
Accelerating SRD Simulation on GPU

by

Zhilu Chen

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

by

April 2013

APPROVED:

Professor Xinming Huang, Major Thesis Advisor

Professor Erkan Tüzel

Professor Lifeng Lai

Abstract

Stochastic Rotation Dynamics (SRD) is a particle-based simulation method that

can be used to model complex fluids either in two or three dimensions, which is

very useful in biology and physics study. Although SRD is computationally effi-

cient compared to other simulations, it still takes a long time to run the simulation

when the size of the model is large, e.g. when using a large array of particles to

simulate dense polymers. In some cases, the simulation could take months before

getting the results. Thus, this research focuses on the acceleration of the SRD sim-

ulation by using GPU. GPU acceleration can reduce the simulation time by orders

of magnitude. It is also cost-effective because a GPU costs significantly less than

a computer cluster. Compute Unified Device Architecture (CUDA) programming

makes it possible to parallelize the program to run on hundreds or thousands of

thread processors on GPU. The program is divided into many concurrent threads.

In addition, several kernel functions are used for data synchronization. The speedup

of GPU acceleration is varied for different parameters of the simulation program,

such as size of the model, density of the particles, formation of polymers, and above

all the complexity of the algorithm itself. Compared to the CPU version, it is about

10 times speedup for the particle simulation and up to 50 times speedup for poly-

mers. Further performance improvement can be achieved by using multiple GPUs

and code optimization.

Acknowledgements

I would like to express my gratitude to my advisor, Professor Xinming Huang.

He gave me the opportunity to do the research and guided me in my research.

Thanks to Professor Erkan Tüzel and James Kingsley for sharing the ideas of

SRD simulation with me. This thesis would not exist without their help and insight

of the physical model.

Thanks to all my friends and my family for giving me the courage and confidence

to solve all the problems.

i

Contents

1 Introduction 1

2 SRD Method 3

2.1 SRD procedure . 3

2.2 Polymers . 6

3 CUDA 9

3.1 CUDA GPU overview . 9

3.2 Global memory and shared memory 10

3.3 Kernel functions . 12

3.4 Avoiding hazards . 13

4 GPU Approach 17

4.1 Initializing the simulation . 17

4.2 SRD kernels . 18

4.3 Polymer kernels . 21

4.4 Lennard-Jones algorithm . 23

4.5 Finalizing the simulation . 25

4.6 Multi-GPU implementation . 26

ii

5 Performance 29

5.1 Evaluation setup . 29

5.2 SRD performance . 29

5.3 Performance of polymer simulation 32

5.4 Performance with Lennard-Jones algorithm included 33

5.5 Multi-GPU performance . 34

6 Conclusions 37

iii

List of Figures

2.1 Particles in the grid with random velocities 4

2.2 Modeling a polymer as an array of particles in the grid 6

2.3 Example of forces between node particles from different polymers . . 7

2.4 Example of relationship between force f and distance r when ε = 50

and σ = 1 . 8

3.1 Memory usage and communications between CPU and GPU 11

3.2 Blocks and threads in a kernel function 12

3.3 Multi-thread causes incorrect result 14

3.4 Using atomic operations to get correct result 15

4.1 Flowchart of SRD . 20

4.2 Flowchart of polymer simulation . 23

4.3 Flowchart of polymer simulation with Lennard-Jones algorithm in-

cluded . 26

5.1 Speedup of GPU over CPU with different SRD grid size 30

5.2 Speedup of GPU over CPU for SRD with different number of particles

in each grid . 31

iv

List of Tables

5.1 Speedup of GPU over CPU in 3D grids 30

5.2 Speedup of GPU over CPU with polymers added in grid with size 1282 32

5.3 Speedup of GPU over CPU with polymers added in grid with size 2562 32

5.4 Speedup of GPU over CPU with or without Lennard-Jones algorithm 33

5.5 Speedup of GPU over CPU with Lennard-Jones algorithm included

in grid with size 1282 . 34

5.6 Execution time of SRD in milliseconds for 1000 time steps 34

5.7 Execution time of SRD with polymers in milliseconds for 1000 time

steps . 35

5.8 Execution time with Lennard-Jones in milliseconds for 10 time steps . 35

v

Chapter 1

Introduction

Simulations are widely used in research and applications. In many cases, simula-

tions are computationally expensive and thus require powerful computer clusters

with expensive hardware. Even with these powerful computation resources, some

simulations still take a long time like months to be completed. It is obvious that

the optimized algorithm is vital to the simulations.

In this thesis we focus on modeling the particle-based fluid either in 2-dimension

or 3-dimentsion, which is very useful in biology and physics area. In the real word,

the particles in the fluid move randomly and affect each other based on Newton’s law.

Though it is possible to compute the interaction between every two particles and

track the movement of each particle, we wouldn’t want to do this because it requires

too much computation and thus takes too long to run the simulations. SRD is a

simulation method that can be used to handle such situations. It is computationally

inexpensive compared to the traditional methods and therefore it saves time and

money to run the simulation. Even though, it takes a long time to get the results

in many cases depending on the simulation parameters. It would be great if we can

accelerate the simulation.

1

Compute Unified Device Architecture (CUDA) programming makes it possible

to parallelize the program to run on multiple cores on GPU. The program is divided

into small parts and run in many threads independently and simultaneously. Thus

it is possible to accelerate the simulation by parallelizing the computing tasks on a

GPU instead of using expensive computer clusters.

Charpter 2 presents the idea of SRD method as well as polymers modeling.

Charpter 3 introduces some basic concepts, procedures and techniques of CUDA

programming using GPUs. Charpter 4 explains how we implement the SRD simu-

lation on CUDA GPUs in details. Charpter 5 shows the evaluation of our code with

different parameters and in different scenarios. Chapter 6 concludes our achieve-

ments and possible improvement in the work of future.

2

Chapter 2

SRD Method

2.1 SRD procedure

The SRD simulation method was originally proposed by Malevanets and Kapral

in 1999 [1] and was further developed by several groups [2, 3, 4]. In this method,

the fluid is divided into several square boxes with length l. With x boxes in one

dimension, there are x2 boxes in total, which is the grid size. There are n particles

per box and thus there are nx2 particles in the grid. Each particle has mass m,

velocity ~v and coordinates (x, y) in the grid. We can calculate which box a particle

belongs to using its coordinates. Fig. 2.1 is an example that illustrates how the grid

is divided and how the particles are distributed randomly in the grid with random

velocities.

For every time step, the particles within the boxes move and collide with each

other. This method is very efficient compared to traditional methods. There is no

need to track every particle to see if it collides with another one. Instead, we only

compute the momenta of the particles within every box. The coordinates of the

3

Figure 2.1: Particles in the grid with random velocities

particles are updated by

x(t+4t) = x(t) + vx4t (2.1)

and

y(t+4t) = y(t) + vy4t (2.2)

where vx and vy is the projection of ~v on x-axis and y-axis, respectively. For the

collision step, we calculate the total momenta of every box and count how many

particles are there in each box. The mean momentum will be

~U = ~I/(nm) (2.3)

where n is the number of particles in the box, m is the mass of a particle, ~I is the

total momenta Then a rotation matrix and a rotation direction for each box are

4

generated for each box. The rotation matrix is

R =

 Wxx Wxy

Wyx Wyy

 =

 cosα ± sinα

∓ sinα cosα

 (2.4)

where α is the rotation angle. Thus the velocities of the particles can be updated

using the equations

v′ = v − ~U/m (2.5)

4v =

 4vx
4vy

 =

 Wxx Wxy

Wyx Wyy

×
 v′x

v′y

 (2.6)

and

vnew = ~U/m+4v (2.7)

where v′x and v′y are the x and y components of v′. The momenta and energy conserve

in every box. The total energy in each box is

E =
1

2
m

∑
v2i (2.8)

where vi is the velocity of the ith particle in the box. The energy after collision

is

Enew =
1

2
m

∑
[~U/m+R(vi − ~U/m)]2 (2.9)

and we have E = Enew. In the simulation we also need to shift the grid at

every time step. We do this by shifting the coordinates of all the particles so that

the boundary conditions stay the same. In the shifting step as well as the moving

step, it is possible that the particles are shifted or move out of the grid. We let the

particles that are out of the grid enter from the opposite side using 2D wrap around.

5

2.2 Polymers

In the real word, polymers in the fluid cannot be modeled as particles. We model a

polymer as an array of particles connected together. These points are nodes of the

polymers and can be considered as particles mentioned before. Such particles have

forces between each other so that they will not go too near nor too far away, like

a set of springs. Thus the polymer stays in a whole. We also need to compute the

bending force to adjust the velocities of the node particles. Due to the stretching

energy and bending energy, the total kinetic energy no longer conserves. However,

it is stay in a small range as the simulation runs and it is stable. Fig. 2.2 gives an

example of how we model a polymer in the grid.

Figure 2.2: Modeling a polymer as an array of particles in the grid

The internal movements of the node particles caused by such forces are calculated

using much smaller time steps. For example, for one of the iterations of the SRD,

the movement of the particles of the polymer may be computed hundreds of times.

The reason to do so is that the time step for SRD simulation is too large to simulate

the movement of the node particles.

6

To make sure the polymers do not cross, we apply Lennard-Jones algorithm [5].

In addition to the forces applied to the node particles mentioned above, we compare

every two node particles from different polymers. If they are close enough, we apply

forces to both of them to make sure the polymers do not cross. Fig. 2.3 illustrates

the forces between polymers.

Figure 2.3: Example of forces between node particles from different polymers

If two node particles are close enough, the force can be expressed as:

f(r) = 24ε(
2σ12

r11
− σ6

r5
) (2.10)

where r is the distance between two node particles and ε, σ are preseted physical

parameters. The distance r is in unit of the box size a where a = 1. The force f is

in unit of ma
4t

. If the value of r reaches a threshhold, then there are no forces applied

to these node particles, which means f(r) = 0. Fig. 2.4 gives an example of the

relationship between force f and distance r when ε = 50 and σ = 1.

7

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024
0

2

4

6

8

10

12
x 10

24

Distance r

F
or

ce
 f

Figure 2.4: Example of relationship between force f and distance r when ε = 50
and σ = 1

8

Chapter 3

CUDA

3.1 CUDA GPU overview

One of the most significant advancements in computer technologies of the past

decade is General Purpose computing on GPUs (GPGPU). From a computer ar-

chitecture prospective, GPUs have evolved into massively parallel, multithreaded,

many-core processor system with tremendous computational power. Owing to the

introduction of Compute Unified Device Architecture (CUDA) programming paradigm,

a vast of computation problems outside of the graphics domain have benefited from

the superior performance of GPUs. Among the examples of the GPGPU comput-

ing initiative are FFT, data mining, molecular dynamic simulation and many other

science and engineering applications. Parallelism is accomplished through the use

of threads on the GPU. CUDA has the ability to run the same kernel concurrently

through many threads on a large number of cores. Picture a latest (as of March,

2013) GPU card, Tesla K20, which has 2496 cores. With the Compute Capabil-

ity 3.5, each core can provide up to 1,024 threads per block and the maximum

number of blocks is 231 − 1. Therefore, there is a possibility to run upwards of 2

9

trillion instances of a single kernel per GPU in a system. Spanning this number

across multiple GPUs, it is easy to see how parallelism prevails and allows for faster

processing. This type of parallelism is known as single instruction multiple data

(SIMD). CUDA devices are also capable of running thousands of copies of small

programs simultaneously as well.

3.2 Global memory and shared memory

Global memory is the memory used by GPU and it is also called device memory.

The memory used by CPU is called host memory. Data can be copied between

device memory and host memory. Thus we can make CPU and GPU work together

to solve problems. For example, we do initialization by CPU and in host memory.

Then the data is copied from host memory to global memory and the GPU does

the computation in parallel. After the computation is done by GPU, we copy the

updated data from global memory back to host memory. The CPU can then do the

rest work such as displaying results. However, copying data between CPU and GPU

is often expensive compared to the computation time. We must avoid copying data

between them frequently in order to reduce the overall computing time. All threads

in all blocks can access the global memory. However, the access time is hundreds

of cycles which are too long compared to that of shared memory and registers.

Thus, accessing data in global memory often becomes the bottleneck of a program,

especially for the programs that are simple and don’t have enough computation time

to hide the delay of accessing global memory.

The advantage of the global memory is its abundant capacity. The size of global

memory is often several GB, which is sufficient to store anything the program uses.

But it is slow compared to the shared memory and registers.

10

Shared memory is the memory used by a block, but none out of that. It can

be used by all threads within the block. Shared memory cannot communicate with

host memory but can communicate with global memory. The shared memory is

very small compared to global memory, but it is very fast: it only takes several

cycles to access the data in shared memory. Shared memories in different stream

multiprocessors cannot communicate directly. They can only communicate with

each other through global memory, i.e., copying data between global memories. To

maximize the performance, we store the data shared by the threads in the same

block in shared memory to avoid accessing global memory. Fig. 3.1 illustrates the

usage and communications of host memory, device memory and shared memory.

Figure 3.1: Memory usage and communications between CPU and GPU

11

3.3 Kernel functions

The code that runs on GPU is launched by kernel functions. The kernel function

decides how the code is run in parallel. It decides how many blocks are there and

how many threads per block. The code in each thread is the same, but uses different

indexes to deal with different data. The local variables for each thread are stored

in the thread memory which has a small size but high speed.

The blocks are distributed over the stream processors. Each stream multiproces-

sor processes a block at the same time and the threads in a block are run in parallel.

The maximal number of active blocks and threads allowed in a stream multiproces-

sor are varying among different models of GPUs. Usually the more powerful the

GPU is, the more threads and blocks can run in parallel. Fig. 3.2 shows the blocks

and threads in a kernel function.

Figure 3.2: Blocks and threads in a kernel function

We must note that there is no automatic synchronization between host and

12

device when launch a kernel function on GPU. That means, the host launches a

kernel function and continues to execute the next line of the code. It does not

wait for the completion of the kernel function. If we need to use the results of

that kernel function, we can use cudaThreadSynchronize() function to synchronize

between host and device. If we use cudaMemcpy() function in the host program,

it also synchronizes between host and device. In this case, there is no need to use

cudaThreadSynchronize() function.

3.4 Avoiding hazards

Since the code runs in parallel, it may has problems if we don’t deal with the data

carefully. For example, if different threads want to update the same variable in global

memory, problems may occur because we cannot ensure the order of the execution of

the threads. Suppose we have two threads calculation a simply expression n = n+1

and update the value in global memory. It is easy to see that the final result is n+2.

However, if one thread read the value n before the other thread finish updating the

value, both threads will write the same value n + 1 to global memory, which is

incorrect. Fig. 3.3 shows such situation with incorrect result.

To solve this problem, we use atomic operations of CUDA. The atomic operations

ensure that the execution of one thread always start after another atomic operation

is finished. In the case that we have two threads calculating n = n + 1 by atomic

operations, the first thread reads the value of n and the other thread waits there until

the first thread completes its calculation and update the value to n + 1. Then the

second thread reads the updated value which is n+ 1, and compute the final result

n + 2, which is correct. However, it is obvious that using atomic operations affects

the performance of the program because there are threads doing nothing but waiting

13

Figure 3.3: Multi-thread causes incorrect result

there and that is a waste of resources. Therefore we only use atomic operations when

it is necessary. Atomic operations are only supported by the GPUs with computation

capability of 1.2 or higher. In addition, the atomic operations only support floating-

point precision but often our code needs double precision operations. We can use

the function in [6] to build the double precision atomic-add function. Fig. 3.4 shows

how the atomic operations get the correct result.

d e v i c e double atomicAdd (double∗ address , double va l)

{

unsigned long long int∗ a dd r e s s a s u l l = (unsigned long long

int ∗) address ;

unsigned long long int o ld = ∗ add r e s s a s u l l , assumed ;

do

{

assumed = old ;

o ld = atomicCAS(add r e s s a s u l l , assumed ,

d oub l e a s l o ng l ong (va l + l ong l ong a s doub l e (

14

assumed))) ;

}

while (assumed != old) ;

return l o n g l ong a s doub l e (o ld) ;

}

Figure 3.4: Using atomic operations to get correct result

Another type of hazard is due to the dependence of the data or program. For

example, a block of threads run in parallel to compute a for-loop and the results

require all the threads complete their tasks. Once it’s done, all the threads use the

results of that for loop to compute another loop. If we don’t do anything, some

threads could enter the second loop while other threads are still working on the

first loop, which means the results of first loop have not been available. To ensure

all the threads have complete their tasks before entering the second loop, we must

synchronize all the threads before the second loop. Thus the threads that have

15

completed the computation will wait until all threads have finished the first loop

and then all the threads enters the second loop together, with the results of the first

loop ready to use. It is similar with the atomic operation, synchronization affect

the performance as well. We would like to reduce the synchronization if possible.

Moreover, threads can only be synchronized within the same block. There is no way

to synchronize the threads in different blocks, and there is no way to synchronize

multiple blocks. If synchronization among blocks is required, we have to terminate

the kernel function and then launch a new one, which affects the performance.

16

Chapter 4

GPU Approach

4.1 Initializing the simulation

We use CPU host function for initialization, because the initial function is executed

only once and its execution time is much shorter compared to the actual simulation

time. The variables such as velocities that are vectors are in Euclidean space with x

axis and y axis for two dimensional simulations and the additional z axis for three

dimensional simulations. For simplicity purpose, we mainly discuss two dimensional

cases here and it is easy to extend the approach to three dimensional simulations.

The field is divided into boxes. The box structure has the following properties:

momenta along x axis direction, momenta along y axis direction, number of particles

inside the box and the random rotation variables along x axis direction and y axis

direction. Each box has multiple particles. The particle structure has the following

properties: coordinates in the field, velocities along x axis direction and y axis

direction, mass of the particle and variables that record the number of particles

moved out of the boundaries. We use an array to store the particles and another

array to store the polymers. Although each polymer is an array of particles, we

17

still use a one-dimensional array to store all the particles for all polymers for the

convenience of GPU implementation:

i = ipoly × n+ ipart (4.1)

where i is the index of the particle in the one-dimensional array, n is the number of

node particles in a polymer, ipoly is the index of the polymer and ipart is its index in

that polymer.

Upon initialization, the arrays of boxes, particles and polymers are stored in the

host memory. Then we copy these arrays to global memory using cudaMemcpy()

function. The data stays in the global memory until the simulation is done and it

avoids copying between host memory and global memory which is time consuming.

4.2 SRD kernels

The simulation loop is outside the kernel because each time step, or iteration, de-

pends on the results of previous iteration, such as velocities and coordinates. Thus

the simulation loop are sequential, not in parallel.

The reason why we use 4 kernels instead of a single kernel is that we need to

synchronize the code. A later step may require the results of the previous steps.

For example, we must reset every box before we add the momenta to it. Such

dependences must be satisfied, or the results would be incorrect. It has no problem

on CPU because all the code is executed sequentially. However, we cannot guarantee

that the code execution is in sequential order on the GPU because it is divided into

many blocks and those blocks run in parallel. If one block completes resetting the

box and move on to add momenta to a box that haven’t been reset by another block,

problems will occur. All momenta that are added to the box prior to the reset action

18

will be lost. In the other hand, CUDA only support threads synchronization within

a block, it does not support synchronization among blocks. Since we have many

blocks, we have to terminate a kernel, synchronize between host and device, then

launch a new kernel. Only then can we make sure the dependences are satisfied,

though it slows down the execution speed a little bit.

For each iteration of particle simulation, the following 4 kernel functions are

launched. The first one is kernel ResetBoxes(). It runs as one box per thread.

For each box, it resets the mean momentum to zero and counts the number of

particles. The second one is kernel SumMomenta(). It runs as one particle per

thread. For each particle, the thread function decides which box the particle belongs

to, according to its position and the box-shift value. Then it adds the momenta to

that box and the number of particles of that box is increased by 1 using double-

precision atomic operation. The following one is kernel DivideBoxes(). It runs as

one box per thread. For each box, it calculates the mean momentum of the ith box

~ui = ~Ii/ci (4.2)

where ~Ii is the total momenta and ci is the counted number of particles of the

ith box. It generates a random rotation direction r for the rotation matrix and its

value is 1 or -1. Finally we have kernel Collide Move () function. We combine the

collision step and moving step into a single kernel function to save the synchronizing

time and launching time. It is possible to do that for these two steps because one of

the step is followed by another and they have no dependency. It also because that

both of them loop by particles and that means they have the same number of threads

if our kernel function runs as one particle per thread. For each particle, it decide

which box it belongs to. Then it updates the velocities of the particles according

19

to the mean momentum and the rotation matrix of that box. The particles move

at each time step. If they move across the boundary, we let them enter from the

opposite side using 2D wrap around. Fig. 4.1 shows the procedure of our code to

run SRD simulation with CUDA.

Figure 4.1: Flowchart of SRD

To compile our CUDA code on Linux, we use the following command:

nvcc f l u i d s im . cu −o f l u i d s im −arch compute 20 −code sm 20 −I / usr / l o c a l

/cuda/ inc lude −L /usr / l o c a l /cuda/ l i b 6 4

20

where compute 20 and sm 20 indicates that we are using computing capability

2.0, which support most of the important operations we are using in CUDA.

4.3 Polymer kernels

A polymer is considered an array of particles. Thus the polymers can use similar pro-

cedure of the particles. However, we need to make sure that they are linked together

with several nodes. By calculating the forces between the particles in a polymer, we

can adjust the velocities and thus the momenta and positions of them. Therefore,

Kernel Collide Move () is modified to Kernel Collide() and Kernel Move(). Ker-

nel Collide() works for both particles and polymers. Kernel Move() works only for

particles. A new kernel function called Kernel MolecularDynamics() is created for

polymers to replace Kernel Move(). To speedup this kernel and achieve effective

synchronization, we assign one block to deal with each polymer. So we can syn-

chronize inside the block without terminating the kernel and that is more efficient.

Shared memory is used for communication among threads within the same block.

By using shared memories, the particles that are within the same polymer can com-

municate with each other. The node particles used are read from global memory

and stored in shared memory for efficient execution.

As we mentioned before, the time step for calculating forces and simulate the

movement of the node particles are much smaller than SRD time step. For every

small time step, the forces of every two node particles are calculated using device

function calcForce(). Instead of writing the calcForce inside the kernel function, we

use this device function to simplify the code because we need to call it several times

within each time step. In order to calculate the forces, we first compute the distances

between every two particles. Each thread has access to the node particles handled

21

by other threads because the node particles are stored in shared memory, and once

we have the results we also store them in the shared memory so that all threads in

the same block have access to them to compute forces. Then we use syncthreads()

to synchronize all the threads to make sure the all the distances have been calculated

and ready to be used in shared memory. Each node has connections at both ends,

except for the head node and tail node. Each thread computes the forces, including

spring forces and bending forces, based on the distances between the node itself and

connected nodes. The way of the spring forces calculated is similar to calculating

the springe forces:

F = k × (d− l) (4.3)

where d is distance and l is the original length with zero forces. The bending forces

are calculated using the distances between the two nodes on each side. Once the

spring forces and bending forces are calculated, the device function returns the

summary of the spring forces and the bending forces to the kernel function.

At the beginning of the small time step, we call the device function calcForce()

to compute the forces to move the node particles slightly:

4s = τv +
1

2

f

m
τ 2 (4.4)

where m is the mass of the node particle and τ is the small time step. After

synchronizing the threads in the same block with syncthreads(), we call the device

function calcForce() again to calculate the updated forces for new positions of all

the node particles. Once we have the updated forces, we also update the velocities

of every node particle:

4v =
1

2
τ
fnew + fold

m
(4.5)

22

where m is the mass of the node particle and τ is the small time step. At last, update

the polymers in global memory and that ends our kernel molecularDynamics()

function. Fig. 4.2 illustrates the polymer kernels in the simulation.

Figure 4.2: Flowchart of polymer simulation

4.4 Lennard-Jones algorithm

The kernel molecularDynamics() function only concerns the interactions between

the node particles in the same polymer. However, there are also interactions between

different polymers. One problem we need to deal with is that the polymers should

not cross because they are modeled as arrays of particles linked together but not

independent particles. To make sure that the polymers do not cross, we need to

check every two node particles in different polymers after calcForce() function,

using the same small time step. Since we need the data of different polymers every

small time step, the synchronization is required to avoid hazards. However, we use

one block to handle one polymer in our kernel MolecularDynamics() function, it is

impossible to synchronize the blocks without terminating the kernel function. As

a result, we convert the kernel MolecularDynamics() into several kernel functions

and use host loop to handle the small time step, and we use kernel Lennard Jones(

23

) function to make sure the polymers do not cross.

This function checks every two node particles from different polymers. In other

to assign the computation task to each thread in each block, we need to decide which

particle in which polymer is compared to another. We do not want to do redundant

computation to compare the same pair of node particles more than once, we need to

carefully decide which thread in which block to compare which pair of node particles.

The following C++ code snippet shows general approach to determine the index of

each particle in different polymers using loops, where POLY COUNT is the number

of node particles per polymer, n is the index of one node particles and m is the index

of another.

for (n=0;n<POLYCOUNT; n++)

{

for (m=n+1;m<POLYCOUNT;m++)

{

l e nna rd j one s (m, n) ;

}

}

To maximize the performance of our kernel function, we unroll the loops to one

dimension as well as the thread id. The thread id is calculated like:

tid = blockIdx.x× blockDim.x+ threadIdx.x (4.6)

where tid is the thread id, blockIdx.x is the block id, blockDim.x is the number

of threads per block and threadIdx.x is the index of the thread in the block. We

name the index of the first polymer as poly0 and the other as poly1. The name of

the index of the node particle in poly0 is part0, when part1 is the index of that in

poly1. Then we compute them as the following code.

24

int po l y t i d=t i d /(POLY PARTCOUNT∗POLY PARTCOUNT) ;

int pa r t t i d=t i d%(POLY PARTCOUNT∗POLY PARTCOUNT) ;

int part0=pa r t t i d /POLY PARTCOUNT;

int part1=pa r t t i d%POLY PARTCOUNT;

int n=POLYCOUNT;

int poly0 , poly1 ;

for (int i=n−1; i >0; i−−)

{

i f (po ly t id <(n−1+i) ∗(n−i) /2)

{

poly0=n−i −1;

poly1=poly0+po ly t id −(n+i) ∗poly0 /2+1;

break ;

}

}

Once the tasks are evenly distributed, each thread checks its pair of node particles

to see if they are close enough to apply forces to them. If so, we calculate the forces

and use double-precision atomic operations to update the forces because they may

also be updated by other threads. Since kernel Lennard Jones() function is called

at every small time step, we continue to run kernel molecularDynamics() function

for next small steps. Fig. 4.3 illustrates the polymer kernels with Lennard-Jones

algorithm included in the simulation.

4.5 Finalizing the simulation

When the simulation is completed, we need to verify the results. Fisrt, we copy the

data from device memory back to host memory using cudaMemcpy(). Then we

run a function to compute the total momenta and energy of all the particles as well

25

Figure 4.3: Flowchart of polymer simulation with Lennard-Jones algorithm included

as polymers to verify energy and momentum conservations. If there are polymers

added, the energy may be a little different from the original energy because of the

stretching energy in the polymers. Finally, we release the occupied memory on GPU

using cudaFree() function.

4.6 Multi-GPU implementation

Our server contains 2 NVidia Tesla C2050 (1.15 GHz, 448 cores) GPUs with Com-

pute Capability 2.0 and we have only used one of them so far. Then we are thinking

26

about using all of them to further accelerate our simulation. There are two types

of approaches. One is to run two simulations on these two GPUs respectively but

simultaneously. The other one is to run one simulation with two GPUs working

together to share the burden.

We decide to do two simulations on these two GPUs respectively. There are

three reasons. First, the simulation code has data dependency. In our single-GPU

implementation, we are forced to split the kernels to do synchronization in order

to satisfy these depending conditions. We terminate a kernel to make sure that all

operations have been done in that kernel, and then launch a new kernel to do new

operations. Such synchronization is inefficient but it has to be done for accuracy. In

multiple-GPU implementation, synchronizing is even harder. Since we have multiple

GPUs, we need to synchronize data among GPUs. This is inefficient just like the way

we split the kernels. For example, a kernel function is done on GPU A but not done

on GPU B, our code must wait there until it is done on GPU B, then both GPUs

start to launch a new kernel function. Second, we have a vital problem that must

be solved if we want to do that way: communication between GPUs. Each GPU

has its own global memory and can only access its own global memory. How can

the GPUs communicate with each other to know their status, and use the data or

results computed by other GPUs? We can use OpenMP to keep track of the kernel

functions on different GPUs and synchronize them [7]. For data communication,

the most intuitive method is to copy the data from the global memories of all GPUs

to host memory, and then copy the data that is useful back to global memories.

Thus, the data from all the GPUs is exchanged. However, copying data between

device memory and host memory is extremely slow. The speedup will be heavily

degraded. Third, though we have so many threads and thus a lot of computational

tasks to be parallelized to achieve good speedup, the computation task for each

27

thread is relatively small. That is to say, the computation is cheap for GPU and

the advantage of our code is parallelism and our bottle neck is synchronization. Our

code will probably even slower than the CPU version if we cannot hide the latency

of communication between multiple GPUs. Thus this approach is not an option for

us.

In the real world, we often need to run a simulation many times to obtain

enough results for static analysis. Running multiple simulations on multiple GPUs

respectively is a better choice. It is also much easier because there is no need to

concern communications and synchronization between GPUs. What we do is to

create multiple threads on CPU by OpenMP and each thread run a simulation

on a GPU. In our case, we create two threads by using omp set num threads()

function in OpenMP. Each thread use one GPU by using omp get thread num() in

OpenMP and cudaSetDevice() in CUDA. Then each thread initializes the data on

host memory and copy it to their device memory respectively.

To compile our CUDA code on Linux, we use the following command:

nvcc −Xcompiler −fopenmp −lgomp f l u i d s im . cu −o f l u i d s im −arch

compute 20 −code sm 20 −I / usr / l o c a l /cuda/ i n c l ud e s −L /usr / l o c a l /

cuda/ l i b 6 4

where “-Xcompiler -fopenmp -lgomp” is added because we are using OpenMP.

28

Chapter 5

Performance

5.1 Evaluation setup

During our experiment, we measure the computing performance on the server with

two Intel Xeon X5650 CPUs (2.66GHZ, 12 cores, hyperthread) and two nVidia Tesla

C2050 (1.15 GHz, 448 cores) GPUs with Compute Capability 2.0. Initializing and

finalizing time is ignored in both CPU and GPU evaluations. We use clock() func-

tion without OpenMP and omp get wtime() with OpenMP. The omp get wtime(

) function is more accurate than clock() function, but both of them are capable of

estimating the execution time.

5.2 SRD performance

The speedup of our CUDA code varies for different parameters in the simulation.

The number of boxes in our 2D simulation and the number of particles in each box

are significant. All computations use double-precision floating-point. One thousand

iterations are performed. Fig. 5.1 shows the execution time of CPU over GPU,

which is essentially the speedup factor of GPU over CPU, for the simulations with

29

different grid size and each grid initially contains 9 particles. So the largest case of

500-by-500 grid simulates the movement of a total of 2.25 million particles. Fig. 5.2

shows the same performance comparison for a fixed grid size of 128-by-128 while

varying the number of particles in each grid. The largest case here is about 4.92

million particles in total. Since the GPU has a large, high-speed (GDDR5) memory,

much larger simulation case can be executed on the GPU without much performance

degradation. From both figures, it shows 10x speedup is readily achievable by using

a single GPU when compared with two 6-core CPUs. Further speedup is achievable

through using multiple GPUs and also by optimization of the simulation code.

50 100 150 200 250 300 350 400 450 500 550
4

5

6

7

8

9

10

11

12

13

Number of boxes in each dimension: x = Width = Height

y
=

 T
im

e C
P

U
 /

T
im

e G
P

U

Figure 5.1: Speedup of GPU over CPU with different SRD grid size

We also tested our code in three dimensional cases. Table 5.1 shows the speedup

in 3D grids. We can see that the performance is similar to that of 2D grids.

Table 5.1: Speedup of GPU over CPU in 3D grids

hhhhhhhhhhhhhhhhhhParticles per box
Grid size

163 323 643

5 5.03 9.42 12.70
25 5.50 8.42 7.71

The total number of the particles increases rapidly with the grid size and thus

30

0 50 100 150 200 250 300
7

7.5

8

8.5

9

9.5

10

Number of particles per box: x

y
=

 T
im

e C
P

U
 /

T
im

e G
P

U

Figure 5.2: Speedup of GPU over CPU for SRD with different number of particles
in each grid

we need to pay attention to the maximum number of blocks we can have in a

kernel function. Since our Tesla C2050 has compute capability of 2.0, the maximum

number of x-dimension of thread blocks is 65535, which is 216−1. With 512 threads

in one block, the maximum number of threads we can have is approximately 225 in

total. If the grid size is N3 and we have x particles in one box, the total number

of particles will be xN3 and this number should be less than 29 × (216 − 1). This

is because the number of particles is much larger than that of boxes, and in some

of the kernel functions we use one thread for each particle. In order to process

larger grid with more particles in one box, we may let one thread to handle several

particles with a loop inside the kernel. However, such loops themselves are not run

in parallel, so there will be no contributions of these additional particles.

Some new GPUs have compute capability of 3.0 or higher, and the maximum

number of x-dimension of thread blocks is 232−1, which is incredibly large and thus

we can simulate a larger grid with more particles per box.

31

5.3 Performance of polymer simulation

The speedup depends on several parameters in the simulation. Besides those we

mentioned before, the number of polymers and number of particles per polymer are

also important. We test it in 2D grid with different number of polymers added and

with different number of node particles per polymer. The execution time is much

longer on both CPU and GPU, but the speedup is much higher. Table 5.2 shows the

speedup with 5 particles per box and grid size 1282. Table 5.3 shows the speedup

with 5 particles per box and grid size 2562.We can see that the speedup increases

with the number of polymers and number of node particles per polymer.

Table 5.2: Speedup of GPU over CPU with polymers added in grid with size 1282

hhhhhhhhhhhhhhhhhhhPolymers

Particles per polymer
32 64 128 256 512

1 4.95 5.20 5.38 6.43 7.29
10 7.47 9.14 13.90 23.57 35.92
20 7.07 10.39 16.37 29.87 44.82
30 6.61 10.83 18.18 32.40 49.17
40 8.06 13.19 24.11 41.39 62.45
50 7.47 12.74 23.70 42.02 63.25

Table 5.3: Speedup of GPU over CPU with polymers added in grid with size 2562

hhhhhhhhhhhhhhhhhhhPolymers

Particles per polymer
32 64 128 256 512

1 9.55 9.61 9.84 10.09 10.10
10 10.61 11.77 13.98 17.63 24.88
20 9.68 11.81 15.63 22.63 32.66
30 9.43 11.69 16.61 25.68 37.76
40 10.17 13.31 19.92 31.92 47.89
50 9.55 13.37 20.19 32.77 49.36

Since the computation tasks of molecularDynamics() are intensive and it is well

parallelized on GPU, the speedup result is impressive.

32

5.4 Performance with Lennard-Jones algorithm

included

Because of that we splitting a kernel function into several kernel functions to perform

forced synchronization, the performance of our code is highly affected. It is easy to

see this from Table 5.4. There is only one polymer in the grid, which means that

there is no need to use Lennard-Jones algorithm. The grid size is 1282 and there

are 5 particles in one box.

Table 5.4: Speedup of GPU over CPU with or without Lennard-Jones algorithm

hhhhhhhhhhhhhhhhhhhhhhSplitting kernels

Particles per polymer
32 64 128

No 9.55 9.61 9.84
Yes 0.64 0.64 0.70

On the other hand, there are too much computation in Kernel Lennard Jones(

) function because we need to compare every two node particles between poly-

mers. With the number of polymers getting larger, the execution time of Ker-

nel Lennard Jones() function grows exponentially. However, Lennard Jones()

function costs too much computation and it is extremely slow on CPU. It is re-

sponsible for over 90 percent of the computing time on both CPU and GPU. With

our parallelized implementation of comparing all the pairs of node particles between

polymers, we are able to achieve significant speedup.

Table 5.5 shows the speedup with 5 particles per box and grid size 1282.We can

see that the performance is increasing with the number of polymers and number of

node particles per polymer.

Compared with Table 5.2 which has the same grid size and number of particles

per box, we can see that the speedup is affected a little but still achieve satisfying

33

Table 5.5: Speedup of GPU over CPU with Lennard-Jones algorithm included in
grid with size 1282

hhhhhhhhhhhhhhhhhhhPolymers

Particles per polymer
32 64 128

1 0.64 0.64 0.70
10 5.11 15.51 36.78
20 15.94 34.86 59.00
30 25.69 43.09 55.00
40 32.80 47.86 48.31
50 36.54 43.75 43.75

results. With the speedup is from 5 up to 43, the simulation is highly accelerated.

5.5 Multi-GPU performance

We use OpenMP along with CUDA to implement two simultaneous simulations on

two GPUs of our server.

First we test our code for the SRD simulation without polymers. Table 5.6 shows

the execution time with different number of particles per box in a grid with size 1282.

We can see that the execution time of single GPU and two GPU is almost the same,

which means that we are able to double the efficiency by using two GPUs.

Table 5.6: Execution time of SRD in milliseconds for 1000 time steps

hhhhhhhhhhhhhhhhhhhhhParticles

Single, multi-GPU or CPU
Single GPU0 GPU1 CPU

5 971.143 976.86 983.418 7460
10 1763.92 1765.74 1779.98 11490
20 3353.16 3358.31 3371.52 29640
30 4953.29 4940.11 4952.81 44600
40 6532.66 6531.79 6542.54 59600
50 8132.45 8124.48 8130.08 74600

Then we test it with polymers added. Table 5.7 shows the execution time with 5

34

particles per box, 32 node particles per polymer and grid size 1282.We can see that

the execution time of single GPU and two GPU is almost the same, which means

that we are able to double the efficiency by using two GPUs.

Table 5.7: Execution time of SRD with polymers in milliseconds for 1000 time steps

hhhhhhhhhhhhhhhhhhhhhPolymers

Single, multi-GPU or CPU
Single GPU0 GPU1 CPU

1 1994.81 1995.68 2008.99 9800
10 1987.36 2001.86 2013.95 14200
20 2794.95 2819.78 2812.36 19000
30 3613.38 3612.16 3615.01 23800
40 3620.11 3610 3625.51 28600
50 4424.84 4412.96 4428.87 33400

Finally we test it with Lennard-Jones algorithm included. Table 5.8 shows the

execution time with 5 particles per box, 32 node particles per polymer and grid size

1282.We can see that the execution time of single GPU and two GPU is almost the

same if we have more than 30 polymers, which means that we are able to double

the efficiency by using two GPUs.

Table 5.8: Execution time with Lennard-Jones in milliseconds for 10 time steps

hhhhhhhhhhhhhhhhhhhhhPolymers

Single, multi-GPU or CPU
Single GPU0 GPU1 CPU

10 189.176 285.09 284.945 1100
20 247.782 300.352 300.246 4220
30 352.506 368.438 366.795 9460
40 508.905 527.305 529.633 16810
50 760.064 763.512 764.573 26270

However, if we have less than 30 polymers, the execution time of multi-GPU

is longer than that of single GPU, though it is still shorter than two times of the

execution time of single GPU. Currently we are not clear why it is slow if we have

small number of polymers.

35

Comparing the single GPU column in these three tables, we can see that the

execution time increase much with polymers added. Even with only one polymer

added, the execution time will be twice that of basic SRD simulation. Note that we

only to see the row with 5 particles in table 5.6 because the number of particles is

fixed to 5 in table 5.7 and table 5.8. The time steps we estimated are 1000 steps for

table 5.6 and table 5.7, while 10 steps for table 5.8 due to the long execution time.

36

Chapter 6

Conclusions

In this thesis, we describe the particle-based SRD method along with modeling

of polymers for biophysical simulations. We develop the program in CUDA to

accelerate its simulations on GPU with different parameters such as grid size and

dimension, particle density, polymer length and density and so on. We benchmark

the simulations on a server and compare the performance of GPU with that of CPU.

However, the speedup may be further improved by optimizing our kernel func-

tions, data structures and even the algorithm itself. For example, in the Lennard-

Jones algorithm, the node particles are so far away from each other that we do not

need to apply any additional forces on them. That means most of the threads in that

kernel functions are idle while waiting for a few threads to perform the computation.

We also notice that copying data between host and device memory slows down

the simulation significantly. We do the evaluation with all the outputs disabled and

only measure the execution time of the computation. In a real simulation, we may

need the results of every time step to do analysis or for other purposes. Alternatively,

we may also implement the post-processing steps on CUDA GPUs as well to further

accelerate the entire simulation.

37

We are glad to see that our GPU approach achieves the speedup of 10 times

faster than the CPU alone for basic SRD simulation, while the speedup is up to

60 times with polymers added and up to 40 times with Lennard-Jones algorithm

included.

In conclusion, GPU accelerations is a cost-effective, high-performance computing

method that is well-fitted for simulations in scientific research, especially for large-

scale simulations that usually take weeks or months to complete by using CPU-based

programs.

38

Bibliography

[1] A. Malevanets and R. Kapral, “Mesoscopic model for solvent dynamics,” The
Journal of Chemical Physics, vol. 110, no. 17, pp. 8605–8613, 1999.

[2] T. Ihle and D. Kroll, “Stochastic rotation dynamics: A galilean-invariant
mesoscopic model for fluid flow,” Physical Review E, vol. 63, no. 2, 2001.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevE.63.020201

[3] E. Tüzel, T. Ihle, and D. Kroll, “Dynamic correlations in stochastic rotation
dynamics,” Physical Review E, vol. 74, no. 5, 2006. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.74.056702

[4] E. Tüzel, M. Strauss, T. Ihle, and D. Kroll, “Transport coefficients for stochastic
rotation dynamics in three dimensions,” Physical Review E, vol. 68, no. 3, 2003.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevE.68.036701

[5] J. E. Lennard-Jones, “On the Determination of Molecular Fields. II. From the
Equation of State of a Gas,” Royal Society of London Proceedings Series A,
vol. 106, pp. 463–477, Oct. 1924.

[6] CUDA C PROGRAMMING GUIDE, 5th ed., nVIDIA, October 2012.

[7] S. Lee and R. Eigenmann, “Openmpc: Extended openmp programming and
tuning for gpus,” in Proceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, ser.
SC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11.

[8] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming, 1st ed. Addison-Wesley Professional, 2010.

[9] J. Kingsley, “A particle-based method for the simulation of complex fluids and
polymer solutions,” 2011.

[10] J. E. Lennard-Jones, “Cohesion,” Proceedings of the Physical Society, vol. 43,
no. 5, pp. 461–482, Dec. 2002.

39

