
VPC Technical spec

Introduction

One of our goals for the 30th anniversary of the Venice Project Center was to give their

website a much needed web overhaul. This web overhaul is justified mostly because we wanted

to document the process to make it easier to maintain. Additionally we wanted to move all web

hosting capabilities to AWS so that the VPC only has to care about a single account.

Tech stack

Webstorm

We would recommend you develop this website with the webstore IDE from jetbrains.

The reason for this is because webstore comes with an incredible set of tools. It has one of the

best debuggers available that makes spotting problems on the server side incredibly easy. It also

comes with a database viewer to make it easy for you to view data changes.

Typescript

Our tech stack is built on top of the typescript programing language which is a superset of

the javascript programing language. This means that all valid javascript code is also valid



typescript code. Additionally Typescript is statically typed meaning all variables have to be

typed, meaning that you get a level of safety that you don't get with Javascript. I would highly

recommend learning some basic typescript before working on maintaining the website.

Typescript docs

React

At the core of our app we used the React rendering library because it is by far the most popular

front end development library and therefore has the widest ecosystem. React is a component

based framework meaning that you group your code into reusable elements that can then be

placed through the app. React uses the JSX syntax to create a powerful hybrid of html and

javascript code to allow you to group your logic and rendering together.

React docs

Next JS

On top of React we are using the Next.js which is a framework built on top of React. The

main powers of next is that we have built in server side rendering meaning that our web pages

are built on the server and then sent as full html to the client. This is done to increase web

performance and searchability. Additionally it provides an easy way to make new pages. To

make a new page all you need to do is make a new directory and make a page.tsx file in that

directory. Finally, Next.js provides an easy way to define api routes making it easy to develop

front and back end in a single project.

https://www.typescriptlang.org/docs/
https://react.dev/


Next js docs

Tailwind

Tailwind is a set of convenient css classes that you can add to your elements. There are

three reasons to use Tailwind instead of normal css. The first being speed of development once

you get the hang of tailwind it is way faster to style with than normal css. The second reason is

that it is far easier to make mobile first designs because tailwind is a mobile first framework.

Finally tailwind is better for performance because the classes have been optimized and unused

classes have been removed when the project was built.

Git + github for source control

If a team needs access to the Github Repository they should log into

Venice-project-center(venice.wpi@gmail.com) and access the GitHub account. They can then

clone the repository and make changes with their personal GitHub. It is highly recommended

that if the infrastructure needs to be changed, it should be done by a skilled developer. If the

team has to make modifications to the website source code, they should first get access to the git

repository v23e-website. If changes need to be made to the hosting infrastructure, it should be

changed via the terraform config files in the v23e-website repository. The reason for this is

that the Terraform files act as a way to document and power the Venice Project Center hosting.

Therefore, it should be easier to preserve and maintain settings for hosted content.

Prisma as an ORM

We used prisma as our orm. To utilize it, declare your database Schema in the

schema.prisma file. Then by running prisma migrate dev —name=name of migration you are

https://nextjs.org/docs


able to update your database. Additionally prisma will generate convenient classes for you to

work within your code. I would highly recommend reading the prisma docs if you plan on

updating the database schema.

Infrastructure

Introduction to infrastructure
Hosting code is as complicated a process as writing it. We did everything that we can to make

updating the code as painless an expernce as posible. To make changes to the production cite

is to push changes to main. This is posible only becuase of the built in continious integration of

vercel. Although changing infrastructure is hard and not somehting that should taken lightly. If

you want to add new things to the existing web infrastructure make sure you do your reasrch.

While cloud hosting has changed the way developers thing about hosting there code by allwoing

them to host anything on a amzaons billion dolor servers. However this power should not be

taken lightly. If done wrong you can get hit with an extreamly large bill. So if your trying to

update infrastructure take and your time do your reserch.

Terraform

Terraform is an infrastructure as code tool that alows you settup your infrstructure using a

delcaitive code syntax.



Here is an example of what a Vercel project looks like when setup through terraform. All you

have to do to apply changes to the infrastructure is run the command terraform apply

-var-file=".tfvars" this will generate a terraform state file which discribes the current state of

your infrastructure. The terraform state file will be in the V23E-Story drive. Only one copy of

that file should ever exist beacuse it could cause name conflicts. Additionally there will be a

.tsvars file in the google drive. This file inclides all of the necessary tokens to interact with the

services. If you are unsure about anything terraform or infrastructure related please email

nick.leslie303@gmail.com. Terraform is very complicated but so is infrastructure, so make sure

you do your research before updating the infrastructure.

Vercel hosting platform

We decided to use Vercel because it is free and incredibly easy to use. Continuous integration is

supplied out of the box meaning that so long as your build passes, making updates to the

website is as easy as pushing to the repo. Additionally Vercel is the company that developed

NextJS meaning that our website is optimized for us.

mailto:nick.leslie303@gmail.com


Planet scale database

We picked planetscale because it was free and more advanced than most other databace

platforms. It includes a load balencer to help distribute a trafic to multiple btween databases, and

a replication database which means if our core database goes down we have a backup. You get 1

billon reads per month and 1 million writes with the free version of the database. Additionaly

you are able to branch your database to have multiple versions of your data. This is especially

important becuase it means you can seperate your production and development databases with

branching. The database is described in the terraform files, however you will need to update the

token in the planetscale database to include the newly created database if you ever decided to

regenerate it.

S3 buckets

We use an aws s3 bucket for file storage. S3 stands for simple storage solution and it is

the go to way for developers to store binary files like picures and pdfs. We set up our s3 bucket



to be publicly accesable if you are trying to get files. But to write you need to first make a call to

an api gateway that we setup. Once you call that api gateway you get a presighned url you can

then make a post request to this url uploading the file. The reason we did it this was becuase it

was the easyses to setup with terraform. We felt that due to the natral complexity that comes with

setting up an application using aws it was very important that we set it up using terraform that

way our arcatecture was documented as code.

Additional how to

File structure overview

Prisma contains the models used throughout the api folder within src. .env contains the database

URL, if for some reason the database has to be changed use this file. The structure of the front

end of the application itself is in the app folder within src.



API is self explanatory. Components has various react components used throughout the

application. The next 7 directories are all pages on the site. Edit(tide in the picture) is the

unfinished main page edit page. Layout contains the layout model of every page on the site. The

layout contains 4 components. Navbar, sidebar, body, and footer. Body is the current page the

site is on. Navbar sits right above body and will remain there when you’re scrolling through, and

footer is right below body. Sidebar takes up the entire page when the menu button is pressed.



React Component creation guide

To make a react component, first make a .tsx file. Name it what you want the component to be

called. Then type in “export function ComponentName() {}”. For parameters, type in “props:{}”

in the parentheses, and fill the braces in with whatever variables you want. Keep in mind to

follow typescript syntax. The result should look something like this.



Within the braces of the function, type in return (); It is recommended you press enter after the

first parenthesis to make writing the component easier. Within these parentheses, you can write

your react component using HTML. You cannot have multiple HTML objects return, so it is

recommended that you wrap everything in a div like this.

Now, you can fill the div with whatever you want in the component. In this example there’s

simply making a header and some text based on the two parameters, but theoretically you can fill

it whatever you want. Look at the following image to see how to incorporate the parameters into

the HTML. It’s as simple as using {props.parameterName}. Although if you are putting a string

in the middle of another string, you have to use $ before the braces.



How to add/edit episodes

Until a way is developed to do it on the front end, we are leaving 2 ways to edit/add episodes.

1. Email sjdavid@wpi.edu(preferably), or samueljd881@gmail.com and send him the

Episode Name, Episode Description, a Thumbnail, Youtube Link, and which of the 4

Themes it falls under. For the Subject of the email say something indicative that it’s for

Story IQP. When he receives it he will edit the source code, push to the github, and send

an email in response saying he did.

2. Edit the source code manually, which is explained below

Refer above for how to get access to the github. Once obtained, go to src/app/podcasts. There

should be 4 directories, each one is one of the 4 themes developed by the other members of the

E23 Story Team. Enter the directory you want the episode to fall under, and open the page.tsx

file.

mailto:sjdavid@wpi.edu
mailto:samueljd881@gmail.com


There are 5 variables, episodeNames (names of the episodes), episodeThumbnails (thumbail for

it in the episode list), episodeDescriptions(description of the episode), episodeLinks(youtube link

for the episode), and episodeTitles(title of the episode). Notice how episodeDescriptions,

episodeLinks, and episodeTitles have 1 more string than episodeNames and episodeThumbails.

The first string of the arrays in these 3 variables are used for when the page is first loaded. You

can look at the react component at the bottom of this file to see how the page is structured using

these variables, but if you just want to edit the episodes, then edit the variables accordingly to

accommodate your needs. The episodes will be listed top to bottom in the order which they are

in, in the arrays. Note that the number of episodes that will appear on the page is based on the

number of episode names in episodeNames. However you edit the variables, make sure that

episodeDescriptions, episodeLinks, and episodeTitles have 1 more string than episodeNames and

episodeThumbails.



API route guide

To create an API route, go to a subdirectory within the src/app/api directory.

Create a file called “route.ts” where you want the route to be. Within the route.ts file, create your

HTTP request methods (GET,POST, PUT, DELETE, etc…). In the GET method I used ID, but

you don’t have to.



If you wanted to implement GET in a tsx page, it would look something like this.



GET is asynchronous, so you have to use useEffect in your page to handle it, since the page

function is not, and you don’t know exactly when the data will be received.



POST on the other hand does not have to be asynchronous, since you have to wait for the GET

method to respond, but not for POST.


