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Abstract 

The contribution of this thesis is on the temporal adjustment of the consensus weights, as 

applied to spacecraft formation control. Such an objective is attained by dynamically 

enforcing attitude synchronization via coupling terms included in each spacecraft 

controller. It is assumed that each spacecraft has identical dynamics but with unknown 

inertia parameters and external disturbances. By augmenting a standard adaptive 

controller that accounts for the unknown parameters, made feasible via an assumption on 

parameterization, with adaptation of the consensus weights, one opts to improve 

spacecraft synchronization. The coupling terms, responsible for enforcing 

synchronization amongst spacecraft, are weighted dynamically in proportion to the 

disagreement between the states of the spacecraft. The time adjustment of edge-

dependent gains as well as the special cases of node-dependent and agent-independent 

constant gains are derived using Lyapunov redesign methods. The proposed adaptive 

control architectures which allow for adaptation of both parameter uncertainties and 

consensus penalty terms are demonstrated via extensive numerical studies of spacecraft 

networks with limited connectivity. By considering the sum of deviation-from-the-mean 

and rotational kinetic energy as appropriate metrics for synchronization and controller 

performance, the numerical studies also provide insights on the choice of optimal 

consensus gains. 
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Chapter 1 

Introduction 

1.1 Motivation and Related Work 

The application of synchronization control provides remarkable advantages in 

solving problems associated with multi-agent systems and in particular spacecraft 

formation. In space industry, coordination capabilities of multi-agent systems involve 

sensing, communicating and synchronizing the motion [1]. Any additional improvements 

in control algorithms would translate to significant energy savings. One such 

improvement involves optimization and adjustment of consensus gains as used for 

synchronization control of spacecraft formation. 

Spacecraft formation aims to force multiple spacecraft to work together in a 

group, while maintaining certain coordinated attitude dynamics. Such group behavior has 

many benefits over single satellites including great flexibility, reduced cost, overall 

adaptability and simple design. The optimization and adjustment of consensus gains for 

improving the attitude synchronization has attracted vast of interests in the past years. 
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References [2] and [3] provide a comprehensive survey of spacecraft formation flying 

guidance and control.  

The current effort continues on the earlier works. A set of adaptive strategies for 

synchronization of complex networks is proposed in [4] where the adaptation law is 

based on the information at the network nodes. Reference [5] analyzed the 

synchronization of networked nonlinear oscillator, using the time varying local gains. In 

[6], a decentralized strategy for synchronization is presented based on adaptive local 

gains, which is robust to topological variation and time-delay. Although these works 

considered the adaptation of gains involving the pairwise mismatch of the orientation 

states, generally the strategy they used to guarantee the attitude synchronization of 

spacecraft formation imposed conservative conditions. 

In [7], the authors developed a passivity-based distributed velocity input law to 

investigate attitude synchronization in the Special Euclidean group, with the assumption 

that information exchange among the agents are under strongly connected. It also showed 

that the control input is suitable for the leader-follower case and the cases with 

communication delay and topology switching. The work in [8] considered attitude 

synchronization for a group of spacecraft in the presence of attitude forbidden zones. It 

introduced the quadratic convex parameterization to find a feasible consensus like 

algorithm, and embed it into an auxiliary system which utilizes a logarithmic barrier 

potential to measure the attitude deviation from the boundary of the constrained zone. 

With the information from the auxiliary system and neighbor spacecraft, attitude 

synchronization can be achieved. 
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In practical cases, the true value of parameters is hard to determine exactly. A 

way to address parametric uncertainties and external disturbances, as for example 

externally generated environmental torques, is to employ adaptive control methods. 

Beyond stabilizability and tracking or regulation, which can be ensured by implementing 

robust or adaptive controllers, the attitude synchronization problem requires additional 

control design. This comes in the form of additive consensus terms in the controllers and 

consists of terms that penalize the mismatch between the spacecraft states. For example, 

the penalty terms in each spacecraft controller may include the pairwise difference of 

spacecraft angular velocities, weighted by appropriately chosen penalty gains. Continuing 

with possible improvements of the consensus terms used for spacecraft synchronization, 

is the temporal adjustment of the consensus gains. When the “disagreement” of 

spacecraft i with spacecraft j is “smaller” than the disagreement of spacecraft i with 

spacecraft k, then the gain of the first disagreement should be less than that of the second 

pairwise difference. This would then allow for significant reductions in controller 

magnitudes and provide additional robustness due to uncertainties.  

In [9], an adaptive controller was established based on Lyapunov theory. It 

entailed control theory for delay-free and coupling time-delay topologies to achieve 

attitude synchronization of spacecraft formation. The control architecture introduced 

allowed for parameter uncertainties. The plant parameters were parameterized via a 

suitable transformation and the control signal consisted of two parts: (1) the regulation or 

model following part coupled with adaptation of plant parameters and (2) the part that 

enforced consensus. The latter involved coupling gains of pairwise differences of the 

spacecraft states. Such penalization involved gains that were constant and uniform with 
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respect to the N agents. Both the static regulation and the dynamic tracking cases were 

analyzed. The work in [10] addressed the cooperative tracking problem in the presence of 

model uncertainties and time-varying delay, especially the development of an output 

feedback control law without explicitly requiring the information of angular velocity. 

[11] proposed adaptive schemes for unknown parameters in system dynamics in the way 

of coordinating torques and control laws by position and velocity errors.  [12] considered 

the problem of bilateral teleoperation with unknown parameters and developed a passive 

coordination control to synchronize the states of master and slave robots. 

The framework considered in this work for the attitude synchronization is based 

on the dynamic framework in Lagrangian form, which is convenient when dealing with 

multiple systems. The application of Lagrangian formulation for dynamic model in 

Robotics is widely used [13]. For example, [11], [12] propose adaptive coordination 

architectures to ensure synchronization in both positions and velocities for teleoperators 

with time-delay. The stability analysis and controller synthesis used is similar to the case 

of spacecraft formation. For example, [14] studies synchronization for both translational 

and rotational dynamics in the Lagrangian form using contraction analysis.  

 

1.2 Thesis Contributions 

In this thesis, the attitude synchronization of spacecraft formation is considered 

and in particular the optimization and time adaptation of the consensus weights used for 

synchronization. This work extends the work of [9] with the difference that it adapts the 

consensus (local) weights in the control signal. Extending the case of uniformly fixed-

gains in the synchronization signal, three types of consensus gains are considered: (i) 
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node-dependent (the local weights of the synchronization signal can differ for each 

spacecraft) (ii) constant gain, edge-dependent (the local weights can differ for each 

spacecraft and for each of its communication neighbors) constant gain and (iii) time-

varying edge-dependent gains. The case of adaptive adjustment of the gains leads to 

combined control and adaptation laws. The proposed modification assumes that the 

synchronization signal contains a fixed gain but the torque inputs are weighted by a local 

adaptive gain. Using Lyapunov redesign methods, the adaptation laws for the local gains 

are derived and the synchronization objective can subsequently be established. 

Furthermore, the mainly contribution of this work also includes the time-adjustment of 

the unknown parameters of the system dynamics when consider the practical case of 

parameter uncertainty. Additionally, this work also provides insights on the choice of 

optimal consensus gains considering keeping a low cost of energy. 

 

1.3 Thesis Organization 

In Chapter 2, the formulation of the problem is presented as well as the 

background on the attitude dynamics and graph theory. Firstly, the synchronizing 

controllers for known parameters are presented in Chapter 3. This chapter mainly 

considers edge-dependent synchronization gains which includes the special cases of 

node-dependent and uniform weights, as well as the adaptive adjustment of the edge-

dependent synchronization gains. Their applications for the cases of parameter 

uncertainty are provided in Chapter 4. The stability analysis and convergence properties 

of the proposed control architectures are presented in both Chapter 3 and 4. 
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In Chapter 5, numerical studies on the effects of the synchronization gains on both 

a measure of agreement of the spacecraft states and on the rotational kinetic energy are 

presented. Conclusions and Future work follow in Chapter 6. 
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Chapter 2 

Problem Formulation and Background 

In this chapter, the dynamic model based on the Euler-Lagrange formulation for the 

networked spacecraft system is established. Additionally, it provides background for the 

graph theory used in communication topology. 

 

2.1 Lagrangian Formulation 

The natural form of the Lagrangian is defined as the total kinetic energy   minus the 

potential energy    

      

where the kinetic energy is given by 

  
 

 
 ̇   ̇ 
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where   is the inertial matrix. Then the equation of motion of the system can be 

achieved in the expression of the Euler-Lagrange equation. That is, the dynamic equation 

of motion can be described as 

 

  

  

  ̇
 

  

  
   

where      is the generalized coordinate with multiple degrees of freedom  ,   is the 

external force. 

The above equation can be written in the form of [13] 

     ̈       ̇  ̇          

where   is an     symmetric, positive-definite inertia matrix,   is an     matrix and 

  ̇ is the vector of Coriolis and centrifugal terms, and    is the vector of gravity terms. 

Here   is defined using the Christoffel symbols of the first type and given by [13]. 

 

2.2 Attitude Dynamics 

A group of   networked spacecraft having identical dynamics is considered. Using the 

Euler rotational equations of motion, one can arrive at the following equations that 

describe the dynamics for each spacecraft in body axes 

  ̇                

where   is the total inertia matrix and   is the angular velocity vector. The input signals 

  and         denote the control and external disturbance torques respectively. All 

these parameters are described in the body frame.  

In this thesis, the orientation of spacecraft with respect to the inertial frame will be 

expressed in the way of Modified Rodriques Parameters (MRP) [15] [16] [17]. The 
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advantages of the use of MRPs include: there is no additional equality constraint as for 

the quaternion case; they can parameterize eigenaxis rotations up to 360 degrees and 

provide a continuous single-valued and analytic representation of rotations [16]. In this 

way, the attitude vector      should be    ̂       (
 

 
)  ̂, where  ̂ is the eigenaxis 

unit vector and          is the eigenangle. Therefore, the attitude vector   and the 

angular velocity   have the following relationship 

 ̇        (1) 

where 

     
 

 
(
 

 
                  ) 

and the skew-symmetric matrix      is defined as 

     [

      

     

       
] 

In matrix notation, the rotational kinetic energy of a rigid body is written as [18] 

  
 

 
    

 

 
     

where      is the angular momentum. 

Using the notation of MRP to get 

  
 

 
     

 

 
 ̇         ̇  

 

 
 ̇   ̇, 

      
 

 
 ̇   ̇       

where                    is the inertial matrix. According to the Euler-Lagrangian 

equation 

 

  

  

  ̇
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One can express the attitude dynamics through Euler-Lagrange formulation [14] 

 ̇ ̇  
 

 
 ̇ 

  

  
 ̇  

  

  
 ̇ ̇  

 

 
 ̇ 

  

  
 ̇  (

  

  
 ̇  

 

 
 ̇ 

  

  
)  ̇        ̇   ̇  

The   matrix is defined as 

    
 

 
∑

    

   

 

   

 ̇  
 

 
∑(

    

   
 

    

   
)

 

   

 ̇  

     

  
        

Therefore, for every individual spacecraft, the attitude dynamics can be expressed as 

       ̈         ̇   ̇            (2) 

where index   {       } is the set of networked spacecraft, and 

                 
       

       ̇              
       ̇     

                      
       

             

                     

The above dynamical equation is linear in the parameters as long as      is constant. The 

above Euler-Lagrange formulation enjoys some fundamental properties, summarized 

below [1], [13], [19], [20], [21]. 
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Property1: The inertia matrix        is lower and upper bounded, i.e. for each   

      

    {  }           {  }    

Property 2: The matrix ( ̇              ̇  )  is skew-symmetric, that is for any 

vector      

  ( ̇              ̇  )     

Property 3: The Coriolis term        ̇   is bounded as      ̇          

|       ̇   ̇ |   | ̇ |
  

Property 4: With constant      and inertial moments, (2) is linearly parameterizable, i.e. 

it admits the expansion 

       ̈         ̇   ̇               ̇   ̈           

where    is a constant  -dimensional vector of parameters whose elements include the 

moments of inertial and external disturbances, and       ̇   ̈        is the matrix of 

known functions depending on the generalized coordinates and their higher derivatives. 

 

2.3 Graph theory 

The graph theoretic framework provides means to examine the correspondence of the 

networked systems. The algebraic attributes of the network topology pave the way to 

analyze and synthesize the networked dynamic systems. Formally, a graph [22] shown in 

Figure 1 is defined as the pair        , where   denotes the set of vertices 

{          },       denotes the set of edges. The set of neighbors of a given agent 

(spacecraft) is denoted by   ,        . 
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Figure 1: A graph on 4 vertices. 

If for every pair of vertices, there is a path that has them as its end vertices, the graph is 

connected. When the vertices of the path are distinct except for its end vertices, the path 

is called a cycle [22]. 

A graph containing no cycles is called a forest. When it is connected, this forest is called 

a tree. If the tree spans all over the graph, it becomes a spanning tree [23]. 

When the communication between the networked system has certain directions, a 

directed graph can be constructed (see Figure 2).  In digraph, if the ordered pair       , 

this means edge      is to originate in    and terminate in   . 
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Figure 2: A digraph on 4 vertices. 

According to Definition 2.11 in [22], there is an important notation for a digraph. A 

digraph is a rooted out-branching if it does not contain a directed cycle and it has a vertex 

   (the root) such that for every other vertex there is a directed path from    to  . 

The adjacency matrix      is the symmetric     matrix, where [    ]     if edge 

      , otherwise [    ]    . The degree of a given vertex is equal to the number of 

vertices that are adjacent to the vertex    in  . An important notation is the graph 

Laplacian of   which is defined as               , where      is the degree 

matrix of  . For example, the Laplacian matrix of the graph in Figure 1 is 

      [

          
        
 
 

  
 

   
     

  
 

] 

and the Laplacian matrix of the digraph in Figure 2 is 

     [

        
       
 
 

  
 

 
  

 
 

] 
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According to Theorem 2.8 and Theorem 3.4 in [22], the graph Laplacian of a connected 

graph has one 0 eigenvalue and others have positive real part. And the agreement 

protocol converges the agreement set with a rate of convergence that is dictated by the 

second minimal eigenvalue. Similarly, a directed agreement protocol will converge to an 

agreement set as long as the digraph contains a rooted out-branching. Besides, a digraph 

containing a rooted out-branching as a subgraph has rank         , and  (    ) is 

spanned by the vector of all ones. 

In this work, the underlying interaction topology among the spacecraft has the following 

assumption. 

Assumption 1: The communication graph is fixed and connected or the digraph has 

rooted out-branching. 

 

2.4 Barbǎlat’s Lemma 

Usually it is hard to examine the asymptotic stability analysis of time-varying systems, 

since it is difficult to find Lyapunov functions with a negative definite derivative. 

Barbǎlat’s lemma is a very important result when one deals with this situation [24]. 

Lemma 1: If the differentiable function      has a finite limit as    , and if  ̇  is 

uniformly continuous, then  ̇      as    . 
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Chapter 3 

Attitude Synchronization of Spacecraft 

Formation with Known Parameters 

One way to improve the performance of synchronizing controllers, short of considering 

time variation via adaptive adjustment, is to consider different synchronization gains for 

each agent. Such a case is called node-dependent synchronization gain case, i.e. each 

agent will have a different synchronization gain from the other agents. Going further, one 

may consider having different gains for each pairwise difference between the state of an 

agent and the states of its neighboring agents. This is the edge-dependent synchronization 

gain case [25]. This modification has additional flexibility compared to the node-

dependent gain case; the latter is in fact a special case of the edge-dependent gain, which 

will be proved in the following content. 

In Section 3.1, the synchronizing controllers with edge-dependent constant 

weights are presented and their time adaptation is given in Section 3.2. In the following 

treatment, both the inertial parameters and external disturbance are assumed to be known. 
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In this work, only regulation is considered. Thus the following conditions, which 

constitute the synchronization objectives, should be satisfied 

                                           |     |    
 

                   (3) 

                                           |  |    

 

3.1 Edge-dependent fixed synchronization gains 

Using the edge-dependent modification, the synchronization signal of the  -th spacecraft 

is now given by [25] 

                                                    ̇     ∑                     
 (4) 

where       is the edge-dependent gain and    denotes the neighbors of node  . 

From the above equation, one can observe that the pairwise differences between the state 

of the  -th spacecraft and the state of its neighbor  ,      are varying with both   and  . 

For notational simplification, define the error between the  -th spacecraft and its neighbor 

                                

Then, for the attitude dynamics (3), use the following control law 

                                        ∑    (   ̇        )    
         ̅  (5) 

With the proposed control law equation (5), the closed-loop system is now given by 

                              ̈         ̇   ̇   ∑    (   ̇        )    
  ̅  (6) 

Now, using the definition of the synchronization signal equation (4), one can express the 

closed loop system equation (6) in terms of the synchronization signal    
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  ( ̇  ∑     ̇  

    

)    (   ∑       

    

)   ∑    (   ̇        )

    

  ̅  

or 

   ̇        ̅  (7) 

Theorem 1: With Assumption 1 and control architecture (7), the attitude synchronization 

objective in the sense of (3) is attained by choosing  ̅       , where    is a 

symmetric positive definite matrix. 

Proof: Construct a Lyapunov function 

   
 

 
  

              

Using property (P2) and the control law  ̅       , the derivative of    along the 

trajectories of equation (7) is given by 

 ̇  
 

 
  

  ̇      
    ̇  

 

 
  

 ( ̇         )     
   ̅        

                  
  ̅     

        

Since    is bounded (property (P1)) and    is a positive-definite design matrix, then 

   is bounded with  ̇      
     , where            is a positive constant. A 

consequence of Lyapunov stability theorem [26] is that       and       |  |   . In 

fact, the convergence is exponential! Now, rewrite equation (4) as 

                                                          ̇           (8) 

where    is a weighted Laplacian matrix and defined via 

         

with 

[  ]      [ ]        
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[  ]   ∑    

    

 [  ]               

In a similar fashion as in [9], the transfer function between  ̇ and   is 

     
     

           
 

(9) 

and which has all its poles in the open left half complex plane. This follows from the fact 

that the weighted Laplacian    has one zero eigenvalue and all others locate in the open 

right half complex plane (Ch. 3 in [22]). In particular, one can find that the polynomial 

              has one root at zero and all others are in the open left half complex 

plane. The remaining arguments are similar to those made in [9] for the node-independent 

case. By considering the zero-pole cancelation, a stable system for       ̇  

         is achieved. Therefore, with       |  |   , one has       | ̇ |      

     . 

According to equation (1), one has 

   
   

|  |    

According to Theorem 3 in [27], if the associated communication graph satisfies 

Assumption 1, the information variables satisfy |           |    as     and which 

concludes the proof. 

Remark 1: One can easily observe that the node-dependent modification is a special case 

of edge-dependent modification with             [25]. 

For the synchronization signal with node-dependent gains given by 

       ̇       ∑             

    

 

and using equation (4), with        for all neighbors of node  , one has 
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       ̇     ∑    (           )

    

  ̇     ∑   (           )

    

  ̇       ∑ (           )

    

       

The above can also be adapted for the special uniform case with           . For the 

synchronization signal with constant synchronization gains [9] defined by 

       ̇      ∑             

    

 

if take                 and      in equation (4), one has 

       ̇     ∑    (           )

    

  ̇     ∑  (           )

    

  ̇      ∑ (           )

    

       

 

3.2 Adaptation of synchronization penalty terms for Edge-dependent gains 

Now consider the adaptive adjustment of the edge-dependent synchronization gains in the 

synchronization signal defined as equation (3) 

       ̇     ∑    
              

    

         
(10) 

The edge-dependent synchronization gains    
    are fixed for the definition of the 

synchronization signal    in (10), but the equivalent synchronization gains in the 

definition of the control torque (5), will be time-dependent. Choose the following control 

law for system (2) which includes the time-varying edge-dependent synchronization 

gains        [25] 
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              ∑        ̇      
   ∑              

         ̅   

                 ∑ (   
   ̃     )  ̇      

   ∑ (   
   ̃     )        

         ̅  

               ∑    
 (   ̇        )    

         ̅  ∑  ̃     (   ̇        )    
  (11) 

where the parameter errors are given by 

 ̃                
               

with    
  denoting the constant edge-dependent synchronization gains used in (10) for the 

definition of the synchronization signals      , and  ̃      denoting the time-varying 

parameter errors. 

When (10) and (11) are substituted in (2), one obtains the closed-loop systems expressed 

in terms of the parameter errors 

  ( ̇  ∑    
  ̇  

    

)    (   ∑    
    

    

)   ∑    
 (   ̇        )

    

        

 ∑  ̃     (   ̇        )          ̅ 

    

 

or 

   ̇        ∑  ̃     (   ̇        )

    

  ̅          
(12) 

The above follows the approach used in adaptive control systems where the closed-loop 

system contains the “desired” dynamics and the parameter errors multiplying the 

regressor signals. When the parameters are known i.e when        are replaced by    
 , 

thereby resulting in  ̃       , one can immediately show stability and convergence for 

   ̇        ̅  with  ̅        as in Section 3.1. 
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The adaptation of the gains  ̇  , which is based on Lyapunov-redesign methods, is given 

by 

 ̇    ̇̃        
 (   ̇        )              (13) 

where       denote the adaptive gains whose role is to speed up adaptation. Following 

the possible modifications in adaptive parameter estimation [28], one may also consider 

the following leakage modification to (13) 

 ̇    ̇̃        
 (   ̇        )      ̃                (14) 

where       are the values for the fixed   –modification [28]. It should be noted that 

the above modification involves the parameter error  ̃     . While in standard adaptive 

systems one does not have access to the unknown parameters, here the values of    
  used 

for the definition of (10) are known as they are design parameters. Thus the adaptive 

modification in (14) is feasible since it uses available signals. 

The stability properties of the proposed adaptive system described by (10)-(14) are now 

examined. 

Theorem 2: With the synchronization signal defined by (10) and the adaptive control law 

(11), adaptive law (13) and imposing Assumption 1, the attitude synchronization problem 

in the sense of (3) can be achieved by choosing  ̅       , where    is a positive 

definite matrix. 

Proof: Construct a Lyapunov-like function 

       ̃    
 

 
  

      
 

 
∑ (

 ̃  
 

   
)

    

 

Take the derivative of    along the trajectories of (12) and (13) 
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 ̇   
 

 
  

  ̇      
    ̇  ∑

 ̃   ̇̃  

   
    

 

 

 
 

 
  

 ( ̇         )     
 ( ∑  ̃     (   ̇        )

    

  ̅      ) 

 
 ∑

 ̃   ̇̃  

   
    

 

 

   
 ( ∑  ̃     (   ̇        )

    

  ̅ )  ∑
 ̃  

   
(     

 (   ̇        ))

    

 

 
   

  ̅  ∑  ̃  [   
 (   ̇        )  
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Following standard adaptive control stability arguments [28], one has that         , 

and  ̃             . Replacing the     in (10) by    
  and using the same arguments 

used in Theorem 1, one has  ̇     and subsequently      . 

Then using the fact that ∑  ̃      ̇      
    and ∑  ̃            

   , along with 

properties (P1)-(P3) in (12), one has  ̇     such that  ̈      
    ̇    . 

With an application of Barbǎlat’s Lemma one has 

   
   

|  |    

then 

   
   

| ̇ |    

        

   
   

|  |    

Finally, with the aid of Theorem 3 in [27], one has       |           |   . 

When the   –modification (14) is used in the adaptation of       , then the convergence 

of  ̃   and    to zero become exponential since one obtains  ̇ (    ̃  )           ̃   . 

The remaining arguments are identical to the above case.  
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Chapter 4 

Attitude Synchronization of Spacecraft 

Formation with Unknown Parameters 

Generally, one cannot know exactly the inertial parameters and external disturbances. 

Thus, one can define  ̂     to estimate the true value of   . In this section, the case of 

unknown parameters is considered. 

Similar to Chapter 3, first consider synchronization gains based on the proposed edge-

dependent modification. Then, expand it to the adaptive adjustment of edge-dependent 

consensus gain which result in time-varying gains. 

 

4.1 Edge-dependent fixed synchronization gains for parameter uncertainty case 

According to Property 4, the dynamics of spacecraft are linearly parameterizable as long 

as      is constant. Since the actual constant  -dimensional vector    is unknown, one 

can generate the estimate of    as  ̂     at time  . Then the following equation holds 
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   ̂   ̂ ∑     ̇  

    

  ̂ ∑       

    

  ̂      
(15) 

where  ̂ ,  ̂  are the adaptive estimates matrices of    and    due to the unknown 

moment of inertia, and  ̂      is the estimate for the external disturbance       . 

For the Euler-Lagrange equation (2), propose the control input for the  -th spacecraft as 

     ̂ ∑     ̇  

    

  ̂ ∑       

    

  ̂       ̅      ̂   ̅          
(16) 

Introduce the synchronization signal using the edge-dependent modification 

       ̇     ∑          

    

         
(17) 

where                    is the attitude error between the  -th spacecraft and its 

neighbors. 

Substitute (16) and (17) into (2) 

  ( ̇  ∑     ̇  

    

)    (   ∑       

    

)    ̂ ∑     ̇  

    

  ̂ ∑       

    

 

                                                                                          ̂       ̅         

or 

   ̇               ̂   ̅  

The closed-loop system is given by 

   ̇          ̃   ̅  (18) 

where  ̃      ̂  is the parameter estimation error, and it evolves as 

 ̇̃    ̇̂     
    

            (19) 

Theorem 3: Assuming fixed communication topology via Assumption 1, and the 

proposed control architecture described by (16) and (17), the resulting closed loop system 
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(18) along with the adaptive laws (19) and the control law  ̅       , where    is a 

positive definite diagonal matrix solve the attitude synchronization in the sense of (3). 

Proof: Consider the following Lyapunov-like function 

       ̃   
 

 
  

      
 

 
 ̃ 

    ̃          

Using Property (P2) and (P4), take the derivative of    along the trajectory of (18) and 

(19) 

 ̇  
 

 
  

  ̇      
    ̇   ̃ 

    ̇̃  

     
 

 
  

 ( ̇         )     
 (   ̃   ̅      )   ̃ 

    ̇̂  

       
  ̅   ̃ 

 (  
       ̇̂ )     

       ̃ 
 (  

        
    

   ) 

        
        

Following standard control stability arguments [26] [28], one has that since       ̇  

 , then    is bounded indicating           ̃      ̂    . 

Using the same arguments as in Chapter 3, one has  ̇     and ∑  ̇      
   . 

According to (17), ∑        
    and      . With respect to equation (15) and 

property (P1) and (P3),      . According to equation (18), one has  ̇      

Then 

 ̈      
    ̇     

and along with Barbǎlat’s lemma, one arrives at 

       ̇   ,                 

such that 

       ̇   ,                 
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From Theorem 3 in [27], one has |           |   , as    . 

 

4.2 Edge-dependent time-varying gains for the parameter uncertainty case 

Now consider the adaptive adjustment of edge-dependent consensus gains       . Define 

the synchronization signal 

       ̇     ∑    
              

    

 
(20) 

Here, the edge-dependent synchronization gains    
    are fixed. 

Choose the control input as 

     ̂ ∑        ̇  

    

  ̂ ∑          

    

  ̂       ̅  

       ̂ ∑ (   
   ̃     )  ̇      

  ̂ ∑ (   
   ̃     )        

  ̂       ̅  

         ̂  ∑  ̃     ( ̂  ̇    ̂    )    
  ̅                                                            (21) 

where the time-varying parameter error are given by 

 ̃                
               

Substitute (20) and (21) into (2) 

  ( ̇  ∑    
  ̇  

    

)    (   ∑    
    

    

)    ̂ ∑ (   
   ̃     )  ̇  

    

 

  ̂ ∑ (   
   ̃     )    

    

  ̂       ̅         

the closed-loop system is obtained 

   ̇          ̃   ̂ ∑  ̃   ̇  

    

  ̂ ∑  ̃     

    

  ̅  
(22) 
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where  ̃      ̂  is the parameter estimation error and is updated via 

 ̇̃    ̇̂     
    

            (23) 

and the gain error  ̃   is updated via 

 ̇̃        
 ( ̂  ̇    ̂    )              (24) 

Alternatively, it can be modified to include a diffusion term 

 ̇̃        
 ( ̂  ̇    ̂    )      ̃   

where     and     are positive adaptive gains [28]. 

Theorem 4: With control architecture (22), adaptive laws (23) and (24) and imposing 

Assumption 1, the attitude synchronization in the sense of (3) is achieved by choosing 

  ̅       , where    is a positive definite diagonal matrix. 

Proof: Construct a Lyapunov-like function 

       ̃   ̃    
 

 
  

      
 

 
 ̃ 

    ̃  
 

 
∑ (
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Take the derivative of    along the trajectory of (22) (23) and (24), using property (P2) 

and (P4) to get 
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Since      and  ̇   , then           ̃      ̂    ,  ̃             . 

Using the same arguments as in Theorem 3, then  ̇     ∑  ̇      
     ∑        

 

   and       . 

According to (22), one has  ̇      Finally, for             , it can be concluded 

 ̈      
    ̇     

According to Barbǎlat’s lamma 

       ̇   ,                 

then 

         | ̇ |   ,         |  |    

According to Theorem 3 in [27],       |           |                .  
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Chapter 5 

Numerical Simulation 

In this chapter, numerical simulations are presented to further support the theoretical 

predictions presented in Chapter 3 and 4. Additionally, the numerical studies help provide 

insights on the choice of optimal gains by penalizing a combination of the deviation-

from-the-mean and the rotational kinetic energy. 

Appropriate measures for the synchronization are (i) the deviation-from-the-mean      

and (ii) the rotational kinetic energy      . The optimization of the consensus gains 

should provide a balance between success of synchronization (low value of ‖    ‖ ) and 

controller performance (low value of      ), i.e. the synchronization gains should be 

chosen to minimize the         norm of the sum of the rotational kinetic energy and the 

deviation-from-the-mean 

                   ∫  ‖    ‖    
     

 

 

   
(25) 

where 
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It should also be noted that the optimization (25) can be used for selecting the constant 

gains    
  in the adaptive control law (10) and (11). 

 

5.1 Numerical study for the case of known parameters 

To demonstrate the effectiveness of the proposed scheme, consider a group of 4 

spacecraft with a communication topology depicted in Figure 4. 

 



31 

 

1

2 3

4

 

Figure 3: Section 5.1 Directed graph on 4 spacecraft. 

The corresponding graph Laplacian matrix is given by 

     [

       
          
 
 

  
 

  
    

 
 

] 

The initial conditions of these 4 spacecraft are 

      [         ] ,       [         ] , 

      [         ] ,       [         ] . 

and the inertia matrices of each spacecraft were chosen as 

                ,                  , 

                ,                 . 

Simulation regarding the regulation case is implemented.  
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5.1.1 Effect of constant synchronization gains on system performance 

As a prelude to the optimization (25) above, one way to examine the effects of different 

gains     in  (5) (6), is to choose the synchronization gains in terms of the initial 

mismatch of the spacecraft states as follows 

        |           |              

where       is a positive coefficient presenting the proportion of     to the norm 

|      |. For the numerical results section, consider these coefficients to be independent 

of the nodes, that is      . In this case, the optimization simplifies to 

        ∫  ‖    ‖    
     

 

 

   
 

      |           |              (26) 

Use the control structure constructed in Section 3.1. Choose        |      | (i.e. 

          ,           ,           ,           ),               , 

       ,     . The synchronization result is depicted in Figure 4 and Figure 5. 

Figure 4 shows the convergences of attitude error of spacecraft 2, 3 and 4 with respect to 

spacecraft 1. Figure 5 indicates the synchronization of angular velocity. 
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Figure 4: Section 5.1.1 Evolution of attitude error with constant edge-dependent gain. 
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Figure 5: Section 5.1.1 Evolution of angular velocity with constant edge-dependent gain. 

Figure 6 shows the improvement of edge-dependent gains     based on (26) over a 

uniform gain with a value of    . It examines the effects of both synchronization gains 

on the sum of ‖    ‖ and      . These numerical studies reveal that consensus gains 

chosen in proportion to the initial mismatch between the spacecraft states give out much 

more satisfactory results than arbitrary weights. 
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Figure 6: Section 5.1.1 Evolution of √‖    ‖    
    . 

The sensitivity of the synchronization gains and their effects on the control performance 

is the focus of the next numerical study. 

First, different values of the uniform gain   in the range       were considered, see 

Figure 7. For each value       ], the controller in (4) was implemented and the closed-

loop systems (6) were simulated over the time interval [0,10]s. Both          
    norm 

of     and          
  norm of       were calculated for each       ] . Figure 7 

clearly shows that as the gain   increases, the deviation      decreases while the 

rotational kinetic energy        increases. Therefore, an optimal value of the 

synchronization gain   should compensate for small      and small kinetic energy. As 
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one can see from the figure, the intersection point        provides good balance 

between these two performance metrics. 

 

Figure 7: Section 5.1.1 The effects of varying the uniform fixed gain in the range       on 

‖    ‖ and      . 

 

 

5.1.2 Effect of adaptation of synchronization gains 

A study of the adaptation of the synchronizing gain        as given by (10) (11) and (14) 

is considered. In this case, choose    
     |           |              in (10), 

and           
 ,          ,       in (15). The following figure shows the 

synchronization results of the case of adaptive synchronization gains. 
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Figure 8 and Figure 9 show the convergence of attitude error of spacecraft 2, 3 and 4 with 

respect to spacecraft 1, and the convergence of angular velocity respectively. 

 

Figure 8: Section 5.1.2 Evolution of attitude error with adaptive edge-dependent gain. 
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Figure 9: Section 5.1.2 Evolution of angular velocity with adaptive edge-dependent gain. 

The result depicted in Figure 10, which compares the cumulative effect of  ‖    ‖  

  
      with and without adaptation of the synchronization gains. The non-adaptive case 

implements the controller (5) with        |      |,              . Clearly, gain 

adaptation via (11) and (14) exhibits a significant improvement of the transient response 

over the non-adaptive case (5). 
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Figure 10: Section 5.1.2 Evolution of √‖    ‖    
    . 

In order to optimize the adaptive synchronization gain, the effects of different gains 

       in (11) (12) are examined. Choose    
  in terms of the initial mismatch of the 

spacecraft states as in (18), where   [       ]. Figure 11 depicts both ‖    ‖ and       

in terms of different        to illustrate the selection of the optimal gain, which is   

   ,    
     |      |. 
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Figure 11: Section 5.1.2 The effects of adaptive edge-dependent gain on on ‖    ‖ and       in the range 

         . 

 

5.2 Numerical study for the case of unknown parameters 

To demonstrate the effectiveness of the proposed scheme in Chapter 4, consider a group 

of 4 spacecraft with a communication topology depicted in Figure1. Use the same initial 

conditions as in Section 5.1. The true inertia matrices for each spacecraft are taken as 

                ,                  , 

                ,                 . 

The actual external disturbances were chosen as 

          ,           ,           ,           . 
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A possible choice of the consensus gain for (15) is as in (26). Figure 12 and 13 show the 

attitude synchronization for regulation with       and               . The results 

present the attitude error of spacecraft 2, 3 and 4 with respect to spacecraft 1, and the 

angular velocity of each spacecraft. 

 

Figure 12: Section 5.2 Evolution of attitude error with constant edge-dependent gain. 



42 

 

 

Figure 13: Section 5.2 Evolution of angular velocity with constant edge-dependent gain. 

The choice of the optimal edge-dependent constant consensus gains satisfies equation 

(25). Examine the effect of different gains on ‖    ‖ and      . The result is presented 

in Figure14. It is observed that as the weight   increases, which indicates the increase of 

   , the deviation      decreases while the rotational kinetic energy        increases. The 

intersection point at          provides a good balance between the two performance 

metrics. 
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Figure 14: Section 5.2 The effects of constant edge-dependent gain on ‖    ‖ and       in the range 

       . 

For the proposed adaptive scheme (21) (23) (24), the attitude synchronization is tested 

with    
     |           |,           

 ,       and               . The results 

are depicted in Figures 15 and16. From these figures it can be observed that both the 

attitude synchronization and regulation objectives in (3) are met. 
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Figure 15: Section 5.2 Evolution of attitude error with adaptive edge-dependent gain. 
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Figure 16: Section 5.2 Evolution of angular velocity with adaptive edge-dependent gain. 

 

5.3 Example of more complex communication topology 

5.3.1 Communication topology with directed graph 

Now consider a group of 7 spacecraft with a communication topology depicted in 

Figure17. 
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Figure 17: Section 5.3.1 Directed graph on 7 spacecraft. 

The corresponding graph Laplacian matrix is given by 

     

[
 
 
 
 
 
 
         
        
        
        
        
        
       ]

 
 
 
 
 
 

 

The initial conditions of these 7 spacecraft are 

      [         ] ,       [         ] ,       [         ] ,  

      [         ] ,       [         ] ,       [         ] , 

      [         ] . 

and the inertia matrices of each spacecraft are chosen as 

                ,                  ,                 ,                 , 

                 ,                 ,                  . 

Simulation regarding the regulation case is implemented.  
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Similarly, test the attitude synchronization with      ,     |           |   

          . The results are depicted in Figure 18 and19. It can be observed that both 

the attitude synchronization and regulation objectives in (3) are achieved. 

 

Figure 18: Section 5.3.1 Evolution of attitude error with constant edge-dependent gain. 
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Figure 19: Section 5.3.1 Evolution of angular velocity with constant edge-dependent gain. 

Besides, different values of the uniform gain   in the range         were considered, 

see Figure 20. The closed-loop systems (6) were simulated over the time interval [0,30]s. 

Both           
    norm of     and          

  norm of       were calculated for 

each   [     ] . An optimal value of the synchronization gain   locates at the 

intersection point        provides good balance between these two performance 

metrics. 
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Figure 20: Section 5.3.1 The effects of varying the uniform fixed gain in the range         on ‖    ‖ 

and      . 

Now optimize the adaptive synchronization gains        in (11) (12). Choose    
  in terms 

of the initial mismatch of the spacecraft states as in (18), where   [     ]. Both ‖    ‖ 

and       in terms of different        to are depicted Figure 21, from which the best 

selection of the optimal gain is       ,           
      |      |. 
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Figure 21: Section 5.3.1 The effects of adaptive edge-dependent gain on ‖    ‖ and       in the 

range        . 

 

5.3.2 Communication topology with undirected graph 

The above simulations all use topology with directed graph. Now, numerical study is 

done to demonstrate that our theoretical results are also suitable for undirected graph (see 

in Figure 22). 

 



51 

 

1

2 3

4 56

7

 

Figure 22: Section 5.3.2 Undirected graph on 7 spacecraft. 

The corresponding graph Laplacian matrix is given by 

     

[
 
 
 
 
 
 
           
         
         
          
        
        
        ]

 
 
 
 
 
 

 

Use the same initial condition and inertia moment as section 5.3.1. 

Study the attitude synchronization with       in (26). With control law (5) and 6, the 

results are depicted in Figures 23 and 24. It can be observed that both the attitude 

synchronization and regulation objectives in (3) are achieved. 
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Figure 23: Section 5.3.2 Evolution of attitude error with constant edge-dependent gain. 
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Figure 24: Section 5.3.2 Evolution of angular velocity with constant edge-dependent gain. 

First, test the effects of different uniform gains   [     ]. Form Figure 25, it can be 

seen that the best selection of the optimal gain is       . 
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Figure 25: Section 5.3.2 The effects of varying the uniform fixed gain on the range         on ‖    ‖ 

and      . 

Then, examine the effects of different gains     in (4) and (5) to choose the optimal 

synchronization gains in terms of the initial mismatch of the spacecraft states as (26). 

One can find that when        in (26), the result is best. 
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Figure 26: Section 5.3.2 The effects of edge-dependent gain on ‖    ‖ and       in the range 

       . 

 

5.4 Specific study on the effect of adaptation of synchronization gains 

In order to have a more comprehensive understanding about the effect of edge-dependent 

adaptive synchronization gains, use a simple topology of 2 spacecraft shown in Figure 

27. 
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Figure 27: Section 5.4 Communication topology with 2 spacecraft. 

The corresponding Laplacian matrix of the above graph is 

     [
   
   

] 

with initial condition       [         ] ,       [         ]  and the 

inertia matrices                 ,                  . 

Choose           
      |           | and           

      |      

     | in (10) (11) and (12), where             and            . 

Figure 28 clearly shows the effect of different pair of    
  and    

  on ‖    ‖ and      . It 

can be seen that    
  and    

  locating on the curve highlighted by red give out optimal 

synchronization gains for the adaptive case. 
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Figure 28: Section 5.4 The effects of adaptive edge-dependent gain on ‖    ‖ and       with 

different    
  and    

 . 

In order to show the improvement of the optimal synchronization gains over the gains 

that are chosen from other values, compare the          norm of  ‖    ‖    
      

presented in Table 1. One can find that the optimal gain gives out a better result. 
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Table 1:          norm of  ‖    ‖    
      

Case 

(   
     |      |,    

     |      | in (10) and (11)) 

         norm of  

 ‖    ‖    
      

        ;           0.993345 

        ;           

(chosen from the highlighted curve in Figure 28) 

0.788357 

        ;           0.998867 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

This thesis considered the optimization aspects of the control problem of attitude 

synchronization of spacecraft formation with both known and unknown parameters 

and external disturbances. In particular two modifications in consensus penalty terms 

were proposed. First, node-independent constant synchronization gains chosen by 

penalizing the difference between the initial states of spacecraft were examined to 

prove their superiority over arbitrary ones. A performance-based optimization was 

also proposed for edge-dependent synchronization gains that minimized a 

combination of the rotational kinetic energy (stability) and the deviation-from-the-

mean (synchronization performance). Subsequently, an adaptation of the consensus 

gains was presented and which resulted in a significant improvement of the transient 

response. Such an adaptation utilized Lyapunov-redesign methods to extract 

adaptation laws for the synchronization gain updates that were expressed in terms of 
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the pairwise differences of spacecraft states. Extensive simulation studies were 

included in order to further support the theoretical predictions.  

 

6.2 Future work 

The research work here was conducted under the assumption that knowledge of the 

attitude and angular velocity of each spacecraft and its neighbors were available. 

This full-state knowledge paves the way for a base line comparison when partial 

state information combined with time delays are considered.  

The future research will expand the adaptive attitude synchronization of spacecraft 

formation to the cases of leader-follower and possible time-delay. Associated with 

these two cases are the mechanisms in obtaining attitude states and signals from 

neighbors. 

In the leader-follower case, a given spacecraft should track the trajectory of the 

“leader”, which requires each spacecraft access the reference trajectory directly or 

indirectly. The distributed attitude synchronization and tracking should still be 

achieved through the appropriate control input. 

In general, the communication among the spacecraft has certain delays due to 

distance and disturbance. Therefore, it is more realistic to consider time delays when 

dealing with attitude synchronization. This is a more complicated situation which 

will be examined in the future. 
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