 6 describes a very detail study of anisotropic flows of granular materials.
First we show that the wvelocity distribution functions can differ significantly from
Maxwellian distribution. Then we study thermalization of assemblies by looking at the
cases where no mean motion 1s induced and later we look at mean motion. We look at
profiles of not only the total temperature and solid volume fractions but also the profiles
of the individual temperatures, for different values of mass hold-ups, restitution
coefficients and distribution of total vibrational energy. Further, we look at the variation
of total temperature as well as all individual temperatures, flow heights, solid volume
fractions at base for different distributions of vibrational energy. We look at the effects
of changes in array spacings, array angle, mass hold-up, coefficients of restitution, total
boundary energy on the thermalization of the assembly. In the second part, we look at
the profiles of mean velocity under different mass hold-ups, restitution coefficients and
distribution of energy. We study the effects of distribution of vibrational energy, phase
angles, array spacings, array angle, total vibrational energy, ratio of flow particle size and

boundary bump size, mass hold-ups, restitution coefficients on mean motion.
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CHAPTER 2

Flow Statistics and Collision Integrals

Following techniques employed in the kinetic theory of gases, we introduce a

single particle distribution function f defined such that, at time ¢, the probable number
of particles located at position # within volume element dr = drdr,dr, with velocities ¢
within the range dec=dede,de, 18 given by f(c,r.t)dedr. The number density nof
particles within the flow is then

n(r,t)= .ff(c,r,f)dc , (2.1)
where the integration 1s carried out over all velocities. If each sphere is of mass m,
diameter o, and mass density p,, then the solid volume fraction v is nmo” /6 and the
mass density o of'the flow is either mn or p,v.

The mean value of any particle property ¢(c) is the weighted average,

1
{p)=—[pefer.nd (22)
where the integration is over all velocities. The mean velocity u#(r,?) is simply {¢), the

fluctuation velocity C is the difference ¢—u#, and the full second moment K of

fluctuation velocity 1s (C®Cy. The granular temperature 7' =(C-C;/3=tr(K)/3 18

proportional to the kinetic energy associated with the velocity fluctuations, and is the
isotropic part of K .

A pair distribution function #® is defined such that f% (e, r,¢,,r,,1)de,de,drdr,
gives the number of pairs of particles with velocities ¢, and ¢, within the ranges de, and

de, that are located at r, and r, within the ranges dr, and dr, at time 7. An integral
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expression for the collisional rate of production C () of any particle property ¢(c) is
obtained by averaging over all binary collisions in which ¢ and ¢ are the pre- and post-
collisional amounts of ¢ possessed by particle 1, ¢, and géz' are the pre- and post-

collisional amounts of ¢ possessed by particle 2, and Ag=¢ +¢, —¢ —¢ is the total
change in ¢ per collision. Jenkins and Savage [1983] have shown that the collisional
production may be decomposed into the sum,

C(H=-X(H-V-Ap . (2.3)
It ¢ is given as a function ¢(C) of fluctuation velocity C rather than absolute velocity
¢, then equation (2.3) must be modified by adding an extra term, which in component
form is given by —(Qu, /0r)Q (0¢/0C,). If at impact, k 1s the unit vector directed from
particle 1 to particle 2, dk is an element of solid angle centered about k&, and g is the

relative velocity ¢ — ¢, then the collisional contribution X(¢#) is given by the integral,

K@= T [Ap SV e r—ok.c,rig k)dhdede, . 2.4)

and the collisional term £2(¢) 1s given by the integral,

20) -G [ -9k S T VY P ercr - oh)g Rdkdade, . (2.5)

where the integration is carried out over all velocities (g-k>0) for which a collision is
impending. Equations (2.4) and (2.5) are exact expressions for the collisional terms
X(¢) and ().

Here we follow the kinetic theory for dense gases and adopt a modified statement
of molecular chaos. In this manner, the pair distribution function for two particles at

impact 1s given in terms of single particle distribution functions by,
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f(z)(cl,r,cz,r+crk):go(r+0'k/2)f(cl,r)f(cz,r+crk) s (2.6)
where g, is the radial distribution function that depends entirely on the solid volume

fraction v. Equation (2.6) may be employed in the collisional integrals (2.4) and (2.5).
Approximations for the resulting integrals are based on the Taylor series for the single

particle distribution function,

o)’
fe e , @.7)
and for the radial distribution function,
G =
g (r= k) -2 e vrgm 2.8)

=0

In order to retain the three lowest order terms in C (¢#), it is necessary to retain the three
lowest order terms in X (¢) and the two lowest order terms in (¢). In fact, some of the
third order terms in X (¢) may be written as the divergence of second order terms, which
for consistency with £X(¢) must be included in the collisional flux. To this order of the

approximation, X (¢) may be written as,

X()- 2($)-V- E@®)+ E@)| 2.9)

where y(¢) is the integral given by

7)== A¢{1+%k-V{fn[éﬂ—a—;[k'Wn(ﬁ)][k'Wn(]‘;)]}ﬁﬁ(g-k)dkdqdcz

A
(2.10)
1 9dg,
+EWE(¢).VV s
E(9) 1,
E(#)=— T2 [Apk[k-Vin(f, 1] filg - Kdkdede, (2.11)

20



and E(g)is,

- 4
E(qﬁ):—% jjw-]'mﬁk@kﬁ];(g-k)dkdcldcz . (2.12)

where the integrations in equations (2.10) and (2.11) are (2.12) are carried out over all

impending collisions (g-k>0). The corresponding approximation e(¢) for £(¢) is

given by,

O I(¢Jaﬁ-l)k{u%kﬂfn(%ﬂ}flfz(g-k)dkdcldcz , (2.13)

where the limits of integration are g-k >0. The expression for the collisional production
C (¢) that contains the three lowest order terms may therefore be decomposed into the
sum

C=x(p-V-0() . (2.14)
where y(¢) is the approximate collisional source given by equation (2.10) and #(¢) is the
corresponding approximation for the collisional flux is equal to the sum,

0($)= )+ E($)+ E(p) . (2.15)
where (¢), E(¢), and FE(¢) are given by integrals (2.13), (2.11), and (2.12),
respectively. If ¢ 1s given as a function #(C) of fluctuation velocity C rather than
absolute velocity ¢, then equation (2.14) must be modified by adding an extra term,
which in component form is given by —(&w, /&), (64/8C,).

The collisional source employed by Jenkins and Savage [1983], Jenkins and
Richman [1985 a], and Richman and Chou [1989], for example, did not include the terms
on the right-hand-side of equation (2.10) involving the product of spatial gradients.

However, because the only source term in each of their constitutive theories was the
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energy dissipation and because their theories were developed for nearly elastic particles,
the added terms will make contributions to C (¢) that are of higher order than those
retained. The collisional flux employed by Jenkins and Savage [1983] and by Jenkins
and Richman [1985 a] did not include the extra terms FE(#)+ E(#). However, the only
flux terms in their constitutive theories were for stress and energy flux. In the case of
collisional stress, the extra terms will vanish because momentum is conserved in each
collision. In the case of collisional energy flux, the extra term will contribute terms that
are of an order higher than those retained because the theories were restricted to nearly
elastic particles. The collisional flux derived by Richman and Chou [1989] did not

include the extra term FE(g)because their application was to homogencous shear flows.

2.1 Balance Equations and Constitutive Quantities

The theory presented here is more elaborate than the standard kinetic theories for
granular flows because the mean fields to be determined are the density p, the mean
velocity u, and the full second moment of velocity fluctuations K. Standard kinetic
theories are concerned with o, «, and only the isotropic piece 7 of K. The equations

that determine these mean fields are balance of mass,

. Ou,
PHPA =0 (2.16)

1

where an overdot denotes the material time derivative; the balance of momentum,

“lipg (2.17)

where P is the pressure tensor and g 1s the body force per unit mass; and the balance of

the full second moment,
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s b
Py Ox, i Ox,

(2.18)

where the third order tensor Q 1is the flux of second moment, and the second order tensor

I' 1s the collisional source of second moment. Alternatively, the balance of second

moment (2.18) may be decomposed into its isotropic piece,

.80 Bu
3pl=——=H_2p L+ T 2.19
P axk ik axk + i E ( )

which is the energy equation, and its remaining deviatoric piece,

ou, 2. Ou, -
o, + ngk B, s, +T, s (2.20)

~

pPK _G(Q 71Q 5)p %,p
i axk i 3 lonm VT if ik axk k

which are the five additional equations required to treat K'y as mean fields.

The constitutive quantities of interest here are the pressure tensor P, the flux of
second moment @, and the source of second moment I". The quantities P and Q are
fluxes of momentum and second moment, respectively, given by the sums,

P={pCOC)+O(mC) . (2.21)
and

Q=(pCOCRC)+I(MCOC) . (2.22)
The first term on the right-hand-sides of equations (2.21) and (2.22) are the transport
contributions to these constitutive quantities, and the second term corresponds to the
collisional contributions evaluated according to sum (2.15) and integrals (2.13), (2.11),
and (2.12). The source of second moment is a purely collisional quantity given by,

= x(mCoC) (2.23)

calculated according to integral (2.10).
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2.2 Constitutive Relations

In order to derive the constitutive relations for the pressure tensor P, the flux of
second moment @, and the source of second moment I", it is necessary to evaluate the
integrals on the right-hand-sides of equations (2.21), (2.22), and (2.23). These integrals
involve the single particle distribution function f(e,r), which we take to be the perturbed

Maxwellian,

~

f(c,r):{l 2K‘f CC,+ U" [ccjc,;f(clawcg +C,C5U)]}j;(c,r) . (224

where la'y are the components of the deviatoric part of the second moment X ={(C®C),

K, are the components of the third moment (C&C&C ), and f,(e,r) is the Maxwellian

distribution given by,

_ 7 _C-C
ﬁ(c’r)_(zﬂ)-"’”e}(p( 2T) ' (2.25)

With the distribution function given by equation (2.24), the components < pC,C, > of the
transport part of the pressure tensor are p(7'5, + K ;) - and the components < pC.C C, > of

the transport part of the flux of second moment are X, . Strictly, the perturbed

Maxwellian given by equation (2.24) is valid only if the perturbations K. are small

i
compared to T, and the perturbations X, are small comparedto 772,
In order to compute the collisional contributions to the constitutive quantities, we

need the changes per collision in the appropriate particle properties. For a collision

between hard spheres of mass m, with fluctuation velocities €, and C, before collision,

and velocities €| and C; after collision, the change in velocity of the first particle 1s,
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C - C, :f%(1+e)(g-k)k , (2.26)

where e is the coefficient of restitution between the particles, & is the unit vector directed

from the center of the first particle to the center of the second at impact, and g=C, - C,.

The change in the second moment of the first particle is,
— (+e)
COC-CEOC=(lteNg-k) ~COk+—7—(g-WkSk| (2.27)

and the total change in the second moment is,
COC+C.RC,—COC,-C,C, =

A+ o) (2.28)
—T(g-k){(l—e)(g-k)k®k+[g—(g-k)k]®k+k®[g—(g-k)k]} :

In the collisonal part #(mC) of the pressure tensor, both E(mC) and

E(mC) vanish because momentum is conserved in every collision. According to the sum
(2.15), the only nonzero contribution is from e(mC) in which the change ¢ — ¢ is given
by equation (2.26). Here we retain terms up to those that are linear in velocity gradients
and second moments. Implicitly then, we ignore terms nonlinear in the second moment,
terms nonlinear in the third moment, gradients of the third moment, and products of

temperature gradients and third moments. In this manner we obtain the components of

the collisional pressure tensor,

_ 2 1o A, 27
0.(mC,) =21+ e)pGTHk 3(”;)1,2 D,dc}iy —ﬁgj + STKU} , (2.29)

where D, are the components of the strain tensor D=(Vu+Va')/2, an overhat denotes

the deviatoric part of a tensor, and G=vg (v). According to the sum (2.21), the

components of the full pressure tensor are then,

25



_ 2 4 A L H B
Pg2(1+e)pGT{F—3(”;mD4ciJ—M;MDU+TKU} , (2:30)

where F'(v,e) and H(v,e) are functions of solid fraction and coefficient of restitution

defined by,
N R S
F(r.e)=1+ W+ )0 , (2.31)
and
_ 2,5
H(V,e)—s{l-i- 4(l+e)G} : (2.32)

In the collisional contributions & (mC.C, )} to the components @, of flux of

second moment, we retain terms linear in the gradients of temperature 7, solid volume

fraction v, and deviatoric second moment K

& » as well as those linear i third moment

K, . According to decomposition (15), contributions to 8,(mC.C,) come from
@, (mC,C,)with the change in second moment of the first particle given by expression
(2.27), and from FE (mC,C,) and E’I(mCJ.C;C) with the total change in second moment

given by expression (2.28). Interestingly, the terms proportional to gradients of

temperature and solid volume fraction from FE,(mC,C,) and E.(mC .C,) are also
proportional to (1-e¢), and may be neglected as second order effects for the nearly elastic
particles of interest here. In fact, the only terms from E,(mC . C,) and E.(mC ,C) that we
retain here are those contributed by E,(mC C,) that are proportional to gradients of X .

The flux o, (mC C,) gives rise to terms proportional to K, as well as terms proportional

to gradients of 7 and K & Strictly the gradients of K + are of higher order than those of
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7, but they must be retained if the components K & are to be treated as mean fields with

corresponding boundary conditions.
In writing down the results of these integrations, we employ the approximate
expression obtained by Jenkins and Richman [1985 a] for the components of the third

moment,

371+ e)2e— DT 5 or or or
Ky =750 339 Y N reraemnG | o % T e a9

where, for consistency with the considerations above, we have neglected terms
proportional to products of density gradients and (1-¢). According to equation (2.22)

and the considerations for approximating the integrations outlined above, the components

Q. of the flux of second moment (equal to the sum of the transport contributions oK,

and the collisional contributions 6,(mC .C,)), are

512 or ; o, 7

1

1/2
0, - ML IPIaL {a(v,e)@cwﬁ(v,e)[%ah L }

(1+3¢)| (K, @&k, oK, | (ek, . oK, . oK,
T & + ar + &, + ar. Sy + ar o, + o,

in which a(v,e) and F(v,e) are functions of solid fraction and coefficient of restitution

defined by,
_ . 3r(lre)2e 1) 5 5
v =1t — e 330 {H 3(1+ e)* (2e— I)G}[IJF 41+ e)G } : (2.33)
and
L 27x(l+e)(2e-1) 5 5
plve)=1+ 8(49—33e) {H 31+ e)2(2e—1)G}{1+ 91+ e)G } ' (2.36)
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If the flows are dense, then the transport part oK, of O, may be neglected compared to
the collisional part 6 (mC C,). In fact, if K, is simply set equal to zero, then the

resulting expression for the components of the flux of second moment is given by
equation (2.34) with a(v,e)= f(v,e)=1. Such a simple expression would apply to dense
flows only.

In order to derive an appropriate constitutive relation for the source of second
moment I' = y(mC @ ), we employ expression (2.28) for the total change in the second
moment in equation (10) for y(mC® C). We retain all terms that are linear in second
moment and in gradients of velocity. Furthermore, according to the second moment
equation (2.18), there are circumstances (such as in homogeneous shearing) in which the
source of second moment I" must balance products P-Vu+ (P-Vu)" of the pressure
tensor and the velocity gradient. Because, according to equation (2.30), P includes
terms up to those linear in K and D, the simplest constitutive relation for T' that is
consistent with constitutive relation (2.30) for P must include terms proportional to
K-Vu and Vu-Vu. In addition, the ordering scheme used by Jenkins and Richman
[1985 a] showed that in homogeneous shearing, for example, both K and Vu are of the
same order. Consequently, the constitutive relation for I' must also include terms
proportional to K-K. On the other hand, equation (2.18) also demonstrates the there
may be circumstances (such as in a steady thermalized granular assembly undergoing no
mean motion) in which the source of second moment I' must balance the divergence of
Q. The types of terms 1n the divergence of @ that will also arise in I'= y(mC @ C) are

products of the temperature gradient with itself, products of the temperature gradient with
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the density gradient, products of the temperature gradient with the gradient of K, and

products of the density gradient with the gradient of K. Because the latter two are of
higher order than the former two, they will be neglected in T' and whenever they arise

from the divergence of @ in the second moment equation (2.18). On the other hand,
there are terms in I'= y(mC @ C) from the Maxwellian contribution to the single particle

distribution function (2.24) that are products of the temperature gradient with itself, and
products of the temperature gradient with the density gradient. Interestingly however,
each of these products 1s proportional to (1-e) and may be neglected for the nearly elastic

particles of interest here. In principle, the correction to the Maxwellian involving K,
would give terms in I'= z(mC @ C) proportional to products of X, and gradients of 7,
products of K, and gradients of v, products of K, with itself, as well as terms
proportional to the gradient of K, itself. With K, approximated by (2.33), these terms

in turn give rise to terms like those arising from the divergence of Q. and strictly should
be retained. We neglect them here only because our goal is to write down the simplest

~

constitutive theory in which the components K, may be treated as mean fields.

Neglecting terms in I'=y(mC&®C) that are proportional to products of both the
temperature gradient with itself, and the temperature gradient with the density gradient
does not actually affect the mathematical structure of the resulting theory because terms
of the same type appear in the second moment equation from the divergence of Q.

By carrying out the integration y(mC®C) for I according to these

considerations and by extracting those terms proportional to the spin tensor
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W =(Vu'-Vu)/2, we find that the (components of the) source of second moment can be
decomposed into the sum,

T, =7, +0.(mC W, +8,(mCOW, . (2.37)

Here the components y, (of y) may be written in terms of the tensor components D,

~

Kxj - dy = DI'Ichjs AI_';' = (KL;CD@ -+ DIkK;g)/Z R and by. = KIJCKIQ as
601+ e)pGT*" [(1-e) on'”? o’ 20° 207" 1
G = ox’? 3 —4 + Tz D, *ﬁDkkDmm — ST dick + el Ay — 577 bkk 59.
22-e)o| _»_ 20 A 2(3-e) art’? -
+ ST”Z{E _WD% Dy + =25 2+ 17 D, K, (2.38)

2 1/2
_3(2-e)o i+ 4 (5 3/22e)o' i - 403 2e) b ’
357 357 vo357* Y

where overhats denote the deviatoric part of a tensor.

The set of equations that determine the solid fraction v, components u, of the

mean velocity, granular temperature 7", and the components K , of the deviatoric second

1

moment are the balance of mass (2.16), the balance of momentum (2.17), and either the
balance of full second moment (2.18) or both the energy equation (2.19) and the
deviatoric second moment equation (2.20). Constitutive relation (2.37) may be employed

to eliminate 7', from equation (2.20). With the velocity gradient éu, /@x, written as the
sum of the strain rate D, =(8u/0x,+0u, /0x)/2 and the spin tensor

W, =(8u,/éx, —6u, /0x,)/ 2, and the pressure tensor P written as the sum pK, + 6,(mC))

¥

wherever it multiplies the spin tensor, the deviatoric second moment equation becomes,

5 (3]
PR, = x,

1 2 R
(Qﬁaj _§kam5y)_ PEW, —pK W, -FD,—-P,D, + ngDm5y +7, - (2.39)
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2.3 Constitutive Relations for Nearly Elastic Particles
When the particles are nearly elastic and there is no external source, such as a

vibrating boundary, that induces significantly anisotropic velocity fluctuations, the

deviatoric components X,

may be treated in the following approximate manner.
Following Jenkins and Richman [1985 a], the dewviatoric second moment equation (2.20)

1s approximated to lowest order by,

Ou. ou. 2 ou ~
P,y Ep Ty T 2.40
oo, tow, 3 ™ay % (2.40)

OZ*PﬂC

in which, according to equations (2.30), (2.37), and (2.38), the components P, and 1:

are given to lowest order by,

P, =21+ e)pGFTS, (2.41)

and

i _12(1+e)pGT“{<2e)% _A3-e) } (2.42)

i 3o 7172 i 2T K
Employing equations (2.41) and (2.42) in (2.40), we find that to this order of

approximation K, are given in terms of D, by,

K, 7"@Ge-1) 5 oD
By U]
’ oo {n } . (2.43)

- 2@e—D)(1+e)G | T2
In the theory for nearly elastic particles, this constitutive relation replaces the exact
balance equation (2.20), and may be used to eliminate the components ]%U from the

constitutive theory. In this manner, we find from equation (2.30) that the approximation

for F, that is linear in ﬁy may be written as,
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2a A
Py =2(1+ &) pGT [F 7]_)%}5? - 2,u,EDy. s (2.44)

3Ty
in which,
P 41+ e)c?zGTm , (2.45)
St
and
E=l+ fz%eel)) {“ 4(1+5e)<}}[1+ 2(3e1)5(1+ e)G} ' (2.46)

The remaining constitutive quantities are the energy flux ¢, and the energy

~

dissipation I',. If the deviatoric components X

)

are ignored compared to the isotropic

temperature 7, then equation (34) gives the energy flux,

or

Oy =-5uM oL 2.47)
where
91t e)2e 1) 5 5
M=1+ 1(49332) {14»3(1+€)2(2€—1)G}[1+76(1+2)G:| } (2.48)

If only terms up to those linear in 151_.?. are retained in equation (2.38), then the dissipation

is given by,

300 —e) 12
r,-- X e, (2.49)

(e
With appropriate boundary conditions, the balance of mass (2.16), the balance of
linear momentum (2.17). the balance of energy (2.19), and constitutive relations (2.44)

for the pressure tensor F,, (2.47) for the energy flux @, . and (2.49) for the energy

2

dissipation I', form a complete set of equations for the solid fraction v, the mean

velocity u, and the granular temperature 7 .
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An even simpler set of constitutive relations for nearly elastic particles is obtained
by setting the coefficient of restitution e equal to 1 everywhere except in the factor of

(1-e) in the energy dissipation T, and by neglecting terms proportional to D, in both

the pressure tensor B, and the dissipation I',. The balance of mass, momentum, and

energy are again given by equations (2.16), (2.17), and (2.19).

2.4 Equipartition and Relaxation of the Components of the Second Moment

Here we consider an unbounded space (with no body force g) in which the solid
fraction v is uniform throughout, the mean velocity u# vanishes everywhere, and the
second moment K wvaries with time ¢ but not with position. In this case, the velocity
gradients and flux of second moment both vanish, and the pressure tensor is a function of
time only. Under these circumstances, the balance of mass and the balance of momentum
are satisfied identically.

In order to write the down the balance of second moment, we introduce an initial

temperature 7,, a dimensionless time s=(GI''?/on"*)t, a dimensionless temperature

t=7/T,, and dimensionless components of the second moment x, =K /T,. The

function G(») (=vg_(v)) that appears as a numerical factor in the dimensionless time
mcreases monotonically from zero when v =0, and becomes unbounded as v approaches
its maximum value. Consequently, the dimensional time ¢ that corresponds to any
prescribed value of s varies monotonically from large values in very dilute flows to very
small values as the assembly approaches its maximum density.

With the components T', (=p,) of the source of second moment given by

equation (2.38), the energy equation (2.19) becomes,
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dr

ds

—*81*62 1+71 .’22+l€‘2 +f22 +2l€‘2 +2]€‘2 +2f22 ijl . 250
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T

Similarly, the diagonal components of the deviatoric second moment equation (2.20)

become,

dlf'ni 24(1+e)(3—e)1'3f2 12'11 1 "3 a3
ds 3 T (2

~2 ~2 ~2 ~2
2 Kn_Kzz_Kas+K12+K13_2K23) » (2-51)
r  2lr

dr - 205 R . . . . .
Ky __ 24(1+e)3—e)r {K‘zz + 1 (2"(222 _K323 _ K_lzl i K_122 n K‘223 _2’(_12; )} i (252)

ds 5 T 21
and,
dx 24(l+ e)3—e)r*? | & 1 . PO . . .
n 2eref3-e) [ B (28R R R 285) | @53)

The off-diagonal components of the deviatoric second moment equation are,

dxK, 241+ e)3-e)r*? [ £ 1 jnon onon
d;z o 5 %4— F(Ku"fu + Ky Ky + K‘13K'32) s (2.54)

dK 241+ e)3-e)r? | & 1 /n ~ o« " n
d; _ 5 % i F(:cnsrcn + KppKyy + Kj3K ) , (2.55)

and

diy, 241+ e)(@-or” &, 1
a T Tt

ds 5 + 7( CorKpy + KKy + KKy )} . (2.56)

The lowest order relaxation behavior of the second moment is obtained by
ignoring the terms in equations (2.50) through (2.56) that are nonlinear in the components
of the second moment. In this manner, we find from the approximation of equation
(2.50) that the temperature decays according to,

r= 1 , (2.57)

140 -ehs |
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which satisifies the initial condition 7(0)=1. As expected, the granular temperature
remains unchanged when the coefficient of restitution e¢=1, and decays to zero at a rate
that increases as the coefficient of restitution e decreases from unity. With 7(s) given
by equation (2.57), the corresponding linear approximations to equations (2.51) through
(2.56) demonstrate that when e=1 the deviatoric components of the second moment

evolve according to,

—6(3—¢)
£, =K, (0)1+4(1-¢)s | 0 (2.58)
and when e=1
R - rEg(O)exp(— 9565) . (2.59)

Equation (2.57) demonstrates the tendency of the temperature to decay when the particles
are inelastic, and shows how the decay occurs more rapidly as the particles become more
inelastic. Equations (2.58) and (2.59), on the other hand, demonstrate that regardless of
the extent of the anisotropy initially imposed, as a result of repeated collisions between
particles the velocity fluctuations tend to become isotropic as time increases. In
particular, the decay of the diagonal components of x demonstrate the trend toward
equipartition of energy among the three degrees of translational freedom. In direct
contrast with the decay of the temperature, the anisotropies in the velocity fluctuations
actually decay more slowly as the particles become more inelastic. This 1s because, while
repeated collisions promote isotropy, the frequency of collisions decreases as the particles
become more inelastic.

The nonlinear terms in equations (2.51) through (2.56) demonstrate that

anisotropy 1n the diagonal components of the second moment can be induced by the
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presence of off-diagonal components of the second moment, but that off-diagonal
components of the second moment can not be induced by the presence of anisotropies in
the diagonal components alone. Interestingly, the nonlinear terms in equations (2.54)
through (2.56) demonstrate that the off-diagonal component of the second moment in a
given plane will be induced by two off-diagonal components when the two occur
simultaneously in mutually perpendicular planes that are normal to the given plane.

As a numerical example to demonstrate the equipartition tendency of the diagonal
components of second moment to equilibrate, we consider the extreme case in which
initially the fluctuation energy is entirely in the x -direction (r(0)=1, x,,(0)=3, and
K,,(0)=x,,(0)=0) and the off-diagonal components of the second moment all vanish
(Kp(0)=Kkp(0)=x,(0)=0). With x,=7+K,, ky=-7+K,, and &, =7+K,,, this
corresponds to assigning the initial values £,(0)=2, and £,,(0)=£,;(0)=-1 to the
diagonal components of the deviatoric second moment. In Figures 2.1, 2.2, 2.3 and 2.4
we show for four values of coefficient of restitution (e=1, .8, .5 and 0) the evolution in
time ( s ) of the granular temperature z(s) and the separate diagonal components «,,(s)
and x,,(s) = k3, (s) of the second moment. The off-diagonal components remain zero for
all time. In these figures, the solid curves correspond to the solutions of the full set of
equations (2.50), (2.51), and (2.52), and the dashed curves correspond to the approximate
solutions given by equations (2.57), (2.58), and (2.59). The granular temperature
T=(x,, + Ky + Ky )/ 3 remains constant when the particles are perfectly elastic, and decays
to zero at rates that increase as the particles become increasingly inelastic. In all cases,

the velocity fluctuations become increasingly isotropic with time, although the approach

to isotropy becomes slower as the particles become more inelastic. Figures 2.1,2.2,2.3
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Figure 2.1: The variations of 7, «,,, «,,, &, with s when e=1 and 7 (0)=1,

K, (0)=3, x,,(0)=0, x,(0)=0, x, (0)=0, «,,(0)=0, x ,(0)=0. Sold (dashed)

lines indicate exact (approximate) solutions.
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Figure 2.2: The variations of 7, x|, «,,, ., with s when e=.8 and 7 (0)=1,

&, (0)=3, x,, (070, x, (070, «, (0)=0, «,,(0)=0, x ,(0)=0. Solid (dashed)

lines indicate exact (approximate) solutions.
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Figure 2.3: The variations of 7, «,, «,,, x,, with s when e=5 and ¢ (0)=1,

x,, (073, «,,(0)=0, x, (070, x, (0)=0, «,,(0)=0, x ,(0)=0. Solid (dashed)

lines indicate exact (approximate) solutions.
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Figure 2.4: The variations of 7, «,,, «,,,

K, (0)=3, x,,(0)=0, x,(0)=0, x, (0)=0, «,,(0)=0, x ,(0)=0. Sold (dashed)

lines indicate exact (approximate) solutions.
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and 2.4 also demonstrate excellent agreement between the exact numerical solutions and
the approximate closed form solutions (2.57), (2.58), and (2.59).

As a numerical example to demonstrate the extent to which the presence of off-
diagonal components of the second moment can induce anisotropy in the diagonal
components, we consider the case in which the diagonal components are initially all
equal (x,,(0)=x,,(0)=x,(0)=7(0)=1, so that £,,(0)=%,,(0)=K,(0)=0), and only the
x —x, off-diagonal component is non-zero (x,(0)=1 and x,(0)=x,(0)=0). The
induced anisotropy is not captured by the approximate solutions (2.58) and (2.59). In this
case, equations (2.55) and (2.56) show that x, and x,, remain zero for all time. In
Figures 2.5 and 2.6, we show the variation with time of r and «,, for ¢=1, .8, .5 and 0.
The solid curves give the exact numerical solution. The dashed curves are the
corresponding linear approximations given by equation (2.57) for r, by equation (2.59)

for x, when e=1, and by equation (2.58) for x, when e=.8, .5 and 0. The granular

temperature behaves much like it did in the previous case. The behavior of the off-
diagonal component is captured quite well by the approximate solutions. Figures 2.7 and

2.8 show the corresponding variations with time of the deviatoric diagonal components

~

K, =K,. and £,. According to these two figures, amsotropies in the diagonal
components grow with time initially due to the presence of «x,,, and eventually decay
with time as «, itself decays. Because the anisotropies in the diagonal components 1s

due to the nonlinear terms in equations (2.51), (2.52), and (2.53), at all times their

magnitudes are much smaller than the granular temperature itself.
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Figure 2.5: The variations of 7 with 5 when e=1, .8, .5 and 0, and 7 (0)=1,
k£, 0=1, «,,(0=1, x,(0F1, «,0)=1, «,, (070, «,(0)=0. Solid (dashed)

lines indicate exact (approximate) solutions.
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Figure 2.6: The variations of «,, with 5 when e=1, .8, .5 and 0, and 7 (0)=1,
K, (071, x,, (071, x,, (071, x,,(0)=1, x,,(0)=0, x,(0)=0. Solid (dashed)

lines indicate exact (approximate) solutions.
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Figure 2.7: The variations of JEM = f?zz with 5 when e=1, .8, .5 and 0, and

(071, x, (0)=1, «,,(0=1, «,, (0=1, «, (01, x,.(0)=0, «,(0)=0.
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Figure 2.8: The variations of ;233 with 5 when ¢=1, .8, .5 and 0, and 7 (0)=1,
k. (01, x,, (071, k01, x, 01, x,, (070, « ., (0)=0.
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2.5 Homogenous Shearing Flow

Here we apply the balance equations for mass, momentum, and energy, as well as
the constitutive relations for pressure tensor and source of second moment to a steady,
homogeneous, rectilinear shear flow of identical particles with diameters o . In this flow,
the solid fraction v, the velocity gradient #', and the second moment K are uniform

throughout. An x, —x, —x, Cartesian coordinate system is defined such that x 1is the
direction of flow and x, is the direction of the velocity gradient. The only nonzero
components of the strain rate are D, = D,, =«"/2, and the only nonzero components of the
spin tensor are W, =-W, =u"/2.

Under these circumstances, the balance of mass (2.16) and the balance of

momentum (2.17) are identically satisfied. The components ]'(U and @, all vanish, so

the energy equation (2.19) (with T, =y, from equation (2.37)) reduces to,
2P12Hf = 7/11 - (260)
Similarly, the deviatoric second moment equation (2.39) simplifies to,

2 p A
PRW, +pK W, + P, D, +P, D, - Fud, =7,

3712 i i

(2.61)

For a prescribed velocity gradient ', equations (2.60) and (2.61) are six scalar equations

that, when combined with constitutive relations (2.30) and (2.38) for £, and y,,

¥

determine the variations of the components K, of the second moment with solid fraction

I

v and coefficient of restitution e. The x —x; and x, — x, equations are satisfied for all
values of v if and only if the components X, and K,, both vanish. This is because, in

this simple flow, the x —x;, and x, — x, components of the shear stresses are equal to

~

zero. The remaining unknowns (7, K, K,,.

and X,) are determined by the energy
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equation (2.60) and the x —x,, x, —x,, and x —x, components of the deviatoric second
moment equation (2.61).

The dimensionless parameter R =ou'/T** is an inverse measure of the fluctuation
speed of the particles relative to the spatial variation m mean velocity. Dimensionless

measures k&, of the nonzero components of the second moment are defined by X, /T,

while the corresponding sum and difference of the diagonal terms are 2£=/k, +k,, and

LS

2=k, — ;’::22 With F, given by equation (2.30) and y, given by equation (2.38), the
energy equation (2.60) becomes,
—4R* 107 HE,R =3(1—¢) -20—R* + 27 k,R - 2038 + i + ) | (2.62)

where H =H (v,e) 1s defined by equation (2.32). Similarly, the x —x, component of the

deviatoric second moment equation (2.61) becomes,

172
337 Ry, 7072 (1+ e)[F + HEJR=6(1+ e)[hm(z —e)R-28(3—ek, +
G
, (2.63)
+ 277 (5- 2e)RE —8(3 - e)ky,€ |
where F'=F(r.,e) 1s defined by equation (2.31). Rather than the individual diagonal
components, it 1S more convenient to write down the sum and difference of the x —x,

and x, — x, components of equation (2.61). The sum is given by,

—14R* + 357V Hl,R = -252(3 — &)é —6(2—e)R* + 67 (5 — 2e)k, R+

. (2.64)
+123-e)38 ~ 17" ~ 2k})
and the difference is given by,
357k, R
TR (G -T2 (2.65)
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With the values of solid fraction » and coefficient of restitution e prescribed,
equations (2.62) through (2.65) may be solved numerically for the corresponding values

of R k

0.5, and p.  Alternatively, it is possible to obtain approximate closed form

solutions to equations (2.62) through (2.65) for R, 4,,&, and 7 that are valid up to the

order of approximation employed in deriving the constitutive relations. To this end, we

expand R, k,,Z, and 7 in powers of the parameter ¢=(1-¢)*>. The forms of equations

(2.62) through (2.65) dictate that there are no even powers of & in etther R or &, , and no
odd powers of & in either & or n. Consequently, the appropriate expansions are
R=Res+R,& (2.66)
k,=ke+ke (2.67)
c=&et v et (2.68)
and
n=me +mE (2.69)

where we have truncated the series after the two lowest order terms in each. The

corresponding expansions for the functions F(G,g) and H(G,s) defined by equations

(2.31) and (2.32), respectively, are given by,

2 2

_ £ _ &
F_F(')+SG and H H°+SG , (2.70)

where I, =F(G,6=0) and H, = H(G,s=0) are the expressions (2.31) and (2.32) for F
and K evaluated when the particles are perfectly elastic (i.e. when e=1).
Approximations (2.66) through (2.70) may be employed in equations (2.62), (2.63),
(2.64), and (2.65). Equating coefficients of the terms proportional to £ in equations

(2.62) and (2.63), for example, yields
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~R+ 57" H kR, =-30 (2.71)

and

1/2
k = *’g {1 51;0 }Rl . (2.72)

By using the second of these to eliminate k from the first, and by employing the

expressions for F, and A, interms of G, we find that

-2

RI:\/E{H 17;[” SH , (2.73)

3G

which may be employed 1 equation (2.72) to deternune %,. Similarly, equating the

coefficients of terms proportional to & in equations (2.64) and (2.65) vyields,

respectively,
f-Lr Ting s kR - 2 2.74)
T 504 ol ot
and
_5 1/2
1, = 967;(3 kR (2.75)

At the next order, equating the coefficients of the terms proportional to & in equations

(2.62) and (2.63) yields,
257" H k, —4R)R, + (107> H Rk, = 3R + 7 (6 — %)kl}e1 6k, (2.76)

and

35 35

287" (5F, — 3)R, + 672k, = 7% [42 + TOFy = 55+ 418 - 35H,)%, + 5;;2}21 —192k¢&, . (2.77)
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These are two simultaneous linear algebraic equations that easily determine R, and k.

Finally, by equating coefficients of the terms proportional to &' in equations (2.64) and

(2.65) yield, we find,

| 12 1 1
L= g QRE R+ TG GlaRy + 3R, + 2R + o3 G5 — 1, — 4hky) 5+
X s | (2.78)
+ER1R3 ) Hy(k R, +]‘73R1)“‘E]{1Rl :
and
_5 1/2 2
m=ogr hR+BR)=55m, 2.79)

The coefficients R, R, k. k., &, 5, n,, and 5, are determined as functions of v by
equations (2.72) through (2.79). The dependence of R, 4,, £, and » on v and e are then

approximated by the truncated series (2.66) through (2.69). With £ and » determined in
this manner, the diagonal components of ](;U are fixed according to l::u =&+n, ,’222 =&-n,
and "‘;33 = 7(1211 + ]:722) :

A dimensionless measure of the velocity fluctuations 1s K =K, Hou'y =k, / R*.

The diagonal components, in particular, are given by,

1 " 1 " 1 "
]Cn:?(l—‘rkll) . }sz:F(szz) , and }C33:ﬁ(1+k33) : (2.80)

The dimensionless components p, of the pressure tensor are defined in terms of their

dimensional counterparts £, by p,=F,/p,(cu’)’, in which p, is the mass density of

each particle. In the case of homogeneous shearing, equation (2.30) yields the normal

pressurcs,
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2L+ enG .
u= 2N popdy) (2.81)
21+ NG :
Al (2.82)
and
21t WG, -
o= NG i) (2.83)

while the average normal pressure is given by p=2(01+ewGF/R*. Similarly, the

dimensionless shear stress is

(2.84)

Pz

20+ enG [ 2R .
- R? SV

In Figure 2.9, we show the variation of the parameter R —ou'/T" with solid
fraction v for e=95, .8, .6, and .4. The exact solutions for R obtained by numerically

solving equations (2.62) through (2.65) are shown as solid curves. The approximate
solutions given by truncated series (2.66) (in which R is given by equation (2.73) and
R, 1s obtained from equations (2.76) and (2.77)) are shown as dashed curves. In this
flow, the balance 1s between the rate at which energy 1s supplied to the flow by the
imposed shear rate and the rate at which energy is dissipated due to inelastic collisions.
For a fixed rate of energy supply, the frequency of collisions and therefore the granular
temperature must increase as either the flow becomes less dense or the particles become
less dissipative. Consequently, R decreases with decreasing v or increasing e. In fact,

equations (2.66) through (2.77) demonstrate that in the dilute limit both 2, R, and R
itself’ are proportional to v. By contrast, equations (2.66) through (2.79) demonstrate

that &, (=Z+1), ky(=£-n), k,, and %, approach finite non-zero values in the same

limit. Figure 2.9 also demonstrates that the accuracy of the approximate solution
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Figure 2.9: The variations of R with v when ¢=95, 8, .6 and .4. Solid
(dashed) lines indicate exact (approximate) solutions.
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diminishes as e decreases. This is to be expected because the approximation is a
truncated series in powers of s=(1-¢)"*. Figures 2.10, 2.11, 2.12 and 2.13 show the

variations of the normal pressures p,,, p,,. and p,, and the shear stress —p, with v for

~ ~

e=.95, .8, .6, and .4. Solid curves are based on the exact values of R, 1211, k,,, k,,and

~

k,

- whereas the dashed curves are based on the truncated series for these same
quantities. If the granular temperature were fixed as the density varied, the pressures and
shear stress would each decrease monotonically with decreasing solid fraction. However,
Figure 2.9 showed that as the solid fraction decreases, the granular temperature increases.
Decreases 1n solid fraction tend to decrease the pressures and the shear stress, while
mcreases in temperatures have the opposite effect. Figures 2.10, 2.11, 2.12 and 2.13
indicate that for relatively dense flows (i.e. v greater than about .25) the effect of varying
solid fraction dominates over the corresponding effect of varying granular temperature,
so that the pressures and shear stress decrease with decreasing solid fraction. However,
m relatively dilute flows (i.e. v less than about .25) the pressures and shear stress
actually increase as the solid fraction continues to decrease. This indicates that in this

range of v, the effect of varying temperature dominates over that of varying solid

fraction. In fact, this is because as v becomes small, 7 becomes unbounded (with 1/v?)

faster than v approaches zero.

Figures 2.14 and 2.15 show the variations of ratios of normal pressures p,/ p,,

and p,/ p,, with v for e=93, .8, .6, and .4. Solid curves are based on the exact values of

R, ky, k. k., and k,. and the dashed curves are based on the truncated series for

above mentioned quantities. The ratio p,/ p,, deviates strongly from 1, when the flows
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Figure 2.10: The variations of py; with v when ¢=95, 8, .6 and 4. Solid
(dashed) lines indicate exact (approximate) solutions.
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Figure 2.11: The variations of px with v when ¢=95, 8, .6 and 4. Solid
(dashed) lines indicate exact (approximate) solutions.
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Figure 2.12: The variations of p3; with v when ¢=95, 8, .6 and 4. Solid
{dashed) lines indicate exact {(approximate) solutions.
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Figure 2.13: The variations of -p1; with v when ¢=95, 8, .6 and 4. Solid
(dashed) lines indicate exact (approximate) solutions.
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Figure 2.14: The variations of p;)/ p2; with v when =95, .8, .6 and .4. Solid
(dashed) lines indicate exact (approximate) solutions. Also shown are
numerical data from Walton (1989) for ¢=95 (solid circles) and e=.8
{triangles) and Walton and Broun (1986 b) for e=.6(hollow circles).
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Figure 2.15: The variations of ps3/ p; with v when =95, .8, .6 and .4. Solid
{dashed) lines indicate exact (approximate) solutions. Also shown are
numerical data from Walton (1989) for ¢=.95 (solid circles) and e=.8
{triangles) and Walton and Broun (1986 b) for e=.6(hollow circles).
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are highly dilute and inelastic. As the solid volume fraction increases to its maximum
value, the ratio becomes equal to 1. This can be explained by analyzing the motion of
particles between collisions and the associated effect on their fluctuation velocities.
Particles at any vertical location can be thought to have reached there from some position
above or below. Then, their total velocity is unchanged but because of different mean

velocity at the new vertical location, the particles acquire additional fluctuation velocity

in x, -direction but no additional fluctuation velocity in x, -direction. So, particles have

greater k, than k,,, and hence larger p, than p,,, and this difference in %, than %, is
proportional to the product of vertical distance particle travels between the collisions and
R®. As v increases, the vertical distance that the particles could travel between collisions
reduces and hence p,, approaches p,. Also as inelasticity increases R increases and
hence the differences increase. As regards the variation of pressure ratio p,,/p,,, for
relatively dilute flows (i.e. v less than about .25), the ratio p,,/ p,, is greater than 1. As
v increases, the ratio decreases and for relatively dense flows (i.e. v greater than about
.25) the ratio decreases to values less than 1. Although it is not precisely clear why the

ratio p,,/ p,, varies the way it does, similar qualitative variation 1s observed in numerical

simulations of Campbell (1989) for rough spheres. Figures 2.16 and 2.17 show the

simulation results of Campbell for the variation of pressure ratios p,/ p,, and p,/ p,,.

fore=.4, .6, .8 and 1.

2.6 Probability Distribution Function for Velocities
In an earlier section of this chapter, we discussed the single particle distribution

function f(e,r), which was taken to be the perturbed Maxwellian, given by
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Figure 2.16: The simulations results of Campbell (1989) showing variations of
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and 1 respectively.
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Equation (2.24). To obtain the individual velocity distribution functions, we need to
mtegrate the single particle distribution function f(e,r) with respect to the remaining two
velocities, in the limits -0 to oo. Ina general x —x, — x, Cartesian coordinate system the

individual velocity distribution functions, scaled by number density # to give probability,

are thus obtained as:

PC)= ;11 T ]if(c,r)dczdc3 , (2.85)
PC)H= % T Tf(c,;r‘)a’cla’c3 , (2.86)
P(C))= ; T Tf(c,iv')a’cla’c2 , (2.87)

where, P(C)), P(C,) and P(C,) are individual velocity distribution functions in x, -, x,-
and x, -directions respectively. Substituting expression (2.24) for f(c,r) and carrying

out the integrations, we get,

2 2 5 > -
P(C)= ! exp | P ST
V2nT 27 T 2T 2T 2T
, (2.88)
+3JE(1+e)(2e—1) o 5 cdr(, GG
4(49 - 33¢) 3(1+e) (2e—1)G )T éx, T )T
2 = 2 >
P(C,)= ! exp | UME TR N e
J2nT 27 2 T 27 2T
(2.89)
+3JE(1+e)(2e—1) . 5 cor(, C*\¢
4(49-33¢) 3(1+e)(2e—DG )T o, T NT
and,
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PG) =

! exp oY 14 tu B +C32 Ky
N2xT 27 27 21 T 2T

+3\/;(1+e)(29—1)[1+ 5 ]0' aT(?)_Cf}Q}

4(49-33¢) 3(1+e)(2e—1G )T ox, T INT

(2.90)

Note that P(C)), P(C,) and P(C,) in general depend on v, T, KA'H , ]522, ]5'33, or [ox, ,
0T fox, and 0T /Ox, which are functions of position x, and parameters ¢ and e. So,
we can not plot P(C)), P(C,) and P(C,) unless we solve boundary value problem to
obtain above mentioned fields. Hence we defer the plots of P(C)), P(C,) and P(C,)

until Chapter 6.
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CHAPTER 3

Boundary Conditions

We consider the interaction of a three-dimensional granular flow with an
impenetrable boundary that randomly fluctuates about mean velocity U . The velocity of
the flow at the boundary is #. Of particular interest are the mechanisms by which the
balance of momentum and the balance full second moment are satisfied at the
flow/boundary surface. We focus attention on a parallelepiped in the flow with two
opposite faces of unit area, as shown in Figure 3.1. One face is coincident with the
boundary, and the opposite parallel face protrudes by a differential distance into the flow.
In the limit as the four lateral sides of the parallelepiped shrink to zero, the balance of

momentum within the parallelepiped requires in component form that

M, =Pn,, 3.1)
where M 1s the rate per unit area (of the boundary) at which momentum 1s transferred to

the flow through collisions with the boundary, and 7 is the unit normal directed into the

flow.

AR
Qz_,i —P-n
| | 3
/ v
M F D

Figure 3.1: A fixed control volume at the boundary
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Furthermore, if F, is one-half the rate per unit area at which the full second

moment of velocity fluctuation is supplied by the boundary to the flow due to its random

motion about the mean velocity U , and if D, is the corresponding rate at which it would

be removed from the flow if the boundary were not fluctuating about its mean velocity,
then in the limit as the lateral sides shrink to zero, the balance of the full second moment

requires that
1 1
E(Mlv“’ +M )+ F -D, = EQ@nk , (3.2)

where v is the slip velocity defined as the difference U —u between the mean velocity of
the boundary and the mean velocity of the flow at the boundary.

The 1sotropic piece of boundary condition (3.2) vields the energy balance,
1
Mivz + F;z _DJ'J' = EQkiink > (33)

where £ corresponds to the energy supplied by boundary due to its fluctuating motion,

D,

. corresponds to the energy dissipated through inelastic collisions at boundary, and
¢, are the components of the flux @  of energy at the boundary. The slip work term.

M -v 1s the rate at which work 1s done by equal tractions acting on opposite sides of the
parallelepiped through velocities that differ by v. Thus the boundary can either supply or
absorb fluctuation energy depending on the relative sizes of the slip work M -y, the

supply rate F, and the dissipation rate D, . In fact, even when the boundary does not
vibrate (i.e., #, =0) and when all the interactions between the boundary and the flow

particles are dissipative (i.e., D >0), the boundary may actually supply energy to the
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flow provided that M -v is greater than D, . The deviatoric piece of the second moment

balance (3.2) at the boundary is,

1 1 1

E(szj +ijz)_ §(Mkvk)5g + (Ej - Dx’j)_ E(F;ck _Dkk)é‘fj =
. | . 3.4
E|:Qiﬁjnk‘ _Ekamnk‘SU:|

Mean fields (of density p, velocity u,, and second moment K ) that satisfy the balance

of mass (2.16), the balance of momentum (2.17) and either the balance of second moment
(2.18) or the balance of both energy (2.19) and deviatoric second moment (2.20)
throughout the flow, must also satisfy conditions (3.1) and either equation (3.2) or both

equations (3.3) and (3.4) at the boundary.

In the Equations (3.1) through (3.4), the rates M, F, and D, are not known and

must be determined. To calculate the rates A4, F, and D, we need to calculate in each

collision between a flow particle and the boundary, the momentum transferred by the
boundary, second moment transferred due to fluctuation motion of boundary and second
moment removed at the boundary, respectively.  Then, these single collision
contributions are multiplied by the frequency of those collisions and integrated over all
possible collisions. To do so, we need to specify the geometry of the boundary and the
vibratory motion of the boundary. In the next section, we describe the geometry of the

boundary.

3.1 Description of Boundary
We consider flat surfaces to which identical, smooth, hemispherical particles of

diameter ¢ are fixed in a regular pattern that repeats indefinitely in two perpendicular
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directions within the plane of the flat surface. The fundamental element of the pattern is
a straight row of hemispheres in which the centers of adjacent particles are a fixed
distance apart. Particles are attached to the boundary in identical parallel rows. The
pattern is set by both the perpendicular distance between any two adjacent rows and the
parallel distance by which any one row is shifted relative to its neighbor. A rectangular
array results when there is no parallel shift. If, in addition, the distance between particle
centers within a row 1is equal to the perpendicular between rows, then the array is square.
The maximum parallel shift between rows 1s equal to the spacing between the centers of

the particles in any one row.

Figure 3.2: Top-view of an array of boundary particles

The boundary pattern is shown in Figure 3.2. The basic pattern is described by a
central shaded boundary particle (labeled 4), two shaded neighbors (labeled B and ), as
well as the solid lines that connect the centers of particle 4 to the centers of B and C. The

pattern can be constructed in such a way that the angle / formed by the solid lines 1s
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always less than or equal to #/2. Rectangular arrays are those for which f=7x/2.
Without loss of generality, we assume that particle B 1s closer than particle C to particle
A. The distances along the lines from the edge of any particle 4 to its two neighbors B

and Care 5 and s__,where s <s . Dimensionless measures of these spacings are

max ?

defined as 6 =s /d and 6 =5 __/d. By adjusting the values of array angle £

min

and spacings ¢, and &, the bumpiness of the boundary can be changed. Square

max ?

arrays are rectangular arrays ( f = #/2 ) for which ¢ =06, . All boundary patterns

constructed from the rows of particles described above are characterized by angles /f
that satisfy the condition,

1+0,,

cosfr <
P ]+5max

: (3.5)

so that cos™[(1+46,.)/(1+5, D<A <m/2. The unit vector s, which describes the
orientation of the array, is directed from the center of the central particle to the center of
the closest particle (i.e. along the line of spacing &, ) as shown in Figure 3.2.

For completeness we make the following observations concerning the pattern of
bumps shown in Figure 3.2. First, because angle f is less than 7/2, particle 1D can

never be closer than either particles B or C to particle 4. Furthermore, when

< 1+0,,,
2(1+6_ )

max

osf . (3.6)

the nearest neighbors to particle A are particles B and . This is because under these
circumstances, the distance from 4 to F is greater than the distance from 4 to C. In this

case, B is nearer than C to A because 6, <6_ . Onthe other hand, when
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2 + (S.min , (3 . 7)
2(1+6.)

max

osf

the nearest neighbors to particle A are particles B and £. Under these circumstances, the

distance from 4 to £ is less than the distance from 4 to C. In this case, 5 is nearer than F

to 4 when
1+0,,, <cosf < 1+0_,. , (3.8)
2(1+6_,) 2(1+6_ )

whereas F is nearer to 4 when

TOms (3.9)

> Tmax
RN

In fact, there are no angles /£ that can satisty both conditions (3.5) and (3.9) unless

%zi _ (3.10)
1+5max ﬁ

Particles = and F can never be the two nearest neighbors to particle 4 because the

distance o from A to F'is always greater than the distance o_, from A4 to B.

We restrict our attention to spacings o . and &__ between the particles that, for

n

any angle f, are never so large as to allow a flow particle to collide with the flat surface

of the boundary.

]

/ \a

Figure 3.3: Top-view of an array of boundary particles and associated coordinate system
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If the pattern is instead described (as shown in Figure 3.3) by the angle «.

between 0 and =#/2, the spacings s, s,, and their dimensionless counterparts

A =s/dand A_=s_/d such that

cosg > LrmnA.4,) 3.11)
I+max(A.,A,)

then &, A, and A may be transformed into a corresponding set of £, o_. . and o__
in the following manner. We decompose the quotient,
1+ max(A,, A, )cosa _ 4. (3.12)

1+min(A,, A )
where » is an integer and 0 < A <1. Then the corresponding value of f is determined

by,

1+ max(A,, A )]sina

tanﬁ=[ (3.13)

A

Figure 3.4 : Transformation of Array from «, A, and A to £, &, and & . (Heren=2)

n

Furthermore, the dimensionless length &, shown in Figure 3.4, is fixed by the relation,

1+6 = \/[1+maX(Af,Aa)]2 sina+ A" . (3.14)

The corresponding values of o . and o___ are then given simply by,

X
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o =minfmin(A,.A ), 6] and o _ =max[min(A, A, ) o] . (3.15)
Finally, the orientation of the transformed array 1s described by the unit vector s, which

must be directed along the line of spacing &_, . Explicitly, this means that s is directed
along the line of spacing min(A,,A_) if min(A,,A_) <o, or along the line of spacing o

if 6 <min(A,A)).

3.2 Transfer Rates
The transfer rates M, F, and D, depend on boundary geometry and motion as
well as motion of particles in flow. Here, we will calculate the transfer rates when the

boundaries fluctuate anisotropically and when the flow is undergoing anisotropic motion

and experiences gradients of mean velocity at the boundary. Consequently, we will

calculate M , F and [, based on an anisotropic Maxwellian boundary velocity

distribution and an anisotropic Maxwellian flow particle velocity distribution.

./

Figure 3.5: A typical boundary collision
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The dynamics of a collision at the boundary are described in terms of the pre-

collisional velocities ¢ of the flow particle and g of the boundary particle, the unit
vector k directed from the center of the boundary particle to the center of the flow
particle at impact and the coefficient of restitution e, which characterizes the energy
dissipated when smooth particles collide. If the velocity of the boundary particle is
unaffected by the collision, then in terms of the relative velocity g =y —c, the change in
linear momentum experienced by the flow particle is

m(c, —c)=m(l+e g k)k , (3.16)
where ¢ is the post-collisional velocity of the flow particle. The corresponding change

in the full second moment is

Z(e'e) —ce)="(+e, g B[ Uk +U k) + (¥ |, +¥ k)

2 J J 2 J J J J ; (3 17)
~(l=e,)g-k)kk, ~(gk +g k ~2Ag-kk,) ]

where ¥ = —U is the fluctuation velocity of the boundary particle.

The statistics associated with collisions between boundary and flow particles are

governed by two velocity distribution functions: f(c,#) which describes the flow
particles” velocities and p(w) which gives the probability per unit volume
dy =dydy,dy, in velocity space that any boundary particle will have velocity
within range dy.

The motion of the boundary particle is described by its mean velocity U and full

second moment of boundary fluctuation velocity B . These quantities are analogous to #

and K within the flow and are calculated according to

U, = [w.pw)dy (3.18)
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and

By = [(ww,) rw)dy (3.19)

in which integrations are over all velocities.

At the instant of impact, the center of boundary particle is located at x and the
distance between the centers of the two particles is o= (c+d)/2. The frequency of
collisions per unit area of flat boundary surface that involve flow particles with velocities
¢ in the range dc and boundary particles with velocities y in the range dw and occur
within an clement of solid angle dk centered about %k on the surface of the boundary
particle is

(d+o)

YRR f(e,x+ck) pw)(g-k)dkdedy | (3.20)

Here, (g-k) > 0 for a collision to occur and 4 1s the flat surface area inaccessible to flow
particles due to the presence of any one boundary particle and its neighbours. In the next
section, we derive an expression for 4. The factor y accounts for the effects of excluded

volume and the shielding of flow particles from boundary particles by other flow
particles. Excluded volume effects account for the space occupied by both the flow
particles and boundary particles. Furthermore, the extent of shielding depends on the

motion of the flow particles, the motion of the boundary particles and the arrangement of

boundary particles. Consequently, we anticipate that » will at least depend on v and K,
at the boundary, as well as B, and the geometry of boundary.

The transfer rates A, F,

» £, and D are statistical averages of the appropriate

changes per collision weighted by collision frequency (3.20). According to equation
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(3.16). M, is the weighted average of m(l+e )(g-k)k . According to Equation (3.17),

i

F, and D, are the corresponding averages of %(l+ew)(g-k)(‘1’ikj+‘l’f]q) and

m .
—(+e, Ng- k) (1—e,)g k), +(gk, +g,k —2(g-k)kk)]| . These may be written

in the integral form:

m(l+e,)

P = Hld+ o) j [(g- k)] x(g- k) f(c. x+ k) p(y)dkdedy (3.21)

_ m(l+e,)
VT 4ddr oy ) [ (g k)Y, +¥F k)]z(g k) f (¢, x+ck) p(y)dkdedy (3.22)
and,

m(l+e,)

1
= Ty | [E(g-m(a— e, Mgk, +(gk, +g k- Z(g-k)fe-kj))}

(3.23)
x 7(g- k) f(c. x+ o) py)dkdedy

where the velocity integrations are carried out over all velocities such that (g.k)>0 and

the k& —integration is surface integral over the area of a boundary particle that is
accessible to colliding flow particles.

In order to carry out averaging procedure, we must first write down the
distribution functions f(c,r) and p(y). Here, we take f(c,7) to be the anisotropic
Maxwellian given by Equation (2.24). In addition, we take p(y) as the anisotropic

Maxwellian:

—%‘P-Bl ‘P} . (3.24)

1
P 87 det(B) eXp{
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If the integrations over velocities ¢ and y in averages (3.21), (3.22) and (3.23)

are carried out first, then the intermediate results can be written compactly in terms of the
quantity

D= rk , (3.25)
J2(k (K +B) k)

where both v and K are evaluated at x+ok. The resulting integral expression for the

rate at which momentum is supplied to the flow 1s

(1+e, Xd+ o) 1,
M, =" pr(k-(K+B)-k)k |Jr| =+ @ |etfo(-D)
N e[V 3 (3.26)
+ D exp(—D*) | dk
The corresponding expressions for F and D, are
A+e,Xd+o) "
= u k- (K+B)k k-B)k +(k-B) k
: 5 [ (k- (K +B)- k)" ((k-B),k, + (k- B) k,) 527

X [\/;CDerfc(—CD) +exp(—D* )} dk

and

Y 427 A

[(1_ew)—2](k-(1(+B)-kf’zkikj{ﬁ®[%+®2]eff°(—®)+(”‘Dz)exp(‘@z)} (3.28)

p e )d+o) j'p;r{

+(k-(K+ B)-k)" ([k-(K + Bk, +[k-(K + B)| k )[J??@erfc(fcb) 4 exp(fCDZ)}

V2

+L2(k-(1(+ B)-k)(vjqr +vjki){\/;[%+ CDzjerfc(—CI))Jr @exp(—@z)} }dk

where p, y and K are evaluated at x+ok.

We make the following approximations in the above expressions. We assume
that the deviatoric part of K is small compared to its isotropic part 7, the velocity v is

small compared to isotropic temperature 7' 12 and the change oVu in velocity is small
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compared to T . Also, we assume that the gradients of density are small. We then

expand the integrands (3.26), (3.27) and (3.28) in Taylor series about x+on with

respect to these quantities. Consistent to the approximations made in the constitutive

theory. we retain up to first order terms in the expression for M|, and only the lowest
order terms in 7, and D, .

In this manner, the resulting expression for A/, may be compactly written as:

(+e, Xd+o) |[Jx ,
M, = | (76, +B,+K )7, +¥25+201 |. (3.29)

where, the integrals s and /, evaluated over the accessible area, are

Ay = [ ek Je, clk : (3.30)
A=y, [(k-(18+B)-k)" kkdk (3.31)
auj 1/2
/ =a—j(kk ~N kK (k-(T8+B)-k)" dk . (3.32)
rk

Similarly, the expressions for /7, and 1), can be written as:

(+e Xd+o)
F = W s 3.33
N A (3:33)

:(1+€w)(d+0)2 e 1N ZO L LD 3.34
D, —4\@/1 p;g[([l el 2) -+ J ( )

where, the integrals /fj' , 6%,(1) and 6%(2) , evaluated over the accessible area, are
7= [(k-(T5+B)-k)" ((k-B)k,+(k-B) k )ik, (3.35)

AP = [(k-(T6+B)-k)" kk,dk. (3.36)
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= [(k-s+B)k)" ((k-(T5+B))I_ k,+(k-(T6+B)) k )dk. (3.37)

Note that in the expressions (3.29) through (3.37), all mean fields are evaluated at
x+on.

Now, to calculate the transfer rates A/,, £ and D , it remains only to carry out

Lk —integrations (3.29), (3.33) and (3.34) over the portion of a boundary particle’s surface
that is accessible to flow particles. Hence, we need to determine the accessible surface

area of boundary particles.

3.3 Accessible Surface Area of Boundary Particle

At this point, we introduce an x; —x, —x, Cartesian coordinate system in which
the x, — direction is normal to the flat surface of boundary and, x, — and x, — directions
are parallel to the flat surface of the boundary. We also introduce the right-handed
orthonormal triad #—¢— 7, in which the unit vector 7 points in *x, — direction, the unit
vector ¢ points in +x —direction and the unit vector ¢ points in x, —direction. Arrays
are fixed on the boundary such that the direction associated with the array spacing s, .

always coincides with the direction of unit vector ¢, i.e., s

. 1s the array spacing in

t—direction. In the special case when o« =90, s becomes array spacing in

T —direction.
As a result of fixing hemispheres in arrays to the boundary surface, not the entire
surface of a hemispherical boundary particle 1s accessible for interaction with particles in

the granular assembly. Furthermore, the accessible surface will change depending upon
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the values of &, 5, and s,. For the purpose of future surface integrations over this

accessible area, we need to define and determine it.

Y
=

b N
]

(a) (b)

Figure 3.6: Angle-definition for integration over boundary particle surface

To that effect, we define angles & and 7 with respect to the orthonormal triad

n—t— 7, as shown in Figure 3.6 (a) and (b). Figure 3.6 (a) shows a plane orthogonal to

t—7 plane. In this plane, angle £ measures the positive acute angle between vector n

and the normal to the surface at any point on the surface of a boundary particle. Figure

3.6 (b) shows top-view of a plane parallel to the #—7 plane. In this plane, angle 7
measures the counter-clockwise angle from vector £, made by the projection on f—17
plane, of the normal at any point on the surface. Then, &, 5 and the radius d/2 can

together describe the position of any point on the surface of boundary particle, with

respect to the center of the boundary particle. An elemental surface area of the boundary
particle 1s given as (d2/4)sin EdEdn. Now, keeping the radial distance fixed at d/2, if

we vary & from 0 to #/2 and 5 from 0 to 27, we can cover the entire surface of
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hemispherical boundary particle. However, the entire surface is not accessible and the

accessible surface changes with ».

Figure 3.7: Determining the accessible area of a boundary particle

To determine this accessible surface, we look at a plane orthogonal to the #—17

plane and at an angle 77 from the vector #. In this plane, as shown in Figure 3.7, angle
¢ =6(n) is the maximum possible angle between vector » and the line joining the
centers of boundary particle and colliding flow particle. The angle &(r) dictates the
maximum value of & for which a flow particle can collide with the boundary particle, in
this specific plane. It is defined as

O(n)=sin™ [2U(m [(d+0)] . (3.38)
where I(77) 1s the length OG, of projection of line OC on #—7 plane. Angle 8(n) 1s
related to roughness of boundary. As the average value of €(7) increases, boundary
becomes more effective at transferring momentum 1n directions parallel to its flat surface
and in that sense, becomes rougher.

From the definition (3.38), we see that £(77) gets determined by calculating (7).
which 1s the length OG as shown in Figure 3.7. While point O 1s fixed in space, position

of point G changes as 77 changes. Figure 3.8 shows the locus of point G, i.e., the path
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Go-G1-G2-G3-G4-G5-Gg, in the top view of array shown in Figure 3.2. Particularly, points
Gy, G2, Gy and Gg are the mid-points of lines joining the centers of particles 4 and B, A
and C, 4 and £ and, 4 and B in the Figure 3.2, respectively. Here, 77, is an angle similar
to the angle 77, but measured from vector s instead of vector ¢z in counterclockwise

direction.

Gy

(d+s,)/2 (d+5,,)/2

Figure 3.8: Path Gy-G -G 5-G3-Gy-G5-Gg shows the locus of point G

The lengths y,. »,. »,. ¥,. ¥, and y,., shown in the Figure 3.8, can be
determined using the geometry of the array. Particularly, lengths y, and y, are
simultaneously determined by the following two geometric conditions:

4y’ -4y =(d+s

max

Y =@ +5) (3.39)
and

2(d + Sy )3y +2(d + 5,0, +Adtan( By, v, = (d + 5, 0d + 5., )1an(F) . (3.40)
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Similarly, lengths y. and y, are simultaneously determined by following two geometric
conditions:

4y, =4y’ =(d+5,,) —(d+s,,) (3.41)

and
2(d + 856, )Vs +2(d + 535y + 4an(8) ¥ g = (d + 8,3, N d + 5,5, ) 1an(&) (3.42)

where, the length s, and the angle & are defined as:

Soc, = \/(d +5,.. ) +(d+s,,. ) —2d+s, )Nd+s,,. )cos(B) — d (3.43)
£ =sin™ { T S ing ﬁ)J (3.44)
d+ Soc,

After lengths 3., v,, y, and y,, are determined, lengths y, and y, get

determined from the equality conditions:

V3=, (3.45)

Vi = s (3.46)

The flat surface area A, inaccessible to flow particles due to the presence of any one

boundary particle and its neighbours, can be obtained as

A:yl(d+Smin)+y2(d+Smax)+y5(d+SOG4) s (347)

and, A" = A/d* gives the dimensionless measure of 4.

After the lengths v, y3,. v, »,. ¥ and y, are known, the angles ¢,

¢,.¢,.¢,.¢6 and ¢ can be written down as :

=g, =tan” (LJ (3.48)

d+s .
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ranges

result,

terms of array angle /., particle diameter &, array spacings s

¢, = ¢, =tan”’ [L] (3.49)
d+s, ..

4, = ¢, =tan™ [LJ (3.50)
d+ Soa,

Figure 3.8 shows, for 0 <7 <z, [(77.) will have four different expressions in the
OSUS S¢'1:’ ¢1 g?].s" g(ﬁ+¢3)ﬂ (ﬁ+¢3)SUS i(ﬁ_;éé) a’nd (ﬂ_‘iﬁﬁ)ins S T. AS a
¢(r1.) also has four different piecewise expressions in the range 0<7y <7. In

and the lengths

min ? Smax’

Vs Yoo Vu. ¥, ¥y and y,, the piecewise expressions for [(77.) and €(77.) can be written

as follows.

For 07 <4,

1d+s,, . d+s_
l =———m apnd & =sin | ———min___ | 3.51
@.) 2 cosz, @) |:(d+0')c0s17j ©-31)
For ¢ <n < (F+¢,).
. d
107y = 295w and 0( ) =sin™ ¥ S | (3.52)
2 cos(1, = ) (d+o)cos(r, = )

For (B+¢,)<n <(m—d).

i(n.)=

For (&

For the

d+s d+s
1 &% and 0(z,) = sin'{ =5 } . (3.53)
2co8(11, = =4, —4,) (d+a)cos(n, — f—d,—4,)
- ¢5) < 7, sz,
_ L% s and (1) =sin™ ¥ Suin . (3.54)
2 cosr, —(d+aoa)cosy,

range, 7 <7, <2, we can use the symmetry of the array to write
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O(n,) =0, — 7). (3.55)

Expressions for £(77) can be obtained by using #(77.), and relating the angles 7
and 7, and hence relating orientations of unit vectors ¢ and s. As described previously,
vector £ is directed along the line of spacing A, and vector s is directed along the line of
spacing o_, . As shown in Figure 3.4, this means that s is directed along the line of
spacing min(A,A_ ) if min(A,A_)<o, or along the line of spacing o if
o <min(A,,A, ). Hence, depending upon the values of &, A, and A_, 77 and 77, are
related as follows:

If min(A_,A )< and A, €A,

n=1,. (3.56)
If min(A_,A )< and A <A,

n=nto. (3.57)
Finally, if 6 <min(A,, A)),

n=m,+p (3.58)

Hence, using the appropriate of Equations (3.56), (3.57) and (3.58), we can obtain

(1) by using #(n,). Once €(7;) is determined, the accessible surface area of a
boundary particle can be obtained by integrating the elemental surface area

(d2/4)sin Ed&dn over angles £ and 77, in the limits O to 8(7) for angle & andOto 27

for angle 7.
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For the above analysis to be valid, the spacings between the boundary particles
should never be so great that a flow particle could touch the flat surface of boundary. To

find the restrictions this condition puts on array parameters &, A, and A_, lets analyze a

case when a flow particle would just touch flat surface of boundary.

0'/2 »
/ d/2 G2

Figure 3.9: Extreme case when a flow particle just touches flat surface of boundary

As shown 1n Figure 3.9, under such condition, / would be equal to its maximum

allowable value /__ given by

I =%J(d+a)2—crz. (3.59)

If this situation is not to occur, [(77) should always be less than /. Referring to Figure
3.8, we can write down the maximum possible value of (7). [l(n)]max, in terms of

parameters o, s and y, as,

min

1 2 2
[{Gn)],.. = 5\/(0’ + S )+ 40, (3.60)

So, the condition that ¢, A and A, must satisfy so that no flow particle can touch the

flat part of boundary is

[(d+s_ ) +4)°] < [(d+0) —0c?] (3.61)
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Figure 3.10 shows the curves that put limit on values of A, and A . for o =45°, 60°, 75°
and 90°, when o =d. The region below each curve indicates the permissible values of
A, and A_, for that particular value of . As « decreases, pernussible range of A, and
A, 1increases. Also, we note that the maximum possible value of A, = A that can be

used for any array angle o 1s 0.2247.
In this Chapter, we have written down the boundary conditions and calculated the

integral expressions of the transfer rates A/, F, and I),. The general formulation for

the flow has already been derived in Chapter 2. So, in the next Chapter, we can look at

the general boundary value problem for vibrated granular flows.
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Figure 3.10: Limiting values of A, and A, for o=45°, 60°, 75% and 90°, when &

=d. The region below each curve indicates the permissible values of A, and A,
for that particular value of «.
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CHAPTER 4

Steady, Fully Developed, Parallel Flows: Boundary Value Problem

In the chapters that follow we will examine steady, fully developed granular flows
i which the mean velocity is parallel to the flat surface of boundary and where spatial
variations of mean fields occur only in the direction perpendicular to that of the mean
flow. In this chapter, we write down the general boundary value problem, in non-

dimensional form, for these flows.

Q

boundary

Figure 4.1: The coordinate system

We employ the same Cartesian coordinate system introduced to write down the

boundary conditions. Here, x, —defines the direction upon which the mean fields
depend. The flows are infinite in x, — and x, —directions. The vertical acceleration due

to gravity is g and the angle between the boundary and horizontal is®.

4.1 Balance Equations
For purposes of non-dimensionalization, we introduce the characteristic velocity

a. Then, the dimensionless mean fields are defined as follows. The dimensionless
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coordinate z=x, /o . The solid volume fraction v has already been defined. The non-

dimensional velocities w#, and u_ are defined as u,=w /o and u =u,/a. The full

second moment for granular flow is &, =X / a® . The isotropic measure of temperature
and the temperatures in individual directions can be written in non-dimensional form as
w=q= T/af2 , T = K11/612 , T = K'u/a2 and 7. =K, /612 . The dimensionless versions
of pressures are defined as £, EP:,,:,/ppcz2 , S EP?,I/ppc:f1 and S EP_u/ppaz . The

mean fields depend only on z.
In these flows, balance of mass (2.16) is identically satisfied. The simplified,

appropriate forms of equation (2.17) yield momentum balance. The x, —component of

the momentum balance is

B 99, Gin(@) . (4.1)
dz a
where, S =v 1+M Kz — A+ epGw du, : (4.2)
5 sir dz

The x, —component is given as

as
—y 43
2 (4.3)
where, §_=v 1+M - 4(1+ewCGw du_ , (4.4)
5 sVr dz
and, the x, — component 1s
darP
T 299, o) (4.5)
dz a
where, for P, we substitute B, =vw* (1+2(1+e)G )+ v&,, (1+@] . (4.6)
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The balance of full second moment is decomposed into balance of energy and balance of

the deviatoric part of second moment. In terms of non-dimensional flux of full second

moment g, EQM / ,c'pa3 and collisional source of second moment Y, =y, o / ,Dpa3 , the

balance of energy (2.19) becomes,

1, g, depg, Ly g, 4.7
2 dz dz dz 2

and the remaining independent components of the deviatoric second moment equation

(2.20) can be written down as,

144, +1[1 s +g,,,c23]duf _lg _g(YH _iyu]z 0, 8)

2 dz 3 d 3 " d 2

l dq33 _l[_lsm' +3VK‘23] Ci?l' _l(_lSm‘ +3VK13 ]%_l(lﬂiﬂ _%Yu ] = O 2 (49)

%d§23+(%v(w2+ 3)+(1+€)VG[W +—(K,, + Ky D
z (4.10)
1 du, 1
+g(1+€)VG](12d—;_EY23 =O
l%+[lv(w +R 3)+(1+e)vG( lfen]]%
2 dz 2 5 z @.11)
1 du, 1
+§(1+Q)VGK'12 d_ZT_ETI?’ =0
and,
1 dgq du, 1
2 d; ( TVE,)—— d (S TVK, 23) 2 1,=0, (4.12)

where for the components of T, we substitute the following expressions:

v _8a-oltewGw [ 1 ((dy 2+ du, 2J_ du,
! N swh|\ dz dz 5w3 Faa A

;o2 o2 o 2 2 2
(KZZ +K33 +K‘22K‘33+K12 +K23 +K13 ):|

Sw?
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o _60+ewGw [ 4B-e) . 22-e)((du, 2_2 du, Y
- Jr swho P 105w dz dz

2( n(5-2¢)( du du
K,, ——— 2K, — 4.14
105w® ( 2 dz B odz ] ( )
43—-¢e); - - A
- 1(()5W4) ("’(222 - 2K’332 - 2’(22’(33 + ir{122 + K232 - 2“'5132 )i|
& _ 60 +epGw {_ 43-2) . _22-¢) (dur T +(%J2
» Jr Swh P 105w |\ 2 dz
2J_ (53— 2¢) du,
K L4 K, 4.15
105w° [ 2 & B odz ( )
4(3 e)
05 ( TR S 2K ,K, 2K, K K )}

v _S+enGw’ {_ 4B-2) Jr(2—e) du,

B Jr St P Sw dz
f N (5-2¢) du du
T4 7t 4.16
57 (K +K3) TR (4.16)
4(3-¢)

- 35W4 ((Kzz + K33)K23 KK, ):|

Sw

v _60+enGw’ | 4B-e) +\/;(2—e)du Jr(s- 2e)[ - dui]
13 \/} 2 13 SW dZ 35W 12 d 22

(4.17)
43—e n
- §5w4 ) (_Kzzkm + KK, ):|
6(1+ewGw' [ 43—e) 22—-e) du, du, Nn(5-2e)(  du, du,
Yu = \/— - > K~ 2 + 3 Kis t Ky

T Sw 35w" dz dz 35w d dz (4.18)
4 3—¢
:E)SW )( Kas"i2+K23K13):|

and, the constitutive relations for the components of flux of second moment appearing in

above balance equations are given as :

A0+ epGw

q;'{ = 5 \/7

[2w(3a(v,e)+ Zﬁ(v,e))i—w+(l+36) dj33J (4.19)
Z 7
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G, = 4(1+epwGw —iwﬁ(v,e d_w+ (1+3e) dx),  4(1+3e) dx,, (4.20)
s 3 dz 7 dz 21 4=
é33=_4(1+e)va §wﬁ(v,e)d—w+11(l+3€) dx,, 4.21)
sr 3 dz 21 dz
M 12(1+e)(1+3e)vGw [ dx,, ] (4.22)
35Vm dz
0 :_12(1+e)(1+3e)va(dicl3] 4.23)
35y dz
and,
g =— 41+ e)(1+3e)wGw [ dx, ] 4.24)
357 dz
In general, the boundary value problem has 17 unknown mean fields which are v,
W’ Jf2.22 ? £33 ? Kll » KZS ? Kl?’ ? ui’ u‘r » qff ? éZZ ? é’33 » qu » q23 ? q13’ Snf and Sn‘r -

These 17 mean fields are solutions of 17 non-linear O.10.F.s formed by balance equations
(4.1), (4.3), (4.5), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12) together with the constitutive

relations (4.2), (4.4), (4.19), (4.20), (4.21), (4.22), (4.23) and (4.24).

4.2 Boundary Conditions
In order to write conditions that express the balance of momentum and full second

moment at a randomly fluctuating bumpy boundary in non-dimensional form, we

B,
introduce dimensionless full second moment of boundary velocity fluctuations, S, = —.
a

The diagonal components of this second moment tensor f; correspond to fluctuation

energies of the boundary in the 3 orthogonal directions. These can be written in non-
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dimensional form as V> =V /a*, V* =V.>/a® and V> =172 /a* . Also the mean square
1 T 2 n 3 q

4
velocity of boundary fluctuations V* =(B,, +B,, +B,,)/3 which represents the total
energy associated with boundary fluctuations, can be non-dimensionalized as £ =J"* / at.
Then, the x, — component of momentum balance at the boundary can be written in

non-dimensional form as :

(+e)1+7)
S = o ve[Nr (w8, + B, + &, ), - \/E(Il—ll)} (4.25)

where, the integrals 7 ,, /, and /, which correspond to .7,, .# and / given by

Equations (3.30), (3.31) and (3.32) when U=0, arc defined as

27 80)
= j j kk k sinédédy (4.26)
0o 0
27 07) 2
I =u5j j (k-(W*6+pB)-k) k sin® &cosydédy
0 0
1e 90 " (4.27)
+u [ [ (k-(*8+B)-k) ksin®Esinydédy
0 0
and,
270 12
[ =— j I (k-(w25+ﬁ)-k) k (1-cos &)sin® Ecosndédn
dz 4
, (4.28)
27 8() 1/2
duf 2
I I (k (wo+p) k) k(1—cos &)sin® Esinn dédn
dz .5
The x, — and x, — components of momentum balance are, respectively, given as
(I+e, )1+ ry N
S, = N vy [N7[2(w6, + B, +4,, )1 —N2 (L1, )} (4.29)
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_(4e,)A+r)’ : .
Po= vy [N )2(w'6,+ B+ R, ) L, — V201, —/2)} (4.30)

where, for P, we use expression given by equation (4.6).
The full second moment balance boundary condition can be decomposed into
energy balance boundary condition and deviatoric second moment balance boundary

condition. In terms of the non-dimensional integrals f , dym and dy(z), which

correspond to /f; , 6%(1) and 6%.(2) given by Equations (3.24) through (3.26), are

2

2 B2(n)
L= [ (k-o6+8) k) (U Bk, +(k- )k )sin & dédn @31)
27 8(m) 32
a0 = [ [ (k-(w6+p) k) kk, singdsdy, (4.32)
and,
27 8(1) 1/2

4,2 = [ | (k-(w*6+p)k) ((k-(w26+ﬂ))f K+ (k-5 + B)) iq)sin§d§d17 (4.33)

;
the dimensionless form of energy balance boundary condition becomes:

_(+e )1+ ¥y

427 A"

O=q,+8,u +8 1

vr{f,-[-e)-2)d,” +d,2 |} (4.35)

Then, the components of deviatoric second moment balance boundary condition
can be written down as follows:

2-2 component of deviatoric second moment balance:

1 2 (d+e)1+r) 1 o 1 .o
O=q, ——S,u+=8 y - TR, i r el @mey-2) a0 - 14
qZZ 3 Hfulf 3 FI'L'HT 4%14* Z féz 3-](;1 (( ew) ) 22 3 i

1

3-3 component of deviatoric second moment balance:

(4.36)
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0= q33 _%Smuﬁ - lS M= (1 i ew)(l - r)z VZ{(fé3 - %-ﬁxj_|:((l_ ew)_ 2)[6]33(1) - %du'(l)]

3T Ay 4.37)
1
+{d33(2) - g du(Z)J:|}
1-2 component of deviatoric second moment balance:
1 1 1+e X1+7)
0= 4 + Esmur + ESm”: B (4.\72—#1’2{]?2 o |:((1 - ew)* 2)d12(1) + dlz(Z) :|} (438)
2-3 component of deviatoric second moment balance:
_ 1 (+e,)1+7) W g @
0= s + EPMHT - WVZ{‘EB - [((1_ ew)_ Z)dzz ' + dzz ’ :|} (439)
and,
1-3 component of deviatoric second moment balance:
_ 1 d+e)1+7) ., g @
0= 43 +5Pnnuf - WVZ{J% B [((17 ew)f 2)"’-113 Yt d13 : }} (440)

The boundary conditions at the free surface dictate that normal stress, shear stress

and flux of second moment vanish there. So, at the free surface we have:

P, =0=v=0 (4.41)
S, =0 (4.42)
S, =0 (4.43)
g=0 (4.44)
G,, =0 (4.45)
Gyy =0 (4.46)
Gy, =0 (4.47)
Gy =0 (4.48)
G =0 (4.49)
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Equation (4.30) can be used to eliminate the unknown factor y appearing in the
boundary conditions. Then, Equations (4.25), (4.29) and (4.35) through (4.49) provide
17 non-linear boundary conditions for the 17 non-linear (J.D.E.s described in previous

section. Then the only parameter to be determined is the depth of flow, f. By

prescribing the mass hold-up, m, , defined as
B
m, = [ vz (4.50)
0

the flow height gets determined. With this, the boundary value problem for free surface

flows gets completely described.

4.3 Deterministic Boundary Motion

The boundary conditions derived in Chapter 3 apply to boundaries whose
vibrations are random and described in terms of velocity distribution function.
Calculating similar boundary conditions for boundaries that vibrate harmonically would
require carrying out averages that account for the dependence of the boundaries’
velocities on time. To avoid this complication, we assume that the averages carried out
based on a statistical description (i.e. anisotropic Maxwellian) of the boundaries’
velocities adequately represent boundaries whose motion is harmonic provided that we
relate the components of second moment tensor B that describe the random motion of
fluctuating boundaries to the amplitudes and frequencies that describe the periodic
motion of harmonic boundaries. To this end, we consider boundaries that vibrate
periodically in the three coordinate directions about a position that 1s independent of time.

The particles on the boundary have velocities in the three directions given by
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X =Adosm(dot+&), (i=1,2, or 3) (4.51)
where d3=1. and d; and d> are positive integers. The amplitudes A, phase angles £ .
integers ) and >, and frequency factor @ are all adjustable parameters that influence the
rates at which momentum and energy are transferred to the flows. We restrict attention to
boundaries with amplitudes of vibration that are of the same order as the mean free path

within the flow, and with periods of oscillation that are of the same order as the time

between collisions within the flow. For these boundaries, we interpret the components
B, as the time averages of the products Xx, over the longest period (27/@) of

)

oscillation; 1.e.

LAAdd o cos d=d
BU:{ZA] s s d=d, (4.52)

0 d#d

where, £ =& £ .

According to this correspondence, any two diagonal components of B will be
equal when the corresponding products, Ad,, Ad,, Ad, are equal; any off-diagonal
component of B will vanish when the vibrations in the two corresponding orthogonal
directions are either at the same frequency and #/2 radians out of phase, or at

frequencies that are unequal integer multiples of same factor.
However, for purposes of conciseness, to describe boundary vibrations we will

use the parameters € and ¢ which are defined as

astanl(mz +I/;2/an (4.53)

and,

$=tan(V, /1), (4.54)
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instead of using the boundary velocities V., V', and J which satisfy the constraint

VItV 4V =3, (4.55)
Particularly, when 6 =0, the vibrations are purely in normal direction and when &=90°,
they are completely tangential and, #=35.26° and 54.73° correspond respectively to the
cases where 2/3™ and 1/3™ of the vibrational energy 1s distributed in the normal direction.

When ¢ =0, there is no vibration in 7 —direction and when ¢ =90°, there is no vibration

in ¢ — direction.
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CHAPTER 5

Thermalization and Mean Motion in Isotropic Assemblies

In this chapter, we examine steady, fully developed, nearly elastic and isotropic
granular flows in which the boundary 1s horizontal, spatial variations of mean fields occur
only in the direction perpendicular to the flat surface of boundary and the granular

temperature is isotropic. The boundary vibrates anisotropically, i.e., the second moment

of boundary velocity fluctuations, B, , is anisotropic. Although the shear stress vanishes

i ?
everywhere within the assembly, the boundary may transmit tangential momentum to the
assembly, which therefore may experience mean motion. In this chapter, we write down
a particular boundary value problem for these flows to study effect of such boundaries on
unconfined granular assemblies in the presence of gravity. Particularly, we examine

dependence of thermalization and mean motion of assembly on direction of vibration,

phase differences, total amount of vibrational energy and boundary bumpiness.

5.1 Boundary Value Problem for Isotropic Flows

We employ the same Cartesian coordinate system as introduced earlier and locate
the origin of coordinate system at the boundary such that z increases from 0 at the
boundary upwards (see Figure 4.1, with ®=0). We also carry out non-

dimensionalization in the same exact way. Here, we take the characteristic velocity
aequal to /og . In addition, we take G(v)=v /(1 — V/Vm)s"m”, where the random close
packed value v_=.65. Because the temperature is isotropic, we are only concerned with

the following quantities: the dimensionless coordinate z, solid volume fraction v, non-
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- . - . - - 2 - -
dimensional velocities u, and u_, 1sotropic granular temperature 7 = w”, dimensionless

pressures P, S and S . non-dimensional energy flux g =g, and energy dissipation

n nr?

Y=y, /ppg«/crg. The mean fields depend only on z. The full second moment of

B,
boundary velocity fluctuations in dimensionless form is given by £, = — and the mean

og

square velocity of boundary fluctuations, ¥7*=(B,+B,,+B,)/3. gets non-
dimensionalized as E=V?/ag. The diagonal components of this second moment
tensor B correspond to fluctuation energies of the boundary in the 3 orthogonal
directions. They can be written in non-dimensional form as V" =J;* /crg L VEi=vp / og
and V=V [og.

In these flows, balance of mass (2.16) is identically satisfied. The x — and
x, —components of momentum balance (2.17), coupled with no shear stress boundary

condition at free surface require that the shear stresses vanish everywhere in the

assembly. The x, — component of momentum balance 1s given as:

dP
Ly (5.1)
in which, P =4vGFw’, : (5.2)
1
where, F =1+ e (5.3)

The balance of energy (2.19) becomes,

dq
A _y=0, 5.4
- (5.4)

where the constitutive relations for Y and g are given as:
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_12(-e)wP,

Y= NS and (5.5
__AME, dw (5.6)
VrF dz’ '
2
where, M=1+9—7r 1+i (5.7)
32 12

This boundary value problem has 3 unknown mean fields v, w and q. These 3
mean fields are solutions of 3 O.D.E.s formed by plugging constitutive relations (5.2) and
(5.5) into balance equations (5.1) and (5.4) respectively, and using constitutive relation
(5.6).

The boundary moves with velocities given by equation (4.51) for x . According

to relation (4.52), the boundary corresponds to randomly vibrating boundary whose

velocity fluctuations are described by the second moment tensor,

Aot
Vl2 = 1;) B, =WV, cos §12 B, =1V, cos 613
A w*
B=|B, =WV, cos g, sz = 22 By =V, V50088, (3.8)
B A32m2

BBI = VII/YB cos §13 B32 = VZL/; cos 523 P;z 2

To write down the boundary conditions which formulate the effect of such
boundary on granular assembly, lets define some integrals which appear while carrying
out averaging over all possible collisions of granular particles with the boundary.

27 8() 172

I, =I j (k-(w25+ﬁ)-k) (uf sin & cosmy +u, sin§sin77)lq sinEd&dn (5.9)

2

7 8(n)
I, = j j kk k, sin £d&dny (5.10)
0 0
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Then, the x;, —, x, — and x, — components of momentum balance at the boundary can be

written in non-dimensional form respectively as :

1 2
Sy =S v [Vr 25, + 4, )~

1 * 5
NS ;Ejl* VZ[\E/Z(W S, +ﬂ1m)]2£m - \/5]2]

A+ry
B, = ZFA |:\/_/2 w*é +ﬁim)lrsim _\/EI3:|

where, for P, we substitute expression (5.2).

nn ?

The dimensionless form of energy balance boundary condition is:

(A+rY

22 A"

O=qg,+S 1 +S5 1 —

vy[f—d]

in which,

27907 12

=2 j j k(WS + B)k) (k.p)sin Edédn

270(z 3/2
d=| (j)(k.(w25+ B)k) sin &dédn

Also, at the free surface, we require that,

P =0=v=0
S, =0
S_ =0
g=10
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As indicated earlier, conditions (5.18) and (5.19), together with the x — and
x, —components of momentum balance require that the shear stresses vanish everywhere

m the assembly, which further implies that the transport velocity must be uniform.

Equations (5.11) and (5.12) simultaneously determine the values of the uniform slip

velocities 2, and u_. Equation (5.13) determines the unknown factor, y. Equations

(5.14), (5.17) and (5.20) serve as the 3 B.C.s for the 3 O.D.F.s for w, v and g. The depth

of the flow f gets determined from the prescribed mass hold-up sy, as described in
chapter 4.

For fixed values of m,, V., V., & ., &, E. e, ew, o, A, and A, , we guess w

which is the measure of granular temperature, at the free surface and using 4" order
Runge-Kutta technique, numerically integrate the 3 O.D.E.s downward from the free
surface where both v and w’ vanish to the depth at which mass holdup reaches its
prescribed value, m;. Condition (5.14) then, determines the value of F that sustains the
thermalized state. Finally, we 1terate on the guess for w until the value of E calculated in
this manner, agrees with its prescribed wvalue. The distance over which the final
integration is carried out is the depth of the flow, £.

In practice, the solution procedure i1s somewhat more complicated. Whenever a
free surface exists, v’, w’ and ¢’ each vanish at the free surface. Integrations initiated
from the top of the flow therefore yield no spatial variations in v, w and g. This implies
that the theory predicts that the flow 1s infinitely deep and that the mean fields approach
their free surface wvalues asymptotically from the base. In order to overcome this
difficulty, we initiate the integrations with a very small value of v, e.g. 107, at the “top”

of the flow, which is equivalent to relaxing very slightly the normal stress condition there
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and allows the integrations to proceed away from zero. We also have checked and made
sure that the solution does not depend on this particular value of v, by trying various

values between 107 and 107 at the free surface.

5.2 Results and Discussion

Of primary interest are the effects of boundary’s motion, bumpiness and
vibrational energy on the thermalized states and mean motion that is induced by
vibrations of boundary. Mean motion in a direction may occur if the phase angle

between the vibrations in that direction and n-direction is not 90°. With this in mind, for
the results presented here m=5, e=e,,=9, r=1, and we have varied VV_, V,, £ . & . E, «,
A, and A, . Tor the purpose of simplicity, we use angles ¢ and ¢, defined by Equations

(4.53) and (4.54), which together describe the direction of vibration of the boundary.

Also, we use the non-dimensional temperature 7 = w” for the purpose of presentation of

results. Lets first look at cases where no mean motion occurs.

In Figures 5.1 and 5.2, we show the granular temperature 7"°(z) and solid
volume fraction profiles v(z) for =0, 35.26°, 54.74° and 90° (I *=3, 2, 1 and 0), when
¢=0(V>=0), & =& _=90° F=4, o =90° and A=A, =.22. For these parameters, as ¢

decreases from 90° to 0, vibrations have more and more normal component and hence
boundary becomes more effective at thermalizing the assembly and the temperatures
mcrease and flows become deeper and more dilute. Solid dots on the profiles indicate the
value of z below which 99% of the mass i, 1s contained. Temperature monotonically
reduces as we go away from the vibrating boundary. Solid volume fraction, v, is small

near the vibrating boundary. It initially increases as we go away from boundary.
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Figure 5.1: The variations of 712 with z for 9=90°, 54.74°, 35.26° and 0,
when ¢=0, & =&, =90° F=4, o =90°and A=A, =22 Solid dots on the

profiles indicate the value of z below which 99% of the mass ny is contained.
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Figure 5.2: The variations of v with z for 8=90°, 54.74°, 35.26 and 0, when

$=0, &, =& _=90°, F=4, a=90° and A=A, =22

Solid dots on the

profiles indicate the value of z below which 99% of the mass ny is contained.
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However, as we reach near the top surface, v decreases and reaches zero value at the free
surface. Qualitatively similar observations can be made for other fixed combinations of
bumpiness and vibrational energy.

Figures 5.3 and 5.4 show comparison of predictions of our theory with numerical
simulations of Lan and Rosato (1993), for profiles of 7%*(z) and v(z). The discrete

points are simulation results for flat boundary and for different values of wvibrational

energy F=.0625, 4 and 25, and the curves are predictions of theory for the same. Here,
0=54.74°, ¢=45° (V. =V?=V'=1) and &,=& =90°. As E increases, boundary

supplies more energy and hence assembly becomes more thermalized, more deep and
more dilute. The predictions of theory match excellently with simulation results.
Figures 5.5, 5.6 and 5.7 show the effect of changing the direction of tangential

vibration ¢ on the thermalization of the assembly, 1.e., the granular temperature, the solid
volume fraction, and the flow heights, for 3 different cases of bumpiness A =.22. -.5 and
-1. Here, A, =22, 6=90° (V.>=0), & =90°, £ =& =90° and F=4. The variations of
granular temperature at the base, T%*(0), height from base at which maximum density
occurs £, and the maximum solid volume fraction v(f,) are shown by solid curves
whereas the variations of granular temperature at top, T%* (), v at the base, v(0), and
flow height A are shown by dashed curves. In the first case, when A=A, =22, as ¢

changes from 0 to 90° there 1s slight variation in the thermalization of the assembly
because of the fact that orientation of the square array with respect to direction of

tangential vibration changes. In the second case when A_=-.5, the array is no longer

square and there is a preferred direction of vibration. The boundary is more bumpy in
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Figure 5.3: The variations of T 12 with z for E=25, 4 and .0625, when
0=54714°, $=45° and & _=¢& _=90° for a flat boundary. Curves are the

predictions of the theory and solid dots are simulation results of Lan and
Rosato (1995).
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Figure 5.5: The variations of 7'?

(shown by dashed curves). with ¢ for 3 different cases A =22, -5 and -1.
Here, A, =22, =90°, & =90°, £, =& =90° and E=4.

at z=0 (shown by solid curves) and at z=A

110



Solid Volume Fraction

0.6

0.5

04

0.3

-Illl|IIII|lIII|IlII|IIlI|III
i v(By)
- | === v(0)
== —
-=
---=5==” o
I N W T NN TR TN TR M AN NN TR T M AN TR T TR T Y TN NN NN T T TR M M
0 15 30 45 60 75

20

Direction of Tangential Vibration ¢ (deg.)

Figure 5.6: The variations of v(/J ) and v(0) with ¢ for 3 different cases

A, =22, -5and -1. Here, A, =22, §=90° & =90°, & ,=¢& =90° and
E=4.
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Figure 5.7: The variations of /4 and /4, with ¢ for 3 different cases A =22,
-5and -1. Here, A, =22, 9=90° o =90°, & =¢& =90°and F=4.
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t — direction than in 7 —direction and hence as ¢ changes from 0 to 90°, thermalization

of the assembly decreases, decreasing the flow heights £ and f,. and making flows
more dense by increasing v(0) and v(f,). Finally when A_=-1, 1.e., when boundary 1s

perfectly smooth in 7 —direction while very bumpy in £ — direction. In this case, we get
these extreme situations where shaking in 7 —direction results in no thermalization, with
zero granular temperature, solid volume fraction equals its maximum possible value .65
everywhere in the flow and flow heights are minimum, and shaking in ¢ — direction
results in highly thermalized assembly, with small values of v(0) and v(/,), and taller
flow heights £ and S, .

Now, lets look at the effect of &, i.e. the effect of distribution of vibrational
energy on mean motion of assembly, for three different cases £=1, 4 and 9, and when
¢=0 (V> =0), £ =90°, 2 =90°and A=A, =22. Figure 5.8 demonstrates that when &

is O or 907, i.e., when boundary motion is entirely in normal or tangential direction then

no mean motion is induced. However, away from these extreme cases, slip

: +u.§2 1s induced 1n the assembly. In fact, there 1s an optimum value of & at

which slip is maximum and this optimum value changes as parameter values change. As
E increases from 1 to 9, boundary supplies more energy to the flow and the slip also
increases. Figure 5.9 shows the corresponding variations of granular temperatures 7”7 at
the base. Temperature increases as vibrations become more normal, i.e., as & decreases
and also as the energy E increases. It shows that more thermalization does not

necessarily imply more induced slip.
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Figure 5.8: The variations of # with & for 3 different cases £=9, 4 and 1,
when ¢=0, £, =90°, & =90°and A=A, =22,

114



g
o

.
o

-
(4]

Granular Temperature 7" (at base)

0_0||||I||||I||||I||||I||||I||||

0 15 30 45 60 75 90

Direction of Vibration & (deg.)

Figure 5.9: The variations of 7 12 at z=0, with & for 3 different cases F=9, 4

and 1, when ¢=0, £, =90°, @ =90"and A=A, =22
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Figures 5.10 and 5.11 show the effect of changing the direction of tangential

vibration ¢ on the mean motion of the assembly, i.e., the induced speed and direction of
flow, for 4 different cases &, _=0, 45°, 75% and 90°. Here, 6=54.74° (I/;2 =1), £,,=0, and
E=4, «=90"and A_=A,=22. When £_=¢£ =0, as the direction of tangential vibration
changes, the orientation of square array with respect to vibration changes, and there is a
slight change in the induced speed, u, and, the direction of motion, 77, closely matches

the direction of tangential vibration, ¢. As the phase difference £ _ increases from zero

nr

with & fixed at zero, the difference between vibrations in #— and 7 —directions
increases, with vibrations in 7 — direction more effective than vibrations in 7 —direction,
and hence u decreases as the tangential vibrations are more and more in 7 —direction, i.e.,
as ¢ increases from 0 to 90°. For the same reason, in this case, the direction of motion,
77, lags with respect to the direction of tangential vibration, ¢ . Finally, when & _=90°, u
decreases to zero as ¢ becomes 90°, and no slip is induced in 7 —direction, i.e., 77=0.

Figures 5.12 and 5.13 show the effect of changing array angle & on the mean
motion of assembly, for 9=45° (V*=1.5), ¢=0 (V. =0), £ =0 and A_=A,=.22 and
for three different cases, E=1, 4 and 9. For fixed and equal array spacings, as «
decreases from 90°, the boundary bumps get closer to each other and boundary becomes
smoother in 7 —direction and rougher in #—direction. As the direction of tangential
vibrations is £, with decreasing « , the induced speeds increase slightly. When « is 0,
60° and 90°, the array 1s symmetric in £— and r —directions and the direction of motion

is perfectly in # — direction, i.e., 77=0. For other values of « , due to the un-symmetry of
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Figure 5.10: The variations of # with ¢ for 4 different cases &, _=0, 45°, 75°
and 90°. Here, £#=54.74°, £ =0, and =4, o =90 and A  =A, =22,
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the array, vibrations in #— direction induce a very small motion in 7 —direction and

hence 77 is not zero.
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CHAPTER 6

Thermalization and Mean motion in Anisotropic Assemblies

In this chapter, we study the effects of anisotropic boundary wvibrations on
granular assemblies that are anisotropic. Unlike the 1sotropic assemblies, these
assemblies could have very different temperatures in different directions, at least near the
vibrating boundary. Also, unlike the isotropic flows, the mean motion induced is not
uniform. Here, we examine the dependence of both the thermalized state and the induced
mean motion on a variety of factors including the total amount of vibrational energy, its
distribution, restitution coefficients, mass hold-ups, bumpiness of the boundary and
particle size relative to boundary bumps.

We are concerned with unconfined flows compressed by gravity and driven by

horizontal boundaries that vibrate anisotropically. We take the characteristic velocity a
equal to \/@ and locate the origin of coordinate system at the boundary such that z
varies from 0 at the boundary to / at the free surface. As in the previous chapter, we take
GWy=v/(l- V/Vm)sv’”m. In these flows, shear stresses S and S_ are constant

throughout the assembly. Since they vanish at the free surface, they must vanish
everywhere in the flow. But the boundaries may transmit tangential momentum to the
assemblies which therefore may experience mean motion.

For prescribed values of m , e, e, r, £, &, ¢, &., &_and a, A, A_,

equations (4.2), (4.4), (4.5), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12), (4.19), (4.20), (4.21),

(4.22), (4.23) and (4.24) and, boundary conditions (4.25), (4.29), (4.35) through (4.41)

~ ~

and (4.44) through (4.49) determine v, w, x,,, K

222 33”(

122 K

232 K

132 ut’ u‘r’ qtt’ q22’ q33’

122



q,. 4, and g,,. To obtain solutions, 15 non-linear O.D.E.s must be solved
simultaneously subject to the 15 non-linear boundary conditions. This system of non-
linear O.D.F.s subjected to non-linear B.C.s is solved numerically. The numerical

procedure is slightly complicated and is described, in concise notation, in the following

section.

6.1 Numerical Procedure for a System of Non-Linear O.D.E.s and Boundary
Conditions

Consider a boundary value problem in N variables, ;. y,..... and ¥, which
depend only on the spatial coordinate x. ILet the N Ordinary Differential Equations

(O.D.F.8) which describe this dependence be given by:
Vo= L (s Yysenes ¥ya X) i=L2,..,N, (6.1)

where. 1. f,...... f,, represent non-linear functions of y,. ¥,....., y,, and x. These N

b
().D.E.s are subjected to N non-linear boundary conditions. Let K of these N boundary
conditions be specified at the spatial location x = x, and the remaining (N-K) boundary
conditions are specified at the location x=x,. Let the X boundary conditions at x=x
be described as:

b [, 3, (3 avrs ¥, ()] = 0 i=12....K, (6.2)

and the (NV-K) boundary conditions at x = x, be described as:
B [y,(2,), 3, (2 )oeeer ¥, (,)] = 0 i=K+LK +2.....N | (6.3)
where, b ,b,......b and B B ..., B, represent non-linear functions of v, y,.....

12722°° K+1° E+272" N

and y, .
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Let y= b}l,yz, ..... ,yN]T be the column vector of unknowns, f = [ﬂ,fz, ..... ,fN]T be

the column vector of functions of these unknowns, b= [bl,bz,....,bK]T be the column

vector of boundary conditions at x=x and Bz[BKH,B ..,BN]T be the column

E+22°"
vector of boundary conditions at x=x,. Then, y = f represents the N O.D.E.s in vector

form. Solution to this system of O.D.E.s can be obtained by solving the numerical

scheme "' = f"+.J" ( P — y”), subjected to appropriate boundary conditions, where

3" and 17 denote the numerical evaluation of column vectors 3 and f at the M iteration

in the numerical scheme and J is the Jacobian with entries .J that are defined as

of,

J, = P In the discussion that follows, superscripts denote iteration in numerical
Y,

scheme. The boundary conditions at x = x, can be written in numerical form as

ob

Oy [y o= v G = o7, (6.4)

X

and the boundary conditions at x = x, can be written as

_aB i n+ n n
™ ] @) -y )= B (6.5)
where (%} is a KxN matrix with entries %, and |:68] is a (N-K)xN matrix with
| Oy oy, ay
entries 3 -, where i represents row and j represents column of the entry.
Y,

Let y=Y,+Y-C be the solution of y=f, where C=[C.C,....C,,J is a

column vector of constants and, Y and Y, are sets of wvariables where
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Y, =[1,.7,

010 02,....,YON]T and Y is an NxN matrix with elements ¥ in the i row and jm

i

column. This solution must satisty = f. Let I be the solution of homogenous system

of O.D.E.s given by Y™ =J"Y"" subjected to inhomogenous boundary conditions

Y(x)=[{] and, Y, is the solution of inhomogenous system of O.D.Es given by
Y =J"Y M - Ty + /7 subjected to homogenous boundary conditions ¥, (x)=0.
Once we solve for ¥ and ¥, C can be obtained by using the boundary conditions of the

original problem specified at x=x and x=x,. The following system of N linear

simultaneous equations gives solution of C.

[ap] | o [an| | | [on] | .
T @ I
o freor | 2] Joeor | (12 e
- 1= " | - (6.6)
6 fi+1 a I a +1
" ][Y(x»] = ][y(xz)] 2 ][Yo(xz)]”
¥l W, | D, |

If the spatial domain between x=x and x=x, is discretized into » parts, then

the numerical scheme is converged if at any particular iteration, at each of the r+1

discretized points in space,

ym+1 _ ym
)

< g (6.7)

n+l

where ¢ is prescribed tolerance value, usually taken as 1e-3.

When length of the spatial domain x is large, assumed solutions ¥ and ¥, grow

exponentially creating precision problems for calculation of actual solutions y. To obtain
solutions in such cases, we proceed as following. In each single iteration the domain is

divided into multiple sub-domains rwice, first with smaller number of divisions and then
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with larger and, once with even number of divisions and once with odd. Having smaller
divisions first and larger later helps the scheme to converge faster, but whether it is even
number of divisions first or odd is not important. We make even divisions first and odd
later.

If, for example, we divide the domain into 7+1 sub-divisions, we will need 2n

new sets of boundary conditions. For the sub-domains including x=x and x=x,
points, we use boundary conditions specified in the original problem at x=x and

x=x,. Now we need boundary conditions for all intermediate boundaries of sub-
domains.

When a good guess is inputted to this numerical scheme, the guess is first divided
in the same even number of sub-domains as in the numerical scheme. Values of variables
at the sub-domain boundaries in the guess are used as boundary conditions for the
remaining intermediate boundaries. There is certain flexibility as to values of which
variables to specify at the intermediate boundary. We give preference to “primary”
variables for that purpose. With this guess, such a numerical scheme would generate a
solution that would match the guess at the sub-domain boundaries but will differ slightly
between the boundaries. Now this solution 1s used as guess and the domain 1s divided
into odd number of sub-domains so that none of the intermediate boundary location is
repeated in this new division. Boundary conditions are specified for the intermediate
boundaries, just as described above and again solution 1s obtained. This 1s considered as

end of one iteration. Now this solution 1s used as guess for next iteration and iterations

continue until solution converges. To generate a starting good guess for such a scheme,
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first, a solution is obtained for reasonable domain size keeping other parameters the

same.

6.2 Results and Discussion

In this section, we present results that describe the details of thermalized states
and mean motion induced by boundary vibrations. This section is divided into three
parts. In the first part, we take a closer look at velocity distribution functions. The
second and third parts discuss results about non-driven assemblies and driven flows

respectively.

6.2.1  Velocity Distribution Functions

In Chapter 2, we discussed about individual particle velocity distribution

functions and derived expressions (2.88), (2.89) and (2.90) for P(C)), P(C,) and P(C,).

We could not plot the probability distribution because we did not have values of mean
fields which are solutions to boundary value problem. Now that we can solve boundary
value problems, these distributions can be obtained. To relate to the n—¢—r coordinate

system, we use notations C,, C_ and C_instead of C|, C, and C, respectively.

Consider now the predictions of anisotropic theory at an interior point in the flow,
z=3, for a case of entirely normal vibrations & =0, (p;f:?,), m~=5, e=e,=.9, r=1, F=4,

E.=& =90° a=90° and A, =A_ =.22. The solution for mean fields in this case, at z=3,

is ¥=317, 7=2.86, & =108, &, =108, &,=216 and Z—T—-1.832 and 7 =9(z).
=z

Figure 6.1 shows the velocity distribution function (og)""* P(C,) by solid curve and the
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Figure 6.1 : The variation of probability (O‘Q)UZP(CH) (shown by solid curve) with

C/T', at z=3, when 0=0, (V,’=3), m=5, e=e,=9, r=1, E=4, & =& =90°, ox =90°
and A, =A =22 Also shown by dashed curve is the Gaussian profile.
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Gaussian distribution (i.e., Maxwellian distribution) by dashed curve. As seen,

1/2

(cg)'” P(C)) strongly deviates from Gaussian distribution profile and has its peak in the
negative velocity region. This is because the boundary vibrates entirely in s — direction
and direction of gravity is opposite to that. Due to dominance of vibrations, large
positive velocities are more probable than large negative velocities, resulting in departure
from the symmetric Gaussian distribution. Figure 6.2 shows experimental measurements
of Blair and Kudrolli (2003) for distribution function of velocity in the direction of
vibration in a quasi 2-D case. We do not intend a direct comparison here, as the
boundary value problem of Blair and Kudrolli is different from ours. They almost do not
have gravity in the problem, but they have an upper boundary which has similar effect as
gravity on the motion of particles. So, the external effects acting are more or less similar.
We only want to see if the distribution profile predicted by our theory is a realistic one.

As can be seen, the experimental measurements of Blair and Kudrolli have a very similar

form as the distribution function predicted by our theory. Figure 6.3 shows predictions of

1/2

our theory for probability distribution (og) "~ P(C,) for tangential motion of particles in

t —direction, for the same parameter values as used for Figure 6.1. For tangential

fluctuations, the velocity distribution is similar to Gaussian as no other external effect

1/2

like gravity influences them. (ag)"* P(C.) is exactly same as (6g)"* P(C,) as there is

symmetry of array and vibration in #— and t—directions. Figures 6.4 shows
experimental measurements by Blair and Kudrolli (2003) for distribution functions of
velocity in the direction perpendicular to direction of vibration. Again, we see that the

theory predicts the form of distribution correctly.
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Figure 6.2 : Variation of probability P(C) (shown by solid dots) with C,, as

measured experimentally by Blair and Kudrolli (2003).
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£,=¢,.7=90", a=90" and A=A =22 Also shown by dashed curve is the

Gaussian profile.
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6.2.2  Non-Driven Assemblies

Now, lets focus on the variations of mean fields. In case of non-driven assemblies
where no mean motion is induced, the vibrations in both #— and 7 —directions are 90°
out of phase with respect to vibrations in 72— direction. In case of driven flows, at least
one of the r— and z—directional vibrations is not 90° out of phase with respect to
vibrations in s —direction. For non-driven assemblies, first we look at the profiles of
granular temperature, solid volume fraction and different individual temperatures, and
then study the dependence of thermalized state on many factors such as the total amount
of vibrational energy, its distribution, restitution coefficients, mass hold-up, bumpiness of
the boundary, etc. For driven flows, our primary focus is on the induced mean motion
and in that part, we first look at the profiles of mean velocity and then study the
dependence of induced motion on the above mentioned factors. Lets look at the non-
driven assemblies.

In Figure 6.5, we show the profiles of granular temperature 7%*(z) and solid

volume fraction v(z) for 0=0, 35.26°, 54.74° and 90° (V*=3, 2, 1 and 0), when ¢ =0
(V2=0), m=5, e=¢,=9, r=1, E=4, & =& =90°, @=90° and A,=A_=22. As 6

increases from 0, vibrational energy gets distributed more and more in tangential
t—direction. As a result, the boundary becomes less effective in thermalizing the
assembly and the flows become less thermalized, shallower and more dense. Figures 6.6,

6.7 and 6.8 show the details of anisotropic state of the assembly, i.e., the profiles of

individual temperatures ffnm (2). (Ttm (z) and ‘Tflﬂ(z), for =0, 35.26°, 54.74° and 90°

(17*=3,2, 1 and 0), and for above set of parameters. It can be seen that as & increases,
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Figure 6.5: The variations of Q‘”Z(Z) and wv(z) with z, for =0, 35.26°,
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Figure 6.6: The variations of 'Tnm(z) with z, for =0, 35.26°, 54.74° and
90°, (I,2=3, 2, 1 and 0) when ¢=0 (F2=0), m~=5, e=e,~.9, =1, E=4,
£,=&,=90°, a=00%and A, =A =22
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Figure 6.7: The variations of TIUZ(Z) with z, for &=0, 35.26°, 54.74°
(7,23, 2, 1 and 0) and 90°, when ¢=0 (V?=0), m=5, e=e,=.9, r=1, E=4,
E.=&E =90°, o =90°and A, =A_=22.
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Vertical Location z

Granular Temperature 7.

Figure 6.8: The variations of Tz_lfz(z) with z, for =0, 35.26°, 54.74° and
00°, (I,2=3, 2, 1 and 0) when ¢=0 (F?=0), m=5, e=e,~.9, r=1, E=4,
£.=&, =90°, a=00"and A, =A =22
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vibrations have decreasing normal component and all the temperatures decrease. The

normal temperature 7 (z) always monotonically decreases away from the boundary, but
the tangential temperatures 7,(z) and 7 (z), don’t always do so. For values of ¢ far
from 90°, for a small region near the boundary, 7. (z) and 7_(z) first increase and then

start decreasing, resulting in hook-like curves. This phenomenon becomes more
pronounced as & gets closer to 0. At least near the boundary, values of the individual
temperatures are very different. The difference between the individual temperatures
reduces far from the boundary, and at the free surface even though the temperatures don’t
equalize, the difference between them is negligible. From the profiles of individual
temperatures, we notice that the temperature at the boundary (at the base) provides a
good measure of excitation of assembly. Hence it can be used to describe how excited
the assembly is.

Figures 6.9, 6.10, 6.11 and 6.12 show the dependence of anisotropy and
thermalized state on the angle of vibration &, for the same set of parameters as above.

Figure 6.9 shows variation of temperature ¢ and individual temperatures 7, 7, and 7,

at the base z=0, with . When #=0. 7  is maximum and, 7, and 7_are equal to each

other. As & increases from 0, thermalization of the assembly decreases as indicated by

the isotropic measure 7, and hence each of 7, 7. and 7. decrease. In addition to that,
since with increasing & more energy is supplied in #— direction, difference between T
and 7, reduces with increasing #. However until #=75°, 7 remains the largest

temperature. This shows that the assembly has a preferential direction of excitation,

which 1s the normal direction. Eventually 7, becomes larger than 7 and since, no
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Figure 6.9: The variations of 7 (shown by dashed curve) and, 1.1, and
T?: (shown by solid curves), at z=0, with &, when ¢=0 (Vr2=0), m=5,
e=e,=.9.1=1,E=4, £ =& =90°, a=90%and A, =A =22,
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Figure 6.10: The variations of 7 (shown by dashed curve) and, T .7, and
TT (shown by solid curves), at z=h, with &, when ¢=0 (Vr2=0), m=5,
e=e,= 9, r=1,E=4, £ =Z =90°, o =90%and A, =A =22
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Figure 6.11: The variations of v(f#,) and v(0), with &, when ¢=0
(V2=0), m=5. e=e,=.9. =1, E=4, & =& =90°, @ =90%and A, =A_=22.
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Figure 6.12: The variations of g and f,, with &, when ¢=0 (V2=0),
m=5, e=e,=9,r=1,E=4, £ =& =90°, a=90"and A, =A =22
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vibrational energy is supplied in 7 —direction, 7, remains smallest for all values of &.

So, at least near the boundary, we sece that the flows can be very anisotropic. Also, we
see that the anisotropy is largest when the vibrations are in normal direction and under
such circumstances the individual temperatures differ significantly from their mean value

T (z) which therefore can not adequately represent the excited state. Figure 6.10 shows

the variation of temperature 7 and individual temperatures 7, 7, and 7_, at the top

z=h,with €. As expected, all the temperatures decrease as £ increases. We see that at
the free surface, far away from the boundary, the difference between the temperatures

reduces. The two tangential temperatures are very nearly equal to each other, however

the normal temperature 7 is still about 10% larger than them. Figure 6.11 and 6.12
shows variation of solid volume fraction at the base v(0) and the maximum value of
solid volume fraction inside the flow v(/£,). and the variation of flow height £ below
which 99% of the total mass-holdup m, is contained, and £, which is the height at

which the assembly is most dense, with ¢. With increasing €. the flows become less
excited and hence more dense and more shallow. Figures 6.9 through 6.12 clearly
demonstrate the importance of £ in influencing thermalization of assembly.

In Figure 6.13, we show variation of temperature 7 and individual temperatures

7, 7 and 7_, at the base z=0, with the direction of tangential vibration ¢, when
0=90° (V2=0), m,=5, e=¢,=9,r=1, E=4, £ =& =90°, @ =90° and A,=A_=22. In
this case, when ¢ =0, the vibrations are entirely in #— direction. As a result, Z, 1s the

largest temperature and 7 is larger than 7_, when ¢ =0. As ¢ increases, vibrations have

increasing T —component and hence, 7, reduces while 7_ increases. Also with increasing
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Figure 6.13: The variations of T (shown by dashed curve) and, 1.7, and
TT {(shown by solid curves), at z=0, with ¢, when &=90° (VHZIO), m=3,
e=e,=9, r=1,E=4, £ =& =90°, a=90and A, =A =22
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¢ , the orientation of the bumps with respect to boundary vibrations also changes and

hence initially 7, increases with increasing ¢ . When ¢ =45°, vibrations have equal #—
and 7 —components, and 7, and 7. become equal to each other. As ¢ increases beyond
45°, vibrations have larger 7—component than #-component and 7 is the largest
temperature. The variations are symmetric about ¢ =45° due to symmetry of array.
Figure 6.14 shows the variation of temperature 7 and individual temperatures 7 . T
and 7_, at the base z=0, with the direction of tangential vibration ¢, when A =22,
A, =11, &=90°, 0=90° (V>=0), m,=5, e=e, =9, r=1, E=4 and & =& _=90°. Now,
the array is no longer symmelfric with respect to ¢ =45°. When ¢ =0, 7, is the largest
temperature. As ¢ increases, vibrations have increasing 7 —component and hence, 7
reduces while 7 increases. When ¢=45°, even though vibration has equal #— and
T —components, since the array spacing in #— and 7 —directions, A, and A_, are not the
same, 7, and 7_ are not equal at ¢ =45° and 7, is greater than 7_ as A, is greater than
A,. As ¢ increases beyond 45°, wvibrations have larger 7—component than
t—component and eventually 7. becomes larger than <, but 7 is the largest

temperature when ¢ =90°. Figures 6.13 and 6.14 together demonstrate the importance of

both, the direction of tangential vibration ¢ and pattern of boundary bumps, in
influencing the thermalization of assembly.
Figure 6.15 further investigates the effect of array spacing on thermalization. In

this figure, we show the variation of temperature 7 and individual temperatures 7, 7,
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Figure 6.14: The variations of T (shown by dashed curve) and, T, 7, and
ffz_ (shown by scolid curves), at z=0, with ¢, when &=90° (V,f:O), m=3,
e=e,=9. =1, E=4, £ =& =90° a=90°, A, =22and A_=.11.
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Figure 6.15: The variations of 7 (shown by dashed curve) and, T .7, and

. _ . _ o _ o 2_
T, (shown by solid curves), at z=0, with A, when &=90°, ¢ =90° (J7=3),
m=5,e=e,=9,y=1,F=4, & =& =90°, a=90"and A, =22
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and 7., at the base z =0, with array spacing A_, when 6=90° (}/*=0), ¢ =90° (}}* =0),
m =5, e=e¢ =9, r=1, E=4, £ =& =90°, «=90° and A =22. When A_=-1 and

o =90°, the boundary essentially has humps parallel to 7 —direction. Also, since & =90°

and ¢ =90°, the vibrations are entirely in 7 —direction, and hence when A =-1, all the

temperatures have zero values, 1.e., the assembly is not even least excited and is

undergoing motion as one solid mass. As A increases, the humps change to more

bumpy arrays and all the temperatures increase. Initially, until the hump-effect is strong,

7. 1s smaller than 7, and as the arrays become sufficiently bumpy. 7. becomes larger

than 7. Tigures 6.16 and 6.17 show variations of solid volume fractions v(0) and

v(f,). and flow heights # and S, , with A_. With increasing A_, the flows become

more excited and hence less dense and deeper.
In Figure 6.18, we investigate the effect of array angle on the thermalization of

the assembly. Here, we show the variation of temperature 7" and individual temperatures

T, T and 7., at the base z=0, with array angle &, when 6=90° (VV*=0), ¢=90°
(V2=0), m,=5, e=¢,=9,r=1, E=4, £ =& =90° and A, =A_=22. With equal spacing
A=A, when a =0, the boundary essentially has humps parallel to 7 —direction. Also,

since #=90° and ¢ =90°, the vibrations are entirely in 7 —direction, and hence when

o =0, all the temperatures have zero values. As « increases, the humps change to a
more bumpy boundary and all the temperatures increase. Initially, when the effect of

humps is still dominating, _ is smaller than 7, and as the arrays become sufficiently

bumpy, 7. becomes larger than 7,. Figures 6.19 and 6.20 show the variations with & of
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Figure 6.16: The variations of v(#,) and v(0), with A, when &=90°,
$=00" (V’=3), m=5, e=e,=.9, r=1, E=4, & =¢& =90°, «=90° and
A, =22
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Figure 6.17: The variations of f and fg,, with A, when #=90° ¢=90°
(VI=3), m=5, e=e,=.9, =1, E=4, £ =& _=90°, & =90° and A, =.22.
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Figure 6.18: The variations of 7 (shown by dashed curve) and, 7.7, and
T, (shown by solid curves), at z=0, with « when #=90° #=90° (}V?=3),
m=5,e=e, =9, =1, E=4, £ =& =90%and A, =A =22
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Figure 6.19: The variations of v(4,) and v(0), with o when &=90°,
p=90° (V'=3), m=5, e=e,=.9, =1, E=4, £ =& _=90"and A, =A_=22.
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Figure 6.20: The vanations of 4 and f,, with & when €=90°, ¢=90°
(VE=3), m=5, e=e,=.9, =1, E=4, £.=&,.=90°and A =A =22
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flow heights, £ and £, . and solid volume fractions v(0) and v(/f,). for the above set of

parameters. As o increases, the flow becomes more thermalized and hence flow heights
mcrease and solid volume fractions decrease.

Next, we show the effect of total boundary energy ~ on thermalization of the
assembly. In Figure 6.21, we plot variation of temperature 7 and individual

temperatures 7, 7, and 7, at the base z=0, with total boundary energy £, when

t
0=5474° (V.'=1), ¢=0 (V.'=0), m=5 e=e,=9, r=1, & =& =90° and
o =90°, A, =A_=.22. When £=0, no energy is supplied to the assembly and as a result,

no excitation is produced in the flow and all temperatures are zero. With increasing F,
initially all temperatures increase because of increased thermalization. Since the
vibrations of boundary are only in #— and #— directions, with increasing £, 7. and T,

increase. However, temperature 7. is influenced by two competing effects.  With

mcreasing £, even though the total energy input to the assembly increases, the solid
volume fraction near the base substantially decreases which reduces the number of

collisions. So, 7_ mitially increases, due to increasing energy input and then decreases

due to reducing number of collisions near the boundary. Figures 6.22 and 6.23 show the

variations with £ of solid volume fractions v(0) and v(f,), and flow heights, £ and

B, . for the above set of parameters. As E increases, the flow becomes more thermalized
and hence less dense and more deep.

In Figure 6.24, we show the profiles of granular temperature 72(z) and solid

volume fraction v(z) for m, =2.5, 5, 10 and 20, when =0 (I/:f =3), e=¢ =9, r=1, =4,
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Figure 6.21: The vanations of 7 (shown by dashed curve) and, T,.1, and
'TT (shown by solid curves), at z=0, with £, when &=54.74°, ¢ =0 (VH2=1,
Vf=2), m=5,e=e,=9,1=1, &5 =& =90°, =90 and A, =A =22
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Figure 6.22: The variations of v(f,) and v(0), with E, when ©=54.74°,
p=0 (=1, VP=2), m=5, e=e,~9, =1, &,=& =90°, a=90° and
A=A =22
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Figure 6.23: The variations of £ and £, with E, when 8=54.74° ¢=0
(F=1, V7=2), m=5, e=e,=.9. =1, £, =&_=90°, @ =90 and A, =A =22.
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Figure 6.24: The variations of T'? (z) and v(z) with z, for m=2.5, 5, 10
and 20, when 6=0 (Vf:?’), e=e,=9, =1, E=4, £ =£& =90° & =90° and
A=A, =22
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&.=& =90° a=90°and A =A_ =.22. For fixed amount of total boundary energy E, as

m, mcreases, the same amount of energy has to energize more mass. As a result, with

14

increasing m, , excitation of the assembly reduces. Particularly when m, =20, the solid

volume fraction profile shows that only the bottom portion of the assembly is excited and
about top 3/4™ of the assembly 1s experiencing no thermalization. Figures 6.25 and 6.26

show the details of anisotropic state of the assembly, 1.e., the profiles of individual
temperatures 7 (z) and 77 (z)=7."*(z) when m, =2.5, 5, 10 and 20, for above set of
parameters. It can be seen that at least near the boundary, the individual temperatures

differ from their mean value 7. The normal temperature 7 (z) is always larger than the
tangential temperatures 7.(z)=7_(z). Also, profiles of tangential temperatures show

hooks near the base.
Figures 6.27, 6.28, and 6.29 show the dependence of anisotropy and thermalized

state on the mass hold-up m,, for the same set of parameters as above. Figure 6.27
shows variation of temperature 7 and individual temperatures 7 , 7, and 7_, at the base
z=0, with m,. As m, Increases, increasing portion of assembly near the top becomes
stagnant and as a result 7 reduces. Because with increasing m,, the solid volume

fraction near the boundary also increases, number of collisions increase. So, with

increasing m,, 7,=7_ increase. Figures 6.28 and 6.29 show the variations with m, of
flow heights, £ and g, . and solid volume fractions v(0) and v(/,), for the above set of
parameters. As m, increases, the flow becomes more dense and hence v(0) and v(5,)

increase. Also, with increasing mass hold-up, the heights f# and £, increase.
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Figure 6.25: The variations of rInm(z) with z, for m=2.5, 5, 10 and 20,
when &=0 (Vn2:3), e=e,=9, =1, E=4, £ =& =90°, «=90° and
A=A, =22

160



Vertical Location z

N
o
I
|

-
o

Granular Temperature 7% = 7.1

T
Figure 6.26: The variations of fftm(z) :Trm(z) with z, for m=2.5, 5, 10

and 20, when =0 (V,f:3), e=e,~9, =1, E=4, £ =& =907 a=90° and
A=A, =22
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Figure 6.27: The varnations of 7 (shown by dashed curve) and, T,.1, and
'TT (shown by solid curves), at z=0, with m,, when &=0 (VM2=3), e=e,=.9,
=1 E=4, & =& =90°, a=90%and A, =A =22
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Figure 6.28: The vanations of v(f4,) and v(0), with m, when £=0
(V,2=3), e=e, =9, =1, E=4, & =& =90°, ¢ =90° and A, =A =22,
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Figure 6.29: The variations of £ and g, with m, when =0 (7,2=3),
e=e,=9, =1, F=4 £ =& =90° a=90%and A, =A =22
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In Figure 6.30, we show the profiles of granular temperature 72(z) and solid
volume fraction v(z) for e=¢, =9, .8, .7 and .6, when =0 (Vn2 =3), m, =5, r=1, =4,
E. =& =90° & =90° and A,=A_=.22. As the coefficients of restitution e=¢, decrease

from .9, the collisions become more inelastic and hence more energy is dissipated making
the flows less thermalized, shallower and more dense. Figures 6.31, and 6.32 show the

details of anisotropic state of the assembly, i.e., the profiles of individual temperatures
7 (2) and T*(z) =77 (2) for e=¢,—.9, .8, .7 and .6, for above set of parameters. It
can be seen that at least near the boundary, the individual temperatures differ from their
mean value 7 and the assembly 1s far from isotropic. The normal temperature 7, (z) is
always larger than the tangential temperatures 7,(z)=7_(z). Also, profiles of tangential

temperatures show pronounced hooks near the base.
Figures 6.33, 6.34 and 6.35 show the dependence of anisotropy and thermalized

state on the restitution coefficients e=¢,, for the same set of parameters as above.
Figure 6.33 shows variation of temperature 7 and individual temperatures 7 . 7, and

7., at the base z=0, with e=¢,. As e=e, increases, less energy is dissipated in

collisions and all temperatures increase. Figures 6.34 and 6.35 show the variations with

e=e¢, of flow heights, £ and f,. and solid volume fractions v(0) and v(f,). for the
above set of parameters. As e=e¢  increases, the assembly becomes more thermalized
and hence v(0) and v(f,) decrease. Also, with increasing e¢=e¢_, the heights £ and S,

increase.
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Figure 6.30: The variations of 4 s (z) and v(z) with z, for e=e,=.6, .7, .8 and
9, when 0=0 (V,’=3), m=5, =1, E=4, £.=&,.=90°, a=90"and A, =A =22
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Figure 6.31: The variations of rInm(z) with z, for e=e,=.6, .7, .8 and .9,
when &=0 (Vn2:3), m=>5, =1, E=4, £ =& =90°, «=90" and
A=A, =22
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Figure 6.32: The variations of T”Z(z) =T ”2(2) with z, for e=e,=.6, .7, .8
i T

and .9, when &=0 (Vn2=3), m=5, =1, E=4, £ =& =90°, o =90° and
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Figure 6.33: The vanations of 7 (shown by dashed curve) and, T,.1, and
'TT (shown by solid curves), at z=0, with e=e,, when &=0 (Vn2=3), m=5,
=1 E=4, & =& =90°, a=90%and A, =A =22
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Figure 6.34: The variations of v(5,) and v(0), with e=e,, when &=0
(V2=3), m=5, =1, E=4, & =& _=90°, r =90° and A, =A =22.
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Figure 6.35: The vanations of £ and 3, with e=e,, when &=0 (V,2=3),
m=5 =1, E=4 & =& =90° =90 and A =A =22
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6.2.3  Driven Assemblies

So far, we have seen results concerning non-driven assemblies with focus on
thermalization. Now in the second part of this section, we look at driven flows. Here,
unlike non-driven assemblies, at least one of the £— and 7 —directional vibration is not
90° out of phase with respect to vibrations in g —direction and hence, mean motion is
induced. In this part of the section, our focus is going to be on the induced mean motion,
1.e., the induced mean velocity and the mass flow rate per unit boundary area. We will
show some profiles of mean velocity and then variations of its basal and top values and
mass flow rate with the concerned parameter. Effects on thermalization, of most of the
factors presented in this part, have already been studied in the previous part of this
section. So, thermalization results for such cases will not be presented in this part.

In Figure 6.36, we show the profiles of induced velocity #,(z) for €=15°, 30°,
45°, 60° and 75° (V> =2.8, 2.25, 1.5, .75 and .2), when ¢ =0 (V" =0), m, =5, e=¢ =9,
r=1, E=4, £ =0, § =90°, a=90° and A =A_ =22. We see that the induced velocity

#.(z) 1s not uniform. It is maximum at the base and reduces for a short distance away

from the boundary and is then practically constant. So, the induced mean motion can be

concisely described by using two values, the value of u at the base, u,(0), which
actually 1s the slip, and its value at the top, w, (k). Figure 6.37 shows the dependence of
induced mean motion, i.e., the mass flow rate and #,(0) and u,(%). on &, for the above

set of parameters. When ¢=0 the boundary vibrates only in 72— direction, and when

¢=90° and ¢ =0 the boundary vibrates only in #— direction. Hence, in these cases, no

mean motion is induced. As & increases from 0, mean motion is induced. With
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Figure 6.36: The variations of w.(z) with z, for £=15°, 30°, 45°, 60° and 75°
(V,2=2.8,2.25, 1.5, .75 and .2), when ¢ =0 (F*=0), m=5, e=e,,=.9. =1, E=4,
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increasing &, first x,(0) and u,(k) increases, with the difference between them
increasing as well. After reaching optimum values, both, #,(0) and #,(%). decrease to 0,

when #=90° As a result, the mass flow rate initially increases from 0 as & increases,
reaches an optimum value at around #=65° and then decreases to zero as =90°. So,
there 1s an optimum value of #, for which maximum mass flow rate is obtained. This
angle depends on the set of parameters. Figure 6.38 explores the dependence of optimum
value of & on the array spacing A,, when ¢=0 (V> =0), m =5, e=¢,=9, r=1, E=4,
§.=0, & =90° «=90°and A, =22. As A, increases from -1 to its maximum value of

.22, the optimum & decreases significantly from almost 90° to 60°. This implies that as
the boundary gets more bumpy, in order to achieve more mass flow rate, more
n—component of vibration should be added.

Figure 6.39 shows the dependence of induced mean motion, i.e., the mass flow

rate and #,(0) and u,(4)., on the phase difference between vibrations in m— and

t—directions &_, when 0=60° (V,*=2.25), =0 (V. =0), m, =5, e=e,=.9, r=1, F=4,

i >
& _=90° a=90°and A, =A_=.22. When & =0, the vibrations in #— and #— directions
are in phase and we get maximum #,(0) and x,(h). As &, increases from 0, the
vibrations go more and more out of phase and the induced velocity decreases down to
zero when & ,=90° As a result, maximum mass flow rate 1s obtained when £, =0 and

mass flow rate decreases to 0 as £ increases to 90°. Here, we also show the details of

thermalization of the flow. Figure 6.40 shows variation of temperature 7 and individual

temperatures 7., 7. and 7_, at the base z=0, with £

n? t nt?

for the above set of parameters.
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Array Spacing A,

Figure 6.38: The variations of optimum value of @ with A,, when ¢=0

(VA=0), m=5, e=e, =9, =1, E=4, & =0, &_=90°, o =90° and A =22,
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Phase Difference & (deg.)

Figure 6.39: The variations of i, (0) and u, (#) (shown by solid curves) and
mass flow rate (shown by dashed curve), with & ., when &=60°, ¢=0

(V.2=75, V2-225), m~5, e=e,~9, r-l, E-4, &_-90°, a-90° and
A, =A,=22.
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Granular Temperatures (at base)

10

0 15 30 45 60 75 90

Phase Difference £ (deg.)

Figure 6.40: The varnations of 7 (shown by dashed curve) and, T, .7, and
T (shown by solid curves), at z =0, with & ., when ¢=60°, ¢ =0 (V,2=175,
VE=225), m=5, e=e,=.9, r=1, E=4, £,.790° ax=90%and A, =A =22
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When &£ =0, the vibrations in 72— and #-—directions are in phase and hence all the
temperatures are at their maximums. As & increases from 0, the vibrations go out of

phase, which decreases the temperatures. However, the decrease 1s not substantial. As a

result, the flow heights, # and f,, and solid volume fractions, v(0) and v(/f,) also

change slightly. In this case, with increasing &

nt?

P decreases from 10.88 to 10.67 while
p, decreases from 8.30 to 8.10, whereas v(0) increases from .22 to .24 and v(f,)

icreases from .55 to .56.
Next, we look at the effect of bumpiness of the boundary which is controlled by

array spacing and array angle. Figure 6.41 shows the effect of changing array spacing
A_ on the induced mean motion when, A =22, a=90° 6=54.74° (VHZZI), @ =90°
(V2=0), m=5 e=¢,=9, r=1, E=4, £ =90° and &_=0. As the array spacing A

decreases from its maximum value .22 to -1 where the boundary essentially has humps

parallel to 7 —direction, the induced slip velocity u_(0) and u_(#), and hence the mass

flow rate decrease towards zero. Figures 6.42 and 6.43 show the effect of changing array

angle « on the induced mean motion when, A, =A_ =22, #=54.74° (V' *=1), ¢=90°
(V:=0), m =5, e=¢, =9, r=1, £=4, £ =90° and &_=0. TFigure 6.42 shows that as &
decreases from 90° to 0, because the boundary is becoming more hump-like, #_(0) and
u_(#). and hence the mass flow rate in 7 —direction decrease towards zero. Figure 6.43

shows that as « decreases from 90° to 0, small amount of mean motion is also induced
in ¢ — direction. Particularly when « =0, 60° and 90°, the array is symmetric and in those

cases, no mean motion is induced in 7 — direction.
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Array Spacing A

Figure 6.41: The variations of . (0) and . (h) (shown by solid curves) and
mass flow rate (shown by dashed curve), with A , when £=54.74° ¢=00°

(W.2=1, V2=2), m=5, e=e,~9, r=1, E=4, & =90°, & =0, a=90° and
A =22
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Figure 6.42: The variations of u, (0), 4, (%) (shown by solid curves) and mass
flow rate (shown by dashed curve), with «, when &#=54.74° ¢==90°

(V'=1, V=2, m=5, e=e,=9, =1, E=4, £ =90°, & =0Oand A, =A_=22.
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Figure 6.43: The variations of u_(0) and u_(#) (shown by solid curves) and
mass flow rate (shown by dashed curve), with o, when 8=54.74°, ¢==90°
(V,2=1, V2=2), m=5, e=e,=.9, =1, E=4, £ =00°, & =Oand A, =A_=22.
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Figure 6.44 shows the variation of induced mean motion with the total boundary
energy E, when #=54.74° (V'=1), ¢=0 (V.'’=0), m, =5, e=e,=.9, r=1, &,=0,
E_=90° a=90° and A =A_=22. As expected, with increasing total boundary energy

E, u,(0) and u, (/) increase which increases the mass flow rate.
As mentioned in Chapter 1, ‘Review of Previous Work’ section, researchers have
reported interesting results about the induced mean motion, particularly about the sign of

the velocity gradient. In Figure 6.45 we show the profiles of induced velocity u,(z) for
ratio of radi1 »=.5, .75, 1. 1.5 and 2, when m, =5, e=¢ =.9, E =4, ¢=79.48° (I/:f =1,
¢=0 (V?=0), £,=0, & =90°, ¢=90° and A,=A_=-15. We see that as r decreases

from 2, the velocity gradient starts reducing and finally changes sign when r=.5. Figure
6.46 shows the variation of induced mean motion, i.e., the mass flow rate and. #,(0) and
u,(h), with r, for the above set of parameters. With decreasing r, the size of flow
particles becomes smaller than the size of bumps on the boundary and competing effects
determine the sign of the velocity gradient. As #» decreases, slip velocity decreases but
the velocity gradient reduces, increasing the top velocity. Near r=.5, the two velocities
cross over indicating changed sign of velocity gradient. Figure 6.47 shows the variation

of temperature 7 and individual temperatures 7 , 7, and 7_, at the base z=0, with r

for the above set of parameters. As r decreases from 2, size of flow particles reduces
which excites them and hence all temperatures increase with decreasing ». Figures 6.48

and 6.49 show the variations with r of flow heights, £ and f,, and solid volume

fractions v(0) and v(f,), for the above set of parameters. Since with decreasing »
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Figure 6.44: The variations of #, (0) and », () (shown by solid curves) and
mass flow rate (shown by dashed curve), with E, when 8=54.74° #=0

(V,2=1, V=2), m=5, e=e,=.9,r=1, & =& =90°, o =00° and A, =A =22,
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Figure 6.45: The variations of u(z) with z, for =5, .75, 1, 1.5 and 2, for
£=79.48>, ¢p=0 (F2=1, V?=2.9). m=5, e=e,=9, E=4, & =0, £ =907,

o =90%and A, =A =15
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Figure 6.46: The variations of #, (0) and u, () (shown by solid curves) and
mass flow rate (shown by dashed curve), with #, for =79.48°, ¢ =0 (=1,

V2=2.9), m=5, e=e,~.9, =4, £, =0, &_=90°, oz =90° and A, =A =-15,
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Figure 6.47: The variations of 7 (shown by dashed curve) and, T,.7, and
fTT (shown by solid curves), at z=0, with r, for £=79.48°, $=0 (Vf:.l,
V=2.9), m=5, e=e,=.9, E=4, £,=0, & _=90°, a=90"and A, =A =-15.
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Figure 6.48: The variations of v{ 4, ) and v(0), with r, for §=79.48°, ¢ =0
(Vnzz-lz [/'32:2_9), m=5, e=e,~.9, E=4, fmf =0, ém' =90°%, a=90% and
A=A =15
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Figure 6.49: The vanations of g and f,, with », for £=79.48°, ¢=0
Wl=1, V=29), m=5, e=e,~9, E=4, &.=0, & =90°, a=90° and
A=A =15
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thermalization increases, flows become less dense and v(0) and v(f,) decrease. and the
heights £ and f, . increase.

Figure 6.50 shows the profiles of induced velocity wu,(z) for e=e =.6,.7, .8 and
9, when m, =5, r=1, E=4, 0=54.74° (V?=1), ¢ =0 (V> =0), &,=0, &_=90°, a=90°
and A, =A_=22. As e=¢, decreases, the velocity gradients don’t completely vanish

even away from the boundary. Figure 6.51 shows the dependence of induced mean

motion, 1.e., the mass flow rate and, #.(0) and u,(#), on e=e_ , for the above set of
parameters. As e=e  increases from 0.6, the flow becomes more thermalized and the

particle fluctuations increase. As a result of this increased disorder the mean motion

reduces with increasing e=¢_. Figure 6.52 shows the dependence of induced mean
motion with respect to variation of just ¢ . As e increases from 0.6 to 1, as expected,

the induced motion decreases but the effect is reduced compared to Figure 6.51, as value

of e is fixed e=.9.

Finally, we look at the effect of the mass hold-up m,. Figure 6.53 shows the
profiles of induced velocity u,(z) for m, =2.5, 5, 10 and 20, when e=¢ =.9, =1, £ =4,
§=54.74° (V7 =1), $=0 (V.7 =0), £,0, £ _=90°, @=90° and A, =A,=22. As m,
mcreases, the velocity gradients don’t vanish even away from the boundary. Figure 6.54
shows the dependence of induced mean motion, i.e., the mass flow rate and w,(0) and
u,(h), on m,, for the above set of parameters. As m, increases from 2.5, the flow

becomes less thermalized and as a result of this decreased disorder u,(0) and u,(h)
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Figure 6.50: The variations of u,(z), with z, for e=e,,=.6, .7, .8 and .9, when
§=5474°, $=0 (V,}=1, V?=2), m=5, r=1, E=4, & =0, & =90°, o =90°
and A, =A =22
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Figure 6.51: The variations of i, (0) and u, (#) (shown by solid curves) and
mass flow rate (shown by dashed curve), with e=e, when 8=54.747, ¢=0

(V=1 V=2, m=5, =1, =4, &, =0, & _=90°, @ =90° and A, =A=22.

192

Mass Flow Rate



Induced Velocity

1-4 L] T | | 1 T | ] ] 1 | | L] L] 1 | L] T | 5-6

11 -14.4

0.9 1 1 1 1 1 1 1 1 A 1 1 A 1 1 1 1 1 1 1 3.6
0.6 0.7 0.8 0.9 1.0

Coefficient of Restitution ¢

Figure 6.52: The variations of #, (0) and u, (4) (shown by solid curves) and
mass flow rate (shown by dashed curve), with e,, when &=54.74°, ¢=0

(V=1 VP=2), m=5, , =1, E=4, =9, &,=0, &,_=90°, o=90° and
A=A, =22
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Figure 6.53: The variations of w.(z) with z, for m=2.5, 5, 10 and 20, when
0=5474°, $=0 (V,’=1, I7=2), =5, e=e,=9, r=1, F=4, & =0, & _=90°,
a=90°and A, =A =22
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Figure 6.54: The variations of i, (0) and #, (7) (shown by solid curves) and
mass flow rate (shown by dashed curve), with m,, when &=54.74°, ¢=0

(F.2=1, V2=2), =5, e=e,=9, =1, E=4, &£ =0, &_=90°, a=90° and
A =A,=22.
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increase with increasing m, . Because of this and also because m, itself is increasing, the

mass flow rate increases with increasing m, .

196



CHAPTER 7
Conclusions

We have employed statistical averaging techniques to derive constitutive theory
for rapid, dense flows of identical, smooth, inelastic spheres. Also, we derived boundary
conditions for bumpy boundaries undergoing random vibrations, using statistical
averaging. The constitutive theory and boundary conditions are consistent with the
assumptions used to derive the theory of Jenkins and Richman (1985 a). The constitutive
theory allows the flow temperatures to be anisotropic and is not limited to dilute or nearly
elastic flows. Hence, it can be used to describe many types of flows. The boundary
conditions ensure the balance of momentum and full second moment at vibrating
boundaries. The bumpiness of the boundary can be changed to model a variety of
conditions from smooth to highly bumpy boundaries. Since the boundary conditions
include the effects of slip and velocity gradients and apply to boundaries that do and do
not vibrate, the boundary conditions may be employed to study a wide variety of
boundary effects.

We applied the balance equations and constitutive theory to spatially uniform
flows to study decay of diagonal components of second moment. When the particles are
elastic, the relaxation times are short. As inelasticity increases, the relaxation times
increase, as expected. We also found that non-zero value of off-diagonal component of
second moment can induce small diagonal components over time.

For simple and homogenous shearing of granular materials, we applied the
balance equations for mass, momentum, and second moment, as well as the constitutive

relations for pressure tensor and source of second moment to a steady, homogeneous,
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rectilinear shear flow. In this flow, the solid fraction, the velocity gradient and the
second moment are uniform throughout. As the density of such flows increases, the
temperature drops down. Most importantly, we see that the normal stresses in the three
directions are not equal to each other and differ significantly. This has also been seen in
experimental and simulation results.

The constitutive theory was applied to steady, fully-developed, free surface flows
that are parallel to the boundary to solve two different boundary value problems. In the
first boundary value problem, particles are nearly elastic and granular temperature was
isotropic. In this case, we only needed to use mass, momentum and energy conservation
inside the flow. Also, at the vibrating boundary, we only needed momentum and energy
balance boundary conditions. For such flows, shear stresses vanished everywhere and
induced mean velocity was uniform. In the second boundary value problem, particles
were inelastic and granular temperatures were anisotropic. In this case, the velocity was
not uniform but shear stresses vanished everywhere. Here, we needed to use the mass,
momentum and full second moment balance laws and boundary conditions.

We studied the effect of bumpiness of boundary, total vibrational energy,
distribution of the total vibrational energy, phase differences, mass hold-ups over bed,
dissipative character of boundary and particles and size effects of bumps on both
thermalization and induced mean motion of the assembly. We also looked at profiles of
individual temperatures and solid volume fraction and induced mean motion for different
cases. Particularly, we noted that the normal boundary vibration was the best way to
thermalize the assembly. Also, we saw that, at least near the vibrating boundary the

flows can be very anisotropic. We showed that the direction of tangential boundary
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vibration and bumpiness of boundary can significantly affect the thermalized state and
induced mean motion. Furthermore, we saw that no mean motion is induced when oft-
diagonal components of second moment of boundary fluctuations are zero.

The boundary conditions derived are capable of describing more complicated
cases than those considered here. Of particular interest is vibrationally enhanced shear
flows. The study of these flows is one possible extension of this work. Another possible
extension could be confined flows induced by vibrations of boundaries. One could also
look at inclined flows enhanced by boundary vibrations and it could demonstrate the

possibility of uphill flows.
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