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Abstract

Continuummanipulators which are robot limbs inspired by trunks, snakes, and tentacles, repre-

sent a promising field in robotic manipulation research. They are well known for their compliance,

as they can conform to the shape of objects they interact with. Furthermore, they also benefit from

improved dexterity and reduced weight compared to traditional rigid manipulators. The current

state of the art continuum robots typically consists of a bulky pneumatic or tendon-driven actua-

tion system at the base, hindering their scalability. Additionally, they tend to sag due to their own

weight and are weak in the torsional direction, limiting their performance under external load. This

work presents an origami-inspired cable-driven continuummanipulator module that offers low-cost,

light-weight, and is inherently safe for human-robot interaction. This dissertation includes contri-

butions in the design of the modular and torsionally strong continuum robot, the motion planning

and control of the system, and finally the embedded sensing to close the loop providing robust feed-

back.
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1
Introduction

1.1 Motivations

Traditional robots are typically confined behind the safety cages, but certainly, that is not the case

anymore as robotic technology becomes more and more ubiquitous in our daily lives. Early robotic

development has improved industrial throughput, especially in the product assembly. However,

there is increasing interest in human-robot collaboration as a way to compromise for the currently

limited robot capabilities. Industrial sectors hope to benefit from the combined capabilities of hu-

man and robots while researchers continue to incrementally improve the latter. Stemming from this,

there is a need for a safer robotic platform that will minimize potential threats against fatal injury

and loss of life due to unintended robot action.
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Soft robots offer a solution for applications in which human presence is crucial for example in a

hospital setting. Even though soft robots will never be as strong (with few exceptions such as work

in1) or as precise as the rigid counterparts, they offer an alternative to offload the high bandwidth

computation and sensing normally required in rigid robots. Instead, soft robots rely on their inher-

ent mechanical compliance when exposed to external forces. The challenge then is to create selective

and, more ideally, controllable compliance. Soft robots are typically fabricated with rubber materials

which are inherently compliant. Pneumatic artificial muscle (PAM) and fluidic elastomer actuator

(FEA) are the two common types of soft actuators. The PAM or also known as McKibben muscle

is fundamentally consisted of an inflatable elastic tube and a braided mesh that provides a radial con-

straint. Due to the radial constraint and incompressibility of the (rubber) tube then it is expected

that the PAM actuators will undergo elongation or contraction when inflated. On the other hand,

FEA consists of a molded air chamber made of rubber and an inextensible constraint layer to achieve

the bending motion. Other motion primitives such as extending, contracting, and twisting are also

possible depending on the actuator design.

Although pneumatically driven soft robots are inherently safe and capable of providing strong

actuation force (proportional to the operating pressure), they are limited by the additional required

hardware (e.g. air compressor, pressure regulators, and valves) which are typically bulky. It is also

well known that pneumatically driven soft robots are prone to the rupture problem when exposed

to sharp objects. In fact, there are research efforts that try to explore the self-healing capabilities of

soft robots2,3. Tendon driven actuators, on the other hand, suffer from lowmotor efficiency but

allow for a lighter and more portable system.

Kinematically redundant robots are advantageous as they allow for avoidance of singularities,

joint limits, and obstacles in the environment. Continuum robots, which lack rigid joints and soft

robotics is a subset of, are capable of very large deformation. Thus they are highly dexterous com-

pared to traditional rigid robots (Figure 1.1). Instead, they possess elastic backbones providing form

2



Figure 1.1: Various robotic manipulator types with increasing degrees‐of‐freedom.

and support. Due to their unique properties, continuum robots have been utilized for various ap-

plications ranging frommedical surgeries to search and rescue operations. Specifically, continuum

robots enable navigation through tortuous paths. Furthermore, their inherent compliance facili-

tates safe human-robot interaction and collaboration. Tendon and fluid-driven are the two most

common actuation methods for continuum robots. Combinations of internal forces generated

from pulling tendons or expanding elastic members are responsible for controlling the robot shape

through elongation and bending.

Despite numerous continuum robot designs, the current existing continuum robots suffer from

excessive twisting due to offset external load. The non-controllable twist is not desirable as it nega-

tively affects the accuracy of the continuum robots. Most research efforts do not attempt to address

this even though modeling with the assumption of no torsion is not uncommon4,5,6,7. In my best

knowledge, the work by Neppalli et al. is the first one that clearly shows a significant twist happen-

ing on the continuum robot as shown in Figure 1.28. Research work which attempts to measure the

torsional twist of a concentric-tube robot exists and is presented in9, but no attempt to mitigate the

effect of twist directly. On the other hand, continuum robots that appear capable of handling the

twist are significantly heavier.
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Figure 1.2: (a) The research work by Neppalli et al. 8 which first highlights the problem of twisting on continuum robots
caused by an offset load. (b) A continuum section twisting out of plane due to torsional load thus affecting its accuracy.

Octopus arms and elephant trunks are remarkable examples of very capable animal appendages.

They can actively control the stiffness of their arms and trunks by utilizing muscular hydrostat. The

muscular structure is composed of 3 different muscle groups: longitudinal, transversal, and oblique.

The longitudinal and transversal groups are responsible for the appendage’s elongation and con-

traction while the torsional stiffness is actively controlled using the oblique muscles10. Drawing the

inspiration from the muscular structure, several researchers have designed soft actuators that are ca-

pable of providing actuation in torsional direction11,12,13. However, it is unclear if the actuators are

also capable of providing bending motion, hence limiting their potential as an actuator for contin-

uum robots. In contrast, we utilize an origami structure capable of compression and bending while

also passively-resisting torsion.

Additionally, the majority of continuum robots employ a centralized structure so scalability is

not straightforward, while this work’s modular approach helps to overcome that bottleneck. Modu-

larity can also improve the robustness of the system against failure, which is beneficial (for a deploy-

4



able system). Portable and deployable robotic platforms are essential to demonstrate the robots’ full

potential outside of laboratory settings. This goal is attainable by the integration of highly efficient

actuators, light-weight and fast control software, and embedded sensing. Highly efficient actuators

are important to allow for a longer duration of the robot operation given a limited power source.

Light-weight and fast control software is necessary to reduce the computational power needed by

the robot’s computer. Lastly, embedded sensing would allow the robot to sense its internal state

without depending on the typically stationary sensor infrastructure in the laboratory environment.

Sensorization of continuum robots is challenging and still an active research effort due to the

absence of discrete mechanical joints at which measurement can easily be made as in traditional

rigid robots. This challenge is further complicated for the continuum robots that are capable of sig-

nificant extension or compression. A common sensing technique such as resistivity measurement

may not be suitable anymore as it typically works only in a small range of mechanical deformation

(strain). Similarly to other robots, continuum robots would benefit from having sensors to compen-

sate for errors in the systemmodel, achieving more accurate behavior.

The motivations of this dissertation work can be summarized as follows:

• There is increasing interest in human-robot collaboration thus requiring a safer robotic plat-
form.

• Continuum robot is a potential solution due to its inherently safe and highly dexterous na-
ture.

• Current continuum robots suffer from excessive twisting due to external load, thus nega-
tively impact their accuracy.

• Highly efficient actuators, light-weight, and fast control software, and embedded sensing are
crucial for a fully deployable robotic system.
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Figure 1.3: Representatives of current state of the art continuum robots. Pneumatic ‐ from left: OctArm14, Festo Bionic
Handling Assistant 15,16,17, a soft spatial fluidic elastomer manipulator18, Honeycomb Pneumatic Networks (HPN) based
continuum robot 19. Tendon Driven ‐ from left: conically shaped continuum soft robot20, extensible continuum Robot
with integrated origami parallel modules 21, continuum robot with serially connected double‐layer planar springs22,
continuum robot arm with twisting tower origami structure23. Other/hybrid ‐ from left: Air‐Octor24, shape memory
alloy driven continuum robot 25, vacuum‐powered soft pneumatic actuator (V‐SPA)26. Used with permission of IEEE,
ASME, SAGE, IOP, AAAS, and Cambridge University Press; permission conveyed through Copyright Clearance Center,
Inc.

1.2 RelatedWork

We list the representatives of the current state of the art for continuum robots in Figure (1.3). The

list is not exhaustive by any mean but intended to showcase various continuum robots which are

relevant to my work and which I am familiar with. In general, continuum robots are actuated us-

ing a pneumatic or a tendon driven system. However, some continuum robots employ other actu-

ation methods such as shape memory alloy (SMA) or vacuum. IanWalker’s group developed an

intrinsically and pneumatically actuated continuum robot called OctArm14. The OctArm bending
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modules are constructed through a parallel arrangement of McKibben actuators. These bending

modules are then connected in series to create the three to four-segment continuum robot. Festo

Bionic Handling Assistant, on the other hand, is fabricated using the selective laser sintering (SLS)

additive manufacturing technique to create a bellow-like structure that is extensible and compli-

ant in bending15,16,17. Marchese et al. developed a completely soft continuummanipulator from a

low-durometer elastomer18. Jiang et al. utilized Honeycomb Pneumatic Networks (HPN) actuator

to create a five-segment continuummanipulator19. Renda et al. developed a conically shaped soft

continuum robot that is made of silicone rubber and is driven with cables20. Zhang et al. utilized

origami waterbomb parallel structure and steel helical compression springs to create an extensible

continuum segment21. On the other hand, Qi et al. connected double-layer planar springs in series

to create an extensible continuum segment22. Jeong et al. developed a continuum arm based on the

origami twisting tower structure23. The Air-Octor continuum robot developed byMcMahan et

al. utilized a hybrid pneumatic and tendon actuation system. The compliant body of Air-Octor is

constructed from dryer hoses24. Cianchetti et al. developed the conically shaped continuum seg-

ment that is driven with shape memory alloy (SMA) actuators25. Lastly, Robertson et al. devel-

oped vacuum-actuated continuummodules (V-SPA) consisted of off-the-shelf foam core and thinly

brushed-on layers of silicone rubber26.

Origami, the Japanese traditional art of paper folding, remarkably allows for the construction of

3-D objects solely from folding patterns on 2-D flat surfaces. It was theoretically proven that any

arbitrary 3-D object can be folded from a single sheet of paper27. Origami-inspired engineering

designs have been utilized in a wide range of fields and scales, from outer space28 to medical appli-

cations29,30. Some origami research groups focus on the self-folding31 and reconfigurable32,33,34

aspects of origami, while others focus on the creation of compliant mechanisms through origami-

inspired designs35,36. In the field of robotics, the origami-inspired design has shown to offer benefits

in creating self-assemble37, deployable38, adaptable39, impact-resistant and light-weight robots40,41.
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A comprehensive review of origami robots can be found in the work by Rus et al.42. The selective

compliance in axial and bending directions of an origami-inspired tubular structure, provides nec-

essary behavior of continuummodule. This dissertation work focuses on utilizing a well-known

origami folding pattern to create a continuum bendable body capable of resisting the torsional load.

1.3 Contributions

To summarize, the goal of this research work is to address the limitations of existing continuum

robots and to facilitate a more deployable system. The thesis encompasses all the aspects of a robotic

system including actuation, planning, and actuation subsystems. The proposed work aims to make

the continuum robot available for field use by using electric actuators instead of pneumatic, incor-

porating modular design to ease scalability and replacement of broken modules, and developing a

proprioceptive sensing methodology to achieve improved control of the robot. Additionally, this

work strives to provide a continuum robot platform for different flexible appendage-related research.

The contributions can be summarized as follows:

• Torsionally stiff origami continuummodules that are modular and scalable.

• A smoothness preserving inverse kinematics solver.

• A grow-to-shape algorithm for the planning of the robot traversing tortuous path typically
challenging for rigid robots.

• Development of a proprioceptive magnetic-based shape sensing suitable for extensible con-
tinuum robots.

• Machine learning predictive models to estimate the robot shape parameters.

• Validation of the sensor accuracy both with and without external load.

• A bio-inspired application of the origami modules by the creation of the 3-D origami snake.

• Experimental investigation of transferable simulation-to-real object classification with con-
tinuum wraps.

8



1.4 Thesis Outline

This dissertation is structured as follows, the next chapter will introduce the proposed origami con-

tinuummodule that is the foundation of this research work. From there, I will discuss the usage

of the continuummodules for a general-purpose manipulator application which includes the de-

velopment of an inverse kinematics solver, feedback control implementation, and grow-to-shape

algorithms. Next, I will present the proprioceptive sensing methodology to estimate the robot shape.

Lastly, I present two promising applications of the origami robot for locomotion and touch-based

object classification. The dissertation is concluded with the summary in the last chapter and accom-

panied by possible research directions for future work.
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2
Origami Module - Initial Work, Design,

and Characterization

This chapter is dedicated to the preliminary work necessary for the realization of the origami

continuummodule. The chapter focuses on the design, fabrication, characterization, and control

of a single segment origami continuum robot. Furthermore, the proof-of-concept for the multi-

segment continuummanipulator is presented.

The material presented in this chapter is adopted from the following self-authored publication:
J. Santoso, E. H. Skorina, M. Luo, R. Yan, C. D. Onal, in Proceedings of the 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 2098–2104. 43
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2.1 Background and RelatedWork

The field of robotics has recently been gaining momentum and rapidly evolving to be ubiquitous

in our daily life. Most of the present robotics applications focus on the effort to tackle dirty, dull,

and dangerous jobs for human. However, some applications such as service robotics, medical surgi-

cal, and rehabilitation are still heavily dependent on human intervention. In this case, robot should

augment human capability instead of completely replacing them. Soft robots have recently showed

promising results in minimally invasive surgery44, rehabilitation45, explorations and rescue46. The

potential is attributed from inherent compliance, fault tolerance, and reduced weight. Various ca-

pabilities of current soft robots are reviewed in47,48. However soft robots are still lacking compared

to the rigid robot counterparts in terms of accuracy attributed to the non-linear behavior of the

structures or materials.

Continuum robots, inspired by snakes, tentacles, and elephant trunks, have attracted researchers

to imitate the remarkable capabilities of the animal counterparts. A continuum robot/manipulator

is generally composed of serially connected sections with infinite passive degree-of-freedom, each

capable of planar or spatial bending. Recent literature presents continuummanipulators that uti-

lize different actuation methods including pneumatic14,17,18,49, tendon driven21,22,50,51, shape-

memory-alloy25,52,53, vacuum26, and hybrid24,54. A comprehensive review of continuum robots

can be found in55.

Continuum robots capable of extraordinary change in length have already existed e.g. OCTO-

PUS52 with 41.3 %, Air-Octor24 with 246.2 %, and up to 25000 % as described in56. However it is

unclear if those systems are capable to resist torsional load. Torsional resistance is important to mit-

igate the effect of offset load. Furthermore, majority of the continuum robots utilize a centralized

actuation system in contrast with our modular and decentralized approach. Researchers have ac-

knowledged benefits of modularity in soft robots26,57,58,59. Modular approach will allow for simpler
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control schemes as each module can be controlled independently. Furthermore, since the modules

are independent and connected together on a communication bus, they can be scaled up to achieve

functional redundancy without modification to the overall system architecture, and failed modules

can be easily replaced.

Origami, the paper folding art from Japan, has been a source of inspiration for scientists and

engineers alike, ranging fromDNA-folding29 to foldable solar array28. Origami allows the construc-

tion of complex 3-D objects from planar sheet. In the field of robotics, origami-inspired design has

shown to offer benefits in creating self-assemble37, deployable38, adaptable39, impact-resistant and

light-weight robots40,41. A comprehensive review of origami robots can be found in42. Selective

compliance in axial and bending directions of an origami-inspired tubular structure, provides nec-

essary behavior of continuummodule. To be more specific we can create origami bellows capable

to facilitate actuation, while also light weight and torsionally stiff. Our work is most similar with21

and51, however it is unclear from those previous work if they can withstand significant torque and

no modularity was presented. To the best of our knowledge only the work in22 reported the mea-

sure of torsional stiffness. Furthermore, our origami robot utilize the axial stiffness of the module

itself to provide restoring force instead of relying to springs as done in21.

This research work introduces a new modular cable-driven origami continuummanipulator,

combining the three distinct main components previously discussed as shown in Figure 2.1. Each

identical module of the manipulator is fully integrated with three electric motors (fully-actuated),

encoders, a communication bus, and a microcontroller unit (MCU) with encoder counter chips.

The motors provide each module with two bending degrees-of-freedom (DoF) and a single axial

DoF, allowing it to expand and retract. Each fully assembled origami module weighs about 110 g,

with the motors being the heaviest part. The proposed continuummodule is resistant to torsion, a

characteristic that helps maintain the module shape under offset loads. When under an offset load,

a continuummanipulator with low torsional stiffness would twist excessively, degrading its ability

12



Figure 2.1: Proposed work combining three main components: continuum, origami, and modularity.

to manipulate objects. This key feature will allow for additional grasping techniques that are not

normally available or favorable. For example, whole-arm grasping with a continuum arm in the

horizontal plane can only be achieved with a torsionally strong design14.

In summary, the contribution of the work in this chapter is the development and analysis of a

new approach to continuummanipulation that:

• Uses an origami-inspired mechanism as its body, allowing for significant extension/contraction
and bending motions.

• Has high torsional strength, allowing it to resist undesired twisting deformations in 3-D
space.

• Is composed of self-contained modules, whereby the addition of modules requires minimal
design changes.

The rest of the chapter will discuss the design and fabrication of the proposed origami manip-

ulator, kinematic modeling, control approach, and finally the results to show some insights of the
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Figure 2.2: Components of the first generation origami continuum module. Yoshimura crease pattern used for the col‐
lapsible part, red dashed lines indicate the valley folds, blue dash‐dot lines indicate the mountain folds and black lines in‐
dicate the cuts, three independent folded sections allows for: (a) a more uniform module, (b) acrylic top plate, (c) folded
collapsible part, (d) printed circuit board (PCB) acting as bottom plate at which the motors and the collapsible part are
attached to. (e) Closer view of the interface between the top plate and nylon strings. Strings are secured with screws
and nuts. (f) Two barrel jack connectors for logic and motors power to the next origami module. (g) Closer view of the
interface between the motors and nylon strings, the yellow line indicates the nylon string. (h) 3‐D printed standoff to
connect to the previous origami module.

proposed work.

2.2 Design and Fabrication

The proposed continuummodule consists of three main parts: a foldable origami body, brushed

DCmicro-motors (12 V, Pololu 150:1 gear ratio and Pololu magnetic encoder with 12 counts per

revolution60) with pulley systems, and a controller board that offers on-board sensory measure-

ments, feedback control, and module-to-module communication (Figure 2.2). The complete list

of the motor parameters are given in Table 2.1 and three possible motor arrangements are shown in
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Figure 2.3. Three motors are used for each module to generate bending in 2 axes and compression

along the module length. We chose the motor arrangement shown in Figure 2.3(b) as it gives the

best balance between the radial dimension and an open area in the middle that is utilized to route

the power and communication wires. While the motor arrangement shown in Figure 2.3(c) looks

similar to the former, it requires a larger radial dimension to account for possible mechanical inter-

ference of the motor encoders. Furthermore, the close arrangement of the magnetic motor encoders

shown in Figure 2.3(c) could lead to a magnetic interference between them. Although an origami

module with a smaller radial dimension can be achieved with the motor arrangement shown in

Figure 2.3(a), this configuration will also increase the minimum length (fully compressed) of the

module. Moreover, a more complex force transmission systemmay be necessary for the arrangement

in Figure 2.3(a) while the two other motor arrangements allow for easy force transmission system

(a single spool cable system for each motor). Alternatively, a parallel arrangement of single motor

actuators with each independent origami bodies is also possible. This is similar to the design of the

OctArm continuum robot which utilizes parallel arrangement of the McKibben muscle actuators.

However, to keep the design simple we settled on using a single origami body with 3 motors for each

module.

Table 2.1: Pololu DC brushed micro‐motor parameters (extracted from the Pololu micro metal gear‐motors datasheet).

Motor parameters Value Unit

Maximum power 1.0 Watts

Torque at maximum power 88.26 N.mm

Efficiency at maximum power 22 %

Current at maximum power 0.39 Amperes

No load current 0.06 Amperes

Stall current 0.72 Amperes
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Figure 2.3: Possible motor arrangements with cylindrical volumes indicating the minimum inextensible part of the
origami continuum module: (a) smallest, (b) medium, (c)largest dimension.

The foldable body is constructed based on the Yoshimura crease pattern inspired by the work

in61. This unique structure is capable of bending in two directions and extending/retracting, while

maintaining its structure and resisting torsion. Polyethylene terephthalate (PET) films were chosen

as the substrate material due to their high strength to weight ratio and low cost. The crease pattern

used for this structure was designed in Solidworks and machined using an Epilog Zing laser-cutter.

The pattern is shown in Figure 2.2(a), where different colors indicate a variety of folds and cut. Fold

lines were laser machined using a perforation pattern to reduce the stiffness so the film could be

folded more easily and precisely, while preventing tears61,62. The collapsible body was manually

folded into 3-D following the crease pattern and later joined into an approximate triangular tube.

The use of three different folded sections to create one origami module enables the module to uni-

formly bend in all directions. The trapezoidal sections at the right side of the crease pattern are used

to lock the folded sheet, when inserted in thin slots (tab-slot lock features41), hence creating the

hollow triangular shape shown in Figure 2.2(c). More details about the origami body fabrication is

shown in Figure 2.4. The radial dimension of the origami body is limited by the available motor size

and the chosen motor arrangement. We chose the smallest possible radial dimension as it allows for

higher possible curvature and bending angle to be attained by the origami continuummodule63.
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Figure 2.4: Details on the origami body fabrication. (a) Yoshimura crease pattern of the origami module with annotated
dimension. (b) Perforated pattern on PET sheet engraved with laser cutter. The speed and power settings for the laser
cutter are 100% and 6% respectively. The perforated pattern allows for ease of folding. (c) Folded origami sections
required to construct the origami compliant body. (d) Two folded sections combined using the slot‐tab locking feature.
(e) Finished compliant origami body constructed from three folded sections.
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The tubular structure constructed from the crease pattern presented in this paper has a length of

about 8 cm without external load. Appropriately sized-holes are cut to secure the foldable structure

to the blue acrylic plate on the top and to the PCB on the bottom where the motors are secured,

as shown in Figure 2.2(b) and 2.2(d). Additional holes are included for the three thin nylon cables

used to drive the segment which span the length of the structure along the edges. These cables are

attached to pulleys mounted on miniature motors at one end and secured with screws and nuts on

the acrylic plate at the other end. Each motor is equipped with a magnetic encoder for low-level

position control.

Each module is controlled by a custom printed circuit board (PCB) that uses the 8-bit Atmel

ATmega1280 microcontroller unit (MCU). The control board is also equipped with three DRV8801

motor drivers from Texas Instruments, capable of a peak current output of 2.8 A and three US Dig-

ital LS7366R encoder counter chips. The main task of the control board is to receive motor com-

mands as control inputs, record the motor positions using encoders, and perform local feedback

motion control. The control boards communicate using inter-intergrated circuit (I2C) protocol

with different modules. An ArduinoMega 2560 board is used as an interface between the control

boards and an external computer (through I2C) that handles inverse kinematics calculations for the

origami module as well as data collection by an OptiTrack motion capture system.

The interface between origami modules includes two power barrel connector plugs mounted

at the top (acrylic plate) of the preceding module which will connect to the female jacks soldered

onto the bottom side of the PCB of the next module. In addition, the modules are secured using

standoffs and screws connecting the acrylic plate of the lower module to the PCB of the upper one.
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2.3 KinematicModel

2.3.1 Forward Kinematics

Different formulations of continuummanipulator forward kinematics exist including arc geome-

try, D-H parameters, Frenet-Serret frames, integral representation, and exponential coordinates as

summarized in55. The arc geometry representation with constant curvature assumption is chosen

for this work due to its simplicity. A continuummodule can be assumed to be a circular arc with

constant curvature in 3-D space. The posterior point is located at the origin while the distal point is

located in 3-D space. As shown in Figure 2.5(a), the homogeneous transformation from the origin

frame atO to the frame attached to the tip of the segment at T can be derived as a rotation about Z

axis by the angle φ and in-plane transformation (rotation about rotated Y axis (Y’) and translation p

= [ρ(1− cos(θ)), 0, ρ sin(θ)]T). If we define the curvature of the continuummodule to be κ and the

length of the segment to be s, then ρ = 1/κ and s = θ/κ. The tip position of the continuum section is

then given by

[ρ cos(φ)(1− cos(θ)), ρ sin(φ)(1− cos(θ)), ρ sin(θ)]T

while the orientation is given by the product of the rotation matrix about the Z and Y’ axes of φ and

θ magnitudes.

In other words, each continuum segment can be fully described by three configuration parame-

ters κ, φ, and s as shown in Figure 2.5(a). Using the derived forward kinematics we are able to find

the distal point of each continuum segment given a set of configuration parameters. This informa-

tion is especially necessary when multiple origami modules are combined in series (i.e. the distal

point of the previous origami module will be the posterior point of the next module). In practice,

a separation due to the end connectors between modules need to be considered in multi-segment

forward kinematics. Furthermore, the configuration parameters can be represented as a function of
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Figure 2.5: (a) Isometric view of the origami continuum robot with its joint configuration annotated: arc length s, bend‐
ing angle θ, radius of curvature ρ, and bending direction φ. (b) The robot’s base frame is defined with the shown triad.
Side view of the origami continuum robot. The tendon lengths associated with a particular robot’s shape are denoted
by L1, L2, L3. (c) Top view of the custom‐made controller board. Tendon attachment points are indicated by the yellow
dots.

tendon lengths as derived in64.

ρ =
(3L0 + l1 + l2 + l3)r

2
√
l21 + l22 + l23 − l1l2 − l1l3 − l2l3

, (2.1)

θ =
2
√
l21 + l22 + l23 − l1l2 − l1l3 − l2l3

3r
, (2.2)

φ = arctan
(√

3(l3 − l2)
l2 + l3 − 2l1

)
, (2.3)

where l1, l2, l3 are the tendon length variation, L0 is the minimummodule/tendon length, and r

is the module radius. As investigated in63 the maximum curvature can be found when the tendon

configurations are given by (lmax, lmin, lmin) and (lmin, lmax, lmax). Thus by substituting these values

to Equation (2.2) we can obtain the maximum bending angle of the module.
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2.3.2 Inverse Kinematics

In order to control the origami module, it is necessary to develop a relationship between the configu-

ration parameters and cable lengths. The detailed derivation for inverse kinematics of a continuum

section is presented in65. The relationship between the cable lengths and the configuration parame-

ters can be written as:
l1 = 2n sin

( κs
2n
) ( 1

κ − r sin(φ)
)

l2 = 2n sin
( κs
2n
) ( 1

κ + r sin
(π
3 + φ

))
l3 = 2n sin

( κs
2n
) ( 1

κ − r cos
(π
6 + φ

)) (2.4)

where l1, l2, and l3 are the lengths of cables 1, 2, and 3 respectively, s, κ,φ are the configuration

parameters as defined previously, r is the distance from the center of the mounting plate to the cable

attachment point, and n is the number of sections within the larger continuummanipulator. Note

that, since each origami module is operated independently, n = 1 for our system.

2.4 Results andDiscussion

2.4.1 Torsional and Axial Stiffness

In order to assess the structural properties of the proposed origami module, we conducted two ex-

periments. The first experiment was to identify the torsional stiffness of the module, and involved

loading the origami actuator with a known couple moment and measuring howmuch it deformed.

We achieved this by fixing the actuator on one end and using suspended weights to apply equal and

opposite forces on each side of the centroid, offset so as to create a pure torsional bending moment.

We performed this experiment on three modules each of 0.127 mm (5 mil) and 0.178 mm (7 mil)

thick PET with external torques up to 0.429 Nm, using an IRmarker-enabled motion tracking

system (OptiTrack) to record the twist angles.

The results are summarized in Figure 2.6(a). The results show that the thicker module offers
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Figure 2.6: (a) The mean and standard deviation of torsional loading capability of the 7 and 5 mil origami modules. The
data for 5 mil module was only obtained up to 0.429 Nm as the module started to twist excessively and reaching the
point of failure. (b) The mean and standard deviation of torsional loading capability of the 7 and 5 mil origami modules.
The modules were tested until buckling started to occur.

higher torsional stiffness while a thinner sheet yields a lighter structure without much decrease in

torsional strength. However, the thinner material started to twist excessively at the maximummo-

ment of 0.429 Nm, hence the experiments were not continued beyond this torque. This failure

mostly happened in the regions where the origami structure was not attached to the acrylic plates.

The actuators constructed with thicker PET films did not show signs of failure up to 0.515 Nm, a

relatively large torque compared with the weight of the origami film. The average torsional stiffness

for 7 mil and 5 mil modules are 0.128 Nm/deg and 0.110 Nm/deg, respectively.

Axial loading experiments were conducted by keeping the modules upright clamping the bot-

tom end-plate and using known payloads up to 0.87 kg for both 7 mil and 5 mil film. The known

payload was attached to the top acrylic plate of the actuator hence compressing the origami struc-

ture. In this experiment, the load was increased until the actuator started to buckle. In contrast to

the torsional stiffness profile, Figure 2.6(b) reveals that the axial stiffness varies more significantly

with changing film thickness. This was expected because origami folds act like springs, whereby thin-

ner substrates offer lower stiffness. Moreover, the 5 mil modules exhibit more nonlinear behavior
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Table 2.2: Origami module parameters.

Properties Value Unit
Mass 110 gram
Origami structure radius 3.5 cm
Uncompressed length 6.5 cm
Fully compressed length 3.0 cm
Maximum bending angle 38.2 degree
Axial stiffness 7.482 N/cm
Torsional stiffness 7.311 Nm/rad

compared to the 7 mil ones.

By calculating the slope of the graph we can determine an average spring constant of the origami

body in the axial direction. This translates to the payload capability of the modules without addi-

tional springs. The average spring constants were found to be 7.482 N/cm and 2.877 N/cm for film

thicknesses of 7 mil and 5 mil, respectively. From these initial findings, 7 mil modules offer better

performance to be used in a continuummanipulator, where its higher torsional and axial stiffness

allows the module to better withstand external forces. A full list of module parameters can be found

in Table 2.2.

2.4.2 Bending Stiffness

We investigated the bending stiffness of our module by applying loads in a horizontal cantilever con-

figuration. The orientation of the acrylic plate at the free end with respect to the vertical plane is

defined as the bending angle and measured using the OptiTrack tracking system. First, we investi-

gated the module behavior without compensation, where we fixed each cable at a constant length

and applied payloads. It should be noted that due to the lack of backdrivability in the motors, this is

similar to an entirely passive response. We tested this for three separate actuation lengths, results of

this experiment can be seen in Figure 2.7(a). Assuming the amount of bending increases linearly as
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Figure 2.7: Result for an origami module with 3 actuated motors: (a) forming a straight continuum section, (b) with
only 1 (top) motor actuated forming a curved section, (c) experimental setup where the origami module is loaded in a
cantilever configuration.

a function of load, we can use a linear fit of the curves to find the bending stiffness. The estimated

bending stiffness values are then 0.0020, 0.0040, and 0.0065 deg/gram for 4, 5, and 6 cmmodules,

respectively. We found that when fully extended, the module will bend by 6.38 degrees under a load

of 1 kg. This configuration represents a worst-case scenario, with a fully extended, passive actuator.

This load is equivalent to about 3 additional modules mounted serially.

We also investigated the ability of the manipulator to compensate for these loads by actuating

in opposition to the force as shown in Figure 2.7(c). We actuated a single cable to a specific length,

which bent the actuator in the opposite (negative) direction, and repeated the same bending exper-

iment, the results of which are shown in Figure 2.7(b). This allows the actuator to stay level under

greater forces, but with the trade-off of losing some control on the module shape or range of control-

lable motion. The estimated bending stiffness values found using a linear fit of the curves are 0.0121,

0.0117, and 0.0104 deg/gram for bent modules with 3, 4, and 5 cm shortest actuated tendon length,

respectively.
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2.4.3 Scalability andDeployability QuantitativeMeasures

Figure 2.8: Different loading condition on a multi‐segment robot: (a) axial, (b) transverse, and (c) torsional. Based on the
stiffness properties and weight of the module we calculate the maximum number of adjacent modules can be supported
by the base module for a given maximum displacement.

One quantitative measure of scalability is to analyze howmany modules can realistically be con-

nected before the whole robot cannot support its own weight. Based on the stiffness properties

(axial, bending, and torsional) and mass of each module we can calculate the maximum number

of adjacent modules that can be supported by the base module. For the axial loading case (Figure

2.8(a)), the base module is theoretically capable of supporting 7 modules with calculated axial dis-

placement of 1 cm. For the transverse and torsional loading cases, we assume that the center of mass

for each module is located halfway of the module’s length (Lmax/2). In reality, the module’s center

of mass should be closer to the base of a corresponding module (< Lmax/2) since the majority of

the mass is contributed by the motors and the PCB located at the base. The equation describing

torque applied at the base for the transverse loading (Figure 2.8(b)) is,

τtransverse(n) = mmod g ((nLmax/2+ n!Lmax)) (2.5)
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where n is the number of adjacent modules and n! is n-factorial, Lmax is the module’s length when

fully extended,mmod is the mass of the module, and g is the gravitational acceleration constant.

Given that, Lmax = 0.065m,mmod = 0.11 kg, and g = 9.81m/s2, then the base module can

support up to an additional 3 modules with angular displacement of 6.38 degrees. That is for the

case of a passive and un-actuated base module. We can increase the number of modules that can be

supported by bending the module upward. This would compensate for the bending caused by the

external load (additional modules connected in series). In this case, suppose that the base module is

bent upward with 3 cm shortest tendon length and the moment arm of 4.75 cm (halfway between

3 and 6.5cm). From Figure 2.7(b), we can find the amount of load that can be supported by the

bent base module for 6.38 degrees displacement by extrapolating the curve for 3 cm length. The

extrapolated load is found to be 2.4178 kg which translates to 1.1266 Nm torque at the base. This

value of torque is larger than the torque exerted by 3 adjacent modules but smaller than the torque

applied by 4 adjacent modules as given by Equation 2.5. Thus we can find the amount of extra load

(mpayload) that can be carried in addition to connecting 3 adjacent modules as shown below,

mpayload = τresultant/(lpayload ∗ g)

= (1.1266− 0.5261)/((0.0475+ 3 ∗ 0.065) ∗ 9.81)

= 0.252 kg

where τresultant is the amount of torque can be sustained by the actuated base module connected

to 3 adjacent modules. This value is obtained by subtracting the extrapolated torque value from

Figure 2.7(b) by the torque calculated using Equation2.5 for n = 3. Furthermore, lpayload is the

moment arm of the payload suspended at the tip of the last (4th) module. Note that, the number of

modules that can be supported would increase even further if all the adjacent modules are actuated

as well.
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Similarly, the equation for describing torque applied at the base for the torsional loading (Fig-

ure 2.8(c)) is defined as,

τtorsion(n) = mmod g ((nLbend + nLmax/2+ (n− 1)!Lmax)) (2.6)

where Lbend is the moment arm of the bending base module (assumed to have 90 degrees bending

angle). Given that Lbend = 0.0413m then the base module can support 5 additional modules

with angular displacement of 16.3 degrees (assuming that no bending displacement occurs on all

the modules). In contrast with the transverse loading case, we cannot actively increase the torsional

stiffness as this feature is passively contributed by the origami structure.

Another measure of scalability is to measure howmuch load a single module can handle based

on the motor specifications. This dictates howmany passive modules can be supported by a single

module. Given that each motor is capable of providing 9 kg.mm torque at maximum power and the

diameter of the 3-D printed spool is 7 mm, we found that a single module (with 3 motors) can lift

up to 7.71 kg payload which translate to roughly 70 modules. The I2C communication protocol

with 7-bit addresses used in this research work, limits module connection up to 128 devices. How-

ever, in practice the maximum number of modules can be connected in series is mainly dictated by

the power requirement. The current module’s interconnect/interface is capable of withstanding

20 A current, which translates to powering 9 modules in series (taking into the consideration of

0.72A stall current for each motor). A larger interconnect and thicker power wires would be nec-

essary to overcome this limitation. The maximum number of modules can be connected in series

given various limiting cases/factors is summarized in Table 2.3.

Furthermore, we found that using the current crease pattern design and folding technique we

can make an origami body as small as a thumb while the current robot’s radial dimension is about

the size of an adult human arm. Theoretically, there is no maximum limit on the module size except
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Table 2.3: Maximum number of adjacent modules can be connected in series given various limiting cases. Additional
modules can be connected for the case of transverse loading if all the adjacent modules are actuated instead of just the
base module.

Limiting cases Maximum no Expected
of adjacent modules displacement

Axial loading 7 1 cm
Transverse loading w/ un-actuated base module 3 6.38 degrees
Transverse loading w/ actuated base module 3 (+252 gram load) 6.38 degrees
Torsional loading 5 16.3 degrees
Maximummotor torque 70 -
I2C communication 128 -
Module’s interconnect current rating 9 -

due to the dimension of the laser cutting area. The scalable design allows for various size actuators

tailored to their intended applications. Additionally, one can explore various actuator arrangements

to achieve improved performance e.g. stacking multiple modules in parallel to create a stiffer robot

base.

A typical measure for robot deployability is to consider its maximum duration of operation en-

abled by a portable power source. Suppose that we have deployed a 3-segment origami continuum

robot powered with 11.1 V, 2200 mAh LiPo battery. Depending on the deployment scenario we can

estimate the total current consumption by defining certain time percentages at which the robot is in

particular modes. An example is given below,

Total current (1motor) = 70%maximum power+ 20% idle+ 10% unintended stalling

= 0.7× 0.39 A+ 0.2× 0.0 A+ 0.1× 0.72 A

= 0.345 A.

In that case, we can expect the robot to last for 42.5 minutes. An addition of a solar-charging subsys-

tem would allow for the robot to regain its energy when deployed for a long-duration mission.

We can also consider the compression ratio the origami module as another measure of deploya-
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bility. This dictates the minimum length of compressed modules that needs to be accommodated

during the deployment. A high module compression ratio is important in outer space applications

for example since it would allow for compact storing of devices/mechanisms which to be deployed

for later use. The modular structure of the origami arm presented in this work also can be consid-

ered to be a deployability measure as highly critical missions would benefit from a system that can be

swapped out rapidly when failed.

2.4.4 System Response

To evaluate the performance of the proposed origami module, we conducted step response experi-

ments with both open and closed-loop control shown in Figure 2.9. The experiments commanded

the actuator to reach a certain configuration parameter set: arc length (s), θ, and φ, as described in

the kinematic modeling section, using a low-level proportional-integral-derivative (PID) controller

on the motor encoder position.

To evaluate the performance of the origami continuummanipulator module in terms of its ca-

pability to reach a desired set of configuration parameters, we performed experiments in a custom

motion capture environment, comprising four OptiTrack IR cameras. These cameras track passive

IR markers attached to the top and bottom end connectors of the module to experimentally mea-

sure the configuration of the origami continuummodule. The measurements were transferred to a

desktop computer through an Ethernet connection for processing.

The configuration parameters were found from the centroid and orientation of the bottom and

top plates of the module. Assuming that the origami module only experiences bending in a plane,

angle θ is equal to the dot product between the frames attached to the bottom and top plates. Once

θ is determined, we calculate the value of ρ using the cosine rule, and curvature κ is defined as 1/ρ.

Lastly, the bending plane angle φ is determined using trigonometry.
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Figure 2.9: Control architecture for: (a) open‐loop, (b) closed‐loop.

θ = tan−1
(
∥t⃗n×b⃗n∥
t⃗n·b⃗n

)
l = ∥p⃗b − p⃗t∥

ρ =
√

l 2
2(1−cos(θ))

κ = 1
ρ

φ = tan−1
(
pty−pby
ptx−pbx

)
,

where t⃗n is the tip plate normal (Z) direction vector, b⃗n is the base plate normal (Z) direction

vector, p⃗b = [pbx, pby, pbz] is the base plate position vector, p⃗t = [ptx, pty, ptz] is the tip plate position

vector. Since the motion capture system is capable of tracking the position of the markers with sub-

millimeter resolution, even a slight difference in tip and base positions will result in a non-zero φ

reading. Thus, we implemented a simple filter that utilizes a small dead-zone εdz around zero.

The open-loop control of the origami actuator is based on the inverse kinematics of a continuum
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section which we used to find the required cable lengths (l1, l2, l3), that will shape the module into

the desired configuration (sd, θd,φd), as shown in Figure 2.9. The cable lengths are converted into

encoder positions, which are then sent to the low-level controller as reference signals. The closed-

loop control takes into account the difference between the desired cable lengths generated from the

inverse kinematics (l1, l2, l3) and the cable lengths obtained through a conversion of the measured

configuration parameters (l1m, l2m, l3m). A proportional-integral (PI) controller that regulates the

errors between the desired and measured cable lengths is added to the open-loop feed-forward com-

mands, producing final motor commands (l1c, l2c, l3c).

Figure 2.10 shows the results of step response for both open and closed-loop control, at which

the configuration parameters were tracked. The results show that the closed-loop control is able

to bring the system to reach the desired configuration. No overshoot is observed and the rise times

are 0.5 s for both control schemes. These results also imply that the inverse kinematics model was

successful in bringing the actuator close to the desired configuration.

Figure 2.10: Step response of a single module given a configuration: (a) s = 4.5 cm, (b) φ = 90 degrees, (c) κ = 11.64, and
(d) θ = 30 degrees. Results shown for both open and closed‐loop control.
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Figure 2.11: Circular tracking with the proposed origami continuum module using open and closed‐loop control.

Table 2.4: Single module circle tracking results.

Open Loop Closed Loop
Max Horizontal Error 1.237 mm 1.097 mm
RMSHorizontal Error 0.734 mm 0.681 mm
Max Vertical Error 0.970 mm 0.820 mm
RMS Vertical Error 0.579 mm 0.373 mm

2.4.5 Circle Tracking

The dynamic response of the proposed module was evaluated by performing a circle tracking ex-

periment. A circular trajectory was generated varying the φ values over the range of [0, 2π] while

keeping the desired arc length and curvature constant. For this experiment we kept the same values

of arc length and curvature as the ones used in the step response experiment in Figure 2.10. The tip

position of the actuator was tracked using motion capture as explained earlier and compared to the

desired trajectory. Figure 2.11 displays the results of this experiment with the desired and tracked tip

trajectories in 3-D (left) and in 2-D (right), with quantitative results summarized in Table 2.4.

These results indicate that our system is well-calibrated and open-loop control may provide suc-
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Figure 2.12: Two combined actuators executing circle follow trajectory while keeping the top plate parallel to the
ground, a small doll was placed on top of the plate and was able to stay balanced.

cessful tracking of desired paths under no disturbances, but feedback will likely be required to com-

pensate for modeling errors and disturbances during system operation. Moreover, the larger error

difference observed on the step response (especially on κ and θ) compared to the error for the cir-

cle follow experiment also suggest that the system can still reliably reach the desired task-space goal

despite a relatively large error on the configuration space.

2.4.6 Multi-moduleMotion Evaluation

As a proof-of-concept case study, two origami modules were connected in series, as shown in Fig-

ure 2.12. This figure displays snapshots of the combined two-module system following a circular

tip trajectory while keeping the top plate parallel to ground, allowing for an object to be placed on

top and kept from falling. This maneuver was achieved by keeping the arc length and θ for both

modules to be the same and sweeping the φ values over the range of [0, 2π] with an offset of π. Inde-

pendent control of each origami module was demonstrated without any modification of the system

architecture.
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2.5 Conclusion and FutureWork

This chapter focuses on a novel approach for an origami-inspired modular continuummanipulator

with torsional strength. Origami modules were designed and analyzed for their axial, torsional, and

bending deformations. The continuummodule is both extensible up to 116% its original length

and capable of resisting torsion about 20 times higher than the current state of the art continuum

robot while still being light-weight. Furthermore, the modular approach of the origami continuum

robot allows for easy extension of the system and rapid replacement of failed modules. An analy-

sis was presented to justify our claims on the module scalibility and deployability. Both open and

closed-loop step responses of the proposed continuummodules were investigated. When exposed

to a step input, the origami module is able to go to the desired configuration and reach a steady state

within 1 s. A circle following routine was tested on a single module, and the results show that the

actuator is capable of following the commanded trajectory within reasonable error bounds. No

significant improvement was observed when a closed-loop control scheme was introduced to the

system because the feed-forward term generated from the inverse kinematics of a continuum sec-

tion was able to bring the actuator close to the desired configuration parameters. However, further

testing involving external disturbances and faster tracking velocities will be appropriate to test the

response of the closed-loop control.

One possible future research direction is to explore different morphology of the origami struc-

ture. For example, one may investigate the performance of the module with a tapered shape origami

body that more resembles octopus arms or an elephant trunk. A more complex crease pattern would

be neccesary to create this structure, but it should be possible as theoretically any polygonal shape

can be created from origami folds. Additionally, it would be beneficial to explore parallel arrange-

ments of the actuator to investigate its performance benefits.
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3
Origami Manipulator

The following chapter presents the next step of this dissertation work, including improvements

made to the origami continuummodule, development of an inverse kinematics solver followed

by implementation of feedback control for the multi-segment manipulator. Additionally, grow-

to-shape algorithms to plan for robot motion following tortuous path are proposed and evalu-

ated. Lastly, we showcase various applications of the continuum robot for pick-and-place, inspec-

tion/exploration, and robotic art application.
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3.1 Background and RelatedWork

Inverse kinematics formulation is essential to achieve low-level robot motion, by finding necessary

joint configurations that will produce desired pose in task space. The inverse kinematics solution is

often non-trivial even for conventional rigid robots and is further complicated by the highly non-

linear nature of continuum robots. In general there is no closed-form solution; nevertheless, several

quantitative and qualitative based methods to solve for multi-section continuum inverse kinematic

problems have been presented recently66,67,68,69. However, the solution proposed by Neppalli et

al. does not allow for decoupling of the desired tip position and orientation of the robot66. Thu-

ruthel et al. proposed using multi-layer perceptron to develop global inverse kinematics solution on

the position level67. This approach would require retraining for extension of the system and find-

ing appropriate tolerance in training samples. Another popular approach is to use accurate forward

kinematics models and use an optimization method to solve the inverse kinematics problem68,69.

We follow a similar methodology to the latter, and focus on the effect of cost functions on the pre-

cision of the robot pose. In contrast to similar works, we provide a complete solution that accounts

for both position and orientation. We show that maximizing the smoothness of the low-level motor

commands avoids exciting vibrations of the long and slender soft robotic body and results in more

precise positioning performance.

Applications such as minimally invasive surgeries, search-and-rescue, and structure inspection,

demand robots to successfully traverse through tortuous a path. Due to their highly redundant and

compliant natures, continuum robots promise a suitable solution for this particular requirement.

Choset and Henning70 realized the potential of serpentine robots to navigate through a tortuous

path by specifying the robot body to follow the path traced by the head, hence the term follow-the-

leader motion was coined. This routine translates to appropriately selecting tube pre-curvatures

and deployment sequences in the context of a concentric tube robot71, or finding robot joint con-

36



figurations that advances its tip to the desired position along the path while minimizing deviation

from the path previously traversed72,73, or even through mechanical design that intrinsically guides

the robot to follow its tip motion74. Non-extensible continuum robots typically require an addi-

tional feed-in/insertion system to achieve follow-the-leader motion more effectively. In contrast,

extensible continuum robots e.g. those proposed in this dissertation, are more advantageous as

they can approximate the path more accurately through contraction to their minimum lengths

(ideally to 0 length) and extending while maintaining the same curvatures. In this work we propose

a heuristic method which we term ”grow-to-shape” algorithm and compare its performance to the

optimization-based methods used by Palmer et al. and Neumann et al.72,73. We extend the heuristic

approach with selective optimization and present results both in simulation and experimentally.

In summary, we propose a smoothness maximization method to solve for inverse kinematics

and to achieve task-space control of the robot. Furthermore, we evaluate the performance of our

origami continuum robot following the calculated inverse kinematics trajectories with and without

feedback control. We also develop grow-to-shape algorithms to highlight the superior capability of

continuum robot in navigating through a tortuous path. Last, we showcase the robot’s capabilities

in various experimental scenarios employing the proposed methods.

The novel contributions presented in this chapter are:

• A smoothness preserving inverse kinematics solver for a multi-segment continuum robot.

• A grow-to-shape algorithm for planning the robot motion to navigate a constrained environ-
ment, thus further highlighting the benefit provided by continuum robots compared to the
rigid robots.

37



Figure 3.1: (a) Origami body assembly, (b) acrylic top plate, (c) motor assembly, (d) origami module assembly.
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3.2 Second Generation Origami-Inspired ContinuumModule

In the previous chapter, we introduced a tendon-driven modular continuum robot capable of sig-

nificant length change (about 1.25 times its original length) and highly resistant to torsion. These

two characteristics are enabled by the tubular accordion-like structure fabricated from a thin sheef

of Polyethylene Terephthalate (PET) following the well known Yoshimura origami crease pattern.

We increased the overall length of the origami body to enlarge the workspace of the module (Fig-

ure 3.1(a)). The current module is also equipped with a new controller board with reduced dimen-

sion due to smaller micro-controller chip (Atmel, ATmega32U4) being used. Additionally, we im-

proved the module design to reduce its overall profile e.g, radial size and interface between the mod-

ules (Figure 3.1(b)). Additionally, metal bearings and appropriate 3-D printed bearing housings are

introduced in this iteration of the module to provide additional support for the motor shaft (Fig-

ure 3.1(c)). This will reduce the adverse effect of lateral loading on the shaft caused by the actuation

cable. The assembly process for connecting multiple modules does not change from the previous

iteration (Figure 3.1(d)). A total of 4 electric wires are needed for each origami module for power

and I2C communication. The interface between origami modules includes connecting these wires

to the appropriate receptacles present on the control board of the proceeding module. In addition,

the modules are mechanically secured using screws. The current module properties are summarized

in Table 3.1.

Origami module stiffness characterization

In order to verify that the improved module possesses similar compliance properties to its previ-

ous version, we conducted axial and torsional stiffness measurements with the test setups shown in

Figure 3.2 and Figure 3.3. To determine the axial stiffness of the origami compliant body, we fixed

one end of the origami body to a motorized linear slide and the other end to a load cell (Sparkfun,
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Figure 3.2: Axial loading experimental setup. The origami module was mounted to a linear stage on one end and to a
load cell on the other end. The linear stage was driven using combination of a ball screw and a DC brushed motor. The
linear displacement was measured using the embedded encoder attached to the motor.

TAL220) secured to a table-top vise (Figure 3.2). The linear stage was used to compress and decom-

press the origami body at a rate of 7.25 mm/sec. For each experiment we repeated the loading cycle

for five times and over three different origami bodies. Force readings at 10-80 mmwith 10 mm incre-

ment were then extracted from the raw data and processed to obtain mean and standard deviation.

The axial stiffness is determined by the slope of the graph (Figure 3.4(a)).

A similar setup was used to evaluate the torsional stiffness of the origami body (Figure 3.3) for

which the linear slide provided known torsional load. However, for this experiment we connected

strings to the top plate of the origami structure at distance of 2.565 cm from the plate’s centroid

(moment arm). They were then routed appropriately and their ends tied to the load cell which

mounted to the linear slide as well. The axial force provided by the linear slide was transformed to

twisting moment due to the moment arm. We programmed the linear slide to provided force in

the range of 4.45-44.5 N with 4.45 N increments, which corresponds to 0.1141-1.141 Nm. The

amount of twisting (rotational displacement) was measured using the OptiTrack tracking sys-

tem. We repeated the experiment three times for each of three modules. The same experiment was
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Figure 3.3: Torsion loading experimental setup. The origami module was fixed using a vise as shown. A linear stage
provides known axial forces which were transmitted to the origami module through cable routing. Due to the cable
routing, the origami module experienced a twisting moment. The twist angle was measured using the OptiTrack motion
tracking system with the infra‐red (IR) reflective markers attached to the origami end plate.

conducted on a single silicone rubber (Ecoflex-30) actuator up to 0.434 Nm torque. We then ex-

tracted the mean and standard deviation of the torsion-angular displacement from the raw data

(Figure 3.4(c)). The slope of the curve represents the torsional stiffness of the bodies.

The tubular origami structure discussed in this chapter has a longer axial dimension while main-

taining the same radial size as the previous version. We measured 261.25 N/mm and 0.448 Nm/deg

for the axial and torsional stiffness as shown in Figure 3.4(a) and 3.4(c). Furthermore, the resilience

of the module was evaluated through axial cyclic loading of 1000 cycles, from which the force and

linear displacement data were collected. For each cycle we calculated the axial stiffness by linearly

fitting the force-displacement data points. We observe a maximum change of 3.14 % (Figure 3.4(b))

in the axial stiffness suggesting that no significant degradation due to plastic deformation is present.

In order to better contrast the torsional stiffness of the origami module to the typical soft actuator,

we also conducted torsional loading experiment on a 3-chamber bending actuator developed in75,

with radius of 15.5 mm and made of Ecoflex-30 silicone rubber (Figure 3.4(d)). As shown in Fig-

ure 3.4(c), we observe about 73 times higher torsional stiffness in the origami module compared to
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Figure 3.4: (a) Axial stiffness of origami actuator, (b) evolution of origami module’s axial stiffness over 1000 loading
cycles, (c) torsional stiffness of origami and silicone actuator, (d) origami and silicone actuator under torsional load.

the silicone counterpart and 70 times higher (2.71 rad/Nm) than reported in76, despite its compara-

tively low mass. The summary of the origami module’s property is presented in Table 3.1.

3.3 Multi-Section Inverse Kinematics

In the previous chapter, it was shown that we can control the shape of the origami continuummod-

ule by tracking appropriate tendon lengths. Furthermore, we connected two origami modules in

series and commanded them to follow a circular tip trajectory while keeping the top plate parallel

to the ground, only using simple control inputs. Expanding from that, we need a way to generalize

the solution for an n-module continuum robot. To the best of our knowledge, there is currently no
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Table 3.1: Physical properties and performance of second generation origami module.

Properties Value Unit
Size cm
Diameter 8.0 cm
Uncompressed length 18.0 cm
Fully compressed length 8.0 cm

Total module weight 135.0 gram
Origami body 48.0 gram
Motors 38.1 gram
Printed circuit board 36.5 gram
Wires & others 12.4 gram

Maximum bending angle 95.5 deg
Axial stiffness 261.25 N/m
Torsional stiffness 0.448 N.m/deg

closed-form solution for the inverse kinematics of a multi-section continuum robot due to its highly

redundant nature. Velocity-based and numerical methods have been promising as a solution for in-

verse kinematics of traditional rigid robots. For the velocity-based approach, one can construct the

robot’s Jacobian as done in64 and utilize it to incrementally bring the robot to its desired pose.

A continuum section can be represented as a circular arc in 3-D space with its center in the X-Y

plane. The proximal point is located at the origin while the distal point is located in 3-D space. Each

continuum segment can be fully described by three configuration parameters: arc length s, bending

angle θ, and bending direction φ. The forward kinematics relating the configuration and task spaces

of a single continuum segment can be defined with homogeneous transformation matrixT(s, θ,φ).

T =



CφCφCθ + SφSφ CφSφ(Cθ − 1) CφSθ Cφ(1− Cθ)/κ

CφSφ(Cθ − 1) SφSφCθ + CφCφ SφSθ Sφ(1− Cθ)/κ

−CφSθ −SφSθ Cθ Sθ/κ

0 0 0 1


(3.1)
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where Cx = cos(x), Sx = sin(x). The mathematical model describing the forward kinemat-

ics of continuum robots involves non-linear terms with cosine and sine functions. This results in

computationally intensive calculations when finding the Jacobian by taking partial derivatives. Fur-

thermore, when translated to joint configuration (tendon lengths), singularity is reached when all

the lengths are equal. Godage et al. proposed to approximate the trigonometry terms with Taylor se-

ries which results in polynomial terms that are easily differentiable64. In this work, we approximated

the terms with 10th degree Taylor series that corresponds to a maximum error of 0.05 % given a max-

imum bending angle of π radians. For a n-section continuum robot, the full forward kinematics

is
Ttip
0 = T1

0T2
1 ...T

tip
n−1

= f(q⃗S) = f(s1, θ1,φ1, ..., sn, θn,φn)

= f(q⃗L) = f(l11, l12, l13, . . . , ln1, ln2, ln3)

=

 Θn Ψ⃗n

01×3 1


(3.2)

whereΘn ∈ SO(3) is the rotation matrix and Ψ⃗n =
[
Ψnx,Ψny,Ψnz

]T ∈ ℜ3×1 is the position

vector. The Jacobian is then defined as J = [ Jv; Jω] ∈ ℜ6×3n where Jv = Ψ⃗n,q⃗L and Jω =

(Θn,q⃗L Θn
T )∨. The operatorD,x corresponds to the partial derivative ofDwith respect to x. In the

case whereD is a matrix or a vector, the operatorD,x indicates taking the partial derivative for each

element ofDwith respect to x. The operator (A)∨ is to construct a 3 × 1 vector from non-zero
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elements of a skew symmetric matrixA. Given these operators we then have for example,

(Θn, l11 Θn
T )∨ =


 Θn(1, 1), l11 Θn(1, 2), l11 Θn(1, 3), l11
Θn(2, 1), l11 Θn(2, 2), l11 Θn(2, 3), l11
Θn(3, 1), l11 Θn(3, 2), l11 Θn(3, 3), l11


 Θn(1, 1) Θn(2, 1) Θn(3, 1)
Θn(1, 2) Θn(2, 2) Θn(3, 2)
Θn(1, 3) Θn(2, 3) Θn(3, 3)




∨

=

 0 −Ζ3l11 Ζ2l11
Ζ3l11 0 −Ζ1l11
−Ζ2l11 Ζ1l11 0


∨

=

 Ζ1l11
Ζ2l11
Ζ3l11


(3.3)

where Θn(i, j) is the ith row and jth column element of matrixΘn. The complete Jacobian matrix is

then shown below,

J =



Ψnx,l11 Ψnx,l12 Ψnx,l13 · · · Ψnx,ln1 Ψnx,ln2 Ψnx,ln3

Ψny,l11 Ψny,l12 Ψny,l13 · · · Ψny,ln1 Ψny,ln2 Ψny,ln3

Ψnz,l11 Ψnz,l12 Ψnz,l13 · · · Ψnz,ln1 Ψnz,ln2 Ψnz,ln3

Ζ1l11 Ζ1l12 Ζ1l13 · · · Ζ1ln1 Ζ1ln2 Ζ1ln3

Ζ2l11 Ζ2l12 Ζ2l13 · · · Ζ2ln1 Ζ2ln2 Ζ2ln3

Ζ3l11 Ζ3l12 Ζ3l13 · · · Ζ3ln1 Ζ3ln2 Ζ3ln3


(3.4)

Given the complete Jacobian for the n-section continuum robot, we then constructed damped

least-squares Jacobian, Jdamped = J′( J J′ + λ2damp I )−1, where J′ is the Jacobian transpose. The

damped least-squares Jacobian provides better robustness against divergent behavior near singularity

compared to the pseudo-inverse Jacobian. However, one still needs to pick appropriate damping co-

efficient λdamp to prevent the system from exploding. We use variable damping factor as investigated

in77 to pick the value of λdamp at each iteration.
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λ2damp =


0 when σmin > ελ(

1−
(
σmin
ελ

)2
)
λ2max otherwise,

(3.5)

where σmin is the smallest singular value of J obtained from singular value decomposition, ελ defines

the size of the singular region, and λmax is left at user’s disposal. Starting from arbitrary initial values

we iterated through the expression below until norm of the error was smaller than some tolerance

value (0.01) or if the maximum number of iteration (5000) has been reached.

q⃗Li+1 = q⃗Li + Jdamped ∗ [e⃗p; e⃗o]T, (3.6)

where ep and eo are the 3× 1 position and orientation error vectors respectively, and q⃗L is the tendon

lengths vector. Position error is defined as the substraction of current tip position from desired tip

position while the orientation error is defined as the necessary rotation that will bring current tip

orientation to the desired tip orientation, represented in axis-angle form. The current tip position

and orientation as a function of tendon lengths are defined by the forward kinematics of multi-

section continuum robot.

We opted for an optimization-based method to achieve smooth trajectory control due to more

freedom available in controlling the behavior of the robot in addition to tracking the desired path.

More importantly, no gain tuning is required, which we found to be a significant contributor to

the behavior of simpler damped least squares gradient descent solutions. Furthermore, we can use

constraint functions to ensure that the solutions are within the actuator limits determined experi-

mentally during calibration. We define the specific optimization problem to be solved as:

min
q⃗L

C

s.t. qLmin ≤ q⃗L ≤ qLmax,

(3.7)
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where C is the cost function and qLmin and qLmax are the minimum and maximum tendon lengths,

respectively. We investigated three different cost functions defined below:

Cost 1 = wp
∣∣e⃗p∣∣2 + wo |e⃗o| , wp + wo = 1

Cost 2 =
∑n

i=1(li1 − li2)2 + (li1 − li3)2 + (li2 − li3)2

Cost 3 =
∑n

i=1(li1 − li1_prev)2 + (li2 − li2_prev)2 + (li3 − li3_prev)2

(3.8)

where wp and wo are some scalar weighting for the error terms, (li1, li2, li3) are the tendon lengths

for the ith module, and (li1_prev, li2_prev, li3_prev) are the tendon lengths for the ith module obtained

in previous iteration. We investigated three different cost functions that minimize: the difference

between the actual and desired robot tip pose in SE(3)while satisfying the actuator’s constraint

(Cost 1: Minimize Pose Error), the curvature for each module (Cost 2: Minimize Curvature), and

the change in cable lengths between the solution guess steps hence allowing for a smoother result

(Cost 3: Minimize Step). Furthermore, equality constraints of e⃗p = 0 and e⃗o = 0 were introduced

to the second and third cost functions. In other words, Cost 1 minimizes the tracking error and

uses constraints to limit the solutions to reachable sets, while Cost 2 and Cost 3 aim to minimize

shape changes and use constraints to converge to the desired tip poses. We utilized the optimization

solver function fmincon of MATLAB for all of our optimization problem formulations discussed

previously.

The solutions of inverse kinematic solvers from different methods discussed above are presented

in Figure 3.5(a). Here we show representations of the tendon lengths of a single continuummod-

ule (Figure 3.5(b)) for a clear comparison, with each method color coded (with the complete ten-

don variations shown in Figure 3.6). At first glance, we can see that the solutions provided by the

gradient descent and the third cost function (minimize step) are smoother than the rest. We focus

on achieving smooth cable-length transients, since rapid changes would cause vibrations and re-
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Figure 3.5: (a) Inverse kinematics solution for a single origami module provided by different methods. (b) Schematic
showing definition of joint configuration for a single module. (c) Comparison of solutions smoothness. (d) Average solv‐
ing time per step for each inverse kinematics method.
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Figure 3.6: The complete solution of tendons variation generated by the inverse kinematics solver with different ap‐
proaches: (a) gradient descent stable, (b) gradient descent unstable, (c) optimization with pose error as the cost function,
(d) optimization to minimize curvature, (e) optimization to minimize change in tendon lengths between iterations.
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duce precision. To further quantify the quality of the solution, we defined jerkiness metric as the

sum of cable lengths differences between iteration steps with the results shown on the bar chart

(Figure 3.5(c)). As seen in this panel, the solution provided by the gradient descent method is the

smoothest when stable; however, when the gain is not carefully chosen the systemmay become un-

stable. The third smoothness optimizing cost function outperformed the other cost functions while

still slightly lagging behind the best-case gradient descent method.

We also evaluated the solving time of the inverse kinematic solvers. For each method we used the

solvers to find necessary tendon lengths that will achieve the same tip path. The mean and standard

deviation of the solving time for 50 repetitions each are summarized in the bar chart (Figure 3.5(d)).

The gradient descent method with suitable damping coefficient performed the best with 0.042 sec-

onds per step while the gradient descent method with unsuitable damping coefficient performed the

worst with 0.565 seconds. The second and third cost functions performed similarly with the former

being slightly faster at 0.052 seconds. Given the similar smoothness and time performance to the

gradient descent method minus the instability problem, we decided to pick the third cost function

as the final inverse kinematics solver. Figure 3.7(a) shows the complete tendon lengths variation over

time solved with our proposed inverse kinematics solver. The solution corresponding to the robot’s

motion for a pick-and-place application is depicted in Figure 3.7(b) (simulated inMATLAB). The

robot is shown approaching the object, picking it up, and then transporting it to another location

while maintaining its orientation parallel to the ground.

3.4 Feedback Control

Two common approaches used to achieve the control of robotic system include model-based and

feedback control through sensing. Unfortunately, a perfect mathematical model is rarely available

and there is a trade-off between the model accuracy and complexity. Furthermore, the problem is
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Figure 3.7: (a) Inverse kinematics solution for the three‐section continuum manipulator executing a pick‐and‐place
motion. (b) Snapshot of the robot motion in simulation with the cost function that minimize motion between time steps.
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amplified by the low-repeatability of soft actuators due to small variations in the manual fabrication

process. In contrast, feedback sensing alone is often not enough, especially if the sensors are noisy

and high feedback gain will tend to make the system unstable. Moreover, a proprioceptive sensing

methodology is essential if we plan to eventually deploy the robotic system outside the laboratory

environment. The real world is very complex, and it is impossible to account for everything in the

model. However, with a sufficiently accurate model combined with a feedback system, we can ex-

pect to achieve improved performance.

Figure 3.8: Feedback control architecture. The multi‐segment inverse kinematics solver returns the initial control signal
for the robot based on the desired pose. The error signal is obtained by taking the difference between the desired and
measured robot’s tip position and orientation. The error signal is then multiplied by the Jacobian of multi‐segment
continuum manipulator and fed back to the control plant.

In this work we provided the feedback to the robot using the OptiTrack motion capture system.

It is important to note that our long term goal is to deploy the proposed continuum robot outside

the lab; however, the motion capture system was used to illustrate how feedback control could be

implemented and how beneficial it would be in reducing positioning errors. On the other hand, it

is reasonable to assume that some industrial applications may find ways to use camera systems to

monitor the robot motion. A proprioceptive sensor such as one to be introduced in the later chap-

ter could be used to replace the external motion tracking system. We fixed the robot at the base and

mounted four IR-reflective markers to the distal end allowing us to track the robot end point. The

difference between the tracked robot’s tip pose and desired pose was then used as the error signal. As

traditionally done in robot manipulator control, we multiply the error signal by the robot Jacobian
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Figure 3.9: (a) Evolution of robot’s tip position and orientation without and with feedback for multi‐pose tracking. Root‐
mean‐square errors for position and orientation are summarized on the bar charts. (b) Snapshot of the robot following a
straight line path while maintaining tip orientation parallel to the ground (multi‐pose tracking).

discussed in the previous section to drive the system to zero error in configuration space (Figure 3.8).

Figure 3.9(a) shows the evolution of the robot’s tip pose without feedback (left) and with feed-

back (center). Using feedback, the robot was able to traverse in a straight line while maintaining the

top plate parallel to the ground as shown in Figure 3.9(b). The feedback is able to reduce the error

about 5-fold for the position and 2.5-fold for orientation tracking. Moreover, the system converged

to steady state within 2 seconds.
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Figure 3.10: (a) Grow‐to‐shape motion at which the growth starts at the base module, (b) optimization approach in
which the desired path and robot modules are discretized into M points, (c) heuristic approach in which the transitioning
module linearly interpolates the parameters (curvature and bending direction) describing two adjacent desired path
segments.

3.5 Grow-to-Shape Algorithms

A significant advantage of the proposed origami continuum arm is its ability to change length,

which enables functions that are simply not possible with existing rigid arms. We propose an algo-

rithm we call “Grow-to-Shape” that will allow the continuum robot to incrementally increase its

length while following a certain desired shape and minimizing the deviation from a path, which also

becomes the final shape of the robot. Continuum robots with collapsible modules can benefit from

a smaller deviation in path-following compared to their inextensible counterparts. In this work, we

assume that the continuum robot will grow from the base to the tip module (Figure 3.10(a)).

Growing the base module first is intuitive because then a shorter (tip) section will go through the

transition between the desired path segments. If we grow the tip module first then a longer (tip) sec-

tion will have to go through the transition, this will contribute to a larger deviation from the path.
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Alternatively, if we want to grow the tip module first then we can re-shrink it back before the tran-

sition. However, due to the additional motions from the module is necessary, this approach is less

efficient. Moreover, the desired robot path consists of constant curvature arcs within the curvature

limits of the modules, and pre-determined by some other path planning algorithm.

We defined the desired robot path/shape to be a set of arc parameters,

P = q⃗Sdesired = {S1,K1,Φ1, ..., Sn,Kn,Φn}

and formulated the optimization problem as below,

min
q⃗S

λpath epath + λtip etip ,

s.t. ⃗qSmin ≤ q⃗S ≤ ⃗qSmax

(3.9)

where epath and etip are the path and tip errors respectively while λpath and λtip are scaling factors for

each error term with a constraint of λpath + λtip = 1. Moreover,

⃗qSmin = {min{K1, ...,Kn},min{Φ1, ...,Φn}}

⃗qSmax = {max{K1, ...,Kn},max{Φ1, ...,Φn}}.

We utilized the forward kinematics of the continuum robot as a function of arc parameters (q⃗S)

for the optimization problem formulation. The solution (arc parameters) was then converted to

appropriate tendon length configuration. To define the epath, we discretized each robot segment

intoM points along the continuum backbone and subtracted their coordinates from coordinates

of equivalent points on the desired path (Figure 3.10(b)). In our study, we choseM = 10 and

λpath = 0.8.

As an alternative to the optimization-based method, we also devised a heuristic approach (Fig-

55



ure 3.10(c)) with which we command the module transitioning from one segment to the other by

linearly interpolating the arc parameters of the two neighboring desired segments as given below,



φmi =
∑i

j=1 Sj−
∑m−1

k=1 sk∑m
k=1 sk−

∑m−1
k=1 sk

· (Φi + π) +
∑m

k=1 sk−
∑i

j=1 Sj∑m
k=1 sk−

∑m−1
k=1 sk

· Φi+1

κmi =
∑i

j=1 Sj−
∑m−1

k=1 sk∑m
k=1 sk−

∑m−1
k=1 sk

· (−Ki) +
∑m

k=1 sk−
∑i

j=1 Sj∑m
k=1 sk−

∑m−1
k=1 sk

· Ki+1 when |Φi − Φi+1| > π/2

φmi =
∑i

j=1 Sj−
∑m−1

k=1 sk∑m
k=1 sk−

∑m−1
k=1 sk

· Φi +
∑m

k=1 sk−
∑i

j=1 Sj∑m
k=1 sk−

∑m−1
k=1 sk

· Φi+1

κmi =
∑i

j=1 Sj−
∑m−1

k=1 sk∑m
k=1 sk−

∑m−1
k=1 sk

· Ki +
∑m

k=1 sk−
∑i

j=1 Sj∑m
k=1 sk−

∑m−1
k=1 sk

· Ki+1 otherwise,
(3.10)

where φmi and κmi are themth module’s bending direction and curvature when transitioning from

desired ith to i+ 1th path segments. Sj is arc length of jth desired path segment, sk is the arc length

of kth module, Φi is the ith desired segment bending direction, andKi is the ith desired segment cur-

vature. While not transitioning, the continuummodule will trace the arc parameters of the desired

segment where the module currently resides.

Figure 3.11 show the experimental results of the grow-to-shape algorithms implemented on the

three-segment origami continuum robot for the full optimization and heuristic methods respec-

tively. We plotted the tracked robot tip position (P3) as the robot grew to the desired ”inverted-S”

shape in X-Z plane (Figure 3.11(a)). Furthermore, we also tracked the tip position of two proximal

segments (P1, P2) to help illustrate the overall shape of the continuum robot as we do not currently

have a method to measure the complete shape of the continuum robot. The arc parameters for the

final shape are S1 = S2 = S3 = 0.16m,K1 = K2 = K3 = 4.9087m−1, Φ1 = 0,Φ2 = π,Φ3 = π.

We repeated the grow and shrink motion three times for each of five trials, the first using using the

optimization and the second using the heuristic methods. The diamond plot points represent the

average tip positions of the distal segment for five trials with the shaded areas as standard deviations.

We observed that both methods generated similar paths and the robot was able to track them with
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maximum tip error of 34 mm in X axis. Figure 3.11(a) shows the snapshot of the grow-to-shape

motion with the gravity vector pointing downward.

We investigated the effect of reducing the initial (minimum) continuummodule length on the

Figure 3.11: (a) Snapshot of grow‐to‐shape motion. (b) Experimental result of the full optimization method where the
modules’ tip position (P1, P2, P3) were tracked. (c) Experimental result of the heuristic method. The error plot only
denotes the distal most section.
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tip error, which simulates the limit of the origami module’s compressed length. As expected the tip

error for the heuristic method decreases for shorter initial module lengths as shown in Figure 3.12(a).

In fact, the error appears to converge to the tip error obtained using the optimization method

(about 0.0041 mm). This suggests that the heuristic method will work as well as the optimization

approach for continuum robot capable of collapsing to 0 mm length (e.g. concentric tubes with

insertion rail). We also investigated the effect of increasing the desired arc segment lengths while

keeping the initial module length constant. A similar trend of decrease in tip error can be observed,

although with less pronounce effect (about 2.06 mm decrease).

Figure 3.12: (a) Error analysis on the effect of decreasing the minimum module length, (b) and increasing the desired the
segment length independently. (c) Error and, (d) solving time comparison from the three different methods.
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While experimenting with the two previously discussed methods, we realized that we might be

able to only do ”selective optimization” for modules that are transitioning between the desired seg-

ments. However, this still requires that the desired arc segments will consist of circular arcs with

constant curvature. For more complex curves, one may try to convert them first into constant cur-

vature segments using some distance metrics. Furthermore, the selective optimization only makes

sense if the desired segment length is longer than the combined initial length of the modules, oth-

erwise full optimization is necessary. Figure 3.12(c) shows that the selective optimization method

outperforms the heuristic method (about 50% lower error) while still having lower performance

than the full optimization method. Moreover, the error decreases as the desired segment lengths

increase (Figure 3.12(b)). While the work done in73 does not provide a solving time measurement,

we collected the solver time per step for each method for comparison (Figure 3.12(d)). The full opti-

mization method has the least error but requires the most time due to the module discretization and

redefinition of the cost function at every time step. By doing the selective optimization we can speed

up the solver time about 12-fold, but there is only a small improvement in the tip error compared to

the heuristic approach, which runs much faster. It is quite trivial to replace the constant curvature

model used in this work with a non-constant curvature model for the optimization-based approach.

However, that most likely will result in a much longer solver time.

3.6 Origami ContinuumRobot Capabilities

We validate possible applications of our origami continuum robot to achieve manipulation and

exploration/inspection tasks which utilize the smoothness-optimization-based inverse kinemat-

ics solver and the grow-to-shape algorithm. One potential application of continuum robots for

manipulation task is to complete a pick-and-place routine. Despite possibly having a much lower

accuracy compared to traditional rigid manipulators, continuum robots could be beneficial for ap-
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plications where human-robot synergy is necessary e.g. collaborative assembly or packaging. In this

paper, we showed that our continuum robot is capable of transporting a 0.5 kg cylindrical object

(Figure 3.13(a)). The robot is equipped with a small vacuum-driven suction cup at the distal end

and follows a trajectory similar to the one discussed for the pick-and-place simulation results. We

observed deviation of the modules from constant curvature arcs due to the external load. This prob-

lem could be mitigated by introducing sensors that can detect non-constant curvature shapes for

feedback control, however this is beyond the scope of this dissertation work.

Figure 3.13(b-d) highlights the exploration/inspection applications of our continuum robot

in which it ”grows-to-shape” traversing through tortuous paths. The robot successfully navigated

through mockup walls with holes (Figure 3.13(b,c)) and a maze (Figure 3.13(d)). We introduced

translational motion using a linear stage at the base of the continuum robot to simulate the inser-

tion routine typically done in minimally invasive surgeries. It is important to note that we could

achieve the same effect by using additional origami module at the base. Lastly, we attached a blue

light-emitting diode (LED) to the robot’s end effector and took a long-exposure photography of it

tracing the WPI letters using the maximum-smoothness inverse kinematics solver as shown in Fig-

ure 3.13(e). The green letters are conveniently generated from the LEDs of the embedded motor

encoders at the end of each module.

Discussion

The proposed origami-inspired continuum robot offers significant length change and is highly re-

sistant in torsion while having minimal weight. A high torsional strength is beneficial to resist offset

loads, which would reduce positioning accuracy even under the weight of the robot itself. Lower

mass is favorable to mitigate sagging problem typically present in continuum robots. Furthermore

lighter mass contributes to lower inertia which yields a more stable and safer system. We observed
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Figure 3.13: Snapshots showing capabilities of the continuum robot: (a) pick‐and‐place, (b) traversing through a mockup
wall with a single hole (side view), (c) traversing through walls with two holes (side view), (d) grow‐to‐shape routine with
linear slider at the base (top view), (e) end‐effector path following to trace WPI letters. The direction of gravity is all
pointing downward except for row d where the gravity direction is pointing into the page.

small variations in the modules’ axial and torsional stiffness values suggesting good reproducibility.

Additionally, the cyclic loading experiment illustrates the origami module’s durability, although

more rigorous testing in the range of hundred thousands cycle may be necessary.
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The modular property of our robot allows for easy scalability. In order to increase its workspace,

one may connect additional shorter modules in series or introduce a longer origami body for each

module while keeping the same number of modules. However, stronger motors may be required

as the moment arms increase as the body gets longer. In contrast with other continuum robots in

which the actuators are kept at the base, the distributed actuators of our robot enable easy replace-

ment of the broken modules. Additionally, electric powered actuation provides possibility for de-

ployment of our soft robot outside the laboratory environment.

The optimization-based inverse kinematics solver presented in this chapter allows for the con-

trol of a multi-section continuum robot. The proposed method shows similar performance to the

damped-least-squares gradient descent approach in terms of the solving time and smoothness of the

cable-length (and hence robot tip) trajectories. Furthermore, the optimization method eliminates

the need to tune the damping coefficient required by the gradient descent approach. The devel-

opment of the inverse kinematics solver is the first step toward the possibility of a wide variety of

robotic applications requiring path tracing capability. However, for time and force sensitive applica-

tions an inverse dynamic solver could be more appropriate.

We have shown the benefit of introducing feedback into the control of our robot. The initial

solutions provided by the inverse kinematics solver allow for more stable system as the output of

the system is already very close to the desired one. The feedback term was then used to compensate

the remaining error not captured by the model. The results show that the performance of the robot

was greatly improved through the addition of a motion tracking system. However, a visual-based

motion tracking system tends to suffer from occlusion problems and is inherently dependent on an

established system of localized cameras. A more ideal solution would be to develop a proprioceptive

shape sensor that would allow for a fully deployable robotic platform.

Grow-to-Shape highlights the main benefit of a collapsible continuummanipulator compared

to traditional rigid robots, which allows for navigation through tortuous paths typically present in
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search-and-rescue, medical, and inspection applications. We have shown that our robot can grow to

the desired shape by executing joint configurations given by the developed algorithms. We observed

insignificant difference between the experimental data obtained with both full optimization and

heuristic methods which is in agreement with the simulation results. We did not conduct an exper-

iment using the selective optimization method as our modules in their current state are not capable

of extending three times their minimum length (necessary for the selective optimization method) at

the desired curvature value.

Lastly, we have shown the capability of the robot in various validation scenarios. Even though

we focused mostly on the application of the origami continuum robot as a manipulator, the bend-

ing modules themselves are not limited only to manipulator use cases. Due to their versatility, we

envision the modules could be used for bio-inspired robotic applications such as snake, worm, and

flexible appendages. In fact, a hybrid robot capable of both locomotion and manipulation tasks does

not seem implausible. One can imagine a snake robot capable of latching itself onto a structure and

transforming into a manipulator.

63



4
Proprioceptive Sensing

This chapter describes the development of a sensing methodology to estimate the shape of the

origami continuum robot. We start with a brief survey of current state of the art sensors specifically

tailored for continuum robots and highlight their differences compared to the work proposed in this

research. We continue our discussions with the details of the proposed method. In particular, we

utilize a magnetic sensor to measure the deformation of the origami compliant body. Furthermore,

two well knownmachine learning regression models are utilized to predict the robot shape both

with and without external load. The model performance is then evaluated and recommendations are

presented for future work.
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4.1 Background and RelatedWork

Perception is essential for achieving a more reliable and capable robotic system. Sensing modality

generally can be divided to exteroception and proprioception at which the former concerns about

surrounding information while the latter focuses on measurement of robot’s internal state. The

focus of this research will be on the latter as it will allow for a more deployable robotic system. Pro-

prioceptive sensing in soft robots is challenging due to the fact that a soft system has theoretically

infinite degrees of freedom, and the addition of sensors is desirably not to alter this behavior. In our

case, sensing is even more challenging because the origami module is capable of significant length

change so methods that depend on limited strain reading for example cannot be employed.

Various existing sensing modalities for soft robots include: resistivity78,79, capacitance80,81, in-

ductance82, optical fiber83,84, magnetic85,86,87,88, vision89,90,91. Recent review can be found in92.

As the name suggests, the resistive based method involves measuring changes in resistance typically

caused by application of strain to the materials. Chen et al. for example utilize polyurethane embed-

ded with carbon black to transform the strain measurement into resistance value78. As previously

mentioned, a resistive based method is not suitable for the proposed origami continuum robot

which can undergo significant change in length. Furthermore, resistive based sensors tend to suf-

fer from drift and hysteresis problems. Similarly, measurement of other electrical properties such

as capacitance and inductance has been employed and shown promising results80,81,82. However,

capacitance and inductance measurements are not as straight forward as for resistance and are sensi-

tive to the presence of conductive objects. Generally, additional electrical circuitry is required thus

increasing the system complexity.

Optical fibers, which are typically flexible, have been used in83,84 due to their superior capability

in measuring strain even in micrometer scale. However, it is difficult to implement them into an

embedded system due to generally bulky back-end hardware (interrogator) required to collect and
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process the data. Thus optical fiber based sensing is more appropriate for stationary applications

(e.g. minimally invasive surgery). Furthermore, since the origami module can undergo significant

compression, the chosen sensor needs to be able to accommodate that. A more complex arrange-

ment of fiber optics e.g. spiral or helical might be necessary.

Camarillo et al. presented vision based shape sensing using three camera in a green-screen envi-

ronment89. The system bandwidth of the system is limited to 1-2 Hz range and it is unclear if the

sensing performance would extend well to the real world environment where there are other objects

nearby. Additionally, although external sensors can provide accurate results, they are large and re-

quire either line-of-sight for cameras or special environments without magnetic objects in the case of

electromagnetic sensors.

Sensing methodology utilizing magnetic measurement to measure bending curvature has been ex-

plored in85,86, in which a Hall effect sensing integrated circuit (IC) is embedded into a soft silicone

module. Other magnetic based sensing involves external magnet detectors which typically have a

limited workspace. Song et al. estimated the arc parameters through analytical model of Bezier curve

of second and third order87,88. But this approach requires knowing the position and direction of

the proximal and distal plates of the robot. Furthermore, the length of the robot needs to be known

(fixed length) while our origami continuum robot is capable of significant length change that needs

to be predicted as well. Magnetic sensors provide several advantages such as contactless operation,

compact in size, low cost, and easy to integrate with embedded systems. However, the adverse effect

of exposure to external magnetic interference and ferromagnetic object needs to be addressed.

In terms of modeling, there are typically two approaches: analytical and numerical (finite element

analysis) with the former providing a more exact solution than the latter. However, analytical model

is usually difficult to come by. Numerical method on the other hand usually requires huge computa-

tion resource and most models are application dependent. More recently, machine learning models

have shown promising results in helping researchers to construct predictive models for sensing pur-
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poses83,90,91,93,94. The problem of neural network learning can be seen as a function optimization

problem, where we are trying to determine the best network parameters (weights and bias values) in

order to minimize network error. There is a trade off between machine learning model and analyti-

cal model. As the complexity of the analytical model increases the solving time will also increase. In

contrast, for the machine learning model it maybe more time consuming in the beginning due to

the data collection and training of the model, but the solving time could be faster because the model

most likely will come in the form of a linear combination of weighted sum of the inputs plus bias.

Using the trained model, the input from sensor will then be translated to a predicted output.

The novel contributions presented in this chapter are:

• Development of a proprioceptive magnetic-based shape sensing suitable for extensible con-
tinuum robots.

• Machine learning predictive models to estimate the robot shape parameters.

• Validation of the sensor accuracy both with and without external load.

4.2 Methodology

As discussed in the previous chapter, a closed-loop control of the origami continuum robot is

achieved through the use of a motion tracking system. The following sections will describe in de-

tail the components necessary for the proposed proprioceptive sensing methodology.

4.2.1 Sensor Design

The shape sensing proposed in this work consists of two 7/16”× 1/32” Neodymiummagnets and

the Melexis 90393 magnetometer board (Adafruit Industries). This particular magnetometer board

is chosen for the magnetic sensing due its wider sensitivity range (± 5-50 mTesla) and is capable of
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measuring the magnetic flux density in 3 orthogonal directions (Bx,By,Bz). The magnet and the

sensor are suspended inside the origami foldable body by utilizing 3-D printed centerpieces and de-

tachable arms as shown in Figure 4.1. The centerpieces house the magnet and magnetometer while

the arms allow for ease of mounting. The arms feature compliant tips which are inserted into the

holes at the corners of the origami body. Furthermore, an appropriate slot at the tip of the arms al-

lows for the actuation cables to pass through. Once the sensor placement is finalized, the supporting

platforms can be further secured by hot-gluing the tips onto the origami body.

Figure 4.1: Sensor design and placement. The red and blue colors on the magnet signify the north and south magnetic
poles respectively.

Optimal Placement ofMagnet andHall Effect IC

The optimal magnet and sensor placement is crucial for generating reliable sensor data since the

magnetometer has an inherent limit on its sensitivity. The sensor would be quickly saturated if the

magnet is placed too closely. In contrast, weak and noisy reading would be the case if the magnet is

too far from the sensor. Thus, the parameters to be optimized include the air gap distance between

the magnet and the sensor, and also the magnet dimension (diameter and height). The dimension of

the magnet is directly correlated to the magnetic flux hence affecting the air gap distance.
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We simulated readily available off-the-shelf cylindrical permanent magnets with various dimen-

sions in COMSOL to qualitatively analyze the change in magnetic flux density with varying magnet

dimension as shown in Figure 4.2. The magnet is simulated with the remanent flux density of 1.32

Tesla. The magnetic flux within the sensitive range of the magnetometer is shown and the value for

By is omitted since the magnet is axially magnetized (Bx and By are symmetric about Z axis). The

simulation shows that the magnetic flux increases proportionally as the magnet dimension grows.

Larger diameter of magnet is preferable due to a more uniformmagnetic field directly under the

magnet at which the sensor will be located. This can mitigate the error due to magnet and sensor

misalignment. Furthermore, thicker magnet is preferable as it allows for larger distance between

the magnet and the sensor. Larger distance between the two will act as a lever that will amplify the

change in tangential magnetic flux reading when the origami module bends. We settled with the

7/16”× 2/32” cylindrical magnet by stacking two 7/16”× 1/32” magnets. Furthermore, the mag-

net and the sensor are separated with a distance of 15 mmwhen the origami module is at its straight

configuration and maximum length as shown in Figure 4.1.

Figure 4.2: Visualization of magnetic flux distribution for different magnet size simulated in COMSOL finite element
analysis software. Only magnetic flux within the sensor’s sensitivity range (5‐50 mTesla) is shown.
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4.2.2 Data Collection

Figure 4.3: (a) Snapshot of origami module executing spiral motion for training data collection. Infra‐red (IR) reflective
markers are mounted on both ends of the module to measure the robot’s shape parameters (s, θ,φ), while the encoder
and magnetic data are internally measured by the module’s controller board. Tracked tip position: (b) isometric view, (c)
side view, and (d) top view.

The feature and label data are collected using the setup as shown in Figure 4.3. The feature data,

which includes motor encoder ticks and magnetic reading, were internally measured by the robot’s
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controller board and the magnetometer respectively. The label data (s, θ, φ) was obtained using

the OptiTrack motion tracking system. Infra-red (IR) reflective markers were mounted onto 3-D

printed platforms at each end of the origami module. The encoder data is collected by the module’s

controller board while the magnetic reading is obtained by the Adafruit magnetometer and trans-

fered through I2C communication protocol. A moving average filter was implemented to obtain

smoother magnetic reading. The origami module was commanded to follow a spiral path by in-

crementally changing its arc length (s), bending angle (θ), and bending direction (φ). The tracked

robot’s tip position is shown in Figure 4.3(b-d). Spiral path allowed for faster training data collec-

tion, since the origami module is swept about φ so a small change happened at the time (smooth

motion) except when changing the s and θ. The label data collected is within the ranges of [0.12,

0.15] m, [π/9, π/4] rad, and [0, 2π] rad for arc length, bending angle, and bending direction re-

spectively. A time delay of 50 ms is used between each data point during the increment of φ, and a

time delay of 5 s is used when the module changes its length significantly from 0.15 to 0.12 m. Data

collection is completed in about 15 minutes.

4.2.3 RegressionModel Training

Two well knownmachine learning methods for regression, K-nearest neighbor (KNN) search and

multilayer perceptron (MLP), are investigated in this work. The K-nearest neighbor (Figure 4.4(a))

is one of the simplest classifiers among the machine learning algorithms hence can be easily imple-

mented. The trade off between nearest neighbor search vs the multilayer perceptron is that the near-

est neighbor search is limited by the amount of memory to search the lookup table if we want to

eventually deploy the system. In other hand, MLPmodel (Figure 4.4(b)) will come in the form of

an multi-input multi-output equation, but we may still need to store the model’s graph structure

of weights and bias values as well. The machine learning models were built using the MATLAB

neural network toolbox functions, specifically knnsearch and feedforwardnet. Furthermore,
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Figure 4.4: (a) K‐nearest neighbor (KNN) search algorithm. (b) Multi‐layer perceptron (MLP) also known as fully con‐
nected neural network.

we the trained machine learning models with different training data sets: encoder only data, mag-

net only data, and combination of the two. The hyper-parameters for the model are summarized in

Table 4.1.

Mean squared error is used for the performance measure and radial basis function (radbas) is

employed as the transfer function for each hidden layer. Model training is done inMATLAB with

parallel computing in which 4 number of workers is used. The trainbr function is used for the

training function due its effectiveness in creating a more regularized model. Regularization is es-

72



Table 4.1: Best model hyperparameters for the machine learning methods investigated in this work.

Model Hyperparameters
KNN Num of neighbors = 1

Distance = Euclidean
MLP (encoder only) Hidden layers = 2

Neurons = [30, 15]
MLP (magnet only) Hidden layers = 2

Neurons = [30, 30]
MLP (encoder and magnet) Hidden layers = 3

Neurons = [36, 18, 9]

sential to prevent a model that overfits. This function employs a method called Bayesian regular-

ization which tries to minimize both the square errors and the weights in order to create a network

that generalizes well. Furthermore, Bayesian regularization allows for skipping of the lengthy cross-

validation process95.

4.2.4 Experimental Validation

We evaluated the performance of the machine learning models in predicting arc parameters of two

origami modules under no load condition. We collected test data in similar fashion as for the train-

ing data with coarser increments on the desired arc parameters and still within the range of the train-

ing data. We also evaluated the performance of the models to predict the curvature of the origami

module under external load. Furthermore, this experiment evaluates the ability of the models to pre-

dict arc parameters outside the range of the training data. 3-D printed curvature templates as shown

in Figure 4.5 are used to facilitate repeatable applications of external load. The curvature of the tem-

plates ranges from [3.74, 11.22]m−1 and correspond with arc length of 0.14 m and increasing bend-

ing angle of [π/6, π/2] radian. The origami module was initially commanded to reach arc length

of 0.14 m, bending angle of π/9, and bending direction of 0 radian. The module is then pushed
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against each curvature template until it passively conforms to the desired shape. The encoder values

and magnetic reading were then collected after waiting for 10 seconds for each curvature template.

Furthermore, the experiment was repeated three times for each curvature values.

Figure 4.5: (a) 3‐D printed curvature templates. Origami module pushed against the template with (b) the lowest curva‐
ture, (c) against the template with the highest curvature.
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Figure 4.6: (a‐c) Zoom‐out view of the encoder and magnetic reading. (d‐e) Zoom‐in view of the data.

4.3 Results

Figure 4.6 shows the representatives of encoder and magnetic data collected for the model train-

ing. The top row (a-c) shows the zoomed-out view of the data and the bottom row (d-e) shows the

zoomed-in view. Furthermore, we can plot the feature and label data in 3-D plot as shown in Fig-

ure 4.7. The plotted encoder data resembles a slanted cylindrical tower while the magnetic data has

a tapered feature. The cone-like shape of the magnetic data is caused by the decrease in magnetic

flux reading as the magnet and the sensor become farther apart. In our case Bz value becomes smaller

(more negative), while Bx and By become more positive as the sensor and the magnet pair become

closer. Figure 4.7(c,f) show the range of robot shape parameters used for the training.

Figure 4.8 shows an example of the prediction results for the robot’s arc parameters under no

external condition. The prediction shown in the figure was done using both machine learning meth-

ods and encoder data for the training dataset. Furthermore, the results for different datasets and

origami modules are summarized in the barcharts shown in Figure 4.9. The barcharts show that the
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Figure 4.7: Isometric view of the feature space that includes (a) encoder and (b) magnetic data, and (c) label space. (d,e)
Top view of the feature space, and (f) label space.

models are capable of predicting the arc length with maximum root-mean-squares (RMS) error of

15.48 mm. Similarly, the bending angle could be predicted with maximum error of 13.37 degrees.

In contrast, the worst performance is shown when predicting the bending direction with maximum

error of 110.2 degrees. The best and worst performances of the models are summarized in Table 4.2.

Figure 4.8: (a,d) Prediction results for arc length, (b,e) bending angle, and (c,f) bending direction for KNN and MLP mod‐
els trained using encoder data only.
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Figure 4.9: Summary of the prediction RMS error for different training datasets and origami modules.

Table 4.2: Summary of the best and worst performing predictive models for each arc parameter.

Arc parameters Minimum error Maximum error
s KNN - CM = 0.18mm (0.12%) MLP - M = 15.48mm (10.32%)
θ KNN - C = 0.29◦ (0.73%) MLP - M = 13.37◦ (33.43%)
φ KNN - C = 1.87◦ (1.04%) MLP - M = 110.2◦ (61.2%)

Figure 4.10 shows an increase in RMS error as the density of the feature data decreases, sug-

gesting a decrease in prediction accuracy of the KNN search caused by a sparser training data set.

The less dense dataset is obtained by selecting every 10th, 20th, 30th, 40th, 50th data points from

the densest dataset. The percent changes of RMS error between the most and least dense datasets

are summarized in Table. 4.3. The results show that the KNN search utilizing magnetic data gets

affected the least by the change in feature data density despite performing the worse in terms of
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prediction accuracy. KNN search models with encoder only data and combined data show similar

performance degradation with slightly higher value for the former.

Figure 4.10: RMS error of (a) arc length prediction, (b) bending angle θ, and (c) bending direction φ, as a function of
feature data density for KNN search.

Table 4.3: Percent change in RMS error of the predicted parameters for the most dense and sparsest data set.

Parameters Percent change (%)
Encoder only Magnet only Encoder + magnet

s 87.2 16.8 84.2
θ 94.9 -1.0 90.4
φ 84.4 17.8 86.2

Figure 4.11 shows the prediction results for the external load scenarios using the known curva-

ture templates. The RMS errors for the machine learning models and different data set as follows:

encoder only (KNN,MLP) = (5.891, 5.855)m−1, magnet only (KNN,MLP) = (4.337, 3.014)m−1,

encoder and magnet (KNN,MLP) = (5.524, 3.198)m−1.

4.4 Discussion

Several insights can be gathered from the results: first, arc length is the robot’s shape parameter that

can be predicted most reliably followed by bending angle and bending direction respectively. Sec-
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ond, it appears that the magnet data alone is less reliable due to the very small changes in Bx and By

corresponding to very small changes in magnet position when the origami module changes its shape.

This is shown by the worst performance of the models trained with magnet data only. In contrast,

the models constructed only with encoder data perform the best across the different modules. Pos-

sible increases in the prediction error for even the best model is likely caused by small variability in

origami modules’ stiffness due to fabrication process. We can also observe a certain bias in the error

with respect to the direction in which the module rotates (clockwise vs counter-clockwise), despite

the bias being negligible.

Moreover, as shown in Figure 4.11 the models with encoder data only could not predict the

Figure 4.11: Prediction results for the origami module under external load.
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changes in curvature when the origami module is exposed to an external load. The external load

caused the compliant body to bend while also making the actuation cable untaut/slacked, thus this

change was not being recorded by the encoders. The addition of magnetic data decreases the perfor-

mance of the predictive model with encoder only data for the no external load scenario. In contrast,

the MLPmodel with combined magnet and encoder data performs the best for the experiment with

external load. Moreover, the addition of magnetic data to the MLPmodel for the external load sce-

nario reduces the standard deviation of the curvature prediction.

In summary, one should utilize KNNmodel trained with only encoder data for no external load

scenarios while MLPmodel with combined magnet and encoder should be used when external load

is expected. As shown in the earlier section, the magnetic reading in normal direction with respect

to the magnetometer IC (Bz) shows the largest sensitivity against the change in robot shape, thus in

the future improvement can be made by utilizing 3 magnetometer ICs placed at the three corners

where the actuation cables are instead of only using a single magnetometer IC in the middle. This

will allow for richer measurement as now the change in magnetic field value read by each sensor is

analogous to the change in the actuation cable length but without the previously discussed draw-

back caused by untaut cables. However, this will increase the overall complexity of the sensor as

more magnetometer IC and magnet pairs are required. Additionally, a custommade printed circuit

board would be necessary. Furthermore, since the shape estimation obtained through encoder data

appears to be the most accurate one, it would be interesting to explore the possibility of developing

a routine in which the origami module would get out of the slack cable condition by slowly decreas-

ing the cable length until tension is recovered/detected. However, this will require some sort of force

sensor attached to the actuation cable. The routine could be triggered by the change in magnetic

field when at the same no change in cable length is measured.
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4.5 Conclusion and FutureWork

This chapter introduces the development of a sensing methodology to estimate the shape of an

origami continuum robot. The arc parameters corresponding to the robot shape can be accurately

predicted with maximumRMS error of 0.98 %, 4.17 %, and 4.36 % for the arc length, bending an-

gle, and bending direction respectively. These results are obtained using the best performance model

trained with encoder only data. Furthermore, KNNmodel consistently performs much better com-

pared to the MLPmodel for no-external load scenario while MLP generalizes much better when

external load is present (42 % decrease in RMS error).

However, it is important to note that KNNmodel’s performance is heavily dependent on the

density of the feature data used for the search process as previously discussed. The use of denser

feature data will allow for a more accurate prediction but with a trade off in longer solving time as

the algorithm needs to calculate distance metric for more data points. Furthermore, if the eventual

goal is to deploy the model into an embedded system for a more portable robotics platform, then the

hardware memory size constraint should be taken into account.

Potential future work is to improve the performance of the magnetic reading to further reduce

the estimation error, especially on the prediction of φ. The poor performance is likely due to the

non-linearity in magnetic flux of a permanent magnet thus resulting in the less sensitive tangential

magnetic readings (Bx and By). It would be beneficial to make the magnetic reading to be in the

same magnitude in all the axes (Bx,By,Bz) as the case for the encoder data. In the current imple-

mentation, the Bz reading is about 8-25 times larger than the Bx and By reading. However, it would

be challenging to achieve similar magnitude of magnetic measurement in normal and tangential di-

rection since for axially magnetized magnets the magnetic flux along the magnetization axis would

generally be much stronger than the tangential components. Thus, one possible way to overcome

this is to introduce more magnetometer and magnet pairs that only measure magnetic flux in nor-
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mal direction.

Shape estimation to predict non-constant curvature caused by multiple external forces could

also be explored. This most likely will require additional sensors. One possible way to address this

is to use denser magnet sensor pairs (at least two pairs) along the length of the module. This will

allow for measurement of multiple slivers of the origami module. Additionally, this scenario could

be re-formulated as prediction of external forces applied to the module. A more elaborate setup is

necessary to provide controllable applications of external forces. Other non-static learning models

such as Recurrent Neural Network (RNN) and Long Short-TermMemory (LSTM) could also be

investigated. Instead of using static data, one could train a model with temporal data of the encoder

and magnetometer.

Lastly, to mitigate the effect of magnetic interference typically present in magnetic based sensing

one could possibly employ an electromagnet instead of permanent magnet to be paired with the

magnetometer. This arrangement will allow for the desired magnetic field to be turned on and off,

followed by measurement of the magnetic interference from surroundings. A more straightforward

solution would be to do shielding using high permeability materials (mumetal, 60 % nickel alloy)

however the shield can still get saturated, although unlikely to happen in real life scenarios.
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5
Other Applications of Origami Continuum

Module

This chapter highlights the potential of the origami modules to be used for robotics research

platform. The two applications discussed are the 3-D origami snake robot and the experimental

study on a transferable object classification by continuum wraps. We envision that the snake robot

could traverse the rubble in the search-and-rescue scenario and the touch based object classification

might be beneficial in a smoke-filled area (due to fire) where a vision system would not work reliably.
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5.1 Origami Snake

Snake robots offer a useful and unique mobility platform for search-and-rescue applications. How-

ever, existing prototypes made of rigid links and joints have restricted flexibility, hampering their

usefulness in highly cluttered, maze-like environments. Moreover, their heavy weight limits their

energy-efficiency and performance in three-dimensional (3-D) tasks. To address these challenges,

the work described in this chapter presents a new approach using cylindrical, origami continuum

modules driven by internal cables and electric motors, as well as a local feedback control system on

each module. Thus, we can distribute actuation, sensing, and control for highly scalable soft robotic

continuum origami systems. Using this approach, we develop a 3-D origami robotic snake which is

able to locomote using lateral undulation and sidewinding gaits similar to those used by biological

snakes. The proposed snake robot is a continuously deformable, light-weight, modular, and low

cost robotic systemmade of a folded thin plastic body. We detail the design, fabrication, and control

of this 3-D origami robotic snake prototype, focusing on the analysis of locomotion parameters for

each gait. We experimentally search for the optimal parameters for both types of locomotion, with

maximum speeds characterized as 40.5 mm/s (0.1 body-lengths per second) for lateral undulation

and 35 mm/s (0.09 body-lengths per second) for sidewinding locomotion.

A range of snake robots have been developed using traditional robotic kinematics comprising

rigid links and discrete joints. Wright et al. developed a modular snake robot made of servo motors

The material presented in this chapter is adopted from the following self-authored publications:
M. Luo, R. Yan, Z. Wan, Y. Qin, J. Santoso, E. H. Skorina, C. D. Onal, Orisnake: Design, fabrication, and
experimental analysis of a 3-d origami snake robot. IEEE Robotics and Automation Letters 3, 1993–1999
(2018).96
H.Mao, J. Santoso, C. Onal, J. Xiao, in International Symposium on Experimental Robotics (ISER) 2018
(2018).97
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mounted in series, capable of climbing up the inside of a pipe98. Crespi et al. developed a larger,

more complex snake robot with DCmotors and detachable wheels capable of locomotion on land

and in water99. Snake robots can use different methods of locomotion, including most frequently

serpentine locomotion (or lateral undulation) and sidewinding locomotion100,101,102,103.

Rigid robotic snakes, though capable of snake-like motion104,105, suffer from a number of prob-

lems. Since rigid snakes only possess discrete joints, they can only emulate the smooth continuum

body motions of biological snakes by moving many small links simultaneously. This may reduce the

effectiveness of their locomotion, increase energy consumption and control complexity, and make it

difficult to access unpredictable and highly-constrained environments.

To address this problem, prior work focused on developing soft pressure-operated robotic snakes106,107.

These soft robotic snakes use pneumatic pressure to actuate silicone rubber segments that make up

the body of the snake, resulting in a constant-curvature deformation along the length of each seg-

ment. This results in a flexible, safe, and realistic motion, effectively mimicking the gait of a biologi-

cal snake. Unfortunately, soft pneumatic actuators also have disadvantages. They can be inefficient,

constantly venting their motive pressure to the environment. In addition, the compressors required

to generate the input pressure used in pneumatic actuators tend to be heavy and bulky, reducing the

effectiveness of this type of actuation for autonomous mobile robotic applications.

In this chapter, we introduce a self-contained, light-weight, low cost and flexible origami robotic

snake (OriSnake). OriSnake is constructed of origami modules that resemble bellows and actuated

via cables connected to electric motors. Thus, we combine the flexibility of soft robotics and the

portability and efficiency of traditional electrical actuation.

5.1.1 Experimental

The OriSnake shown in Figure 5.1 consists of 4 origami modules connected in series and a master

controller board located at its head. The passive wheels provide anisotropic friction allowing the
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Figure 5.1: (a) The origami snake (OriSnake) robot constructed using 4 origami modules connected in series. Front view
of the snake robot (b) in rendered in CAD software and (c) actual.

robot to produce motion in a particular direction (along the body length). A simple but effective

suspension system was incorporated into the robot design to allow for constant contact between the

wheels and the surface while traversing (Figure 5.1(b-c)).

Two typical snake gaits are investigated: lateral undulation (serpentine) and sidewinding. The

lateral undulation gait achieves motion through generation of traveling wave while the sidewinding

gait requires the body of the robot to be lifted off the ground. The undulation gait can be described

with the function below,
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κi(t) =
β
s
sin(γt+ iα) (5.1)

where κi(t) denotes the instantaneous curvature of ith module, β is the maximum bending angle,

γ is the bending rate, s is the module’s arc length, and α is the offset angle. Similarly, the sidewinding

gait can be formulated as,

κi(t) =
β
s = constant

θi(t) = ωt+ αi
(5.2)

where φi(t) is the instantaneous bending direction of i
th module, and ω is the angular velocity of

the bending plane orientation. For the sidewinding gait we define the offset angle α to be π/2.

5.1.2 Results

Figure 5.2(a-d) shows the results for the optimal parameter search of the serpentine gait while the

snapshot of the robot motion is shown in Figure 5.2(e). The optimal parameters found are 45 de-

grees for the maximum bending angle (β) and 50 degrees for the offset angle (α). Furthermore, the

robot is capable of traveling with 40.5 mm/s (0.1 body-lengths per second).

Similarly, Figure 5.3 shows the results for the sidewinding gait. The fastest traveling speed of

35 mm/s (0.09 body-lengths per second) is obtained with 45 degree bending angle and angular

velocity of 276 degree/s. Although the sidewinding gait produces a slightly slower traveling speed,

it will be more robust against uneven terrain compared to the serpentine gait as the robot’s body is

lifted above the ground with this particular gait.
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Figure 5.2: Optimal parameter search by varying the value of offset angle α for two bending angles (a) 60 degrees and
(b) 45 degrees. Shown are the Center of Mass (CoM) trajectory of the snake robot during serpentine locomotion. Trajec‐
tories are rotated for more concise plotting, with the initial position of the snake shown with red lines. The color bar on
the right shows the time of each data point, with the final time shown for each trajectory. (c) Further search with a finer
increment in α. (d) The mean and standard deviation of the velocity of the center of mass of the OriSnake with β = 45
degrees for varying offset angles α on the horizontal axis. The results were calculated using 3 separate experiments. (e)
Top view snapshots of lateral undulation gait over 9 seconds.

Figure 5.3: (a) The Center of Mass (CoM) trajectory of the snake robot during sidewinding locomotion with various
bending angle magnitude (β) and angular velocity (ω). Trajectories are rotated to improve the visualization, with the
initial pose of the snake shown as a red line. The color bar on the right shows the time of the data point, with the final
time shown for each trajectory. (b) Top view snapshots of sidewinding gait over 18 seconds.
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5.1.3 Conclusion and FutureWork

This section introduces the WPI Origami Robotic Snake (WPI OriSnake) that is capable of exe-

cuting both lateral undulation (serpentine) and sidewinding locomotion modes. This robot is a

low-cost, light-weight, modular system, where each module has its own slave controller, distributed

sensing, and actuation. It was found that a maximum velocity of 40 mm/s (0.1 body-lengths per sec-

ond) and a maximum velocity of 35 mm/s (0.09 body-lengths per second) could be achieved during

serpentine and sidewinding locomotion respectively.

The OriSnake used an external power supply to drive the motors. This was mainly done for the

sake of simplicity to control the maximum current during testing. The use of on-board batteries

is unlikely to negatively impact the performance of the snake. In fact, during initial testing, we

found that the snake body was too light. This is partially caused by the high torsional stiffness of

the origami modules. When a module has a slight rotation around its axis or at its end-plates due

to imperfections in fabrication, the torsional stiffness of the module would be too high for the next

module to fully make contact with the ground. This was particularly a factor in serpentine locomo-

tion, and the additional weight of on-board batteries might improve the robot’s performance.

For future work, the mechanical design of this snake robot can be optimized. The velocity of the

current snake robot is slow compared to other snake robots. One cause of this is that the current

gear motors we used are able to generate large torques, but at a much slower speed. Additional work

can be done to choose a motor that has the speed and torque capabilities to make the OriSnake

faster while still having a small enough profile to fit inside the modules. This can be combined with

a replacement for the passive wheels to bring the OriSnake closer to studies in real world search-and-

rescue.

The unique combination of the low-cost and light-weight origami-inspired design and man-

ufacturing with soft robotic locomotion offers advantages in applications that require robots to
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go through tight passages and navigate cluttered environments autonomously without tethers.

Since the OriSnake can lift its modules off the ground, operation in 3-D environments is achiev-

able. Further investigation on these conditions and the efficacy of the two gaits on rough terrain is

planned for future study. For example, the serpentine gait can go faster in some environments but

the sidewinding gait is likely to be more versatile. Future work will also include motion planning

and decision making algorithms, which will need to take these and other complex factors into ac-

count.

5.2 Learning TouchManipulation

In order to broaden the real-world application of robotics, the importance of advancing the capa-

bility of robotic manipulation is unquestionable. Most of the existing research in robotic manip-

ulation assumes that the target object is known or visible, or can be made visible by adding a light

source. However, in many real-world scenarios, such as underwater or in a smoke-filled room (in

a building on fire), a target object may not be made visible. Therefore, it is necessary to investigate

robotic manipulation based on other sensing modalities.

Tactile or force sensing can be very useful in providing more information about surrounding ob-

jects. Indeed, there is recent research on using tactile sensing for object recognition108, exploration

and manipulation109,110,111, and shape estimation112,113. Touch sensors are usually mounted on the

finger tips of the grippers, which are used to touch a target object to collect contact points. Object

recognition is achieved solely based on the collected contact points108 or in combination with visual

perception114. Such touch-based perception is especially useful for perceiving transparent objects,

which can be missed by visual sensing.

Continuummanipulators are more flexible for manipulating objects of a wide range of shapes

and sizes in cluttered environments due to their compliant and soft nature. In particular, a contin-
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uummanipulator can get into a small hole to fetch an object that a conventional, articulated manip-

ulator cannot115. Since it is often dark in such a hole and difficult to bring in an extra light source,

touch-based continuummanipulation is most desirable. If the target object is not visible, then ob-

ject perception (i.e., classification and/or recognition) is also needed from touch-based continuum

manipulation.

In a recent work116, the authors introduced a shape-based approach for object classification and

recognition through continuummanipulation. The main idea is to use the continuum robot as a

tool to indirectly ”measure” the object shape. That is, the shape of a continuum arm during whole-

arm wraps of a target object, which can be transparent (and thus not visible), is used to indirectly

characterize the shape of the object and this information is used for classification and recognition.

For an object of any shape, a continuum wrap is generated automatically by a touch-based approach.

However, the work is tested only in simulation with the assumption that the continuum arm is cov-

ered by tactile sensors. In reality, existing continuummanipulators are often not equipped with tac-

tile sensors. One difficulty is that the body of the robot is deformable. A kinematics-based contact

detection and localization approach for continuum robots is presented by Bajo et al. for which an

external tracking system is required117, but this may not always be available in real-world scenarios.

In this work, we study touch-based identification of object categories using a new form of contin-

uummanipulator consisting of origami-based modules43 and tactile sensors attached at each section.

Using these new manipulators with sparse tactile sensing, we aim to achieve touch-based wrapping

of objects and experimentally validate the following conjecture: the shape-based classifier introduced

byMao et al. and trained in simulation can be readily transferred to classifying real objects with real

touch-based continuummanipulation116. We envision the robot to be used in a search-and-rescue

scenario where it could be exposed to low-light environment hence could benefit from the touch-

based manipulation.
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5.2.1 Technical Approach

We next explain the manipulators and sensors used for this study, the touch-based motion planning

strategy for generating continuum wraps, and the classification method of unknown objects.

5.2.2 Manipulators and Sensors

The continuummanipulators used for this study consist of multiple origami continuummodules

connected in series. Each continuummodule contains a foldable origami body, three brushed DC

micro-motors, and a controller board that offers on-board sensory measurements, feedback control,

and module-to-module communication. The foldable body is made out of Polyethylene Terephtha-

late (PET) sheets and constructed based on the Yoshimura crease pattern. This unique tubular struc-

ture with a diameter of 7 cm is capable of bending in two directions and extending/retracting, while

maintaining its structure and resisting torsion. The foldable structure is connected to an acrylic

plate on the top and to the PCB on the bottom where the motors are secured. Three nylon cables se-

cured to the motor shafts and spanning the length of the structure along the edges are used to drive

the segment. Each motor is equipped with a magnetic encoder for position control.

We built two continuummanipulators for this study. Figure 5.4(a) shows the 3-section manipu-

lator used in the experiments with planar wraps, and each section has an active white module with

motors on it and a passive green foldable body to expand the robot workspace. Improved from the

3-section manipulator, Figure 5.4(b) shows the 4-section manipulator used for generating spatial

wraps benefiting to its more compact and light-weight modules and larger touch sensor contact

areas.

Each section is characterized using three parameters (s, κ, φ), where s is the section length, κ is the

curvature, and φ is the orientation angle43,115. Using the inverse kinematics of a continuum section

discussed in my earlier work43, we can then find the required cable lengths (l1, l2, l3), that will shape

92



Figure 5.4: An object (a transparent water bottle) was placed near the base of arms for manipulation: (a) a touch sensor
was mounted in the middle of each origami module in a 3‐section arm, (b) a touch sensor was mounted at the distal
end of each module in a 4‐section arm. The diameter of the continuum section is 7 cm. (c) A list of objects used in the
experiments.

the module into the desired configuration (sd, θd,φd). The cable lengths are converted into encoder

positions, which are then sent to the low-level controller as reference signals.

We constructed the touch sensors acting as bumper switches using two copper sheets adhered

onto a parallel plate structure made out of the same material used for the origami collapsible body.

One copper sheet is connected to the control board’s digital I/O pin while the other is connected to

ground reference. When the copper sheets touch each other due to depression of the structure, an

electrical circuit is completed hence signaling a touch on the continuum section. For each contin-

uum section we place the touch sensor at the end of each module and sandwiched between consecu-

tive modules as shown in Figure 5.4.
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5.2.3 Touch-based ContinuumWrapping

A general touch-based motion planning strategy is introduced byMao et al. for a continuumma-

nipulator to progressively generate wraps around an object under the guidance of the contacts made

along the way without knowing the object model116 . Starting from the initial configuration, the

robot motion alternates between the enclosing motion step to make contacts with the object, and

the advancing motion step to move forward towards wrapping around the object, until a wrap is

formed or no further motion is feasible due to the physical limits of the manipulator. Such con-

tinuum wraps can be efficiently generated within hundreds of milliseconds (time of planning and

collision checking combined) in simulation116.

To achieve an advancing motion step, contact localization and estimation of the tangential and

normal directions of the local contact patches are required116. We relaxed this requirement through

extrapolating the robot section endpoints based on their local frames. Therefore, our planner only

needs to know whether each manipulator section is in contact or not to plan the next move, which

makes it more effective to guide the manipulator hardware to achieve touch-based continuum

wraps.

5.2.4 Classification of UnknownObjects

As introduced earlier, this study aims to experimentally validate a shape-based classifier using con-

tinuum wraps116. The shape of the continuum robot wrapping around an object is described by a

chord histogram descriptor, which approximates the robot shape using many 3-D chords and sta-

tistically captures its shape based on the chord parameters. We first trained a linear Support Vector

Machine (SVM) classifier in simulation using wraps generated around the simulated objects and

then applied the trained model to classify the real-world objects using real-world wraps. The objects

in simulation were scaled to roughly match the dimensions of the real-world objects.
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5.2.5 Experimental Results with PlanarWraps

In our experiments with planar wraps, we used the 3-section manipulator as shown in Figure 5.4(a).

The robot manipulator is initially set at a straight-line configuration with full contraction, and the

testing object is placed near the arm base. The minimum and maximum limits of the arc parameters

for each section are as follow,

s ∈ [0.085, 0.145](m), κ ∈ [−10.69, 10.69]m−1, and φ ∈ [−π, π].

A linear SVM classifier is trained in simulation using wraps from 10 water bottles, 10 boxes, and

6 teapots. For each object one wrap was generated. Figure 5.5 shows a few planar continuum wraps

around the objects in simulation. We next conducted classification of three different real-world

objects: a teapot, a water bottle, and a card box, through real-world continuum wraps.

Figure 5.5: A few examples of the planar continuum wraps generated on different objects in simulation. The simulated
arm has 3 sections and each section is colored in white for the first half and in green for the second half.

Figure 5.6 shows a few motion snapshots of the robot wrapping the real-world objects. Note that

the goal of the continuum wraps is to encode the shape of an unknown object into the shape of the

manipulator, as opposed to achieving tight grasps of objects with knownmodels115. Therefore, the

wraps do not need to be enclosing.

The final robot configurations commanded by the planner were used for classification. Table

5.1 summarizes object and wrap information and the classification results. Note that the classifier

which learned solely from simulation is already effective in classifying the real-world objects, as the
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Figure 5.6: The motion snapshots of the continuum wraps generated on the real objects. The rightmost sub‐figure in
each row shows the final wrapping configuration.

probabilities of correct classification are more than two times higher than that of a random guess

(about 0.33). However, the box was misclassified to be a bottle because the contact on section 1,

which was closest to the base, was missed by the sensor, and therefore the planner kept commanding

section 1 to bend more while it was actually stopped by the contact. Since the curvature of section 1

is a distinctive feature for classification, as shown in Figure 5.6, the classifier with the inaccurate data

of a larger curvature resulted in the misclassification.

Table 5.1: Object dimension, number of intermediate configurations to generate the wraps, SVM prediction and its
probability using 1 planar wrap for each object.

Object dimension(cm) # of configurations SVM Prediction Probability
bottle 8× 8× 24 59 bottle 0.81
box 27× 16× 26 61 bottle 0.83

teapot 24× 18× 21 42 teapot 0.71
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5.2.6 Experimental Results with SpatialWraps

We use the 4-section robot arm (Figure 5.4(b)) to conduct spatial continuum wraps around the ob-

jects to collect spatial shape information. The arm sections of this robot are more compact (rather

than having two modules connected as one robot section) and light-weight, which makes it more

suitable for spatial wraps. It also overcame the problems of missed contacts with increased contact

areas of the touch sensors. Different wraps covering different areas on the objects were conducted

to collect object spatial shape information. The 3-D chords generated from different wraps are ac-

cumulated into one histogram as an overall representation of the object shape. We next explain how

the robot arm is lifted to conduct spatial wraps and present the object classification results.

5.2.7 Robot Arm Lifting

The arm is lifted by keeping the first module of the robot at a certain configuration during the exper-

iment and then changed when switching to other wrapping planes (see Figure 5.8(b) for examples).

The benefit of having this additional module is that the other modules (section 2, 3 and 4) can be

fully used for generating the wraps, and they only need to undergo less strain and stress when wrap-

ping around the objects. Alternatively, the modules could be mounted vertically to minimize the

effect of gravity. However, this configuration is not always possible in a real life scenario, hence we

decided to proceed with the former.
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Figure 5.7: The spatial wraps in simulation for different object types: (a) teapots, (b) bottles, and (c) boxes. Each row in
each subfigure is the three wraps around the same object. The simulated arm has 3 sections and each section is colored
in white for the first half and in green for the second half.

5.2.8 Classification Results

We trained a linear SVM classifier using the same set of training objects used earlier, and the shape

of each object was captured using 3 wraps. Figure 5.7 shows the wraps around the training objects

generated in simulation. Figure 5.8 shows examples of such planar and spatial wraps around the

real world objects. For testing dataset, we considered 3 object categories and 3 objects from each

category (Figure 5.4(c)).

Figure 5.8 shows the motion process of the continuum wraps. As mentioned earlier, such wraps

are the result of local motion generation, and they are only used to encode the object shape onto

the robot arm shape. Therefore, some (for instance the wraps around the boxes) may only locally

conform to the object shape and achieve partial wrapping of the object.

We noticed that the robot final wrapping configurations deviate from the robot motion com-

mands sent by the motion planner (major cause for the misclassification of the box in planar case.

There are two main reasons. First, our robot arms currently do not have the proprioceptive sensors

to achieve precise closed-loop control. Second, some contacts may be missed by the current sparse
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touch sensing on our robot arms. Therefore, in order to more precisely identify the final robot

shape, we used an external vision tracking system to identify the robot final configuration when

Figure 5.8: The motion snapshots of (a) planar and (b) spatial continuum wraps around the bottle, where the top and
bottom rows show the motion of the same wrap from two view angles respectively. (c) Final configurations for the
remaining objects with planar wraps. (d) Spatial wrap final configurations.
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the wrapping process is terminated. This wrapping configuration is next used for generating the 3-D

chords and conducting the final object category classification.

Table 5.2: Object dimension, average number of intermediate configurations to generate one wrap, SVM prediction and
its probability using 3 spatial wraps for each object.

Object dimension(cm) avg. # of config. SVM Prediction Probability
bottle1 8× 8× 24 45 bottle 0.52
bottle2 9× 9× 21 43 teapot 0.56
bottle3 8× 8× 21 40 bottle 0.51
box1 27× 16× 26 12 box 0.74
box2 25× 21× 17 10 box 0.71
box3 27× 10× 18 15 box 0.78

teapot1 24× 18× 21 36 teapot 0.46
teapot2 21× 15× 21 40 teapot 0.51
teapot3 22× 16× 16 38 bottle 0.51

Table 5.2 summarizes the objects used, the average number of robot configurations to generate

the wraps, and the SVM prediction results. Overall, the classifier was able to correctly recognize 2

bottles, 3 boxes, and 2 teapots. The boxes are easier to be correctly identified since the robot arm

conforms to the side surfaces of the boxes and therefore has distinctive straight sections in contact.

The wraps of the bottles and the teapots typically have more curved robot sections but differ in

lengths due to their dimensions. The confusion of classifying the bottles and the teapots is because

sometimes the handles of the teapots (more distinctive features) are not captured. This can be im-

proved by using longer robot sections and more dense touch sensing.

5.2.9 Experimental Insights

Our results have demonstrated that the shape-based classifier trained solely from simulation is able

to generalize to real-world objects. This confirms our two key hypotheses. First, because object clas-

100



sification is based on the shapes of the continuum arm wrapping around the objects and not the

shapes of the objects directly, the classifier has the advantage of avoiding direct sensing and per-

ception of the shape of an unknown target object as well as the associated limitations (such as low

object visibility) and all the sensing uncertainties involved that can negatively affect classification

accuracy. Second, the continuum wraps generated on objects in the same category have similar

shapes, which are captured by the intrinsic parameters of the continuum arm, no matter if the ob-

jects wrapped are virtual or real.

Since conducting many real-world continuum wraps would be time-consuming, it is significant

that the classifier trained purely in simulation showed considerable effectiveness in classifying real

objects. This could make classifier training more efficient and feasible for classifying a large number

of categories of real objects from touch-based continuum wrapping.

5.2.10 Future Improvement

The overall system can be improved in multiple ways for better results and robustness. First, soft

modules with longer length and more dense touch sensing can help better capture the unique fea-

tures of the object shapes, for instance, the handles of the teapots. Moreover, more dense touch

sensing can also help reduce the cases where the motion planner kept curving the robot sections

while the actual contacts are blocking the robot motion. Second, more sophisticated gravity com-

pensation should be considered in order to better lift the robot arm and form spatial wraps around

different areas on the objects. Third, since the final robot configuration is the result of both desired

motion commands and the contacts with the object, the final shape of the robot can be better iden-

tified by equipping robots with proprioceptive sensors and feedback control rather than relying on

an external tracking system. The manipulators we built for this study are for object perception pur-

poses and hence have limited payloads. Once the unknown objects are recognized via touch wraps,

force-closure continuum grasps can be generated for further manipulation of the objects using the
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algorithms in115. We would also like to enable handling heavy objects by further improving the

robot payloads.
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6
Conclusion and Future Research Direction

A complete suite of a continuum robotic platform is presented in this dissertation. The complete

system consists of a novel actuator, sensing methodology, and motion planning algorithms. The

proposed continuummodule utilizes a compliant origami structure and is capable of resisting a sig-

nificant torsional load. The electrically driven actuator provides an advantage in a specific domain

compared to pneumatic driven actuators e.g. outer space application due to the limited amount of

available air. Furthermore, a more deployable system can be achieved through the use of batteries as

the power source. The single module’s performance is first evaluated before it is implemented in a

multi-segment manipulator. Through a comparison with the state of the art for continuum robots

listed in Table 6.1 we claim that our origami continuummodule possesses both high compression

ratio and torsional stiffness while also being light-weight (See Appendix A.1 for the more complete
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Table 6.1: List of the current state of the art continuum robots. Act. column indicates the actuation method: Pneumatic
(P), Tendon (T), Hybrid (H), Vacuum (V). The weight information is approximately calculated when not directly provided
by the research papers and only includes the bending/compliant parts. Some loading capability information is missing
(N/A) and highly dependent on the actuator specifications e.g. motor rated torque. Arch. column indicates the robot ac‐
tuation architecture: centralized (cent.) vs modularized (modular.). Ext. column indicates the robot extensibility, missing
information means that the robot is inextensible.

Literature Act. Wgt. Load. Max. bend. Arch. Ext. Tor. stiff.
(g) cap. (N) (deg) (%) (Nm/rad)

Jones et al. (2005) H 94.4 N/A 180 Cent. 246.2 N/A
McMahan et al. (2006) P 1034.9 80 90-180 Cent. 60-75 N/A
Srinivas et al. (2007) H 231.2 N/A 227.7 Cent. 34 N/A
Mahl et al. (2014) P 1250 4.9 N/A Cent. 46.7 N/A
Marchese et al. (2015) P 600 0.75 40 Cent. - N/A
Zhang et al. (2016) T 5.9 N/A > 180 Cent. 100 N/A
Qi et al. (2016) T 10 N/A 160 Cent. 43 0.37
Dong et al. (2016) T 62 4.4 90 Cent. - 48.55
Jiang et al. (2016) P 1500 2.8 30 Cent. 64.5 N/A
Robertson et al. (2017) V 11.1 0.9 27.3 Modular. - N/A
Jeong et al. (2018) T 358.3 11.1 185 Cent. 60 N/A
Our approach T 48 4.9 95.5 Modular. 125 25.67

table). Although the work by Dong et al. possesses much higher torsional stiffness, it is not extensi-

ble in contrast to the work presented in this work. Furthermore, the actuation system at the base is

significantly larger than its cylindrical compliant arm. Note that, some information regarding the

actuator weight of the other continuum robots is missing thus it is possible for them to be signifi-

cantly heavier than our continuum robot (135 gram for each module).

We developed and implemented an optimization-based inverse kinematics solver to achieve

smoothness-preserving motions of a multi-segment continuummanipulator. This allows for similar

solving time and tracking performance compared to the commonly used gradient descent method,

without the need for fine-tuning the damping coefficient. Furthermore, we achieved a task-space

control of the manipulator using a kinematic model and further reduced the error by introducing

sensor feedback. Additionally, a heuristic, grow-to-shape algorithm is proposed to allow for con-

tinuum robot navigation in a constrained environment. Additionally, the robot’s capabilities in
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various applications including pick and place, search and rescue, and robotic painting, are show-

casing this work’s potential for field deployment and collaborative research. Lastly, we present a

preliminary evaluation of an embedded proprioceptive sensor for the robot.

Additional work is required before the system can be reliably deployed. For instance, the sensor

model requires integration into the controller board to achieve closed-loop control independently

of an external sensing architecture. Dynamic control would be the next step in achieving predictable

robot behavior. This has not been the focus of my dissertation work because the robot is not yet

capable of direct torque and force control. The use of a gearbox and a brushed motor for actua-

tion makes it difficult to achieve a clean and reliable measurement of motor current. A brushless

motor would be better for this purpose but it requires more complex circuitry and control signals.

Nevertheless, we have shown the robot’s capability achieved only with kinematic control. It is also

expected that the addition of a proprioceptive sensor would improve the performance further.

Future research directions could be to explore different morphology of the origami structure to

possibly achieve optimal actuator operation e.g. investigating the effect of increasing the number of

edges to approximate the cylindrical shape of the actuator. A tapered version of the origami struc-

ture, which more closely resembles octopus arms or an elephant trunk, could also be explored. The

tapered structure would likely require a non-constant curvature model even on the absence of an

external load. Moreover, the origami module’s compliant behavior under compression could be con-

sidered as a double-edged sword. On the one hand, the inherent compliance allows for constantly

safe interaction between the robot and its environment; on the other hand, the compliance also

restricts manipulation tasks that require pushing action from the robot. A more robust solution

would allow for controllable stiffness. Depending on the intended applications, a solution can be

devised so that the robot can be either inherently compliant or stiff when activated and vice versa

when not actuated. A possible solution is to incorporate a locking or jamming mechanism into the

origami structure to prevent any deformation when not intended. Another possibility is to incor-
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porate stiffness into the actuation method as the current tendon-driven system is only stiff under

tension.

Investigation of the whole-arm grasping capability would also be beneficial as it would provide a

newmethod of manipulation and further validate the effectiveness of torsional stiffness against an

offset load. Assistive bi-manual manipulation research is also of interest in which the continuum

manipulator can be used as a stowable third ”helping” hand to improve productivity and enable

multitasking. Other human-limb augmentations such as a self-balancing tail are worth exploring

as well. To conclude, I believe the research work laid out in this dissertation can be a stepping stone

for further research related to manipulation, safe human-robot collaboration, and numerous bio-

inspired robotic applications.
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A.1 Current state of the art continuum robots with additional parameters
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