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Abstract 

This study presents a novel approach using Stepped Frequency Continuous Wave 

(SFCW) radar technology and machine learning models to develop a non-invasive, cost-effective 

method for soil moisture estimation. Using the Akela AVMU radar system, we collected and 

processed radar data, which was then combined with ground truth data moisture data collected 

using the PR2-Probe by Delta- T Devices. Various machine learning models were applied to data 

the, with Gradient Boosting Regressor achieving the best overall model performance with a test 

RMSE of 0.408 when predicting soil moisture at the depth of 20 cm and XGBoost Regressor 

achieving a test RMSE of 0.814 which is the best overall for the depths of 0 to 40 cm combined. 

Despite challenges like extended model run times, complex data handling, and limited data size, 

our study achieved significant improvements in non-invasive soil moisture prediction methods. 

This research helps open avenues for broader applications in agriculture such as ground water 

level assessment and drought prediction, contributing to sustainable agricultural practices.  
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Introduction 

Accurate soil moisture estimation and measurement is important for optimal irrigation, 

crop yields, and soil health. Soil moisture estimation not only allows for efficient usage of water, 

but also supports sustainable practices [1]. Recently, ground-penetrating radar (GPR) has shown 

promise for soil moisture and characteristics measurements due to its non-invasive methods to 

collect data over a large area [2]. However, the setup, radar configuration, and the environment 

introduce noise and interference to the GPR data. Therefore, it is important to take account of 

them in the GPR data analysis process. 

 

 

Figure 1: Image depicting an SFCW radar over a mega farm creating soil moisture maps.  

Project Objectives 

This study aims to develop and implement a machine learning-based model to analyze 

soil moisture data collected using a Stepped Frequency Continuous Wave (SFCW) radar called 

AKELA AVMU. Through the combination of radar technology and machine learning models, 
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we aim to provide a cost-friendly, non-invasive, and high-resolution method to estimate soil 

moisture to enable more sustainable water resource usage. 

Task 1: Data Collection 

To develop a method for collecting soil moisture radar data using the AKELA AVMU 

radar system and ground truth soil moisture data using the Delta-T Devices PR2 Profile Probe 

while also maintaining accurate and efficient data collection. 

Task 2: Probe Data Analysis 

Analyze the collected ground truth soil moisture data. 

Task 3: Understand SFCW and Extract Information 

Gain an understanding of the SFCW radar technology and extract relevant information 

from the soil moisture radar data, such as raw/complex values, magnitude, and phase. 

Task 4: Dataset Creation 

Create a dataset that contains the processed radar data and ground truth soil moisture data 

while making sure it is organized and ready for machine learning applications. 

Task: 5 Machine Learning 

Run and evaluate different machine learning models (Linear Regression, Random Forest, 

Gradient Boost Regression, Support Vector Regressor, Multi-layer Perceptron, etc) to identify 

the most efficient and accurate model for estimating soil moisture at different depths, different 

datasets, and different radar data subsets. 
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Background  

The one key element in agriculture, environmental monitoring, geology, and many others 

is soil moisture and being able to monitor it allows stakeholders like farmers to make well 

informed irrigation decisions to improve water management. Some methods of measuring soil 

moisture range from satellite imagery to soil sampling and for many reasons, they are limited. 

Examples include, low-resolution imaging, lack of depth penetration, invasive, and cost [3]. This 

study aims to overcome these challenges. 

As humans increase agricultural productivity, water tends to become scarce and comes 

the need for efficient and accurate estimation of soil moisture. As stated before, many of the 

current methodologies have drawbacks: satellite imagery lacks resolution and does not reach the 

root zone, probing the soil is invasive, expensive, and does not scale well [4]. Advances in the 

field of subsurface sensing demonstrate the power of GPR. The SFCW radar stands out due to its 

high resolution and ability to penetrate many subsurface materials [5]. 

There are still many challenges when estimating soil moisture using a SFCW even if 

radar technology has become more advanced. The data received is usually in-phase and 

quadrature elements and needs to be processed. In addition, data handling and analysis is more 

complex due to manual collection of data and data being disorganized. We evaluate several 

machine learning models using RMSE and through the transformation of radar values into 

different attributes (raw/complex (real and imaginary), magnitude, and phase) to set new 

benchmarks in the field of soil moisture estimation and GPR data analysis. 
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Collaborating with the Michigan Tech Research Institute (MTRI) and Worcester Polytechnic 

Institute (WPI), we capture data from realistic agricultural settings to improve the accuracy of 

soil moisture estimation.  
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Data Collection and Experimental Setup 

Site Setup 

To conduct our experiments, we chose a plot of land at 87 Prescott St in Worcester, 

Massachusetts. Since the native soil in the area contained large, hard rocks, we excavated the site 

so that these rocks would not present themselves as an interference in our measurements. The 

soil was replaced with a uniformly compacted layer of loam to mimic long-term farmland soil 

conditions. This site was then left to settle naturally for several days after the compaction process 

to stabilize the structure, thereby minimizing any potential discrepancies in data due to soil 

instability.  

Radar System Configuration 

Our study utilized the Akela AVMU radar which is a version of the Stepped Frequency 

Continuous Wave (SFCW) radar system renowned for its precise and dependable data collection 

capabilities. The radar was set to operate over a frequency range of 400 MHz to 2 GHz, a 

common spectrum in GPR applications due to its optimal balance between depth penetration and 

resolution. The frequency response of the site was measured by stepping the transmitter through 

each frequency incrementally, allowing the radar to capture echoes from the scene and mix them 

with the transmitted signal to compute complex values indicative of the subsurface 

characteristics. This configuration provided an estimated penetration depth of up to 400 meters in 

a vacuum and was optimal for our setup. 
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Antenna Setup 

Two types of antennas were employed: the Log Periodic (LP) Antenna [6] and the 

Vivaldi Antenna [7] as seen in Figure 2A and Figure 2B. The LP antenna is known for its broad 

frequency bandwidth and consistent radiation pattern. The Vivaldi antenna is characterized by its 

planar look with a tapered slot and offers ultra-wide band frequency coverage and high gain. 

This structure makes it suitable for multiple operational frequencies with minimal signal loss.  

 

Figure 2:  Log periodic antenna (co-pole) and ladder structure (Fig. A), Vivaldi antenna (cross-pole) wooden structure(Fig. B), 

Customized wooden structure with three heights h1,h2,h3(Fig. C)  

 

 



7 

 

Moisture Probe 

For ground truth data collection, the Probe-PR2 and HH2 moisture meter from Delta-T 

Devices were used. These instruments were used to measure soil moisture at 10 cm, 20 cm, 30 

cm, and 40 cm below ground, allowing for a comprehensive profile of the soil’s moisture content 

across different layers. Data from these probes were collected at six positions namely A1, A2, 

B1, B2, C1, and C2. The measurements of these were then averaged to come up with one reading 

for each position A, B, and C.  

Data Collection Methodology 

To ensure comprehensive soil analysis, radar data was collected at various heights of 35 

in, 54 in, and 79 in above ground as seen in Figure 2C. All measurements were conducted every 

2 hours to ensure that any changes in soil moisture were accounted for. For each measurement 

round, radar data was collected above point A, point B, and point C and to simulate drone 

movements, radar data was collected in a sweeping motion moving from point A to C as seen in 

Figure 3. This series of collections was done of each of the heights and each of the antenna types 

as well. Each measurement point was sampled 100 times to ensure data reliability. After radar 

data was collected, moisture data, along with external temperature, soil temperature and UV 

index was also recorded.  
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Figure 3: Experimental setup demonstrating each probe and the different positions of the radar 

 

Data Processing and Analysis 

The data recorded by the radar system in a .imb format contained amplitude, phase, and 

complex value information processed using AKELA APRD software and MATLAB. This 

analysis included the generation of range and delay profiles and an evaluation of signal 

attenuation across different frequencies, providing insights into the subsurface conditions.  

 

 

  



9 

 

Probe Data Analysis 

In this section, we present the analysis of the data gathered from moisture probes inserted 

at depths of 10 cm, 20 cm, 30 cm, and 40 cm, across various points and times within our test site. 

The aim is to understand the statistical characteristics of soil moisture, examining the correlation, 

distribution, and variability across different depths to better understand the soil moisture 

dynamics. 

Descriptive Statistics Overview 

Our dataset comprises 153 measurements of each depth, reflecting a robust set of data 

points that show a detailed examination of soil moisture trends. The average moisture content 

shows a gradual increase with depth, with values starting at 25.05% at 10cm and rising to 

40.24% at 40cm as seen in Table 1. This increment suggests a trend of moisture accumulation at 

deeper soil layers. The standard deviation indicates variability in measurements, which is 

relatively high at 30 cm, suggesting fluctuating moisture levels possibly influenced by external 

environmental factors or soil heterogeneity. The range of measurements, marked by the 

minimum and maximum values, highlight the moisture extremes with particularly notable 

fluctuations observed at the deepest layer of 40 cm. These fluctuations could be attributed to 

underlying water tables or distinct soil properties that affect moisture retention. A visualization 

of these statistics can be seen in Figure 4. 
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10 cm 20 cm 30 cm 40 cm 

Count 153.00 153.00 153.00 153.00 

Mean 25.01667 30.25000 34.44902 49.23824 

STD 3.72124 4.25835 5.66221 1.79976 

Min 19.90000 22.95000 24.35000 46.3000 

25% 21.80000 25.25000 27.40000 47.400000 

50% 24.00000 31.500000 38.100000 49.050000 

75% 27.750000 34.300000 38.450000 50.700000 

Max 32.350000 35.400000 39.350000 53.900000 

Table 1: Descriptive statistics table for probe data 
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Figure 4: Box plots for probe data by depth 

Correlation Analysis 

The correlation matrix reveals significant relationships between moisture content at 

various soil depths. As seen in the heatmap below, a high correlation coefficient of 0.93 between 

the 20 cm and 30 cm depths indicates similar moisture retention behaviors, likely due to 

comparable soil textures of capillary movements within these layers as seen in Figure 5. 

Conversely, the correlation between the shallowest (10 cm) and the deepest (40 cm) depths is 

relatively low at 0.25, suggesting differing moisture dynamics. This disparity may be driven by 

factors such as surface evaporation affecting the shallower depths and more stable hydrological 

influences at deeper levels.  
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Figure 5: Correlation matrix of soil moisture at different depths 

Moisture Distribution Analysis 

Figure 5 shows the distribution of moisture content at each depth and further provides 

insights into the soil’s moisture dynamics. Histograms and their corresponding fitted curves for 

the 10 cm depth suggest a nearly normal distribution with slight skewness towards lower 

moisture levels. This could show the impact of surface hydration and can possibly be linked to 

recent precipitation events. In contrast, the distribution at especially 30 cm displays a greater 

variability and a broader range of moisture content. This coupled with the higher moisture levels 

found at the 40 cm depth could indicate the presence of subsurface water flows or variations in 

soil composition that affect moisture distribution.  
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Figure 6: Distribution graph of probe data by depth 
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Understanding the SFCW Radar 

The SFCW radar, like the AKELA AVMU, is a humble yet powerful tool for soil 

moisture estimation and measurement. By emitting several electromagnetic waves over a series 

of frequencies in a specified range, it can provide high-resolution data by stepping through 

frequencies and capturing important information about different materials/layers. 

The data collected by the AKELA AVMU consists of data in the frequency domain. 

Normally, SFCW radars output data in the time domain by applying the Fast Fourier Transform 

(FFT) onto the vector of N (N = Number of frequency steps) complex numbers for each timestep 

in the frequency domain resulting in a 1xM (M = number of time steps) matrix. The AKELA 

AVMU applies the Inverse Fast Fourier Transform (IFFT) onto the timesteps for each frequency 

step resulting in a 1xN matrix [8] as seen in Figure 7. This is essential to understand because due 

to the use of the AKELA AVMU radar system, important information about depth is lost. 

However, the frequency domain can still be transformed into the time domain using the IFFT, 

but information is still lost.  

The frequency domain enables detailed analysis of subsurface properties and the 

converted values of time domain result range bin samples. These samples provide a 

comprehensive view of the subsurface conditions, which is crucial for accurate soil moisture 

estimation. 
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Figure 7: Image depicting how the Akela Radar creates bin samples. This is information that is received in the frequency domain 

which is then integrated over and an IFFT is performed to extract information in the time domain. 
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Dataset description 

A dataset was created combining the radar data and the actual moisture values provided 

by the probe data. 4 steps were utilized to create this dataset. Loading radar files, running 

MATLAB code, reading moisture data from excel files, and combining data. 

1. Loading Radar Files: The radar files from the Akela radar are saved in a .imb format 

and are stored into a folder containing all of the measurements and the excel files 

containing the moisture data.  

2. Running MATLAB Code: The raw radar data in the .imb format were processed using 

the python MATLAB API to run a custom MATLAB script provided by our partners at 

MTRI. This script performs data extraction and FFT to process the data into readable 

complex numbers for the time and frequency domains. 

3. Reading Moisture Data: Moisture data is read from the excel files and saved in a 

separate data frame. This moisture data includes measurements taken at different depths 

(10cm, 20cm, 30cm, 40cm) and is associated with specific days, hours, and locations (A, 

B, or C) 

4. Combining Data: The processed radar data and the moisture data are then combined by 

matching the day, hour, and location.  This process is applied to both the time and 

frequency domains and results in two datasets with 4104 columns and 153 rows each. 

Four columns of file identification, 4096 columns of complex values, and four columns 

of moisture data labels.  

A comprehensive dataset that can be applied to machine learning models to predict soil 

moisture accurately is completed by processing and combining the radar and moisture data. The 
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enables the evaluation and comparison of different models to determine the best for soil moisture 

estimation using SFCW radar technology.  
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Machine Learning 

What or how many features are important to contribute to soil moisture? Utilizing the 

dataset created values from 10 to 4096 both sequentially and randomly were tested to reduce the 

dimensionality of the data.  

A variety of machine learning models were utilized and evaluated by their Root Mean 

Square Error (RMSE) scores. The models included: Linear Regression, Random Forest, Gradient 

Boost Regression, Support Vector Regressor, Multi-layer Perceptron, Extra Trees, AdaBoost, 

SVM with a linear kernel, Lasso and Ridge Regression, ElasticNet, and XGBoost. Each model 

was configured with specific parameters. For example, lasso and elastic net has 2000 iterations to 

ensure convergence and stability. Hyper parameter tuning was also conducted using grid search 

to find the best parameters for each model. 

50% of the data was utilized to train the data, 20% to validate, and then 30% to test the 

data. Being able to easily interpret and compare performances was important and as a result, 

RMSE was utilized to evaluate the model performances. Test accuracy was also utilized to have 

a more comprehensive understanding of how accurate our models were. 

Statistical analysis, mainly standard deviation, was utilized to visualize the significance 

of the results and the models’ performances were analyzed and compared to identify best-

performing models based on RMSE. Test-predictions from each model were also compared to 

each model and the actual values to visualize what models performed the best.  

The most effective models and feature sets for accurate soil moisture estimation were 

able to be identified and it not only enhanced our understanding of the data but also supported 

the development of data- driven solutions for sustainable agriculture. 

 



19 

 

Experimental Results 

This section presents the tested performance of the machine learning models in our study, 

where each model’s effectiveness was seen using the RMSE score. After running the machine 

learning models a few times, a general trend can be seen. 

 

Model Dataset Depth Columns Train RMSE Test RMSE 

XGBR Frequency 

(Raw) 

10 cm 50 0.0005370271564425 0.5493709537998298 

XGBR Range 

(Raw) 

10 cm 4096 0.0002578200069026 0.8823480925267241 

Gradient 

Boosting 

Range  

(Raw) 

20 cm 1000 3.673483290261e-05 0.4087374982253327 

AdaBoost Frequency 

(Raw) 

20 cm 10 0.1821391096985867 0.4107473052442718 

Ridge Frequency 

(Magnitude) 

30 cm 1000 0.0002178966045078 0.4764156459610246 

Linear 

Regression 

Frequency 

(Magnitude) 

30 cm 1000 6.59355753730e-15 0.4766433965577863 
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Random 

Forest 

Frequency 

(Phase) 

40 cm 10 0.5250401770340998 0.5625346378224247 

Linear 

Regression 

Frequency 

(Magnitude) 

40 cm 10 0.5805386950519528 0.5669129392924247 

XGBR Frequency 

(Raw) 

All 

depths 

50 0.0005279905866127 0.8141779276009659 

 
Table 2: Best RMSEs per depth and their associated parameters  

Appendix A includes graphs of the performance of each model over different numbers of 

columns used. Where we see the RMSE changes due to the number of columns. We can see that 

most models perform best with around 1000-1500 columns. Appendix B contains the best test 

RMSE for each model and depths. 

Table 2 shows the best RMSEs per depth and their associated parameters and the lowest 

test RMSE score was 0.408 performed by the Gradient Boosting model at 20 cm into the ground 

and only using 1000 out of the 4096 range bins/columns. Other models like AdaBoost at 20 cm 

into the ground and Ridge Regression at 30 cm into the ground also performed well with a test 

RMSE score near the 0.41 range. When looking at the entire soil or at the combined 0 to 40cm 

range, XGBR or XGBoost Regressor performed the best utilizing the complex numbers in the 

frequency domain and only 50 columns.  

The analysis of our models also identifies the most important features in predicting soil 

moisture. Models that were unable to provide these features included: Support Vector Regressor 

(SVR), Multi-layer Perceptron (MLP), and SVM with a non-linear kernel. Finding that the first 

half of the data set contained the most important features. Unfortunately, at this time, a graph 
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covering all the features was unable to be completed. An interesting finding was that even when 

the subset of columns was randomized, the first fourth of the dataset still contained the most 

important features. This applies to both the frequency and time domains and may not make sense 

since with lower frequency bandwidths, there is lower resolution.  

However, from a machine learning point of view, cutting down on the number of 

parameters from 4096 helps each model significantly due to reduced computational complexity, 

leading to faster training times and less risk of overfitting. With fewer, more relevant features, 

each model can generalize better to the new data and improve overall performance. 

 

Figure 8: Graph of closest test predictions per depth for each model. Results for 20 cm and 30 cm are zoomed into. 

 

Figure 8 shows a graph of the closest test predictions per depth for each model. As can be 

seen that for 10 cm and 40 cm, the models generalize and perform relatively well. However, for 

depths of 20 cm and 30 cm, every time the models were run, there was a small change in which 
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model performed the best. As the standard deviation of the actual values in 20 cm and 30 cm is 

larger, it is understood that the models will fluctuate as it is harder to estimate and predict. 

When compared with previous studies, the results of this study perform as well or even 

better than previous methods. This study really highlights the dimension reduction of our data 

and how in previous studies the number of parameters may have affected the result. 

We achieved significant improvements in model performance to estimate soil moisture 

by focusing on the most relevant features and reducing the dimensionality of our data. Through 

the integration of these techniques into agricultural management systems, globally better 

resource utilization, higher crop yields, and more sustainable farming practices can be achieved. 

Conclusion and Future Work 

With a test RMSE of 0.8141779276009659, the best performing model overall for soil 

moisture is XGBoost Regressor. An understanding that these transformation techniques applied 

to different radar signals each have their own benefits. However, when the data is converted into 

the time domain, using the raw complex values, and when a model is attempting to predict soil 

moisture for a specific depth, we see a lower RMSE and predictions that are closer to the actual 

value. 

The findings from this study offer many practical applications in the agricultural field. By 

estimating soil moisture accurately using radar data and machine learning models, optimization 

of watering crops, reduction of water wastage, and crops receiving the ideal amount of moisture 

can be done. The scalability of this study is the most valuable point as the integration of radar 

technology and machine learning in agriculture shows the potential to be utilized in larger 

agricultural areas and possibly locations with various environmental conditions. This ensures that 
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this enhances soil moisture estimation can be used by small family farmers to large mega farms. 

The practicality of this technology makes it an indispensable tool to farmer’s arsenal.  

This study contributes to the development of non-invasive, soil moisture estimation 

techniques and by advancing in SFCW radar combined with machine learning algorithms, we 

push the boundaries of what is possible in agricultural engineering. These steps are important to 

developing sustainable farming practices to make informed decisions. This approach not only 

shows the effectiveness of soil moisture estimation but also is a model for future research where 

environmental and technological challenges require unique solutions. 

 

While this model provides a robust framework for estimating soil moisture, there is a 

large room for improvement. Future research should focus on refining these models by 

integrating additional datasets, collecting more data, applying different transformations of the 

data for the models to make more refined choices. Experimenting with more complex neural 

networks like CNNs or GNNs could also possibly increase the accuracy of these predictions.  

We experienced several challenges during this study, including combating the extended 

run times for our models as they were iterating over our data multiple times. Some models took 

up to two days to run on a Turing High Power Computer. This challenge posed significant 

hurdles in iterating through the data and refining our models. Additionally, the data collection 

process has been long and not as smooth as anticipated. There are chances of some collections 

being botched due to simple human error. Despite these obstacles, we were able to address the 

issue of handling complex data through our Python script, which streamlined the data 

preprocessing and transformation phases. Another major challenge was the limited size of our 

dataset. However, we were able to manage these shortcomings and achieved notable results.  
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The techniques in this study also have different applications beyond soil moisture 

estimation. They can be adapted for other estimation tasks like assessing groundwater levels, 

predicting drought conditions, or even estimating moisture on extraterrestrial landscapes. 

Expanding the applications could help address a wide range of agricultural challenges, making it 

more relevant on a global scale. 

As we continue to push the boundary, it is important that research and development 

continues to focus on innovations that address agricultural challenges. This study is one example 

of how targeted research results in lots of benefits, and it is important we continue to support 

research that leads to sustainable practices. 
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Appendix A 

RMSE Change with different number of columns for each model. 
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Appendix B 

Best test RMSE for each model and depths. 

 

Model Datas

et 

DataT

ype 

Dep

th 

Colu

mns 

Ident

ifier 

Train RMSE Validation 

RMSE 

Test RMSE 

LinearReg

ression 

Rang

e 

Magn

itude 

10c

m 

10 A 2.107864308

0287165 

3.44185866

1426946 

2.21876934

27696384 

RandomF

orest 

Rang

e 

Magn

itude 

10c

m 

2000 A 0.70722 3.21534386

7691284 

2.01323042

64539465 

GradientB

oosting 

Rang

e 

Raw 10c

m 

500 A 0.000243 3.78083314

6912608 

2.26379956

7459756 

SVR Frequ

ency 

Magn

itude 

10c

m 

20 A 2.186436039

309501 

3.58606025

7619171 

2.39478519

5795823 

MLP Frequ

ency 

Raw 10c

m 

20 A 0.455992518

5053935 

4.48102193

7877176 

2.86778463

1156147 

KNN Frequ

ency 

Magn

itude 

10c

m 

2000 A 2.128653069

170477 

3.25375744

33260983 

2.18840124

2916848 

ExtraTree

s 

Rang

e 

Magn

itude 

10c

m 

4096 A 3.827305905

9653544e-14 

2.24496648

77788256 

2.10413015

72740005 
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AdaBoost Frequ

ency 

Magn

itude 

10c

m 

20 A 0.760957824

1066074 

3.89382712

4480495 

2.33986278

58890664 

SVM Rang

e 

Magn

itude 

10c

m 

50 A 0.290754172

3005564 

3.29127403

9215712 

2.50226307

11197023 

Lasso Rang

e 

Raw 10c

m 

100 A 0.091196 3.60716727

7704664 

2.33640758

4690817 

Ridge Rang

e 

Magn

itude 

10c

m 

10 A 2.107980647

4688096 

3.44655764

2469464 

2.22651974

06748527 

ElasticNet Rang

e 

Raw 10c

m 

100 A 0.066719 3.26114864

41363837 

2.40391130

2631122 

XGBRegr

essor 

Rang

e 

Magn

itude 

10c

m 

1000 A 0.000305 2.53945356

3178802 

2.20872985

6373171 

LinearReg

ression 

Frequ

ency 

Magn

itude 

10c

m 

4096 B 1.101404907

291834e-14 

2.23167396

7999076 

1.39350916

5354765 

RandomF

orest 

Frequ

ency 

Phase 10c

m 

100 B 0.853823178

9037715 

2.05370612

39987504 

1.09379144

20720312 

GradientB

oosting 

Frequ

ency 

Phase 10c

m 

100 B 0.026424 2.19121339

4986426 

1.09202397

62946728 
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SVR Frequ

ency 

Raw 10c

m 

50 B 2.146749626

961861 

2.91275251

5096115 

1.43742443

50530974 

MLP Rang

e 

Raw 10c

m 

50 B 0.205618276

3292285 

3.07725301

47593606 

1.25986092

6267239 

KNN Frequ

ency 

Phase 10c

m 

20 B 1.956538894

1813668 

2.12301377

7628397 

1.14283091

4877612 

ExtraTree

s 

Frequ

ency 

Raw 10c

m 

50 B 2.862452666

6646523e-14 

2.06759954

41574275 

1.08490309

18704263 

AdaBoost Rang

e 

Raw 10c

m 

4096 B 0.142643145

6227262 

2.50130513

69312285 

1.09557892

29732804 

SVM Frequ

ency 

Phase 10c

m 

100 B 1.134963716

6908189 

2.56673827

56013084 

1.01596901

61348651 

Lasso Rang

e 

Raw 10c

m 

10 B 1.729768517

4770534 

3.26529490

56454417 

1.07183396

97264014 

Ridge Rang

e 

Raw 10c

m 

10 B 1.454802662

934575 

3.13065123

6223943 

1.34860971

71445373 

ElasticNet Frequ

ency 

Phase 10c

m 

100 B 0.989849 2.69289840

64899195 

1.19833056

82358183 
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XGBRegr

essor 

Frequ

ency 

Raw 10c

m 

50 B 0.000537 2.27976722

99171974 

0.54937095

37998298 

LinearReg

ression 

Rang

e 

Raw 10c

m 

4096 C 8.477853123

686641e-15 

0.90940861

04647998 

1.13240680

1439504 

RandomF

orest 

Frequ

ency 

Raw 10c

m 

50 C 0.338366972

8760948 

0.96210865

42069898 

1.04383587

9700446 

GradientB

oosting 

Frequ

ency 

Raw 10c

m 

50 C 0.008145 0.98764263

09928892 

0.94253786

81205606 

SVR Frequ

ency 

Phase 10c

m 

20 C 0.775752627

3554938 

0.88569962

51891943 

1.19937526

87462953 

MLP Frequ

ency 

Phase 10c

m 

10 C 1.127653846

967728 

4.24480001

9895871 

1.09766358

94100266 

KNN Rang

e 

Phase 10c

m 

4096 C 0.833211657

7837022 

0.99052385

13029356 

1.11155859

04485643 

ExtraTree

s 

Frequ

ency 

Raw 10c

m 

50 C 2.758918487

9705765e-14 

1.08331450

3041465 

0.98026680

04171136 

AdaBoost Frequ

ency 

Magn

itude 

10c

m 

10 C 0.450263704

4880713 

1.01786643

55455174 

0.96235215

35739888 
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SVM Frequ

ency 

Raw 10c

m 

50 C 0.717729 0.91782543

95706492 

1.06437382

54804758 

Lasso Rang

e 

Phase 10c

m 

1000 C 0.031039 1.06028189

7330974 

0.944694 

Ridge Frequ

ency 

Raw 10c

m 

20 C 0.672548 0.59269871

76535463 

0.94174074

43341296 

ElasticNet Rang

e 

Phase 10c

m 

1000 C 0.017253 0.99948178

46587952 

1.00195102

39197642 

XGBRegr

essor 

Rang

e 

Raw 10c

m 

4096 C 0.000258 0.60909406

22905886 

0.88234809

25267241 

LinearReg

ression 

Frequ

ency 

Magn

itude 

20c

m 

20 A 0.378371093

2659033 

1.54057407

39824096 

1.59341910

22348685 

RandomF

orest 

Rang

e 

Phase 20c

m 

500 A 0.158757 1.51701670

64010829 

2.02720709

1974077 

GradientB

oosting 

Rang

e 

Phase 20c

m 

500 A 8.981943713

40478e-05 

1.55684550

65610771 

1.97086234

2997658 

SVR Rang

e 

Phase 20c

m 

2000 A 0.093536 1.49940777

96344585 

2.04671936

08753083 
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MLP Frequ

ency 

Raw 20c

m 

10 A 0.524258844

2330631 

1.31802726

5987384 

1.83110889

50933323 

KNN Rang

e 

Phase 20c

m 

1000 A 0.385846832

0172901 

1.51732906

7803028 

2.00016561

81426597 

ExtraTree

s 

Rang

e 

Phase 20c

m 

4096 A 5.920005108

327088e-14 

1.51654638

48824428 

2.04617000

45450724 

AdaBoost Rang

e 

Magn

itude 

20c

m 

4096 A 0.034938 1.59961224

45536245 

2.06816202

6343467 

SVM Frequ

ency 

Magn

itude 

20c

m 

500 A 0.096891 1.37333932

31955953 

1.66526693

9313675 

Lasso Rang

e 

Raw 20c

m 

2000 A 0.037933 1.36459730

59452383 

1.99952438

31321208 

Ridge Frequ

ency 

Magn

itude 

20c

m 

1000 A 0.000365 1.33876535

40668374 

1.82103364

9856512 

ElasticNet Frequ

ency 

Magn

itude 

20c

m 

500 A 0.184562992

3480055 

1.47351567

4439232 

1.88557710

80728296 

XGBRegr

essor 

Rang

e 

Phase 20c

m 

500 A 0.000341 1.47119712

88684276 

1.85921880

2450384 
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LinearReg

ression 

Frequ

ency 

Magn

itude 

20c

m 

1000 B 3.552713678

800501e-15 

0.60637507

39340434 

0.41378054

62133156 

RandomF

orest 

Rang

e 

Magn

itude 

20c

m 

1000 B 0.160984881

1051725 

0.30174678

95438098 

0.46805838

97869951 

GradientB

oosting 

Rang

e 

Raw 20c

m 

1000 B 3.673483294

400261e-05 

0.54710077

16569551 

0.40873749

82253327 

SVR Frequ

ency 

Magn

itude 

20c

m 

500 B 0.248590370

2048383 

0.43001542

43634931 

0.47496 

MLP Frequ

ency 

Magn

itude 

20c

m 

10 B 0.563906298

3708821 

1.16560022

18740815 

0.67824776

44406166 

KNN Rang

e 

Phase 20c

m 

20 B 0.375310982

1645687 

0.40006249

51179497 

0.44401576

54858675 

ExtraTree

s 

Frequ

ency 

Magn

itude 

20c

m 

500 B 4.320034258

3474175e-14 

0.40735127

65415126 

0.45615591

49567178 

AdaBoost Frequ

ency 

Raw 20c

m 

10 B 0.182139109

6985867 

0.42621628

22228393 

0.41074730

52442718 

SVM Frequ

ency 

Magn

itude 

20c

m 

1000 B 0.094353 0.47359922

37644599 

0.41915966

93917491 
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Lasso Frequ

ency 

Magn

itude 

20c

m 

500 B 0.183309372

9342521 

0.48123691

10451418 

0.41944534

70325814 

Ridge Frequ

ency 

Magn

itude 

20c

m 

1000 B 0.00017 0.60572222

55046774 

0.41374244

78925561 

ElasticNet Frequ

ency 

Magn

itude 

20c

m 

100 B 0.342269146

7492753 

0.58768497

30204745 

0.45236250

78240348 

XGBRegr

essor 

Rang

e 

Magn

itude 

20c

m 

1000 B 0.000311 0.36390907

12822854 

0.424885 

LinearReg

ression 

Rang

e 

Raw 20c

m 

1000 C 4.470400011

810908e-15 

0.90541480

26354868 

0.94641308

35201794 

RandomF

orest 

Frequ

ency 

Phase 20c

m 

50 C 0.301066564

7143287 

0.90812896

59238916 

0.886293 

GradientB

oosting 

Frequ

ency 

Phase 20c

m 

50 C 0.009744 0.99642992

58955368 

0.90235606

76393608 

SVR Frequ

ency 

Raw 20c

m 

20 C 0.719827061

9770601 

0.83537744

13231788 

0.96053473

90276726 

MLP Frequ

ency 

Phase 20c

m 

10 C 0.829208971

9225334 

2.30831363

3299861 

0.90284923

82493593 
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KNN Rang

e 

Phase 20c

m 

100 C 0.739432965

9347837 

0.89930528

74302481 

0.88546597

90189573 

ExtraTree

s 

Frequ

ency 

Raw 20c

m 

100 C 2.990054111

9693475e-14 

1.06465588

63078763 

0.86815357

22439843 

AdaBoost Frequ

ency 

Raw 20c

m 

50 C 0.168782921

7076333 

0.82486533

81324111 

0.88456111

25248036 

SVM Rang

e 

Phase 20c

m 

20 C 0.704073223

3747752 

1.26649228

44333446 

0.948785 

Lasso Rang

e 

Raw 20c

m 

2000 C 0.057897 0.89931339

61171178 

0.89246289

64521848 

Ridge Rang

e 

Raw 20c

m 

1000 C 2.539605874

1584068e-05 

0.904029 0.94740414

38541256 

ElasticNet Frequ

ency 

Phase 20c

m 

4096 C 0.030193 0.95493583

39013084 

0.88924033

55287002 

XGBRegr

essor 

Frequ

ency 

Phase 20c

m 

100 C 0.000554 1.40562226

2579146 

0.68427409

53867348 

LinearReg

ression 

Frequ

ency 

Magn

itude 

30c

m 

1000 A 6.593557537

388058e-15 

0.56924891

55272705 

0.47664339

65577863 
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RandomF

orest 

Frequ

ency 

Magn

itude 

30c

m 

20 A 0.112395877

7417378 

0.39693584

17930813 

0.53549483

54092638 

GradientB

oosting 

Frequ

ency 

Magn

itude 

30c

m 

20 A 0.009132 0.43442223

56240266 

0.51414954

70322257 

SVR Rang

e 

Raw 30c

m 

20 A 0.105702626

1819739 

0.44867427

12258195 

0.57895260

49252334 

MLP Frequ

ency 

Magn

itude 

30c

m 

10 A 0.471878171

8822956 

0.55073882

86498257 

0.71773655

45727873 

KNN Rang

e 

Magn

itude 

30c

m 

1000 A 0.226304858

2971402 

0.43181303

82468781 

0.57709401

31382424 

ExtraTree

s 

Frequ

ency 

Magn

itude 

30c

m 

20 A 6.627501429

85318e-14 

0.37998433

35586166 

0.50786840

07693289 

AdaBoost Frequ

ency 

Magn

itude 

30c

m 

20 A 0.102915703

3876908 

0.38110900

59874371 

0.52743994

35796767 

SVM Frequ

ency 

Magn

itude 

30c

m 

1000 A 0.094661 0.58455571

03011868 

0.52455881

39664117 

Lasso Rang

e 

Raw 30c

m 

2000 A 0.037313 0.48368349

35217516 

0.546532 



47 

 

Ridge Frequ

ency 

Magn

itude 

30c

m 

1000 A 0.000218 0.56920958

67616451 

0.47641564

59610246 

ElasticNet Rang

e 

Raw 30c

m 

2000 A 0.020368 0.48395818

36577643 

0.535805 

XGBRegr

essor 

Frequ

ency 

Magn

itude 

30c

m 

20 A 0.000868 0.41008364

59413463 

0.532556 

LinearReg

ression 

Frequ

ency 

Raw 30c

m 

10 B 0.384640106

3371706 

0.58537281

82240548 

0.57175719

25728611 

RandomF

orest 

Frequ

ency 

Phase 30c

m 

2000 B 0.206782931

0062887 

0.36491167

59573672 

0.55800176

41101109 

GradientB

oosting 

Frequ

ency 

Phase 30c

m 

2000 B 0.000761 0.271407 0.53176663

48760874 

SVR Rang

e 

Phase 30c

m 

4096 B 0.126497660

5664468 

0.38051333

22261724 

0.64600736

71669917 

MLP Frequ

ency 

Magn

itude 

30c

m 

20 B 0.52471 1.05797243

22999302 

0.65980174

72732697 

KNN Rang

e 

Phase 30c

m 

20 B 0.455170908

0725121 

0.41567715

83813571 

0.54190635

72241967 
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ExtraTree

s 

Rang

e 

Raw 30c

m 

10 B 5.673228792

5851606e-14 

0.48371530

88336462 

0.58393698

82530152 

AdaBoost Frequ

ency 

Phase 30c

m 

50 B 0.161670327

4746446 

0.30679067

14976357 

0.65322158

61299303 

SVM Frequ

ency 

Phase 30c

m 

500 B 0.093246 0.34571474

34424899 

0.60449717

69069736 

Lasso Rang

e 

Raw 30c

m 

4096 B 0.044439 0.60610550

14911682 

0.55991180

15432273 

Ridge Frequ

ency 

Raw 30c

m 

10 B 0.447057521

3863823 

0.32042201

94549028 

0.57476657

78030551 

ElasticNet Rang

e 

Raw 30c

m 

4096 B 0.025427 0.55623407

28340477 

0.56435715

50503665 

XGBRegr

essor 

Frequ

ency 

Phase 30c

m 

2000 B 0.000378 0.26225257

69149622 

0.51672463

53474992 

LinearReg

ression 

Frequ

ency 

Phase 30c

m 

10 C 1.415196046

5205755 

438.142350

9575957 

0.94338118

13896982 

RandomF

orest 

Frequ

ency 

Magn

itude 

30c

m 

1000 C 0.714596851

1840893 

2.00935470

82956755 

0.79254071

26766391 
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GradientB

oosting 

Frequ

ency 

Phase 30c

m 

2000 C 0.003682 2.564081 0.987787 

SVR Rang

e 

Raw 30c

m 

10 C 1.499690615

500126 

1.80596588

74717115 

1.24794647

62552577 

MLP Frequ

ency 

Magn

itude 

30c

m 

10 C 1.681627534

5432912 

1.70299182

58846923 

0.94070428

86618988 

KNN Frequ

ency 

Phase 30c

m 

10 C 1.580638935

5081831 

1.75261233

59145898 

0.87222416

84337814 

ExtraTree

s 

Frequ

ency 

Raw 30c

m 

2000 C 3.601232189

3809396e-14 

2.14633214

75251744 

0.89270568

35822188 

AdaBoost Rang

e 

Magn

itude 

30c

m 

4096 C 0.134111005

0051103 

2.12536620

70240384 

1.18055825

57158676 

SVM Frequ

ency 

Phase 30c

m 

2000 C 0.098828 2.58291210

4156752 

1.00410848

49491515 

Lasso Rang

e 

Raw 30c

m 

10 C 1.171001109

0383643 

1.84152866

70540156 

0.97881939

97207092 

Ridge Frequ

ency 

Magn

itude 

30c

m 

50 C 1.299516137

1307324 

1.95342172

1179948 

0.82239115

15386395 
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ElasticNet Rang

e 

Raw 30c

m 

10 C 1.199438832

158085 

1.82727955

9386671 

0.95943174

55904602 

XGBRegr

essor 

Rang

e 

Magn

itude 

30c

m 

4096 C 0.000261 1.90846906

26921876 

0.96052939

25563978 

LinearReg

ression 

Rang

e 

Magn

itude 

40c

m 

10 A 0.445715224

2033577 

1.91930914

85563336 

1.88242186

56951663 

RandomF

orest 

Frequ

ency 

Magn

itude 

40c

m 

10 A 0.233669980

3616845 

1.63120236

5204878 

2.20386753

7988612 

GradientB

oosting 

Frequ

ency 

Raw 40c

m 

10 A 0.019908 1.84120185

1379633 

2.294456 

SVR Frequ

ency 

Magn

itude 

40c

m 

10 A 0.642013 1.59497234

3138777 

2.24221349

36036464 

MLP Frequ

ency 

Magn

itude 

40c

m 

20 A 0.683902 2.02956684

4674328 

1.94863328

9693175 

KNN Frequ

ency 

Magn

itude 

40c

m 

10 A 0.601431163

5128695 

1.63287323

45163852 

2.10165113

6606643 

ExtraTree

s 

Frequ

ency 

Magn

itude 

40c

m 

10 A 6.177364447

876705e-14 

1.57873903

40078369 

2.29905559

4151643 
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AdaBoost Frequ

ency 

Raw 40c

m 

20 A 0.174504 1.73208715

29171804 

2.27359176

66997607 

SVM Rang

e 

Magn

itude 

40c

m 

10 A 0.509172758

4531212 

1.74485594

6507765 

2.18902548

5789448 

Lasso Frequ

ency 

Phase 40c

m 

10 A 0.604334343

2044491 

1.57093305

51228462 

2.205906 

Ridge Rang

e 

Magn

itude 

40c

m 

10 A 0.445840387

7643065 

1.91442187

50643331 

1.90041973

71660103 

ElasticNet Rang

e 

Magn

itude 

40c

m 

10 A 0.479377135

6208341 

1.81176584

91092103 

2.19972086

04475973 

XGBRegr

essor 

Frequ

ency 

Magn

itude 

40c

m 

1000 A 0.000369 1.73337165

09510413 

2.15613646

84849904 

LinearReg

ression 

Frequ

ency 

Raw 40c

m 

4096 B 1.632359285

0267968e-14 

1.59454550

55677131 

0.62642502

62540167 

RandomF

orest 

Frequ

ency 

Phase 40c

m 

10 B 0.525040177

0340998 

0.77595147

23872939 

0.56253463

78224247 

GradientB

oosting 

Frequ

ency 

Phase 40c

m 

20 B 0.05938 0.82829207

26352428 

0.58940442

43176602 
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SVR Rang

e 

Raw 40c

m 

100 B 0.828399315

9775306 

0.79868103

13677444 

1.05985362

57903295 

MLP Frequ

ency 

Phase 40c

m 

10 B 1.262579634

668867 

1.43816765

9888509 

0.81376 

KNN Rang

e 

Raw 40c

m 

100 B 1.042519650

7607035 

0.80703934

22875971 

0.86832453

61038703 

ExtraTree

s 

Rang

e 

Phase 40c

m 

100 B 5.384051330

5986836e-14 

0.76836510

68990552 

0.99367450

97113018 

AdaBoost Rang

e 

Phase 40c

m 

100 B 0.187758512

6791617 

0.51637968

13741183 

1.01894880

3737354 

SVM Frequ

ency 

Raw 40c

m 

4096 B 0.097979 1.46462466

03175772 

0.68308925

40768214 

Lasso Frequ

ency 

Raw 40c

m 

4096 B 0.184638871

3949585 

1.31742106

9226213 

0.68268273

41480048 

Ridge Frequ

ency 

Raw 40c

m 

4096 B 6.383118119

147653e-05 

1.59445316

48221385 

0.62645361

64969675 

ElasticNet Frequ

ency 

Raw 40c

m 

4096 B 0.110063802

6756353 

1.48982534

69663705 

0.64710721

81601092 
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XGBRegr

essor 

Frequ

ency 

Phase 40c

m 

100 B 0.000562 1.07361764

10252318 

1.05508805

74283052 

LinearReg

ression 

Frequ

ency 

Magn

itude 

40c

m 

10 C 0.580538695

0519528 

0.59867572

29586451 

0.56691293

92924247 

RandomF

orest 

Rang

e 

Phase 40c

m 

10 C 0.291993305

1934369 

0.53992048

02561152 

0.70199463

58413245 

GradientB

oosting 

Rang

e 

Phase 40c

m 

10 C 0.014683 0.64267454

16430137 

0.63690758

00351799 

SVR Frequ

ency 

Magn

itude 

40c

m 

4096 C 0.366481558

2387216 

0.39106014

64390477 

0.74114260

55306967 

MLP Frequ

ency 

Phase 40c

m 

10 C 1.147735682

2983458 

5.51990709

4243267 

0.96796006

39560508 

KNN Rang

e 

Magn

itude 

40c

m 

2000 C 0.602916522

6906085 

0.55223409

89109621 

0.79047454

10195102 

ExtraTree

s 

Frequ

ency 

Magn

itude 

40c

m 

4096 C 6.766756459

892375e-14 

0.45043870

97597289 

0.63230619

56045962 

AdaBoost Rang

e 

Phase 40c

m 

10 C 0.213857587

6770671 

0.55427882

75500713 

0.63460665

34973941 
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SVM Frequ

ency 

Phase 40c

m 

1000 C 0.0989 0.50648597

23575672 

0.65208457

19682261 

Lasso Frequ

ency 

Phase 40c

m 

1000 C 0.071252 0.75172134

94132432 

0.60753372

45457948 

Ridge Rang

e 

Magn

itude 

40c

m 

100 C 0.000637 0.816214 0.60039104

40111043 

ElasticNet Rang

e 

Raw 40c

m 

20 C 0.316218725

8558846 

0.25484910

36490274 

0.62221913

23272201 

XGBRegr

essor 

Rang

e 

Phase 40c

m 

100 C 0.000381 0.38208900

18373016 

0.58056226

96748597 

LinearReg

ression 

Rang

e 

Magn

itude 

All 

Dep

ths 

10 A 1.096641896

9789136 

2.11691690

83021546 

1.90196852

86727608 

RandomF

orest 

Rang

e 

Magn

itude 

All 

Dep

ths 

500 A 0.400597281

9324575 

1.60995959

28547323 

1.90168375

84591857 

GradientB

oosting 

Rang

e 

Magn

itude 

All 

Dep

ths 

2000 A 0.000116 2.19206315

5483339 

1.98897251

9845402 
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SVR Frequ

ency 

Magn

itude 

All 

Dep

ths 

20 A 1.151971964

8834206 

2.11143646

21721635 

1.99662076

5059247 

MLP Frequ

ency 

Magn

itude 

All 

Dep

ths 

10 A 1.095905854

187924 

2.17265076

6221704 

2.34171949

9358615 

KNN Frequ

ency 

Magn

itude 

All 

Dep

ths 

2000 A 1.121327338

469905 

2.00830074

31657243 

1.93062732

68033896 

ExtraTree

s 

Rang

e 

Magn

itude 

All 

Dep

ths 

1000 A 5.739737313

350087e-14 

1.55737902

06826577 

1.96056041

4938789 

AdaBoost Rang

e 

Magn

itude 

All 

Dep

ths 

2000 A 0.109742112

4542717 

1.73344351

87238233 

1.99725486

85839056 

SVM Rang

e 

Magn

itude 

All 

Dep

ths 

50 A 0.166834 2.02221879

09579774 

2.07895611

40906416 
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Lasso Frequ

ency 

Phase All 

Dep

ths 

10 A 1.047965109

806155 

1.86228050

83457084 

1.98775683

12181528 

Ridge Rang

e 

Magn

itude 

All 

Dep

ths 

10 A 1.096712549

689246 

2.11771733

0144321 

1.90759963

95494863 

ElasticNet Frequ

ency 

Phase All 

Dep

ths 

10 A 1.046954001

0821945 

1.86535137

41296268 

1.987495 

XGBRegr

essor 

Rang

e 

Magn

itude 

All 

Dep

ths 

1000 A 0.000299 1.79509298

94490508 

1.99111275

42788016 

LinearReg

ression 

Frequ

ency 

Magn

itude 

All 

Dep

ths 

4096 B 7.799355160

121197e-15 

1.46733402

28997305 

0.90719362

59224798 

RandomF

orest 

Frequ

ency 

Phase All 

Dep

ths 

50 B 0.528527967

5665243 

1.12206004

39314743 

0.86334172

24294822 



57 

 

GradientB

oosting 

Frequ

ency 

Phase All 

Dep

ths 

100 B 0.016143 1.22560228

30569413 

0.84916595

39570483 

SVR Frequ

ency 

Raw All 

Dep

ths 

50 B 1.253184651

2599332 

1.54145573

2673341 

1.02848427

29670478 

MLP Frequ

ency 

Magn

itude 

All 

Dep

ths 

10 B 0.961276 2.18308545

6319924 

1.30922084

41515976 

KNN Frequ

ency 

Phase All 

Dep

ths 

20 B 1.174683172

4152498 

1.26942777

4629183 

0.84503513

24057479 

ExtraTree

s 

Frequ

ency 

Phase All 

Dep

ths 

100 B 0.001532 0.98028126

14563704 

0.89337947

73918865 

AdaBoost Frequ

ency 

Phase All 

Dep

ths 

4096 B 0.143336905

0372465 

1.12153682

74893007 

0.89195419

34649378 
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SVM Frequ

ency 

Magn

itude 

All 

Dep

ths 

4096 B 0.096824 1.38909050

2015466 

0.91225336

13398404 

Lasso Frequ

ency 

Raw All 

Dep

ths 

10 B 1.212836271

6991623 

1.32039349

6695868 

0.947461 

Ridge Frequ

ency 

Magn

itude 

All 

Dep

ths 

4096 B 4.794470820

201292e-05 

1.46728809

73245186 

0.90716857

74954706 

ElasticNet Frequ

ency 

Raw All 

Dep

ths 

10 B 1.210772589

3222607 

1.32543447

0368175 

0.94038667

20350724 

XGBRegr

essor 

Frequ

ency 

Raw All 

Dep

ths 

50 B 0.000528 1.27774592

53123535 

0.81417792

76009659 

LinearReg

ression 

Frequ

ency 

Phase All 

Dep

ths 

1000 C 6.045705523

364516e-15 

1.44069770

8486255 

1.04947614

47791523 
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RandomF

orest 

Frequ

ency 

Magn

itude 

All 

Dep

ths 

2000 C 0.455183998

2053648 

1.20355738

0097643 

0.999281 

GradientB

oosting 

Frequ

ency 

Magn

itude 

All 

Dep

ths 

4096 C 0.000913 1.13818206

04991737 

1.02636040

12717662 

SVR Frequ

ency 

Phase All 

Dep

ths 

20 C 0.981863155

0494034 

1.11917518

28498022 

1.10955341

39397634 

MLP Frequ

ency 

Phase All 

Dep

ths 

10 C 1.078745922

3363216 

1.80999258

5717141 

1.09127455

07838817 

KNN Frequ

ency 

Phase All 

Dep

ths 

10 C 1.037482262

2312363 

1.18584226

39626227 

0.97266065

51105074 

ExtraTree

s 

Frequ

ency 

Phase All 

Dep

ths 

2000 C 4.339064446

5454556e-14 

1.37397191

9632095 

1.05084741

84556875 
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AdaBoost Frequ

ency 

Phase All 

Dep

ths 

10 C 0.532385072

9572529 

1.46034010

2100942 

1.09408074

56154686 

SVM Frequ

ency 

Phase All 

Dep

ths 

1000 C 0.099514 1.42680324

43735466 

1.04294717

13856593 

Lasso Frequ

ency 

Phase All 

Dep

ths 

20 C 0.894852 1.25759638

03847243 

1.00159956

03771926 

Ridge Frequ

ency 

Phase All 

Dep

ths 

20 C 0.840529155

7038305 

4.07603780

7313566 

0.99607387

03352212 

ElasticNet Frequ

ency 

Phase All 

Dep

ths 

20 C 0.891541 1.35903093

69221352 

1.00030510

19616456 

XGBRegr

essor 

Rang

e 

Magn

itude 

All 

Dep

ths 

4096 C 0.000282 1.23268225

72673526 

1.05929839

26121602 

 


