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Abstract 

The goal of this project was to predict the effects of electric vehicle proliferation through a typical 

New England 15kV-class feeder.  By means of simulation, it was possible to predict the power flow 

corresponding to different load demands.  The study focused on the higher demand days of the year, and 

was determined that during the hottest summer days the maximum admissible demand became exceeded 

above a critical number of electric vehicles.  In order to accommodate above this critical point, it was 

necessary to consider renewable generation, maximum demand power shifting, and inclusion of battery 

storage.  
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1 Introduction 
 The United States and its’ citizens have a long history with personal automobile use and 

ownership, particularly since 1908 when Henry Ford created the affordable Model T [1]. Ever since the 

advent of affordable automobiles, the United States has developed one of the largest automobile markets 

in the world [2].  

Figure 1 below shows the personal vehicle growth trend compared to the growth in household drivers in 

the United States, showing that the number of personal vehicles has surpassed both the number of 

households and drivers since 1969 [3]. 

 
Figure 1: Proliferation of Vehicles and Households since 1969 [3] 

 

 The vast majority of the vehicles in the United States use petroleum products to fuel and lubricate 

their engines, which contribute to greenhouse emissions that can contribute to global warming and other 

environmental issues [4]. Figure 2 below shows a distribution of total greenhouse gas emissions in the 

United States in 2013.It can be seen that transportation accounts for 27% of greenhouse gas emissions, 

only second to generation emissions of electricity. The types of transportation that account for Figure 2 
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include cars, trucks, trains, planes, and ships, and is estimated that more than 90% of the fuel used to 

power these vehicles comes from petroleum in the form of either gasoline or diesel [4]. 

 
Figure 2: Total U.S. Greenhouse Gas Emissions by Economic Sector in 2013 [4] 

 Figure 2 also shows the percentage of greenhouse emissions gases from electrical energy 

generation to be the largest contributor to total greenhouse gas emissions. It is estimated that of the 31% 

share of greenhouse gas emissions that electrical energy generation produces, over two-thirds of the 

emissions is due to the burning of coal, natural gas, and other fossil fuels [4]. 

 Figure 3 below shows energy consumption with the major forms of energy sources being used on 

the left and the generalized sectors that utilize the energy on the right [5]. As shown in the figure, a 

staggering majority of about 80% of primary energy consumption comes from a fossil fuel source, while 

renewable energy sources and nuclear energy fill most of the remaining 20% of other sources. 

Considering renewable and nuclear sources do not produce greenhouse gases, it can only be concluded 

that using fossil fuels in energy generation is more affordable for the consumer or more economically 

abundant; but how many more years will fossil fuels be a reliable energy source? When should a 

transition to renewable energy sources begin to decrease the United States’ 80% dependence on fossil 

fuels for energy sources? 
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Figure 3: Energy Consumption by Source [5] 

 

 Concerning the modern automobile, work has been done and is currently being done to create a 

reliable vehicle that uses electrical energy as opposed to fossil fuel combustion, and studies show that 

converting the broad spectrum of transportation to electrical energy sources would improve air quality by 

reducing greenhouse gas emissions [6]. There have been several advances leading up to the technology to 

create electric vehicles (EVs), but the largest drawback for customers is the cost of an EV, especially 

when considering buying an EV compared to an economy combustion vehicle [6]. Though EVs may be 

cheaper to own in the long run due to lower fuel and maintenance costs, the price for an electric vehicle is 

not on a head-to-head competitive level with combustion vehicles [6]. It is suspected, however, that the 

price of an electric car will eventually be lower than a combustion vehicle due to advances in battery 

technology [6]. 

 Though switching to EV’s would produce less greenhouse emissions where the cars operate, the 

energy to run the EV’s would most likely come from electric generation plants. Table 1 below shows the 

CO2 emissions in the United States produced by electrical generation, totaling an estimated 2,043 million 

metric tons of CO2 [7]. In comparison, the estimated greenhouse emissions from car fuel (both gasoline 

and diesel fuel) for 2014 was 1,519 metric tons of CO2 [8]. The ratio of the electrical generation 

emissions to the transportation emissions (roughly 1.3:1) corresponds to the primary energy consumption 

in Figure 3 above for the same comparison elements, which suggests that an EV will have the same 
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overall greenhouse emissions effect through a power plant proxy if the energy is supplied by fossil fuel 

electrical generators. 

Table 1: CO2 emissions from U.S. electricity generation by source, 2014 [7] 

Source Million metric tons (CO2) Share of total 

Coal 1,562 76% 

Natural gas 444 22% 

Petroleum 23 1% 

Other3 11 <1% 

Total 2,043 100%  

  

Figure 4 below displays the electrical energy consumption trend for the United States from 1949 

to 2011 [9], and Figure 5 directly below displays this information in kilo-Watt-hours [10]. It can be seen 

that there is a positive overall slope to the line in the figure, concluding that electrical consumption can be 

seen to increase 10,000 Trillion Btu’s approximately every ten to fifteen years. Figure 4 may imply that 

there has been an increasing and constant expansion of electrical distribution systems since about 

1950.According to the figure below, a predictable strain on the electrical distribution systems may be 

extrapolated for the future planning of electrical distribution. 
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Figure 4: U.S. Electricity Use History in Btu [9] 

 
Figure 5: U.S. Electricity Use History in kWh [10] 
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Continuing the thought from Figure 4 and Figure 5, Figure 6 below show four possible paths that 

electrical demand could follow up to 2050 [11].Figure 6 can be seen to imitate Figure 5 until 2010, where 

the projected futures split into four different projected action-result scenarios. The black line labeled 

‘Maintain’ describes no proactive decisions to conserve energy, resulting in the predicted electricity 

demand increase of 0.9%, set from the electricity demand trend from 1950 to 2010; whereas, the green 

line labeled ‘Transform’ describes intense focus on energy efficiency, resulting in an overall drop and 

eventual leveling of electricity demand [11].Though the path to ‘Transform’ looks promising, the 

projection relies on almost total integration of renewable energy sources, such as wind turbines and solar 

panels combined with battery, and further seems to imply that the vast majority of individual property 

owners would assume responsibility to transform with the same intensity as the distribution supplier 

[11].The paths to ‘Mitigate’ and ‘Renew’ are intermediary steps between ‘Maintain’ and ‘Transform’, 

describing smaller changes overall [11].Having taken into account that the actions of individual owners is 

unpredictable, a realistic conclusion to these four paths would be that it is more likely to see an increase in 

electricity demand rather than a decrease, up to the year 2050. 

 
Figure 6: Possible U.S. Electricity Demand Scenarios [11] 
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Figure 7 below displays information about average gasoline prices in the United States in dollars 

per gallon [12], which American consumers use to fuel their vehicles. A measure of great inconsistency 

can be seen in the figure, especially since approximately 2008, where the price increases, decreases, and 

plateaus without pattern. From 1994 to 2005, the average price of gasoline at the pump rose consistently 

and predictably, and overall, from 1995 to 2015, prices can be seen to be climbing overall. Figure 7 at the 

very least infers gasoline to be an increasingly costly and unreliable commodity, therefore eventually 

leading consumers to find an alternative fuel for their vehicles. 

 
Figure 7: History for Gasoline Cost by the Gallon [12] 

 

 Figure 8 below projects the United States population up to 2050, separated by age [13]. The 

projected population shows a relatively steady increase from 2010 to 2050, set at an average annual rate 

of 0.6%, though the increase from 1950 to 2010 is at an average annual rate of 1.1% [13].These estimates 

imply a rising number of vehicles as the population rises. 
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Figure 8: U.S. Population History and Projection [13] 

 

 Figure 9 below displays a cutaway view of the Model S made by Tesla [14], showing the battery 

pack on bottom, the electric motor drive, some suspension, and front bumper frame. Compared to a 

typical internal combustion vehicle, less materials and space are used, resulting in fewer parts. On the 

Model S, the hood space and trunk are storage compartments, demonstrating how much less material is 

needed to operate an electric vehicle. The missing components in Figure 9 are the body, innards, and 

electrical controls, which every car requires. 

 
Figure 9: Tesla Model S Cutaway View [14] 
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Though EV’s are simpler to build contain less parts, the all-electric technology is still being 

developed, resulting in a much higher price compared to internal combustion vehicles. The 2015 Model S 

ranges in price between $70,000 and $138,000 [15], whereas the average new car price in the United 

States is 33,560 [16]. As EV technology develops, prices for EV components will become competitive, 

and could become more cost effective than an internal combustion vehicle. 

 Combining the elements discussed in this section provides evidence to suggest a rapid shift from 

internal combustion vehicles to electric vehicles. Rising cost for petroleum products, rising population, 

and a probable rise in electricity demand implies incremental additional load to the electrical distribution 

system. Likewise, as EV technology progresses, prices drop to surpass competition and eventually 

dominate the personal vehicle market. Some EV models are already in competitive price range; including 

the Chevrolet Volt and the Nissan Leaf, which both have a stock price of around $30,000 [17]. If 

electricity demand continues to rise and EVs add to the electrical distribution load, then there may be 

locations in the United States forced to consider overhauling their existing electricity delivery systems 

and infrastructure. 

1.1 Capstone Project Goals 

 This Senior Design Project is a study of the effect on an electrical distribution system of a 

residential area, from the perspective of the growing popularity of electric cars and the burden of an 

increasing load on the electric grid when the cars are collectively plugged in at a particular time. The 

estimation is that most people come home within a few ‘peak hours’ in the evening, generally around 4pm 

to 6pm, and plug in their electric cars to charge during these hours. During this time, the electrical energy 

draw from the electrical distribution system would spike, potentially causing a recurring blackout 

scenario. 

The goals of this project are listed as follows: 

1. Analyze a modern residential feeders’ electrical energy use and power limits. The outcomes for 

this goal were to choose a feeder and create a working distribution map and graphical charts 

describing the average energy consumed by each residence daily. Then, using an integration method 

to extrapolate information from the data supplied by the feeders’ distribution utility, predict the 

number of electric vehicles in that feeder. Finally, using a scenario that would indicate when the 

majority of the people in the neighborhood would eventually own electric cars, create an electrical 

distribution model and supporting simulations that portray the majority of the feeder charging their 

electric vehicles during peak demand hours. 
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2. Develop a model to approximate the average energy consumption dedicated to EVs. The 

outcomes for this goal were to research and decide an average energy charging value for a few top-

selling EV’s based on an average commute, so that a simulation load may be calculated. 

3. Develop a model for three different EV demand scenarios and their corresponding energy 

needs. The outcomes for this goal were to decide three different proliferation trajectories of electric 

vehicles to account for the different repercussions of different proliferation speeds. The proliferation 

trajectories should model an accelerated pace, a nominal pace, and a lagging pace. 

4. Incorporate the EV energy needs and three demand scenarios to create a model for the feeders’ 

power consumption over the next twenty-five years. The outcomes for this goal were to take the 

data from the first three goals and create realistic models that explain the additional feeder loads and 

possible effects on the feeder distribution system. The total EV integration through proliferation of 

the nominal trajectory should be set to twenty-five years. 

5. Assess the limits of the feeder by extrapolating the feeder model over the next twenty-five years. 

The outcomes for this goal were to address and describe the limits of the feeder model when 

experiencing an accelerated increase in energy demand over the next twenty-five years, by analyzing 

the data from the three proliferation trajectories of EV integration. This analysis should include the 

effects of higher loads on the feeders’ main components. 

6. Provide a utility-controlled solution to the issues that arise in the three EV proliferation 

scenarios, using the feeder model over the next twenty-five years. The outcomes for this goal were 

to create responsible and realistic recommendations for the local utility to deliver the required amount 

of electrical power while mitigating the strain on the electric distribution system. The 

recommendations should include a predicted timeline of necessary action based on the electric 

distribution system limitations. 

1.2 Project Summary 

 This Major Qualifying Project shall study an electrical power distribution system feeder in 

conjunction with an unhindered and predicted EV proliferation. Through data analysis, suggestions and 

conclusions shall be made to allow full distribution power deliver while mitigating the negative effects of 

the additional load from the EV proliferation. As the electric distribution feeder supplies an increasing 

load due to EV proliferation, changes may need to be implemented to improve distribution system 

function and lifespan. Through further analysis and prediction, a suggested timeline to make distribution 

system improvements shall be made. Recommendations and conclusions shall then be made to mitigate 

electric distribution system error over the projected course of the nominal twenty-five-year span.  
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2 Background 

2.1 Electric versus Gasoline Powered Vehicles  

 One of the two major focuses of this project is Electric Vehicles (EVs). Before going into their 

effect on the distribution system, we must define what they are and how they work. As the name implies, 

EVs run on electricity only, compared to gasoline that is used in conventional vehicles that have internal 

combustion engines (ICEs), through the implementation of one or more electric motors, which is powered 

using several rechargeable battery packs. Depending on the size of the batteries these vehicles have 

ranges anywhere up to around 300 miles depending on the EV model that you own. A normal battery 

charge will only take a few hours but charging the entire battery can take the whole night (8 to 10 hours) 

[18] [19]. 

 One of the major differences between Electric and Gasoline Vehicles are the internal components 

and possible required maintenance. Compared to that of a gasoline-power car, which requires many 

components to run, an EV requires considerably fewer internal components to run (charger, battery, 

controller, and motor), as seen in Figure 10 below. Since there are much fewer moving parts in an EV, 

maintenance is less frequent than that of a gasoline powered vehicle meaning the costs are much lower. 

The biggest cost in maintaining an EV is replacing the battery occasionally, as their useful life is limited. 

There has been an effort in recent years to develop new EV batteries that will hopefully not only extend 

the life of the battery pack, but ultimately eliminate the issue of having to replace the battery during the 

life of the vehicle [18].  

 
Figure 10: Vehicle Drive Components [19] 
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2.2 Electric Vehicle Brands  

 In our research we looked at two fully electric cars as well as one plug-in hybrid-electric car for 

comparison. We wanted to see the difference in capabilities and specifications between the vehicles as 

well as their affordability to the public at large. For more detail on these vehicles, see the Appendix 

(Section 8.4, EV Models). 

Table 2: EV/EV-Hybrid Side-by-Side Comparison 

Specifications [20] Tesla Model S – 70D [21] Nissan Leaf [22]  Chevrolet Volt [23]  

MSRP Price  $70,000-$75,000  $29,010-$36,790  $33,995-$38,345  

MPGe (City/Highway)  101/102  126/101  106 combined  

MPG (City/Highway)  N/A  N/A  42 combined  

kWh/100 mi  33 kWh/100 mi  30 kWh/100 mi  31 kWh/100 mi  

Gal/100 mi  N/A  N/A  2.4 gal/100 mi  

Total Range  240 Miles  84 Miles  Electric- 53 miles  

Gas- 420 miles  

Drive  All-Wheel Drive  Front-Wheel Drive  Front-Wheel Drive  

Transmission  Front/Rear: 1-speed direct 

drive  

Front: 1-speed direct 

drive  

Front: 1-speed direct 

drive  

Motor Type:  Front/Rear: induction AC, 257 

hp., 203 lb-ft  

Front: 80 kW 110 

hp.210 lb-ft  

Front: 48 and 87 kW 3-

Phase AC  

Battery  70 kWh microprocessor 

controlled lithium  

24 kWh lithium ion  

Rated at 90 kW (120 

hp.)  

18.4 kWh 300 V lithium-

ion  

Annual Fuel Cost  $650  $600  $600 (including gas)  

Cost to Drive 25 Miles  $1  $0.96  Electric- $1.01  

Gas- $1.11  
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2.3 Electric Vehicle Charging  

2.3.1 Home Chargers 

The following section describes the differences between the home chargers of the three EVs we 

researched, shown in Table 2 above. All of the cost, energy, and time calculations were done using the 

charge time & cost calculator on the Tesla website [24]. 

2.3.1.1 Tesla Model S 

 The Tesla Model S comes standard with a single 10-kilowatt charger that comes with mobile 

connectors for both 110 and 240 Volt outlets as well as public station charging capabilities. Before you 

start using the car, you should have a wall connector or 240 Volt outlet installed in your home. The Tesla 

is capable of charging at your home using any of the following setups. The first uses normal 110 Volt – 

12 Amp outlets that are standard in every home. While the Tesla is capable of using this setup, it is much 

less effective and optimal than the other charging setups. If you were to try and charge the battery from 

empty to full (using the 240 mile range stated in Table 2 above) using this setup, it would take almost 74 

hours (over 3 days) to do so, costing you $12.73 (using the national average energy cost of $0.12), and 

would require 106.1 kWh of energy. Using the 240 Volt - 40 Amp (Single Charger, 40A) setup, the 

charging time drops by over nine times to about 8 hours, costing only $9.50, and only requiring 79.2 kWh 

of energy to charge. The third and final setup uses the installed wall connector and a 20 kW dual charger 

which doubles the input current to 80 amps while maintaining the same 240 Volt input. Using the same 

scenario, the charge time is cut in half from the previous setup to just over 4 hours at about the same cost 

and required energy. Figure 11 below shows a metaphoric example of the difference between single and 

dual charging in that the amount of power is the same but the rate at which the power is delivered is much 

greater (twice as fast) in the dual charging scenario [24]. 
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Figure 11: Single vs. Dual Charging [24] 

 

2.3.1.2 Nissan Leaf  

 Due to its smaller range, 84 miles (about a third of the Tesla), the Nissan Leaf has a much smaller 

on-board charger of 3.6 kW operating at 240 V – 30 A. A full charge takes 8 hours, costing about $3.23, 

and requires about 27 kWh of energy. Optionally there is a 6.6 kW charger, which reduces the charge 

time to 5 hours [20] [24]. 

2.3.1.3 Chevrolet Volt  

 Due to its nature as an electric hybrid, the Volt understandably has a small electric range of 53 

miles, though it can go much further because of its gas engine (which has a range of 420 miles). The Volt 

has a nearly identical charger to that of the Leaf, 3.6 kW, 240 V – 30 A but due to its smaller size, it only 

takes 4.5 hours to fully charge, costing $1.97, and requiring 16.43 kWh of energy [20] [24]. 

2.4 Storage of Energy 

Modern energy storage can be achieved using a multitude of devices and systems that includes 

batteries, capacitors, flywheels, compressed air systems, and pumped hydro. Each of these systems have 

advantages and trade-offs that make them ideal for specific applications [25]. The majority of these 

systems are still experiencing further development and improvement but because of the popularity and 
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normalization of consumer electronics, electrochemical battery technology – specifically lithium ion 

batteries—have experienced the most rapid advancements of any other type. 

Battery storage for grid applications, however, is a technology that is still in its demonstrational 

phase; while large batteries that serve the power grid do exist they are mainly installed and operated to 

prove that the technology is feasible [26]. As such, grid battery storage systems are not commercially sold 

on the whole, though a number of companies have either just begun to or will soon begin to sell grid 

battery storage systems that use less common or proprietary battery technology, such as Eos Energy 

Storage which has begun marketing a modular and customizable storage system using a proprietary zinc 

hybrid cathode battery [27].  

Lead acid batteries are the oldest and most mature battery technologies still in use today. Due to 

their maturity they are some of the most common and low-cost battery options available. They do, 

however, have multiple disadvantages such as a short life cycle, high maintenance requirements, and a 

low specific energy and power [33]. The most typical applications of lead acid batteries are in starting, 

lighting, and ignition systems such as engine starting, deep cycle batteries to power electronics, and 

stationary batteries for standby emergency power such as emergency floodlights or uninterruptible power 

supplies in switching [26].  

The development of advanced lead acid batteries have enabled the technology for use in power 

grid applications. Advanced lead acid batteries are enhanced with carbon to create an internal capacitor 

within the battery cell to buffer high rates of charge and discharge [28]. This creates a battery with an 

improved life cycle and efficiency that requires minimum modification to existing manufacturing 

processes and techniques. While the capacitor does enable these improvements, it does not address the 

challenges of slow recharge time or small energy and power density.  

The power grid applications of advanced lead acid batteries include angular and voltage stability, 

short and long duration power quality, or combined applications depending on the specific variety of lead 

acid. The majority of batteries that are in use for these applications are in the demonstration phase to 

prove the feasibility of the technology [29]. These batteries are in the commercial phase for use in 

renewable energy regulation and storage, such as for use in storing the energy generated by solar panels 

[30].  

Lithium ion batteries are much less mature technology compared to lead acid batteries. Their high 

energy density, cycling tolerance, and low standing losses make them the primary choice for modern 

consumer electronics [31]. There are several drawbacks to them, however, such as high cost per density, a 

lifetime dependent on the depth of discharge, and unstable and possibly volatile nature when under certain 



  Project AAE AAU6 
 

Page | 16 
 
 

conditions. Lithium ion’s advantage over all other batteries is the fact that because they are used for both 

small consumer electronics such as cell phones and larger electronic systems such as electric cars, battery 

research has been focused on making these batteries smaller, lighter, more energy dense, and less 

expensive in order to produce and sell more batteries at a fraction of the cost in previous years. 

Furthermore, lithium ion batteries come in a variety of chemical compositions that each have applications 

that work more optimally for the chemistry. For example, the lithium titanate and lithium nickel cobalt 

aluminum oxide varieties both have the potential for high-energy and long-lifespan systems, making them 

the more ideal varieties for power grid and renewable energy storage [32].  

Currently all large-sized grid-connected batteries are in the demonstration stage to prove the 

feasibility of such batteries in energy time shifting, load leveling, system reliability, etc. [29]. These 

projects range in size from less than 5kW, 9kWh to over 8MW, 32MWh of power and energy density. 

The applications and power/energy densities of these installations are similar to those we encounter in our 

project problem. Earlier installations have shown validation in these applications for this technology, 

which is promising for the acceptance of lithium-ion batteries to be used in large-scale grid operations as 

the technology develops and the cost decreases. 

 

2.5 Transformer Life 

Transformers are the gateways of the electric distribution system, such that they control the 

voltage levels delivered for practical use. Transformers limit the losses through transmission lines by 

raising the voltage levels and lowering current, making the voltage drop through transmission lines 

negligible while conserving power. Lowering the current through the transmission lines lowers the total 

heat losses in the lines, making the transmission system more efficient. The problem posed by this report 

is such that power consumption will be raised over time due to the proliferation of electric cars, which 

would eventually raise current levels, and thereby raise heat losses in the transformer. According to the 

IEEE standard C57.91-1995, overheated transformers can cause the transformer to last much less time 

due to the breakdown of transformer insulation [33].The standard that explains loading mineral-oil-

immersed transformers is explored in this section. 

As an introduction to Std. C57.91-1995, some of the risks of exceeding transformer loading beyond the 

nameplate rating could be described as the following [33], 

1. Formation of gas inside the transformer as a result of heated components, reducing dielectric 

material strength. 
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2. Loss of transformer life due to aging and deterioration of winding insulation as a function 

temperature, moisture, and oxygen. 

3. Mechanical wear of the transformer due to heat, caused by overcurrent scenarios and including 

conductor expansion and warping and pressure buildup. Warping and pressure can lead to 

component shifting, loss of oil, and rapid failure of the transformer. 

4. Exceeding 105-Celsius degrees (°C), a 65°C rise over 40°C ambient temperature, may cause 

transformer unit to swell, loose oil, and create a faulty and dangerous situation. 

 Insulation life can be used to make a reasonable transformer lifespan prediction. The equations 

below describe transformer aging, based on the Arrhenius reaction rate theory and setting a reference 

temperature of 110°C for the winding hottest spot temperature (ΘH) [33]. 

 

Equation 1: Per Unit Life of transformer insulation [33] 

1 

 

 The per-unit-life equation can be used to summarize the behavior of the degree of polymerization 

of insulation inside the transformer [33]. Figure 12 below is a graphical representation of the per-unit-life 

equation, and can shows what lifespan can be expected if the transformers’ hottest spot is constantly at 

one temperature. Note the per-unit life to be 1.00 at 110°C. 

                                                      
 
1The IEEE standard referenced for this equation provides this exact equation for per unit life. A correction must be made, 
changing 1500 to 15000, as the numbers do not properly calculate otherwise. The discrepancy must be considered a 
typographical error in IEEE Std. C57.91-1995 
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Figure 12: Per Unit Life as a Function of ΘH [33] 

 

 The per-unit-life equation can be used to derive the Aging Acceleration Factor equation (FAA) 

below. The behavior of the FAA can be seen in Figure 13 below, and is representative of the loss of 

transformer life due to insulation polymer breakdown. This is the opposite of the per unit life, and can be 

used to calculate the equivalent aging equation (FEQA) [33]. Since loading varies through time, the FEQA 

may be used to represent averaged aging over a period of time [33]. 

 

Equation 2: Aging Acceleration Factor [33] 

2 

                                                      
 
2For reasons previously explained in the footnote for Equation 1, all values of 1500 must be changed to 15000 for the FAA 
calculation. 
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Figure 13: Aging Acceleration Factor as a Function of ΘH [33] 

 

 Equation 3 below shows the equivalent aging over time, realistically describing how a variable 

load affects aging [33]. The notion that the transformer will encounter the same load for the duration of its 

lifespan would be unrealistic. Equation 4 below similarly describes the total percent loss of per unit life 

over a span of finite time in hours [33]. 

 

Equation 3: Equivalent Aging over Time [33] 
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Equation 4: Percent Loss of Total Life Over t Hours [33] 

 

  

Using the Percent Loss of Life equation, the per-unit loss of life may be calculated for one day by 

simulating one twenty-four hour span.  Due to the typical cyclic behavior of loading, any period of time 

may be used in Equation 4.For the rated hottest-spot temperature of 110 °C, normal life rating would be 

180,000 hours and percent loss of life would be 0.0133% for one day [33]. 

 The lifetime calculation for a transformer using IEEE Std. C57.91-1995 is entirely dependent on 

temperature calculation at the top oil point and the hottest spot point of the transformer to determine 

insulation breakdown, which includes a multitude of precursor parameters over time [33].These 

parameters and the calculation method for this paper are extensive, and a summary of the variables 

required and calculated data have been attached to an appendix of this paper. Figure 14 below 

summarizes the percent loss of life as a function of the hottest spot temperature as a function of time [33]. 

 

 
Figure 14: Summary of Percent Loss of Life Behavior as Function of Hottest Spot Temperature [33] 
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2.5.1 Suggested Transformer Loading 
 Loading limitation for four generalized scenarios may be summarized in the Table 3 below 

[33].The table describes situations that sequentially use less time in their overloading, and thus 

sequentially allowing for higher temperatures when overloading. The idea that the transformer may be 

overloaded takes advantage of the time needed for temperature rise in the winding, affecting the 

temperature of the hottest spot [33].It must be noted that the suggestions in the table below only concern 

hottest spot windings and mineral oil temperatures, and not any other transformer ancillaries or aging 

issues [33]. 

 

Table 3: Suggested Maximum Temperature Limits for the Four Types of Loading [33] 

 

 

 The types of loading above have additional risk considerations associated with them; with the 

exception of Normal Life Expectancy (which is not considered a risk), the other loading types are prone 

to excess free gas inside the transformer, excess internal moisture, and thus at risk for failure due to an 

extenuating circumstance [33].Planned loading beyond nameplate rating would be considered a minor 

calculated risk, and results in lower life expectancy compared to normal loading. Long-time emergency 

loading would be a rare and unplanned load caused by failure of an arbitrary system element, which 

happens from time to time, and is acceptable as long as top oil temperature stays under 110 °C. Short-time 

emergency loading would be considered an extremely rare spike in load that results in the greatest risk 

and hottest spot temperature, thus resulting in the highest risk of the loading types. All loading types may 
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be encountered by a distribution transformer, and the guidelines in the table above must be used with loss 

of life calculations to accurately predict overall transformer life [33]. 

 

2.5.2 Transformer Model 

 This section shall describe the specific transformer data needed to perform load modeling per 

IEEE Std. C57.91-1995.Table 4below shows electrical and physical parameters for the modeled 

transformer. Normal insulation life refers to the standard number of hours if the transformers hottest-spot 

temperature was consistently 110 °C [33].The cooling type helps to define some parameters in 

transformer life equations, and is described in detail in Appendix 7.1 and 7.2.Core/coil weight, 

tank/fittings weight, and volume of oil are needed to determine Parameter C, which describes transformer 

thermal capacity [33].The open circuit voltage in line-neutral, short circuit current, and short circuit 

impedance demonstrate rated values for the transformer. The short circuit impedance (XSC) was 

considered to be purely inductive, while resistance from transformer windings was considered to be 

negligible. 

Table 4: Transformer Model Parameters 

 

 

2.6 Project Loading and Test Area 

 This section shall explain the loading scenario utilized for this project, though the specific 

location will remain confidential. Figure 15 below displays a GIS map with annotations of the sample 

feeder, including five lumped load areas showing the percentage of the total feeder load for each area. 

The percentages of the total load were estimated by counting residences on the GIS map and assuming an 

averaged load per residence. Two substations are also marked on the map by bold squares, as well as the 

main feeder lines marked by bold lines on top of streets. It must be noted that one substation is a few 
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decades older than the other, and was assumed (unless otherwise stated) that the newer substation delivers 

70% of the total load and the older substation delivers 30% of the total load. 

 
Figure 15: Annotated GIS Map of the Sample Feeder 

 

Figure 16 below correlates to the annotated GIS map of the sample feeder. It displays five loads 

representing the five areas on the GIS map, the two substation transformers, distribution lines that 

represent the feeder in length, and a power supply. The PowerWorld model also displays Mega-Volt-

Amperes (MVA), Current (Amps), Voltage (Volts), Megawatts (MW), and Mega-Volt-Amperes-Reactive 

(MVAR) at certain reference points. The model below shall serve as the base model for the analysis in the 

results section, representing the year 2015. 
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Figure 16: PowerWorld Lumped Load Model 3 

 

                                                      
 
3 The key for the PowerWorld symbols in the analysis may be referenced in the Appendix 
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The information provided for this project was limited to MW values, while many physical 

limitations in the distribution system rely on MVA values. The substation transformers, distribution line 

current, and load current rely on MVA; therefor, the assumption was made that the power factor (Pf) 

would generally be around 0.9 to try to simulate our model realistically, and the convenient 

approximation used for Pf was a 30 degree angle resulting in 0.866.The equations below outline the 

derivation of the power calculations for this project, using the power triangle. 

 

 
Figure 17: Power Triangle [34] 

 

Table 5: Power Triangle Equations 

Power Factor (Pf) cos(30°) = .866 

Watts VA cos(30°) 

VARs VA sin(30°) 

VA Watts/cos(30°)  

 

Figure 18 below displays the PowerWorld base model with line names and how the lines are 

connected to the loads. Line E can be seen as two connections in the model, as each connection correlates 

to a different segment in the GIS map. The line sizes were picked from a standard Aluminum Conductor 

Steel-Reinforced (ACSR) chart to accommodate max current through the lines, with a safety factor 

coefficient of 1.5.  The method for picking line sizes involved disconnecting one of the substation 

transformers to simulate a worst-case failure scenario, thus heavily loading the distribution lines on one 



  Project AAE AAU6 
 

Page | 26 
 
 

side.  Table 6 and Table 7 below outline the line information chosen for the base model described in this 

section. 

 
Figure 18: PowerWorld Model with Annotated Line Names 
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Table 6: PowerWorld Distribution Line Information 

 

 

Table 7: ACSR Size Descriptions 

 

 

2.7 Energy Usage and Growth 

 The consumption of and demand for electrical energy in the US has been on a steady increase 

since the industrial revolution. The annual electrical energy in 2014 was 3,863 billion kWh. According to 

the US Energy Information Administration’s Annual Energy Outlook report for 2015, the projected 

increase in electrical demand between 2013 and 2040 will increase by approximately 0.9 percent each 

year. This increase in energy demand would cause currently installed power lines and transformers to 

break down quicker as the limits of their rated power are reached. Because of the scope of our project, 

this demand increase must be considered in conjunction with the introduction of substantial energy 

demand of electric vehicles; our projection must consider both the increase of demand from charging 

electrical vehicles as they are accepted by the general public and the increase of demand. 

 

2.8 Financial Estimates 

2.8.1 Battery Storage 

 The cost of energy storage per kWh is the primary factor when considering the various battery 

storage options. As development in each technology occurs and the battery becomes more commonplace, 
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the overall price of production and retail cost decreases. While lead acid batteries are some of the most 

researched and commonplace batteries available, lithium ion batteries have experienced extremely rapid 

development, especially over the last decade, to where they have surpassed lead acid in energy density per 

cost [31]. The surge in lithium ion research has been fueled by the push to produce battery powered 

consumer electronics and vehicles at a cheaper price so that they can be retailed at a reasonable cost to the 

consumer [34]. The price of lithium ion battery storage for use, specifically for electric vehicles, has 

dropped from an average of $400/kWh in 2014 to an average of $350/kWh. Current projections made in 

2015 predict the cost to reach $150/kWh by 2030, at which lithium ion would be considered to be priced 

for commercialization in a grid storage application [66]. 

 

Figure 19: Estimates of costs of lithium-ion batteries for use in electric vehicles [66] 
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2.8.2 Annual Costs 

The financial burdens brought on by buying and building to improve an electric distribution system have 

an influence on not only how to solve the problem, but when as well. Distribution costs can be expensive 

enough to consider outside investors or multimillion dollar bank loans. Given the scenario that a large 

amount of capital is required to improve an electric distribution system, this section shall outline methods 

for calculating costs. Since the maintenance for the electric distribution system would be intermittent and 

unpredictable, variable costs shall not be considered in the following calculations. 

In the event that the project building requires financing, interest must be paid in addition to the principle 

to pay the lenders for the convenience of borrowed capital. The Equation below describes the Capital 

Recovery Factor (CRF), wherein a large sum of money may be paid back through annual payments over 

the course of an agreed upon number of years, while using one averaged interest rate [35]. There may be 

several loan or investment interest rates, which can be combined into one interest rate to help closely 

approximate an annual fixed payment [35]. 

Equation 5: Capital Recovery Factor [35] 

 

Where, 

 i is the collective interest rate 

n is the time period to pay the principle in years [35]. 

 

The Fixed Charge Rate (FCR) is the total interest due for fixed expenses, which accumulates the 

CRF, fixed operation and maintenance costs (O&M), one-time insurance, and one-time taxes [35].  For 

the purposes of this paper, a chosen FCR of 17% shall be used in Annual Fixed Cost (AFC) calculation. 

The Equation below shows the AFC calculation, where the principle expense is multiplied by the FCR. 

The AFC would be the amount the distribution company would pay annually for the expense of 

construction, and can estimate whether the construction would be affordable [35]. 

Equation 6: Annual Fixed Cost 
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3 Methods 

3.1 Tools and Analysis 

3.1.1 Seasonal Peaks 
 In order to obtain the results that we set out to find, we were provided with a Microsoft Excel 

Workbook with raw hourly energy usage data, in kilowatt-hours (kWh), for each month from one feeder 

over a one-year period, September 2014-August 2015. This provided us with a basis that we could use to 

simulate various scenarios and show the results in an organized fashion (tables, charts, etc.). We 

developed an interactive, editable spreadsheet that made it easier to manipulate the data that we were 

given. As a jumping off point from which all scenarios would be run, we calculated the hourly seasonal 

averages and peaks. Using various calculations and assumptions (which will be discussed below in 

Section 3.2), we were able to different scenarios and create the corresponding demand curve graphs. The 

main scenarios we looked at here for each season were an evenly distributed peak, a peak-off peak 

percentage adjustment, home-work percentage adjustment, and a dual adjustment (both peak-off peak and 

home-work percentage adjustments). The main sheet in the workbook is shown in Figure 20, Figure 21, 

and Figure 22 below. 

 The main sheet works in the following way. Before anything else, the seasonal peak must be 

selected. This can be changed using the drop down menu that appears when the yellow cell that currently 

reads “Summer Max” near the top left of Figure 20 is selected. From there any of the 8 seasonal peaks 

(Summer Max, Winter Min, etc.) can be selected. Selecting any of the peaks automatically updates the 

data in the same column as the drop down menu as well as the seasonal average column (one column to 

the left) based on the chosen seasonal peak. Based on the values of these columns, the values of the 

columns for the different scenarios are populated. The first being the Evenly Distributed Peak column, 

which is based on the raw energy (kWh) data and whether that hour is a peak or off peak hour, shown in 

the “Peak/Off Peak?” column. The total energy added to each hour is equal to the total average kWh over 

the entire year as a percentage of the energy used during peak hours versus off peak energy usage 

(calculations are shown in Section 3.2). These percentages are multiplied by the Total MWh Added and 

then divided by the number of hours during peak and off peak. These final numbers are multiplied by 

1000 to bring the unit to kWh. This final number is added to the peak day number (column 3). 
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Figure 20: Peak kWh Days Worksheet (Part 1) 

 
Figure 21: Peak kWh Days Worksheet (Part 2) 
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Figure 22: Peak kWh Days Worksheet (Part 3) 

 

 The “Peak/Off Peak?” column is also used for the peak-off peak % adjustment column. Using the 

table at the top right, you can adjust the percentage of energy used on peak versus off peak. This uses the 

same math as before but instead of having a static percentage of energy evenly distributed throughout a 

day, you can adjust the percentage to see how that affects the output graph, shown in the top right of 

Figure 22. You can explore how the daily demand curve would look if more energy was used off peak 

instead of on peak, etc. 

 The next scenario is the peak home-work % adjustment, shown in Figure 21 above. This breaks 

down the hours during peak time to when people are most likely at work or at home. Instead of the energy 

being spread out over the entire day (24 hour period), it is only spread out during peak hours (13 hour 

period). Using the second table from the top shown on the right side of Figure 22, the percentage of 

energy that is being used to charge EVs at work (8 AM to 3 PM) versus the energy used at home (3 PM to 

9 PM) can be adjusted. As the same amount of energy (about 38 MWh) is being added but over a much 

smaller time frame, the peak is immense and skyrockets past the theoretical subscription line of this 

feeder. 
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 The final scenario, shown in Figure 21, allows dual adjustment, which combines the two previous 

scenarios, allowing much more control over when energy is used. In this scenario, both the peak-off peak 

percentage as well as the percentage of the peak that is home versus work can be adjustment. This 

adjustment can be made using the bottom table in Figure 22 above. Think of it as a fine tune adjustment. 

 The shading of all of these data columns is a 3-color scale with red being the highest single kWh 

over a 24-hour period, orange being the middle, and green being the lowest. This data from this table is 

shown in a 24-hour demand graph. An example seasonal graph for the Summer Max with every scenario 

active is shown in Figure 23 below. 

 
Figure 23: 24-Hour Electrical Demand 
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3.1.2 Peak Demand 

 In our analysis, we also wanted to look at the peak day of the year to determine how it will be 

affected by the predicted growth rate of energy usage in the United States as well as the growth rate of 

EVs using the diffusion of innovations and the logistic function. In short, diffusion of innovations is a 

theory that attempts to explain how, why, and at what rate new ideas and technology spread throughout 

cultures [36]. The logistic function is one of the equations used to numerically and graphically show the 

diffusions of innovations theory. The basic logistic equation is graphically shown as an “S” curve and is 

expressed by the following equation: 

Equation 7: Basic Logistic Equation 

 

where  

L = the curve’s maximum value 

k = the steepness of the curve 

x0 = the midpoint of the curve.  

We used a modified form of this equation, which is written as follows: 

Equation 8: Modified Logistic Function 

 

where  

XS = the curve’s maximum value 

X0 = the initial value of the curve 

a = the proliferation rate 

t = time in years 

The proliferation rate, a, is defined as: 



  Project AAE AAU6 
 

Page | 35 
 
 

Equation 9: Proliferation Rate 

 

where  

tmid = the midpoint of the curve in years 

XS = the curve’s maximum value 

X0 = the initial value of the curve 

The diffusion rate, or proliferation rate, is the rate at which an idea or innovation is spread.  These 

calculations allowed us to develop our realistic and ideal scenarios, which will be described in more detail 

in Section 4.1. 

As for the growth rate of change of energy usage in the United States, we were able to find that 

through our research that it was projected to be about 0.9% from now until 2040 (25 year period) [11]. 

Using this information, we were able to determine the future electrical growth for our feeder. This gave us 

one of two variables to use for our analysis of future electrical demand. 

 In order to show different possible rates of proliferation for EVs, we chose three evenly spaced 

midpoints along the 25-year period. So therefore, our midpoints (tmid) take place at 6.25, 12.5, and 18.75 

years representing a faster, normal, and slower proliferation rate of EVs, respectively. 

 Combining these aspects we were able to develop new peak demand graphs for the hottest day of 

the year of data we were given (July 20, 2014), where the energy usage reached 6764 kWh during a one-

hour period. The resulting graph is shown in Figure 24 below. The graph shows a linear line just 

depicting the yearly energy growth, while the three other curves represent the normal, faster, and slower 

proliferation rate of EVs expressed in terms of energy usage (MWh). 
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Figure 24: Diffusion of Innovations for EVs plus 0.9% Annual Increase in Energy Usage 

 

When modeling the new effective loads, many realistic conditions had to be established. The first 

of the assumptions are about the charging and discharging information about the solution simulation 

results. Since the batteries can be used constantly throughout the year to level the demand, the realistic 

goal of the battery storage is average the load over 24 hours. Since the critical points are at the peak 

demand, this was the date of interest. When the total energy consumption of the grid is above the 8MW 

Subscription Max or above the 12 MVA Feeder max, the battery will be discharging at a 90% efficiency 

rate. This only occurs when the battery can support the needed demand of the grid to keep under the 

limits. If the batteries cannot support the full demand, they discharge the remaining amount. When the 

consumed Grid power is below 8MW or the total MVA is below 12, the batteries’ power is scaled to meet 

but not exceed the limits. The other assumption for this mode is that the battery is not fully charged. If the 

battery cannot handle the entire excess MW of the grid, it only takes enough to top off. All of this is done 

at 90% efficiency each way, making for a max round-trip efficiency of 81%.  
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3.2 Data Assumptions 

3.2.1 Seasonal Peaks 

 In order to make this spreadsheet happen, we had to determine various assumptions we would be 

using for all of our calculations. These were determined through research and our discussions with the 

sample distribution owner. The following are the assumptions we used for the entirety of our project 

(unless specifically stated otherwise): 

Table 8: Data Assumptions – Seasonal Peaks 

Data Assumptions – Seasonal Peaks 
Average Daily Commute (in Miles): 30 Miles (as of July 2015) 
Average EV kWh/100 Miles: ~32 kWh/100 Miles 
Average Daily Charge (in kWh): 9.6 kWh 
Average Cars per Household: ~2.00 
Number of Households in Test Region: 2000 Homes 
Total Number of Homes: 7500 Homes 
MWh Subscription Total: 30 MWh 
MWh Subscription of Test Region: 8 MWh 
MVA Feeder Maximum: 12 MVA 
Total Energy Added to Grid from EVs: * 38.4 MWh 
Phase Angle (Power Factor): 30 
Peak/Off Peak Hours: ** Peak: 8 AM – 9 PM (13 Hours) 

Off Peak: 9 PM – 8 AM (11 Hours) 
Peak-Off Peak % for Evenly Distributed Load: Peak: ~62% 

Off Peak: ~38% 
Peak Hours (Work/Home): Work: 8 AM – 3 PM (7 Hours) 

Home: 3 PM – 9 PM (6 Hours) 
*Extreme worst-case scenario if everyone in test region has an EV 

**Monday through Friday only excluding holidays; weekends and holidays are always off peak hours 

 

Average Daily Commute (in Miles):  

 The average of 30 miles was determined by finding the median of the percentages shown in Table 

9 below. Since the figure is only for a one-way commute, we took the high end of the range and doubled 

it to get the average round trip daily commute. 
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Table 9: Average American Commute Distance [37] 

 
 

Average EV kWh/100 Miles:  

 This value was determined by taking the average of the three EVs we researched, the Tesla 

Model S (33 kWh/100 mi), Nissan Leaf (30 kWh/100 mi), and Chevrolet Volt (31 kWh/100 mi) and 

rounding up to the nearest whole number. (See Table 2 in Section2.2, Electric Vehicle Brands) 

Average Daily Charge (in kWh):  

 This was determined using the following calculation, using the average EV kWh/100 Miles and 

Average Daily Commute in Miles numbers determined previously: 

32 𝑘𝑘ℎ
100 𝑚𝑚

=
𝑥 𝑘𝑘ℎ
30 𝑚𝑚

→ 𝑥 =
30 𝑚𝑚 ∗ 32 𝑘𝑘ℎ

100 𝑚𝑚
= 9.6 𝑘𝑘ℎ 

Average Cars per Household:  

 The most recent data we were able to find on average vehicles per household was from the end of 

2012, where the number stood at 1.98, or approximately 2.00. According to the article, which cites 

research done by Michael Sivak for the University of Michigan Transportation Research Institute, this 

number was down from 2007, when it stood at 2.07 [38]. 

Number of Households in Test Region, Total Number of Homes, MWh Subscription, and MVA 

Feeder Maximum: 

 All of these numbers were provided by a distribution company, and the test region refers to one 

feeder in the sample data. 
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MWh Subscription of Test Region:  

 This number was determined using the following calculation using the number of households and 

the test region as well as the MWh subscription. This number is theoretical as the feeder is not technically 

limited to this max subscription. But since we are assuming the rest of the town will stay constant in their 

energy usage, it should be viewed as a max so that the town does not come close to going over their max 

subscription usage. 

30 𝑀𝑘ℎ
7500 𝐻𝐻𝑚𝐻𝐻

=
𝑋 𝑀𝑘ℎ

2000 𝐻𝐻𝑚𝐻𝐻
→ 𝑋 =

2000 𝐻𝐻𝑚𝐻𝐻 ∗ 30 𝑀𝑘ℎ
7500 𝐻𝐻𝑚𝐻𝐻

= 8 𝑀𝑘ℎ 

Total Energy Added to Grid from EVs:  

 This number was found by multiplying the average daily charge (in kWh) by the number of 

homes in the test region and the average cars per household and then dividing that by 1000 to move into 

MWh as shown in the calculation below: 

𝑇𝐻𝑇𝑇𝑇 𝑀𝑘ℎ 𝐴𝐴𝐴𝐻𝐴 =
9.6 𝑘𝑘ℎ ∗ 2000 𝐻𝐻𝑚𝐻𝐻 ∗ 2 𝐶𝑇𝐶𝐻 𝑃𝐻𝐶 𝐻𝐻𝐻𝐻𝐻ℎ𝐻𝑇𝐴

1000
= 38.4 𝑀𝑘ℎ 𝑇𝐴𝐴𝐻𝐴 

Phase Angle: 

To replicate the effects of a grid that is under moderate power factor, a phase angle of 30 was 

chosen. This value was found to be realistic and accurate. This was used to approximate the MVAR. 

Peak/Off Peak Hours:  

 The peak/off peak hours that we used in our project are the hours used by National Grid, which 

operates in Massachusetts (as well as many other states). 

Peak-Off Peak % (Evenly Distributed Load):  

 These percentages refer to the amount of power used on peak versus off peak. These values were 

determined using the raw data provided. They were found using the following calculations: 

% 𝐻𝑜 𝑇𝐻𝑇𝑇𝑇 𝑘𝑘ℎ (𝑃𝐻𝑇𝑘) =
𝑇𝐻𝑇𝑇𝑇 𝐴𝐴𝐻𝐶𝑇𝐴𝐻 𝑘𝑘ℎ (𝑃𝐻𝑇𝑘)

�𝑇𝐻𝑇𝑇𝑇 𝐴𝐴𝐻𝐶𝑇𝐴𝐻 𝑘𝑘ℎ (𝑃𝐻𝑇𝑘) + 𝑇𝐻𝑇𝑇𝑇 𝐴𝐴𝐻𝐶𝑇𝐴𝐻 𝑘𝑘ℎ (𝑂𝑜𝑜 𝑃𝐻𝑇𝑘)�

=
161,421

161,421 + 99,631
= 61.83% ≅ 62% 

% 𝐻𝑜 𝑇𝐻𝑇𝑇𝑇 𝑘𝑘ℎ (𝑂𝑜𝑜 𝑃𝐻𝑇𝑘) =
𝑇𝐻𝑇𝑇𝑇 𝐴𝐴𝐻𝐶𝑇𝐴𝐻 𝑘𝑘ℎ (𝑂𝑜𝑜 𝑃𝐻𝑇𝑘)

�𝑇𝐻𝑇𝑇𝑇 𝐴𝐴𝐻𝐶𝑇𝐴𝐻 𝑘𝑘ℎ (𝑃𝐻𝑇𝑘) + 𝑇𝐻𝑇𝑇𝑇 𝐴𝐴𝐻𝐶𝑇𝐴𝐻 𝑘𝑘ℎ (𝑂𝑜𝑜 𝑃𝐻𝑇𝑘)�

=
99,631

161,421 + 99,631
= 38.17% ≅ 38% 
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Peak Hours (Work/Home): 

 Based off our own assumptions as to when most people are likely to be home versus at work 

during peak hours. 

3.2.2 Peak Demand 

Here are the assumptions we made when doing the calculations for the Diffusion of Innovations and 

Logistic Function analysis calculations. 

Table 10: Data Assumptions – Peak Demand 

Data Assumptions – Peak Demand 

Midpoint for Normal EV Proliferation: 12.5 Years 

Midpoint for Faster EV Proliferation: 6.25 Years 

Midpoint for Slower EV Proliferation: 18.75 Years 

Initial Number of EVs (in Feeder): 40 EVs 

Total Number of EVs: * 4000 EVs 

* Extreme worst-case scenario if everyone in test region has an EV 

Midpoints:  

 We based the midpoints of the diffusion of innovations calculations on the 25-year period we 

were given for the growth rate of energy usage in the United States. As a result, it was determined that the 

normal proliferation midpoint would be exactly half of the given period while the faster and slower 

proliferation midpoints would be minus and plus 6.25 years, respectively, evenly spacing them for 

consistency. 

Initial Number of EVs in Feeder: 

 This number is a prediction on our part as to the number of EVs currently in the Feeder area. To 

simplify our calculations we said that the initial number of EVs was about 1% of the total number of EVs, 

or 40 EVs. 

Total Number of EVs:  

 This final value is found by multiplying the number of houses in the test region by the average 

number of cars per household as show below: 

# 𝐻𝑜 𝐸𝐸𝐻 = 2000 𝐻𝐻𝑚𝐻𝐻 ∗ 2 𝐶𝑇𝐶𝐻 𝑃𝐻𝐶 𝐻𝐻𝐻𝐻ℎ𝐻𝑇𝐴 = 4000 𝐸𝐸𝐻 
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4 Results 

4.1 Logistic Function Analysis 

4.1.1 Ideal Scenario 

The following graphs and tables assume an ideal situation where there is no energy growth over 

time (years). By rewriting the logistic function (expressed in Section 3.1.2,Peak Demand) in terms of time 

(t), we were able to determine when the peak energy usage would reach both the Subscription Max (8 

MW) and the Feeder Max (~10.392 MWh) for all three curves, Normal, Faster, and, Slower proliferation 

rate of EVs. For the bottom three graphs, the time when these maxes are reached is shown on the graph 

and in Table 11 at the end of Section 4.1.2. For this scenario, we determined that it would take 

approximately 25% (1000 EVs) of the maximum number of EVs (4000 EVs) to reach the Subscription 

Max and approximately 70% (2800 EVs) to reach the Feeder Max. These graphs express, depending on 

the proliferation of EVs, when utilities would have to start being concerned with EVs and their effect on 

the grid. 

 
Figure 25: Logistic Function Curves – Ideal Scenario 

 



  Project AAE AAU6 
 

Page | 42 
 
 

Figure 25 shows all three curves of the logistic function with a fourth line indication the midpoint 

of the curves. For these calculations, the logistic function was set up as the percentage of max cars over 

time (years), meaning X0 = 1% and XS =100%. As there is no energy growth in this scenario it was 

irrelevant whether the y-axis was number of cars, percentage of max cars, or energy usage. In order to 

simplify the calculations and make further analysis of the data easier, we elected to use the percentage of 

max cars. 

 
Figure 26: Ideal Scenario – Normal Proliferation Curve 

 

This is the scenario when there is normal rate of proliferation in the number of EVs over time 

(years). Figure 26 shows the first curve of the logistic function when the curve hits the midpoint of max 

cars (2000) at 50% (12.5 years) of the total time (25 years) and cars (4000). For this curve, it takes 9.51 

years to reach the Subscription Max and 14.80 years to reach the Feeder Max. 
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Figure 27: Ideal Scenario – Faster Proliferation Curve 

 

This is the scenario when there is faster rate of proliferation in the number of EVs over time 

(years). Figure 27 shows the second curve of the logistic function when the curve hits the midpoint of 

max cars at 25% (6.25 years) of the total time and cars. For this curve, it takes 4.76 years to reach the 

Subscription Max and 7.40 years to reach the Feeder Max. 

 

Figure 28: Ideal Scenario – Slower Proliferation Curve 
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This is the scenario when there is slower rate of proliferation in the number of EVs over time 

(years). Figure 28 shows the third curve of the logistic function when the curve hits the midpoint of max 

cars at 75% (18.75 years) of the total time and cars. For this curve, it takes 14.27 years to reach the 

Subscription Max and 22.21 years to reach the Feeder Max. 

4.1.2 Realistic Scenario 

The following graphs and tables assume a more realistic scenario where there is a yearly 0.9% 

increase in energy usage between 2015 and 2040. Since the logistic function and energy growth are 

independent of each other, we determined that it would be best to use energy usage (MWh) on the y-axis 

as well as the percentage of max EVs as a second y-axis. Because of their independence, we would not be 

able to just use the logistic function to determine the time when the Subscription and Feeder Maxes would 

be reached. Instead we found the most accurate polynomial trend lines that we could for each curve and 

used the equation of that line to closely approximate the time when these maxes would be reached. As 

expected, by including the yearly energy growth both the Subscription and Feeder Maxes were hit quicker 

than they were in the ideal scenario. As shown in the figures below, the subscription max is now hit with 

less than 20% of the max cars and the feeder max is hit just above 50% of the max cars. 

 
Figure 29: Logistic Function Curves – Realistic Scenario 

 

Figure 29 above shows each of the three logistic function curves added with the yearly energy 

growth and a fourth line indicating the midpoint of the curves when 50% of the max cars is reached. 
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Figure 30: Realistic Scenario – Normal Proliferation Curve 

 

For the Normal Curve, shown in Figure 30, it only takes 7.33 years to reach the Subscription Max 

and 12.86 years to reach the Feeder Max. This is compared to the 9.51 and 14.80 years it takes to reach 

the same maxes in the ideal scenario. The trend line function used to determine these values is as follows: 

𝑦 = 2 ∗ 10−9𝑥4 − 0.0012𝑥3 + 0.0471𝑥2 − 0.1429𝑥 + 6.991 

 
Figure 31: Realistic Scenario – Faster Proliferation Curve 
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For the Faster Curve, shown in Figure 31, it only takes 3.93 years to reach the Subscription Max 

and 6.94 years to reach the Feeder Max. This is compared to the 4.76 and 7.40 years it takes to reach the 

same maxes in the ideal scenario. The trend line function used to determine these values is as follows: 

𝑦 = −2 ∗ 10−5𝑥5 + 0.0013𝑥4 − 0.0318𝑥3 + 0.319𝑥2 − 0.5823𝑥 + 7.0016 

 
Figure 32: Realistic Scenario – Slower Proliferation Curve 

 

For the Slower Curve, shown in Figure 32, it only takes 9.94 years to reach the Subscription Max and 

18.66 years to reach the Feeder Max. This is compared to the 14.27 and 22.21 years it takes to reach the 

same maxes in the ideal scenario. The trend line function used to determine these values is as follows: 

y =  0.0084x2  +  0.0343x +  6.8288 
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The differences for when the subscription and feeder maxes are hit in both the ideal and realistic 

scenario is summarized in Table 11below. 

Table 11: Difference between Ideal and Realistic Scenarios 

Curve Scenario Subscription Max (Years) Feeder Max (Years) 

Normal Ideal 9.51 14.8 

 Realistic 7.33 12.86 

 Difference 2.18 1.94 

Faster Ideal 4.76 7.4 

 Realistic 3.93 6.94 

 Difference 0.83 0.46 

Slower Ideal 14.27 22.21 

 Realistic 9.94 18.66 

 Difference 4.33 3.55 

 

4.2 PowerWorld Analysis 

 To gather exact current, voltage, and power data, PowerWorld v19 was used to simulate the 

feeder of interest. To determine the effects of electric cars charging on the demand curve, the entire 

assumption day's demand curve was input into the model as shown in Figure 34. The model breaks up the 

feeder into accurate loads based on geographic major junctions. The base load was increased by adding 

electric car demand as well as the natural increase in demand to be expected. 
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Figure 33: Summer Peak Day – No Proliferation of EVs + No Energy Growth 

 

4.2.1 Subscription Max Simulations 

 The first group of simulations run was performed to predict under what scenarios the feeder 

would hit the current subscription max of 8MW. The first group of simulations ran focused on natural 

electricity growth of 0.9% per year without the addition of electric cars. In Figure 34 below, the 24-hour 

demand of the feeder is shown in 17 years from July 20, 2015. This equates to the peak of summer during 

2032.  
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Figure 34: Subscription Max at 0% Saturation and 17 years 

 

In addition to these year-only simulations, saturation-only simulations were performed to 

highlight the differences in the growth patterns of natural growth and electric cars. Simulations show that 

if the percent of electric cars skyrocketed to 27% in 2015, the feeder would hit its Subscription Max. This 

equals about 1080 electric cars. This simulation is shown below in Figure 35.  
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Figure 35: Subscription Max at 27% Saturation and 0 Years 

 

The next group of simulations focuses on the Subscription Max estimates given by the Logistic 

Function analysis in the previous section. The first period that is examined is the fast proliferation curve. 

This predicts that the subscription max will be hit in 3.93 or approximately 4 years from 2015. For this 

limit to be hit in this short of a timeframe, the car saturation must hit 20%. This is slightly faster than the 

15% predicted. The graph of this simulation is shown below in Figure 36. Comparing Figure 36 to the 

previous 0% saturation simulation shows the effect of adding electric cars to the grid versus natural 

growth. 
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Figure 36: Subscription Max at 20% Saturation and 4 Years 

 

The next Subscription Max to examine was the Logistic function representing slow adoption rates 

for electric cars. This was projected to take 9.94 years or approximately 10 years. Simulations were run to 

determine the percent of saturation required to hit the Subscription Max in 10 years. The graph for the 

resulting year is shown below in Figure 37. Simulations determined it would require a saturation rate of 

10% to hit this limit in ten years. This follows the saturation rate predicted by the slow proliferation path.  
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Figure 37: Subscription Max at 10% Saturation and 10 Years 

 

The last Subscription Max simulation ran was to confirm the normal proliferation pattern. It was 

expected to take 7.33 years to hit the Subscription Max. Simulations confirmed that the Subscription Max 

would be hit in 7.33 years if there was a 14% saturation rate. If this saturation rate is compared to the 

existing normal proliferation S-curve, we find that the prediction is remarkably accurate. The results of 

this simulation are shown below in Figure 38. 



  Project AAE AAU6 
 

Page | 53 
 
 

 
Figure 38: Subscription Max at 14% Saturation and 7.33 Years 

 

4.2.2 Feeder Max Simulations 

The next grouping of simulations focused on the Feeder Max. This is the maximum amount of 

apparent power the system can transmit at any point before components start operating outside of their 

normal ranges of operation. When this limit is reached, the only solution is to increase the capacity of the 

feeder or add additional feeders. The first simulation run focused on a very low saturation rate compared 

to time. While the saturation rate stays at a low 25% percent, it would take approximately 29 years of 

electrical growth to hit the feeder capacity limit. This simulation is shown in Figure 39 below. 
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Figure 39: Feeder Limit at 25% Saturation and 29 Years 

 

The next group of simulations focused on the results predicted by the Logistic curves. The first of 

these is the fast proliferation curve that predicted the Feeder Max to be hit in 6.94 years. This occurs 

when there is a 69% saturation rate. Due to the assumption that 80% of electric cars total charging energy 

will be drawn immediately after normal business hours, there is a large spike in demand during normal 

peak hours. This causes Figure 40 below to resemble an exaggerated version of the current peak 24-hour 

demand curve. Once again, the fast model falls behind the actual saturation rate needed in the year 

predicted. 
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Figure 40: Feeder Limit at 69% saturation and 6.94 years 

 

The next group of simulation results is derived from the slow proliferation curve that has a 

projected number of 18.66 years. The resulting required saturation to achieve this limit is 45%. This is 

slightly below the projected value of 50%. This result is illustrated below in Figure 41. 
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Figure 41: Feeder Limit 45% Saturation and 18.66 Years 

 

The last group of simulations run was on the normal proliferation curve. This is expected to take 

12.86 years. To achieve this limit in this time period a saturation of 56% is required. This is exactly as 

predicted by the logistic function. These results are shown below in Figure 42.  
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Figure 42: Feeder Limit 56% Saturation and 12.86 Years 

 

4.2.3 Lithium-Ion Battery Simulations 

 To evaluate the effects of the electric cars on the grid as well as our proposed solution, it became 

necessary to model a battery and implement this on the test distribution grid. To determine estimate 

power values for the loads and batteries, the aforementioned Excel spreadsheet was used. These values 

were run through PowerWorld to determine if they would go over our determined limits, 8MW and 

12MVA.  

The first group of simulations focused on a centralized battery, the Feeder Storage solution. A 

prime geographic location would be near the middle of the feeder. This lowers the current flowing across 

the main substation lines during discharge. The Subscription Max was initially tested under two 

conditions, 75% and 100% car saturation. The first simulation result is shown in Figure 43 below, 75% 

saturation and 34 years in the future. As you can see, the MW is average is slightly lower than 8MW 

across the entire day, effectively staying under the Subscription limit. The battery does not control 

MVARS.  
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Figure 43: Subscription Limit with Feeder Storage Solution at 75% Saturation and 34 Years 

 

The second group of simulations is similar to the first but focuses on the most extreme version of 

car saturation, 100%. Using the Subscription Max and the feeder storage solution, it was found that it our 

proposed solution would work for 26 years. The results of this simulation are shown below in Figure 44. 

 

Figure 44: Subscription Limit with Feeder Storage Solution at 100% Saturation and 26 Years 
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The next group of simulations focused on the same solution, Feeder storage, but uses a different 

limit, 12 MVA. As observed in the previous group of results, the MVA using the Subscription Limit does 

not go near 12 MVA. If we use MVA as our new limit, we find it takes longer to hit this value. The first 

of these simulations is shown below in Figure 45. This shows the result of 75% saturation, resulting in 42 

years of staying under 12 MVA on the feeder.  

 

Figure 45: Feeder Limit with Feeder Storage at 75% Saturation and 42 Years 

 

The last group of simulations for this solution focuses on 100% car saturation. Like the previous 

simulation, this was done using a Feeder limit of 12MVA. It was found that the feeder could support cars 

and natural growth for 33 years. This would require, however, for the Subscription Max to be raised. As 

previously found, the largest impact on MVA is now the MVARs, not the MW load. The results of this 

are shown below in Figure 46.  
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Figure 46: Feeder Limit with Feeder Storage at 100% Saturation and 33 Years 

  

4.2.4 Micro-Grid Battery Simulations 
The next set of simulations is related to the other placement of batteries along the Feeder, a 

micro-grid system. The same limits and tools were used to evaluate the following as the above centralized 

Feeder storage solution. This is different however in that the ratio of current does change along the lines 

but only increases and decreases by the same ratio at the loads.  

 The first simulation result comes from testing the storage solution with a Subscription Max of 

8MW. According to power consumption at the substations, the micro-grid solution can delay the need to 

increase the Subscription Max by slightly longer times than the centralized solution. The first simulation 

result, Figure 47 below, shows how the batteries would keep the instantaneous demand below the 

Subscription limit at 75% saturation and 35 years. This is only 1 year longer than the centralized solution.  
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Figure 47: Subscription Limit for Micro-Grid Solution at 75% Saturation and 35 Years 

 

The next set of results is essentially the same as above but with a different saturation rate, 100%. 

Using the same limits and tools, it was found that a 100% saturated grid would still work in 27 years. The 

results of this are shown in Figure 48 below. 

 

Figure 48: Subscription Limit for Micro-Grid Solution at 100% Saturation and 27 Years 

 

The last group of simulations focuses on the Feeder Limit of 12 MVA again. Results show that the 

micro-grid solution can mitigate the need to upgrade the feeder for 43 years at 75% saturation. The largest 

issue that limits this max is the MVARs, which makes up a substantial amount of the energy compared to 
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what is used, MW. This increases MVA, which lowers the remaining capacity. The results of this 

simulation are shown below in Figure 49. 

 

Figure 49: Feeder Limit for Micro-Grid Solution at 75% Saturation and 43 Years 

 

The final simulation shows the final time period before the grid will fail under stress. This was 

found to be 34 years at 100% Saturation. This result is shown below in Figure 50. 

 

Figure 50: Feeder Limit for Micro-Grid Solution at 100% Saturation and 34 Years 
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4.3 Transformer Lifetime Analysis 

In this section, the transformer and lifetime equations outlined in Section 2.5 are implemented for the 

three S-curve proliferation speeds with an annual electrical demand increase of 0.9%.It must be noted that 

the subscription limit is set in kW, while the feeder limit is set in kVA. The sample feeder has two 

substation transformers, thus only one transformer was modeled with 50% of the total load. In addition, 

the scenario involving an older transformer and a thirty years newer transformer leads to an analysis of 

one transformer operating with 70% of the load, while the other transformer at 30% was not considered. 

The transformer life equations are designed to calculate based on averaged loads, though some unusually 

high loads should be modeled separately and added to the total life loss. Since the data available for study 

represents hourly readings of kW for the feeder from September 2014 to August 2015, all data has been 

scaled and analyzed from the year of origin (2015) onward. As a reminder, the transformer life modeling 

through the IEEE standard represents the best estimation of transformer life to date based on the degree of 

polymerization breakdown, and further specified modeling would be required for each individual 

circumstance to account for inconsistencies and abnormalities in loading. 

The normal transformer life is rated for 180,000 hours, or 7,500 days, and is based on a constant load that 

creates a consistent 110 °C hottest-spot temperature. To model the transformer life, hourly calculations 

were averaged to calculate the life data for a day. The seasonal data was calculated by averaging every 

hour for every day in the season to find the averaged seasonal day, which was then multiplied by a factor 

of 91 for the days in a season. The seasonal averaged life calculations were then added to form the 

averaged life for one year. As a point of reference, the Table below represents the IEEE standard by 

which the modeling comparisons in this section were made. 

Table 12: Standard Normal Transformer Life 
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As an example, the figure below shows the IEEE Standard Normal Transformer Life for the Table above.  

Note that although the peak hottest spot goes over 110°C, the average of the day is taken to produce the 

values in the Table above.   

 

Figure 51: Example Temperature Curves for IEEE Standard 

 

The Table below represents the transformer life estimated for the day with the highest energy use for the 

year 2015.Every other highest energy use day for the specified year was modeled by scaling this base 

model. The Table below shows the different loading choices, and includes data for the entire daily load on 

one transformer to model and emergency situation that forces one substation transformer to be responsible 

for the entire feeder. The 100% load scenario data represents unusual emergency loading, and could result 

in transformer failure. The 50% and 70% load scenarios show a lack of strain on the transformer, 

extending the rated life in both cases. As a result, normal operation presents a higher life rating, and even 

the worst-case scenario of 100% load would most likely be tolerated. 
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Table 13: Transformer Life for 2015 Highest kWh Day 

 

 

 

Figure 52: Hottest Spot for the 3 Loads in Table 13 

 

The yearly total for 2015 in the Table below shows a doubling of the rated life for 50% loading, while the 

70% loading shows the rated life to have reduced the rated life by a factor of 4.The Table below shows a 

much larger average energy use in the winter season, resulting in the loss of rated life. Though it would 

appear that a 50% load would have been better, it must be considered that the 70% load may have been 

more desirable by making a calculated sacrifice with the newer transformer to prolong the life of the older 

transformer. The winter may have also been long and harsh, resulting in unusually high-energy demand. 
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Table 14: Transformer Life Aggregate for the Year 2015 

 

 

The Table below shows the day with the highest energy use for the year 2015, by setting the 

highest demand hour to the subscription and feeder limits (as discussed in Section 4.1) and scaling the 

rest of the hours .The numbers below represent all three proliferation cases for subscription and feeder 

limits due to the methods used to scale and average transformer life, creating similar results for different 

timelines. For both limits, the 50% load scenario improves rated life, while the 70% load scenario 

degrades the rated life. In the case of the 70% load for the feeder limit, the loading could be considered 

catastrophic by losing over 1% of transformer life a day. 

 

Table 15: Transformer Life for a Day at Crucial Points 

 

 

The Table below shows turning points when the highest kWh demand day starts to produce lower life 

expectations than that of the rated life model, when the FEQA displays a value more than 1.  At this point 

in the transformer life analysis, it may be deduced that for every S-curve type and a 70% feeder load, the 

time and percent of electric car proliferation show as significantly less than a 50% feeder load.  The time 

limit for all 70% feeder loading to surpass the rated FEQA may be set to the year 2025.  It must also be 

noted that the limit for the 50% feeder loading resembles (but surpasses) the feeder limits for all S-curve 

types, while the 70% feeder loading resembles the subscription limits for all S-curve types. 
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Table 16: IEEE Standard Life Threshold for 1 Day 

 

 

Since the Table above describes the 70% load limits as loading similar to the subscription limit S-

curves, the Table below shows the a transformer life for the year 2022 at the subscription limit using 70% 

load by scaling the 2015 seasonal data for the normal S-curve type. 

 

Table 17: Feeder Subscription Limit Average Life Loss for 1 Year 

 

 

The Table below describes the transformer life loss for the peak kWh day, scaled for the 

conditions in the Table above.  The highest kWh day would be considered an outlier, and should be 

calculated separate from the seasonal average and added to the yearly seasonal total.  For the origin year 

of 2015, there were about 35 other outlier days similar to the peak kWh day.  The Table below shows the 

estimated transformer loss for the year 2022 with the seasonal average aggregate in addition to the loss of 

the outlier days. 

Table 18: Transformer Life for 2022 Peak kWh Day 
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Table 19: Transformer Life Loss for the Year 2022 

 

 

As can be seen by the Table above, the total life loss for the year 2022 using a normal type S-

curve amounts to 0.7837% of the total, overall extending the rated transformer life expectancy by about 

300 days.  The data in the Tables below explore the transformer life loss for the year 2025, 10 years after 

the origin year 2015.  The S-curve type tested is normal and the corresponding percent proliferation of 

EV’s is about 31%. 

Table 20: Transformer Life for 2025 Peak kWh Day 

 

 

Table 21: Transformer Life Loss for Averaged Year 2025 

 

 

Table 22: Transformer Life Loss for the Year 2025 

 

 

The total loss for the year 2025 shows a dramatic increase in transformer life loss compared to 

2022, shortening the rated transformer life expectancy by about 37 days.  The transformer life expectancy 

went from above rated to below rated in a matter of 3 years, setting the year 2025 to be the turning point 

to start considering methods to alleviate stress on the transformer.  If the newer transformer continues to 
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support 70% of the feeder load to extend the older transformer, the expected life would exponentially 

decrease from the year 2025 and on. 

 

4.4 Battery Charging Analysis 

This section of the results was focused on the challenges that are presented when considering the 

EV battery on a lower level.  The battery and the power needed to charge the battery would be in DC 

form; whereas, the power supplied to the household with the EV would be in AC form.  In addition, extra 

circuitry would be required to accommodate the model battery of the Tesla Model S at 400Vdc from a 

240Vac rated supply.  The effects of battery charging on the feeder as a whole may influence later 

decisions regarding feeder upgrades and crucial timelines for further decision-making, with special 

attention to the effect on current.  Further, the effects from a residence as seen from the pole transformer 

were taken to model the larger effects on feeder components. 

The figure below shows a simplified model of one car charging.  The 240Vrms signal enters a 

transformer with a ratio of 1:2.  The secondary side then rectifies the signal to 480Vpeak, which then goes 

into the 400V battery. 

 

Figure 53: Simplified Charger Model 

 

The figure below shows the current through the resistive element Rb from .24 seconds to 1.5 

seconds. The current curve of Rb represents the current that is delivered to the battery.  The response 

shown in the figure below indicates an interference, which may be considered to represent harmonic 
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losses through the conversion of AC waveforms to DC power.  The signal can be seen to stabilize around 

25A.   

 

Figure 54: Current through Rb 4 

 

Since this project is concerned with analysis at the distribution level, the current through the 

resistor R1 will be the focus of the energy consumed by the house. Focusing on R1 (before rectification) 

allows the data to represent the energy used from a feeder perspective. The Figures below display the 

current as seen by the feeder and the Fourier Transform for the current curve of R1, which illustrates the 

power lost through primarily the first and third harmonic.   

The figure below shows the fundamental to use 48A, the first harmonic to use 8A, and the third, 

fifth, and seventh harmonic to use an aggregate 8A.  This shows losses through harmonics to be roughly 

1/4 of the power used to charge one car battery when considering RMS values. 

                                                      
 
4 The code for the PSPICE graphs may be found in Appendix 8.6 
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Figure 55: Single Car Charger from a Feeder Perspective 
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Figure 56: Fourier Response of One Car Charger from Feeder Perspective 

 

The figure below may be used to model the power used to charge the vehicle, and the power 

losses due to harmonics.  This model displays AC Amperes, so the RMS current for the fundamental 

would be much closer to the rated 30A of the charger.  The RMS values of the current are changed in the 

figure below. 
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Figure 57: Battery Charger Model with Harmonics (Losses) 

 

 

Figure 58: RMS Values for the Current 

 

If 25% of the power used to charge the battery is lost to heat, the EV battery would need to 

charge for longer, effectively increasing the energy needed to charge the EV.  If the assumed energy for 

each battery during normal commute circumstances requires 9600W to charge without charger losses, 

adding the charger losses would amount to 12000W to charge the battery under normal commute status.  

Since the charging rate through the charger is fixed, this translates to about 20 additional minutes to 

charge the car battery, totaling 1 hour and 40 minutes.  While the difference may not seem to be much, 

the overall time expected to reach certain S-curve limits would be shortened.  Additionally, if battery 

storage were considered an option, more storage capacity would need to be considered to accommodate 

for peak power demand. 

Charging the battery for longer periods increases the energy demand, which affects the S-curve 

limits.  Though instantaneous charging does not change, the overlapping of charging vehicles will 

ultimately draw more power from the distribution system.  The results of the modified S-curve analysis 

are listed below in the Table. 
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Table 23: Modified Feeder Limit Times per Effects of Harmonics 

Curve Scenario Subscription Max (Years) Feeder Max (Years) 

Normal Realistic 7.33 12.86 

 W/Harmonics 6.9 11.8 

Faster Realistic 3.93 6.94 

 W/Harmonics 3.5 6.2 

Slower Realistic 9.94 18.66 

 W/Harmonics 9.3 17 
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5 Solutions 

5.1 Solution 1: Fast Proliferation (Feeder Addition) 

The most extreme version of the EV proliferation proposed by this project involves strong 

motivation to switch from combustion to electric vehicles.  This motivation would most likely be a 

combination of lower cost of operation, lower cost to own, lower cost to insure, changing technology 

trends, and environmental consciousness.  Whatever the reasons may be, the issues posed by the sudden 

rise of EVs based on the fast proliferation model could cause disruptive failure in the sample distribution 

system feeder. 

As described in Section 5.2.2 in the results, the fast proliferation model approaches the to-date 

subscription limit in less than 4 years, while the feeder limit may be reached in less than 7.  Immediate 

action would need to take place on the order of restructuring the feeder to accommodate the electrical 

demands of charging EVs.  Since the proliferation affects the feeder at such a rapid rate, modern methods 

must be used to change the feeder by adding additional capacity.  This section proposes to split the feeder 

area into two separate feeders, thus doubling MVA capacity and mitigating transformer life loss. 

One recommendation would be to continue the original feeder transformers to remain on the same 

side of the split with the same 70:30 loading ratio to continue to prolong the lifespan of the old 

transformer.  Although 50:50 loading proved to provide a vastly superior transformer lifespan, 

information about the remaining life of the transformers is unavailable. To compensate for age, 70:30 

loading was assumed to provide the best overall system life.  The figure below displays a mapped plan 

that suggests how the feeder should be split. 
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Figure 59: Split Feeder Annotated Map 
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The figure below describes the split feeder map in one-line diagram format.  The figure below 

further shows a new transformer on the new feeder, while the two original transformers are still together 

with the same 70:30 split.  The feeder split may be described as connecting the new substation to the old 

C load with a new distribution line that works with the old substation transformer, while a new 

transformer starts at Line E and continues to a modified C load.  The transformer used for the new feeder 

was chosen to be the same transformer as the original feeder model, making all the transformers identical. 

 

Figure 60: The Original Feeder Split in Two, PowerWorld Sketch 
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The Tables below list the recommended distribution lines for the split feeder model.  The line 

‘old C’ describes most of the old feeder C load, ‘new C’ describes the part of the old feeder C load that 

was split into the new feeder section, and ‘add C’ refers to the new distribution line that must be installed 

to connect the new substation to the ‘old C’ load.  The sizes were chosen based on the highest loading for 

100% EV proliferation and in the year 2040.  As done in the original feeder model, an attempt was made 

to turn one of the transformers off on the feeder with the split load to rate the lines for a possible 

emergency transformer failure scenario; however, the PowerWorld model would not simulate that 

situation with stability. 

Table 24: Split Feeder Line Recommendations 

 

 

Table 25: Split Feeder ACSR Information 

 

 

The PowerWorld feeder model used for this solution was tuned to maximum loading for the 

purposes of this paper, with 100% EV proliferation and in the year 2040.  As can be seen in Table 26, the 

voltages for the loads (A, B, C, 16, D, E) with a nominal voltage of 120V sink to the 80V to 90V range, 

creating a brownout scenario by providing a voltage that is not useable by electronics.  Table 27 below 

shows that after capacitor correction, the nominal voltage of 120V may be restored. 

ACSR size R/1000ft R/mi Stranding Ampacity
Turkey 0.806 4.25568 6 to 1 105
Sparrow 0.332 1.75296 6 to 1 184
Raven 0.217 1.14576 6 to 1 242
Pigeon 0.144 0.76032 6 to 1 315
Waxwing 0.0787 0.415536 18 to 1 449
Merlin 0.0625 0.33 18 to 1 519
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Table 26: Split Feeder Buses and Loading 

 

 

Table 27: Split Feeder Buses with Capacitive Collection 
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Figure 61: PowerWorld Model Solution for Fast Proliferation 
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To analyze further, transformer life for the split feeder model may explored in Table 28 and 29 

below.  Table 28 below describes the new feeder with one transformer on the peak kWh day of 2040.  The 

proposed new feeder was recommended to be 35% of the total load because the transformer life for this 

peak day extends the transformer life by a factor of 4.  The recommendations for the original feeder were 

to even the load to 50:50 loading to better extend the life of each transformer.  The risk presented for the 

original feeder transformers on the peak kWh day would be more than tolerable, and even more so than 

the same total load for the transformer on the new feeder shown in Table 29 below.   

It must also be noted that these figures include the assumed Pf of .866.  With lowered MVA 

through Pf correction, the loading would be even more tolerable than the results shown below in Tables 

28 and 29.   

Table 28: Transformer Life for the New Feeder with One Transformer 

 

 

Table 29: Transformer Life for the Original Feeder for Both Transformers 

 

 

Figure 61 below shows the curve of the hottest spot, which peaks around 112°C.  The average 

temperature would be expected to be much lower, ultimately extending IEEE rated transformer life. 
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Figure 62: One Transformer, 35% Total Load, 100% Proliferation, 25 Years 

 

In Figure 62 below, the hottest spot temperature does not even reach the 110°C line, which would 

produce an average much lower than 110°C.  This model shows an improvement in IEEE rated 

transformer life. 

 

Figure 63: One Transformer, half of 65% Total Load, 100% Proliferation, 25 Years 

 



  Project AAE AAU6 
 

Page | 83 
 
 

Table 30 below describes current cost estimates for feeder elements needed to implement the solution for 
the fast proliferation of EVs.   

Table 30: Solution 1 Costs 

Solution 1 Costs 
 Base Cost ($) Distance 

(ft.) 
Net weight 
(lbs.) per 
1000 ft. 

Total 
kvar 

Total Cost ($) 

Line A (Sparrow) 
[39] 

$248/100 lb. 
(CWT) * [40] 

10,000 91.3 N/A $2,264.24 

Line B (Waxwing) 
[39] 

$280/100 lb. 8,000 289.5 N/A $6,484.80 

Line C – Old  
(Raven) [39] 

$235/100 lb.  20,000 145.3 N/A $6,829.10 

Line C – Add 
(Waxwing) [39] 

$280/100 lb. 3000 289.5 N/A $2,431.80 

Line C – New 
(Turkey) **  [39] 
[41] 

$330/100 lb. 2000 36 N/A $237.50 

Line D (Pigeon) 
[39] 

$229/100 lb. 8,000 230.8 N/A $4,228.26 

Line E (Merlin) 
[39] 

$270/100 lb. 10,000 365.2 N/A $9,680.40 

13.8kV 
Transformer [42] 

$1,000,000 N/A N/A N/A $1,250,000 *** 

Capacitors [43] $10/kvar N/A N/A 8,960 $89,600 
Estimated Total Cost: $1,371,756.10 

* CWT (hundredweight) – a unit of measurement for weight equal to 100 lbs. 
**Not included in sources; estimated cost based on other ACSR prices 
*** Total cost is 25 to 30 percent higher (includes taxes, transportation, special features and testing, etc.) 
 
 In the event that the feeder upgrades would include the added elements from Table 30, a 

financing option may be considered including investor payback and other taxes.  For the purpose of 

adding labor costs in a simplified way, the Estimated Total Cost listed in Table 30 shall be rounded to 

$2M.  Using the CRF referenced in section 2.8, using an aggregate interest rate of 17% for the FCR, and 

assuming a 20 year payback period, the AFC would be: 

 

𝐴𝐴𝐶 = $2,000,000 ×  17% = $𝟑𝟑𝟑,𝟑𝟑𝟑/𝒚𝒚 

 

The utility would have to decide whether or not paying the AFC listed above would be an affordable 

option, or whether another solution would be in their best interests.  
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The Figures below describe the changes to the feeder limit due to the solution proposed to split 

the feeder in two.  The first Figure shows the older feeder with two transformers for the 25 years tested 

from 2015 to 2040, and the second Figure shows the newer feeder with one transformer for the same time 

period.  The figures show that the feeder limit would not be reached in the 25 year span simulated in this 

paper, proving the proposed solution would support the proliferation of EVs in the area of this feeder. 

 

 

Figure 64: Solution 1 – Older Feeder S-curve with Feeder Maximum After Splitting 
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Figure 65: Solution 1 – New Feeder S-curve with Feeder Maximum After Splitting 

 

As a closing statement to the recommended solution for the fast proliferation of EVs, splitting the 

feeder would be an option worth considering due to the additional life it may lend to the original 

substation transformers.  Splitting the feeder also allows for further upgrading as time goes on, while 

accommodating for new growth in the area of the feeder.  By splitting the feeder in two, ample amounts 

of time would be available to deliberate future upgrades, and perhaps wait for a less expensive and 

longer-term solution to future problems.  The amount of material to build this project would be extensive 

when considering upgrading most of the distribution lines with larger and more expensive distribution 

conductors, and also installing another transformer to accommodate its own feeder.  Though requiring lots 

of money, there is little risk in improving on an already working system with proven technology and 

electric distribution methods, providing a safe and long-term solution for the fast proliferation of EVs. 
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5.2 Solution 2: Normal Proliferation (Feeder Storage – Battery) 

Currently all large-sized grid-connected batteries are in the demonstration stage to prove the 

feasibility of such batteries in energy time shifting, load leveling, system reliability, etc. These projects 

range in size from less than 5kW, 9kWh to over 8MW, 32MWh of power and energy density. The 

applications and power/energy densities of these installations are similar to those we encounter in our 

project problem. Earlier installations have shown validation in these applications for this technology, 

which is promising for the acceptance of lithium-ion batteries to be used in large-scale grid operations as 

the technology develops and the cost decreases. 

 Through research and analysis of the power draw and energy consumption during peak hours, we 

concluded that we must displace 38MWh each day in order to shift the feeder load to off-peak hours. The 

effective lifespan of a lithium ion battery is based on the depth of discharge; the deeper the depth of 

discharge of this type of battery, the shorter the effective lifespan of the battery. The lifespan, however, is 

also dependent on the age of the battery regardless of how often it is used or how deep it is repeatedly 

discharge. Lithium ion batteries are currently no longer effective for grid storage applications after 

approximately ten years. Our research indicates that a depth of discharge of 75% corresponds to about 

4000 battery cycles. Assuming the battery will be cycled every day for ten years, the battery will need to 

undergo 3650 cycles throughout its lifetime, meaning a depth of discharge of 75% is appropriate for this 

application. Furthermore, lithium ion batteries have an average efficiency of 90%. Given an approximate 

round-trip efficiency of 81% and a depth of discharge of 75%, the amount of energy storage needed to 

displace 38MWh each day is approximately 63 MWh. 

Both feeder and micro-grid solutions were designed to adequately shift the feeder load from peak 

hours to off-peak hours. Both solutions take into account the 63MWh that needs to be displaced, the 

current maximum energy capacity for lithium ion batteries of 24 MWh and the current maximum 

discharge time of approximately four hours. The computation for each solution can be found in Appendix 

8.6. 

The feeder solution would be a central location that serves the entire feeder. Using our example 

feeder provided by Holden, it would require three batteries connected in parallel. Each battery would need 

a minimum of 19 MWh storage to cover both the 10% loss in power due to efficiency and the 25% of 

capacity remaining in the battery to maintain lifetime. Each battery would provide approximately 5.43 

MW for 2.333 hours, operating one at a time and switching to one not currently in operation as one in 

operation approaches the depth of discharge limit. 
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Table 31below summarizes the pertinent qualities for the feeder storage solution. 

Table 31: Feeder Storage Solution 

Feeder Storage 

Total unit capacity needed 63 MWh 
Number of batteries per unit 3 Batteries 
Discharge time per battery 2.333 Hours 

Total power from unit 6.70 MW 
Useful power from unit 5.43 MW 

Power losses 1.27 MW 
Total energy in each battery 21 MWh 

Revolving energy in each battery 15.75 MWh 
Size of unit 5544 ft^3 

Weight of unit 930510 lbs. 
 

 In the event of battery failure such that the battery must be disconnected from the feeder, we must 

ensure that the overhead lines will have the ampacity needed to support the load without further failure. 

The PowerWorld models below show the feeder power and amp ratings while the battery is disconnected 

and while the battery is connected and discharging. The loads reflect estimated loads experienced for each 

section in the year 2040 with each household charging two electric vehicles simultaneously and each 

house drawing approximately 38 A. 

 

Figure 66: PowerWorld model – Peak Power Demand with the Feeder Battery Disconnected 
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Figure 67: PowerWorld model – Peak Power Demand with the Feeder Battery Connected 

 

 Comparing the amp ratings in the results above with those estimated to be currently installed on 

the line, which is found in Tables 6 and 7 in Section 2.6 of this report, we found that the only line that 

would need to be replaced is the line on feeder section B. The current cable size of Waxwing has an 

ampacity of approximately 449 A. The cable size Oriole has an ampacity of 535A, which is a close 

approximation to the peak current draw on section B of 379.2 A times the safety factor of 1.5 [41]. 

In order to ensure that the feeder lines and transformers do not experience premature failure do to 

overloading, the battery must supply the feeder customers using a dedicated feeder that runs in parallel 

with the current feeder. From the results above the line sizes currently in use are appropriate for this 

application. 

Figure 68 below shows the S-curve EV proliferation after the implementation of the feeder storage 

solution.  It can be seen that the feeder storage solution may accommodate up to 600% proliferation 

before reaching the feeder maximum of 12MVA, proving the viability of the storage feeder solution. 
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Figure 68: Solution 2 – Feeder Storage 
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5.3 Solution 3: Slow Proliferation (Micro-Grid) 

The micro-grid solution requires smaller battery units that serve roughly ten houses each. Using 

our example feeder, which serves approximately 2000 houses, the feeder would require 200 battery units, 

each composed of two batteries connected in parallel. Each battery would need a minimum of 157.5 kWh 

storage to cover both the 19% round trip loss in power due to a 90% efficiency and the 25% of capacity 

remaining in the battery to maintain lifetime. Each battery would provide approximately 27.14 kW for 3.5 

hours, operating one at a time and switching as with the feeder solution. Table 32 below details the 

specifications for the micro-grid storage solution. 

Table 32: Micro-Grid Storage Solution 

Micro-Grid Storage 

Battery units needed per 10 houses per feeder 200 units 
Number of batteries per unit 2 Batteries 

Total unit capacity needed 315 kWh 
Discharge time per battery 3.5 Hours 

Total power from unit 33.51 kW 
Useful power from unit 27.14 kW 

Power losses 6.367 KW 
Total energy in each battery 157.5 kWh 

Revolving energy in each battery 118.125 kWh 
Size of unit 27.72 ft^3 

Weight of unit 4662 lbs. 
 

A major concern regarding the micro-grid solution is the effects on increased current draw on the 

overhead lines. A current that is higher than the rated ampacity can cause the lines to heat and physically 

sag, posing a hazard for high clearance vehicles and bystanders if the lines should fail completely. A 

micro-grid battery placed on the lines after the 120V pole transformer adds more current to the lines, both 

while charging and discharging. The required ampacity will fluctuate depending on the time of day but 

will generally increase due to both the annual increase in electrical energy consumption and the 

proliferation and acceptance of electrical vehicle. 

A series of simulations were created and analyzed using Multisim to test the effects of a charging 

and discharging micro-grid battery at peak and off-peak energy consumption. The battery is connected in 

parallel between a 120 V pole transformer and ten houses, each with two electric vehicles. The purposes 

of our analysis is to see how much current draw the overhead can support, which is represented by battery 
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in charging phase as well as the number of EVs connected to the same transformer at the same time. From 

this we can see what the worst-case scenario current draw would be both present day and in 2040 and 

how much ampacity the overhead lines would need in order to support complete EV saturation. 

The transformer was modeled as a 120 Vrms AC source, each house and car was modeled as a 30 

A current source flowing to ground to simulate the current draw from the grid, and the battery was 

modeled as a 305 Arms current source during the discharge phase and a 3.544Ω resistor during the charge 

phase to model the instantaneous power draw 36.6 kW of if the battery were to be charged for nine 

continuous hours. Each car is connected to a switch to simulate the car being connected or disconnected 

to the grid. The following figures display the resultant simulations. 

 

 

Figure 69: All cars charging at peak current draw, battery discharging 
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Figure 70: All cars charging at peak current draw, battery charging 

 

These model results show that a transformer supporting ten houses, each charging two electric 

vehicles simultaneously, has a current draw of 900 A after the battery. When discharging, the battery 

supplies a current of 305 A to decrease the demand on the transformer. While charging, the battery draws 

a current of approximately 34 A in order to charge the battery over a nine hour period. 

Our assumption on present-day power demand estimates that the typical house at peak hours 

draws a peak current of 30 A at once, meaning each transformer line supports approximately 300 A at 

once. In order to maintain line life, we set a cautionary limit of 350 A drawn from the line and saw how 

many cars could charge in this scenario. The following figures display our results. 
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Figure 71: One car charging at peak current draw, battery charging 

 

 

Figure 72: One car charging at peak current draw, battery discharging 
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 The simulations show that the line after the battery can support no more than one car charging out 

of twenty during peak hours. While the battery is discharging, the transformer needs to supply only 25.3 

A to keep up with demand. While the battery is charging, however, the transformer must supply 364 A. 

From these results we can conclude that no more than one car may charge at a time during peak 

household consumption hours and only while the battery is discharging. 

 The following two figures shows the results of the same simulation during a low household 

power consumption. Each house is modeled now as a 10 A current draw. 

 

 

 

Figure 73: Seven cars charging at 10 A house current draw, battery discharging 
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Figure 74: Seven cars charging at 10 A house current draw, battery charging 

 

 Under these conditions, the line after the battery can safely support seven cars charging 

simultaneously, supplying 310 A to the customers. While the battery is charging, the transformer must 

supply only 5.29 A to keep up with demand. While the battery is charging, the transformer must supply 

344A, which is only slightly under our cautionary limit of 350 A. 

 In order to design this system so that it can support a worst-case scenario at the year 2040, we 

calculated the projected household current draw based on the 0.9% annual increase in energy 

consumption. The projected current draw was found using the following equation: 

Equation 10: Projected peak current draw in year 2040 

𝐼 = 30 ∗ 1.00925 

where  

I = the projected peak current draw for a home in 2040 

 The projected current peak current draw in 2040 is calculated to be 37.53 A rms. Supporting a 

twenty car simultaneously charging during peak hours requires a line with an ampacity that can support 

approximately 100 A per connected house as well as the current needed to charge the battery. Assuming a 
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battery that is charging over nine hours and drawing 34 A at any given time, the new transformer line 

must have an ampacity of at least 1034 A.  

We consulted the standard American ACSR conductors to find the appropriate lines available that 

could support this magnitude of current. 

 

Figure 75: Standard American ACSR Sizes and specifications. [68] 

 

The three standard ACSR sizes that could potentially support this current draw are the Bluebird and 

Kiwi, each with an ampacity of 1083 A, and the Thrasher which has an ampacity of 1122 A. 
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Figure 76 below shows the S-curve for EV proliferation after the implementation of the micro-grid 

storage solution.  This figure resembles Figure 68 in the previous section.  It can be seen that the micro-

grid solution can accommodate for about 600% EV proliferation before reaching the feeder maximum of 

12MVA, proving the validity of this solution. 

 

Figure 76: Solution 3 – Micro-Grid 
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5.4 Predicted Costs of Implementation (Solutions 2 and 3) 

The main expense in either of these two solutions is that of the energy storage. While 

considerations such as building and installation costs must be taken to account in the actual construction 

of the battery units, the variable that is most pertinent to affordability is the cost of storage per kilowatt-

hour. The price per kilowatt hour for lithium ion battery has decreased exponentially over the past decade 

and is projected to continue as companies continue to research and develop more efficient and energy 

dense batteries for usage in consumer electronics. A decrease in cost is also essential for the 

commercialization and acceptance of electric vehicles, which depend on a less expensive, more energy 

dense battery to lower the overall consumer cost. For this reason, the cost of energy storage for each 

solution is dependent on the date at which contracting and construction would take place. 

In order to calculate when the battery storage would have to be installed to achieve reliable load 

leveling we calculated the projected electrical energy consumption on the example feeder provided. This 

calculation takes into account the projected increase in consumption of 0.9% per year, the increase of 

consumption due to the acceptance of electrical vehicles between 2015 and 2040, and the approximated 

subscribed power limit on our example feeder. These assumptions were also used in calculating the total 

energy consumption based both the summer average energy consumption and the maximum energy 

consumption derived from the day in the data set that experienced the most energy usage. The 

calculations were performed in Excel using the normal, fast, and slow acceptance rates with projected EV 

saturation midpoints at 12.5 years, 6.25 years, and 18.75 years, respectively. Table 32 below lists the 

years at which the feeder would reach the subscribed power limit and would therefore require battery 

installation to handle reliable EV charging as well as the cost of lithium ion battery storage per kilowatt-

hour. Table 33 below shows the same information but for the Feeder Max. 

Table 33: Subscription Max 

Subscription Max  

Proliferation Rate Year Cost/kWh 

Normal 2021 $240  

Faster 2018 $290  

Slower 2024 $210  
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Table 34: Feeder Max 

Feeder Max 

Proliferation Rate Year Cost/kWh 

Normal 2027 $180  

Faster 2021 $240  

Slower 2033 $115  

 

To estimate the cost of the feeder storage solution, it is necessary to price out both limits we are 

trying to mitigate, Subscription and Feeder Max. These occur at 7.33 and 12.86 years respectively. Since 

it will take time to install the batteries, the price per kWh will be chosen a year in advance of when the 

solution is needed. The first price estimate will be to avoid the Subscription Max. In 2021, the average 

cost per kWh will be approximately $240/kWh. Since the batteries must be a total of 63MWh, this will 

cost $15,120,000 in 2014 US Dollars. The second price estimate is to avoid the feeder limit of 12 MVA. 

In 2027, the average cost per kWh will be approximately $180/kWh. The price of these batteries will be 

$11,340,000 in 2014 US Dollars. Although this does not take into account the cost to build a structure to 

house the batteries or connect them to the grid, these costs are small compared to the cost of the batteries. 

A building that is 8 feet tall (an average floor height) would require the area of the building to be 627 

square feet. The size of this structure is smaller than a house and doesn't have the same requirements, 

such as plumbing and sewer.  Unfortunately, the price of building materials and labor varies too greatly 

with the general economy. This greatly increases the range of possible costs, all of which are still 

magnitudes lower than the batteries.  Table 34 below lists the cost estimation for creating the feeder 

battery solution if purchased at the subscription max and the feeder max. 

Table 35: Lithium Ion Feeder Storage Cost Estimation per kWh using Normal Proliferation Rate 

Lithium Ion Storage Feeder Cost Estimation per kWh using Normal Proliferation Rate 

 
Subscription Max Feeder Max 

Cost per battery $5,040,000 $3,478,000 
Total cost of solution $15,120,000 $11,340,000 
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Table 36 below describes current cost estimates for feeder elements needed to implement the 

solution for the normal proliferation of EVs.   

Table 36: Solution 2 Cost 

Solution 2 Line Costs 
 Base Cost ($) Distance 

(ft.) 
Net weight 
(lbs.) per 
1000 ft. 

Total 
kvar 

Total Cost ($) 

Line A (Sparrow) 
[39] 

$248/100 lb. 
(CWT) * [40] 

20,000 91.3 N/A $4,528.48 

Line B – New 
(Oriole) [39] 

$247/100 lb. 16,000 527.1 N/A $20,830.99 

Line C (Raven) 
[39] 

$235/100 lb.  40,000 145.3 N/A $13,658.20 

Line D (Penguin) 
[39] 

$229/100 lb. 16,000 230.8 N/A $8,456.52 

Line E (Waxwing) 
[39] 

$270/100 lb. 20,000 365.2 N/A $19,760.80 

13.8kV 
Transformer & 
AC/DC Inverter 
System [42] 

$1,000,000 N/A N/A N/A $1,250,000 ** 

Capacitors [43] $10/kvar N/A N/A 8,960 $89,600 
Estimated Total Cost: $ 1,447,586.99 

* CWT (hundredweight) – a unit of measurement for weight equal to 100 lbs. 
** Total cost is 25 to 30 percent higher (includes taxes, transportation, special features and testing, etc.) 
 
 As well as the solution for fast proliferation, a financing option may be considered including 

investor payback and other taxes.  For the purpose of adding labor costs in a simplified way, the 

Estimated Total Cost listed in Table 35 shall be rounded to $2M.  Using the CRF referenced in section 

2.8, using an aggregate interest rate of 17% for the FCR, and assuming a 20 year payback period, the 

AFCs for construction and installation to meet subscription max and feeder max would be: 

 

𝑺𝑺𝑺𝑺𝒄𝒚𝒓𝒓𝒓𝒓𝒓𝒓 𝑴𝑴𝑴 𝐴𝐴𝐶 = ($2,000,000 + $15,120,000)  ×  17% = $𝟐,𝟗𝟗𝟑,𝟑𝟑𝟑/𝒚𝒚 

𝑭𝑭𝑭𝑭𝑭𝒚 𝑴𝑴𝑴 𝐴𝐴𝐶 = ($2,000,000 +  $11,340,000)  ×  17% = $𝟐,𝟐𝟐𝟐,𝟖𝟑𝟑/𝒚𝒚 

 

These price projections are made in 2014 dollars. Future fluctuations or fruitions in the United States and 

global economies and faster or slower advancement in battery technology may cause discrepancies from 

these projections. 
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 The cost of the micro-grid battery solution is found in a similar method to the feeder storage 

battery, however the limits are found using the slow proliferation rate. The subscription max is projected 

to be reached at 9.94 years and the feeder max is projected to be reached at 18.66 years. The costs of 

lithium ion storage is projected to be approximately $210/kWh at 9.96 years and approximately 

$115/kWh at 18.66 years. In 2014 dollars, the cost of the storage for the complete solution at these two 

years is projected to be approximately $13,230,000 and $7,245,000, respectively. Table 37 below lists the 

cost estimation for creating the micro-grid battery solution if purchased at the subscription max and the 

feeder max. 

Table 37: Micro-Grid Lithium Ion Storage Cost Estimation per kWh using Slow Proliferation Rate 

Micro-Grid Lithium Ion Storage Cost Estimation per kWh using Slow Proliferation Rate 

 
Subscription Max Feeder Max 

Cost per battery $22,050 $12,075 
Cost per battery unit $66,150  $36,225  
Total cost of solution $13,230,000 $7,245,000  

 

 Unlike the previous solution, the micro-grid solution does not require construction or replacement 

of overhead lines from the substation. Constructing new lines between the pole transformers, the batteries, 

and the houses they serve is necessary, however, yet it is unfeasible to make a firm estimation due to 

variables such as the distance between houses and the battery placement, the number of houses connected 

in series, the cost of labor for such a task, etc. A various number of lines can be used depending on the 

configuration of houses connect to the battery; no matter which line is chosen, the line must have an 

ampacity such that it can support 100A per house. 

 Using a total cost estimation for new cable, labor costs, and other associated expenses of 

$2,000,000, the CRF referenced in section 2.8, using an aggregate interest rate of 17% for the FCR, and 

assuming a 20 year payback period, the AFCs for construction and installation to meet subscription max 

and feeder max would be: 

 

𝑺𝑺𝑺𝑺𝒄𝒚𝒓𝒓𝒓𝒓𝒓𝒓 𝑴𝑴𝑴 𝐴𝐴𝐶 = ($2,000,000 + $13,230,000)  ×  17% = $𝟐,𝟓𝟖𝟗,𝟗𝟑𝟑/𝒚𝒚 

𝑭𝑭𝑭𝑭𝑭𝒚 𝑴𝑴𝑴 𝐴𝐴𝐶 = ($2,000,000 +  $7,245,000)  ×  17% = $𝟗,𝟓𝟐𝟗,𝟐𝟓𝟑/𝒚𝒚 

 

These price projections are made in 2014 dollars. Future fluctuations or fruitions in the United States and 

global economies and faster or slower advancement in battery technology may cause discrepancies from 

these projections. 
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In designing and preparing for a worst-case scenario, no matter which battery solution is selected 

if one is chosen, contracting and construction on battery storage should be scheduled based on the 

maximum projected energy consumption, though this also limits time in allowing the market to reach a 

state of more dedicated commercialization and competitive pricing. A more accurate timeline as to when 

battery construction should take place can be achieved by a census of electrical vehicle ownership over 

time to accurately gauge how urgently battery storage is needed. If both electrical vehicle growth and the 

increase in electrical consumption are both smaller than our researched and established projections then 

battery installation can be delayed, improving the odds of lithium ion grid battery commercialization and 

availability. 
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6 Recommendations & Conclusions 

6.1 Solution 1 Conclusion 
The solution explored for fast proliferation of EVs would be a long term, predictable, and easily installed 

solution by using existing technologies and simply updating the distribution system.  Though costly to 

buy and install, the suggested plan for Solution 1 would create the needed room for EV growth without 

hazard for the time duration of 25 years in this study.  Comparatively, the overall price for this solution 

was calculated to be much less than the total for the other solutions listed; however, the potential for 

energy savings would be considered non-existent, thereby forcing the utility to raise their subscription 

limit to whatever is needed.  This solution also allows for existing transformers and other distribution 

system parts to continue to be used until they have outlived their usefulness.  Additionally, future 

electrical devices will have improved on power efficiency (LED lighting, etc.), becoming less expensive 

and more widely used.   

6.2 Recommendations Based on Projected Conditions 

The fundamental process of energy storage for load shifting entails charging the battery primarily 

during off-peak hours to minimize cost. The power would be rectified from AC to DC, and then stored in 

the battery unit. The power would then be inverted back to AC and then used during peak hours to 

supplement the power draw on the feeder. Given the selected solution of lithium ion energy storage using 

batteries to mitigate load shifting, our team has formulated two possible methods of storage: mass, 

centralized storage that could serve a large section of customers, such as those on a single feeder, and 

micro-grid storage that would serve a collective of about ten buildings. 

6.2.1 Solution 2 Recommendations 

A mass energy storage unit would realistically be able to serve a single feeder by storing a large 

amount of energy during off-peak hours and then distributing that energy during peak hours. While this 

solution would mitigate the issue of power generator or subscription limits, it does not directly solve the 

issue of distribution line stress. For this solution, an additional feeder line which is connected from the 

battery to each house on the feeder would have to be installed so that power discharged from by the 

battery unit does not cause the power lines to experience premature wear by coupling with generated or 

subscribed power that is normally distributed to the customers. Furthermore, batteries of such an immense 

size would require a large amount of construction to properly house them. 
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6.2.2 Solution 3 Recommendations 

A micro-grid storage system would involve a collective of approximately ten houses that each 

share a battery unit as opposed to all of the customers on an entire feeder. While this method would 

require more construction of batteries and housing units, the overall size of each battery would be much 

smaller and housing construction could be simplified by utilizing recycled materials such as storage 

containers. Construction of a new complimentary feeder line for the battery storage would not be needed, 

though the installation of short power lines to connect the batteries to their respective houses or new, 

higher ampacity lines from the pole transformers would be needed to handle the increase in current draw. 

We recommend a line size that can handle 100 A per house plus 34 additional amps to support battery 

charging. The specific sizes we suggest are the Bluebird and Kiwi, each with an ampacity of 1083 A, and 

the Thrasher which has an ampacity of 1122 A. 

 This solution also allows for simple integration of point-source generation by way of renewable 

energy sources such as solar or wind generation. Because these sources generate a DC voltage signal, they 

can be regulated and stored directly by the battery without the need for rectification, which further 

reduces the cost over time to charge the battery for peak time usage. We recommend exploring these 

options to further drive the cost of charging the batteries over time down and reduce the amount of 

required power needed by the transformer to support both ten houses charging electric vehicles 

simultaneously and charging the grid battery. 
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8 Appendix 

8.1 Basic Transformer Information 
The electrical distribution system must provide usable electricity to residential, commercial, and 

industrial users, which includes using transformers to lower the voltage to user levels. The two 

transformers most frequently used in a residential area are the substation transformer and the pole 

transformer. There are several different types of transformers, providing variation in use preference and 

functionality; however, all transformers have fundamental parts in common. 

Figure 77 below shows a generic picture of the inside of a transformer [44].The function of a 

transformer in the distribution system is to change voltage levels from high to low, indicating that the 

higher voltage goes in the primary terminals, is transformed through the core windings, and exits the 

secondary terminals [44].Although the voltage is different going out, power is conserved. 

 

 
Figure 77: Transformer Basic Operation [44] 

 

Figure 78 below displays one simplified version of an oil filled transformer [45].Liquid-filled 

transformers are often preferred over dry-type transformers in distribution systems because they have 

proven to be more efficient, longer lasting, and are able to withstand greater overloading [46].Some 

drawbacks to liquid-filled transformers are that they require more frequent maintenance, are prone to 

spills, and are more flammable [46].Further, dry-type transformers are widely used indoors, while liquid-

filled transformers are better suited outdoors [46].  
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It can be seen in figure below that the transformer radiates heat, which is a crucial part of 

transformer design. In the mineral oil filled transformer below, heat is radiated through a convection 

motion through tubes [45].Other cooling designs include any combination of radiators, cooling fans, and 

flow control with an oil pump. 

 
Figure 78: Distribution Transformer Cross-Section [47] 

 

 The representation of an ideal transformer may be portrayed in Figure 79 below. The idealized 

transformer model shows the primary and secondary voltages, the primary and secondary currents with 

directions, the number of turns for the primary and secondary side of the transformer, and the load on the 

secondary side. The polarity dots at the top of each coil also show current direction, and may change 

location in different drawings [48]. 

 
Figure 79: Ideal Transformer Model [48] 

 

 The behavior of an ideal transformer may be summarized with the equation set below. The 

relationships described by the ideal transformer equations easily explain how electrical properties are 
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transferred from the primary side to the secondary side. It is usually acceptable to use the ideal models for 

transformers due to the usual efficiency of around 98% [49]. 

 
Equation 1: Ideal Transformer Equations [49] 

 

 All transformers work only with alternating current due to the properties shown in Figure 80 

below [49].The primary and secondary sides are not physically connected; however, current is induced in 

the secondary side due to the magnetic flux created by the primary current [50].As shown in the ideal 

transformer equations above, the induced current and voltage level of the secondary depends on the turns-

ratio between the primary windings and secondary windings. 

 
Figure 80: Magnetic Property of Transformers [50] 
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This project is concerned mainly with the power transformer governing the feeder, and how the 

transformer cools itself will have an effect on how much heat (and current) the transformer can tolerate. 

The power transformer for the feeder was considered to be an oil immersed transformer, and thus lending 

to four possible cooling methods [51].The majority of the losses in the transformer will be in the form of 

heat losses, which makes cooling methods noteworthy [51]. 

The first cooling method, Oil Natural Air Natural (ONAN), has been previously mentioned in this section 

and may be exemplified in the figure below. The principles of convection allow the oil to flow through 

radiators on the sides of the transformer, relying on ambient temperature to cool the unit [51]. 

Oil Natural Air Forced (ONAF) is a second cooling method, displayed in Figure 81 below. This method 

uses the ONAN method of radiators in conjunction with fans blowing on the radiators, thereby 

accelerating the cooling by lowering the ambient temperature and allowing for better dissipation and 

circulation [51]. 

 
Figure 81: ONAF Cooling Method [52] 

 

 Oil Forced Air Forced (OFAF) is a third cooling method, displayed in Figure 82 below. OFAF 

utilizes radiators for heat exchange and also cooling fans for greater heat dissipation, but also involves a 

pump to circulate the oil from the transformer casing to the cooling chamber, thereby accelerating the 

natural process of convection. This method allows for an even greater cooling pace than ONAN or ONAF 

by speeding up the pace of oil circulation [51]. 
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Figure 82: OFAF Cooling Method [52] 

 

 Oil Forced Water Forced (OFWF) is a fourth cooling method displayed in Figure 83 below, and 

the final method discussed here. The OFWF method utilizes an oil pump and radiators similar to that of 

the OFAF method; however, the radiators are immersed in water pumped through the cooling chamber, 

due to the lower ambient temperature of water compared to air [51].The water is additionally cooled 

separately, not shown in the figure below [51].The addition of a water cooler accelerates the cooling of 

the oil even further, providing more overheating protection. Though there are a few other cooling 

methods used in industry, they all involve variations of aforementioned methods, and are above the scope 

of this project. 

 
Figure 83: OFWF Cooling Method [53] 
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8.2 IEEE Std. C57.91-1995Supporting Material 

Table 38: Temperature Variable Definitions [33] 
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Table 39: Temperature Calculation Equations [33] 

Equation # Symbolic Equation 

1 
 

2 
 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 
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10 
 

11 
 

12 
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8.3 Transformer Specifications 

 

Figure 84: Transformer Specification 1 
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Figure 85: Transformer Specifications 2 
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8.4 EV Models 

8.4.1 Tesla Model S  
 The Tesla Model S was Tesla Motor’s second vehicle when it was introduced in 2012. The Model 

S is a full-sized, luxury lift back (similar to a hatchback). It is currently the top selling plug-in electric 

vehicle and has won many awards including being named Motor Trend Car of the Year back in 2013 [54] 

[55]. It has the largest range of any electric vehicle on the market at 240 miles. It is one of the few fully 

electric vehicles to have all-wheel drive. The Model S has the most expansive charging capabilities of any 

electric vehicle with (home) dual chargers that can charge the battery in 4 hours as well as superchargers 

on the road designed for long distance travel that can charge half the battery in 20 minutes [56]. Tesla 

offers models with 70 and 90 kWh batteries. For our research, we looked at the base 70-kWh model [21]. 

 
Figure 86: Tesla Model S [57] 
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8.4.2 Nissan Leaf  

 The Nissan Leaf became Nissan’s first electric vehicle to hit the open market back in late 2010 

after previous attempts dating back to 1997 had been unsuccessful [58]. The Leaf is a compact, hatchback 

vehicle with front wheel drive. As of December 2015, it was the world’s all-time best selling highway-

capably electric vehicle with over 200,000 vehicles sold, with more than 90,000 of those sold in the 

United States [59]. Its most recent iterations have ranges of 84 miles (24 kWh battery) and 107 miles (30 

kWh battery). These are among the top for electric vehicles that are not manufactured by Tesla. It has 

home charging capabilities that allow it to be fully charged within 5 hours. While Nissan does not have 

their own road chargers like Tesla, companies like ChargePoint offer road-charging access to other 

electric vehicles including the Leaf [60]. As stated above, Nissan currently offers two models of the Leaf, 

one with a 24 kWh battery and the second with a 30 kWh battery. For our research, we looked at the 24 

kWh battery model [22]. 

 
Figure 87: Nissan Leaf [61] 
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8.4.3 Chevrolet Volt  

When Chevrolet unveiled the concept for the Volt in 2007, they became the first major car manufacturer 

to publicly show a plug-in hybrid vehicle [62]. The first generation of the Volt was officially released in 

late 2010-early 2011 and has since sold over 100,000 units worldwide, including about 85,000 in the 

United States, and became the all-time best-selling plug-in hybrid vehicle as of October 2015 [63]. It has 

since won many awards including the North American Car of the Year back in 2011 [64]. The Volt 

differs from the previous two cars mentioned in that it is a plug-in hybrid, not a fully electric car. Despite 

the difference, the Volt does operate as a fully electric vehicle until the battery drops below a certain 

threshold, but because of its hybrid nature, its pure electric range is only 53 miles, plus another 420 miles 

from the gas engine. To supplement normal charging, the Volt also incorporates regenerative braking, 

which is energy normally lost during braking is turned into kinetic energy for immediate or late use, 

which is found in other hybrid vehicles [23]. 

 
Figure 88: Chevrolet Volt [65] 

  



  Project AAE AAU6 
 

Page | 124 
 
 

8.4.4 Destination Charging 

 To improve the customer experience, Tesla has partnered with many hotels, restaurants, shopping 

centers, etc. allowing its users to charge their car from almost anywhere. This allows customers to get the 

most out of their Tesla and allow them to charge their vehicle whenever they go out. There are hundreds 

of locations across the country that offer this service. To entice companies to install these chargers at their 

place of business, Tesla will install two wall chargers free of charge assuming they are visible or 

convenient location on the property [66]. 

8.4.5 Superchargers 

 Superchargers are free connectors designed by Tesla that charge the vehicle in minutes instead of 

hours. They work by placing multiple Tesla chargers in parallel so that they deliver 120 kW of DC 

directly to the battery. They were created to allow people to use their Tesla’s on long trips where they 

may need to charge their vehicle before reaching their destination. They are strategically placed along 

routes between major cities conveniently located near restaurants, shopping centers, and Wi-Fi hot spots. 

They are capable of charging 120 kW, which equates to 170 EPA rated miles in as little as 30 minutes and 

can provide a full charge in about 75 minutes. As of 2016, there are 595 Supercharger stations with 3465 

Superchargers across the world. Figure 89 and Figure 90 below illustrate the difference between regular 

EV chargers and the supercharger, and the charging profile of the supercharger, respectively. [56] 
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Figure 89: Tesla Supercharger vs. Other Chargers [56] 

 

 
Figure 90: Tesla Supercharger Charging Profile [56] 
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8.5 PowerWorld Figure Key 
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Table 40: PowerWorld Map Key 

 

Energy Generation Source.  In this case, the generation source is 
represented by nuclear energy. 

 

Distribution feeder line.  The blue circle represents an Ammeter. 

 

Transformer.  The blue circle represents an Ammeter. 

 

Circuit Breaker built into the lines.  Can be used to shut off current flow. 

 

Bus Bar.  This element works as a node, or point of connection. 

 
Load Element.  The load may be represented in MVA 
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8.6 PSPICE Code 
*EV 400V Charger Prototype 

 

Vac 1 0 SIN(0 340 60)   ;240Vrms 

R1 1 2 100m 

 

Lp 2 0 .212     ;Transformer 

Ls 3 0 1.55 

K Lp Ls .99 

 

.SUBCKT DIOSN 101 102  

DX 101 102 DIO 

.MODEL DIO D(RS=1m BV=10k) 

Cs 103 102 1u IC=0 

Rs 101 103 100 

.ENDS 

 

X1 3 4 DIOSN    ;Rectifier 

X2 0 4 DIOSN 

X3 6 3 DIOSN 

X4 6 0 DIOSN 

 

;Cap 4 6 100m IC=0 

Vb 5 10 400    ;Battery Voltage 

Rb 4 5 1 

Lb 10 6 100m IC=0 

 

.TRAN 2 2 .5 50m UIC 

.PROBE 

.END 
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8.7 Battery Storage Calculation 
 

The following lists the calculations performed in order to find the necessary requirements of the 
feeder and micro-grid storage solutions. 

Feeder Calculations: 
 

Total Displacement Needed 
38 
MWh 

 Total Battery Capacity Needed = Displacement / (Round trip efficiency x 
Depth of discharge) 

  
= 38 MWh/(0.9x0.9x0.75 

  

62.5514403
3 MWh 

 
Rounded -> 63 MWh 

 
    
Batteries needed per unit  

=63/24 
[MWh] 

 
  

2.625 
 

 
Rounded -> 

3 Batteries 
per unit 

 
    
Discharge time per battery 

=7 hours/3 
batteries 

 

  

2.33333333
3 hours per battery 

    Total power from unit =(38 MWh/(0.9*0.9))/7 hours 

  

6.70194003
5 MW 

Useful power from unit 

= 38 
MWh/7 
Hours 

 

  

5.42857142
9 MW 

Power Losses 
1.27336860

7 MW 

    Total energy in each battery =63 MWh / 3 batteries 

  
21 MWh per battery 

Total revolving energy in each 
battery 

= 21 MWh 
*0.75 

 
  

15.75 MWh 

    Size of Battery Unit =88 ft^3/MWh * 63 MWh    
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5544 ft^3 

Weight of battery unit 
 

=14770 lbs /1 MWh * 63 MWh 

  
930510 lbs 

 

    
 
 

Micro-Grid Calculations 
  Total Displacement Needed 38 MWh 

 
   Total Battery Capacity Needed 63 MWh 

 
   # of Units needed per feeder 200 Units 

   Displacement needed per unit =38 MWh / 200 units 

 
190 kWh 

   
   Total Batery Capacity per unit =63 MHw / 200 units 

 
315 kWh 

   
   
Batteries needed per unit  

4 hours max per battery over 7 hours. 2 
batteries, 3.5 hours each 

 
2 Batteries per unit 

   
   
Discharge time per battery 

3.5 
Hours 

 
   
   Total power from unit = (190 kWh/(0.9*0.9))/7 Hours 

 
33.5097 kW 

Useful power from unit =190 kWh / 7 hours 

 
27.14286 kW 

Power Losses 6.366843 kW 

   Total energy in each battery =315 kWh / 2 batteries 

 
157.5 kWh 

Total revolving energy in each battery = 157.5 kWh * 0.75 

 
118.125 kWh 

   Size of Battery Unit =88 ft^3/1 MWh *  1MWH/1000 kWh * 315 
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kwh 

 
27.72 ft^3 

Weight of battery unit =14.8 lbs/1 Kwh * 315 kWh 

 
4662 lbs 

 

  



9 Executive Summary 
 

This Major Qualifying Project shall study an electrical power distribution system feeder in 
conjunction with a predicted EV proliferation. Through data analysis, suggestions and conclusions shall 
be made to allow full power delivery while mitigating the negative effects of the additional load from the 
EV proliferation. As the electric distribution feeder supplies an increasing load due to EV proliferation, 
changes shall need to be implemented to improve distribution system function and lifespan. Through 
further analysis and prediction, a suggested timeline to make distribution system improvements shall be 
made. Recommendations and conclusions shall then be made to mitigate brownouts and blackouts over 
the projected twenty-five-year span, from 2015 to 2040.  A fast, nominal, and slow proliferation of EVs 
was investigated, and a solution was conceived for each scenario. 

The Table below describes the basic assumptions for the project.  Using the data assumptions, 
loading could be accurately predicted and modeled. 

Table 1: Data Assumptions – Peak Demand 

Data Assumptions 

Midpoint for Normal EV Proliferation: 12.5 Years 

Midpoint for Faster EV Proliferation: 6.25 Years 

Midpoint for Slower EV Proliferation: 18.75 Years 

Initial Number of EVs (in Holden): 40 EVs 

Total Number of EVs: * 4000 EVs 

Average Daily Commute (in Miles): 30 Miles (as of July 2015) 
Average EV kWh/100 Miles: ~32 kWh/100 Miles 
Average Daily Charge (in kWh): 9.6 kWh 
Average Cars per Household: ~2.00 
Number of Households in Test Region: 2000 Homes 
Total Number of Homes: 7500 Homes 
MWh Subscription Total: 30 MWh 
MWh Subscription of Test Region: 8 MWh 
MVA Feeder Maximum: 12 MVA 
Total Energy Added to Grid from EVs: * 38.4 MWh 
Phase Angle (Power Factor): 30 
Peak/Off Peak Hours: ** Peak: 8 AM – 9 PM (13 Hours) 

Off Peak: 9 PM – 8 AM (11 Hours) 
Peak-Off Peak % for Evenly Distributed Load: Peak: ~62% 

Off Peak: ~38% 
Peak Hours (Work/Home): Work: 8 AM – 3 PM (7 Hours) 

Home: 3 PM – 9 PM (6 Hours) 
*Extreme worst-case scenario if everyone in test region has an EV 

**Monday through Friday only excluding holidays; weekends and holidays are always off peak hours 



The Equation below describes the proliferation curve, or S-curve, that allowed for a realistic 

assumption of the proliferation of EVs over time.  Through time, it was assumed that the addition of EVs 

will cause a rise in power demand in the form of this linear model. 

 

Equation 1: Modified Logistic Function 

 

Where, 

a = the proliferation rate (unitless) 

XS = the curve’s maximum value (Percent of Total EVs) 

X0 = the initial value of the curve (Percent of Total EVs) 

t = time (in years) 

 

Figure 1 – Logistic Function Used to Model EV Proliferation 

 

Figure 2 below describes the physical layout of the sample feeder tested.  Figure 2 shows the 
lumped loading for one-line diagram purposes, as well as the percentages of the total load that each 
lumped load represents.  Two substations are also tied to the feeder as shown, implying two transformers 
providing power to the feeders.   



 
Figure 2: Annotated GIS Map of the Sample Feeder 

Figure 3 below shows the proliferation curves of three possible proliferation scenarios with the 

addition of a realistic annual energy increase of 0.09% every year to the S-curve models.  Figure 3 below 

shows the model that was primarily used for load analysis and future predictions about what the loading 

would look like over time on the test feeder. 

The Table below describes when the current subscription maximum of 8MW and the feeder 

maximum of 12MVA would be reached on each S-curve proliferation scenario.  With the time limits 

predicted for each proliferation scenario, solutions may now be envisioned for each scenario. 



 

Figure 3 – S-curve Scenarios with Added Predicted Energy Growth 

 

Table 2 – Time to Reach Maximums on the Feeder 

Curve Subscription Max 

(Years) 

Feeder Max 

(Years) 

Normal 7.33 12.86 

Faster 3.93 6.94 

Slower 9.94 18.66 

 

 

 

 

 



For the solution regarding a fast proliferation S-curve, the solution to split the feeder into two 
separate feeders was proposed. Figure 4 below displays the proposed new feeder lines.  Though the figure 
shows two substations, the old feeder consists of the two existing transformers from both substations, 
while the new feeder consists of a new transformer at the newer substation. 

 

Figure 4 – Split Feeder Solution for Fast Proliferation 

The estimated cost of splitting the feeder in two as proposed was estimated to be $2M, including 
parts and labor.  The option for investor financing included a total fixed cost rate of 17%, which includes 
the capital recovery factor, taxes, fixed maintenance, and insurance.  The resulting yearly fixed payment 
for a 20 year span is listed below as the annual fixed cost (AFC). 

𝐴𝐴𝐴 = $2,000,000 ×  17% = $𝟑𝟑𝟑,𝟑𝟑𝟑/𝒚𝒚 

  



The solution regarding the proliferation of EVs at a normal rate, reaching the maximum 
proliferation after 25 years, included battery storage for the whole feeder.  Battery storage may be 
considered for a normal EV proliferation due to the lowering cost of battery storage.  The feeder would 
remain as it were structurally with the addition of lithium battery storage with enough energy capacity to 
be discharging during the peak hours and charging during the off-peak hours.  The effect of this method 
would be a leveled load curve, flattening the daily demand.  The Table below outlines the feeder storage 
solution. 

Table 3: Feeder Storage Solution 

Feeder Storage 

Total unit capacity needed 63 MWh 
Number of batteries per unit 3 Batteries 
Discharge time per battery 2.333 Hours 

Total power from unit 6.70 MW 
Useful power from unit 5.43 MW 

Power losses 1.27 MW 
Total energy in each battery 21 MWh 

Revolving energy in each battery 15.75 MWh 
Size of unit 5544 ft^3 

Weight of unit 930510 lbs. 
 

Figure 5 below shows a one-line diagram of the feeder storage solution with the battery working 
at the peak hour of the highest demand day, maximizing the EV proliferation and the years covered by 
this project.  In this scenario, when the feeder is topped out, the demand can be seen to be below the 
subscription maximum of 8MW, which would be well in the range of normal operation, and thus proving 
the validity of this solution. 



 

Figure 5: PowerWorld model – Peak Power Demand with the Feeder Battery Connected 

 

The solution for the slow proliferation of EVs allows for the most time to act on a solution, 
allowing for the progressive solution including micro-grid battery storage.  Ideally, each 8 to 10 houses 
connected to the same pole transformer would have its own storage battery, taking the load off the feeder 
lines while simultaneously conserving energy coming from the substations.  The Table below outlines the 
micro-grid storage solution. 

Table 4: Micro-Grid Storage Solution 

Micro-Grid Storage 
Battery units needed per 10 houses per feeder 200 units 

Number of batteries per unit 2 Batteries 
Total unit capacity needed 315 kWh 
Discharge time per battery 3.5 Hours 

Total power from unit 33.51 kW 
Useful power from unit 27.14 kW 

Power losses 6.367 KW 
Total energy in each battery 157.5 kWh 

Revolving energy in each battery 118.125 kWh 
Size of unit 27.72 ft^3 

Weight of unit 4662 lbs. 
 



Figure 6 below helps to describe the physical layout of the micro-grid solution.  The maximum 
number of EVs for 10 houses would be 20 EVs, so 2 EVs per house, plus the normal power use at peak 
hours; therefor, 3 loads per house at a total of about 90A per house at peak load. 

Figure 6: All cars charging at peak current draw, battery charging 

The estimated annual fixed cost for the feeder storage and micro-grid storage solution as 
proposed was estimated in the following costs below.  It may at first seem curious as to how the feeder 
storage could be more than the micro-grid storage solution when the cost of installing a similar amount of 
kWh for each solution should likewise be similar.  Due to the number of years allowed before action is 
necessary for the micro-grid storage option, prices for storage are predicted to drop enough to make such 
a difference.  Either way, the cost of splitting the feeder in the first solution was a fraction of the price 
annually.  The main benefit to a storage option would be the ability to level loading, allow for renewable 
energy to be efficiently used in conjunction with the storage, and ultimately lowering utility subscription 
responsibility. 

 

 𝑭𝑭𝑭𝑭𝑭𝒚 𝑺𝑺𝑺𝒚𝑺𝑺𝑭 𝐴𝐴𝐴 = ($2,000,000 +  $11,340,000)  ×  17% = $𝟐,𝟐𝟐𝟐,𝟖𝟑𝟑/𝒚𝒚 

 

𝑴𝑴𝑴𝒚𝑺 − 𝑮𝒚𝑴𝑭 𝑺𝑺𝑺𝒚𝑺𝑺𝑭  𝐴𝐴𝐴 = ($2,000,000 +  $7,245,000)  ×  17% = $𝟏,𝟓𝟐𝟏,𝟐𝟓𝟑/𝒚𝒚 

 

 



The proliferation of EVs as described in this report could be summarized as a likely event 
motivated by the volatility of the petroleum energy market and overall cost.  Petroleum is a finite element, 
and the overall cost of EVs should eventually drop due to developing battery technology and a motor 
assembly with several less parts and required maintenance than a combustion vehicle.  As described 
above, proliferation may be modeled by the S-curve in addition to projected annual electrical energy 
demand growth, and simulated to find the limits of the test feeder.  Each proliferation speed led to a 
different solution that would be possible in the time leading up to the feeder limits.  Each solution had 
specific advantages and disadvantages associated with the solution, and largely depended on the time 
allowed before action must be taken.  The solutions presented were recommended for each proliferation 
timeline, specifically designed to assist a utility company in deciding a course of action given their 
circumstantial experience with EV proliferation.  It is the hope of this project to provide insights to the 
possibilities involved to solve the electrical distribution problem associated with the rapid growth of EV 
ownership. 
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