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Abstract

Building brain-computer interfaces that can automatically adapt to an individual’s

changing cognitive states has important implications in many domains, such as gaming,

driving, and learning. Recently, the use of functional near-infrared spectroscopy (fNIRS)

has received focus because of its promise for detecting an individual’s cognitive state in

more ecologically valid studies.

In this dissertation, we focus on improving and expanding the usability of fNIRS for

brain-computer interaction research. Particularly, we investigated the feasibility of using

fNIRS to identify several user states that occur frequently in human-computer interac-

tion, and that could inform adaptive user interfaces, but that are difficult to detect. We

accomplished this goal by designing and conducting three human subjects experiments,

collecting and curating fNIRS datasets, as well as developing and applying novel machine

learning methods appropriate for the particular classification problem and that are tuned

to the characteristics of fNIRS data. Particularly, we:

1. Explore mind wandering detection using fNIRS and develop a machine learning

framework to incorporate individuals’ differences in hemodynamic responses. Specif-

ically, we conducted a study using fNIRS during the Sustained Attention to Re-

sponse Task (SART) task to elicit mind-wandering states. We then built machine

learning classifiers both on an individual level and at a group level to classify mind-

wandering state versus on-task state. We also propose an individual-based novel

window selection algorithm to incorporate individuals’ differences in time window

selection. Our results show that the proposed algorithm achieves significant im-

provements over the previous state-of-the-art in terms of brain-based detection of

mind-wandering.



2. Explore driver cognitive load classification using fNIRS and investigate machine

learning techniques for extracting spatial and temporal patterns from fNIRS data.

Specifically, we conducted a study using fNIRS in a driving simulator with the n-

back task used as a secondary task to impart structured cognitive load on drivers.

We apply Convolutional Neural Networks (CNNs), multivariate Long Short Term

Memory Fully Convolutional Networks (LSTM-FCNs), and Echo State Networks

(ESNs) for fNIRS feature extraction and classification. Our results show that ESNs

achieve state-of-the-art classification results for classifying different levels of driver

cognitive load.

3. Explore cognitive processes associated with positive and negative learning out-

comes using fNIRS and validate the generalizability of the proposed ESN mod-

els across tasks. Specifically, we conducted another study using fNIRS during a

rule-learning task. We compare the classification results of CNNs, LSTM-FCNs,

and ESNs for differentiating successful and unsuccessful rule learning processes.

Our results show that ESNs achieve superior classification results and can extract

distinct temporal patterns for different cognitive processes based on fNIRS data.

By improving and expanding the usability of fNIRS for identifying important user

states for human-computer interaction, the results from this research serve as a founda-

tion for future work that integrates fNIRS data for measuring an individual’s changing

cognitive states. Furthermore, findings from this work have important implications for

building fNIRS-based brain-computer interfaces that can automatically adapt their be-

havior to better support the user and provide a better user experience.
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Chapter 1

Introduction

Automatic detection of an individual’s cognitive state in real-time has been an emerging

field of research over the past decade. Researchers have been particularly interested in

utilizing this information to enable adaptive human-computer interaction, with the goal

of performance improvement. For example, if an online learning system can gain insight

into the learner’s cognitive states, it can adapt its behavior dynamically and provide a

better learning experience.

Attention and cognitive load are among the most investigated cognitive states in the

field of human-computer interaction (HCI) [1, 2]. Research has shown that users’ at-

tention and cognitive workload are highly correlated with their task performance [3, 4].

Attention refers to whether the orientation of users’ senses is towards the current task.

Attention regulates user’s behavior by focusing on task-relevant stimuli [3, 5]. Cognitive

load can be interpreted as an interaction between task demands and the users’ capabilities

or resources. Excessive levels of cognitive load can cause errors or delayed information

processing [6], while low levels of cognitive could lead to annoyance and frustration in

users when they are processing information [7].

However, these cognitive states have been challenging to identify using traditional

measures. To infer users’ dynamic attention states and cognitive load, prior work has in-
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vestigated the use of behavioral data [8, 9, 10], eye activity [11, 12, 13], facial expression

[14, 15, 16], and physiological sensing [17, 18, 19]. However, there exist some difficul-

ties in building robust models using these approaches that have a general applicability[20].

These approaches depend on a set of measurable factors that have been shown to be re-

lated to the targeted cognitive states in specific tasks. As such, the models built are ad-hoc

and can not apply to other tasks and domains. For example, ad-hoc subjective measure-

ments were developed to quantify the mental workload experienced in specific domains,

such as medical care [21] and web design [22]. In addition, it is difficult to define which

factors can best describe these cognitive states. For instance, researchers have reported

that changes in subjective workload do not always align with changes in task performance

[4, 23]. Researchers also observed that user’s states inferred from physiological data and

self-report measurement sometimes conflict with each other [24].

Brain imaging and brain-sensing techniques have the potential to reduce the ambigu-

ity surrounding the understanding of these states and provide an alternative for measuring

these states objectively across different domains [4, 25]. Recently, the use of functional

near-infrared spectroscopy (fNIRS) has received focus because of its promise for detect-

ing a user’s cognitive state in more ecologically valid studies than othere neuroimaging

methods. fNIRS is a neuroimaging tool that is safe, portable, easy to use, and quick to

set up — characteristics that have led to increasing adoption. It detects hemodynamic

changes associated with neural activity in the brain while performing tasks (see Figure

1.1). Recent advances in fNIRS have shown the possibility of decoding cognitive states

during various activities [26, 27, 28].

Nevertheless, there are some challenges regarding accurately detecting an individual’s

states based on the fNIRS signal. With the advancements in machine learning, researchers

have attempted to move from offline statistical analysis of the fNIRS data to real-time

automated classification of users’ state. However, prior work has shown the difficulty of
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Figure 1.1: A volunteer wears the fNIRS on the forehead.

achieving satisfactory results for fNIRS data classification based on traditional machine

learning approaches [29, 30, 31].

1.1 Problem Statement

While prior work has shown the possibility of decoding cognitive states during various

activities, there are some challenges that exist for building robust models based on fNIRS

data that can accurately decode users’ cognitive states and be used in real-world applica-

tions. These challenges are due to the inherent attributes of fNIRS data:

• Collecting and labeling brain data is costly and time-consuming. As such, the sizes

of brain datasets are usually small. At the same time, advanced machine learning

methods require a large number of training examples, and insufficient training data

could lead to poor performance. For real-world applications, the accuracy of the

3



models needs to be improved [32].

• There are individual differences in fNIRS data. fNIRS signals vary across partici-

pants, which can be attributed to individual differences in hemodynamic responses

and measurement variations [33]. However, since the process of collecting brain

data is costly and time-consuming, to get an adequate amount of data for model

training, there is a need to build models across participants [34, 35]. Individual dif-

ferences in fNIRS data make it challenging to build robust machine learning models

that can generalize across participants [36, 37].

• fNIRS data are high-dimensional and high volume time series data. For example,

for an fNIRS device with eight channels and with a sample size of 10 Hz, for a one

hour experiment, it will generate approximately 36,000 rows and 24 columns of

data. Therefore, it requires powerful machine learning models that can accurately

recognize the spatial and temporal patterns in fNIRS data [38].

1.2 Research Scope, Questions and Tasks

In this dissertation, we focus our work on improving and expanding the usability of fNIRS

for brain-computer interaction research. Particularly, we investigated the feasibility of

using fNIRS to identify several user states that occur frequently in human-computer in-

teraction, and that could inform adaptive user interfaces, but that are difficult to detect.

We distinguish the mind-wandering state from on-task states, classify different levels of

driver cognitive load, and differentiate positive and negative cognitive processes during

learning. We develop and apply novel machine learning methods appropriate for the par-

ticular classification problem and that are tuned to the characteristics of fNIRS data.

Given the complex characteristics of fNIRS data, it remains unclear whether it is feasible
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to detect these user states using fNIRS and what machine learning approaches can be

applied to improve the results.

RQ1: Can we use fNIRS to detect mind-wandering state and improve the accuracy by

incorporating individual differences in fNIRS data?

Automatic detection of an individual’s mind-wandering state has implications in many

domains, such as driving and learning [39, 40]. However, it remains a challenge to detect

mind-wandering state accurately [41].

RQ2:

Can we use fNIRS to classify different driver cognitive load and improve the accuracy

by extracting spatial and temporal patterns in fNIRS data?

Understanding the cognitive load of drivers is crucial for road safety. Brain sensing has

the potential to provide an objective measure of driver cognitive load. Previous studies

in this direction utilized traditional signal processing methods to analyze fNIRS signals

without using state-of-the-art machine learning algorithms [42, 43, 44].

RQ3:

Can we use fNIRS to differentiate cognitive processes associated with positive and

negative learning outcomes by applying the proposed ESN model?

The main goal of intelligent tutoring systems is to facilitate robust learning. However,

little is known about the underlying cognitive states that are associate with learning out-

comes. On the other hand, it is important to develop machine learning models that are

generalizable across different tasks [45].

We answered each of the research questions through three step-by-step research tasks:

RQ1. Can we use fNIRS to detect mind-wandering state and improve the accuracy by

incorporating individuals’ differences in fNIRS data?
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T1:

We conducted a study using fNIRS during the Sustained Attention to Response Task

(SART) to elicit mind-wandering states. We then built machine learning classifiers both

on an individual level and at a group level to detect mind-wandering. We proposed an

individual-based novel window selection (ITWS) algorithm to improve classification ac-

curacy. We evaluated the performance of the ITWS algorithm with eXtreme Gradient

Boosting (XGBoost), Convolutional Neural Networks, and Deep Neural Networks. Our

results show that the proposed algorithm achieves significant improvement compared to

the previous state of the art in terms of brain-based classification of mind-wandering, with

an average F1-score of 73.2%.

RQ2. Can we use fNIRS to classify different driver cognitive load and improve the accu-

racy by extracting spatial and temporal patterns in fNIRS data?

We conducted a study using fNIRS in a driving simulator with the n-back task used as

a secondary task to impart structured cognitive load on drivers. We investigate the appli-

cation of Convolutional Neural Networks (CNNs), multivariate Long Short Term Mem-

ory Fully Convolutional Networks (LSTM-FCNs), and Echo State Networks (ESNs) for

extracting spatial and temporal patterns from fNIRS data. We then compared the classifi-

cation results. Our results show that the proposed ESN autoencoder achieves state-of-art

classification results for group-level models without window selection, with accuracies of

80.61% and 52.45% for classifying two and four levels of driver cognitive load.

RQ3. Can we use fNIRS to differentiate cognitive processes associated with positive and

negative learning outcomes by applying the proposed ESN model?

T3: We move beyond cognitive states that have been explored in previous work using

fNIRS. We conducted a study with a rule learning task using fNIRS to elicit abstract

rule induction processes. We compare the classification results of CNNs, multivariate
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LSTM-FCNs, and ESNs for differentiating cognitive processes that lead to positive and

negative learning outcomes. Our results show that ESN achieves superior classification

results, with an accuracy of 87.95% and an F1-score of 85.64%. Visualization analysis of

the ESN model shows that the temporal patterns extracted by ESN are discriminative for

induction processes that lead to positive and negative learning outcomes.

1.3 Organization

This dissertation is organized as follows:

Chapter 2 provides a brief overview of the related work surrounding the two research

areas of this dissertation work, including using fNIRS in HCI and challenges for fNIRS

data modeling. Chapter 3 describes the general procedures for developing adaptive inter-

faces with fNIRS. Chapter 4 answers RQ1 and describes a study that uses fNIRS to detect

mind-wandering states with personalized window selection. Chapter 5 answers RQ2 and

describes a study which uses fNIRS for driver cognitive load classification, by applying

CNNs, multivariate LSTM-FCNs, and ESNs. Chapter 6 answers RQ3 and describes a

study which uses fNIRS for classifying successful and unsuccessful rule learning pro-

cesses, by applying CNNs, multivariate LSTM-FCNs, and ESNs. Chapter 7 summarizes

the main contributions of this work and discusses future opportunities.
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Research Question Task Chapter

RQ1: Can we use fNIRS to detect mind-
wandering state and improve the accu-
racy by incorporating individuals’ differ-
ences in fNIRS data?

T1 §4 Detecting Mind-wandering State
Using fNIRS With Personalized
Window Selection

RQ2: Can we use fNIRS to classify differ-
ent driver cognitive load and improve the
accuracy by extracting spatial and tempo-
ral patterns in fNIRS data?

T2 §5 Classifying Driver Cognitive
Load Using fNIRS with CNNs,
Multivariate LSTM-FCNs and
ESNs

RQ3: Can we use fNIRS to differentiate
cognitive processes associated with pos-
itive and negative learning outcomes by
applying the proposed ESN model?

T3 §6 Classifying Successful and Un-
successful Rule Learning Processes
Using fNIRS with CNNs, Multi-
variate LSTM-FCNs, and ESNs

Table 1.1: The organization of this dissertation.
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Chapter 2

Background

Here we provide a brief overview of the related work surrounding the two research areas

of this dissertation work. We will provide in-line discussions of the most relevant work in

each research task.

2.1 Using fNIRS in HCI

Functional near-infrared spectroscopy (fNIRS) is a brain-imaging tool that is safe, portable,

easy to use, and quick to set up—characteristics that have led to increasing adoption. It

detects hemodynamic changes associated with neural activity in the brain while perform-

ing tasks [46]. Because fNIRS enables brain activity to be measured continuously during

interactive tasks, it has promise for understanding user experience in realistic settings.

fNIRS sensors use light to detect hemodynamic changes. The light sources send two

wavelengths of near-infrared light into the forehead, where it continues through the skin

and bone 1-3 cm deep into the cortex. Biological tissues are relatively transparent to these

wavelengths, and oxygenated and deoxygenated hemoglobin are the main absorbers of

this light. After the light scatters in the brain, some reaches the light detector. By de-

termining the amount of light picked up by the detector, the amount of oxygenated and
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Figure 2.1: Illustration of path of near-infrared light between the source and detector

deoxygenated hemoglobin can be calculated in the area, which indicates hemodynamic

activity associated with brain activation (see Figure 2.1). Thus, fNIRS measurements

can be used to understand changes in a person’s cognitive state while performing tasks

[47, 48]. While fNIRS has been applied to various locations on the head, researchers have

shown the most successful placement is on the forehead (Figure 1.1) [26]. As such, the

anterior prefrontal cortex (PFC), which lies behind the forehead, has been the main target

for fNIRS brain sensing in HCI. The PFC is responsible for many high-level processes

and has been found to play a part in memory and executive control [49].

There are other techniques that can measure the changing state of the brain (e.g.,

fMRI, EEG, positron emission tomography (PET), and magnetoencephalography (MEG)).

These tools are often prohibitively expensive and require restrictions on the study partic-
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ipant that are not reasonable for use in realistic settings. Also, PET requires ingestion of

hazardous material, and fMRI exposes individuals to loud noises that may interfere with

the study [50]. The strong magnetic field prevents typical computer usage in both fMRI

and MEG. EEG is less intrusive, more portable, and less expensive than these other tools,

and has been widely used in brain-computer interface research. However, it can have a

significant setup time and has a limited spatial resolution. Electronic devices in the room

can also interfere with the signal, and it is susceptible to artifacts in the data due to user

movement.

fNIRS avoids many of the restrictions of other techniques and therefore has promise

for use in real-world settings such as classrooms or driving. It has been shown to be ro-

bust in typical human-computer interaction scenarios, including during typing and mouse

clicking [47, 51], and verbalization [52]. Real-time fNIRS brain data has been used to

make appropriate adaptations to user interface elements [53] as well as to modulate in-

terruptions [54, 55] and enable attention-aware systems [56]. fNIRS hyperscanning has

also shown promising to monitor multiple participants’ brain activation simultaneously

during their natural interactions [57, 58]. Significant improvements have been made re-

cently in terms of fNIRS hardware to make it wearable and wireless, and we foresee it

being increasingly integrated with wearable computing platforms currently being devel-

oped [59, 60, 61, 62].

2.2 Challenges for fNIRS data modeling

An increase in oxygenated hemoglobin (HbO) and a decrease in deoxygenated hemoglobin

(HbR) have been shown to be related to activation in the associated brain area [63]. There-

fore, researchers have focused on using fNIRS data to obtain the brain’s activation patterns

while performing tasks. Furthermore, to enable brain signals as input for application in-
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terfaces, researchers have used classification methods to identify different brain patterns

from fNIRS data. However, there exist a few challenges for machine learning modeling

of fNIRS data.

2.2.1 Extracting Spatial-Temporal Patterns

Traditional machine learning methods, such as Linear Discriminant Analysis (LDA), Sup-

port Vector Machines (SVM), Hidden Markov Models (HMM), and Artificial Neural Net-

works (ANN), have been widely applied to detect patterns from fNIRS data [64]. These

classifiers gained popularity in the fNIRS research community because of their simplicity

and low computational requirements. However, these machine learning classifiers cannot

adequately consider the spatial-temporal dynamics of fNIRS data. The results of these

classifiers depend heavily on the features extracted from fNIRS data. However, due to the

time-series nature of fNIRS data, it can be difficult for researchers to identify and extract

informative features from fNIRS data mnaually. Also, these classifiers often treat features

from different channels separately, without considering the correlation between different

channels, which contains important spatial information for brain activation [65].

More recent work has investigated using deep learning methods for fNIRS data classi-

fication, including Convolutional Neural Networks (CNN), Deep Belief Networks (DBN),

and Long Short-Term Memory (LSTM) network [66, 67, 68]. These approaches have

shown their ability to detect spatial patterns and long-term dependencies from time-series

data by automatically extracting higher-level features. However, most research did not ad-

equately consider the spatial-temporal dynamics of fNIRS data when applying these mod-

els. In most work, fNIRS data of multiple channels were transformed to one-dimension

data through dimensionality reduction [66, 68]. This makes it difficult for the models to

capture the spatial-temporal patterns in data.
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2.2.2 Sample Window Selection

In most previous work using hand-crafted features as well as CNN-based methods for

fNIRS-based cognitive load classification, window selection methods were utilized to

carefully pick a small segment of a fixed size from the original data as the input. While

this method might yield better classification results, it ignores the global temporal infor-

mation and could result in overly optimistic classification results for real-world applica-

tions. Moreover, research has shown that due to the latency of the underlying physiologi-

cal processes, fNIRS cognitive load classification may require a minimum window length

of 10 seconds [69, 70]. Some previous work has not met this requirement which could

lead to unreliable results. For example, Saadati et al. used fNIRS data from a 3-seconds

window to build CNN models [71]. Even though they achieved an accuracy of 89% for

classifying cognitive load tasks, continuous time-windows from a single trial were used

to form multiple samples in their work. This violates a key assumption behind machine

learning techniques that samples are independent and make their results unreliable.

2.2.3 Individual vs. Group Models

Most previous work builds individual models for fNIRS-based classifications. How-

ever, research has shown that due to the small dataset of an individual participant and

the high feature space of brain data, building individual models could lead to overfitting

and overly-optimistic results [72]. Therefore, researchers have shown the need for build-

ing group models (across participants) for fNIRS data classification [34, 73], which can

enable researchers to get a larger dataset for model training and achieve more reliable

results, as well as reduce the time for collecting brain data from a particular individual.

However, due to inter-subject variability in hemodynamic responses, it is difficult to build

robust models across participants based on fNIRS data [74, 75, 76, 77].
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2.2.4 Satisfying Diverse Classification Requirements

Each classification task based on fNIRS data is unique and has diverse requirements.

Therefore, it is difficult to establish a standard machine learning method for fNIRS data

classification. First, the sizes of datasets are different, depending on the number of trials

in the experiments and the number of participants, which can affect the choice of machine

learning models. For example, deep learning methods require a large number of training

examples. Therefore, for data sets with a smaller sample size, deep learning methods

might not be able to achieve satisfactory results. Second, the associated cognitive state of

the tasks can also affect the classification results on fNIRS data. Different cognitive states

are mapped with different brain activation patterns and could require different classifica-

tion techniques [78]. Therefore, one machine learning method might be able to achieve

good classification results for distinguishing between left and right finger tapping, but not

be able to distinguish between different levels of cognitive load [69, 79]. Third, different

classification problems might have different requirements for training time and computer

resources. For example, for real-world applications that use fNIRS data as training data,

the training time of the machine learning models needs to be fast. In this case, deep learn-

ing models might not be suitable due to the significant time and computational resources

required.

In this work, we explore novel solutions to the machine learning challenges of fNIRS

data, with the goal of improving the classification performance for decoding cognitive

states. Specifically, we investigate novel machine learning methods that are tuned to the

characteristics of fNIRS data and are appropriate for the classification task. We explore

possible development to traditional machine learning classifiers as well as deep learn-

ing techniques while classifying fNIRS data. We demonstrate these approaches in three

research tasks with different targeted cognitive states.
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Chapter 3

Toward Adaptive Brain-Computer Interfaces

Using fNIRS

Most work on developing adaptive interfaces using fNIRS has taken the cognitive states

as implicit inputs [80]. In contrast to explicit inputs, implicit inputs are user actions or sit-

uational contexts that a computer can understand that are not explicitly given commands

by the user. These implicit inputs can then lead to systems that adapt appropriately to

changes in the user’s states [81]. In this dissertation, we propose to use fNIRS data for

attention-aware interfaces that can automatically detect mind-wandering states without

interrupting the task with experience sampling probes; for building driver support sys-

tems that can automatically measure drivers’ cognitive load; as well as for developing

adaptive learning systems that can detect learners’ cognitive state. For example, when a

system automatically detects an individual is mind-wandering during online learning, it

could change the presentation to help the user focus on important tasks and materials.

To build multimodal interfaces with fNIRS, Solovey et al. pointed out that there are

some common high-level phases [82], with calibration phase, modeling phase, and real-

time classification phase being the main phases for real-time applications [82]. During

the calibration phase, users are asked to perform a set of cognitive benchmark tasks. The
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Figure 3.1: The workflow of developing adaptive Brain-Computer interfaces using fNIRS.

cognitive benchmark tasks are experiment tasks from cognitive psychology that can elicit

different targeted cognitive states [49]. fNIRS data recorded during the cognitive bench-

mark tasks is then used to train machine learning classifiers. In the real-time classification

phase, the machine learning model continuously classifies the new data coming in. The

classification results can then be sent to the system for necessary adaptations. We describe

these phases for developing adaptive interfaces with fNIRS in Figure 3.1.

To move toward this goal, classification accuracy for decoding cognitive states from

fNIRS data needs to be higher than shown in previous work [31, 70, 83]. To do this,

appropriate datasets need to be created for validating algorithms for detecting particular
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cognitive states. Further, we need to explore advanced machine learning frameworks that

are suitable for fNIRS data.
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Chapter 4

Detecting Mind-Wandering State Using fNIRS

with Personalized Window Selection

In this chapter, we investigate the feasibility of using fNIRS to detect mind-wandering

states1. Particularly, we explore automated window selection for fNIRS data when classi-

fying mind-wandering episodes versus on-task episodes. We also propose an individual-

based time window selection (ITWS) algorithm to incorporate individual differences in

window selection.

4.1 Introduction

Mind-wandering occurs when an individual is engaging in internal non-task thoughts, in-

stead of processing external task-related information [84]. Even though people may be

generally unaware of when it occurs, mind-wandering could occupy 46.9% of daily life

[85]. While some studies suggest that mind-wandering may contribute to future planning

and creative problem solving, mind-wandering has shown to be disruptive and detrimen-

1The work in this chapter was originally described in Liu, et al. “fNIRS-based Classification of Mind-
wandering with Personalized Window Selection for Multimodal Learning Interfaces”. Journal on Multi-
modal User Interfaces [75].
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tal to individuals’ performance when it happens during cognitively demanding tasks [86].

Therefore, the detection of mind-wandering states is important for many domains, and

particularly for learning and training. For example, when a student is engaging in cog-

nitively demanding tasks such as learning, mind-wandering would negatively affect task

performance and lead to errors [87].

While technology-enhanced learning such as intelligent tutoring interfaces and Vir-

tual Reality (VR) environments show promise for enhancing learning and training experi-

ences, research shows not all interface features or virtual environments elements increase

the effectiveness [88, 89]. As such, identification of a user’s mind-wandering episodes

and on-task episodes in a learning interface could inform evaluations. Further, detecting

mind-wandering states is an important step towards attention-aware systems, which can

dynamically update interfaces and content to facilitate users’ focus on task-related infor-

mation. For example, when the system detects an individual is mind-wandering during

training sessions, it could change the presentation to help the user focus on important

materials [90].

To measure mind-wandering, many researchers use an experience sampling method-

ology. With this method, researchers ask individuals to self-report when mind-wandering

occurs during a task or place thought probes during the task, which periodically ask indi-

viduals whether they are mind-wandering. However, these methods have a limitation due

to their dependence on participants to be aware of their mind-wandering episodes and re-

spond accurately. Also, the thought probes interrupt both the task and the mind-wandering

episodes [87].

One possible solution to address these limitations is to examine an individual’s brain

activity directly and use the brain data to disentangle focused states from mind-wandering

states. Functional magnetic resonance imaging (fMRI) studies show that mind-wandering

is associated with activation in the default network [84]. Several default mode network
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areas have shown consistent activation during mind-wandering, including the medial pre-

frontal cortex, medial temporal lobe, posterior cingulate cortex, and bilateral inferior

parietal lobule [91]. Moreover, as non-invasive neuroimaging techniques become less

expensive and more portable, we can monitor brain activity during various activities.

Recently, the use of functional near-infrared spectroscopy (fNIRS) has received focus

because of its promise for detecting an individual’s user’s cognitive state in more eco-

logically valid studies. While fMRI has become the gold standard for brain imaging, in

real-world environments, fNIRS is a more convenient and more affordable technology

than fMRI [92]. fNIRS emits near-infrared light into the brain, and the light returned to

the surface is measured and used to calculate oxygenation in the blood. This calculation

reflects brain activity in that particular area. Prior work has shown the potential of using

fNIRS data to identify brain activation related to mind wandering episodes [31].

In this paper, we aim to build on previous findings and present a data-driven classifi-

cation framework to improve mind-wandering classification accuracy. Since prior fNIRS

studies have shown that the classifier performance can be improved by focusing on a spe-

cific window [93, 94, 95], we utilize a moving window method for the classification of

mind-wandering, which can select the best window for classification during a time period.

In addition to building models for each individual, we also demonstrate the feasibility

of building machine learning models across individuals to differentiate mind-wandering

episodes versus on-task episodes.

For individual-level classification, we use the moving window method combined with

a shrinkage LDA classifier to find the best window for detecting mind-wandering. For

group-level classification, to incorporate individual differences in window selection and

hence improve the classification results, we propose a novel individual-based time win-

dow selection (ITWS) algorithm. The ITWS algorithm iteratively chooses the best win-

dow for each individual through embedded individual-level classifiers, and then uses data
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from these windows as training data and test data for the group-level classifier. We vali-

date the framework using an fNIRS dataset we collected with mind-wandering episodes

and on-task episodes during the Sustained Attention to Response Task (SART). The er-

rors during the SART have been shown to be correlated with mind-wandering [87], and

thus form a ground truth for our classification results.

The main contributions of this work are as follows:

• We propose to use fNIRS brain data for evaluating learning interfaces and for

attention-aware systems that can automatically detect mind-wandering state with-

out interrupting the task with experience sampling probes.

• We describe a study in which we collected fNIRS brain data during the SART

task. This dataset provides examples of mind-wandering and on-task episodes,

defined based on behavioral data, that can be used to investigate robust classification

algorithms. We confirm that there are differences in frontal lobe blood oxygenation

patterns between mind-wandering episodes and on-task episodes.

• To improve classification accuracy, we investigate window selection when classify-

ing mind-wandering states versus on-task state using fNIRS. We show individual-

level classifiers can achieve better classification results when focusing on specific

windows rather than those using the entire episodes.

• To further improve model robustness and performance, we extend the window se-

lection method for group-level classification. We propose a novel individual-based

time window selection (ITWS) algorithm to incorporate individual differences in

window selection when building group-level classifiers. We show that the ITWS

algorithm can improve the group-level classification result by comparing with other

methods that do not use the ITWS algorithm.
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4.2 Background

4.2.1 Detection of Mind-wandering in Multimodal Learning Inter-

faces

Technology-enhanced learning is increasingly adopted for providing novel solutions to

educational and training activities, such as intelligent tutoring interfaces, serious games,

and VR environments. Previous studies have shown the positive effects of such appli-

cations in improving students’ cognitive states during learning, including motivation and

attention [96, 97]. However, in addition to motivation and attention, mind-wandering has

also shown to play an important role in students’ learning performance. Mind-wandering

can be detrimental to student learning, where instead of processing external task-related

information, students engage in internal non-task thoughts [98]. Therefore, detection

of mind-wandering would be valuable for understanding users’ attention control mech-

anisms during these interfaces. Nevertheless, since mind-wandering involves internal

thoughts instead of expressive behaviors and the dynamics of mind-wandering remain elu-

sive, detecting mind-wandering is a challenging task [99]. Prior research has investigated

using physiological and behavioral metrics, as well as brain data for mind-wandering

detection.

Physiological and behavioral metrics of mind-wandering

Probe-caught mind-wandering has been predicted using eye gaze [100, 101], physiolog-

ical sensing [102, 103], behavioral indices [104, 105], and facial expression [106]. Hutt

et al. used eye gaze and contextual cues as features to predict mind-wandering state

when participants were interacting with an intelligent tutoring system. Participants were

randomly probed to report mind-wandering instances. They achieved a prediction ac-

curacy of about 25% above chance [101]. Physiological features, including heart rate
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[103] and skin conductance [102], have also been used for mind-wandering detection.

Blanchard et al. measured participants’ skin conductance and skin temperature to detect

mind-wandering during a reading task. They achieved 22% above chance accuracy [102].

Some researchers also used behavioral indices, including reading behaviors and tex-

tual features, to detect mind-wandering during reading tasks [104, 105]. The resulting

accuracy is 20% above the chance accuracy for a somewhat naturalistic reading paradigm

[105]. However, this method is limited to reading tasks.

Another approach is using facial expressions and movements to detect mind-wandering

states. Bosch and D’Mello applied this approach in a laboratory study where partici-

pants read a text and in a classroom study where high school students learned biology

from an intelligent tutoring system. After extracting facial and movement features from

the recorded video and applying machine learning classifiers, they achieved 25.4% and

20.9% above-chance accuracy for detecting mind-wandering in the lab and classroom,

respectively [106].

For all of these investigations, the models built are ad-hoc and depend on a set of

measurable factors that have been shown to be related to mind-wandering in the specific

task.

Brain-based metrics of mind-wandering

Brain sensing techniques provide an alternative to detect mind-wandering objectively

across different domains. Some researchers explored using EEG brain signals to differ-

entiate mind-wandering versus on-task. Kawashima et al. used EEG variables to estimate

mind-wandering intensity through support vector machine regression during a sustained

attention task [107]. However, the mind-wandering intensity was determined by thought

probes, which were placed at a fixed interval. This could lead to individuals anticipating

the probe occurrence and becoming more conscious of mind-wandering. Jin et al. trained
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machine-learning models on EEG markers to determine participants’ state as either mind

wandering or on-task, and they achieved a mean accuracy of 64% for a sustained attention

task [99].

Considerations

In all these studies, probes were used to catch mind wandering by asking participants

whether they are mind-wandering. Researchers then focused on an interval of time that

precedes the probes (10s or 30s). These probes allow researchers to mark the time point

when mind wandering is actually happening. However, it interrupts the mind wandering

episodes, and can only collect the mind wandering episodes that participants are aware

of. Therefore, exploring the detection of mind-wandering episodes without interruption

would be an important step toward fully automated attention-aware systems and environ-

ments. In this work, we explore fNIRS brain measures of mind wandering and use the

SART task to elicit mind-wandering episodes, since the errors during the SART task have

been shown to be correlated with mind-wandering [87].

4.2.2 Mind-wandering Classification with fNIRS

Accuracy of mind-wandering detection with fNIRS

As mentioned earlier, activation of the medial prefrontal cortex during mind-wandering

has been detected using fNIRS during a sustained attention task [31]. This study showed

promise for detecting default network activations related to mind-wandering from fNIRS

data. However, this work also highlighted the difficulty of real-time detection of mind-

wandering using only fNIRS data. Their machine learning model achieved a mean ac-

curacy of 56% for classifying mind-wandering episodes versus on-task episodes using

Linear Discriminant Analysis for each individual separately. For real-world use, this ac-
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curacy would need improvement. Therefore, there is a need to explore methods that can

achieve higher accuracy. Two approaches that may hold promise are 1) exploring au-

tomatic detection of optimal time windows, and 2) exploring both individual and group

models.

Optimal time windows for classification

While many studies build and evaluate machine learning classifiers using fNIRS data as-

sociated with the entire episodes (e.g., entire mind-wandering episode or on-task episode

[31]), other fNIRS studies have shown that we can improve the classifier performance

by focusing on a specific window, instead of using the fNIRS data from the overall task

period [93, 94, 95]. Naseer et al. used fNIRS data to classify right- and left-wrist mo-

tor imagery task and they analyzed six different temporal windows within an overall 10s

task. They showed that the 2-7s period after the stimulus was the most critical period and

they could enhance the average classification accuracy by around 4% by focusing on this

period [93]. Khan et al. used linear discriminant analysis to find the best window size

for detecting drowsiness using fNIRS [94]. They analyzed three different time windows

((0-3 sec, 0-4 sec, and 0-5 sec), and proposed drowsiness detection in 0-4 second window

when using fNIRS. These approaches compare a few pre-defined windows and select the

one with the best outcomes.

Researchers have also used the moving window method to explore all windows with

a specific size and find the best window for classification using fNIRS data [95, 108].

For example, Shin et al. conducted two fNIRS experiments (left versus right-hand motor

imagery; mental arithmetic versus resting state), and used a 3s moving window with

1s step size to find the maximum classification accuracy over time. The classification

accuracy achieved by the best window is significantly higher than those for the other

windows [95]. Hennrich et al. adopted an n-back task with fNIRS to induce different
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levels of workload and extracted 10s windows for workload classification. Their results

show that classification accuracy differs between different windows, and peak around 10s

after the trial start [69].

From all these studies, the results show that the optimal windows vary between differ-

ent participants and different tasks. Moreover, both the window sizes and the offset from

start time can affect the accuracy of the classification results. Therefore, in this work,

we use the moving window method along with different window sizes to find the best

window for mind-wandering classification.

Individual vs. group models

In prior work, machine learning models were built for each participant separately (individual-

level models) [31]. Considering the small dataset of each participant and the high fea-

ture space of the brain data, building models per-participant could lead to overfitting and

achieving overly-optimistic results [72]. As such, researchers have shown the need for

building models across participants [34].

Building models across participants (i.e., group-level models) can enable researchers

to get an adequate amount of data for model training while reducing the time for collect-

ing brain data. Compared to individual-level models, the group-level models are more

robust and can achieve more reliable results. However, due to the individual differences

in hemodynamic responses, it is a challenge to build robust models across participants

based on fNIRS data.

To solve this issue, prior work has investigated optimal feature combinations for each

participant [109, 110]. For example, Noori et al. used the hybrid genetic algorithm to

choose the optimal feature for each participant [110]. Hossein et al. applied a person-

alized feature normalization approach to standardize the extracted feature values of each

participant to improve the performance of group-level models. However, even though
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prior work shows that the optimal windows vary between different participants, little at-

tention has been paid to the effect of individual differences in window selection on the

performance of group-level models. In this paper, we investigate possible methods for

incorporating individual differences in window selection for group-level modeling.

4.3 Data Collection

We set out to build a dataset of fNIRS data associated with mind-wandering episodes

without using experience sampling probes and to investigate methods of distinguishing

mind-wandering states from on-task states with high accuracy. To do this, we conducted

a human-subject study that was approved by our institutional review board and informed

consent was obtained for all participants.

4.3.1 Sustained Attention to Response Task

To elicit mind wandering, we used a well-studied paradigm called the Sustained Attention

to Response Task (SART) [111]. The SART shows a number (0-9) at the center of a blank

white screen for 0.5 seconds, followed by a blank screen for 1.0 seconds. Participants

were instructed to respond by pressing a key for each stimulus that appears except for the

target stimulus, the number 3. When a ‘3’ is shown, the participant is instructed not to

press any key and to wait for the next number. For typical SART tasks, the target stimuli

occur around 5% to 11% of all stimuli [111, 112]. Since prior work has shown that a low

proportion of target stimuli allows increased mind-wandering during the task [111], we

adopted a frequency of 5% for the target stimuli to elicit mind-wandering states from the

participants. Also, following previous work [111], targets are presented pseudorandomly

throughout all trials and are arranged to ensure that they did not appear immediately next

to each other.
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Figure 4.1: Time course of the SART protocol. The number was shown on a white screen
for 0.5 seconds, followed by a blank screen for 1.0 seconds. Participants were asked not
to press the space bar for the target number ‘3’ and press the space bar for any other
numbers.

Figure 4.1 shows the time course of the SART protocol. An incorrect keypress for

the target stimulus has been associated with mind-wandering, while a correct response

indicates on-task behavior [113].

4.3.2 Procedure

Participants were given an overview and instructions for the task and informed about the

brain sensing equipment that would be worn during the study. After providing informed

consent, each participant was given instructions about the SART task and the opportunity

to ask questions. Participants were equipped with the fNIRS sensors on their foreheads.

Then participants performed the SART task on a computer. The experiment consists of 6

sections, with 10 targets and 190 non-targets. In between sections, there was a ten-second

break.

At the end of the experiment, individuals were given a questionnaire where they were

asked how focused they were throughout the task (scale of 1-7), and if they experienced
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Figure 4.2: Placement of fNIRS sources (red circles) and detectors (blue circles). The
green solid line indicates fNIRS channels.

unrelated thought or drowsiness (from ‘never’, ‘rarely’, ‘occasionally’, ‘sometimes’, ‘fre-

quently’, to ‘very frequently’, later converted to a 6-point scale).

4.3.3 fNIRS Recording

The fNIRS data was acquired using a multichannel frequency domain Imagent from ISS

Inc. (Champaign, IL). Two probes were placed on the forehead to measure the two hemi-

spheres of the anterior prefrontal cortex (Fig. 4.2). The source-detector distances were

0.8 cm or 3 cm. Each light source emits two light wavelengths (690 nm and 830 nm)

to detect and differentiate between oxygenated and deoxygenated hemoglobin. The sam-

pling rate was 6.649 Hz. The sensors were kept in place using headbands, which can also

reduce light interference.
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4.3.4 Participants

The study included 11 healthy volunteers (5 males) between the ages of 18 and 41 (aver-

age 26.27).

4.4 Dataset Curation

Based on the fNIRS data collected during the experiment, we built the dataset for inves-

tigating the classification of on-task and mind-wandering states. We also analyze partici-

pants’ performance on the task and compare the results with prior work.

4.4.1 General Dataset Description

The dataset consists of fNIRS data of 6 channels, from 11 participants. Since the two

short-separation channels (0.8cm) contain mostly noise, we only analyze fNIRS signals

from the six long-separation channels (Fig. 4.2).

4.4.2 Dataset Preprocessing

The fNIRS signals from the device may contain noise from various sources, including

instrumental noise, motion artifact, and physiological noise [114]. Following typical pre-

processing techniques [115], we used a band-pass filter with a high pass value of 0.02

and a low pass value of 0.5 to remove the physiological noise (e.g., heart rate, respiration)

and the instrumental noise. The motion artifacts were removed using a wavelet-based de-

noising and correction procedure [114]. Raw light intensity data was then converted to

oxygenated and deoxygenated hemoglobin values using the Modified Beer-Lambert Law.

All preprocessing was completed in MATLAB using HomER [116].
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4.4.3 Dataset Labeling

To prepare the datasets for analysis and classification, following the work of Durantin

et al. [31], for each target episode, we extracted fNIRS data from 30 seconds before

the target and 10 seconds after the target. Target episodes with a correct response were

labeled as on-task episodes, while target episodes with an incorrect response were labeled

as mind-wandering episodes. All non-target episodes were ignored for this analysis since

they were not indicative of our target classes. Figure 4.3 shows the number of mind-

wandering episodes and the number of on-task episodes from each participant’s dataset.

Due to the nature of the task, the number of on-task and mind-wandering episodes varied

across participants. For each participant, the number of mind-wandering episodes ranged

from 8 to 33 out of 60 total targets and the number of on-task episodes varied from 27

to 52 out of 60 total targets (Fig. 4.3). Across all participants, the dataset contains 239

mind-wandering episodes and 421 on-task episodes in total.

4.4.4 Behavioral Data

For the 60 target episodes of the experiment, the mean accuracy across all participants

was 0.63 (SE: 0.044) (Fig. 4.3). For the non-target episodes, the mean accuracy across

all participants was 0.98 (SE: 0.002). These are not used for our classifier. Participants

made significantly more errors on the target episodes than on the non-target episodes (The

Wilcoxon signed-rank test, p <0.05), which is consistent with prior work [87]. For the

post-survey, the mean level of focus participant reported was 4.45 (SE: 0.35, a scale of

1-7), and the mean frequency of unrelated thoughts and drowsiness was 4.18 (SE: 49) and

4.18 (SE: 0.45), respectively (converted to a scale of 1-6 from ‘never’ being 1 to ‘very

frequently’ being 6). This shows that participants experienced mind-wandering states

during the study.
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Figure 4.3: The number of mind-wandering episodes and the number of on-task episodes
from each participant. Each episode consists of 30 seconds before the target and 10
seconds after the target.

4.4.5 Dataset Overview

For the overview of the dataset, we calculated the folded average of oxygenated hemoglobin

(HbO) and the deoxygenated hemoglobin (HbR) change across all participants for the

on-task (correct) and mind-wandering (incorrect) target responses. Specifically, we cal-

culated the folded average of all long-separation channels on the left side of the head and

all long separation channels on the right side of the head separately. From Fig. 4.4, we

can see the average change in HbO from the right side of the cortex showed a signifi-

cant increase during 30s to 15s prior to an incorrect response to the target, followed by

a decrease before the target. From the left side of the cortex, there was a slight increase

in HbO change around 25s to 15s before a target error and then return to normal. The

average change in HbR on the left side of the cortex showed a slight decrease around 10
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Figure 4.4: Variation of the oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR) concentration for the mind-wandering episodes (SART error, in blue)
and on-task episodes (SART no error, in green). The figures show the mean (averaged
across individuals) and standard error over the 40 seconds. The figures on the left are data
from the sensor on the left side of the head, and the figures on the right are data from
the right side of the head. Shaded areas represent the standard error of the mean for each
condition.

seconds before an incorrect response to the target. The average change in HbR on the

right side of the cortex showed a decrease around 15 seconds before an incorrect response

to the target and followed by an increase immediately before the target.

Consistent with prior findings [31, 91], our results suggest there are differences in

frontal lobe blood oxygenation patterns between mind-wandering episodes and on-task

episodes. Also, our results indicate activation in the prefrontal area preceding mind-

wandering occurrence, as the level of HbO increases on both sides of the prefrontal cortex

before SART errors. This is consistent with the findings of previous investigations, which
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suggest that the prefrontal area contributes to the switching from an on-task state to mind-

wandering [31, 91]. In contrast with the previous findings of Durantin et al. [31], where

they found no significant variations on the HbR relative to incorrect responses to the

target, our results showed a decrease on both sides of the cortex before incorrect responses

to the target. Since both a decrease in HbR and an increase of HbO indicate cerebral

activation, our results are consistent and suggest activation at the prefrontal area at the

beginning of mind-wandering episodes.

Moreover, from Fig. 4.4, we can see that the time series behaviors of the hemody-

namic patterns are different in different windows during the mind-wandering episodes.

In the next section, we investigate window selection for detecting mind-wandering and

develop a data-driven classification framework.

4.5 Data-driven Classification Framework

Using the fNIRS dataset that we built and validated above with mind-wandering episodes

and on-task episodes, we develop a data-driven classification framework for detecting

mind-wandering.

In this section, we investigate window selection when classifying mind-wandering

episodes versus on-task episodes using fNIRS data, with the goal of improving the clas-

sification accuracy. In addition to individual-level classification, we also explore the

feasibility of building machine learning models across participants for detecting mind-

wandering. We evaluate the window selection method by comparing the results with the

same classifiers, but without window selection.
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Figure 4.5: Structure of the ITWS algorithm. The dataset (episodes of 40s) of each
participant is divided into k folds. In each fold, k-1 folds of the dataset are used to find the
best window for classification, and the data from this window of these k-1 folds are later
used as training data for the group-level classifier. The data from the same window of the
remaining fold are used as the test data to evaluate the classifier. For each participant, a
moving window method combined with an individual-level classifier was used to obtain
the best window, which has the best cross-validation results.

4.5.1 Individual-level Classification

We start with building models for each participant to classify mind-wandering episodes

versus on-task episodes. The goal is to determine if the window selection method can

improve the individual-level classification accuracy.

Moving window method

We use the moving window method to find the best sub-window. The moving window

method iterates through all the windows with a specific size during a period, and then
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all data processing is performed separately on each time window, i.e., feature extraction

and classification. Therefore, the moving window method requires a predefined window

size and a step size. To investigate the effect of the window size on classification results,

we use three different window sizes that are commonly used in previous fNIRS studies

[69, 93, 117], which are 5s, 10s, and 15s. For each of the window sizes, we use a 1s step

size [117]. The best sub-window is defined as the window with the best classification

result.

Individual-level classifier

Because of its simplicity and low computational requirements, linear discriminant analy-

sis with shrinkage (shrinkage LDA) is commonly used as the classifier in fNIRS studies

[64]. Particularly, shrinkage LDA has shown advantages when dealing with datasets with

small sample size and a large number of features [118]. LDA uses discriminant hyper-

plane(s) to separate data from different classes [119]. It assumes the class covariance

are identical and then models the class conditional distribution of the data for each class.

However, with a small sample size, the number of features of each sample could exceed

the number of samples in each class. In this case, the empirical sample covariance is a

poor estimator [120]. Using a shrinkage estimator of the covariance matrix can help solve

this issue [121]. In this study, considering the small sample size for each participant, we

use the shrinkage LDA as the individual-level classifier.

From Fig. 4.3, we can see that for most participants (ten out of eleven participants),

the dataset is not balanced between the two classes. Most participants had fewer mind-

wandering episodes compared to on-task episodes. To avoid the bias of training the clas-

sifier towards one class, we use the synthetic minority oversampling technique (SMOTE)

to balance the training data for each participant. SMOTE is an oversampling method that

has shown effectiveness in many imbalanced datasets. It can generate new synthetic ex-
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amples by finding the nearest neighbors of the examples from the minority class [122].

This oversampling method is used only during the training process.

All long-separation channels are used to build the classifier for each participant. The

average values of HbR and HbO and the slope over the moving time window are used as

features [110]. Each feature is normalized.

Then, in combination with the moving window method, we apply shrinkage LDA to

build individual-level classifiers and find the best window for classification.

4.5.2 Group-level Classification

Individual-level classifiers often rely on a relatively small dataset with high feature space,

which could lead to model overfitting. Group-level models can solve this issue by training

on data collected from all participants. However, it is difficult to achieve high accuracy on

group-level models due to individual differences. We propose an individual-based time

window selection (ITWS) algorithm to improve the group-level classification results.

ITWS algorithm

When using the window selection method, the best windows could vary between different

participants. If we use the standard moving window method to build group-level classi-

fiers across individuals, then data from the same windows from all individuals will be

used to build and evaluate the classifier. However, since the best window could vary for

different participants, using the standard moving window method could lead to subopti-

mal classification results.

We propose a novel individual-based time window selection (ITWS) algorithm to se-

lect the best window for each individual when building the group-level classifier. Figure

4.5 shows the structure of the algorithm. The main principle of the ITWS algorithm is to

use an embedded individual-level classifier to determine the best window for each partic-
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Algorithm 1 Individual-based time window selection (ITWS) algorithm
1: Initialize Divide the dataset of each participant into k folds. k-1 folds of the dataset

are used as the training data and to obtain the best window for this specific participant,
and the remaining one fold is used as the test data. Set the group-level training data
and group-level test data to empty

2: for current k in k-fold cross-validation do
3: for participant in all participants do
4: Generate all moving windows by sliding the window on the data from the k-1

folds
5: for window in all moving windows do
6: Use embedded subject-level classifier to obtain the classification score on

this window (embedded k-fold cross-validation)
7: end for
8: Select the best window by finding the maximum cross-validation score from

all moving windows
9: Add the data from the best window from the k-1 folds to the group-level train-

ing data
10: Add the test data from the best window from the remaining fold to the group-

level test data
11: end for
12: Train the group-level classifier on the group-level training data
13: Obtain the test results by applying the group-level classifier on the group-level

test data
14: end for
15: Calculate the average test result after 5-fold cross-validation.
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ipant. The embedded individual-level classifiers are used in combination with the moving

window method and are applied on the entire episode. Data from each participant are

first separated into two blocks (training data and test data for the group-level classifier).

Then, the embedded individual level classifiers are trained and evaluated only on one

block (embedded k-fold cross-validation).

To effectively assess the performance of the machine learning models, the algorithm

can be used together with k-fold cross-validation for the group-level classifier. The flow of

the ITWS algorithm is described in Algorithm 2. Specifically, for k-fold cross-validation,

we first divide the dataset (episodes of 40s) from each individual into k folds. Then, during

each fold, k-1 folds of the dataset are used to find the best window for classification. The

data from this window of these folds are later used as the training data for the group-level

classifier. The data from the same window of the remaining fold are used as the test data

to evaluate the group-level classifier. We repeat this procedure for all individuals. At each

fold, training data from all individuals together are used to train the group-level classifier,

and test data from all individuals are used to evaluate the classifier. The test result from

all folds are then averaged to give the final mean test results.

Embedded individual-level classifier and group-level classifier

We use the shrinkage LDA as the embedded individual-level classifier as described in

Sect. 4.5.1 (line 6 in Algorithm 2). Also, similar to individual-level classification, we

examine the effect of window sizes by using 5s, 10s, and 15s as the window size for the

moving window method.

Comparing to individual-level classification, the group-level classification can be trained

on a larger dataset from all participants. Therefore, we aim to use modern machine

learning models that take advantage of the larger sample size. Modern machine learning

models, including XGBoost and deep learning techniques, have achieved state-of-the-art
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results on many machine learning problems [123, 124, 125], and have shown promise

for fNIRS data classification [66, 126]. Therefore, to evaluate the performance of the

ITWS algorithm, we use Deep Neural Networks (DNNs), Convolution Neural Networks

(CNNs), and XGBoost as the group-level classifier (line 12 in Algorithm 2).

XGBoost is a gradient tree boosting system that builds trees sequentially, such that

each subsequent tree learns from its predecessors to reduce the errors of the previous

tree [125]. Specifically, a greedy algorithm is used in the model, which starts from a

single leaf, and iteratively adds branches to the tree by evaluating every possible split loss

reduction. The ensemble model gives the aggregate output from all trees. To prevent

overfitting, we set the learning rate to be 0.01, the maximum depth of a tree to be 4, the

number of estimators to be 200, and the subsampling ratio of training instance subsample

to be 0.8.

A DNN is a layered organization of connected neurons. Between the input and output

layers, there are multiple hidden layers. During each hidden layer, each neuron is asso-

ciated with a weight that is used to compute the weighted input. The weighted inputs

are then summed and transformed by the activation function to determine the output of

the neuron. By adjusting the weights of neurons, DNNs can model complex non-linear

relationships between the input and output [123]. In this work, we use a network consists

of three hidden layers with rectified linear unit (ReLU) activation function. Each hidden

layer has 300 units, 100 units, and 40 units, respectively. We implemented an optimizer

using RMSprop with a learning rate of 0.01.

CNNs are neural networks that use convolutions over the input layer. The hidden

layers of a CNN typically consist of a series of convolutional layers, ReLU layers, and

pooling layers. By performing specific functions, each layer learns a useful representation

from the input [124]. In this work, our CNN architecture has three convolutional layers,

which consist of 32 filters of size 3× 1, 64 filters of size 3× 1, and 64 filters of size
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5×1, respectively. Each of them is followed by a batch normalization layer and a ReLU

layer. Then, a max-pooling layer and a dropout layer are utilized to prevent overfitting.

Finally, a fully connected layer with 64 input neurons and two output neurons is used for

the binary classification. We implemented an optimizer using SGD with a learning rate

of 0.01.

Similar to individual-level classification (see Sect. 4.5.1), the samples from the two

classes are first balanced using SMOTE [122]. We used the same features for the embed-

ded individual-level classification and group-level classification, which include the aver-

age values and slope of HbR and HbO from all long-separation channels. Each feature is

normalized as well. All features are then used as the input for XGBoost and DNNs. For

the input of CNNs, features of each channel are concatenated into a 2D matrix (number

of channels × number of features).

Then, following the ITWS algorithm, we iteratively choose the best windows from

each individual. Data from these windows are then used as training data and test data for

the group-level classifier.

4.6 Evaluation

4.6.1 Methodology

We evaluate the effectiveness of our window selection method by comparing the results

with the same classifiers, but without window selection.

For individual-level classification, our research questions are whether focusing on

a specific window will improve the classification results, and whether the window size

of the moving window method can affect the classifier’s performance. Therefore, we

compare the classification results achieved using the moving window method with 5s,

10s, and 15s as the window size, as well as with the classification results achieved using
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Figure 4.6: Comparison results of maximum F1-score achieved using the moving window
method (with 5s, 10s, and 15s as the window size) and the F1-score achieved using the
whole episodes (5-fold cross-validation)

the entire episodes.

For group-level classification, our research questions are whether the ITWS algorithm

can improve the group-level classification results, and whether the choices of window

sizes and classifiers can affect its performance. Therefore, when XGBoost, DNNs, and

CNNs are used as the group-level classifier, we compare the classification results achieved

using the ITWS algorithm with classification results achieved using a standard moving

window method, as well as using the entire episodes. Specifically, we compare the results

when 5s, 10s, and 15s are used as the window size for the moving window method.

Due to the imbalance in our dataset, the test accuracy of the classifiers could be mis-

leading. Therefore, we report F1-scores of our classifiers. F1-scores are commonly used
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Figure 4.7: Classification results for 5s moving windows for each individual over the 40s
time period, the x-axis indicates the right edge of the moving time window. The F1-score
represents the mean F1-score of the 5-fold cross-validation on each window.

to account for the imbalance of the dataset. We also use 5-folds cross-validation to assess

the performance of the classifiers.

4.6.2 Results

Individual-level classification using moving window

Figure 4.6 shows comparative results of maximum F1-score achieved using the moving

window method, with the window size of 5s, 10s, and 15s, respectively, and the F1-score

achieved using the whole episode. We can see that, for all participants, the maximum

F1-scores achieved by using the moving window method with all three window sizes are

significantly higher than the F1-score achieved when using the whole episodes (Wilcoxon

signed-rank test, p <0.05). When using the whole episode, only four participants achieved

an F1-score over 60%. The average F1-score for all participants was 52.1±3.0%. When
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Table 4.1: Comparative results of using the ITWS algorithm, the moving window method,
and using the whole episodes for group-level classification (5-fold cross-validation). The
F1-score of the moving window method represents the maximum F1-score.

XGBoost CNNs DNNs
Whole episodes 45.4±0.80 52.6±0.14 48.8±0.12
Moving window method (5s window) 57.0±0.31 60.5±0.13 55.2±0.24
Moving window method (10s window) 52.3±0.42 58.8±0.22 52.5±0.70
Moving window method (10s window) 51.6±0.36 59.5±0.53 54.6±0.68
ITWS algorithm (5s window) 73.2±0.18 72.8±0.13 69.4±0.08
ITWS algorithm (10s window) 70.1±0.10 72.4±0.06 68.7±0.11
ITWS algorithm (15s window) 71.3±0.21 70.7±0.07 66.3±0.07

using moving the window method with different window sizes, the window size of 5s

achieved the highest average value (74.8± 2.0% ) for all participants’ maximum F1-

score, while the average values for all individuals’ maximum F1-scores are 70.0±2.8%

and 70.2± 3.0% with window sizes of 10s and 15s respectively. Particularly, for each

individual, six out of eleven participants achieved a maximum mean F1-score when using

the window size of 5s, while two and three participants achieved a maximum mean F1-

score when using the window size of 10s and 15s, respectively. Furthermore, Fig 4.7

shows the F1-score for the moving windows for each participant with the window size

of 5s. For each participant, we can see that the mean cross-validation F1-score varies for

different windows.

These results suggest that for each participant, focusing on a specific window can

achieve better classification results than using the whole episode. Also, the window size

of the moving window method can slightly affect the classification results for different

participants.

Group-level classification using the ITWS algorithm

Table 4.1 represents the F1-score achieved for group-level classification with different

classifiers, when using the ITWS algorithm, the standard moving window method, and
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using the whole episodes as input respectively. We can see that the ITWS algorithm

greatly improved the group-level classification results with all three different window

sizes (5s, 10s, and 15s), as well as with all three classifiers. Particularly, for different

window sizes, applying the ITWS algorithm with the window size of 5s achieved the

highest performance. This is easy to understand since most participants achieved the best

individual-level classification results when using the window size of 5s (see Sect. 4.6.2).

Specifically, when using the ITWS algorithm with a window size of 5s and with XGBoost

as the group-level classifier, we achieved the highest average F1-score of 73.2± 2.0%,

while CNNs and DNNs achieved an average F1-score of 72.8±0.13% and 69.4±0.08%

respectively. Also, it is worth noting that even with the window size of 10s and 15s,

for all classifiers, the ITWS algorithm achieved superior performance than the standard

moving window method, as well as using the whole episodes as input. Therefore, we

can conclude that the proposed ITWS algorithms can improve the classification result for

detecting mind-wandering episodes across-participants using fNIRS, and is generally not

affected by choice of window sizes and classifiers.

To further investigate the effectiveness of the ITWS algorithm, we analyzed the se-

lected windows for each participant by using the ITWS algorithm with a window size

of 5s. Figure 4.8 shows the distribution of the right edge of selected time windows for

each individual during the 5-fold cross-validation. For each individual, the box shows

the quartiles with the inner line indicating the mean value. The whiskers extend to show

the rest of the distribution, and the points are the “outliers” determined as a function of

the inter-quartile range. Even though the selected best window for each individual varies

during each fold, we can still see there are individual differences related to window selec-

tion. For example, the selected best windows for individual P03 concentrate around 20s

before the target, while the selected best window for individual P10 centered around 5s

after the target. Also, while some participants show a broader spread of window selection
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Figure 4.8: The distribution of the selected best windows (the right edge) for each indi-
vidual during the 5-fold cross-validation, when using a window size of 5s. 0s represents
the timing of the targets.

than the others, the classification results for test data from each participant did not show

any differences. These findings further confirm that the proposed ITWS algorithms can

incorporate individuals’ differences in window selection and ensure the best window for

classification for each individual is used to build the final classifier across individuals.

4.7 Discussion

Our study aimed to build classifiers based on fNIRS data to detect whether an individual

is mind-wandering or focusing on-task. To build a dataset for exploration, we conducted

a study using fNIRS during the SART task. The errors during the task are correlated with

mind-wandering [87]. Consistent with previous findings, we showed individuals made a

higher number of errors for the target than non-target trials. We also showed activation

in the prefrontal cortex during mind-wandering episodes, as the changes of HbO increase
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and the changes of HbR decrease before the targets with incorrect responses. All individ-

uals retrospectively reported mind-wandering during the task in the post-survey.

For classification, we labeled the target episodes (30s before the target and 10s af-

ter the target) with a correct response as the on-task episodes, and we labeled the target

episodes with incorrect response as the mind-wandering episodes. Particularly, we in-

vestigated window selection during the episodes when building classifiers both on an

individual-level and group-level.

Compared to the previous state of the art in terms of brain-based classification of

mind-wandering [31, 99], our proposed approach achieved significant improvement. Pre-

vious work using EEG to predict task-general mind-wandering achieved a mean accuracy

of 64% [99], while prior work using fNIRS for mind-wandering classification achieved a

mean accuracy of 56% [31]. Our results suggest that focusing on a specific window can

improve the classification results for individual-level classifiers. For group-level classifi-

cation, we proposed a novel algorithm to incorporate individuals’ differences in window

selection. We show that when using the XGBoost as the group-level classifier and 5s

as the window size, the proposed ITWS algorithm achieved a mean F1-score of 73.2%.

Moreover, we show that even though the window size can slightly affect the individual-

level classification results for different participants, the performance of the ITWS algo-

rithm is generally not affected by the choice of window sizes. Also, our results show

that the ITWS algorithm can improve the classification results when used with different

classifiers (XGBoost, CNNs, and ANNs).

Our findings have important implications for designing and evaluating engaging and

effective learning interfaces, as well as building attention-aware systems that can automat-

ically detect mind-wandering states using fNIRS. For real-time applications, labeled brain

data is required to train the classifier, which can then detect the activation at the prefrontal

area associated with mind-wandering. However, the classification of mind-wandering is
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a challenging task. Different windows during mind-wandering episodes exhibit different

time series behavior for each individual. As such, machine learning models trained on

different windows of the labeled data can have different classification performance. Our

classification methods serve the role of finding the best windows of training data for real-

world applications. Classifiers trained on these windows can then be used to predict the

label of real-time data. To do so, the first step is to collect labeled brain data from indi-

viduals. Then, the ITWS algorithm can be used to incorporate individuals’ differences in

window selection and determine the best windows for building the final classifier.

Our results show that the spread of selected windows varies a lot for some participants

during cross-validation while applying the ITWS algorithm. This could be due to the

overfitting of the individual-level classifiers since the dataset for each participant is small.

Therefore, even though the classification results for test data from each participant did

not show any differences in our work, further work that explores methods for more robust

window selection can potentially improve the overall group-level classification results.

A limitation of this study is the mind-wandering episodes are inferred from behav-

ioral responses and explicit reports of mind wandering. We aimed to avoid interrupting

the mind-wandering episodes and therefore chose to determine mind-wandering episodes

by SART errors, instead of using experience sampling probes. While previous research

supports that SART errors are linked to mind-wandering [87, 111, 127], there is also

research suggesting that SART errors could be related to impulsivity in individuals’ re-

sponses [31]. Therefore, further investigation using experience sampling protocols and

analyzing the window selection during the mind-wandering periods would be needed to

confirm our findings.

48



4.8 Conclusion

In this chapter, we investigated window selection for classifying mind-wandering episodes

and on-task episodes using fNIRS. The proposed classification framework is data-driven

and enables a more accurate detection of mind-wandering. The findings from this study

also reveal individual differences in window selection for mind-wandering detection. This

work could inform further research about the time course aspects of mind-wandering, and

it builds a foundation for both evaluation of multimodal learning interfaces and future

attention-aware systems based on fNIRS data.
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Chapter 5

Classifying Driver Cognitive Load Using fNIRS

with CNNs, Multivariate LSTM-FCNs and

ESNs

In the previous chapter, we explored mind-wandering detection using fNIRS and devel-

oped a data-driven classification framework1. In this chapter, we investigate classifying

different levels of driver cognitive load using fNIRS. In particular, we aim to apply ad-

vanced machine learning approaches that are specially designed to extract spatial and

temporal patterns. We apply Convolutional Neural Networks (CNNs), multivariate Long

Short Term Memory Fully Convolutional Networks (LSTM-FCNs), and Echo State Net-

works (ESNs) for fNIRS data classification.

5.1 Introduction

Road traffic accidents have claimed more than 1.35 million deaths each year around the

world, with around 50 million people injured [129]. Meanwhile, according to a report
1Part of the work in this chapter was originally described in Liu, et al. “Unsupervised fNIRS feature

extraction with CAE and ESN autoencoder for driver cognitive load classification”. Journal of Neural
Engineering [128].
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from the National Highway Traffic Safety Administration (NHTSA), 36,560 lives were

lost on U.S. roads in 2018, with around 400,000 people injured and 2,841 people killed by

distracted drivers [130]. Distractions are often caused by a mix of auditory, vocal, visual,

manual, and cognitive demands (e.g. [131]). As a complex and intensive activity, driving

requires a driver to focus on not only the car, but also on factors such as nearby vehicles,

traffic signs, pedestrians, and lights. At the same time, the increased number of mobile

devices and advanced in-car communication and infotainment systems are imposing dif-

ferent levels of cognitive load on the driver [132]. Research has shown both under-load

and overload of driver’s cognitive resources are related to road accidents [133]. When

drivers are under-loaded, they can experience fatigue or drowsiness, and this may lead to

reduced alertness and lowered attention. When drivers are overloaded, drivers are under

stress and this may lead to insufficient attention and inadequate capacity and time for in-

formation processing [134]. As a result, understanding the cognitive load of drivers has

the potential to contribute to avoiding future accidents and hazards on the road [135].

Previous research has used several approaches to assess drivers’ cognitive load, which

can be divided into three main categories: subjective measures, performance measures,

and physiological measures [135, 136]. Each of these approaches has both advantages and

disadvantages [134]. Subjective measures can provide strong periodic indicators of load

but require interrupting the task flow with probes or recalling events post hoc. Contin-

uous objective measures, such as those that are physiological-based, can provide greater

sensitivity to the time course changes in cognitive load during driving [137]. As such,

various types of physiological data have been collected for driver cognitive load stud-

ies, e.g. electroencephalogram (EEG) data [138, 139], heart rate [135, 137, 140], skin

conductance [135, 137, 141] and eye movements [142].

Functional near-infrared spectroscopy (fNIRS) is a brain imaging technique, which

has been shown to be useful for evaluating human cognitive load and working memory de-
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mand under various circumstances [29, 30, 66, 69, 143]. fNIRS emits near-infrared light

into the brain. By measuring the light returned to the surface, the amount of oxygenated

hemoglobin (HbO) and deoxygenated hemoglobin (HbR) can be calculated, which can

indicate hemodynamic activity associated with brain activation in that area. As a portable

and non-invasive technique, it has the potential to be used for driver cognitive load esti-

mation [42, 44].

Most previous studies in this direction utilized traditional signal processing methods

to analyze fNIRS signals without using state-of-the-art machine learning algorithms [42,

43, 44]. fNIRS data are high-dimensional and high volume time series data. However,

these studies either used a small segment or simple statistics to describe fNIRS data.

The former approach requires the selection of small windows from the whole series and

ignores global temporal dynamics, while statistics-based features lose both amplitude

and temporal details. Motivated by this, we aim to explore advanced machine learning

methods for fNIRS data, to improve the classification accuracy for differentiating different

levels of driver cognitive load using fNIRS.

Recent advances in deep learning allow task-specific features to be deep learned from

various sources such as images, languages, and brain data [144, 145, 146], which are

usually more powerful than hand-crafted ones. The main idea of this work is to learn

high-level features using neural networks that are specially designed to extract spatial and

temporal patterns from the input data. In general, artificial neural networks can be divided

into two categories, feed-forward neural networks and recurrent neural networks (RNNs).

Feed-forward neural networks, such as the convolutional neural networks (CNNs), have

shown powerful feature abstraction capability for extracting spatial and temporal depen-

dencies from brain data [66, 67, 147]. RNNs, such as Long short-term memory (LSTM)

and Echo State Networks (ESN), have shown to be very effective in extracting tempo-

ral patterns from time-series data [148, 149, 150, 151, 152, 153, 154]. Moreover, re-
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searchers have explored the combination of feedback-forward neural networks and RNNs

for time-series data classification. For example, multivariate Long Short Term Memory

Fully Convolutional Networks (LSTM-FCNs) has received a lot of attention from the

time series classification community due to its superior performance over other models

[155]. However, research to date has not explored the application of RNN-based models

or for fNIRS feature extraction. In this work, we set out to employ both feed-forward

neural networks and RNNs-based architectures for fNIRS feature extraction. Particularly,

we employ CNNs, multivariate LSTM-FCNs, and ESNs and compare their results on

classifying fNIRS as an estimator of driver cognitive load.

In this paper, we report on a study that involved the collection of fNIRS data in a

simulated driving environment. Drivers completed an n-back task to impart additional

structured cognitive load during driving, as a proxy for real-world tasks that increase cog-

nitive load during driving. Because the collected data are represented as multi-channel

time-series signals, we propose to apply CNNs, multivariate LSTM-FCNs, and ESNs for

driver cognitive load classification. Moreover, to fully capture the global temporal in-

formation and to be trained on a larger dataset, we build group-level models across all

participants’ data without selecting particular windows. The results show that CNNs,

multivariate LSTM-FCNs, and ESNs are suitable for fNIRS feature extraction, while the

proposed ESN method achieved greater classification accuracy than CNNs and multivari-

ate LSTM-FCNs for differentiating different levels of driver cognitive load using fNIRS

signals.

The main contributions of this paper can be summarized as:

• We propose a machine learning framework for driver cognitive load classification

using fNIRS data.

• We describe the application CNNs, multivariate LSTM-FCNs, and ESNs for fNIRS

data classification.
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• We show that the proposed ESN method yields state-of-the-art classification ac-

curacy for group-level models without window selection for fNIRS-based driver

cognitive load classification.

5.2 Background

In this section, we first review previous work in using secondary task and psychophysio-

logical data for driver cognitive load analysis, which motivates our work in investigating

fNIRS for driver cognitive load classification. We then discuss previous work and chal-

lenges for fNIRS data classification.

5.2.1 Driver Cognitive Load Assessment

Secondary Task Paradigms During Driving

As a driver’s cognitive demand often includes competition between the driving task and

non-driving related activities, driver cognitive load studies often utilize controlled and re-

peatable secondary task paradigms. Recent studies have adopted many types of secondary

tasks and collected a variety of psychophysiological data for driver cognitive load analy-

sis. Tsunashima et al. used mental calculation tasks, which consisted of a low-demand

task (one digit addition), a medium-demand task (one digit addition of three numbers),

and a high-demand task (subtraction and division with a decimal fraction), and evaluated

the effectiveness of fNIRS for measuring differences in driver cognitive load [42]. In

addition to steering and maintaining a set speed in a driving simulator, during secondary

task periods designed to model increased cognitive load, Wu et al. asked participants to

press one of the buttons on a panel when prompted by a command on the display screen

[156]. Zhang et al. employed a verbal task and a spatial-imagery task as secondary tasks.

The verbal task required drivers to name words starting with a designated letter while
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the spatial-imagery task asked them to respond letters from A to Z under five rules that

they predefined. During the task, eye tracker and head tracker were applied to obtain

corresponding physiological data [157]. Putze et al. asked participants to perform a vi-

sual search task and a mathematical cognitive task, while multiple biosignal streams (skin

conductance, pulse, respiration, EEG) were collected [139].

Besides the aforementioned secondary tasks, recent studies have frequently adopted

a type of secondary task called an n-back. A version of the n-back task was developed

by the MIT AgeLab [136, 158] for the context of driving and later incorporated into ISO

14198 [159] as a standardized method to calibrate or otherwise characterize reference

levels of demand placed upon a driver. In the standardized presentation of this form of

the n-back, a series of single-digit numbers are presented via audio. Participants are asked

to respond with the corresponding number n positions before the current number. As a

result, the parameter n can easily adjust the level of cognitive load. For example, using the

n-back task as the secondary task, Solovey et al. collected heart rate and skin conductance

data while participants were driving on the highway [135]. Li et al. collected fNIRS

and heart rate data while implementing an alternate n-back task in a simulated driving

experiment [44]. The latter is an example of a study using a form of n-back task that

presents a series of single letters. As each letter appears, the participant responds if the

new letter matches a letter presented n-places back in the sequence (see Owen et al. [160]

for a review). This matching form is arguably more difficult for a given value of n [158].

Driver Cognitive Load Analysis

To analyze driver cognitive load using physiological data, researchers have proposed vari-

ous data analysis methods. Tsunashima et al. proposed a signal processing method based

on multi-resolution analysis (MRA) using a discrete wavelet transform. The results on

nine participants suggested that fNIRS data were effective for driver cognitive load eval-
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uation [42]. However, they only conducted statistical analysis in this work, and did not

apply machine learning for driver cognitive load classification. Wu et al. proposed a queu-

ing network based on the theory of human performance and neuroscience, and explored

the cognitive characteristics of drivers’ cognitive load caused by their actions with the

vehicle information system [156]. Kim et al. extracted EEG variation rates in five differ-

ent driving situations, including left and right-turn, rapid-acceleration, rapid-deceleration,

and lane-change [138].

In recent years, due to its success in classification tasks, machine learning has become

a popular tool for driver cognitive load classification. Yang et al. applied SVM and ex-

treme learning machine (ELM) as the classifiers for eye gaze data, and the results show

that the ELM-based method achieved better performance, with an accuracy of 76.4% for

classifying high driver mental cognitive load from low driver mental cognitive load [161].

Solovey et al. evaluated different machine learning classifiers for driver cognitive load

by using heart rate data. They achieved a high accuracy of 89% for classifying consec-

utive 2-back elevated periods from normal driving, when using logistic regression with

window selection [135]. Fridman et al [162] considered classification using 3D convo-

lutional neural networks leveraging visual-only attributes alone to achieve 86% accuracy

over a 3-class problem. Le et al. trained and tested multiple classifiers for classifying

driver cognitive load using fNIRS. They show that the decision trees achieved the best

results with an accuracy of 82% for classifying different cognitive load elevated by the

n-back task during driving. However, it is unclear which tasks and time window their

classification was based on [43].

Results from previous work suggest that driving cognitive load is predictable by ma-

chine learning techniques using visual behavior and physiological data. However, re-

searchers also pointed out that other factors rather than cognitive load, such as physical

exertion and emotional state, can also influence physiological signals, which could result
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in conflicting or unreliable results [163]. fNIRS measures changes in cerebral hemody-

namic activity and can be used to infer information on drivers’ underlying cognitive activ-

ity directly. Moreover, it is safe, portable, easy to use, and quick to set up - characteristics

that show promise for use in real-world settings. As such, fNIRS could provide an alter-

native for measuring driver cognitive load levels objectively. However, an fNIRS-based

system using state-of-the-art using machine learning techniques for driver cognitive load

classification is not fully explored. Therefore, it would be valuable to explore the potential

of such approaches and develop a solid framework.

5.2.2 fNIRS Feature Extraction and Classification

In addition to being used for driver cognitive load assessment, fNIRS data has been widely

explored for classifying cognitive load levels in other circumstances, often through em-

ploying a range of variations on the ISO standardized version of the n-back task. Due

to the high dimensionality and redundancy, the raw signal of fNIRS data is not suitable

for being used as features for classification. Therefore, feature extraction is an important

process in fNIRS-based classification.

Hand-crafted Features vs. Deep Learned Features

Before CNN-based methods became the superior approach for feature extraction, the

hand-crafted feature approach was used in most previous work. As fNIRS data are time-

series data, statistics obtained by specific time windows were often calculated as features.

Aghajani et al. classified different cognitive load levels elevated by the n-back task (n

from 0 to 3), using the calculated slope, standard deviation, skewness, and kurtosis of

each HbO and HbR signal, and the zero lagged correlation between HbO and HbR as

features. These features were then selected based on their sensitivity to the changes in

cognitive load. By using SVM and the moving window method, they achieved a mean
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accuracy of 74.8% for binary classification [164]. Similarly, Liu et al. extracted the aver-

age HbO and HbR amplitude changes as features for classifying cognitive load elevated

by the n-back task (n = 0, 2, 3). By using LDA, they achieved a mean accuracy of 53.9%

for three-class classification [83].

Besides using statistical features, regression techniques were also employed to extract

features from fNIRS data. In the work of Herff et al. , features were extracted by fitting the

slope of a straight line to the data in a specific window using linear regression during the

n-back task. Their results show that classifying 3-back, 2-back, 1-back against a relaxed

state achieved an accuracy of 81%, 80%, and 72%, respectively, while the accuracy for

four-class classification is 45% [69].

With the advances in deep learning, more recent work has investigated using deep

learning methods to automatically extract features from fNIRS data. For example, Trakool-

wilaiwan et al. [147], utilized four different CNNs to extract fNIRS features. The results

show that CNNs achieved higher accuracy than the combination of SVM/ANN and hand-

crafted features (mean, variance, kurtosis, skewness, peak, slope from HbO and HbR).

Similarly, combined with the moving window method, Saadati et al. showed that the

CNN approach can improve the accuracy for cognitive load classification using fNIRS

data, with an average accuracy of 82% [71].

These studies have demonstrated the advantages of advanced machine learning meth-

ods for automatic fNIRS feature extraction and classification. However, challenges re-

main, including the fact that researchers need to take the sizes of fNIRS datasets into

consideration when applying deep learning models. Brain datasets are usually small due

to the costly and time-consuming data collection process. At the same time, deep learn-

ing techniques require a large number of training data to achieve satisfactory results [165].

Also, since fNIRS data are time-series data, researchers need to take the spatial and tem-

poral dynamics of fNIRS data into consideration when applying these models. In the next
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section, we outline these considerations and possible approaches.

Considerations

There are two important considerations when applying machine learning techniques on

fNIRS data: 1) the selection of sample windows and 2) the choice between individual

models and group models.

Research has shown that due to the latency of the underlying physiological processes,

fNIRS cognitive load classification may require a minimum window length of 10 sec-

onds [69, 70]. Therefore, to capture the global temporal information, in this work, we

will regard each complete trial (30 seconds without window selection) as one sample for

classification.

There are only a few studies that have investigated building group models for fNIRS-

based cognitive load classification. Putze et al. implemented the n-back task in a virtual

environment, and extracted the signal mean for all HbO and HbR channels, as well as

the resulting slope and coefficient of each channel through linear regression as features.

By pooling the data of all participants together and using shrinkage LDA as the classifier,

they achieved a mean accuracy of 66% for classifying the 3-back period from the 1-back

period, a mean accuracy of 64% for classifying the 2-back period from the 1-back period,

and a mean accuracy of 42% for three-classes classification (1-, 2-, or 3-back) [70]. Liu

et al. also investigated fNIRS-based cognitive load classification accuracy by learning

from the data of other participants. They extracted the average HbO and HbR amplitude

change between different windows from n-back tasks, and achieved a mean accuracy of

53.9% for three classes classification (0-, 2-, or 3-back) [83].

From these studies, we can see that while it is beneficial to build group-level models

using fNIRS data from a complete trial without window selection, it is difficult to achieve

high accuracy for cognitive load classification. Thus, it would be valuable to research
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more advanced machine learning methods to extract temporal dynamics from fNIRS data

without window selection and enable higher performance for group-level models. Con-

sidering the relatively small sample sizes of most fNIRS datasets, it could be difficult

for the CNN-based method to fully extract temporal information from the data without

overfitting [147]. Therefore, in this work, in addition to CNNs, we also investigate the

application of multivariate LSTM-FCNs and ESNs for extracting temporal patterns from

fNIRS data.

5.3 Data Collection

The goal of our study is to build a dataset of fNIRS data associated with different levels

of working memory demands that come from secondary tasks during driving. While

there is a wide range of tasks that a driver may perform, we use a variant of the n-back

task as the secondary task, which has established capacity for eliciting scaled levels of

working memory demand [135]. This task serves as a structured proxy for cognitively

loading auditory-verbal working memory tasks that a driver may perform. The study was

approved by the relevant institutional review board and informed consent was obtained

for all participants.

5.3.1 Driving Simulator

Our study was conducted in a driving simulator equipped with fNIRS. The driving sim-

ulator consisted of a fixed-base, full-cab Volkswagen New Beetle in front of an 8× 8 ft

projection screen (Figure 5.1) with established validity for assessing changes in cognitive

demand using the n-back [141] and visual manual based tasks [166]. Participants had an

approximately 40-degree view of a virtual environment at a resolution of 1024×768 pix-

els. Graphical updates to the virtual world were computed by using Systems Technology

60



Figure 5.1: Driving simulation environment (left). The participants sit in the car and are
instrumented with fNIRS (right). The screen in the front presents the simulated driving
environment.

Figure 5.2: Example task block of auditory stimuli and the appropriate verbal responses
for a 0-back task, a 1-back task, and a 2-back task.

Inc. STISIM Drive and STISIM Open Module based upon a driver’s interaction with the

wheel, brake, and accelerator. Additional feedback to the driver was provided through the

wheel’s force feedback system and auditory cues. The time-based triggering of visual and

auditory stimuli was supported by custom data acquisition software and used to present

61



prerecorded instructions for the cognitive task.

5.3.2 fNIRS Recording and Body Sensing

The fNIRS data were acquired using was a multichannel frequency domain Imagent from

ISS Inc. Two probes were placed on the forehead to measure the two hemispheres of the

anterior prefrontal cortex (Figure 5.1). Each source emits two near-infrared wavelengths

(690 nm and 830 nm) to detect and differentiate between oxygenated and deoxygenated

hemoglobin. Each source corresponds to four detectors, with the source-detector dis-

tances being 1.5, 2, 2.5, and 3cm. The sampling rate was 11.8 Hz. The sensors were kept

in place using headbands, which can also reduce light interference.

Physiological data was obtained from a MEDAC System/3 instrumentation unit (Neu-

roDyne Medical Corporation). A modified lead II configuration was employed for elec-

trocardiograph (ECG) recording in which the negative lead was placed just under the right

clavicle (collar bone), ground just under the left clavicle, and the positive lead on the left

side over the lower rib.

5.3.3 Driving Task and Secondary task

Participants sat in a stationary car and drove a divided, multi-lane interstate highway

consisting largely of straight roadway with occasional gradual curves in the simulated

environment.

While driving, an auditory presentation - verbal response n-back task was employed

to impose additional cognitive load while driving [158, 159]. In each 30-second task

block, a series of single digits (0-9) were presented in random order (one at a time) at

2.25 seconds intervals. As each new digit was presented, participants were to say out

loud the digit n items back in the current sequence - the difficulty of the task increases
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as n increases. Three levels of difficulty were employed to present drivers with a low,

moderate, and high level of secondary cognitive load. At the lowest cognitive load level

(0-back), participants simply repeat each number as it is presented. At the moderate

level (1-back), participants were required to respond with the number one item back in

the sequence. In the most difficult level (2-back), participants responded with the number

two item back in the sequence. Figure 5.2 describes an example set for the 0-back, 1-back

and 2-back task.

5.3.4 Participants

Thirty individuals driving more than three times a week and having a valid driver’s license

for at least three years were recruited. Participants had to report a driving record free of

accidents for the past year. Due to recording issues, only 18 of the participants (between

the ages of 20 and 33) had reliable fNIRS signal recording.

5.3.5 Design and Procedure

Participants were given instructions on how to complete the n-back task and practiced

the task following training standards detailed in Appendix A of [158] prior to entering

the simulator. During the experiment, blocks were formed with a random ordering of

each with three load levels (0-back, 1-back, and 2-back), a 30-second period in which

participants were asked to ‘just drive,’ (which we refer to as the single-task driving task)

and a blank-back [167] where digits of the n-back were played with participants instructed

to listen but not to respond. The blank-back condition is not considered in this analysis.

Participants completed three blocks separated by a 90-second cooldown.
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5.4 Dataset Curation

Based on the fNIRS data collected during the study, we built the dataset for investigating

feature extraction and classification for different levels of cognitive load.

Figure 5.3: Variation of the changes in HbO and HbR concentration for different condi-
tions. The figures show the mean (averaged across all channels and all individuals) and
standard error over each condition. Shaded areas represent the standard error of the mean
for each condition.

5.4.1 Behavioral Data and Heart Rate

We analyzed the participants’ performance during the n-back conditions, as well as par-

ticipants’ heart rate data during the experiment. Participants performed well on the sec-

ondary task, with an average accuracy of 100% on the 0-back task, 98.72% on the 1-back

task, and 96.44% on the 2-back task. A One-Way ANOVA shows significant differences

between the three n-back levels in the number of errors (F = 6.85; p < 0.001). Fur-

thermore, Tukey’s post hoc tests showed that participants made significantly more errors

during the 2-back task than the 0-back task (p < 0.005). For the heart rate data, we em-

ployed a QRS detection algorithm to identify heartbeats in the EKG signal [168, 169].

The results of heartbeat detection were manually reviewed and edited. In general, the
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average heart rate during the driving only conditions is 75.82 beats per minute (bpm)

(SD = 1.96), while the average heart rate during the 0-back task, 1-back task, and 2-back

are 80.13 bpm (SD = 2.03), 82.19 bpm (SD = 2.13), and 85.62 bpm (SD = 1.98), re-

spectively. A One-Way ANOVA shows there are significant differences between different

conditions in the average heart rate (F = 4.50; p < 0.005). Tukey’s post hoc tests showed

that participants’ heart rate is significantly higher during the 2-back task than the driving

only condition (p < 0.001). These results are consistent with prior findings and indicate

that the different n-back conditions can induce different levels of workload during the

experiment [69, 135].

5.4.2 General Dataset Description

The dataset consists of fNIRS data of 8 channels, from 18 participants. Each sample

consists of data in a 30-second period. There are a total of 54 samples for each class

(single-task driving, 0-back, 1-back, 2-back).

5.4.3 Dataset Preprocessing

Since signals measured by fNIRS may suffer from biological and technical artifacts, pre-

processing is usually employed to enhance signal quality [114]. Following typical pre-

processing techniques [115], we used a band-pass filter with a high pass value of 0.02 Hz

and a low pass value of 0.5 Hz to remove the physiological noise (e.g., heart rate, respira-

tion) and the instrumental noise. Raw light intensity data was then converted to HbO and

HbR values using the Modified Beer-Lambert Law. Then, the correlation-based signal

improvement (CBSI) is introduced to reduce motion artifacts. It has been shown that the

CBSI method can effectively remove large spikes brought by head movements as well as

enhance signal quality and spatial specificity [170]. All preprocessing was completed in
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MATLAB using HomER [116].

5.4.4 Dataset Overview

For an overview of the dataset, we calculated the folded average of HbO and HbR change

across all participants for each condition. Specifically, we calculated the changes in HbO

and HbR by subtracting the corresponding value of the starting point for each trial. Fig.

6.5 shows the block averages of changes in HbO (red) and HbR (blue) for all participants

across all channels and all n-back conditions. From Fig. 6.5 (a), we can see that for all

conditions, at the beginning of each trial, following neural activation, there is an increase

in HbO, which is followed by a decrease in HbO due to the metabolic consumption of

oxygen. Moreover, it is clear that the peak value of HbO increases as the difficulty of the

task increase. The peak value of HbO is higher in the 1-back condition than the 0-back

condition and driving only, with the highest value during the 2-back condition. From

Fig. 6.5 (b), similarly, we can see that there is a decrease in HbR at the beginning of

each trial, and followed by an increase. Also, the value of HbR is lower in the 1-back

condition than the 0-back condition and driving only, with the lowest value during the

2-back condition. Moreover, we tested the effect of n-back condition and channels using

two-way repeated-measures ANOVA and determined the main effects using Tukey’s post

hoc tests. we calculated the mean values for the driving only condition and three n-back

conditions (0-back, 1-back, 2-back). The mean HbO and HbR values were then analyzed

by a 4(condition)×8(channel) repeated measures ANOVAs. Both the n-back condition

and channels showed a significant effect on HbO and HbR (p < 0.001), while the inter-

action effect was not statistically significant. Furthermore, post hoc analyses showed that

the 2-back task elicited higher HbO increases than the 0-back and the driving only condi-

tion (p < 0.01). our results are consistent with prior research and suggest heterogeneous

activation at the prefrontal area as the difficulty of the task increase [44, 69, 164, 171].
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Furthermore, this lays the foundation for our feature extraction and classification tech-

niques.

5.5 Classification Methods

We investigate the application of CNNs, multivariate LSTM-FCNs, and ESNs for fNIRS

data classification.

5.5.1 Input

For each sample, the HbO and HbR from eight channels in the 30-second period are

used as the input for all feature extraction methods. Since the sampling rate was 11.8

Hz, the length of the data is 354. Data from each channel is normalized using the Min-

Max normalization technique. In addition, considering that the corrected HbO and HbR

signals using the CBSI methods are highly correlated, we evaluate the effect of using

only HbO, using only HbR, and using the combination of HbO and HbR as input on

model performance when comparing different feature extraction methods.

5.5.2 CNNs

When using CNNs for classification tasks, researchers have shown that unsupervised pre-

training can improve the model’s performance [172]. Therefore, in this work, we chose

to use a CNN with unsupervised pre-training for fNIRS data classification.

An autoencoder neural network is often used to pre-training neural networks [173].

An autoencoder neural network is an unsupervised learning algorithm that aims to min-

imize reconstruction error between the input data and the output data. Autoencoders

consist of three main parts: the encoder, the bottleneck, and the decoder. The encoder
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Figure 5.4: The architecture of convolutional autoencoders, which include the encoder,
the bottleneck, and the decoder. After unspervised training, the bottleneck layer becomes
the learned features for the input.

learns how to compress the input data into a low-dimensional representation. The bottle-

neck is the layer containing the compressed representation of the data. The decoder part

learns how to reconstruct the compressed data to be as close to the original input as pos-

sible. By minimizing the reconstruction loss through backpropagation, the compressed

representation of the input becomes learned features that contain meaningful informa-

tion of the input and are useful for future tasks. Convolutional autoencoder (CAE) uses

convolutional layers in the encoder and decoder, which inherit the powerful feature ab-

straction ability of traditional CNNs and have been widely applied for extracting spatial

and temporal dependencies from data. Particularly, it can preserve spatial locality by re-

ceptive field and parameter sharing. Additionally, convolutional layers can be followed

by pooling layers for downsampling in the encoder part, while convolutional layers in the

decoder are followed by unpooling layers for upsampling. Figure 5.4 shows the overview

of applying CAE for pretraining the CNNs.

Specifically, in this work, to fully capture the spatial information contained by fNIRS

signals collected by different channels and the time-series behavior of fNIRS data, fNIRS

data was constructed as a set of 2D images, with the length of the image equal to the
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number of samples in the time window, and the width of image equal to the number of

channels. For a given multi-channel fNIRS data input matrix X , and a set of n convolu-

tional filters {F(1)
1 , · · · ,F(1)

N }, the encoder computes:

em = σ(X ∗F(1)
m +b(1)m ) (5.1)

where σ denotes activation function, ∗ represents 2D convolution. Fm is mth 2D con-

volutional filter, and bm denotes encoder bias. Then, the reconstruction can be obtained

using of feature maps E = {em=1,··· ,n} and convolutional filters F(2) in the decoder:

X̃ = σ(E ∗F(2)
m +b(2)m ) (5.2)

The mean square error between the original input data of and the reconstructed data

can be used as the cost function:

Lε(X , X̃) = 1
2 ||X− X̃ ||2 (5.3)

During pre-training, the reconstruction error is minimized through optimizing the net-

work weights, and the bottleneck layer becomes the learned representation for the input

and can be used for classification.

Considering that the architecture of CAE can affect the resulting performance, we

determine the best architecture of CAE for classifying driver cognitive load using fNIRS

by investigating the effect of filter sizes, as well as depth and width on the classification

accuracy. CNNs can be constructed by removing the decoder part and adding fully con-

nected layers. Specifically, we add two fully connected layers and output neurons with

the rectified linear unit (ReLU) activation function. Each layer has 200 units, and 100

units, respectively. We implemented an optimizer using RMSprop with a learning rate of
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Figure 5.5: The architecture of multivariate LSTM-FCN.

0.01. The parameters of the CNNs including the pre-trained weights are then fine-tuned

through optimizing.

5.5.3 Multivariate LSTM-FCNs

Multivariate LSTM-FCNs have received a lot of attention due to their advantage over

other models on time series classification. The model achieved state-of-the-art classifi-

cation accuracy on many multivariate time series datasets while requiring minimal pre-

processing of the data [155]. The model augments a convolutional neural network with

long short term memory recurrent neural network (LSTM RNN). We see promises of

applying the models for fNIRS data classification. CNNs are well suited for capturing

the temporal dependency between different channels of fNIRS data, while LSTM can

strengthen the model’s ability to capture the temporal patterns of the data.

Figure 5.5 shows the architecture of Multivariate LSTM-FCNs. The model comprises

a fully convolutional block and an LSTM block. The fully convolutional block contains
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three stacked temporal convolutional blocks. The convolutional blocks contain a convolu-

tional layer, which is succeeded by batch normalization and the ReLU activation function.

Then, to incorporate inter-correlations between multiple variables at each time step, the

first two convolutional blocks end with a squeeze and excite block. The squeeze and ex-

cite block can adaptively recalibrate the weights of each channel based on its importance,

by rescaling the output feature maps of prior layers [174]. Specifically, for input X , after

the convolution operation, we represent the feature maps as U . For each channel of U , a

squeeze operation is performed to calculate the channel-wise statistics z over the temporal

dimension T :

zc = Fsq(uc) =
1
T

T

∑
t=1

uc(t) (5.4)

After that, an excite operation is performed to capture the channel-wise dependencies:

s = Fex(z,W ) = σ(g(z,W ) = σ(W2δ (W1z)) (5.5)

where, δ refers to the ReLU activation operation, σ refers to the Sigmoid activaion

operation, W1 is a fully-connected layer for dimensionality reduction by a ratio r, W2 is a

second fully-connected layers for dimensionality increasing, and z is the output from the

squeeze block. Then, the final output of the block can be represented as:

xc = Fscale(uc,sc) = sc×uc (5.6)

where, Fscale(uc,sc) denotes the channel-wise multiplication between the feature map

uc and scale sc.

After the final convolution block, a global average pooling is applied. The LSTM

block comprises an LSTM layer, which is followed by a dropout layer. Also, a dimension

shuffle process is applied to the input, which transfers the temporal dimensions of the
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Figure 5.6: The overview of using Echo State Network for fNIRS data classification.

data. For example, a multivariate time series with Q time steps and M distinct variables

per time step, after transformation, would be viewed as multivariate time series (having

Q variables) with M time steps. Therefore, when the number of variables M is less than

the number of time steps Q, dimension shuffle improves the efficiency of the model by

requiring an order of magnitude less time to train. Previous work shows the dimension

shuffle operation does not affect the performance of a model. Finally, the output of the

global pooling layer after the convolution block and the output of the LSTM block are

concatenated and passed to a softmax layer for classification.

Considering the size of our dataset, the optimal number of LSTM cells for our dataset

was found via grid search over 4 distinct choices: 8, 16, 32, 64; while the number of

filters of the FCN block was found via grid search over 16-32-16, 32-64-32, and 64-128-

64, 128-256-128, with kernel sizes of 8, 5, and 3, respectively. Following previous work,

we use the Adam optimizer, with an initial learning rate set to 1e-3 and the final learning

rate set to 1e-4 to train all models. The models are trained for 50 epochs.
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5.5.4 ESNs

The Echo State Network (ESN) is a family of recurrent neural network models with a

strong architectural simplification. The connectivity and weights of hidden neurons in

the recurrent neural network (called “reservoir”) are kept fixed and randomly assigned.

Only output weights are learned during training so that the network can produce spe-

cific temporal patterns. As such, ESN has an unrivaled training speed compared to other

recurrent neural networks. Previous work has shown that ESNs can achieve excellent

performance in many fields, and are an efficient solution for multivariate time-series clas-

sification [175, 176, 177, 178].

To improve classification accuracy by learning more powerful representations from

the sequence of reservoir states, Chen et al. proposed a “model space” feature extraction

approach by training a model for one-step-ahead prediction of the inputs, and then using

the model parameters as features for classification. This approach has been successfully

applied for multivariate time series classification and unsupervised EEG feature extraction

[150, 151, 152]. Moreover, Bianchi et al. proposed a “reservoir model space” feature

extraction approach, which consists of parameters from a model trained for one-step-

ahead prediction of the future reservoir state, instead of the input. Their results show this

approach can achieve superior classification accuracy on many multivariate time series

datasets when comparing to state-of-the-art recurrent networks and time series kernels

[179].

Therefore, in this work, we investigate the “reservoir model space” approaches for

fNIRS data feature extraction. Figure 5.6 shows the overview of using this approach for

feature extraction and classification. Specifically, we consider classification of fNIRS

data consisting of M channels and observed for T time steps. The observation at time t

is denoted as x(t) ∈ RM. We represent the multi-channel fNIRS data as a T ×M matrix:

X = [x(1), ...,x(T )]T . For a echo state network with input weights Win and recurrent
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connections Wr (randomly generated and left untrained), the state-update equation is:

h(t) = f (Winx(t)+Wrh(t−1)) (5.7)

where h(t) is the reservoir state at time t, which depends on its previous value h(t−

1) and the current input x(t). f (·) is a nonlinear activation function. For input X , the

sequence of the reservoir states generated over time is denoted as H (H = [h(1), ...,h(T )]).

Therefore, reservoir states are a nonlinear high-dimensional representation of the input

time series. Input data not linearly separable in the original space often become separable

in the expanded space [180]. Moreover, due to the sparsely connected neurons, ESN can

retain the historical information of a time series such that input time series with similar

short-term history will produce similar reservoir states [181].

Then, the ESN is trained to perform one step-ahead prediction of each reservoir state:

h(t +1) =Vhh(t)+ vh (5.8)

The parameters θh = {Vh,vh} are learned by minimizing a ridge regression loss function.

These parameters then becomes the representations for the input and used for classifica-

tion. Also, since dimensionality reduction applied on top of h(t) can enhance the repre-

sentaions’ generalization capability, we applied Principle Component Analysis (PCA) on

h(t) [179].

The performance of ESN can be influenced by the number of hidden neurons and

the internal connectivity of the reservoir [152]. Therefore, in this work, we determine

the optimal parameters for ESN for classifying driver cognitive load using fNIRS by

investigating the effect of the number of hidden neurons and the internal connectivity of

the reservoir on the classification accuracy. For features extracted using the ESN, we

choose Multilayer Perceptron (MLP) as the classifier. MLPs have been widely used in
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previous work and have shown high performance for fNIRS data classification. MLP

is a feed-forward neural network with multiple fully-connected layers. Similarly, we

use an MLP consisting of two hidden layers with the ReLU activation function. Each

hidden layer has 200 units, and 100 units, respectively. We also implemented an optimizer

using RMSprop with a learning rate of 0.01. The flow of using ESNs for fNIRS data

classification is described in Algorithm 2.

Algorithm 2 ESNs for fNIRS data classification
1: Input Training data X1, Test data X2, reservoir weights Win and recurrent connections

Wr
2: Construct an ESN according to Win and Wr
3: Get reservoir embedding H1 of X1 and obtain principle component Hp of H1 by fitting

a PCA P
4: Minimize the loss function of one step-head prediction of Hp using the reservoir space

approach, and obtain learned parameters θh
5: Train a classifier F with learned parameters θh
6: Get reservoir embedding H2 of X2, and obtain principle component H2

p of H2 by
applying P

7: Minimize the loss function of one step-head prediction of H2
p using the reservoir

space approach, and obtain learned parameters θ
′
h.

8: Get the test accuracy on classifier F with learned parameters θ
′
h

5.6 Statistical Comparisons of Machine Learning Mod-

els

The resampled paired t-test procedure is a popular method for comparing the performance

of two machine learning models, however, this method has many drawbacks [182]. To

correct the paired Student’s t-test for the violation of the independence assumption from

repeated k-fold cross-validation, Claude Nadeau and Yoshua Bengio proposed a ”cor-

rected resampled t-test” method for statistical comparisons between machine learning

models [183]. This test is associated with a repeated estimation method (for example
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holdout): in i− th of the m iterations, a random data partition is conducted and the values

for the scores A(i)k1 and A(i)k2 of compared classifiers k1 and k2, are obtained. This

method has also been popular for comparing the performance of two models.

Moreover, in the work by Bouckaert and Frank [184], the authors argue that a test

should have not only acceptable type 1 error and low type 2 error, but also high replica-

bility. They recommend using 10×10-fold cross-validation with the Nadeau and Bengio

correction to the paired Student t-test in order to achieve good replicability. Therefore, we

decided to use 10×10-fold cross-validation with the corrected paired Student t-test in our

work. Specifically, for test based on r-times of k-fold cross-validation, the test statistic is

calculated by:

t =
1

k×r ∑
k
i=1 ∑

r
j=1 xi j√

( 1
k×r +

n2
n1
)σ̂2

where σ̂2 is the estimate of the variance: σ̂2 = 1
k×r−1 ∑

k
i=1 ∑

r
j=1(xi j−m)2, m is the es-

timate of the mean: m = 1
k×r ∑

k
i=1 ∑

r
j=1 xi j, n1 is the number of instances used for training,

and n2 is the number of instanced used for testing.

5.7 Classification Results

We report the classification results achieved using CNNs, multivariate LSTM-FCNs, and

ESNs. Moreover, to evaluate the effectiveness of these approaches, we also extract

commonly-used hand-crafted features from fNIRS data and use MLP for classification

(we report the classification results with other traditional classifiers in Appendix A). The

average values of HbR and HbO and the slope over the whole window of all channels are

used as hand-crafted features. Specifically, the classification results of using CNN were

pre-trained using CAE and then fined-tuned. In addition, we compare the classification
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Table 5.1: Parameter optimization table for CNNs for driver cognitive load classification.
SD refers to the single-task driving condition.

Filter sizes Width SD SD SD Four-classes
vs. 2-back vs. 1-back vs. 0-back classification

7×2, 5×2 32, 16 71.61±1.22 67.23±2.03 65.80±1.43 44.64±1.82
7×3, 5×3 32, 16 70.25±2.23 67.42±1.45 63.23±1.23 43.75±2.06

7×2, 5×2, 3×2 16, 16, 8 73.25±1.59 68.75±1.04 65.71±1.87 47.21±3.52
7×3, 5×3, 3×3 16, 16, 8 71.92±1.76 67.73±1.66 64.67±1.73 45.33±2.47

7×2, 5×2, 5×2, 3×2 16, 16, 8, 8 70.20±1.34 67.19±1.59 63.08±1.32 43.46±2.28
7×3, 5×3, 5×3, 3×3 16, 16, 8, 8 68.35±1.46 66.13±1.86 62.33±1.67 42.78±2.05

results achieved when using only HbO, using only HbR, and using the combination of

HbO and HbR as input with different classification methods.

We use 10-fold cross-validation to evaluate the classifiers’ performance. Moreover,

for features extracted using the ESN model, since the reservoir networks are randomly

created, we take the impact of the reservoir’s randomness into account by implementing

each ESN 10 times according to specified parameters and comparing the results.

5.7.1 CNNs Results

Table 5.1 shows the classification accuracy for differentiating different cognitive load lev-

els from fNIRS data with the fine-tuned CNN with unsupervised pre-training using the

CAE. To determine the optimal architecture for the CNNs, Table 5.1 compares the clas-

sification accuracy achieved with CNNs consisting of different filter sizes and widths (all

convolutional layers are followed by a max-pooling layer with filters of size 2×2). The

accuracies are the mean accuracies of 10×10 cross-validation. We can see that the archi-

tecture of the CNNs can slightly affect the classification accuracy. Specifically, when the

depth is 3, and the filter sizes are 7×2, 5×2, 3×2 with a width of 16, 16, 8, we achieved

the highest classification accuracy for differentiating different cognitive load with fNIRS

data. As expected, classifying 2-back against single-task driving achieved the best re-
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Figure 5.7: The mean squared error loss for training and validation sets of the CAE net-
work with the optimal architecture, when classifying 2-back against single-task driving.

sults of 73.25% accuracy (precision = 74.16%, recall = 68.53%, F1-score = 71.14%),

while classifying 1-back and 0-back against single-task driving achieved an accuracy of

68.75% (precision = 70.75%, recall = 62.90%, F1-score = 66.56%) and 65.71% (precision

= 69.39%, recall = 59.26%, F1-score = 63.92%), respectively. For the four-class classifi-

cation task (single-task driving vs. zero-back vs. one-back vs. two-back), we achieved an

accuracy of 47.21% (chance accuracy 25%).

Furthermore, Figure 5.7 shows the training loss and validation loss for the CAE with

the optimal architecture across 100 epochs for the task of classifying 2-back against

single-task driving. It is clear that the validation loss and training loss were converged

at around the 80th epoch. More importantly, they almost dropped simultaneously, indi-

cating that the proposed training approach allows the model to learn good generalization

capability without overfitting.
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5.7.2 Multivariate LSTM-FCNs Results

Table 5.2 shows the classification accuracies for classifying different driver cognitive load

using multivariate LSTM-FCNs. To determine the optimal parameters of the architecture,

Table 5.2 compares the classification accuracy achieved with multivariate LSTM-FCNs

consisting of different FCN filter sizes and different number of LSTM cells. The accura-

cies are the mean accuracies of 10×10 cross-validation. We can see that these parameters

can slightly affect the classification results. Specifically, when the filter sizes are 32, 64,

32 for the FCN block, and the number of LSTM cells is 8, we achieved the highest classi-

fication accuracy for differentiating different cognitive load with fNIRS data. Classifying

2-back against single-task driving achieved the best results of 71.81% accuracy (precision

= 74.05%, recall = 69.78%, F1-score = 69.52%), while classifying 1-back and 0-back

against single-task driving achieved an accuracy of 67.87% (precision = 71.55%, recall

= 64.33%, F1-score = 65.58%) and 66.76% (precision = 69.89%, recall = 62.23%, F1-

score = 64.75%), respectively. For the four-class classification task (single-task driving

vs. zero-back vs. one-back vs. two-back), we achieved an accuracy of 44.16%.

5.7.3 ESNs Results

Figure 5.8 shows the comparison results of fNIRS data classification accuracy when using

ESNs for feature extraction, with different reservoir internal connectivity. For simplicity,

we only show the classification accuracy for differentiating 2-back vs. single-task driv-

ing here. The accuracy reported is the mean accuracy of 10-fold cross-validation with 10

repetitions, and the standard deviation of each point reflects the variation of the accuracy

caused by the reservoir’s randomness. We can see that the reservoir’s internal connec-

tivity only slightly changes the classification results, with the best classification accuracy

achieved when the connectivity is around 0.3. Moreover, we can see that the variance
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Figure 5.8: fNIRS data classification accuracy for 2-back vs. single-task driving when us-
ing ESNs, with different reservoir internal connectivity. The accuracy reported represents
the mean accuracy of the 10-fold cross-validation with 10 times repetitions.
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Figure 5.9: The impact of number of hidden neurons in ESNs on fNIRS data classification
accuracies, when the internal connectivity is set to 0.3. The accuracies represent the mean
accuracy of 10-fold cross-validation with 10 times repetition.
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Table 5.2: Parameter optimization table for multivariate LSTM-FCNs for driver cognitive
load classification.

FCN The N. of SD SD SD Four-classes
Filter Sizes LSTM Cells vs. 2-back vs. 1-back vs. 0-back classification
16, 32, 16 8 69.54±3.01 65.78±2.34 64.54±2.76 41.25±2.18
16, 32, 16 16 68.66±2.75 66.91±3.46 65.17±2.38 42.50±2.97
16, 32, 16 32 67.46±3.27 66.01±2.65 64.83±2.64 43.28±2.16
16, 32, 16 64 69.32±2.62 65.67±3.27 64.12±3.73 43.76±2.05
32, 64, 32 8 71.81±2.39 67.87±3.83 66.76±3.96 44.16±2.89
32,64, 32 16 70.23±3.19 66.28±3.72 64.92±2.85 43.33±1.97
32, 64, 32 32 70.54±3.36 67.32±2.63 65.29±3.32 41.57±2.38
32, 64, 32 64 68.67±3.20 65.18±3.02 65.67±2.49 43.18±2.09
64, 128, 64 8 69.77±2.78 65.65±3.28 66.26±2.63 42.72±2.21
64, 128, 32 16 68.59±3.24 66.28±2.94 65.82±2.74 41.18±2.04
64, 128, 64 32 68.42±2.31 67.07±2.63 66.56±3.27 43.33±2.16
64, 128, 64 64 67.32±3.22 66.15±3.61 64.18±2.56 42.64±1.94

of accuracy due to the randomness of echo state network randomness is small (around

3.0%), which is consistent with prior work [152]. As such, we can conclude that fNIRS

data classification results based on ESNs are robust against the reservoir’s randomness.

Figure 5.9 shows the impact of the number of hidden neurons in ESNs on fNIRS

data classification accuracies, when the internal connectivity is set to 0.3. We can see

that the classification accuracy first increases as the number of hidden neurons in the

ESNs increase, and then decreases. The best classification results are achieved when

the number of hidden neurons is 200. Specifically, classifying 2-back against single-task

driving achieved a mean accuracy of 80.61% (precision = 79.08%, recall = 81.80%, F1-

score = 80.38%), while classifying 1-back and 0-back against single-task driving achieved

a mean accuracy of 73.86% (precision = 74.16%, recall = 72.70%, F1-score = 73.26%)

and 71.28% (precision = 72.54%, recall = 67.26%, F1-score = 69.60%), respectively. For

the four-class classification task, we achieved an accuracy of 52.45%.
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Table 5.3: Comparison of classification accuracy, precision, recall, and F1 score achieved
by using hand-crafted features, while using only HbO, using only HbR, and using the
combination of HbO and HbR.

HbO HbR HbO+HbR

2-back v.s SD
Accuracy 64.85 63.89 62.94
Precision 66.66 66.04 65.45

Recall 56.72 57.45 58.18
F1-score 61.26 61.36 61.45

1-back v.s SD

Accuracy 58.31 57.40 60.21
Precision 58.99 58.24 60.45

Recall 59.93 58.18 63.63
F1-score 59.38 58.11 61.97

0-back v.s SD

Accuracy 59.26 56.49 55.58
Precision 59.22 57.48 56.72

Recall 59.99 56.36 54.54
F1-score 59.43 56.85 55.58

Four-classes Accuracy 37.32 36.67 37.94

5.7.4 Comparison Results with Different Inputs

Table 5.3, Table 5.4, Table 5.5, and Table 5.6 shows the classification accuracy, pre-

cision, recall, and F1-score for classifying different levels of driver cognitive load when

using hand-crafted features, CNNs, multivariate LSTM-FCNs, and the ESNs respectively,

while using only HbO, using only HbR, and using the combination of HbO and HbR as

the input. From these tables, we can see that, in general, when using CNNs, multivari-

ate LSTM-FCNs, and the ESNs, using the combination of HbO and HbR as the input

achieved slightly better classification results than using only HbO or only HbR. However,

when using hand-crafted features, for classifying 2-back against single-task driving and

0-back against single-task driving, using only HbO as the input achieved slightly better

classification results than using only HbR or using the combination of HbO and HbR;

while for classifying 1-back against single-task driving and four-classes classification,

using the combination of HbO and HbR as the input achieved slightly better classification
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Table 5.4: Comparison of classification accuracy, precision, recall, and F1 score achieved
by using CNNs, while using only HbO, using only HbR, and using the combination of
HbO and HbR.

HbO HbR HbO+HbR

2-back v.s SD
Accuracy 71.30 69.48 73.25
Precision 74.17 73.08 74.16

Recall 67.26 63.63 68.53
F1-score 70.40 67.96 71.14

1-back v.s SD

Accuracy 66.57 65.75 68.75
Precision 68.40 66.80 70.75

Recall 62.18 58.54 62.90
F1-score 65.16 62.52 66.56

0-back v.s SD

Accuracy 65.08 64.84 65.71
Precision 68.71 66.36 69.39

Recall 57.44 56.72 59.26
F1-score 62.60 61.20 63.92

Four-classes Accuracy 44.57 45.67 47.21

results than using only HbO or only HbR. These results suggest that deep learning models

can effectively extract useful information from the combination of HbO and HbR, while

the hand-crafted features from HbO and HbR could contain redundant information and

reduce the model performance.

Moreover, Fig 6.9 shows the comparison of the best accuracies achieved by these ap-

proaches. We can see the ESNs achieved superior classification results for fNIRS-based

driver cognitive load classification. Specifically, compared to the highest classification

accuracy achieved using hand-crafted features, the ESN model improved the classifica-

tion accuracy by 15.76%, 12.85% and 11.17% for classifying 2-back against single-task

driving, 1-back against single-task driving, and 0-back against single-task driving, re-

spectively; while the classification accuracy for four-classes classification was improved

by 14.51%. When compare to using CNNs for feature extraction, the ESN model im-

proved the classification accuracy by 7.36%, 5.11% and 5.55% for classifying 2-back
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Table 5.5: Comparison of classification accuracy, precision, recall, and F1 score achieved
by using multivariate LSTM-FCNs, while using only HbO, using only HbR, and using
the combination of HbO and HbR.

HbO HbR HbO+HbR

2-back v.s SD
Accuracy 69.24 68.18 71.81
Precision 73.23 71.39 74.05

Recall 69.33 71.33 69.78
F1-score 68.60 68.29 69.52

1-back v.s SD

Accuracy 66.97 67.27 67.87
Precision 70.88 70.69 71.55

Recall 63.33 63.92 64.33
F1-score 64.91 65.21 65.58

0-back v.s SD

Accuracy 66.06 65.45 66.76
Precision 70.88 70.13 69.89

Recall 59.33 58.28 62.23
F1-score 62.64 61.91 64.75

Four-classes Accuracy 43.33 43.76 44.16

against single-task driving, 1-back against single-task driving, and 0-back against single-

task driving, respectively; while the classification accuracy for four-classes classification

was improved by 5.24%. Compared to the highest classification accuracy achieved using

multivariate LSTM-FCNs, the ESN model improved the classification accuracy by 8.80%,

5.99% and 5.52% for classifying 2-back against single-task driving, 1-back against single-

task driving, and 0-back against single-task driving, respectively; while the classification

accuracy for four-classes classification was improved by 8.29%.

Furthermore, statistical tests results on the best classification accuracy achieved by

different methods show that the ESN model outperformed CNNs for classifying 2-back

against single-task driving and 1-back against single-task driving (p < 0.05, 10 × 10

cross-validation with a corrected paired Student t-test [184]), while there are no sig-

nificant differences between the classification accuracy for classifying 0-back against

single-task driving and four-classes classification. Similarly, the ESN model outper-
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Table 5.6: Comparison of classification accuracy, precision, recall, and F1 score achieved
by using ESNs, while using only HbO, using only HbR, and using the combination of
HbO and HbR.

HbO HbR HbO+HbR

2-back v.s SD
Accuracy 78.70 77.80 80.61
Precision 77.72 76.36 79.08

Recall 81.81 81.58 81.67
F1-score 79.68 78.97 80.38

1-back v.s SD

Accuracy 72.21 71.30 73.86
Precision 74.70 74.16 74.82

Recall 69.07 67.26 72.70
F1-score 71.62 70.40 73.26

0-back v.s SD

Accuracy 69.48 68.52 71.28
Precision 73.08 70.74 72.54

Recall 63.63 62.90 67.26
F1-score 67.96 66.59 69.60

Four-classes Accuracy 50.12 49.78 52.45

formed multivariate LSTM-FCNs for classifying 2-back against single-task driving and

1-back against single-task driving, as well as four-classes classification (p < 0.05, 10

× 10 cross-validation with a corrected paired Student t-test [184]), while there are no

significant differences between the classification accuracy for classifying 0-back against

single-task driving. When comparing to using hand-crafted features, CNNs, multivariate

LSTM-FCNs, and ESNs all achieved significantly higher accuracy for all classification

tasks (p < 0.01, 10 × 10 cross-validation with a corrected paired Student t-test [184]).

These results suggest that the proposed ESN model can effectively extract useful temporal

information for fNIRS data classification.
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Figure 5.10: Comparison of classification accuracy achieved by using different methods.

5.8 Discussion

Physiological data has shown to be useful for measuring driver cognitive load non-intrusively

and continuously. However, physiological data are not always entirely reliable [134, 163].

To improve robustness, brain-sensing can provide an additional objective measure of

driver cognitive load level. In this work, we describe an advanced machine learning

framework for driver cognitive load classification using fNIRS data. To collect an fNIRS

data set with different driver cognitive load levels, we conducted a study in a driving

simulator where participants were asked to perform an auditory-vocal working memory

secondary-task (n-back). We then investigate advanced machine learning methods to ex-

tract useful features from fNIRS data for classification.

Previous research has shown the superiority of CNNs-based approaches for automat-

ically extracting features from fNIRS data comparing to hand-crafted features. However,
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a moving window method was often used in previous work to carefully pick a small

segment from the original data as the input. While using the moving window method

could result in better classification accuracy, this approach ignores the global temporal

information and makes the results over-optimistic for deploying in real-world applica-

tions. Particularly, a small segment of the fNIRS data has limited capability to represent

the cognitive process for measuring driver cognitive load. Therefore, we set out to in-

vestigate feature extraction methods from a long period of fNIRS data without window

selection. Nevertheless, due to overfitting, the small sample sizes of fNIRS datasets make

it challenging for the CNN-based method to fully extract temporal information from a

long time series data [147].

As such, in this work, we investigate the application of CNN-based models and RNN-

based models for extracting patterns from fNIRS data. Specifically, we compare the clas-

sification results achieved using CNNs, multivariate LSTM-FCNs, and ESNs. CNNs are

pre-trained using CAE, which learns a compressed representation of the input by recon-

structing the original input. After unsupervised pre-training, CAE can then be used for

fine-tuning CNN in classification tasks. On the other hand, the multivariate LSTM-FCN

mode is specially designed for multivariate time-series data and has received a lot of atten-

tion due to its superior performance over other models. At the same time, ESN has been

proven an efficient solution for many multivariate time series data classification problems.

Both multivariate LSTM-FCNs, and ESNs have not been explored for applying on fNIRS

data. To the best of our knowledge, this is the first work to explore the application of

multivariate LSTM-FCNs and ESNs for extracting temporal patterns from fNIRS data.

Specifically, the multivariate LSTM-FCN model comprises a fully convolutional block

and an LSTM block, which can strengthen the model’s ability to capture the temporal

patterns in data. Especially, a squeeze and excite block is applied after the first two con-

volutional blocks to incorporate the inter-correlation between multiple channels at each
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time step [155]. The ESN model aims to perform a one-step-ahead prediction for each

reservoir state, and learned output weights become the features. Our results show that

CNNs, multivariate LSTM-FCNs, and ESNs are all suitable for fNIRS feature extraction,

while ESNs achieved higher classification accuracy than CNNs and multivariate LSTM-

FCNs for fNIRS-based driver cognitive load classification. Furthermore, the ESN model

can be used in various fNIRS-based machine learning problems. Apart from the higher

performance, compared to other RNNs, ESN is computationally efficient and has a fast

training speed, which makes it useful for real-time fNIRS data classification. For future

work, we will explore the application of ESNs in other fNIRS data classification tasks.

Our findings have important implications for building Advanced Driver Assistance

Systems that can automatically measure drivers’ cognitive load. For real-time applica-

tions, a classifier would be trained first with features extracted from the ESN model using

labeled fNIRS data. Then, real-time fNIRS data from the driver would be processed and

fed into the ESN model for feature extraction, which can then be used to predict the la-

bel of real-time data by the classifier. Furthermore, the predicted driver’s cognitive load

level can enable appropriate adaptive behavior of the in-vehicle technology and autonomy

mechanisms, as well as adaptive user experiences. Moreover, our proposed approach can

be used together with other non-invasive brain and body sensing techniques to improve the

accuracy of assessing drivers’ cognitive load. For example, we see promises for integrat-

ing fNIRS signals and EEG signals for a more accurate estimation of drivers’ cognitive

load, by building a deep ESN model that can extract both hemodynamic features from

fNIRS signals and neuronal features from EEG signals.
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5.9 Conclusion

In this paper, we investigated feature extraction methods for classifying driver cogni-

tive load using fNIRS. The proposed ESN method can effectively extract temporal pat-

terns from fNIRS data, and enables more accurate classification of driver cognitive load.

This work builds a foundation for using fNIRS to measure driver cognitive load in real-

world applications. Furthermore, the proposed ESN model method can be useful for other

fNIRS-based machine learning tasks.
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Chapter 6

Classifying Successful and Unsuccessful Rule

Learning Processes Using fNIRS with CNNs,

Multivariate LSTM-FCNs, and ESNs

In the previous chapter, we explored driver cognitive load classification and applied ad-

vanced machine learning approaches to extract spatial and temporal patterns from fNIRS

data. The results suggested that Echo State Network (ESN) is particularly suitable for

fNIRS data classification, and can achieve superior results than Convolutional Neural Net-

works (CNNs), and Short Term Memory Fully Convolutional Networks (LSTM-FCNs).

In this chapter, we explore using fNIRS to classify successful and unsuccessful rule learn-

ing processes. We also investigate whether the proposed ESN model is generalizable

across different tasks.

6.1 Introduction

Previous work in brain-computer interfaces for learning has been focusing on using brain

data to measure learners’ cognitive load and attention level [185, 186, 187, 188]. While
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these cognitive states have shown to play an important role in success during learning

tasks, only a few research has explored the underlying cognitive mechanisms of the in-

duction processes [189, 190, 191]. Therefore, in this paper, we focus on detecting the

induction process during learning using brain sensing and investigating the relationship

between learners’ brain data and learning outcomes. Previous research has detected states

similar to induction using neuroimaging techniques. Using fMRI, Strange et al. con-

cluded that the aPFC is highly activated during abstract rule learning and less activated

as task performance improves [190]. Savage et al. used PET and reported activation in

the PFC during new learning but not during automatic performances or expert behavior

[192]. Recently, the use of functional near-infrared spectroscopy (fNIRS) has received a

focus from researchers in brain-computer interfaces because of its promise for detecting a

user’s cognitive state in more ecologically valid studies. fNIRS devices are relatively in-

expensive, portable, and comfortable [47], and thus we anticipate them becoming realistic

for use in learning environments in the future. fNIRS emits near-infrared light into the

brain, and the light returned to the surface is measured and used to calculate oxygenation

in the blood. This calculation reflects brain activity in that particular area. Moreover, prior

work has shown the potential of using fNIRS data to identify brain activation related to

expertise development [193]. These studies indicate that fNIRS brain data collected from

the aPFC would be valuable in identifying cognitive states that are predictive of robust

learning.

The goal of this work is to explore the feasibility of using fNIRS to detect cognitive

states during the induction processes associated with positive and negative learning out-

comes. Specifically, we collect an fNIRS dataset during a rule learning task described

in the work of Strange et al. [190]. We chose the rule learning task to build a paral-

lel between low-level cognitive structures that are well-studied within cognitive science

research and the induction and refinement processes in the learning domain. The task
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utilizes a modified artificial grammar paradigm to elicit an explicit abstract rule induc-

tion process, which allows for investigating the processing of rule-based regularities in

a controlled way. During the task, participants were required to categorize letter strings

as ‘grammatical’ or ‘ungrammatical’ according to a pre-defined rule through trial-by-trial

feedback. As such, both attention and working memory processes can affect participants’

performance on the task. Moreover, cognitive processes that are likely involved during

the task include: (1) pattern extraction; (2) model building; and (3) retrieval or recog-

nition processes [191]. These cognitive processes also appear during the induction and

refinement processes in the learning domain, such as learning from examples, general-

ization, discrimination, categorization, and schema induction [194]. Then, to unravel

the underlying brain activation pattern that leads to positive and negative outcomes, we

explore advanced machine learning techniques to differentiate between successful and

unsuccessful rule learning processes using fNIRS data.

We compare the classification results of CNNs, multivariate LSTM-FCNs, and ESNs

on classifying successful and unsuccessful rule learning processes using fNIRS data. The

experimental results confirm that both ESNs and multivariate LSTM-FCNs are suitable

for fNIRS data classification, while ESNs achieved superior classification accuracy than

multivariate LSTM-FCNs and CNNs. Furthermore, to improve the transparency of the

ENS models, we visualize the heat maps of hidden neuron activations of the ESN model

for successful and unsuccessful rule learning sessions. The visualization verifies that the

ESN model can obtain abundant discriminative features and significant temporal patterns

during successful and unsuccessful rule learning processes.

The main contributions of this work can be summarized as:

• We propose to use fNIRS for identifying brain activation patterns during induction

processes that lead to positive and negative learning outcomes.

• We describe a study in which we collected fNIRS brain data during a rule-learning

92



task. The dataset contains instances of successful and unsuccessful rule learning

sessions. We show that there are differences in frontal lobe blood oxygenation

patterns between successful and unsuccessful rule learning sessions.

• We describe the application of CNNs, ESNs, and multivariate LSTM-FCNs for

fNIRS data classification and compare their results. We show that ESNs achieved

superior classification accuracy than multivariate LSTM-FCNs and CNNs for clas-

sifying successful and unsuccessful rule learning sessions using fNIRS data.

• We further validate the ability of ESNs for extracting discriminate temporal patterns

from fNIRS through model visualization.

6.2 Background

6.2.1 Brain Sensing During Learning

Previous work has explored using brain-sensing techniques to identify cognitive states

that are important for learning, including working memory load, attention levels, and

emotional change. These measured cognitive states can then be used to build learner

models, which can adapt the learning system to answer the needs, objectives, and inter-

ests of the learner. Spuler et al. explored predicting math-related cognitive workload by

using EEG data. They achieved an average classification accuracy of 56% for differenti-

ating arithmetic problems into three difficulty categories [186]. Walter et al. presented an

EEG-based arithmetic learning environment, which can detect the users’ workload and

adapt the learning materials accordingly [187]. Szafir et al. designed adaptive agents that

measure student attention in real-time by using EEG, and re-engage the student follow-

ing drops in their attention by using verbal and nonverbal cues [195]. Their results show

an adaptive robotic agent can improve student performance compared to the nonadaptive

and random adaptive conditions. Further, Szafir et al. presented a novel computer-based
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education system based on the technique of adaptive content review. By measuring stu-

dents’ attention level by EEG and students will provide students with the contexts that

they had the lowest average attention levels, their results show the adaptive review tech-

nology can improve student recall ability [196]. Shen et al developed a learning system

using EEG that can recognize students’ emotional change and provide emotion-aware

content recommendations. By applying the Support Vector Machine, they achieved an

accuracy of 86.3% for classifying learners’ four emotional states by using the EEG brain-

waves together with other peripheral physiological data. Moreover, their results show the

emotional-aware content recommendation could greatly improve the performance of the

e-Learning system and lead to enhanced user satisfaction [197]. Mills et al. assessed

the relationship between sessions’ difficulty level in an intelligent system and EEG-based

estimate of students’ cognitive load. Their results show that the EEG-based measure of

students’ cognitive load is correlated with the difficulty level of the learning task, as well

as the learning performance [198].

These studies suggest that it is feasible to use brain data as an unobtrusive measure

of learners’ cognitive states for adapting learning content. However, there is little we

know about the underlying cognitive mechanisms during the induction process and their

relationship with the learning outcome. In this paper, we aim to explore the feasibility of

using brain-sensing for identifying brain activation patterns during the induction process

that are associated with positive and negative learning outcomes.

6.2.2 Induction During Learning

Strange et al. used fMRI to measure learning-dependent neural responses during an ex-

plicit rule learning task [190]. Their results show that the anterior prefrontal cortex is

highly activated during abstract rule learning and less activated as task performance im-

proves. Savage et al. used PET and reported activation in the prefrontal cortex during
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new learning but not during automatic performances, or expert behavior [192]. Skrandies

et al. investigated the change of evoked EEG frequencies while participants were learn-

ing mathematical rules. Their results show that there a significant relationship between

successful learning divisibility rules and the changes in EEG frequencies over frontal and

centro-parietal scalp areas of the right hemisphere [199]. However, fMRI and PET are

often prohibitively expensive and require restrictions on the study participant that are not

reasonable for use in real-world learning environments. EEG has been the main technol-

ogy used in education research due to its low cost, portability, and high temporal resolu-

tion. However, EEG has a limited spatial resolution. fNIRS is non-invasive, affordable,

and portable [47]. Compare to fMRI, fNIRS is a more convenient and more affordable

technology. Compared to EEG, it has a higher spatial resolution, is easy to set up, and

robust to noise [78]. Moreover, most fNIRS research focuses on the anterior prefrontal

cortex, including Brodmann area 10 (BA10), which lies behind the forehead. Indeed, Leff

et al. found significant changes in prefrontal cortex activation with expertise development

using fNIRS [193]. These studies indicate that fNIRS brain data collected from the an-

terior prefrontal cortex during learning would be valuable in identifying induction during

learning.

6.3 Data collection

In this experiment, we aim to collect brain signals as a participant learns a new rule in a

highly controlled, validated task. The changes that occur during this abstract task have

relevance to the process a student would go through as they learn a new method or topic.
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Figure 6.1: Illustration of the abstract rule learning task. A sample rule and sample stimuli
are shown. The sample rule refers to the presence of a repeated letter in the second and
third position of each string. The tick or cross next to the string indicates if it follows the
current rule.

6.3.1 fNIRS Recording

The fNIRS data are acquired using was a multichannel frequency domain Imagent from

ISS Inc. Two probes are placed on the forehead to measure the two hemispheres of the

anterior prefrontal cortex. The source-detector distances are 3 cm or 0.8 cm. Each source

emits two near-infrared wavelengths (690 nm and 830 nm) to detect and differentiate

between oxygenated and deoxygenated hemoglobin. The sampling rate is 6.649 Hz. The

sensors are kept in place using headbands, which can also reduce light interference.

6.3.2 Abstract Rule Learning Task

We adopted the rule learning task designed by Strange et al. [190]. During the task,

participants are required to perform explicit abstract rule induction. In each section, there

is a pre-specified rule, which is based on the position of a repeated letter in four-letter
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strings. Participants are instructed to learn the rule over the course of 20 trials. In each

trial, participants are presented with a string of four letters in upper case on the screen

and asked to press ‘A’ on the keyboard if the string follows the current abstract rule, and

press ‘L’ on the keyboard if the string does not follow the current abstract rule (Figure

6.1). Each trial lasts for 4 seconds. Feedback will be presented on the screen after the

participant’s response in each trial to indicate if their answer is correct or wrong. Different

from the experiment in Strange et al. [190], where rules from all sessions are easy to learn

over the 20 trials, we include sessions where the rules are more difficult to learn in our

experiment. For example, as illustrated in Fig 6.1, in this session, in order to acquire the

rule of a repeated letter in the second and third position of a string, participants need to

remember the feedback they receive at multiple strings (e.g., the feedback they receive for

the second string and sixth string) to induct the actual rule. We conducted a pilot study

with four participants to ensure that the task can obtain variance in learning success.

6.3.3 Participants

The study included 14 healthy volunteers (nine males) between the ages of 18 and 41.

One participant’s data are removed from analysis due to unstable fNIRS signals.

6.3.4 Design and Procedure

Before brain-sensing, participants are trained on the task by giving two practice sections.

Researchers will then confirm with participants whether they understand the task. Ensur-

ing they fully understand the task, participants are then equipped with the fNIRS sensors

on their forehead and start the experiment. The experiment consisted of 11 sections. Each

section may or may not follow the same rule or use the same characters as the previous

section. In between each section, there is a rest period during which the strings ‘AAAA’
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Figure 6.2: The number of successful rule learning sessions and unsuccessful rule learn-
ing sessions from each participant.

or ‘LLLL’ are presented (five of each). Participants are required to respond by pressing

‘A’ and ‘L’ on the keyboard, respectively.

6.4 Dataset Curation

Based on the fNIRS data collected during the study and participants’ performance, we

built the dataset for investigating the classification of successful and unsuccessful rule

learning processes.

6.4.1 Dataset Labeling

The number of correct responses during the rule learning session can reflect if the partici-

pant learned the rule or not. In addition to the total number of correct responses across the
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whole session, the responses to the trials near the end are also important to determine the

success of rule learning. Therefore, to ensure that we accurately provide the ground truth

for data labeling, We calculated the total number of correct responses across the 20 trials

as well as the number of correct responses in the last 5 trials for each session. We then la-

bel sessions as successful rule learning sessions only if participants achieved at least 75%

accuracy across the 20 trials and achieved 100% accuracy for the last 5 trials. Similarly,

Sessions were only labeled as unsuccessful rule learning session if participants achieved

less than 75% accuracy during the 20 trials and made at least two errors in the last 5 trials

(less than 80% accuracy). All other sessions that do not belong to these two classes were

ignored for this analysis. Fig 6.2 shows the number of successful rule learning sessions

and unsuccessful rule learning sessions from each participant. Due to the nature of the

task, the number of successful and unsuccessful rule learning sessions varied across par-

ticipants. From Fig 6.2, we can see that some participants successfully learned the rule

during most sessions in the experiment (e.g., P05 successfully learned the rule for 10 out

of 11 sessions), while some other participants did not learn the rule for most sessions (e.g.,

P07 did not learn the rule for 10 out of 11 sessions). 8 out of 13 participants experienced

a mix of successful and unsuccessful rule learning sessions. Across all participants, the

dataset contains 75 successful rule learning sessions and 40 unsuccessful rule learning

sessions.

6.4.2 Behavioral Data

Figure 6.3 shows the average percentage of correct response over the 20 exemplars for all

successful rule learning sessions and all unsuccessful rule learning sessions. As expected,

the performance of successful rule learning sessions improves over trials, reaching 100%

correct by the end of each session; while the performance of unsuccessful rule learning

sessions fluctuates over the 20 trials, indicating participants did not learn the current rule.
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Figure 6.3: The average performance for all successful rule learning sessions (in green)
and for all unsuccessful rule learning sessions (in red). The figure shows the average
percentage of correct responses and standard error over the 20 exemplars.

Furthermore, Figure 6.4 shows the average response time over the 20 exemplars for all

successful rule learning sessions and all unsuccessful rule learning sessions. We can see

that the response time for the first exemplar for both successful and unsuccessful rule

learning sessions is longer than the others. This is understandable since participants were

forced to guess the rule at the beginning of each session. Over the trials, the response

time for the successful rule learning sessions decreases, while the response time of un-

successful rule learning sessions fluctuates over the 20 trials. In general, the response

time of each trial during the unsuccessful rule learning sessions is longer than successful

rule learning sessions. These confirm that during the successful rule learning session, par-

ticipants engaged in successful pattern extraction and model building process, and were

following the rule after figuring out the rule; while during the unsuccessful rule learning

session, participants were struggling with extracting the rule.

100



5 10 15 20

Exemplar

1000

1200

1400

1600

1800

2000

2200

2400

R
es

po
ns

e 
Ti

m
e 

(m
s)

Successful Rule Learning Sessions
Unsuccessful Rule Learning Sessions

Figure 6.4: The average response time for all successful rule learning sessions (in green)
and for all unsuccessful rule learning sessions (in red). The figure shows the average
response time and standard error over the 20 exemplars.

6.4.3 fNIRS Dataset

The dataset consists of fNIRS data of six channels, from 13 participants. Since the two

short-separation channels (0.8cm) contain mostly noise, we only analyze fNIRS signals

from the six long-separation channels. Each sample consists of data in an 80-second

session (4 seconds for each trial, there are 20 trials for each session). There are a total

of 75 samples for successful rule learning sessions and 40 samples for unsuccessful rule

learning sessions.

Dataset Preprocessing

To enhance signal quality, preprocessing is usually required to remove biological and

technical artifacts from fNIRS data [114]. We followed typical preprocessing techniques

[115]: we first used a band-pass filter with a high pass value of 0.02 Hz and a low pass

value of 0.5 Hz to remove the physiological noise and the instrumental noise; we then
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Figure 6.5: Variation of the HbO and HbR concentration for successful and unsuccessful
rule learning sessions. The figures show the mean (averaged across all long channels
and all participants) and standard error over each condition. Shaded areas represent the
standard error.

converted the raw light intensity data to HbO and HbR values using the Modified Beer-

Lambert Law; finally, we applied the correlation-based signal improvement (CBSI) to

reduce the motion artifacts [170]. All preprocessing was completed in MATLAB using

HomER [116].

Dataset Overview

Figure 6.5 shows the block averages of changes in HbO (red) and HbR (blue) across all

participants for successful and unsuccessful rule learning sessions. Specifically, we cal-

culated the folded average of all long-separation channels on the left side of the head and

all long separation channels on the right side of the head separately. The changes in HbO
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and HbR were calculated by subtracting the corresponding value of the starting point for

each trial. From Fig. 6.5, we can see that for successful rule learning sessions, on both

sides of the brain, following neural activation at the beginning, there is a decrease in HbO

due to the metabolic consumption of oxygen around 3s to 10s. After that, there is a steady

increase during 10s to 30s in HbO on the left side of the brain. For unsuccessful rule learn-

ing sessions, there is a significant increase in HbO around 20s to 35s on the right side of

the brain, followed by a decrease. Similarly, we can see that there is a significant decrease

in HbR around 15s to 35s on the right side of the brain, and followed by an increase. In

general, the value of HbO on the right side of the brain is lower during successful rule

learning sessions than unsuccessful rule learning sessions. Moreover, the changes of both

HbO and HbR are comparatively more stable during successful rule learning sessions

than unsuccessful rule learning sessions. We can see that for unsuccessful rule learning

sessions, during the last 5 trials of the session (60s to 80s), there are frequent increases

and decreases for both HbO on the left side of the brain and HbR on the right side of the

brain. These indicate that during the successful rule learning session, participants were

engaged in abstract rule learning processes in the beginning and then switched to follow

the rule after successfully acquired the rule; while during unsuccessful rule learning ses-

sions, participants were continuously engaging in abstract rule learning processes. This

is consistent with previous findings, which suggest activation in the prefrontal area, es-

pecially on the right hemisphere, during abstract rule learning and less activated as task

performance improves [190, 193, 199].

6.5 Classification Methods

We investigate the application of CNNs, ESNs, and multivariate LSTM-FCNs on fNIRS

data for classifying successful and unsuccessful rule learning processes.
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6.5.1 Input

For each sample, the HbO and HbR from six channels in the 80-second period are used

as the input for both ESNs and multivariate LSTM-FCNs. Since the sampling rate was

6.648 Hz, the length of the data is 532. Data from each channel is normalized.

6.5.2 CNNs

The same as the previous chapter, we determine the best architecture of CNNs by inves-

tigating the effect of filter sizes, as well as depth and width on the classification accuracy.

CNNs are pre-trained using CAE and fine-tuned in classification tasks. We add two fully

connected layers and output neurons with the rectified linear unit (ReLU) activation func-

tion. Each layer has 200 units, and 100 units, respectively. We implemented an optimizer

using RMSprop with a learning rate of 0.01.

6.5.3 Multivariate LSTM-FCNs

The same as the previous chapter, considering the size of our dataset, the optimal number

of LSTM cells for our dataset was found via grid search over 4 distinct choices: 8, 16, 32,

64; while the number of filters of the FCN block was found via grid search over 16-32-

16, 32-64-32, and 64-128-64, 128-256-128, with kernel sizes of 8, 5, and 3, respectively.

Following previous work, we use the Adam optimizer, with an initial learning rate set to

1e-3 and the final learning rate set to 1e-4 to train all models. The models are trained for

50 epochs.

6.5.4 ESNs

The same as the previous chapter, we determine the optimal parameters for ESNs by

investigating the effect of the number of hidden neurons and the internal connectivity of

104



Table 6.1: Parameter optimization table for CNNs for classifying successful rule learning
sessions and unsuccessful rule learning sessions.

Filter sizes Width Accuracy F1-score

7×2, 5×2 32, 16 72.72±4.12 68.57±3.75
7×3, 5×3 32, 16 71.46±5.16 66.32±4.46

7×2, 5×2, 3×2 16, 16, 8 74.27±3.37 68.95±3.78
7×3, 5×3, 3×3 16, 16, 8 76.36±4.09 70.86±5.32

7×2, 5×2, 5×2, 3×2 16, 16, 8, 8 71.21±4.12 66.28±4.56
7×3, 5×3, 5×3, 3×3 16, 16, 8, 8 70.03±4.54 65.76±5.51

the reservoir on the classification results. For the architecture of MLP, we use an MLP

consisting of two hidden layers with the ReLU activation function. Each hidden layer has

200 units, and 100 units, respectively. We also implemented an optimizer using Adam

with a learning rate of 1e-3. Furthermore, to explore the interpretability of the ESN

models, we visualize the reservoir state sequences generated by successful rule learning

sessions and unsuccessful rule learning sessions.

6.6 Classification Results

We report the classification results achieved using CNNs, multivariate LSTM-FCNs, and

ESNs. Specifically, we use 10-fold cross-validation with 10 times of repetition to evaluate

the models’ performance. Moreover, since the dataset is unbalanced (there are more suc-

cessful rule learning sessions than unsuccessful rule learning sessions), we used random

oversampling during training to avoid biases towards one class. We report the classifica-

tion accuracy as well as the F1 score for all models.
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Table 6.2: Parameter optimization table for multivariate LSTM-FCNs for classifying suc-
cessful rule learning sessions and unsuccessful rule learning sessions.

FCN Filter Sizes
The Number of LSTM Cells

8 16 32 64

16, 32, 16
Accuracy 76.74±3.26 76.59±3.78 78.86±3.96 75.25±4.42
F1 Score 73.49±3.65 75.08±3.97 77.22±4.09 78.10±4.07

32, 64, 32
Accuracy 81.81±3.34 78.33±4.15 81.81±4.66 80.75±3.90
F1 Score 79.84±3.51 75.87±4.60 80.58±4.87 77.59±4.39

64, 128, 64
Accuracy 82.65±3.14 83.48±1.92 82.24±2.74 80.83±2.39
F1 Score 80.08±3.47 80.49±2.62 79.34±3.63 78.46±2.64

128, 256, 128
Accuracy 81.66±2.70 82.65±2.67 81.74±2.83 82.50±2.56
F1 Score 78.44±3.33 79.25±3.47 78.50±3.31 79.96±2.71

6.6.1 CNNs Results

Table 6.1 shows the classification accuracy and F1-score for classifying successful and

unsuccessful rule learning processes using fNIRS data with the fine-tuned CNN. To de-

termine the optimal architecture for the CNNs, Table 6.1 compares the classification accu-

racy achieved with CNNs consisting of different filter sizes and widths (all convolutional

layers are followed by a max-pooling layer with filters of size 2×2). The accuracies are

the mean accuracies of 10× 10 cross-validation. We can see that the architecture of the

CNNs can greatly affect the classification results. Specifically, when the depth is 3, and

the filter sizes are 7× 3, 5× 3, 3× 3 with a width of 16, 16, 8, we achieved the highest

classification accuracy with an average accuracy of 76.36% and an average F1-score of

70.86%.

6.6.2 Multivariate LSTM-FCNs Results

Table 6.2 shows the classification accuracies and F1-scores for classifying successful and

unsuccessful rule learning processes using multivariate LSTM-FCNs. The accuracy and

F1-score are the averages of 10× 10 cross-validation. To determine the optimal param-

eters of the architecture, Table 6.2 compares the classification accuracy and F1-score
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Figure 6.6: fNIRS data classification accuracy for classifying successful and unsuccessful
rule learning processes using ESNs with different number of hidden neurons, and different
reservoir internal connectivity. The accuracy reported represents the mean accuracy of the
10-fold cross-validation with 10 times repetitions.

achieved with multivariate LSTM-FCNs consisting of different FCN filter sizes and a

different number of LSTM cells. We can see that these parameters can affect the classi-

fication results. In general, when the number of LSTM cells is fixed, models with FCN

filter sizes 64-128-64 achieved better results than models with other filter sizes. Specifi-

cally, when the filter sizes are 64, 128, 64 for the FCN block, and the number of LSTM

cells is 32, we achieved the best classification results with an average accuracy of 83.48%

and an average F1-score of 80.49%.

6.6.3 ESNs Results

Figure 6.6 shows the impact of hidden neurons number and reservoir internal connectivity

on fNIRS data classification accuracy when using ESNs. Similarly, Fig 6.7 show the

F1-score for classifying successful and unsuccessful rule learning processes using ESNs
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Figure 6.7: The F1-score for classifying successful and unsuccessful rule learning pro-
cesses using ESNs with different number of hidden neurons, and different reservoir in-
ternal connectivity. The F1-score reported represents the mean accuracy of the 10-fold
cross-validation with 10 times repetitions

with a different number of hidden neurons, and different reservoir internal connectivity.

We can see that the hidden neurons number and the reservoir’s internal connectivity can

slightly change the classification results. In general, ESNs with 200 neurons and 350

neurons achieved better classification results than ESNs with 50 neurons. while ESNs

with 200 neurons and ESNs with 350 neurons achieved similar classification accuracy.

As shown in Fig 6.6, setting the number of hidden neurons to be 200 is enough to achieve

good results on the dataset. When increasing the internal connectivity, the accuracy and

F1-score are relatively stable, with a slight increase at the beginning followed by a slight

decrease. Specifically when the internal connectivity is set to 0.6, and the number of

hidden neurons is set to 200, we achieved an accuracy of 87.95% and an F1-score of

85.64%. When compared to the best classification results achieved using Multivariate

LSTM-FCNs, the ESNs improved the classification accuracy by 4.47% and improved the
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Figure 6.8: The heat map of the corresponding reservoir state sequence for a successful
rule learning sessions and an unsuccessful rule learning session. There are three distinct
phases for the successful rule learning session, while there are repetitive patterns for the
unsuccessful rule learning session. Moreover, in (a), it shows that the reservoir sequence
from 28s to 40s and the sequence from 68s to 80s are distinctively different, even though
they correspond to the same feedback sequences; while in (b), it shows that the reservoir
sequence from 40s to 52s and the sequence from 68s to 80s are similar, even though they
correspond to different feedback sequences.

F1-score by 5.15%.

For the visualization analysis, Fig 6.8(a) shows the corresponding reservoir states se-

quence of a successful rule learning session, along with the feedback for the responses

over the 20 trials. Similarly, Fig 6.8(b) hows the corresponding reservoir states sequence

of an unsuccessful rule learning session, along with the feedback for the responses over

the 20 trials. We can see that there are significant differences between these two reservoir

state sequences. Especially, for the successful rule learning session, there are three dis-

tinctive phases during the whole session: approximately from 0s to 15s, then from 15s to

50s, and finally from 50s to 80s). However, there are no distinctive phases for the unsuc-

cessful rule learning session, instead, there are similar patterns during the whole session.

For example, reservoir states during 40s to 50s are similar to reservoir states during 70s
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to 80s. This is in line with the cognitive processes that were likely involved during these

two examples: during the successful rule learning session, the participant was likely first

engaging in the pattern extraction process, then moving on to the model building process,

and finally switching to the retrieval or recognition processes; however, during the suc-

cessful rule learning session, the participant was likely repetitively engaging in the pattern

extraction and model building process. Moreover, we can see that the temporal patterns

extracted by ESN are not a direct mapping of the feedback participants receive about the

correctness of their responses. For example, in (a), we can see that the reservoir sequence

from 28s to 40s and the sequence from 68s to 80s are distinctively different, even though

they correspond to the same feedback sequences; while in (b), we can see that the reser-

voir sequence from 40s to 52s and the sequence from 68s to 80s are similar, even though

they correspond to different feedback sequences. These suggest that the ESN model can

extract distinct temporal patterns for successful and unsuccessful rule learning sessions.

Moreover, the temporal patterns extracted by ESN from the fNIRS data can reflect users’

underlying cognitive states, rather than focusing on sequences of correct and incorrect

responses.

6.6.4 Comparison Results

Fig 6.9 shows the comparison of classification accuracy and F1-score achieved by using

CNNs, multivariate LSTM-FCNs, and ESNs. We can see the ESNs achieved superior

classification results for classifying successful rule-learning sessions and unsuccessful

rule-learning sessions. Specifically, when compared to CNNs, the ESN model improved

the classification accuracy by 14.59% and the F1-score by 14.78%; compared to multi-

variate LSTM-FCNs, the ESN model improved the classification accuracy by 4.47% and

the F1-score by 5.15%. Furthermore, statistical tests results on the best classification

accuracy achieved by different methods show that both the ESN model and multivariate
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Figure 6.9: Comparison of classification accuracy and F1-score achieved by using CNNs,
multivariate LSTM-FCNs and ESNs

LSTM-FCNs outperformed CNNs (p < 0.01, 10 × 10 cross-validation with a corrected

paired Student t-test), while the ESN model achieved significantly higher accuracy than

multivariate LSTM-FCNs (p < 0.05, 10 × 10 cross-validation with a corrected paired

Student t-test).

However, the performance CNNs and multivariate LSTM-FCNs varies across the two

datasets (see chapter 5). While CNNs achieved better classification results than multi-

variate LSTM-FCNs for driver workload classification, our results show that multivariate

LSTM-FCNs are more suitable than CNNs for classifying successful and unsuccessful

rule learning processes.
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6.7 Discussion

The induction process is important for robust learning [200]. However, little is known

about the underlying cognitive mechanisms during the induction process [194]. In this

work, we explore using fNIRS to identify brain activation patterns that lead to positive and

negative learning outcomes during the induction process. As a first step to understanding

the induction process in more complex learning tasks, we adopt a well-understood rule-

learning task in cognitive neuroscience [190]. The rule learning task can elicit explicit

abstract rule induction, which consists of pattern extracting, model building, and retrieval

or recognition process [191]. These cognitive processes are common in the induction and

refinement process in the learning domain. We design the experiment to ensure variance

in participant learning success. We then research advanced machine learning methods for

classifying fNIRS data associated with successful rule learning sessions and unsuccessful

rule learning sessions.

Our classification results show that both ESN and multivariate LSTM-FCN are suit-

able for fNIRS data classification, and outperformed CNNs for classifying successful

rule learning sessions and unsuccessful rule learning sessions. However, when applying

multivariate LSTM-FCN, the classification results are greatly affected by the parameter

choices of the model. On the other hand, the fNIRS data classification results based on

ESNs are more robust. In general, the ESN model achieved superior classification results

for classifying successful rule learning sessions and unsuccessful rule learning sessions,

with an accuracy of 87.95% and an F1-score of 85.64%. Furthermore, the visualization

analysis of the ESN model shows that the reservoir state sequences can obtain abundant

discriminative features for successful and unsuccessful rule learning sessions. It shows

the temporal patterns extracted by ESN are in line with the cognitive processes involved

during successful and unsuccessful rule learning sessions, rather than the sequences of
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correct and incorrect responses.

Our findings have important implications for understanding the underlying cognitive

mechanisms during learning activities and developing learning systems that can adapt to

the user’s cognitive states to support robust learning, as well as provide a better user ex-

perience. For example, if the system can detect when a user is struggling with learning, it

can provide appropriate feedback and examples to better support the user. Particularly, we

see promises of using fNIRS data with ESN for detecting brain activation patterns during

the induction process. ESN is conceptually simple, easy to implement, and computation-

ally inexpensive [180], which makes it practical for classifying fNIRS data in real-world

applications. Furthermore, the visualization analysis of the ESN model show promises

for explaining the classification results, which can help researchers better interpret the

findings and provide insights for further investigation.

6.8 Conclusion

In this work, we investigated using fNIRS data to classify successful and unsuccessful rule

learning processes, by applying CNNs, multivariate LSTM-FCNs, and ESNs. We show

these models achieved satisfactory classification results, while the ESN model can extract

distinctive temporal patterns for successful and unsuccessful rule learning processes and

achieved better classification results. This work is the first step for using fNIRS to under-

stand the underlying cognitive mechanisms during the induction process, and it builds a

foundation for future adaptive learning systems based on fNIRS data.
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Chapter 7

Discussion and Conclusion

7.1 Research Contributions

We summarize the research contributions of this dissertation, centering around the three

high-level research questions.

7.1.1 Considering RQ1: Mind-wandering Detection by Incorporat-

ing Individuals’ Differences in fNIRS Data

We collected fNIRS brain data during the SART task. This dataset provides examples

of mind-wandering and on-task episodes, defined based on behavioral data, that can be

used to investigate robust classification algorithms. We show individual-level classifiers

can achieve better classification results when focusing on specific windows rather than

those using the entire episodes. We propose a novel individual-based time window se-

lection (ITWS) algorithm to incorporate individual differences in window selection when

building group-level classifiers. We demonstrate that the ITWS algorithm can improve

the group-level classification results by comparing with other methods that do not use the

ITWS algorithm.
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The proposed classification framework is data-driven and enables a more accurate

detection of mind-wandering. The findings from this study also reveal individual differ-

ences in window selection for mind-wandering detection. This work could inform further

research about the time course aspects of mind-wandering, and it builds a foundation

for both evaluation of multimodal learning interfaces and future attention-aware systems

based on fNIRS data.

7.1.2 Considering RQ2: Driver Cognitive Load Classification by Ex-

tract Spatial and Temporal Patterns from fNIRS Data

We collected fNIRS brain data in a simulated driving environment with the n-back task

used as a secondary task to impart structured cognitive load on drivers. We investigate

the application of Convolutional Neural Networks (CNNs), multivariate Long Short Term

Memory Fully Convolutional Networks (LSTM-FCNs), and Echo State Networks (ESNs)

for fNIRS-based driver cognitive load classification. We show that the proposed ESN

method yields state-of-the-art classification accuracy for group-level models without win-

dow selection for fNIRS-based driver cognitive load classification.

To the best of our knowledge, this is the first work to explore the application of

multivariate LSTM-FCNs and ESNs for extracting temporal patterns from fNIRS data.

This work builds a foundation for using fNIRS to measure driver cognitive load in real-

world applications. Furthermore, the proposed ESN model method is conceptually sim-

ple, easy to implement, and computationally inexpensive [180], which can be useful for

other fNIRS-based machine learning tasks.
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7.1.3 Considering RQ3: Positive and Negative Cognitive Processes

Classification by Applying ESNs

We move beyond cognitive states that have been explored in previous work using fNIRS

and investigate the feasibility of using fNIRS to differentiating cognitive processes that

lead to positive and negative learning outcomes. We describe a study in which we col-

lected fNIRS brain data during a rule-learning task. The dataset contains instances of

successful and unsuccessful rule learning sessions. We show that there are differences in

frontal lobe blood oxygenation patterns between successful and unsuccessful rule learn-

ing sessions.

We applied CNNs, multivariate LSTM-FCNs, and ESNs for classifying successful

and unsuccessful rule learning processes using fNIRS and compare their results. We show

that same as fNIRS-based driver cognitive load classification, ESNs achieved superior

classification accuracy than multivariate LSTM-FCNs and CNNs for classifying success-

ful and unsuccessful rule learning sessions using fNIRS data. This confirms the capability

of the ESN model for extracting useful information from fNIRS data, and validate the ro-

bustness of the proposed ESN model for fNIRS-based classification. Furthermore, our

findings have important implications for understanding the underlying cognitive mecha-

nisms during learning activities and developing fNIRS-based learning systems that can

adapt to the user’s cognitive states to support robust learning, as well as provide a better

user experience.
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7.2 General Discussion and Future Opportunities

7.2.1 Improving fNIRS Data Quality and Building Large fNIRS Datasets

The acquired fNIRS signals from the device contain physiological noise (e.g., heart rate,

respiration) and artifacts (e.g., instrumental noise, participant head movement) [114].

Even though multiple pre-processing methods have been developed to remove these noise

sources and artifacts from the fNIRS signals, there are no standard steps established in the

fNIRS research community. At the same time, noise and outliers in fNIRS data can lead

to poor performances of machine learning models. Therefore, for real-world applications,

there is a need to improve the fNIRS data quality and take the noises in fNIRS data into

consideration when applying machine learning models.

Hardware improvements. Improvements in fNIRS hardware can greatly improve the

quality of fNIRS data. For example, the ongoing effort for improving time-domain fNIRS

devices show promises for providing more accurate values for neurally evoked HbO and

HbR values [201].

Advancement in noise-removal methods and machine learning models. Advance-

ment in noise-removal methods can reduce the impact of noise and outliers in fNIRS

data on the machine learning models [202]. For example, Sato et al. al proposed a new

method that combines short distance channels and a general linear model to extract scalp-

hemodynamics and reduce artifacts [203]. Moreover, it would be interesting to explore

advanced machine learning techniques that can deal with noisy time-series data. For ex-

ample, Sheng et al. explored using ESNs to predict noisy nonlinear time-series data.

They proposed an improved ESN model which can consider the uncertainties in internal

states and outputs. Their results show that the ESN model with addictive noises is effec-

tive and robust for predicting noisy nonlinear time series [204]. Furthermore, developing
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open-source fNIRS data processing infrastructure and user-friendly interfaces be helpful

for researchers in this emerging research area.

Building large fNIRS datasets. One limitation for accurately decoding cognitive states

from fNIRS data using machine learning is the size of the datasets. By collecting large

fNIRS datasets integrating with behavioral data during different tasks, it offers new op-

portunities for building robust machine learning models that can be used in real-world

applications.

7.2.2 Bridging the Gap Between Cognitive Neuroscience Tasks and

Realistic Tasks

In order to classify different cognitive states in real-time, there is a need to collect fNIRS

data that are correctly labeled with a variety of cognitive states. Researchers have used

standardized tasks adapted from experimental psychology (e.g., the n-back task and the

SART task), or calibration tasks, which are task manipulations with known consequences.

These tasks provide researchers with correctly labeled brain data. However, there is still a

gap between highly controlled tasks and complex interaction scenarios in real-word. For

example, even though experimental manipulation can closely respond to real-life experi-

ence, it may be difficult to assess which cognitive construct is being captured due to the

absence of experimental conditions [205].

Therefore, to establish the validity of the measuring target cognitive states using

fNIRS in more complicated and realistic interaction tasks, there needs to be a strong and

unambiguous linkage between the standardized/calibration task and the target cognitive

resources. One possible solution is to combine standardized tasks and experimental ma-

nipulation. After carefully selecting target cognitive states and conducting corresponding

standardized tasks that are well-understood in neuroscience, research can follow up with
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a realistic task to investigate if similar patterns as shown in previous standardized tasks

can be detected. Then, researchers can alternate both the properties of the standardized

tasks and the design of the realistic tasks to make them more similar. For example, when

developing an adaptive learning interface, if our target cognitive state is mind-wandering,

the standardized task is the SART task, and the realistic task is a learning task, then mod-

ifications can be made both to the SART tasks and the learning task to ensure the validity

of the mapping.

7.2.3 Improving Users’ Cognitive Model Based on fNIRS Data

In most previous work, information derived from brain data is directly interpreted as a

specific user intention or a change in cognitive or affective state. However, representing

users’ state from physiological data has been one of the limitations of physiological com-

puting. For example, when the fNIRS signals indicate high cognitive workload of a user

in a learning task, it could indicate the user is being pushed cognitively in a construc-

tive way and is engaged in learning, or it could be indicative of a state where the user is

overwhelmed and is not able to learn [206]. One-dimensional representation of the user

state may restrict the range of adaptive options available to the system [205]. Again, we

take the high cognitive states of the user in a learning task for example. If the adaptation

happens when the user is engaged in learning, it may be disruptive. For simple systems,

this may not be a problem, but for complex systems, more delicate adaptive responses are

required.

Multiple-dimension representation of user’s cognitive states. One straightforward

solution is to increase the psychophysiological complexity of user representation [205].

Taking adaptive learning interfaces as an example, Yuksel et al. suggests if a learning

system can detect both cognitive workload and affective state, it would make the system
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more powerful [206]. For example, frustration often leads to giving up during learning.

By combining cognitive workload and emotion, the learning system may make a distinc-

tion between two states of high cognitive workload and responds accordingly. Therefore,

we can use fNIRS to measure different cognitive states at the same time, and provide an

adaptive system with a multi-dimensional representation of the user.

Combining context information with users’ cognitive states. Another solution is

to combine the representation of user state with events and contexts that evoked them.

Again, taking adaptive learning interfaces as an example, Zander et al. demonstrated the

computer can build and continuously update a context-sensitive for a specific user by re-

registering EEG data with context information [207]. In the learning domain, Anderson

et al. illustrated the importance of integrating the bottom-up information from imaging

data with the top-down information from a cognitive model [208]. They collected fMRI

data while students working with a tutoring system. By combining information relating to

mouse-clicks and the distribution of possible lengths for different states, they show they

can predict which step the student is when solving a problem. Therefore, when develop-

ing adaptive learning interfaces, by combining educational data mining techniques with

fNIRS brain imaging, we can explore critical moments in the use of learning systems

and get a better understanding of what is occurring during individual use of a learning

environment.

7.2.4 Personalizing fNIRS-based Machine Learning Models

Personalization is defined as a process of changing a system to increase its personal rel-

evance [209]. Even though we have mainly explored building machine learning models

at a group-level, in order to gain more training samples, it would be interesting to ex-

plore fNIRS-based machine learning models that are personalized for each individual.
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The personalized model can take individual’s difference in cognitive styles, ability, and

experiences into consideration. Such models can optimize the systems’ adaption for each

user and improve user experiences. For example, Gevins et al. investigated individual

differences in cognitive ability and cognitive style using EEG. They show that subjects

that scored high on psychometric tests also tended to have a better performance on ex-

perimental tasks examining working memory. High-ability subjects were relatively quick

to optimize task allocation on frontal and parietal brain regions. Moreover, EEG signals

distinguished between individuals with a verbal cognitive style and those with a nonver-

bal style, and indicated their different utilization of brain regions [210]. Thus, evaluating

and designing different user interfaces and adaption techniques according to different

cognitive styles would be an interesting topic to explore further. In learning and cogni-

tive learning theory, a phenomenon called the expertise reversal effect was also explored.

The expertise reversal effect means instructional techniques that are beneficial to begin-

ners can have inverse effects on more experienced learners [211, 212]. Recent research

suggests that fNIRS-based adaptive interfaces can take the expertise reversal effect into

consideration. Leff et al. showed that fNIRS can be used to distinguish participants’ dif-

ferent levels of experience on a bimanual task [193]. In the work of Yuksel et al. , they

found out that the adaption techniques designed for beginner were too easy and frustrating

for intermediate-level learners [206]. Therefore, again, taking adaptive learning interfaces

as an example, if we can personalize the learning environment and adaptation techniques

according to the user’s background and experiences, it can positively impact users’ en-

gagement and improve learning performance. Furthermore, with the advancement in the

fNIRS device to make it wearable in everyday settings, it would be interesting to explore

using reinforcement learning to personalize intelligent systems based on fNIRS data.
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7.3 Closing Remarks

fNIRS is a brain-imaging tool that is safe, portable, and easy to use, it has the potential

to change the way we interact with computers. However, it is challenging to accurately

decoding cognitive states from fNIRS data.

In this dissertation, we investigate the feasibility of decoding important user states

from fNIRS data, through developing and applying novel machine learning methods that

are tuned to the characteristics of fNIRS data. We explore using fNIRS for detecting

mind-wandering state, and propose an individual-based novel window selection algorithm

to incorporate individuals’ differences in fNIRS data. The proposed algorithm can signif-

icantly improve the results for mind-wandering detection. We investigate the feasibility

of using fNIRS for classifying different levels of cognitive load and explore advanced

deep learning techniques for extracting spatial and temporal features from fNIRS data,

including CNNs, LSTM-FCs, and ESNs. The proposed ESN method achieved state-of-

art classification results for driver cognitive load classification. We further investigate

the feasibility of using fNIRS to differentiate rule learning processes that lead to positive

and negative learning outcomes. We validate the proposed ESN model’s generalizability

across tasks. We show that the ESN model can effectively extract significant temporal

patterns from fNIRS data during successful and unsuccessful rule learning processes.

Successful results and findings of the research have an impact on the emerging fNIRS

research and build a foundation for developing adaptive Brain-Computer interfaces using

fNIRS. The machine learning frameworks developed from this work can facilitate the

research of using fNIRS to measure individuals’ cognitive states, which can lead to future

developments of using fNIRS to enable appropriate adaptation in intelligent systems.
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Appendices
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A Driver Cognitive Load Classification Results with Tra-

ditional Classifiers

We report the driver cognitive load classification results with traditional classifiers. The

average values of HbR and HbO and the slope over the whole window of all channels are

used as hand-crafted features.
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Figure 1: Accuracies for classifying 2-back v.s single-task driving with different classi-
fiers, using 10-fold cross-validation.
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Figure 2: Accuracies for classifying 1-back v.s single-task driving with different classi-
fiers, using 10-fold cross-validation.
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Figure 3: Accuracies for classifying 0-back v.s single-task driving with different classi-
fiers, using 10-fold cross-validation.
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W Müller. Physical, mental, emotional, and subjective workload components in train drivers. Er-

gonomics, 37(7):1195–1203, 1994.
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[172] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convolutional auto-

encoders for hierarchical feature extraction. In International conference on artificial neural net-

works, pages 52–59. Springer, 2011.

[173] Jonas Gehring, Yajie Miao, Florian Metze, and Alex Waibel. Extracting deep bottleneck features

using stacked auto-encoders. In 2013 IEEE international conference on acoustics, speech and signal

processing, pages 3377–3381. IEEE, 2013.

[174] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 7132–7141, 2018.

[175] Filippo Maria Bianchi, Simone Scardapane, Aurelio Uncini, Antonello Rizzi, and Alireza Sadeghian.

Prediction of telephone calls load using echo state network with exogenous variables. Neural Net-

143



works, 71:204–213, 2015.

[176] Decai Li, Min Han, and Jun Wang. Chaotic time series prediction based on a novel robust echo state

network. IEEE Transactions on Neural Networks and Learning Systems, 23(5):787–799, 2012.

[177] Qianli Ma, Lifeng Shen, Weibiao Chen, Jiabin Wang, Jia Wei, and Zhiwen Yu. Functional echo state

network for time series classification. Information Sciences, 373:1–20, 2016.

[178] Pattreeya Tanisaro and Gunther Heidemann. Time series classification using time warping invari-

ant echo state networks. In 2016 15th IEEE International Conference on Machine Learning and

Applications (ICMLA), pages 831–836. IEEE, 2016.

[179] Filippo Maria Bianchi, Simone Scardapane, Sigurd Løkse, and Robert Jenssen. Reservoir com-

puting approaches for representation and classification of multivariate time series. arXiv preprint

arXiv:1803.07870, 2018.
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