Radar and AI-based Soil Moisture

Monitoring for Efficient Farm Irrigation

A Major Qualifying Project (MQP) Report Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the

Degree of Bachelor of Science in Computer Science

By:

Allen Cheung

Ruba Khan

Project Advisors:

Seyed Zekavat

Oren Mangoubi

Doug Petkie

Date: May 2024

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For more information about the projects program at WPI, see http:// www.wpi.edu/ Academics/ Projects.

Abstract

This study presents a novel approach using Stepped Frequency Continuous Wave (SFCW) radar technology and machine learning models to develop a non-invasive, cost-effective method for soil moisture estimation. Using the Akela AVMU radar system, we collected and processed radar data, which was then combined with ground truth data moisture data collected using the PR2-Probe by Delta- T Devices. Various machine learning models were applied to data the, with Gradient Boosting Regressor achieving the best overall model performance with a test RMSE of 0.408 when predicting soil moisture at the depth of 20 cm and XGBoost Regressor achieving a test RMSE of 0.814 which is the best overall for the depths of 0 to 40 cm combined. Despite challenges like extended model run times, complex data handling, and limited data size, our study achieved significant improvements in non-invasive soil moisture prediction methods. This research helps open avenues for broader applications in agriculture such as ground water level assessment and drought prediction, contributing to sustainable agricultural practices.

Acknowledgements

We would like to thank everyone for their involvement in this project. Their help led us to successfully complete our MQP.

- 1. USDA
- 2. Michigan Tech Research Institute (MTRI)
- 3. Brian Wilson, MTRI
- 4. Himan Namdari, WPI
- 5. Vincent Filardi, WPI

Table of Contents

Contents

Abstract ii
Acknowledgementsiii
Table of Contentsiv
Introduction1
Project Objectives 1
Task 1: Data Collection
Task 2: Probe Data Analysis 2
Task 3: Understand SFCW and Extract Information
Task 4: Dataset Creation
Task: 5 Machine Learning
Background
Data Collection and Experimental Setup
Site Setup
Radar System Configuration
Antenna Setup
Moisture Probe7
Data Collection Methodology7
Data Processing and Analysis
Probe Data Analysis
Descriptive Statistics Overview
Correlation Analysis11
Moisture Distribution Analysis
Understanding the SFCW Radar
Dataset description
Machine Learning
Experimental Results
Conclusion and Future Work

Bibliography	
Appendix A	
Appendix B	

Introduction

Accurate soil moisture estimation and measurement is important for optimal irrigation, crop yields, and soil health. Soil moisture estimation not only allows for efficient usage of water, but also supports sustainable practices [1]. Recently, ground-penetrating radar (GPR) has shown promise for soil moisture and characteristics measurements due to its non-invasive methods to collect data over a large area [2]. However, the setup, radar configuration, and the environment introduce noise and interference to the GPR data. Therefore, it is important to take account of them in the GPR data analysis process.

Figure 1: Image depicting an SFCW radar over a mega farm creating soil moisture maps.

Project Objectives

This study aims to develop and implement a machine learning-based model to analyze soil moisture data collected using a Stepped Frequency Continuous Wave (SFCW) radar called AKELA AVMU. Through the combination of radar technology and machine learning models, we aim to provide a cost-friendly, non-invasive, and high-resolution method to estimate soil moisture to enable more sustainable water resource usage.

Task 1: Data Collection

To develop a method for collecting soil moisture radar data using the AKELA AVMU radar system and ground truth soil moisture data using the Delta-T Devices PR2 Profile Probe while also maintaining accurate and efficient data collection.

Task 2: Probe Data Analysis

Analyze the collected ground truth soil moisture data.

Task 3: Understand SFCW and Extract Information

Gain an understanding of the SFCW radar technology and extract relevant information from the soil moisture radar data, such as raw/complex values, magnitude, and phase.

Task 4: Dataset Creation

Create a dataset that contains the processed radar data and ground truth soil moisture data while making sure it is organized and ready for machine learning applications.

Task: 5 Machine Learning

Run and evaluate different machine learning models (Linear Regression, Random Forest, Gradient Boost Regression, Support Vector Regressor, Multi-layer Perceptron, etc) to identify the most efficient and accurate model for estimating soil moisture at different depths, different datasets, and different radar data subsets.

Background

The one key element in agriculture, environmental monitoring, geology, and many others is soil moisture and being able to monitor it allows stakeholders like farmers to make well informed irrigation decisions to improve water management. Some methods of measuring soil moisture range from satellite imagery to soil sampling and for many reasons, they are limited. Examples include, low-resolution imaging, lack of depth penetration, invasive, and cost [3]. This study aims to overcome these challenges.

As humans increase agricultural productivity, water tends to become scarce and comes the need for efficient and accurate estimation of soil moisture. As stated before, many of the current methodologies have drawbacks: satellite imagery lacks resolution and does not reach the root zone, probing the soil is invasive, expensive, and does not scale well [4]. Advances in the field of subsurface sensing demonstrate the power of GPR. The SFCW radar stands out due to its high resolution and ability to penetrate many subsurface materials [5].

There are still many challenges when estimating soil moisture using a SFCW even if radar technology has become more advanced. The data received is usually in-phase and quadrature elements and needs to be processed. In addition, data handling and analysis is more complex due to manual collection of data and data being disorganized. We evaluate several machine learning models using RMSE and through the transformation of radar values into different attributes (raw/complex (real and imaginary), magnitude, and phase) to set new benchmarks in the field of soil moisture estimation and GPR data analysis. Collaborating with the Michigan Tech Research Institute (MTRI) and Worcester Polytechnic Institute (WPI), we capture data from realistic agricultural settings to improve the accuracy of soil moisture estimation.

Data Collection and Experimental Setup

Site Setup

To conduct our experiments, we chose a plot of land at 87 Prescott St in Worcester, Massachusetts. Since the native soil in the area contained large, hard rocks, we excavated the site so that these rocks would not present themselves as an interference in our measurements. The soil was replaced with a uniformly compacted layer of loam to mimic long-term farmland soil conditions. This site was then left to settle naturally for several days after the compaction process to stabilize the structure, thereby minimizing any potential discrepancies in data due to soil instability.

Radar System Configuration

Our study utilized the Akela AVMU radar which is a version of the Stepped Frequency Continuous Wave (SFCW) radar system renowned for its precise and dependable data collection capabilities. The radar was set to operate over a frequency range of 400 MHz to 2 GHz, a common spectrum in GPR applications due to its optimal balance between depth penetration and resolution. The frequency response of the site was measured by stepping the transmitter through each frequency incrementally, allowing the radar to capture echoes from the scene and mix them with the transmitted signal to compute complex values indicative of the subsurface characteristics. This configuration provided an estimated penetration depth of up to 400 meters in a vacuum and was optimal for our setup.

Antenna Setup

Two types of antennas were employed: the Log Periodic (LP) Antenna [6] and the Vivaldi Antenna [7] as seen in *Figure 2A* and *Figure 2B*. The LP antenna is known for its broad frequency bandwidth and consistent radiation pattern. The Vivaldi antenna is characterized by its planar look with a tapered slot and offers ultra-wide band frequency coverage and high gain. This structure makes it suitable for multiple operational frequencies with minimal signal loss.

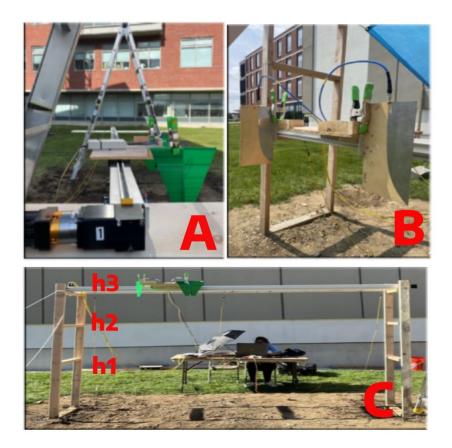


Figure 2: Log periodic antenna (co-pole) and ladder structure (Fig. A), Vivaldi antenna (cross-pole) wooden structure(Fig. B), Customized wooden structure with three heights h1,h2,h3(Fig. C)

Moisture Probe

For ground truth data collection, the Probe-PR2 and HH2 moisture meter from Delta-T Devices were used. These instruments were used to measure soil moisture at 10 cm, 20 cm, 30 cm, and 40 cm below ground, allowing for a comprehensive profile of the soil's moisture content across different layers. Data from these probes were collected at six positions namely A1, A2, B1, B2, C1, and C2. The measurements of these were then averaged to come up with one reading for each position A, B, and C.

Data Collection Methodology

To ensure comprehensive soil analysis, radar data was collected at various heights of 35 in, 54 in, and 79 in above ground as seen in *Figure 2C*. All measurements were conducted every 2 hours to ensure that any changes in soil moisture were accounted for. For each measurement round, radar data was collected above point A, point B, and point C and to simulate drone movements, radar data was collected in a sweeping motion moving from point A to C as seen in *Figure 3*. This series of collections was done of each of the heights and each of the antenna types as well. Each measurement point was sampled 100 times to ensure data reliability. After radar data was collected, moisture data, along with external temperature, soil temperature and UV index was also recorded.

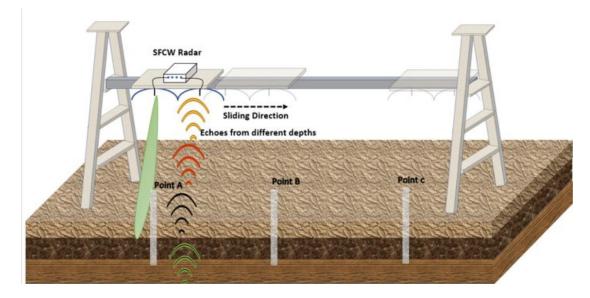


Figure 3: Experimental setup demonstrating each probe and the different positions of the radar

Data Processing and Analysis

The data recorded by the radar system in a .imb format contained amplitude, phase, and complex value information processed using AKELA APRD software and MATLAB. This analysis included the generation of range and delay profiles and an evaluation of signal attenuation across different frequencies, providing insights into the subsurface conditions.

Probe Data Analysis

In this section, we present the analysis of the data gathered from moisture probes inserted at depths of 10 cm, 20 cm, 30 cm, and 40 cm, across various points and times within our test site. The aim is to understand the statistical characteristics of soil moisture, examining the correlation, distribution, and variability across different depths to better understand the soil moisture dynamics.

Descriptive Statistics Overview

Our dataset comprises 153 measurements of each depth, reflecting a robust set of data points that show a detailed examination of soil moisture trends. The average moisture content shows a gradual increase with depth, with values starting at 25.05% at 10cm and rising to 40.24% at 40cm as seen in *Table 1*. This increment suggests a trend of moisture accumulation at deeper soil layers. The standard deviation indicates variability in measurements, which is relatively high at 30 cm, suggesting fluctuating moisture levels possibly influenced by external environmental factors or soil heterogeneity. The range of measurements, marked by the minimum and maximum values, highlight the moisture extremes with particularly notable fluctuations observed at the deepest layer of 40 cm. These fluctuations could be attributed to underlying water tables or distinct soil properties that affect moisture retention. A visualization of these statistics can be seen in *Figure 4*.

	10 cm	20 cm	30 cm	40 cm
Count	153.00	153.00	153.00	153.00
Mean	25.01667	30.25000	34.44902	49.23824
STD	3.72124	4.25835	5.66221	1.79976
Min	19.90000	22.95000	24.35000	46.3000
25%	21.80000	25.25000	27.40000	47.400000
50%	24.00000	31.500000	38.100000	49.050000
75%	27.750000	34.300000	38.450000	50.700000
Max	32.350000	35.400000	39.350000	53.900000

Table 1:	Descriptive	statistics	table for	probe data

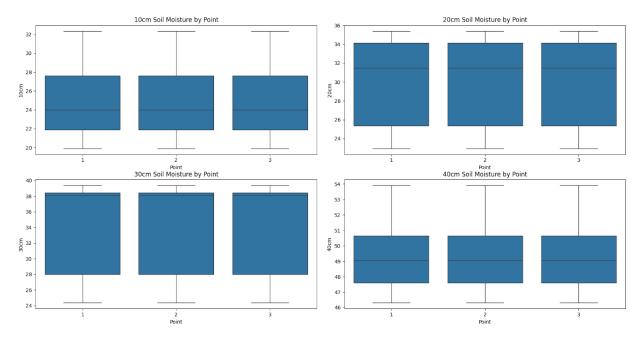


Figure 4: Box plots for probe data by depth

Correlation Analysis

The correlation matrix reveals significant relationships between moisture content at various soil depths. As seen in the heatmap below, a high correlation coefficient of 0.93 between the 20 cm and 30 cm depths indicates similar moisture retention behaviors, likely due to comparable soil textures of capillary movements within these layers as seen in *Figure 5*. Conversely, the correlation between the shallowest (10 cm) and the deepest (40 cm) depths is relatively low at 0.25, suggesting differing moisture dynamics. This disparity may be driven by factors such as surface evaporation affecting the shallower depths and more stable hydrological influences at deeper levels.

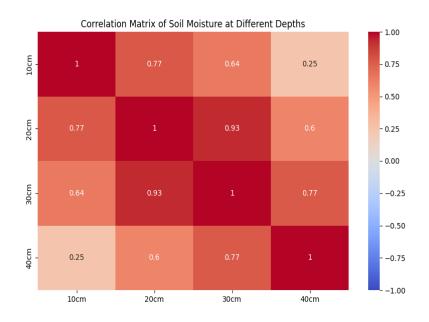


Figure 5: Correlation matrix of soil moisture at different depths

Moisture Distribution Analysis

Figure 5 shows the distribution of moisture content at each depth and further provides insights into the soil's moisture dynamics. Histograms and their corresponding fitted curves for the 10 cm depth suggest a nearly normal distribution with slight skewness towards lower moisture levels. This could show the impact of surface hydration and can possibly be linked to recent precipitation events. In contrast, the distribution at especially 30 cm displays a greater variability and a broader range of moisture content. This coupled with the higher moisture levels found at the 40 cm depth could indicate the presence of subsurface water flows or variations in soil composition that affect moisture distribution.

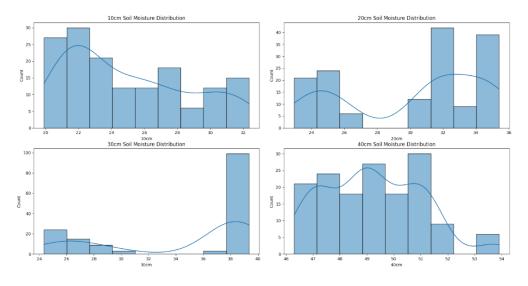


Figure 6: Distribution graph of probe data by depth

Understanding the SFCW Radar

The SFCW radar, like the AKELA AVMU, is a humble yet powerful tool for soil moisture estimation and measurement. By emitting several electromagnetic waves over a series of frequencies in a specified range, it can provide high-resolution data by stepping through frequencies and capturing important information about different materials/layers.

The data collected by the AKELA AVMU consists of data in the frequency domain. Normally, SFCW radars output data in the time domain by applying the Fast Fourier Transform (FFT) onto the vector of N (N = Number of frequency steps) complex numbers for each timestep in the frequency domain resulting in a 1xM (M = number of time steps) matrix. The AKELA AVMU applies the Inverse Fast Fourier Transform (IFFT) onto the timesteps for each frequency step resulting in a 1xN matrix [8] as seen in *Figure 7*. This is essential to understand because due to the use of the AKELA AVMU radar system, important information about depth is lost. However, the frequency domain can still be transformed into the time domain using the IFFT, but information is still lost.

The frequency domain enables detailed analysis of subsurface properties and the converted values of time domain result range bin samples. These samples provide a comprehensive view of the subsurface conditions, which is crucial for accurate soil moisture estimation.

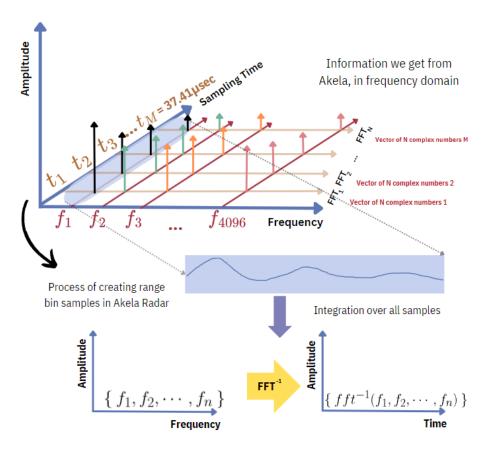


Figure 7: Image depicting how the Akela Radar creates bin samples. This is information that is received in the frequency domain which is then integrated over and an IFFT is performed to extract information in the time domain.

Dataset description

A dataset was created combining the radar data and the actual moisture values provided by the probe data. 4 steps were utilized to create this dataset. Loading radar files, running MATLAB code, reading moisture data from excel files, and combining data.

- Loading Radar Files: The radar files from the Akela radar are saved in a .imb format and are stored into a folder containing all of the measurements and the excel files containing the moisture data.
- Running MATLAB Code: The raw radar data in the .imb format were processed using the python MATLAB API to run a custom MATLAB script provided by our partners at MTRI. This script performs data extraction and FFT to process the data into readable complex numbers for the time and frequency domains.
- Reading Moisture Data: Moisture data is read from the excel files and saved in a separate data frame. This moisture data includes measurements taken at different depths (10cm, 20cm, 30cm, 40cm) and is associated with specific days, hours, and locations (A, B, or C)
- 4. Combining Data: The processed radar data and the moisture data are then combined by matching the day, hour, and location. This process is applied to both the time and frequency domains and results in two datasets with 4104 columns and 153 rows each. Four columns of file identification, 4096 columns of complex values, and four columns of moisture data labels.

A comprehensive dataset that can be applied to machine learning models to predict soil moisture accurately is completed by processing and combining the radar and moisture data. The enables the evaluation and comparison of different models to determine the best for soil moisture estimation using SFCW radar technology.

Machine Learning

What or how many features are important to contribute to soil moisture? Utilizing the dataset created values from 10 to 4096 both sequentially and randomly were tested to reduce the dimensionality of the data.

A variety of machine learning models were utilized and evaluated by their Root Mean Square Error (RMSE) scores. The models included: Linear Regression, Random Forest, Gradient Boost Regression, Support Vector Regressor, Multi-layer Perceptron, Extra Trees, AdaBoost, SVM with a linear kernel, Lasso and Ridge Regression, ElasticNet, and XGBoost. Each model was configured with specific parameters. For example, lasso and elastic net has 2000 iterations to ensure convergence and stability. Hyper parameter tuning was also conducted using grid search to find the best parameters for each model.

50% of the data was utilized to train the data, 20% to validate, and then 30% to test the data. Being able to easily interpret and compare performances was important and as a result, RMSE was utilized to evaluate the model performances. Test accuracy was also utilized to have a more comprehensive understanding of how accurate our models were.

Statistical analysis, mainly standard deviation, was utilized to visualize the significance of the results and the models' performances were analyzed and compared to identify bestperforming models based on RMSE. Test-predictions from each model were also compared to each model and the actual values to visualize what models performed the best.

The most effective models and feature sets for accurate soil moisture estimation were able to be identified and it not only enhanced our understanding of the data but also supported the development of data- driven solutions for sustainable agriculture.

Experimental Results

This section presents the tested performance of the machine learning models in our study, where each model's effectiveness was seen using the RMSE score. After running the machine learning models a few times, a general trend can be seen.

Model	Dataset	Depth	Columns	Train RMSE	Test RMSE
XGBR	Frequency (Raw)	10 cm	50	0.0005370271564425	0.5493709537998298
	()				
XGBR	Range	10 cm	4096	0.0002578200069026	0.8823480925267241
	(Raw)				
Gradient	Range	20 cm	1000	3.673483290261e-05	0.4087374982253327
Boosting	(Raw)				
AdaBoost	Frequency (Raw)	20 cm	10	0.1821391096985867	0.4107473052442718
Ridge	Frequency	30 cm	1000	0.0002178966045078	0.4764156459610246
	(Magnitude)				
Linear	Frequency	30 cm	1000	6.59355753730e-15	0.4766433965577863
Regression	(Magnitude)				

Random	Frequency	40 cm	10	0.5250401770340998	0.5625346378224247
Forest	(Phase)				
Linear	Frequency	40 cm	10	0.5805386950519528	0.5669129392924247
Regression	(Magnitude)				
XGBR	Frequency	All	50	0.0005279905866127	0.8141779276009659
	(Raw)	depths			

Table 2: Best RMSEs per depth and their associated parameters

Appendix A includes graphs of the performance of each model over different numbers of columns used. Where we see the RMSE changes due to the number of columns. We can see that most models perform best with around 1000-1500 columns. Appendix B contains the best test RMSE for each model and depths.

Table 2 shows the best RMSEs per depth and their associated parameters and the lowest test RMSE score was 0.408 performed by the Gradient Boosting model at 20 cm into the ground and only using 1000 out of the 4096 range bins/columns. Other models like AdaBoost at 20 cm into the ground and Ridge Regression at 30 cm into the ground also performed well with a test RMSE score near the 0.41 range. When looking at the entire soil or at the combined 0 to 40cm range, XGBR or XGBoost Regressor performed the best utilizing the complex numbers in the frequency domain and only 50 columns.

The analysis of our models also identifies the most important features in predicting soil moisture. Models that were unable to provide these features included: Support Vector Regressor (SVR), Multi-layer Perceptron (MLP), and SVM with a non-linear kernel. Finding that the first half of the data set contained the most important features. Unfortunately, at this time, a graph

covering all the features was unable to be completed. An interesting finding was that even when the subset of columns was randomized, the first fourth of the dataset still contained the most important features. This applies to both the frequency and time domains and may not make sense since with lower frequency bandwidths, there is lower resolution.

However, from a machine learning point of view, cutting down on the number of parameters from 4096 helps each model significantly due to reduced computational complexity, leading to faster training times and less risk of overfitting. With fewer, more relevant features, each model can generalize better to the new data and improve overall performance.

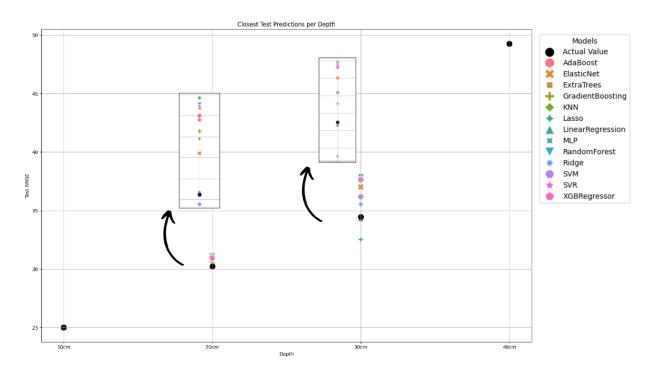


Figure 8: Graph of closest test predictions per depth for each model. Results for 20 cm and 30 cm are zoomed into.

Figure 8 shows a graph of the closest test predictions per depth for each model. As can be seen that for 10 cm and 40 cm, the models generalize and perform relatively well. However, for depths of 20 cm and 30 cm, every time the models were run, there was a small change in which

model performed the best. As the standard deviation of the actual values in 20 cm and 30 cm is larger, it is understood that the models will fluctuate as it is harder to estimate and predict.

When compared with previous studies, the results of this study perform as well or even better than previous methods. This study really highlights the dimension reduction of our data and how in previous studies the number of parameters may have affected the result.

We achieved significant improvements in model performance to estimate soil moisture by focusing on the most relevant features and reducing the dimensionality of our data. Through the integration of these techniques into agricultural management systems, globally better resource utilization, higher crop yields, and more sustainable farming practices can be achieved.

Conclusion and Future Work

With a test RMSE of 0.8141779276009659, the best performing model overall for soil moisture is XGBoost Regressor. An understanding that these transformation techniques applied to different radar signals each have their own benefits. However, when the data is converted into the time domain, using the raw complex values, and when a model is attempting to predict soil moisture for a specific depth, we see a lower RMSE and predictions that are closer to the actual value.

The findings from this study offer many practical applications in the agricultural field. By estimating soil moisture accurately using radar data and machine learning models, optimization of watering crops, reduction of water wastage, and crops receiving the ideal amount of moisture can be done. The scalability of this study is the most valuable point as the integration of radar technology and machine learning in agriculture shows the potential to be utilized in larger agricultural areas and possibly locations with various environmental conditions. This ensures that

this enhances soil moisture estimation can be used by small family farmers to large mega farms. The practicality of this technology makes it an indispensable tool to farmer's arsenal.

This study contributes to the development of non-invasive, soil moisture estimation techniques and by advancing in SFCW radar combined with machine learning algorithms, we push the boundaries of what is possible in agricultural engineering. These steps are important to developing sustainable farming practices to make informed decisions. This approach not only shows the effectiveness of soil moisture estimation but also is a model for future research where environmental and technological challenges require unique solutions.

While this model provides a robust framework for estimating soil moisture, there is a large room for improvement. Future research should focus on refining these models by integrating additional datasets, collecting more data, applying different transformations of the data for the models to make more refined choices. Experimenting with more complex neural networks like CNNs or GNNs could also possibly increase the accuracy of these predictions.

We experienced several challenges during this study, including combating the extended run times for our models as they were iterating over our data multiple times. Some models took up to two days to run on a Turing High Power Computer. This challenge posed significant hurdles in iterating through the data and refining our models. Additionally, the data collection process has been long and not as smooth as anticipated. There are chances of some collections being botched due to simple human error. Despite these obstacles, we were able to address the issue of handling complex data through our Python script, which streamlined the data preprocessing and transformation phases. Another major challenge was the limited size of our dataset. However, we were able to manage these shortcomings and achieved notable results.

23

The techniques in this study also have different applications beyond soil moisture estimation. They can be adapted for other estimation tasks like assessing groundwater levels, predicting drought conditions, or even estimating moisture on extraterrestrial landscapes. Expanding the applications could help address a wide range of agricultural challenges, making it more relevant on a global scale.

As we continue to push the boundary, it is important that research and development continues to focus on innovations that address agricultural challenges. This study is one example of how targeted research results in lots of benefits, and it is important we continue to support research that leads to sustainable practices.

Bibliography

[1] P. Dobriyal, A. Qureshi, R. Badola, and S. A. Hussain, "A review of the methods available for estimating soil moisture and its implications for water resource management," *Journal of Hydrology*, vol. 458–459, pp. 110–117, Aug. 2012, doi:

https://doi.org/10.1016/j.jhydrol.2012.06.021.

[2] Y. Lu, W. Song, J. Lu, X. Wang, and Y. Tan, "An Examination of Soil Moisture Estimation Using Ground Penetrating Radar in Desert Steppe," *Water*, vol. 9, no. 7, p. 521, Jul. 2017, doi: https://doi.org/10.3390/w9070521.

[3] P. K. Srivastava, "Satellite Soil Moisture: Review of Theory and Applications in Water Resources," *Water Resources Management*, vol. 31, no. 10, pp. 3161–3176, Jun. 2017, doi: https://doi.org/10.1007/s11269-017-1722-6.

[4] J. Peng *et al.*, "A roadmap for highresolution satellite soil moisture applications – confronting product characteristics with user requirements," *Remote Sensing of Environment*, vol. 252, p. 112162, 2021, doi: https://doi.org/10.1016/j.rse.2020.112162.

[5] K. Wu *et al.*, "A new drone-borne GPR for soil moisture mapping," *Remote Sensing of Environment*, vol. 235, p. 111456, Dec. 2019, doi: https://doi.org/10.1016/j.rse.2019.111456.

[6] R. L. Carrel and University of Illinois Urbana-Champaign, Analysis and design of the logperiodic dipole antenna. Urbana : Electrical Engineering Research Laboratory, Engineering Experiment Station, University of Illinois, 1961. Accessed: May 17, 2024. [Online]. Available: https://archive.org/details/analysisdesignof52carr/page/n5/mode/1up [7] E. Gazit, "Improved design of the Vivaldi antenna," 2022.

https://www.semanticscholar.org/paper/Improved-design-of-the-Vivaldi-antenna-

Gazit/a61271b41fa05ca33e237f754f7b1cae411fe997

[8] J. Taylor, "Ultra Wideband Radar Technology," Jan. 2000, doi:

https://doi.org/10.1201/9781420037296.

[9] C. M. Steelman and A. L. Endres, "Comparison of Petrophysical Relationships for Soil Moisture Estimation using GPR Ground Waves," *Vadose Zone Journal*, vol. 10, no. 1, p. 270, 2011, doi: https://doi.org/10.2136/vzj2010.0040.

[10] X. Liu, X. Dong, and D. I. Leskovar, "Ground penetrating radar for underground sensing in agriculture: a review," *International Agrophysics*, vol. 30, no. 4, pp. 533–543, Oct. 2016, doi: https://doi.org/10.1515/intag-2016-0010.

[11] R. Wang, T. Yin, E. Zhou, and B. Qi, "What Indicative Information of a Subsurface Wetted Body Can Be Detected by a Ground-Penetrating Radar (GPR)? A Laboratory Study and Numerical Simulation," *Remote Sensing*, vol. 14, no. 18, pp. 4456–4456, Sep. 2022, doi: https://doi.org/10.3390/rs14184456.

[12] M. Pieraccini, L. Miccinesi, and N. Rojhani, "A Doppler Range Compensation for Step-Frequency Continuous-Wave Radar for Detecting Small UAV," *Sensors*, vol. 19, no. 6, p. 1331, Mar. 2019, doi: https://doi.org/10.3390/s19061331.

[13] D. Gleich, "SAR UAV for soil moisture estimation," in 2023 8th AsiaPacific Conference on Synthetic Aperture Radar (APSAR), pp. 1–4. doi:

https://doi.org/10.1109/APSAR58496.2023.10388873.

[14] W. Luo, Y. H. Lee, M. L. M. Yusof, and A. C. Yucel, "A DepthAdaptive Filtering Method for Effective GPR Tree Roots Detection in Tropical Area," *IEEE Transactions on* Instrumentation and Measurement, vol. 72, pp. 1-10, 2023, doi:

https://doi.org/10.1109/TIM.2023.3282654.

[15] D. Gleich, SAR UAV for soil moisture estimation. 2023, pp. 1-4. doi:

https://doi.org/10.1109/APSAR58496.2023.10388873.

[16] W. Luo, "Advanced application of groundpenetrating radar in underground tree root systems detection and mapping," Nanyang Technological University, 2023. doi: https://doi.org/10.32657/10356/170919.

[17] W. Wagner, Vahid Naeimi, Klaus Scipal, Richard de Jeu, and José Martínez-Fernández,
"Soil moisture from operational meteorological satellites," vol. 15, no. 1, pp. 121–131, Feb.
2007, doi: https://doi.org/10.1007/s10040-006-0104-6.

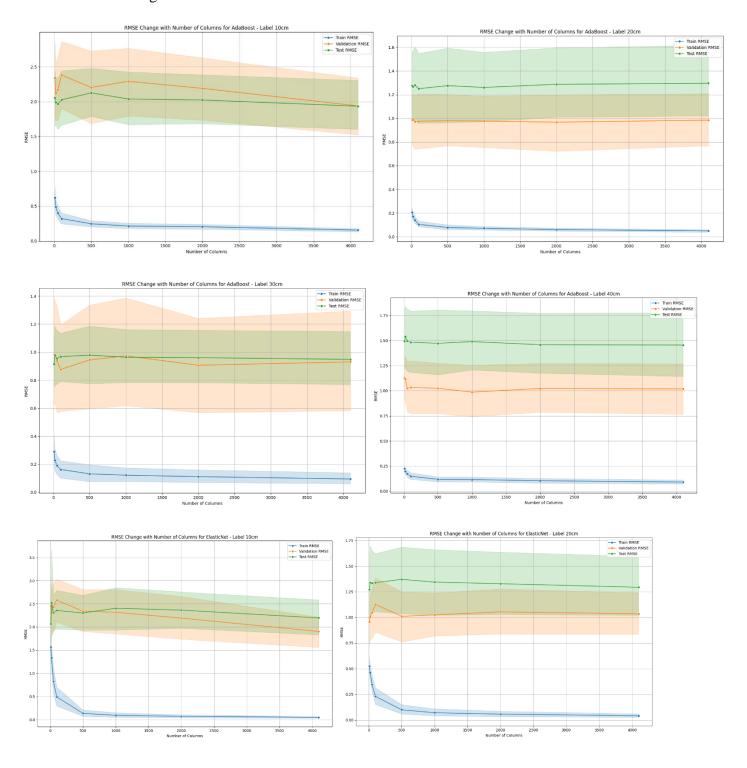
[18] A. Klotzsche, F. Jonard, M. C. Looms, van, and J. A. Huisman, "Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress," *Vadose Zone Journal*, vol. 17, no. 1, p. 180052, 2018, doi: https://doi.org/10.2136/vzj2018.03.0052.

[19] I. Nicolaescu, "Improvement of Stepped-Frequency Continuous Wave Ground-Penetrating Radar Cross-Range Resolution," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 51, no. 1, pp. 85–92, Jan. 2013, doi: https://doi.org/10.1109/tgrs.2012.2198069.

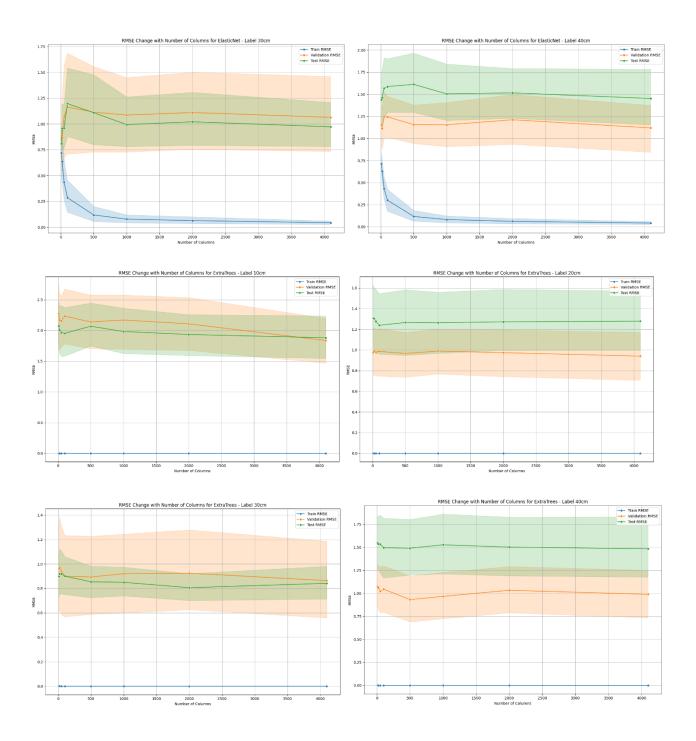
[20] Guido Tronca, Isaak Tsalicoalou, S. Lehner, and G. Catanzariti, "Comparison of pulsed and stepped frequency continuous wave (SFCW) GPR systems," *2018 17th International Conference on Ground Penetrating Radar (GPR)*, Jun. 2018, doi:

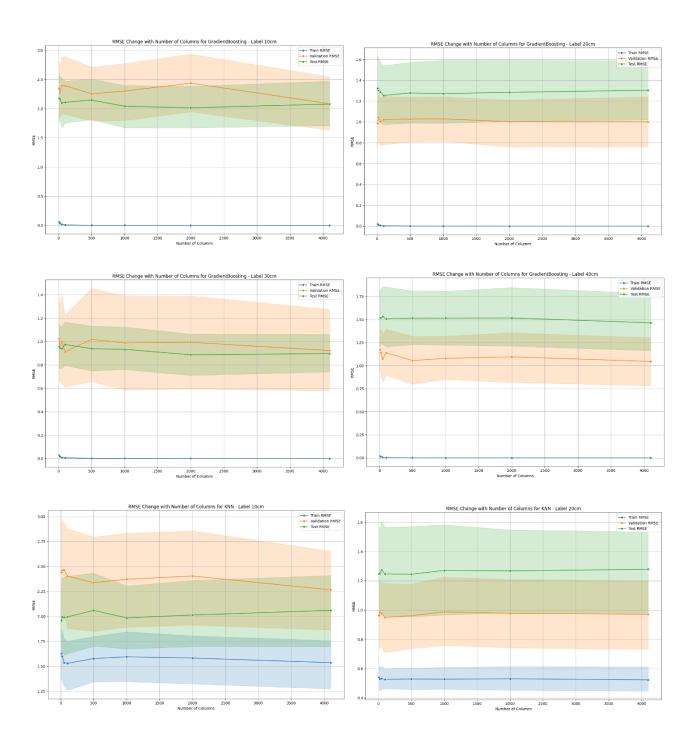
https://doi.org/10.1109/icgpr.2018.8441654.

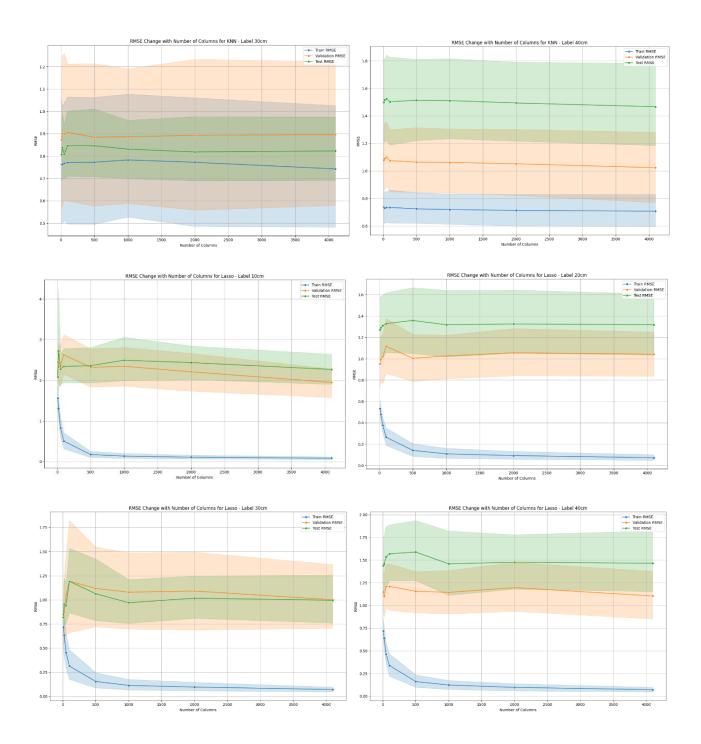
Appendix A

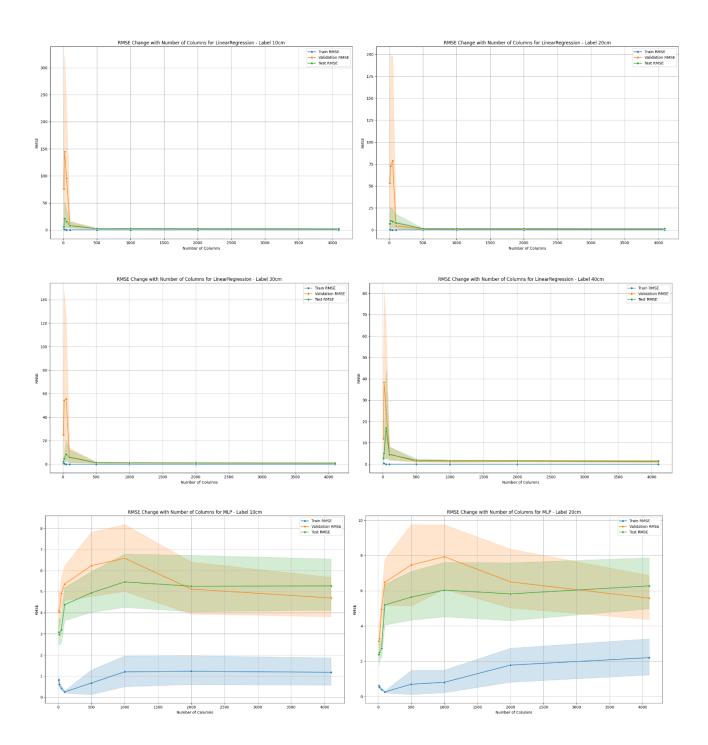


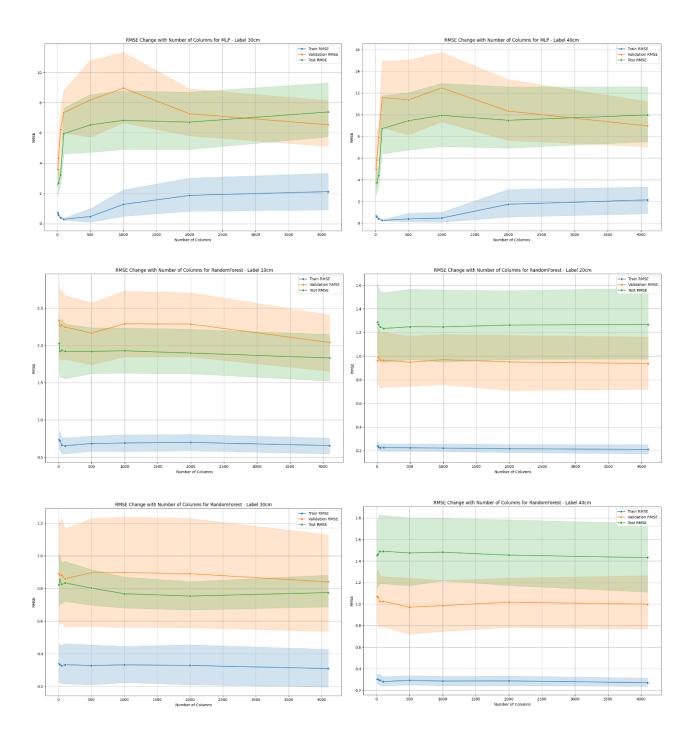
RMSE Change with different number of columns for each model.

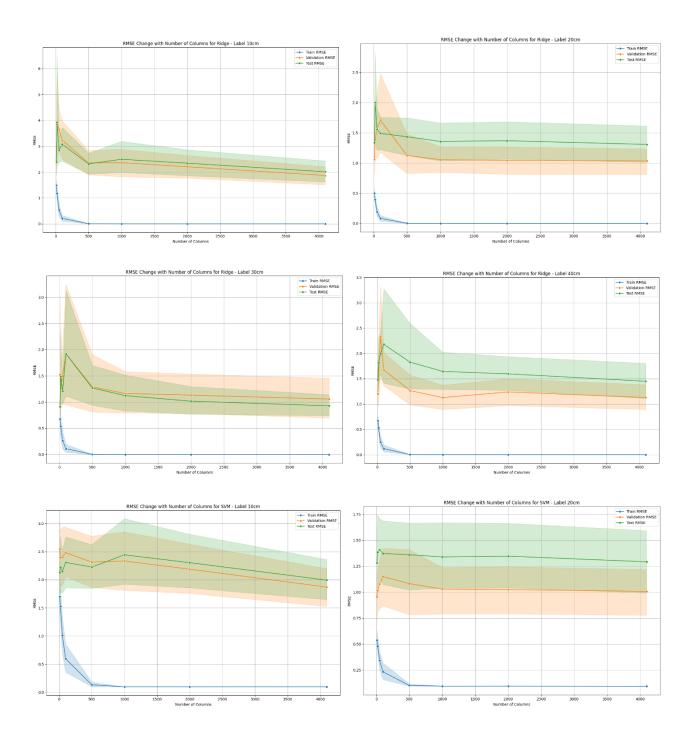


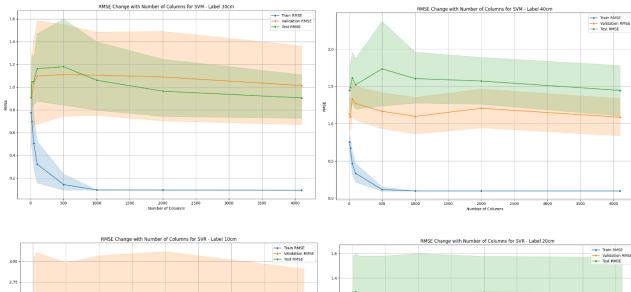




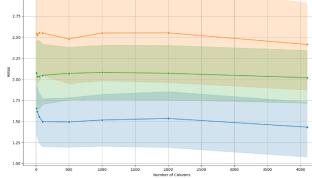


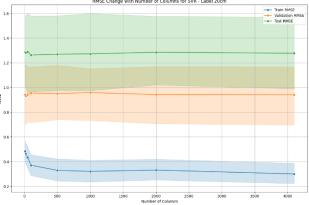


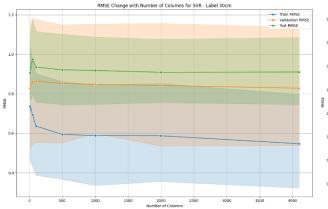


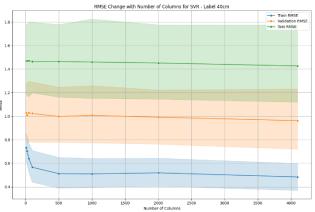


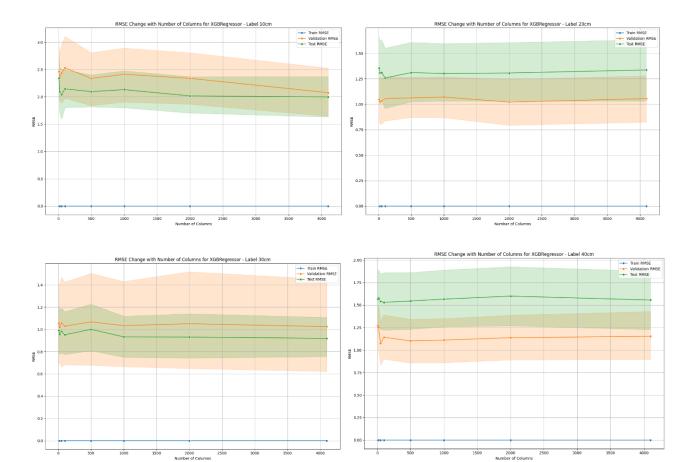
RMSE











Number of Columns

Appendix B

Best test RMSE for each model and depths.

Model	Datas	DataT	Dep	Colu	Ident	Train RMSE	Validation	Test RMSE
	et	ype	th	mns	ifier		RMSE	
LinearReg	Rang	Magn	10c	10	А	2.107864308	3.44185866	2.21876934
ression	e	itude	m			0287165	1426946	27696384
RandomF	Rang	Magn	10c	2000	А	0.70722	3.21534386	2.01323042
orest	e	itude	m				7691284	64539465
GradientB	Rang	Raw	10c	500	А	0.000243	3.78083314	2.26379956
oosting	e		m				6912608	7459756
SVR	Frequ	Magn	10c	20	А	2.186436039	3.58606025	2.39478519
	ency	itude	m			309501	7619171	5795823
MLP	Frequ	Raw	10c	20	А	0.455992518	4.48102193	2.86778463
	ency		m			5053935	7877176	1156147
KNN	Frequ	Magn	10c	2000	А	2.128653069	3.25375744	2.18840124
	ency	itude	m			170477	33260983	2916848
ExtraTree	Rang	Magn	10c	4096	А	3.827305905	2.24496648	2.10413015
S	e	itude	m			9653544e-14	77788256	72740005

AdaBoost	Frequ	Magn	10c	20	А	0.760957824	3.89382712	2.33986278
	ency	itude	m			1066074	4480495	58890664
SVM	Rang	Magn	10c	50	А	0.290754172	3.29127403	2.50226307
	e	itude	m			3005564	9215712	11197023
Lasso	Rang	Raw	10c	100	А	0.091196	3.60716727	2.33640758
	e		m				7704664	4690817
Ridge	Rang	Magn	10c	10	А	2.107980647	3.44655764	2.22651974
	e	itude	m			4688096	2469464	06748527
ElasticNet	Rang	Raw	10c	100	А	0.066719	3.26114864	2.40391130
	e		m				41363837	2631122
XGBRegr	Rang	Magn	10c	1000	А	0.000305	2.53945356	2.20872985
essor	e	itude	m				3178802	6373171
LinearReg	Frequ	Magn	10c	4096	В	1.101404907	2.23167396	1.39350916
ression	ency	itude	m			291834e-14	7999076	5354765
RandomF	Frequ	Phase	10c	100	В	0.853823178	2.05370612	1.09379144
orest	ency		m			9037715	39987504	20720312
GradientB	Frequ	Phase	10c	100	В	0.026424	2.19121339	1.09202397
oosting	ency		m				4986426	62946728

SVR	Frequ	Raw	10c	50	В	2.146749626	2.91275251	1.43742443
	ency		m			961861	5096115	50530974
MLP	Rang	Raw	10c	50	В	0.205618276	3.07725301	1.25986092
	e		m			3292285	47593606	6267239
KNN	Frequ	Phase	10c	20	В	1.956538894	2.12301377	1.14283091
	ency		m			1813668	7628397	4877612
ExtraTree	Frequ	Raw	10c	50	В	2.862452666	2.06759954	1.08490309
S	ency		m			6646523e-14	41574275	18704263
AdaBoost	Rang	Raw	10c	4096	В	0.142643145	2.50130513	1.09557892
	e		m			6227262	69312285	29732804
SVM	Frequ	Phase	10c	100	В	1.134963716	2.56673827	1.01596901
	ency		m			6908189	56013084	61348651
Lasso	Rang	Raw	10c	10	В	1.729768517	3.26529490	1.07183396
	e		m			4770534	56454417	97264014
Ridge	Rang	Raw	10c	10	В	1.454802662	3.13065123	1.34860971
	e		m			934575	6223943	71445373
ElasticNet	Frequ	Phase	10c	100	В	0.989849	2.69289840	1.19833056
	ency		m				64899195	82358183

XGBRegr	Frequ	Raw	10c	50	В	0.000537	2.27976722	0.54937095
essor	ency		m				99171974	37998298
LinearReg	Rang	Raw	10c	4096	С	8.477853123	0.90940861	1.13240680
ression	e		m			686641e-15	04647998	1439504
RandomF	Frequ	Raw	10c	50	С	0.338366972	0.96210865	1.04383587
orest	ency		m			8760948	42069898	9700446
GradientB	Frequ	Raw	10c	50	С	0.008145	0.98764263	0.94253786
oosting	ency		m				09928892	81205606
SVR	Frequ	Phase	10c	20	С	0.775752627	0.88569962	1.19937526
	ency		m			3554938	51891943	87462953
MLP	Frequ	Phase	10c	10	С	1.127653846	4.24480001	1.09766358
	ency		m			967728	9895871	94100266
KNN	Rang	Phase	10c	4096	С	0.833211657	0.99052385	1.11155859
	e		m			7837022	13029356	04485643
ExtraTree	Frequ	Raw	10c	50	С	2.758918487	1.08331450	0.98026680
S	ency		m			9705765e-14	3041465	04171136
AdaBoost	Frequ	Magn	10c	10	С	0.450263704	1.01786643	0.96235215
	ency	itude	m			4880713	55455174	35739888

SVM	Frequ	Raw	10c	50	С	0.717729	0.91782543	1.06437382
	ency		m				95706492	54804758
Lasso	Rang	Phase	10c	1000	С	0.031039	1.06028189	0.944694
	e		m				7330974	
Ridge	Frequ	Raw	10c	20	С	0.672548	0.59269871	0.94174074
	ency		m				76535463	43341296
ElasticNet	Rang	Phase	10c	1000	С	0.017253	0.99948178	1.00195102
	e		m				46587952	39197642
XGBRegr	Rang	Raw	10c	4096	С	0.000258	0.60909406	0.88234809
essor	e		m				22905886	25267241
LinearReg	Frequ	Magn	20c	20	А	0.378371093	1.54057407	1.59341910
ression	ency	itude	m			2659033	39824096	22348685
RandomF	Rang	Phase	20c	500	А	0.158757	1.51701670	2.02720709
orest	e		m				64010829	1974077
GradientB	Rang	Phase	20c	500	А	8.981943713	1.55684550	1.97086234
oosting	e		m			40478e-05	65610771	2997658
SVR	Rang	Phase	20c	2000	А	0.093536	1.49940777	2.04671936
	е		m				96344585	08753083

MLP	Frequ	Raw	20c	10	А	0.524258844	1.31802726	1.83110889
	ency		m			2330631	5987384	50933323
KNN	Rang	Phase	20c	1000	А	0.385846832	1.51732906	2.00016561
	e		m			0172901	7803028	81426597
ExtraTree	Rang	Phase	20c	4096	А	5.920005108	1.51654638	2.04617000
S	e		m			327088e-14	48824428	45450724
AdaBoost	Rang	Magn	20c	4096	А	0.034938	1.59961224	2.06816202
	e	itude	m				45536245	6343467
SVM	Frequ	Magn	20c	500	А	0.096891	1.37333932	1.66526693
	ency	itude	m				31955953	9313675
Lasso	Rang	Raw	20c	2000	А	0.037933	1.36459730	1.99952438
	e		m				59452383	31321208
Ridge	Frequ	Magn	20c	1000	А	0.000365	1.33876535	1.82103364
	ency	itude	m				40668374	9856512
ElasticNet	Frequ	Magn	20c	500	А	0.184562992	1.47351567	1.88557710
	ency	itude	m			3480055	4439232	80728296
XGBRegr	Rang	Phase	20c	500	А	0.000341	1.47119712	1.85921880
essor	e		m				88684276	2450384

LinearReg	Frequ	Magn	20c	1000	В	3.552713678	0.60637507	0.41378054
ression	ency	itude	m			800501e-15	39340434	62133156
RandomF	Rang	Magn	20c	1000	В	0.160984881	0.30174678	0.46805838
orest	e	itude	m			1051725	95438098	97869951
GradientB	Rang	Raw	20c	1000	В	3.673483294	0.54710077	0.40873749
oosting	e		m			400261e-05	16569551	82253327
SVR	Frequ	Magn	20c	500	В	0.248590370	0.43001542	0.47496
	ency	itude	m			2048383	43634931	
MLP	Frequ	Magn	20c	10	В	0.563906298	1.16560022	0.67824776
	ency	itude	m			3708821	18740815	44406166
KNN	Rang	Phase	20c	20	В	0.375310982	0.40006249	0.44401576
	e		m			1645687	51179497	54858675
ExtraTree	Frequ	Magn	20c	500	В	4.320034258	0.40735127	0.45615591
S	ency	itude	m			3474175e-14	65415126	49567178
AdaBoost	Frequ	Raw	20c	10	В	0.182139109	0.42621628	0.41074730
	ency		m			6985867	22228393	52442718
SVM	Frequ	Magn	20c	1000	В	0.094353	0.47359922	0.41915966
	ency	itude	m				37644599	93917491

Lasso	Frequ	Magn	20c	500	В	0.183309372	0.48123691	0.41944534
	ency	itude	m			9342521	10451418	70325814
Ridge	Frequ	Magn	20c	1000	В	0.00017	0.60572222	0.41374244
	ency	itude	m				55046774	78925561
ElasticNet	Frequ	Magn	20c	100	В	0.342269146	0.58768497	0.45236250
	ency	itude	m			7492753	30204745	78240348
XGBRegr	Rang	Magn	20c	1000	В	0.000311	0.36390907	0.424885
essor	e	itude	m				12822854	
LinearReg	Rang	Raw	20c	1000	С	4.470400011	0.90541480	0.94641308
ression	e		m			810908e-15	26354868	35201794
RandomF	Frequ	Phase	20c	50	С	0.301066564	0.90812896	0.886293
orest	ency		m			7143287	59238916	
GradientB	Frequ	Phase	20c	50	С	0.009744	0.99642992	0.90235606
oosting	ency		m				58955368	76393608
SVR	Frequ	Raw	20c	20	С	0.719827061	0.83537744	0.96053473
	ency		m			9770601	13231788	90276726
MLP	Frequ	Phase	20c	10	С	0.829208971	2.30831363	0.90284923
	ency		m			9225334	3299861	82493593

KNN	Rang	Phase	20c	100	C	0.739432965	0.89930528	0.88546597
	e		m			9347837	74302481	90189573
ExtraTree	Frequ	Raw	20c	100	С	2.990054111	1.06465588	0.86815357
S	ency		m			9693475e-14	63078763	22439843
AdaBoost	Frequ	Raw	20c	50	С	0.168782921	0.82486533	0.88456111
	ency		m			7076333	81324111	25248036
SVM	Rang	Phase	20c	20	С	0.704073223	1.26649228	0.948785
	e		m			3747752	44333446	
Lasso	Rang	Raw	20c	2000	С	0.057897	0.89931339	0.89246289
	e		m				61171178	64521848
Ridge	Rang	Raw	20c	1000	С	2.539605874	0.904029	0.94740414
	e		m			1584068e-05		38541256
ElasticNet	Frequ	Phase	20c	4096	С	0.030193	0.95493583	0.88924033
	ency		m				39013084	55287002
XGBRegr	Frequ	Phase	20c	100	С	0.000554	1.40562226	0.68427409
essor	ency		m				2579146	53867348
LinearReg	Frequ	Magn	30c	1000	А	6.593557537	0.56924891	0.47664339
ression	ency	itude	m			388058e-15	55272705	65577863

RandomF	Frequ	Magn	30c	20	А	0.112395877	0.39693584	0.53549483
orest	ency	itude	m			7417378	17930813	54092638
GradientB	Frequ	Magn	30c	20	А	0.009132	0.43442223	0.51414954
oosting	ency	itude	m				56240266	70322257
SVR	Rang	Raw	30c	20	А	0.105702626	0.44867427	0.57895260
	e		m			1819739	12258195	49252334
MLP	Frequ	Magn	30c	10	А	0.471878171	0.55073882	0.71773655
	ency	itude	m			8822956	86498257	45727873
KNN	Rang	Magn	30c	1000	А	0.226304858	0.43181303	0.57709401
	e	itude	m			2971402	82468781	31382424
ExtraTree	Frequ	Magn	30c	20	А	6.627501429	0.37998433	0.50786840
S	ency	itude	m			85318e-14	35586166	07693289
AdaBoost	Frequ	Magn	30c	20	А	0.102915703	0.38110900	0.52743994
	ency	itude	m			3876908	59874371	35796767
SVM	Frequ	Magn	30c	1000	А	0.094661	0.58455571	0.52455881
	ency	itude	m				03011868	39664117
Lasso	Rang	Raw	30c	2000	А	0.037313	0.48368349	0.546532
	e		m				35217516	

Ridge	Frequ	Magn	30c	1000	А	0.000218	0.56920958	0.47641564
	ency	itude	m				67616451	59610246
ElasticNet	Rang	Raw	30c	2000	А	0.020368	0.48395818	0.535805
	e		m				36577643	
XGBRegr	Frequ	Magn	30c	20	А	0.000868	0.41008364	0.532556
essor	ency	itude	m				59413463	
LinearReg	Frequ	Raw	30c	10	В	0.384640106	0.58537281	0.57175719
ression	ency		m			3371706	82240548	25728611
RandomF	Frequ	Phase	30c	2000	В	0.206782931	0.36491167	0.55800176
orest	ency		m			0062887	59573672	41101109
GradientB	Frequ	Phase	30c	2000	В	0.000761	0.271407	0.53176663
oosting	ency		m					48760874
SVR	Rang	Phase	30c	4096	В	0.126497660	0.38051333	0.64600736
	e		m			5664468	22261724	71669917
MLP	Frequ	Magn	30c	20	В	0.52471	1.05797243	0.65980174
	ency	itude	m				22999302	72732697
KNN	Rang	Phase	30c	20	В	0.455170908	0.41567715	0.54190635
	e		m			0725121	83813571	72241967

ExtraTree	Rang	Raw	30c	10	В	5.673228792	0.48371530	0.58393698
S	e		m			5851606e-14	88336462	82530152
AdaBoost	Frequ	Phase	30c	50	В	0.161670327	0.30679067	0.65322158
	ency		m			4746446	14976357	61299303
SVM	Frequ	Phase	30c	500	В	0.093246	0.34571474	0.60449717
	ency		m				34424899	69069736
Lasso	Rang	Raw	30c	4096	В	0.044439	0.60610550	0.55991180
	e		m				14911682	15432273
Ridge	Frequ	Raw	30c	10	В	0.447057521	0.32042201	0.57476657
	ency		m			3863823	94549028	78030551
ElasticNet	Rang	Raw	30c	4096	В	0.025427	0.55623407	0.56435715
	e		m				28340477	50503665
XGBRegr	Frequ	Phase	30c	2000	В	0.000378	0.26225257	0.51672463
essor	ency		m				69149622	53474992
LinearReg	Frequ	Phase	30c	10	С	1.415196046	438.142350	0.94338118
ression	ency		m			5205755	9575957	13896982
RandomF	Frequ	Magn	30c	1000	С	0.714596851	2.00935470	0.79254071
orest	ency	itude	m			1840893	82956755	26766391

GradientB	Frequ	Phase	30c	2000	С	0.003682	2.564081	0.987787
oosting	ency		m					
SVR	Rang	Raw	30c	10	С	1.499690615	1.80596588	1.24794647
	e		m			500126	74717115	62552577
MLP	Frequ	Magn	30c	10	С	1.681627534	1.70299182	0.94070428
	ency	itude	m			5432912	58846923	86618988
KNN	Frequ	Phase	30c	10	С	1.580638935	1.75261233	0.87222416
	ency		m			5081831	59145898	84337814
ExtraTree	Frequ	Raw	30c	2000	С	3.601232189	2.14633214	0.89270568
S	ency		m			3809396e-14	75251744	35822188
AdaBoost	Rang	Magn	30c	4096	С	0.134111005	2.12536620	1.18055825
	e	itude	m			0051103	70240384	57158676
SVM	Frequ	Phase	30c	2000	С	0.098828	2.58291210	1.00410848
	ency		m				4156752	49491515
Lasso	Rang	Raw	30c	10	С	1.171001109	1.84152866	0.97881939
	e		m			0383643	70540156	97207092
Ridge	Frequ	Magn	30c	50	С	1.299516137	1.95342172	0.82239115
	ency	itude	m			1307324	1179948	15386395

ElasticNet	Rang	Raw	30c	10	С	1.199438832	1.82727955	0.95943174
	e		m			158085	9386671	55904602
XGBRegr	Rang	Magn	30c	4096	С	0.000261	1.90846906	0.96052939
essor	e	itude	m				26921876	25563978
LinearReg	Rang	Magn	40c	10	А	0.445715224	1.91930914	1.88242186
ression	e	itude	m			2033577	85563336	56951663
RandomF	Frequ	Magn	40c	10	А	0.233669980	1.63120236	2.20386753
orest	ency	itude	m			3616845	5204878	7988612
GradientB	Frequ	Raw	40c	10	А	0.019908	1.84120185	2.294456
oosting	ency		m				1379633	
SVR	Frequ	Magn	40c	10	А	0.642013	1.59497234	2.24221349
	ency	itude	m				3138777	36036464
MLP	Frequ	Magn	40c	20	А	0.683902	2.02956684	1.94863328
	ency	itude	m				4674328	9693175
KNN	Frequ	Magn	40c	10	А	0.601431163	1.63287323	2.10165113
	ency	itude	m			5128695	45163852	6606643
ExtraTree	Frequ	Magn	40c	10	А	6.177364447	1.57873903	2.29905559
S	ency	itude	m			876705e-14	40078369	4151643

AdaBoost	Frequ	Raw	40c	20	А	0.174504	1.73208715	2.27359176
	ency		m				29171804	66997607
SVM	Rang	Magn	40c	10	А	0.509172758	1.74485594	2.18902548
	e	itude	m			4531212	6507765	5789448
Lasso	Frequ	Phase	40c	10	А	0.604334343	1.57093305	2.205906
	ency		m			2044491	51228462	
Ridge	Rang	Magn	40c	10	А	0.445840387	1.91442187	1.90041973
	e	itude	m			7643065	50643331	71660103
ElasticNet	Rang	Magn	40c	10	А	0.479377135	1.81176584	2.19972086
	e	itude	m			6208341	91092103	04475973
XGBRegr	Frequ	Magn	40c	1000	А	0.000369	1.73337165	2.15613646
essor	ency	itude	m				09510413	84849904
LinearReg	Frequ	Raw	40c	4096	В	1.632359285	1.59454550	0.62642502
ression	ency		m			0267968e-14	55677131	62540167
RandomF	Frequ	Phase	40c	10	В	0.525040177	0.77595147	0.56253463
orest	ency		m			0340998	23872939	78224247
GradientB	Frequ	Phase	40c	20	В	0.05938	0.82829207	0.58940442
oosting	ency		m				26352428	43176602

SVR	Rang	Raw	40c	100	В	0.828399315	0.79868103	1.05985362
	e		m			9775306	13677444	57903295
MLP	Frequ	Phase	40c	10	В	1.262579634	1.43816765	0.81376
	ency		m			668867	9888509	
KNN	Rang	Raw	40c	100	В	1.042519650	0.80703934	0.86832453
	e		m			7607035	22875971	61038703
ExtraTree	Rang	Phase	40c	100	В	5.384051330	0.76836510	0.99367450
S	e		m			5986836e-14	68990552	97113018
AdaBoost	Rang	Phase	40c	100	В	0.187758512	0.51637968	1.01894880
	e		m			6791617	13741183	3737354
SVM	Frequ	Raw	40c	4096	В	0.097979	1.46462466	0.68308925
	ency		m				03175772	40768214
Lasso	Frequ	Raw	40c	4096	В	0.184638871	1.31742106	0.68268273
	ency		m			3949585	9226213	41480048
Ridge	Frequ	Raw	40c	4096	В	6.383118119	1.59445316	0.62645361
	ency		m			147653e-05	48221385	64969675
ElasticNet	Frequ	Raw	40c	4096	В	0.110063802	1.48982534	0.64710721
	ency		m			6756353	69663705	81601092

XGBRegr	Frequ	Phase	40c	100	В	0.000562	1.07361764	1.05508805
essor	ency		m				10252318	74283052
LinearReg	Frequ	Magn	40c	10	С	0.580538695	0.59867572	0.56691293
ression	ency	itude	m			0519528	29586451	92924247
RandomF	Rang	Phase	40c	10	С	0.291993305	0.53992048	0.70199463
orest	e		m			1934369	02561152	58413245
GradientB	Rang	Phase	40c	10	С	0.014683	0.64267454	0.63690758
oosting	e		m				16430137	00351799
SVR	Frequ	Magn	40c	4096	С	0.366481558	0.39106014	0.74114260
	ency	itude	m			2387216	64390477	55306967
MLP	Frequ	Phase	40c	10	С	1.147735682	5.51990709	0.96796006
	ency		m			2983458	4243267	39560508
KNN	Rang	Magn	40c	2000	С	0.602916522	0.55223409	0.79047454
	e	itude	m			6906085	89109621	10195102
ExtraTree	Frequ	Magn	40c	4096	С	6.766756459	0.45043870	0.63230619
S	ency	itude	m			892375e-14	97597289	56045962
AdaBoost	Rang	Phase	40c	10	С	0.213857587	0.55427882	0.63460665
	e		m			6770671	75500713	34973941

SVM	Frequ	Phase	40c	1000	С	0.0989	0.50648597	0.65208457
	ency		m				23575672	19682261
Lasso	Frequ	Phase	40c	1000	С	0.071252	0.75172134	0.60753372
	ency		m				94132432	45457948
Ridge	Rang	Magn	40c	100	С	0.000637	0.816214	0.60039104
	e	itude	m					40111043
ElasticNet	Rang	Raw	40c	20	С	0.316218725	0.25484910	0.62221913
	e		m			8558846	36490274	23272201
XGBRegr	Rang	Phase	40c	100	С	0.000381	0.38208900	0.58056226
essor	e		m				18373016	96748597
LinearReg	Rang	Magn	All	10	А	1.096641896	2.11691690	1.90196852
ression	e	itude	Dep			9789136	83021546	86727608
			ths					
RandomF	Rang	Magn	All	500	А	0.400597281	1.60995959	1.90168375
orest	e	itude	Dep			9324575	28547323	84591857
			ths					
GradientB	Rang	Magn	All	2000	А	0.000116	2.19206315	1.98897251
oosting	e	itude	Dep				5483339	9845402
			ths					

SVR	Frequ	Magn	All	20	А	1.151971964	2.11143646	1.99662076
	ency	itude	Dep			8834206	21721635	5059247
			ths					
MLP	Frequ	Magn	All	10	А	1.095905854	2.17265076	2.34171949
	ency	itude	Dep			187924	6221704	9358615
			ths					
KNN	Frequ	Magn	All	2000	А	1.121327338	2.00830074	1.93062732
	ency	itude	Dep			469905	31657243	68033896
			ths					
ExtraTree	Rang	Magn	All	1000	А	5.739737313	1.55737902	1.96056041
S	e	itude	Dep			350087e-14	06826577	4938789
			ths					
AdaBoost	Rang	Magn	All	2000	А	0.109742112	1.73344351	1.99725486
	e	itude	Dep			4542717	87238233	85839056
			ths					
SVM	Rang	Magn	All	50	А	0.166834	2.02221879	2.07895611
	e	itude	Dep				09579774	40906416
			ths					

Lasso	Frequ	Phase	All	10	А	1.047965109	1.86228050	1.98775683
	ency		Dep			806155	83457084	12181528
			ths					
Ridge	Rang	Magn	All	10	А	1.096712549	2.11771733	1.90759963
	e	itude	Dep			689246	0144321	95494863
			ths					
ElasticNet	Frequ	Phase	All	10	А	1.046954001	1.86535137	1.987495
	ency		Dep			0821945	41296268	
			ths					
XGBRegr	Rang	Magn	All	1000	А	0.000299	1.79509298	1.99111275
essor	e	itude	Dep				94490508	42788016
			ths					
LinearReg	Frequ	Magn	All	4096	В	7.799355160	1.46733402	0.90719362
ression	ency	itude	Dep			121197e-15	28997305	59224798
			ths					
RandomF	Frequ	Phase	All	50	В	0.528527967	1.12206004	0.86334172
orest	ency		Dep			5665243	39314743	24294822
			ths					

GradientB	Frequ	Phase	All	100	В	0.016143	1.22560228	0.84916595
oosting	ency		Dep				30569413	39570483
			ths					
SVR	Frequ	Raw	All	50	В	1.253184651	1.54145573	1.02848427
	ency		Dep			2599332	2673341	29670478
			ths					
MLP	Frequ	Magn	All	10	В	0.961276	2.18308545	1.30922084
	ency	itude	Dep				6319924	41515976
			ths					
KNN	Frequ	Phase	All	20	В	1.174683172	1.26942777	0.84503513
	ency		Dep			4152498	4629183	24057479
			ths					
ExtraTree	Frequ	Phase	All	100	В	0.001532	0.98028126	0.89337947
S	ency		Dep				14563704	73918865
			ths					
AdaBoost	Frequ	Phase	All	4096	В	0.143336905	1.12153682	0.89195419
	ency		Dep			0372465	74893007	34649378
			ths					

SVM	Frequ	Magn	All	4096	В	0.096824	1.38909050	0.91225336
	ency	itude	Dep				2015466	13398404
			ths					
Lasso	Frequ	Raw	All	10	В	1.212836271	1.32039349	0.947461
	ency		Dep			6991623	6695868	
			ths					
Ridge	Frequ	Magn	All	4096	В	4.794470820	1.46728809	0.90716857
	ency	itude	Dep			201292e-05	73245186	74954706
			ths					
ElasticNet	Frequ	Raw	All	10	В	1.210772589	1.32543447	0.94038667
	ency		Dep			3222607	0368175	20350724
			ths					
XGBRegr	Frequ	Raw	All	50	В	0.000528	1.27774592	0.81417792
essor	ency		Dep				53123535	76009659
			ths					
LinearReg	Frequ	Phase	All	1000	С	6.045705523	1.44069770	1.04947614
ression	ency		Dep			364516e-15	8486255	47791523
			ths					

RandomF	Frequ	Magn	All	2000	С	0.455183998	1.20355738	0.999281
orest	ency	itude	Dep			2053648	0097643	
			ths					
GradientB	Frequ	Magn	All	4096	С	0.000913	1.13818206	1.02636040
oosting	ency	itude	Dep				04991737	12717662
			ths					
SVR	Frequ	Phase	All	20	С	0.981863155	1.11917518	1.10955341
	ency		Dep			0494034	28498022	39397634
			ths					
MLP	Frequ	Phase	All	10	С	1.078745922	1.80999258	1.09127455
	ency		Dep			3363216	5717141	07838817
			ths					
KNN	Frequ	Phase	All	10	С	1.037482262	1.18584226	0.97266065
	ency		Dep			2312363	39626227	51105074
			ths					
ExtraTree	Frequ	Phase	All	2000	С	4.339064446	1.37397191	1.05084741
s	ency		Dep			5454556e-14	9632095	84556875
			ths					

AdaBoost	Frequ	Phase	All	10	С	0.532385072	1.46034010	1.09408074
	ency		Dep			9572529	2100942	56154686
			ths					
SVM	Frequ	Phase	All	1000	С	0.099514	1.42680324	1.04294717
	ency		Dep				43735466	13856593
			ths					
Lasso	Frequ	Phase	All	20	С	0.894852	1.25759638	1.00159956
	ency		Dep				03847243	03771926
			ths					
Ridge	Frequ	Phase	All	20	С	0.840529155	4.07603780	0.99607387
	ency		Dep			7038305	7313566	03352212
			ths					
ElasticNet	Frequ	Phase	All	20	С	0.891541	1.35903093	1.00030510
	ency		Dep				69221352	19616456
			ths					
XGBRegr	Rang	Magn	All	4096	С	0.000282	1.23268225	1.05929839
essor	e	itude	Dep				72673526	26121602
			ths					