
Formalization and Verification of Rewriting-Based Security Polices

By

Roman Veselinov

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in Computer Science

May 2008

APPROVED:

Professor Daniel Dougherty, Thesis Advisor

Professor Stanley Selkow, Reader

Professor Michael Gennert, Head of Department

Abstract

Term rewriting – an expressive language based on equational logic – can be used

to author and analyze policies that are part of an access control system. Maude [25]

is a simple, yet powerful, reflective programming language based on term rewriting

that models systems along with the subjects, objects and actions within them.

We specify the behavior of the system as a theory defined by conditional rewrite

rules, and define the access control policy as an equational theory in a separate

module. The tools that Maude provides, such as the Maude Model Checker and

the Sufficient Completeness Checker, are used to reason about the behavior and

verify properties of access control systems in an automated manner.

i

Acknowledgements

I would like to thank Professor Dan Dougherty, for his support, patience, and

commitment throughout the completion of this thesis. I want to thank Professor

Stanley Selkow for his encouragement and technical guidance. I want to express

my gratitude to the members of the ALAS group, especially to Danny Yoo and

Chris King, for their perceptive contributions.

ii

Contents

1 Introduction 1

1.1 Dynamic Access Model . 1

1.2 Term Rewriting . 3

1.3 Term Rewriting for Access Control 4

1.4 Maude . 4

1.4.1 Functional Modules . 5

1.4.2 System Modules . 5

1.4.3 Tools . 6

1.4.4 Example . 6

1.5 Rewriting-Based Approaches . 8

1.5.1 Fernandez . 9

1.5.2 Oliveira . 9

1.6 Contributions . 10

2 Foundation of Rewriting-Based Security Policies 10

2.1 Terms and Concepts . 11

2.2 Historical Perspective on Access Control 12

2.3 Languages & Logics for Access Control 13

3 Term Rewriting 15

3.1 Equational Theory . 17

3.2 Conditional Rules . 17

4 Conceptual Model 18

4.1 The Program . 18

4.2 The Policy . 19

4.3 The System . 20

4.4 The Logic . 20

iii

5 Policy Formalization in Maude 21

5.1 Signatures . 22

5.2 The Program . 25

5.3 The Policy . 25

5.4 The System . 27

5.5 The Logic . 29

5.6 Analysis using Maude Tools . 30

6 Datalog Policies to Maude Specifications 30

6.1 Definitions . 31

6.2 Policy Example . 32

6.3 Datalog Policy to Term Rewriting Policy 33

6.4 Maude Policy Module . 33

7 Conclusions 34

7.1 Analysis of Turnin . 35

7.2 Problems & Concerns . 36

7.3 Future Work . 37

References 38

iv

List of Figures

1 Dynamic Access Model . 2

2 Candidate policy V for controlling access to student records 2

3 Group Theory Axioms as Rewrite Rules 3

4 Sorts Partitioning in Maude . 7

5 Policy Signature in Maude . 8

6 Reference Monitor Model . 18

7 Program LTS . 19

8 Maude Modules Importation Graph 22

9 Register Policy . 22

10 Constructs and Sorts . 23

11 Facts and Fact Satisfiability . 24

12 Facts . 24

13 Subject Actions . 25

14 Program Module . 25

15 Decisions . 26

16 Policy: set of authorization rules A 26

17 System Module . 29

18 Model Checking Module . 30

19 Reductions of modelCheck . 30

20 Datalog Policy R . 32

v

.

1 INTRODUCTION

1 Introduction

In modern systems authorization mechanisms have moved beyond the classical

access control matrix [24] and access control decisions are represented by sets of

rules comprising an access control policy. In this setting we want to be able to

reason about the policy. Some of the relevant questions that will be addressed are:

• is the policy consistent, i. e., is it impossible to compute different decisions

for the same access control request?

• is the policy complete, i. e., is there a decision specified for all requests?

• does the policy allow certain actions, i. e., is there an accessible state satis-

fying some Boolean expression over policy facts?

In order to achieve this goal we will use formal approaches to create a model of

the system: the existence of a model gives us the ability to apply formal proofs

and techniques to verify these security properties. We will explore the use of term

rewriting [2] as a language for access control and use the environment of the term

rewriting system Maude [25] to represent the system comprising the program and

the policy, and to verify policy properties using Maude’s model checking tool.

1.1 Dynamic Access Model

One of the most important problems in access control is the the problem of

formalization of expressive access control models. The availability of such models

facilitates the authoring of security policies and their verification according to a

set of properties. Thus, in order to verify the correctness of a policy, it is useful

to examine it as a separate module which, coupled with the environment, defines

a dynamic access model [16]. The separation of the policy from the program is

desirable since it promotes reusability, facilitates policy maintenance and provides

a module that is verifiable with automated systems.

1

1 INTRODUCTION

Figure 1: Dynamic Access Model

An important aspect of this interaction is the fact that the generated decisions

are not based solely on the information contained in the incoming request or the

policy but also on external factors in the environment. The set of facts relevant to

the policy obtained from the program, the end-users, or the policy framework can

be modeled as a transition system [8] (see figure 1). Transitions in the policy’s

environment are prompted by either user/application actions or other events. In

general, the environment models will be interpretations partially derived from the

application.

As an example, consider the policy from Figure 2 governing student access

to assignments and grades: a student is required to submit an assignment and a

grader has to assign a grade before the user is allowed to view the grade.

1. A student may read only his own grade for an assignment

2. A student cannot grade any assignments

3. A TA may read & grade any assignments

4. A student can submit an assignment if the assignment is open

Figure 2: Candidate policy V for controlling access to student records

The application maintains the information about submitted assignments by

students, such as whether the assignment is still open, etc; the policy reference

2

1 INTRODUCTION

monitor consults the information when a request comes along before issuing an

access decision. This information forms the environment of the policy, which can

be represented also as a list of atomic sentences. A request from a student to

submit an assignment does not include information about whether the assignment

is still open: that fact might have changed due to an administrator being granted a

request to close the assignment. The environment data can be affected by external

factors, while the policy remains static.

1.2 Term Rewriting

Term rewriting [2] offers a solution to representing the transition blueprint of

the program along with the access control policy. It is a well-established paradigm

whose applications include theoretical foundations for functional programming

languages and theorem provers. A fairly simple computational standard built on

the repeated application of rules, term rewriting is organized around the concepts

of signature, terms, substitution and matching. It is a process that starts with a

set of rewrite rules and an initial term (built from variables, constants and function

symbols), which is reduced to a term that might be in its normal form, i. e. further

irreducible term. Matching – linear on the size of the term – occurs when two

given terms, are equal after applying a subset of the rules. The distinction between

equational logic and term rewriting is the fact that equations are used as directed

replacement rules: the arrow in the example group theory axioms below suggest

one-directional term replacement:

(1) x ◦ e → x
(2) i(x) ◦ e → e

(3) (x ◦ y) ◦ z → x ◦ (y ◦ z)

Figure 3: Group Theory Axioms as Rewrite Rules

Rewriting with conditional identities, also know as conditional rewriting, is an

expanded form of the above concept, where a term on the left side will be rewritten

3

1 INTRODUCTION

only if a specific condition applies. For example, a stack pop rule can be expressed

as the conditional term rewriting rule

push(pop(s)) → s if s 6=nil

where nil is a predefined constant corresponding to the empty stack.

1.3 Term Rewriting for Access Control

The expressive nature of term rewriting is an important reason for applying

rewrite techniques to access control, policy specification and access request check-

ing. A rule from our policy from Figure 2 could be written, based on [13], as:

auth(student(x), checkGrade , assignment(x, g, a)) → permit

stating that a student (identified by his/hers unique ID) may check grades for

any assignment that is authored by him or her. Here, the function student maps

student ID to students as an element of the Subjects set and assignment maps

student ID, grade and assignment ID to assignments as an element of the Objects

set, while checkGrade is a constant symbol of sort Actions. The variable x is im-

plicitly universally quantified, so that the rewriting above captures the generality

of the access rule; the repetition of the variable as a parameter has the effect of

enforcing the binding between the student and his/her assignment. In this man-

ner the policy is transposed into rewrite rules and additional conditions can be

imposed to capture subtle points. We distinguish ourselves from such approaches

for they do not entirely match our dynamic access model based on the distinction

between program, policy and system.

1.4 Maude

Maude [9] is a high-level language and a high-performance system supporting

executable specification and both equational and rewriting logic computation [10].

4

1 INTRODUCTION

Because of these features Maude is suitable for modeling nondeterministic concur-

rent computations. Its main modules are functional and system, corresponding

respectively to the logics it supports. It must be noted that Maude also contains

OBJ [20] as a sublanguage representing object-oriented computation enclosed in

object-oriented modules. We are focusing on exploring Maude’s environment in

relation to formalization of security polices in a way that is easy to comprehend

and replicate for a wide range of applications.

1.4.1 Functional Modules

Functional modules are equational-style functional programs with user-definable

syntax in which a number of sorts, their elements, and functions on those sorts are

defined [9]. They are theories in membership equational logic [7] extending order-

sorted equational logic [19], support subsort relations, and overloading of operators.

Functional modules are assumed to be Church-Rosser [2] and terminating (pg. 16)

– if equations are applied repeatedly then eventually an irreducible term will be

computed (pg. 15). Using these types of modules we define our policy signature

and authorization mechanism.

1.4.2 System Modules

A level higher, system modules are theories in rewrite logic having three types

of statements: equations, memberships and rules, all of which can be conditional

[9]. The rules, contrary to equations in a functional modules, do not have to

be Church-Rosser or terminating. A TRS will specify concurrent transitions in

our system comprising of the policy and the program. More specifically, a set of

conditional rules will define the transitions in our system - the system will proceed

depending on decisions computed by the authorization mechanism.

5

1 INTRODUCTION

1.4.3 Tools

Because we specify security policies using rewrite logic we can employ formal

methods to reason about certain properties. We can use Maude’s built-in search

capabilities to reason about the performance of the system. A rewrite theory is

most of the times nondeterministic: to analyze all possible behaviors from a given

initial state, one can use Maude’s high performance search capabilities and/or

Maude’s built-in Model Checker. The Model Checker provides fully automated

decidable program verification of finite-state systems. In addition to the Model

Checker, Maude comes with a Termination Tool used to prove termination of

functional modules, which is an important property for access control policies.

Another useful feature is the Sufficient Completeness Checker (SCC) that verifies

the property whether every operation in a specification is defined on all valid

inputs, which is important for policy composition.

1.4.4 Example

Following is a sample approach for defining the policy V from Figure 2 using

Maude. Regardless of the programming technique for implementing the authoriza-

tion mechanism, it is essential that we indicate the main sorts, such as Subject,

Action and Object, and their subsorts. We also need to define the available ac-

tions. The order-sorted nature of the terms avoids common mistakes, because

type-checking is performed on the specifications.

6

1 INTRODUCTION

fmod SIGNATURES-SORTS is

protecting STRING .

protecting NAT.

---general sorts

sorts Subject Object Action SysAction SubjAction Fact Facts

Decision Node .

subsort SysAction SubjAction < Action .

subsort Fact < Facts .

---policy domain specific sorts

sorts Student Grader Assgmt Grade .

subsorts Student Grader < Subject .

subsorts Assgmt Grade < Object .

---constructs

op student : Nat −→ Student [ctor] .

op as : Nat Grade Student −→ Assgmt [ctor] .

---respectively, assgnmt number, grade, and student who submitted

the assgmt

op grade : Nat −→ Grade [ctor] .

---actions

op checkGrade : Ass −→ SubjAction .

op closeAssgmt : Nat −→ SysAction .

...
endfm

Figure 4: Sorts Partitioning in Maude

In the signature for the rewriting-based access control policies we can represent

requests ground terms containing the 3-tuple: subject, action and object ; permit

and deny serve as decision replies. A policy module in Maude can be viewed as a

static module containing a set of conditional equations that evaluate the facts in

the environment (a multiset of atomic sentences) upon a request:

7

1 INTRODUCTION

fmod SIGNATURES-POLICY is

protecting SIGNATURE-SORTS .

---variables

vars N G S S1 : Nat .

---decisions

op permit deny : −→ Decision [ctor] .

---authorization construct

op auth : Facts Action Subject −→ Decision .

---access rules defining the auth function

eq auth(F, checkGrade(as(N,G,student(S))), student(S1)) = if S ==

S1 then permit

else deny fi .

(corresponds to rule 1. A student may read only his own grade for

an assignment)

...
endfm

Figure 5: Policy Signature in Maude

Modules such as the one in Figure 5 could be created for any real world policy

regardless of the structure or hierarchy it possesses. We expand and apply these

initial steps to analyze an Assignment Submission Application, to encode the

specifications following the above ideas, and to check for properties that are not

explicit policy rules using the Model Checker tool.

1.5 Rewriting-Based Approaches

In the short example above we observed that a policy written in natural lan-

guage can be transformed into a sentence in a rule-based language such as term

rewriting. There are other existing approaches employing similar techniques using

Datalog [16], first order logic [21], or temporal logic [12]. In the following two

sections we refer to a rewrite formalization of a medical corporation policy based

on an XACML [26] specification and to a formalism of Role-Based Access Control

(RBAC) using the same paradigm. We distinguish ourselves from the approach for

RBAC using term rewriting by Barker and Fernandez [3] but we are influenced

by the work of de Oliveira [13] on his Maude implementation concept.

8

1 INTRODUCTION

1.5.1 Fernandez

In [3] the authors explore how to represent access control models and policies

using term rewriting systems; in particular representing role-based models and

models based on access control lists. The rewrite system RACL for the former

constitutes rewrite rules of the type acl(1, r, U) → grant, where a request is

expressed as access(u, req) – with u denoting a user and req denoting an r (read),

w (write) or x (execute) action – is evaluated using the list of rules. In contrast to

this model, we use term rewriting to specify a complete system with the program

separate from the policy specification. While Fernandez et al. mention the idea

of using Maude as the specification environment, we go further by providing an

approach to translating Datalog specifications into Maude modules along with a

set of a Maude implementation of Turnin (pg. 44).

1.5.2 Oliveira

In [13], Oliveira proposes a formalization of rewriting-based access control poli-

cies with the policy being represented as a set of rewrite rules as opposed to

equational theory axioms (pg. 26). He presents an implementation of a medical

corporation policy using Maude modules. Requests are represented as ground

terms containing the 3-tuple: subject, action and object:

req : Subject × Action × Object → Request

and the system is represented by a set of states and state transitions triggered

by the requests. We have adopted the use of a reference monitor as a part of

the system, which evaluates the system states but we make the clean distinction

between a system and a program. We also attempt to model a behavior of a

system comprising of a policy and a program rather than analyzing a policy rule

and a program state as part of the same algebraic term.

9

2 FOUNDATION OF REWRITING-BASED SECURITY POLICIES

1.6 Contributions

This thesis builds on existing work in the area of formalization of access control

policies using term rewriting. We adopt the ideas and base our implementation

partially on the work of Dougherty et al. [16]. Because of the availability of proof

techniques for verifying properties and the availability of rewrite engines, term

rewriting was chosen as the language for this project. The main contribution lies

in the fact that we provide an implementation of the theories using Maude and

take advantage of its built in tools to verify certain properties. We test our ap-

proach on Turnin [17], an Assignment Submission Application, using the available

specifications [17] and offer an approach to translate Datalog policy specification

to Maude implementation (pg. 30).

It is imperative to stress the realization of the interaction between facts in the

environment and the place of the latter in the request authorization process. We

have exemplified the above as Maude modules (pg. 44) using equational theory

axioms (pg. 25) and conditional rules (pg. 27) – both part of the term rewriting

paradigm. The former express the static nature of the policy and define the au-

thorization function (pg. 25), while the latter simulates the system that embodies

both the policy and the program (pg. 25). In the chapters to follow, we provide

definitions that comprise the basis for our approach to modeling the policy, the

program and the system.

2 Foundation of Rewriting-Based Security Policies

Access control in information systems refers to the mechanism of granting

access to data and available resources to authorized entities. These entities com-

prise agents capable of performing certain computations such as the invocation of

a command or a program, the initiation of a thread of execution, etc. According

to Lampson [24], access by a subject (pg. 11) of an object (pg. 11) in the system

is decided by an access matrix with entries determined by certain rules. The rules

10

2 FOUNDATION OF REWRITING-BASED SECURITY POLICIES

comprise the access control policy , which maps each entity – user, resource and

action (pg. 11) – to a decision. Upon an action initiated by a user, the reference

monitor consults the policy and issues a decision based on the information from

the request and relevant facts in the environment.

2.1 Terms and Concepts

We have defined below the relevant access control terms that are used through-

out this document.

(Object) The set of all protected entities relevant to the system protection re-

quirements is called the set of objects [6]. Lampson treats entities such as

processes, domains, records, fields, files, segments and terminals as objects

and the level of abstraction depends on the protection requirements of the

system.

(Subject) A subject is an active entity, such as a process or a user. The subject

may initiate a transition from the current state of the system depending on

the information in the request (pg. 11) and the authorization decision (pg.

11).

(Action) An action is the initiation of an operation by a subject. Depending on

the level of abstraction we can differentiate between system actions, initiated

by the system, and subject actions, initiated as requests by subjects.

(Request) A request is a triple consisting of an object being accessed, a user

initiating an action and the action itself.

(Decision) A decision is the result issued by the authorization mechanism, either

deny or permit, upon evaluation of the information provided by the request

and the current state of the environment.

(Environment) The environment is a collection of relevant policy domain facts.

11

2 FOUNDATION OF REWRITING-BASED SECURITY POLICIES

2.2 Historical Perspective on Access Control

Examples of access control depend on the specific requirements of the domain

and the security policy to be in use. For example, applications that manage per-

sonal records, being financial, health or other, require a sophisticated mechanism

to maintain confidentiality or integrity properties by means of access rules. These

sets of global constraints on the system comprise the access control policy.

Access control policy is just one of the mechanisms to enforce a given security

policy. When an application or user requests to act upon a resource, the decision

tool provides, or restricts, access to the resource based on information in the

security policy. While access control policies can pertain to specific applications,

they can also refer to user actions within the context of a certain domain: they

may govern resource usage based on users’ roles, obligations, permissions, etc.

depending on the properties the security policy aims to satisfy.

Lampson [24] organized the objects that need protection, the subjects that

perform actions on these objects and the actions themselves into a matrix of priv-

ileges regulating the access of subjects to objects. In this framework, a singular

entry in the matrix represented the right a given subject has over an object. Un-

fortunately, he does not specify precisely how the access control matrices should

be used by the defined domains.

The need for a mathematical model of security policy describing levels of ac-

cess led to the formalization of military access control rules by Bell and Lapadula

[5]. The BLP model described the military classification system where user with a

certain authorization level is only allowed to access information labeled at or below

their designated classification level. Having the policy designate the appropriate

labels according to the security levels does not make the information flow trans-

parent upon implementation. The subtleties of the interaction between entities in

the system required a rigorous model that could be analyzed in detail.

Harrison, Ullman and Ruzzo [22] address the issue of protection in a more

technical manner. They gave a mathematical definition of “safety” and address the

12

2 FOUNDATION OF REWRITING-BASED SECURITY POLICIES

question of reasoning about the safety of a system; in particular, the decidability of

safety. “Autonomous” entities relinquish some of their rights for higher protection

levels – in the modeled system this fact undoubtedly remains. This leads to

the conclusion that in general it is undecidable if “a particular generic right is

entered at some place in the matrix where it did not exist before.” Nevertheless,

if the problem is narrowed down to some restricted cases, then safety is decidable

concerning the “leaking” of certain rights. The remark of Harisson et al. showed

that if the system has little control over the flow of rights between subjects, then

there exists a chain of delegation of rights that will eventually grant access to an

object to an unauthorized user.

All of the above works are considered central to the field of computer security

for they introduced the idea of formalization and verification of security policies.

The need for a mathematical model was recognized and in this setting security

properties could be checked. Because of the limitations of the early models to

describe the current system, a new, rule-based approach for specifying policies

emerged as a flexible solution to a wider scope of systems. The availability of a rule-

based specification language does not make the search for a better representational

model obsolete.

2.3 Languages & Logics for Access Control

Because of the wide range of applications that demand the enforcement of secu-

rity policies, specific languages must be used to express the policy statements. A

number of languages for access control have been proposed. A role-based language

and system for expressing policies, Cassandra [4] supports credential-based access

control written in Datalog with constraints. In this setting, policies are viewed

as declarative statements over data from requests and over relations that capture

information gathered by the application. Domain-specific languages such as EPAL

[27] are also widely used. EPAL specifies data handling enterprise privacy policies;

a policy in EPAL defines lists of data-categories along with sets of actions and is

13

2 FOUNDATION OF REWRITING-BASED SECURITY POLICIES

used to model the services in the system’s domain.

With the increased number of applications utilizing XML for data modeling,

additional languages have been proposed such as WS-Policy and XACML [26].

The latter is a standard that describes both a policy language and an access-

control decision language written exclusively in XML. The authors of [18] present

a tool (Margrave) for analyzing XACML policies (for ex. RBAC) through a verifier

written in XACML. They discuss two forms of policy analysis, namely, verifica-

tion relative to known properties and change analysis, and present techniques for

performing the analysis in Margrave.

Recently, language designs have been structured around concepts from logic

programming such as Languages such as Li et al.’s D1LP and RT, Jim’s SD3, and

DeTreville’s Binder [15]. Binder [14] utilize the formal declarations, flexibility and

expressiveness providing for an access control language requiring modest program-

ming proficiency. Because of their formal nature, logic based languages provide

an attractive framework for specifying policies and we explore the flexibility and

expressiveness of one such language in this work, namely, term rewriting.

Several proposals introduce term rewriting as a language for describing access

control policies. In [3], the authors model role-base access control (RBAC) and

access control lists (ACLs). They explore the use of term rewriting for evaluating

access requests and for proving properties of an access control policy. Rather

than focusing on the dynamic aspect of the access control environment, they focus

mainly on characterization of consistency of policies. Use of an automated tool to

reason about policy properties is briefly mentioned and an executable specification

of ACL policy is given but implementation is not suggested.

Work in the area of defining security policies using term rewriting can be seen

in Oliveira’s proposal [13] on formalization for access control. He represents the

state of the system to which policies are enforced as an algebraic term and discusses

the relation between properties of TRS, such as confluence and termination.

14

3 TERM REWRITING

3 Term Rewriting

The following rewriting definitions are adopted from “Term Rewriting and All

That” [2]. In the term rewriting paradigm, terms (pg. 15) are built from function

symbols and variables thus, in order to know which are the domain symbols, we

introduce signatures.

Definition 1 (Signature). A signature Σ is a set of function symbols, where each

f ∈ Σ is associated with a non-negative integer n denoting the arity of f . This

definition will be extended for our purposes to include the set of sorts S (pg. 23),

thus a many-sorted signature is defined as a set F of function symbols and a set

of sorts S where each f ∈ Σ has a profile f : S1 × ... × Sn−→S. If n = 0 then f

is defined as a constant symbol.

Definition 2 (Term). Let X be a set of variables such that Σ
⋂

X = Ø, then

the set T (F,X) of all well-sorted Σ−terms is defined inductively as

• X ⊆ T (F,X), i. e., each x ∈ X is a term with x : S denoting the sort of x

• ∀ n≥ 0, all f ∈ Σ(n)

If t1 is a variable-free term then t1 is called a ground term and the set of such

terms is denoted T (F). The term t1 is said to be in its normal form or irreducible

if there is no term t2 such that t1−→ t2. Many-sorted terms are built on many

sorted signatures [23].

Definition 3 (Substitution). A substitution σ is a function, σ : X −→ T (F,X),

such that σ(x) 6= x for only finitely many xs. The finite domain of σ is written

as σ = {x1 7→ t1, . . . , xk 7→ tk}, with ∀i∈{1, . . . , k}, xi and ti have the same

sort. Applying σ to t simultaneously replaces all occurrences of variables by the

respective σ-images. Recursively,

• if t is xi then σ(x) = ti,

15

3 TERM REWRITING

• if t is x 6= xi then σ(x) = t,

• if t is a term f(u1, . . . , uk) with u1, . . . , uk ∈ T (F,X) then,

σ(t) = f(σ(u1, σ(uk)).

Definition 4 (Multiset). A multiset M over a set of elements A is a function

M : A −→ N. Using finite multisets we can build terminating orders (be-

cause −→ is finitely branching). For example, {t1, t2, t2} and {t2, t1, t2} are

identical, while {t1, t2, t1} is distinct from them.

Definition 5 (Rule). A rewrite rule is an identity t1 ≈ t2 denoted t1−→ t2 with

t1 and t2 called respectively left-hand side and right-hand side of the rule. The

following restrictions apply for rules:

• set of variables of t1 ⊇ set of variables of t2

• t1 /∈X and t1, t2 ∈ T (F,X)

• t1 and t2 are of the same sort

A set of rewrite rules is called a term rewriting system (TRS).

Definition 6 (Rewrite Relation). A relation on T (F,X) is a rewrite relation if and

only if it is compatible with Σ-operations and closed under substitutions. Given

a TRS R, the rewrite relation associated to R over T (F,X) is denoted −→R and

is well-defined.

Definition 7 (Termination). A reduction −→ is terminating if and only if, there

does not exist an infinite descending chain t1−→t2−→

Definition 8 (Consistency). Consistency is a security policy property that en-

sures that a unique decision is computed from the current program state (pg. 19)

and a given request.

16

3 TERM REWRITING

Definition 9 (Confluence). A set of rules A is confluent when any two rewritings

of a term can always be unified by further rewriting: if t −→ ∗

A
t1 and t −→ ∗

A
t2,

then there exists a term t
′

such that t1 −→ ∗

A
t
′

and t2 −→ ∗

A
t
′

[9].

Definition 10 (Completeness). Completeness is a security policy property that

ensures that for any given request there is a corresponding authorization decision.

We model the program and the policy using equational theory – a sublogic of

term rewring logic – while the system is modeled using conditional rules.

3.1 Equational Theory

Any given equality formulas is built from the set of terms defined above and

the equality predicate “ = ".

Definition 11 (Equality or Axiom). An equality (axiom) is a pair of two terms

< t1, t2 >, which is denoted t1 = t2. Both t1 and t2 are of the same sort, with

the variables universally quantified.

Definition 12 (Matching). Let t1 and t2 are terms of the same sort then, if there

exists a substitution σ such that σ(t1) = t2 then we say that there is a matching

between t1 and t2.

3.2 Conditional Rules

Definition 13 (Conditional Rule). A conditional rule is an oriented condition

equality denoted t−→ s if Γ , where Γ is a conjunction of equalities [23].

Definition 14 (Conditional Rewriting). A conditional TRS R is a set of condi-

tional rules R over a set of terms T (F,X).

17

4 CONCEPTUAL MODEL

4 Conceptual Model

Our conceptual model describes policy enforcement of security rules guarding

transitions in the program states. The idea is that we would like to preserve poli-

cy/program separation since the program can exist independently of a mechanism

applying a given policy. The latter should be defined separately and implemented

on top of the running program as a reference monitor (pg. 18).

Reference Monitor
auth(F , r, u)

AC Policy

.Ni+ Ni+1

permit

Figure 6: Reference Monitor Model

In the above representational schema the current set of facts and the request

contained in the the node Ni are delivered to the reference monitor, which evaluates

every request according to the set of equational rules A (pg. 26). If the policy

permits the request the application proceeds with no error indication. Otherwise,

the system terminates.

4.1 The Program

It is clear that a program can exist without a guarding mechanism. Hence, we

model the program as an independent labeled transition system.

Definition 15 (Program LTS). A program P is modeled as a labeled transition

system (LTS). The LTS is a quadruple (V , L, ⇁, I) where

18

4 CONCEPTUAL MODEL

• V is a set of vertices with v ∈ V corresponding to a program state

• L is a set of labels with l ∈ L corresponding to an action

• ⇁ ⊆ V × L × V is a ternary relation of labeled transitions

• I ⊆ V is a set of initial states

program LTS

v0 v1

l0 l1

Figure 7: Program LTS

4.2 The Policy

A security policy is a statement of what actions are permitted and what are

denied in a given environment. For that purpose we need to define positive (permit)

and negative (deny) authorizations. These are elements of the set of decisions.

Definition 16 (Decision). We define the set D of decisions depending on the

policy’s requirements as either

• D = {permit, deny}, or

• D = {permit, deny, undefined}.

Definition 17 (Policy). A policy A is a function Θ : V × L −→ D. It generates

a decision d ∈ D for each < V, L > pair.

Policy consistency is inherent in this definition. The interesting question arises

when we encode the policy as a set of equational theory axioms – does the set define

a policy according to the above definition?

19

4 CONCEPTUAL MODEL

4.3 The System

In our model the rewrite system is the program extended with the policy. A

system state is a node n ∈ V with l ∈ L labeling the transition.

Definition 18 (System). We denote the system T as ordered pair, T , < P,A >.

4.4 The Logic

We use linear temporal logic (LTL) for property specification and model check-

ing to decide whether – given our model – a property holds. Using LTL we can

specify the safety, liveness or other properties (pg. 1).

Definition 19 (LTL). Let AP be a set of atomic propositions, then the proposi-

tional LTL(AP) formulas are defined as [9]:

• True: T ∈ LTL(AP).

• Atomic Propositions: if p ∈ AP , then p ∈ LTL(AP).

• Next operator: if α ∈ LTL(AP), then ©α ∈ LTL(AP).

• Until operator: if α, β ∈ LTL(AP), then β U α ∈ LTL(AP).

• Minimal set of Boolean connectives: if α, β ∈ LTL(AP), then

¬α and α ∨ β ∈ LTL(AP)

Definition 20 (Kripke Structure). A Kripke structure [8] is a 4-tuple

M = (S, I, R, L) consisting of

• a finite set of states S

• a set of initial states I ⊆ S

• a transition relation R ⊆ S×S where ∀s∈S, ∃s
′

∈ S such that (s, s
′

) ∈ R

• a labeling (or “interpretation”) function L : S → 2AP

20

5 POLICY FORMALIZATION IN MAUDE

The labeling function associates to each s ∈ S the set L(s) ⊆ AP of proposi-

tions that hold at s.

Definition 21 (Satisfaction Relation). A satisfaction relation between M , s and

α is denoted as

M, s � α

and holds if and only if ∀π ∈ Path(M)s the path satisfaction relation

M, π � α

where the set Path(M)s of computation paths from s is the set of functions of the

form π : N −→M s.t. π(0) = s and π(n) −→ M π(n + 1) for each n ∈ N [9].

Associating a Kripke structure – a model of LTL – to a rewrite theory (our

system) is accomplished by defining system states as Kripke structure states (ks-

states) and defining the ks-state predicates.

5 Policy Formalization in Maude

The conceptual model from figure 6 is translated into Maude modules with

each module representing corresponding specification. The Program and the Pol-

icy modules each inherit the Signature module, which contains domain specific sort

definitions and function symbols (see signature on pg. 15). The System module in-

cludes the Program and the Policy, and contains conditional rewrite rules defining

the system. The Kripke module includes the predefined Model Checker module

and specifies the system transformation to a Kripke structure. Batch is the main

executable, which loads the all of the modules and contains sample reductions.

21

5 POLICY FORMALIZATION IN MAUDE

Signatures

Policy

Program

System Kripke

Batch

Model Checker

Figure 8: Maude Modules Importation Graph

In the above module relationship a single arrow represents an including [25]

importation and a double arrow represents a protecting [25] importation.

5.1 Signatures

For a given access control specification we model the static policy using equa-

tional theory. We will use the following running example to illustrate the imple-

mentation in Maude:

Let us suppose that a school policy for registering students lacks granularity

and its specifics are contained in a few simple rules:

1. A student is permitted to register only if the student has paid

2. A student is denied registration if the student has not paid or the

student paid but the payment has been compromised

3. A student is permitted to pay if the student has not paid already

Figure 9: Register Policy

Formalizing the problem and the system requires the use of order-sorted spec-

ifications. In general, we need to indicate, which sorts are subsorts of Subject,

Action, Object - this list can be modified depending on the requirements. The im-

22

5 POLICY FORMALIZATION IN MAUDE

plementations of the following definitions will be part of the Maude SIGNATURE

module from Figure 7.

Definition 22 (Sorts). Let S be the set of sorts and subsorts

S =
{

Subject , Action , Object , SysAction , SubjAction, Fact , Facts , Decision, Node, S
′

}

• SysAction and SubjActions subsorts of Action

• S′ denotes additional sorts specific to the environments, i. e., it is possible

for S′ = Ø

• Node denotes the system configuration

---general sorts

sorts Subject Object Action SysAction SubjAction Fact Facts

Decision Node .

subsort SysAction SubjAction < Action .

subsort Fact < Facts .

---specific sorts to the environment

sort Individual .

subsort Individual < Subject .

...

Figure 10: Constructs and Sorts

We define the policy environment as a set of facts. Important notion here is the

fact satisfiability : the environment satisfies a given fact if the fact is an element

of the set of facts in the current state:

Definition 23 (Fact Satisfiability). Let P be the set of environment typical n-

ary predicates with n dependent exclusively on the specifications, and has is the

binary function

has : Facts × P → Boolean

then for F ∈ Facts and p ∈ P the function is defined by the following axioms:

23

5 POLICY FORMALIZATION IN MAUDE

• has(F, p) = True if p ∈ F

• has(F, p) = False otherwise.

---facts specific to the policy domain

ops paid regd bncd : Individual -> Fact .

---fact satisfiability axioms

var F : Facts .

var P : Fact .

op _has_ : Facts Fact -> Bool .

eq F P has P = true .

eq F has P = false [owise] .

...

Figure 11: Facts and Fact Satisfiability

Definition 24 (Multiset of Facts). The set of environment relevant Facts is a

multiset of predicates P ⊆ Facts composed together by a defined associative and

commutative constructor.

---multiset of facts

op nil : -> Facts [ctor] .

op __ : Facts Facts -> Facts [assoc comm id: nil] .

...

Figure 12: Facts

Definition 25 (System Actions). The set SysAction contains actions that are

system specific and do not require authorization (see auth function on pg. 26).

Definition 26 (Subject Actions). The set SubjAction contains actions specific

to the environment and are defined by n-parameter functions with n dependent

on the specifications. Such functions map S
′

⊆ S to the sort SubjAction.

24

5 POLICY FORMALIZATION IN MAUDE

---requests specific to the domain

op wtr : Individual -> SubjAction . ---subject wants to register

op wtp : Individual -> SubjAction . ---subject wants to pay

op bnc : Individual -> SubjAction . ---subject check bounce

...

Figure 13: Subject Actions

5.2 The Program

We represent the program as a set of equations defining the transition system

of the environment facts as depicted in Figure 1.

Definition 27 (State-update Function). The function nextF is defined as

nextF : Facts × Action × Subject −→ Facts

This function evaluates the current set of environment facts along with the

information in the request and computes the new set of facts.

*** ---facts state-update function---

*** next Facts equations over the requests

op nextF : Facts Action Subject -> Facts .

vars I I1 : Individual .

** ---PROGRAM---

eq nextF(F, wtr(I), I1) = F paid(I) regd(I) .

eq nextF(F, wtp(I), I1) = F paid(I) .

eq nextF(F, bnc(I), I1) = F bncd(I) .

.

.

.

Figure 14: Program Module

5.3 The Policy

The Policy module contains constructs for the policy’s decisions and set of

rules defining what actions are allowed according to the facts in the environment.

25

5 POLICY FORMALIZATION IN MAUDE

*** generic decision constructs

ops permit deny : -> Decision .

Figure 15: Decisions

The goal of the policy is to ensure that all requests are accounted for, i. e.,

there is a decision for each request. Since the resulting decision does not depend

exclusively on the request but on the current facts we define a function that returns

decision derived from the normalization process issued from a request term and

from the information contained in the environments.

Definition 28 (Authorization Function). Let the policy P be a set of authoriza-

tion rules A where each request is defined using equational theory axioms. We

define the binary function auth as

auth : Facts × Action × Subject → Decision

An authorization rule is a conditional equation where the left side is a term

of the form auth(F, Act, Subj) with F ⊆ Facts, Act ∈ Action and Subj ∈

Subject. The equation is reduced to a d ∈ Decision if a condition is true about

the environment, i. e., if the set of facts satisfies a policy relevant predicate.

op auth : Facts Action Subject -> Decision .

***pr 1 : I is permitted to register if I paid

eq auth(F, wtr(I), I) = if F has paid(I) and not F has bncd(I) and

not F has regd(I)

then permit

else deny fi .

***pr 2 : I is permitted to pay if I did not pay already

.

.

.

Figure 16: Policy: set of authorization rules A

The goal is to to have the policy static and on top of the system – this way

26

5 POLICY FORMALIZATION IN MAUDE

we can freely make changes to A without altering the program, which may exist

without the policy.

5.4 The System

In the program LTS, transition from an environment state F to environment

state F
′

depends on the information contained in either a system action (pg. 11)

or a subject action (pg. 11). We differentiate between two implementation of

the system – a weak and a strong one. We consider a weak implementation one

where the program checks the policy as a guard on actions whereas a strong

implementation suggests that the program is not aware of a guarding mechanism

(see our model on pg. 18) but it is the system that enforces the use of the reference

monitor.

Definition 29 (Node Function). Let the system T be a set of conditional rewrite

rules TRS where node transition of T corresponds to a permitted request from a

subject to execute an action over a resource considering the current set of environ-

ment facts. We define the function node as

node : Facts × Action × Subject → Node

An important note must be made here about the fact that we have to encode

the system’s transition labels, i. e., the action inside of the system nodes .

A transition is a defined as a conditional rule where the left-hand side is a

term of the form node(F, Act, Subj) with F ⊆ Facts, Act ∈ Action and Subj ∈

Subject, and the right-hand side is a term of the form

node(nextF (F, Act, Subj), Act
′

, Subj
′

)

where Act
′

∈ Action and Subj
′

∈ Subject are a new action and a subject allocated

respectively by the system.

27

5 POLICY FORMALIZATION IN MAUDE

As defined above, the nextF function will compute the new set of facts de-

pending on the information from the request. The conditional part of the rule

refers to the authorization mechanism – the transition will be allowed if the the

auth function returns a permit decision for the next node in the system.

Naturally, we would like to restrict the system to be composed of only good

nodes. That is, if N is the set of all possible states, the set GA ⊆ N is the set of

good nodes as specified by the policy A. A node g ∈ N is considered good if the

authorization mechanism allows the transition from an initial state to g based on

the request and the facts.

Definition 30 (Good Node). We define a node of the form node(F, Act, Subj)

good if

auth(node(F, Act, Subj)) = permit

.

In order to restrict the system so that it is composed only of good nodes we

have to consider the next state, i. e., starting form an initial node n0 ∈ GA, the

only allowed transitions ni ⇁ ni+1 are those that produce good nodes.

Initially, our model of the system included a denied node, which served as an

error node for transitions for which the auth function returned a deny decision.

We realized that this implementation caused the generation of unwanted, or rather

trivial counterexamples when we used the Model Checker to verify properties.

We implement the system as a Maude system module, which inherits the sig-

natures of the policy and the program.

28

5 POLICY FORMALIZATION IN MAUDE

op node : Facts Action Subject -> Node .

op denied : -> Node .

*** rule for "wants to pay" request

crl node(F, wtp(I), I) => node(nextF(F,wtp(I), I), R1, I) if

auth(nextF(F,wtp(I), I), R1, I) = permit /\ (R1 restRequest) :=

(wtr(I) bnc(I)) .
.
.
.

Figure 17: System Module

5.5 The Logic

Exploration of all the possible rewrites from a given state is accomplished

trough the Model Checker module provided with Core Maude. To be able to

check the policy for certain properties we need to associate the Kripke structure

above to rewrite theory. This is accomplished with the Kripke module, in which

we make explicit the Boolean state predicates and define the ks-states as a superset

of our configuration.

Definition 31 (Model Checking). We define a new module, which extends the

predefined policy, program and system modules along with the MODEL-CHECKER

module, and contains

• the sort Node defined as a subsort of State (predifined sort inherited from

the SATISFACTION module),

• relevant state predicates as operators of sort Prop, and

• set of equations specifying for what states a predicate evaluates to True.

These propositions are specific to the and are need for stating the desired safety

(something bad never happens, G¬ϕ), liveness (something good keeps happening,

G(ϕ → Fϕ)) or any other properties.

29

6 DATALOG POLICIES TO MAUDE SPECIFICATIONS

subsorts Node < State .

ops ispaid isregd isbncd : Individual -> Prop .

op P : -> Prop .

var F : Facts .

var Act : Action .

var Subj : Subject .

var I : Individual .

*** equations defining when each of the state prediactes holds in

a given state

ceq node(F,Act, Subj) |= ispaid(I) = true if F has paid(I) .

ceq node(F,Act, Subj)|= isregd(I) = true if F has regd(I) .

ceq node(F,Act, Subj) |= isbncd(I) = true if F has bncd(I) .

ceq node(F,Act, Subj) |= P = false [owise] .

...

Figure 18: Model Checking Module

5.6 Analysis using Maude Tools

The Model Checker module’s operator modelCheck takes a ks-state and a LTL

formula α and return either a Boolean True if α is satisfied or counterexample

when it is not. The counterexample is a pair of a state and a rule label applied at

each state. Examples of specifying reductions corresponding to policy properties

are listed below.

op a : -> Individual [ctor] .

*** property 1: if a has registered implies that a has paid

red modelCheck(node(nil,wtp(a), a), [] (isregd(a) -> ispaid(a)))

.

*** property 2: if a has paid but the check has bounced a cannot

register

red modelCheck(node(paid(a) bncd(a),wtr(a), a), [] ~ isregd(a))

.

.

.

Figure 19: Reductions of modelCheck

6 Datalog Policies to Maude Specifications

In this section we give an approach for transcribing policies captured as Datalog

programs into Maude modules.

30

6 DATALOG POLICIES TO MAUDE SPECIFICATIONS

6.1 Definitions

We have adopted the following Datalog terms and definitions [11].

(atom) An atom is a string of letters, digits, underscores; an atom string starts

with a lowercase letter.

(variable) A variable is a string of letters, digits, underscores; a variable string

starts with a capital letter.

(identifier) An identifier is a string omitting special characters; an identifier

strings does not start with a capital letter.

(term) A term is a variable or constant or underscore.

(literal) A literal is a predicate symbol followed by optional parenthesized list of

comma-separated terms.

(predicate symbol) A predicate symbolor a relation is a string or identifier

(facts) A fact is a true assertion about a part of the environment

(rule) A rule is a sentence allowing for a fact or facts deduction from given facts

(goal) A goal is a literal preceded by the symbol “?–” used for formulating queries

To avoid symbol confusion when we talk about facts and rules, we use R and

F to denote Datalog rules and facts respectively as apposed to R and F in the

rewriting paradigm.

Both facts and rules are represented as clauses of the form

R0(~u0) : −R1(~u1), . . . , Rn(~un)

where Ri are predicates, ~ui are tuples of variables and constants. The left-hand

side of the rule is called a head, the right-hand side is considered the rule’s body. If

a clause has empty body then it is considered a fact, and a rule if it contains at least

31

6 DATALOG POLICIES TO MAUDE SPECIFICATIONS

one predicate. For a set of rules R, edb(R) denotes extensional predicates, i. e.,

ones occurring only in the body, and idb(R) denotes intentional predicates, i. e.,

ones occurring in the head. A Datalog policy’s signature ΣR is edb(R) ∪ idb(R).

The set F of AP s over ΣR is defined as a set of facts. For the policies considered

in this paper, rules are non-recursive, meaning that no idb predicate (permit or

deny) occurs in the right-hand side of any rule.

A non-recursive Datalog rule is essentially a conjunctive query [1] over the set

of edb facts. A set of such rules, then, constitutes a definition of the idb predicates

in terms of the edb facts as follows. If Q is an idb predicate and a1, ...an are

constants, then Q(a1, ...an) is defined to hold if and only if there is a rule

Q(~u) : −R1(u1), . . . , Rn(un)

and a substitution σ mapping ~u to ~a, such that for each i, Ri(σ(u1)) is an edb fact.

6.2 Policy Example

A given a Datalog policy R includes the predicates permit and deny – called

decisions – of the form decision(Subject, Action, Object), where Subject, Action

and Object are sorts. In this setting, a rule over ΣR has a head either permit or

deny. The policy R will be then a set of rules over ΣR as in the example below of

a students policy for reading/grading homeworks:

1. permit(X , readHW, Y) :– student(X), hw(Y), author(X, Y)

2. deny(X , gradeHW, Y) :– student(X), hw(Y)

3. permit(X , gradeHW, Y) :– faculty(X), hw(Y)

Figure 20: Datalog Policy R

For R1 and a given set of Datalog facts F1 we can determine the truth value

of the edb(R1). For example if F1= {student(John), student(Ana), hw(1), hw(2),

author(John, 1), author(Ana, 2)} following (1) we add to F1 the computed facts,

32

6 DATALOG POLICIES TO MAUDE SPECIFICATIONS

idb(R1), from R1, which are permit(John, readHW, 1), permit(Ana, readHW, 2),

etc.

6.3 Datalog Policy to Term Rewriting Policy

Given a Datalog policy R there exists a policy R where the body of a R rule is

the left-hand side of the corresponding R rule, and the head of R is the right-hand

side of R. The relational symbol “:–” is replaced with “−→” and the conjunction

operator “ ,” is replaced with the associative and commutative operator “∧” as in

the example below:

R = permit(X , readHW, Y) :– student(X), hw(Y), author(X, Y)

R = student(X) ∧ hw(Y) ∧ author(X, Y) −→ permit(X , readHW, Y)

where the left-hand side of the rewriting policy rule is the set of environment facts.

In this direct transformation, the terms F1 on the left-hand side will not be

added to the list of F . One approach is to add them to the right-hand site with

the conjunction operator:

student(X) ∧ hw(Y) ∧ author(X, Y) −→ permit(X , readHW, Y) ∧ F1.

This direct transformation of Datalog rules to rewrite rules might not be suit-

able for implementing a policy as Maude module. Even more so, if we would like

to separate the program (the transition system of environment facts) from the

policy using the above direct transformation will be inadequate.

6.4 Maude Policy Module

To model R as a Maude specification module we need to define the required

sorts and constructs beforehand (see section 6). The implementation of the small

policy example above depends on the program specifications (definitions of relevant

sorts and ops) but since we are concerned here only with the set of policy rules

33

7 CONCLUSIONS

we will partially ignore that fact. Recall, that we have defined F as a multiset

of facts (pg. 16) relevant to the policy domain and the auth function (pg. 26) as

the decision computing mechanism. Then, in general, the transformation from R

to R as a Maude specification becomes as trivial as translating the set of Datalog

policy rules to a set of conditional equations.

Definition 32 (Datalog to Maude). Given a policy rule r ∈ R, a decision d of

the form d(Subject, Action ,Object), and a set of facts F1 ⊆ F with

r = d :– F1

then the corresponding rewriting rule in Maude is of the form

auth(F , Action, Subject) = d

For instance, the following Datalog rule from the policy above

R= permit(X , readHW, Y) :– student(X), hw(Y), author(X, Y)

will become either the following policy rule as an equation in Maude

eq auth(student(X) hw(Y) author(X, Y) , readHW, hw(Y)) = permit

or – depending on the complexity of the predicates – the following conditional

equation:

ceq auth(F, readHW, hw(Y)) = permit if F has student(X) hw(Y) author(X, Y) .

7 Conclusions

We presented a process of formalizing security policies that are integral part of

access control systems using term rewriting techniques. The implementation of the

policy, the program and the system as distinct Maude modules was consistent with

our conceptual model of the separation between policy and program. In view of

34

7 CONCLUSIONS

the fact that security policies could written as Datalog programs we provide steps

to translate Datalog policy rules as sets of equational theory axioms contained in

a functional Maude module. We further explored the flexibility of our approach

to formalize and reason about Turnin.

7.1 Analysis of Turnin

One of the questions we can ask about a security policy is whether the policy is

consistent, i. e., is it impossible to compute different decisions for the same access

control request. Because we have implemented the policy as a Maude functional

module consisting of equational theory axioms, Maude enforces the corresponding

set of rules to be confluent hence consistent (pg. 16).

The modular implementation of the concept allows us to reason about the

policy independent of the program – we can make changes to the policy without

modifying the program and vice versa. The structure provides for adequate policy

or program modification if a certain desired security property is proved false.

Using the Model Checker we can verify properties written as LTL formulas.

Below we list several general statements in English one can ask about Turnin

and their corresponding modelCheck reduction statement. We reason about the

system starting after a predefined good initial state. The properties below hold

true for all paths.

Property A: If a student s can read a submitted by student t file, then s and t

are partners

Since the LTL operators next © and henceforth � commute we can translate the

above sentence into

1. ©� (wbPer(view(f(1)), u(1)) −→ isSubmitted(c(1), a(1), f(1),u(2), Sh,Bl)

∧ isPartners(c(1), a(1), u(1), u(2)))).

Property B: If a student s can read a submitted file f, then either s is the owner

of f or s is viewing f submitted by their partner

35

7 CONCLUSIONS

1. ©� (wbPer(view(f(1)), u(1)) −→ isSubmitted(c(1),a(1),f(1),u(2),Sh,Bl) ∧

isPartners(c(1),a(1),u(1),u(2)) ∨ isSubmitted(c(1), a(1), f(1),u(1),Sh,Bl))).

Property C: Every user has at most one role per course

1. ©� (isUserRole(c(Cn), u(Un), Rl) /\ isUserRole(c(Cn), u(Un), Rl1) −→

isRoleEq(Rl, Rl1))) .

The analysis of the above properties can be taken further to include significant

changes in the policy axioms and observation of how that affects the outcome of

the model checking reduction. For example, questions such as does a modification

to make a property hold lead to making a previously desired property not hold,

can be further explored. Another important feature that our model provides is

that we can also change the program and reason about the effects of those changes

7.2 Problems & Concerns

The majority of the problems of modeling Turnin appeared to be concentrated

only in one area of our modular implementation - the system. Formalizing the

policy as a axioms defining the auth function was not problematic, and neither

was modeling the program’s facts transition system but the simulation of random

actions within the system posed as a challenge. Furthermore, due to the complexity

of the domain relevant predicates and the restriction of variable rule position,

we were forced to apply clumsy techniques to simulate nondeterministic, pseudo-

random actions in the system.

The latter could be a likely reason for the several segmentation fault errors that

caused termination of model checking reductions. It will be interesting to explore

further the reasons for that and whether it was due to checking for specific types

of LTL formulas or due to inappropriate definition of proposition satisfiability

equations.

36

7 CONCLUSIONS

7.3 Future Work

Even though this work presents a model for formalization and verification

of rewriting-based security polices and further provides an implementation in

Maude’s environment, there are still many avenues for future work. We believe

that conceptually the foundation is solid but we have not explored various en-

coding schemes. Although we present a general way to implement policies using

Maude specifications it might not be applicable to large complex systems due to

the fact that we are simulating interactions between subjects and objects rather

than simply reasoning about the policy as a stand-alone entity.

• The current system can be improved to better simulate nondeterministic

actions. A possible way of addressing the issue is exploring the use of Object

Oriented modules in Maude or Real Time Maude. It might be possible that

the new environment will facilitate the simulation of system with random

transitions in an agile way.

• The attempt to reason about the “correctness” of Turnin, that is, verifying

properties using the Model Checker could be more successful if we introduce

more specific propositions and define carefully the satisfiability axioms for

them. Furthermore, specific properties can be readily analyzed after changes

to the policy or the program.

37

REFERENCES

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Reading,
MA, 1995.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, August 1999.

[3] Steve Barker and Maribel Fernández. Term rewriting for access control. In
DBSec, pages 179–193, 2006.

[4] Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management,
applied to electronic health records.

[5] E. D. Bell and L. J. LaPadula. In Secure computer systems: Mathemati-
cal foundations. Technical Report Mitre Report ESD-TR-73-278 (Vol. I-III).
Mitre Corporation, 1974.

[6] M. Bishop. Introduction to Computer Security. Addison-Wesley Professional,
2004.

[7] A. Bouhoula and J. Meseguer. Specification and Proof in Membership Equa-
tional Logic. Tapsoft’97: Theory and Practice of Software Development:
7th International Joint Conference CAAP/FASE, Lille, France, April 14-18,
1997: Proceedings, 1997.

[8] Edmund M. Clarke. Model checking. Lecture Notes in Computer Science,
1346:54–??, 1997.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer, and
C. Talcott. Maude manual (version 2.3). January 2007.

[10] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and José F. Quesada. Maude: Specification and pro-
gramming in rewriting logic. Theoretical Computer Science, 2001.

[11] The MITRE Corporation. Datalog user manual, 2004.

[12] F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Nomad: a security model
with non atomic actions and deadlines. Computer Security Foundations, 2005.
CSFW-18 2005. 18th IEEE Workshop, pages 186–196, 2005.

[13] Anderson Santana de Oliveira. Rewriting-based access control policies. Electr.
Notes Theor. Comput. Sci., 171(4):59–72, 2007.

[14] John DeTreville. Binder, a logic-based security language. In SP ’02: Pro-
ceedings of the 2002 IEEE Symposium on Security and Privacy, page 105,
Washington, DC, USA, 2002. IEEE Computer Society.

38

REFERENCES

[15] S. di Vimercati, P. Samarati, and S. Jajodia. Policies, models, and languages
for access control, 2005.

[16] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Specifying
and reasoning about dynamic access-control policies. In IJCAR, pages 632–
646, 2006.

[17] Kathi Fisler. Turnin - assignment submission application: Specification doc-
ument, November 2005.

[18] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl
Tschantz. Verification and change-impact analysis of access-control policies.
In ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 196–205, New York, NY, USA, 2005. ACM Press.

[19] J. Goguen and J. Meseguer. Order-sorted algebra I: equational deduction for
multiple inheritance, overloading, overloading, exeptions and partial opera-
tions. Theoretical Computer Science, 105:217–273, 1992.

[20] J.A. Goguen and G. Malcolm. Software Engineering with Obj: Algebraic
Specification in Action. Kluwer Academic Publishers, 2000.

[21] JY Halpern and V. Weissman. Using first-order logic to reason about policies.
Computer Security Foundations Workshop, 2003. Proceedings. 16th IEEE,
pages 187–201.

[22] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in
operating systems. Commun. ACM, 19(8):461–471, 1976.

[23] C. Kirchner and H. Kirchner. Rewriting, solving, proving. A preliminary
version of a book available at www. loria. fr/ckirchne/rsp. ps. gz, 1999.

[24] Butler W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):18–24, 1974.

[25] Theodore McCombs. Maude 2.0 primer version 1.0, 2003.

[26] T. Moses. extensible access control markup language (xacml) version 1.0.,
February 2003.

[27] Gunter Karjoth Calvin Powers Matthias Schunter Paul Ashley, Satoshi Hada.
Enterprise privacy authorization language (epal), March 2003.

39

A Turnin Specification [17]

Version 3, November 1 2005

Core Domains

- User(Pwd:Password) : u, u1, u2 ... - File: f, f1, ...

- Role={student, ta, faculty, admin}: r, r1, ...

- Assignment(Status: AsgmtStatus, Partners:Set[Set[User]], Submitted:File x

User x SharingMode x Late Comments:User/Partnering x CommentFile) : a

- Courses(Members:set[User], Asgmts:set[Assignment], UserRoles:Members

x Role): c, c1, ...

Minor Domains

- Password

- SharingMode={self, group}

- Late={true, false}

- AsgmtStatus={new, open, closed, late, deleted}: s, s1, ...

System Actions

- Change (add/remove) users: add-user(u,c,r), rem-user(u,c)

- Create assignment: create-asgmt(c)

- Change assignment status: change-status(a,c,new-status)

- Submit file: submit(u,c,a,f,mode)

- Download/View file: view(f)

- Change password: change-pwd(u,new-pwd)

- Change (add/remove) partners: make-partners(u1,u2,a), unpartner(u,a)

- Upload grading comment: upload-comments(u,c,a,cf)

Functions

- RIC(user, role, course) == (user,role) in course.UserRoles

- Partners(u,u1,a) == Exists grp: set[User] | g in a.Partners & u in g &

u1 in g - cell(u,a) = {u1 | Partners(u,u1,a)}

- new-assign() returns new assignment not already in some course

Access policies

- Change (add/remove) user

<u1, add-user(u,c,r)> if RIC(u1,faculty,c) + RIC(u1,admin,c) <u1,

rem-user(u,c)> if RIC(u1,faculty,c) & u in c.student+ta + RIC(u1,admin,c)

- Create assignment

<u1, create-asgmt(c)> if RIC(u1,faculty,c)

- Change assignment status

<u1, change-status(a,c,new-status)> if a in c.Asgmts & (RIC(u1,faculty,c) +

RIC(u1,ta,c))

- Submit file [u and u1 allows policy where staff can submit for a student]

<u1, submit(u,c,a,_,_)> if u=u1 & RIC(u1,student,c) & a.Status = open

- Download/View files [Implementation may enforce instantiation of c & a]

<u1, view(f)> if Exists c in Courses, a in c.Asgmts | Exists (f,u1,_,_) in

a.Submitted + Exists (f,u,group,_)

in a.Submitted & Partners(u,u1,a) + Exists (f,_,_,_)

in a.Submitted & (RIC(u1,faculty,c) + RIC(u1,ta,c)) + Exists (u1,f)

in a.Comments + Exists (_,f)

in a.Comments & (RIC(u1,faculty,c) + RIC(u1,ta,c))

- Change password

<u1, change-pwd(u,new-pwd)> if u1=u + Exists c in Courses | u

in c.Members & RIC(u1,admin,c) + RIC(u1,faculty,c) & (RIC(u,student,c) +

RIC(u,ta,c)) + RIC(u1,ta,c) & RIC(u,student,c)

- Change partners

<u1, make-partners(u,u2,a)> if Exists c in Courses | a in c.Asgmts & RIC(u1,faculty,c)

+ RIC(u1,ta,c)

<u1, unpartner(u,a)> if Exists c in Courses | a in c.Asgmts & RIC(u1,faculty,c)

+ RIC(u1,ta,c)

- Upload grading comment

<u1, upload-comments(u,c,a,cf)> if RIC(u1,ta,c) + RIC(u1,faculty,c)

State-update policies

- Change (add/remove) users

add-user(u,c,r) ==> Users’ = Users U {u} [assumes u not already in system,

U handles if not]

c.Members’ = c.Members U {u} c.UserRoles’ = c.UserRoles U {(u,r)}

rem-user (u,c) ==> [does not remove user from user domain, just from course]

c.Members’ = c.Members - {u} c.UserRoles’ = c.UserRoles - {(u, _)}

- Create assignment

create-asgmt(c) ==> c.Asgmts’ = c.Asgmts U {new-assign()}

- Change assignment status

change-status (a,c,newstat) ==> a.Status’ = newstat

- Submit file

submit (u,c,a,f,mode) ==> if a.Status=late c.a.Submitted’ = c.a.Submitted

U {(f,u,mode,true)}

else c.a.Submitted’ = c.a.Submitted U {(f,u,mode,false)}

- Download/View files [NONE]

- Change password

change-pwd (u,new-pwd) ==> Users’ = Users - {(u,_)} U {(u,new-pwd)}

- Change partners

make-partners(u,u2,a) ==> a.Partners’ = a.Partners - cell(u,a) - cell(u2,a) U

{(cell(u,a) U cell(u2,a))}

unpartner(u,a) ==> a.Partners’ = a.Partners - {cell(u,a)} U {(u)} U

{cell(u,a) - {u}}

- Upload grading comment — this doesn’t handle replace

upload-comments(u,c,a,cf) ==> a.Comments’ = a.Comments U {(u,cf)}

Mode Transition Information (and how that affects policies)

default policy contains rules for changing users, creating assignments,

changing assignment status,

change password (things that don’t take assignment as an argument)

[this suggests that policy must have different rules per actual assignment,

rather than the abstract class of assignments]

Transition System over AsgmtStatus

init new

new : enables make-partners, unpartner -> open, deleted

open : enables submit, download/view -> late, deleted

late : [makes submissions late, no effect on access] -> open, closed, deleted

closed: disables submit,make-partners,unpartner enables upload-comments ->

deleted, late, open

deleted : disables submit, download/view, make-partners, unpartner

[currently no support for restoration]

Invariants

- If status is open or late, all users/groups in c have writeable dir to submit to

- Every user has at most one role per course

- Partners sets in assignments partition student course members

- No faculty/staff/admin is in homework group for an assignment

- Open assignments have no submissions marked late

- Submission not allowed for asgnt/usr for which a grading comment exists

Non-invariants

- File need not be unique to asgmts (same file may be submitted to multiple

asgmts)

B Turnin Maude Implementation

Signatures Module

fmod SIGNATURES i s

∗∗∗ s o r t s
inc SET{Nat} .

s o r t s Subject Object Action SysAction SubjAction Fact Facts
Dec i s ion Node .

subso r t SysAction SubjAction < Action .
subso r t User < Subject .
subso r t Fact < Facts .

s o r t s User F i l e Role Assignment Asgmt AsgmtStatus Status
Partners Submitted SharingMode Course Members UserRole
Late .

subso r t AsgmtStatus < Status .
subso r t Late < Bool .

∗∗∗ some o f t h i s i s reduntant (can merge i s S t a tu s+isAsgmt)
op i s S t a tu s : Course Assignment AsgmtStatus −> Status .

op i sPa r tn e r s : Course Assignment User User −> Partners .
op isSubmitted : Course Assignment F i l e User SharingMode

Bool −> Submitted .
op isMember : Course User −> Members . −−− maybe i sUserRole

cove r s isMember
op isAsgmt : Course Assignment −> Asgmt .
op i sUserRole : Course User Role −> UserRole .

ops s e l f group : −> SharingMode [c to r] . −−− Sharing Mode
ops new open c l o s ed l a t e de l e t ed : −> AsgmtStatus [c to r] .

−−− Assignment Status

∗∗∗ mul t i s e t o f p r ed i c a t e s / g ene r i c
op n i l : −> Facts [c to r] .
op __ : Facts Facts −> Facts [a s s oc comm id : n i l] .

∗∗∗ pr ed i c a t e s / s p e c i f i c
subso r t Status Partners Members Submitted Asgmt UserRole

Course < Fact .

∗∗∗ pr ed i c a t e s a t i s f i a b i l i t y (i f p r ed i c a t e i s an element o f
a Facts then p r ed i c a t e i s t rue)

op _has_ : Facts Fact −> Bool .

vars F : Facts .
var P : Fact .

eq F P has P = true .
eq F has P = f a l s e [owise] .

∗∗∗ s ub j e c t s in the environment / s p e c i f i c
op u : Nat −> User .
op c : Nat −> Course .

∗∗∗ ob j e c t s in the environment / s p e c i f i c
op f : Nat −> F i l e .
op a : Nat −> Assignment .

∗∗∗ r o l e s in the environment / s p e c i f i c

ops student ta f ac admin : −> Role [c to r] .

∗∗∗ SysActions are a c t i on s a s s o c i a t ed to admin or f a c u l t y
in some cas e s to ta but not to s tudents

op addUser : Course User Role −> SysAction .
op rmvUser : Course User Role −> SysAction .

op createAsgmt : Course Assignment −> SysAction . ∗∗∗
op changeStatus : Course Assignment AsgmtStatus −>

SysAction .
op makePartners : Course Assignment User User −> SysAction

.
op unPartners : Course Assignment User User −> SysAction .

∗∗∗ SubjActions are a c t i on s that are i n i t i a t e d by students
op submitFi l e : Course Assignment F i l e SharingMode −>

SubjAction .
op view : F i l e −> SubjAction .

endfm

Program Module

fmod PROGRAM i s

pr SIGNATURES .

var St St1 : Status .
var B : Bool .
var Sh : SharingMode .
var Rl : Role .
var F : Facts .
var P : Fact .

−−− natura l numbers f o r us e r s cour s e s f i l e s ass ignments
vars Un Un1 Un2 Cn Cn1 Fn An An1 : Nat .

∗∗∗ cour s e s domain
op cour s e s : −> Facts .

eq cour s e s = c (1) c (2) .

∗∗∗ −−−STATE−UPDATE−−− PROGRAM MODULES
∗∗∗ next Facts equat ions over the r eque s t s

op nextF : Facts Action Subject −> Facts .
eq P P = P . −−− no f a c t redundancy

−−−add user to a course
eq nextF (F , addUser (c (Cn) , u (Un) , Rl) , u (Un1)) = F

isUserRole (c (Cn) , u (Un) , Rl) .

−−−rmv user
eq nextF (F isUserRole (c (Cn) , u (Un) , Rl) , rmvUser (c (Cn) , u (

Un) , Rl) , u (Un1)) = F .

−−−c r e a t e asgmt
eq nextF (F , createAsgmt (c (Cn) , a (An)) , u (Un)) = F isAsgmt (c

(Cn) , a (An)) i s S t a tu s (c (Cn) , a (An) , new) . −−− now i f we
combine the s e t ab l e s do we l oo s e anything ??? as in
isAsgnmt (c , a , s t a tu s)

−−−change s t a tu s
eq nextF (F i s S t a tu s (c (Cn) , a (An) , St) , changeStatus (c (Cn) , a

(An1) , St1) , u (Un)) = F i s S t a tu s (c (Cn) , a (An) , St1) .

−−−submit f i l e
eq nextF (F , submitFi l e (c (Cn) , a (An) , f (Fn) , Sh) , u (Un)) =

i f F has i s S t a tu s (c (Cn) , a (An) , l a t e)
then F isSubmitted (c (Cn) , a (An) , f (Fn) ,u (Un) , Sh , t rue)
e l s e F isSubmitted (c (Cn) , a (An) , f (Fn) ,u (Un) , Sh , f a l s e) f i

.

−−−view f i l e no change
eq nextF (F , view (f (Fn)) , u (Un)) = F .

−−−make par tne r s
eq nextF (F , makePartners (c (Cn) , a (An) , u (Un) , u (Un1)) , u (

Un2)) = F i sPa r tn e r s (c (Cn) , a (An) , u (Un) , u (Un1)) .

eq i sPa r tn e r s (c (Cn) , a (An) , u(Un) , u (Un1)) i sPa r tn e r s (c (Cn)
, a (An) , u (Un1) , u (Un)) = i sPa r tn e r s (c (Cn) , a (An) , u (Un)

, u (Un1)) .

endfm

Policy Module

fmod POLICY i s

p r o t e c t i n g SIGNATURES .

var s St : Status .
var s B : Bool .
var s Sh : SharingMode .
var s Rl Rl1 : Role .
var s F : Facts .
var Act : Action .

−−− na tura l numbers f o r us e r s cour s e s f i l e s ass ignments
var s Un Un1 Un2 Cn Cn1 Cn2 Fn An An1 : Nat .

−−− admin i s p r e s ent in a l l c our s e s and i s u (0)
eq F has i sUserRo le (c (Cn) ,u (0) , admin) = true .

∗∗∗ −−−POLICY−−−
ops permit deny : −> Dec i s i on .
op auth : Facts Action User −> Dec i s i on .

∗∗∗ ACCESS RULES

−−−add/rmv use r s from cour s e s AR1: only f a cu l t y in course c or
the admin can add use r s to c −−−EVERY USER HAS AT MOST ONE
ROLE PER COURSE

ceq auth (F, addUser (c (Cn) , u (Un) , Rl) , u (Un1)) = permit i f F
has c (Cn) and

not F has i sUserRo le (c (Cn) ,u (Un) , ta) and
not F has i sUserRo le (c (Cn) ,u (Un) , s tudent) and
not F has i sUserRo le (c (Cn) ,u (Un) , f a c) and
(F has i sUserRo le (c (Cn) ,u (Un1) , f a c) or F has i sUserRo le (c (Cn) ,u (

Un1) , admin))
and not Rl == admin .

eq auth (F, addUser (c (Cn) , u(Un) , Rl) , u (Un1)) = deny [owise] .

∗∗∗ can the admin remove h ims e l f from the course with r o l e admin?
no

ceq auth (F , rmvUser (c (Cn) , u (Un) , Rl) , u (Un1)) = permit i f F
has c (Cn) and F has i sUserRo le (c (Cn) ,u (Un) , Rl) and F has
i sUserRo le (c (Cn) ,u (Un1) , admin) and not Rl == admin .

ceq auth (F , rmvUser (c (Cn) , u (Un) , Rl) , u (Un1)) = permit i f F
has c (Cn) and F has i sUserRo le (c (Cn) ,u (Un) , Rl) and F has
i sUserRo le (c (Cn) ,u (Un1) , f a c) and not Rl == admin and not Rl
== fac .

eq auth (F, rmvUser (c (Cn) , u(Un) , Rl) , u (Un1)) = deny [owise] .

−−−c r e a t e asgmt f o r a course AR2: only f a cu l t y in c can c r e a t e
assgmnts in c (when you c r e a t e an ass ignment a f a c t i s added
wtih s t a tu s new

eq auth (F, createAsgmt (c (Cn) , a (An)) , u (Un)) = i f F has c (Cn)
and not F has isAsgmt (c (Cn) , a (An)) and F has i sUserRo le (c (Cn
) ,u (Un) , f a c)

then permit
e l s e deny f i .

−−−change s t a tu s f o r an ass ignment AR3: fa c and students in c
can change a i f a i s in c (i f we look at the one below th i s
becomes

∗∗∗ eq auth (F isAsgmt (c (Cn) , a (An1) , St) , changeStatus (c (Cn) , a (
An1) , St1) , u(Un)) = i f (F has i sUserRo le (c (Cn) ,u (Un

eq auth (F, changeStatus (c (Cn) , a (An1) , St) , u (Un)) = i f F has c
(Cn) and F has isAsgmt (c (Cn) , a (An1)) and (F has i sUserRo le (c
(Cn) ,u(Un) , f a c) or F has i sUserRo le (c (Cn) ,u (Un) , ta))

then permit
e l s e deny f i .

−−−submit f i l e AR4: //note : s t a f f can submit f o r s tudents ? // we
can merge i s S t a tu s and isAsgmnt as in isAsgnmt (c , a , s)

in s t ead o f isA (c , a) (t h i s w i l l add a f a c t isSubmitted (Un . .)
eq auth (F, submitFi l e (c (Cn) , a (An) , f (Fn) , Sh) , u (Un)) = i f F

has c (Cn) and F has isAsgmt (c (Cn) , a (An)) and F has
i sUserRo le (c (Cn) ,u (Un) , s tudent) and F has i s S t a tu s (c (Cn) , a (
An) , open)

then permit
e l s e deny f i .

−−−view f i l e AR5: fa c and ta and owner or pa r tne r s can view f i l e
ceq auth (F c (Cn) isAsgmt (c (Cn) , a (An)) isSubmitted (c (Cn) , a (An) ,

f (Fn) ,u (Un) ,Sh ,B) , view (f (Fn)) , u (Un1)) = permit i f Un ==

Un1 . ∗∗∗owner can view f i l e

ceq auth (F c (Cn) isAsgmt (c (Cn) , a (An)) isSubmitted (c (Cn) , a (An) ,
f (Fn) ,u (Un) ,Sh ,B) , view (f (Fn)) , u (Un1)) = permit i f Sh ==

group and F has i sPa r tn e r s (c (Cn) , a (An) , u(Un) , u (Un1)) . ∗∗∗
partner can view f i l e

ceq auth (F c (Cn) isAsgmt (c (Cn) , a (An)) isSubmitted (c (Cn) , a (An) ,
f (Fn) ,u (Un) ,Sh ,B) , view (f (Fn)) , u (Un1)) = permit i f F has

i sUserRo le (c (Cn) ,u (Un1) , f a c) or F has i sUserRo le (c (Cn) ,u(Un1
) , ta) .

eq auth (F, view (f (Fn)) , u (Un1)) = deny [owise] .

−−−pa r tne r s AR6: fa c or ta can make/ s p l i t pa r tne r s (and other
ca s e s ?) ; ta / fa c cannot be pa r tne r s with students

eq auth (F, makePartners (c (Cn) , a (An) , u (Un) , u (Un1)) , u (Un2)) =
i f F has c (Cn) and F has isAsgmt (c (Cn) , a (An))

and (F has i sUserRo le (c (Cn) ,u (Un2) , f a c) or F has i sUserRo le (c (Cn
) ,u (Un2) , ta))

and F has i sUserRo le (c (Cn) ,u (Un) , s tudent) and F has i sUserRo le (
c (Cn) ,u(Un1) , s tudent)

and not F has i sUserRo le (c (Cn) ,u(Un) , ta)
and not F has i sUserRo le (c (Cn) ,u(Un1) , ta)
and not F has i sUserRo le (c (Cn) ,u(Un) , f a c)
and not F has i sUserRo le (c (Cn) ,u(Un1) , f a c)
then permit
e l s e deny f i .

eq auth (F, unPartners (c (Cn) , a (An) , u(Un) , u (Un1)) , u (Un2)) = i f
F has c (Cn) and F has isAsgmt (c (Cn) , a (An))

and (F has i sUserRo le (c (Cn) ,u (Un2) , f a c) or F has i sUserRo le (c (Cn
) ,u (Un2) , ta))

and F has i sUserRo le (c (Cn) ,u (Un) , s tudent) and F has i sUserRo le (
c (Cn) ,u(Un1) , s tudent)

and F has i sPa r tn e r s (c (Cn) , a (An) , u(Un) , u (Un1))
then permit
e l s e deny f i .

endfm

System Module

mod SYSTEM i s

pr PROGRAM .
pr POLICY .

var s St St1 : Status .
var B : Bool .
var Sh : SharingMode .
var s Rl Rl1 Rl2 Rl3 : Role .
var Act : Action .
var F : Facts .

−−− na tura l numbers f o r us e r s cour s e s f i l e s ass ignments a c t i o n s
var s Un Un1 Un2 Un3 Cn Cn1 Fn An An1 Ac Ac1 Ac2 : Nat .
var Rest Rest1 Rest2 RestUn RestUn1 RestAc : Set {Nat} .

op node : Facts Action Subject −> Node .

op __ : Role Role −> Role [a s s o c comm] .

∗∗∗ −−−INITIAL STUFF−−−

−−− a "minimal" i n i t i a l s e t o f f a c t s and i n i t a i l ope ra t i on
op minimalFacts : −> Facts .
eq minimalFacts = cour s e s .

op noop : −> SysAction .
eq nextF (F, noop , u (77)) = F .
eq auth (F, noop , u (77)) = permit .

−−− so to model−check s t a r t i n g with minimal s t a t e use node (
minimalFacts , noop , u (77))

−−− a " g ene r i c " i n i t i a l s e t o f f a c t s
op i n i t i a l F a c t s : −> Facts .
eq i n i t i a l F a c t s = minimalFacts i sUserRo le (c (1) ,u (1) , s tudent)

i sUserRo le (c (1) ,u (2) , s tudent) i sUserRo le (c (1) ,u (3) , ta)
i sUserRo le (c (1) ,u (4) , f a c) i sUserRo le (c (2) ,u (1) , ta) i sUserRo le (c

(2) ,u (5) , s tudent) isAsgmt (c (1) , a (1)) i s S t a tu s (c (1) , a (1) ,
open)

i sPa r tn e r s (c (1) , a (1) , u (1) , u (2)) isSubmitted (c (1) , a (1) , f (1) ,
u (1) , group , f a l s e) .

∗∗∗ SYSTEM RULES ∗∗∗
−−− add user a c t i on

c r l [−−addUser−−] : node (F , Act , u (Un)) => node (nextF (F, Act , u (
Un)) , addUser (c (Cn) , u(Un1) , Rl) , u (Un2)) i f

(Un2 , RestUn) := (0 , 1 , 2 , 3 , 4 , 5) /\
(Cn , Rest1) := (1 ,2) /\ (Un1 , Rest) := (1 ,2 , 3 , 4 , 5) /\ (Rl Rl1

Rl2) := (student ta fa c) /\
auth (nextF (F , Act , u (Un)) , addUser (c (Cn) , u (Un) , Rl) , u (Un2)) =

permit .

−−− remove user a c t i on
c r l [−−rmvUser−−] : node (F , Act , u (Un)) => node (nextF (F, Act , u (

Un)) , rmvUser (c (Cn) , u(Un1) , Rl) , u (Un2)) i f
(Un2 , RestUn) := (0 , 1 , 2 , 3 , 4 , 5) /\
(Cn , Rest1) := (1 ,2) /\ (Un1 , Rest) := (1 ,2 , 3 , 4 , 5) /\ (Rl Rl1

Rl3) := (student ta fa c) /\
auth (nextF (F , Act , u (Un)) , rmvUser (c (Cn) , u (Un1) , Rl) , u (Un2)) =

permit .

−−− c r e a t e ass ignment ac t i on
c r l [−−createAsgmt−−] : node (F, Act , u (Un)) => node (nextF (F , Act

, u (Un)) , createAsgmt (c (Cn) , a (An)) , u (Un2)) i f
(Un2 , RestUn) := (0 , 1 , 2 , 3 , 4 , 5) /\
(Cn , Rest1) := (1 ,2) /\ (An, Rest) := (1 ,2) /\
auth (nextF (F , Act , u (Un)) , createAsgmt (c (Cn) , a (An)) , u (Un2)) =

permit .

−−− change s t a tu s a c t i on
c r l [−−changeStatus −−] : node (F , Act , u (Un)) => node (nextF (F,

Act , u(Un)) , changeStatus (c (Cn) , a (An) , St1) , u(Un2)) i f
(Un2 , RestUn) := (0 , 1 , 2 , 3 , 4 , 5) /\
(Cn , Rest1) := (1 ,2) /\ (An, Rest) := (1 ,2) /\ (St St1) := (new

open c l o s ed l a t e de l e t ed) /\
auth (nextF (F , Act , u (Un)) , changeStatus (c (Cn) , a (An) , St1) , u (

Un2)) = permit .

−−− make pa r tne r s a c t i on
c r l [−−makePartners−−] : node (F , Act , u (Un)) => node (nextF (F,

Act , u(Un)) , makePartners (c (Cn) , a (An) , u (Un3) , u (Un1)) , u (
Un2)) i f

(Un2 , RestUn) := (0 , 1 , 2 , 3 , 4 , 5) /\
(Cn , Rest1) := (1 ,2) /\ (An, Rest) := (1 ,2) /\ (Un3 , Un1 , Rest2)

:= (1 ,2 , 3 , 4 , 5) /\
auth (nextF (F , Act , u (Un)) , makePartners (c (Cn) , a (An) , u (Un3) , u (

Un1)) , u (Un2)) = permit .

−−− s epa ra te pa r tne r s a c t i on

c r l [−−unPartners−−] : node (F, Act , u(Un)) => node (nextF (F , Act ,
u(Un)) , unPartners (c (Cn) , a (An) , u (Un) , u(Un1)) , u (Un2)) i f

(Un2 , RestUn) := (0 , 1 , 2 , 3 , 4 , 5) /\
(Cn , Rest1) := (1 ,2) /\ (An, Rest) := (1 ,2) /\ (Un3 , Un1 , Rest2)

:= (1 ,2 , 3 , 4 , 5) /\
auth (nextF (F , Act , u (Un)) , makePartners (c (Cn) , a (An) , u (Un3) , u (

Un1)) , u (Un2)) = permit .

−−− view submitted f i l e a c t i on
c r l [−−v iewFi le−−] : node (F , Act , u (Un)) => node (nextF (F , Act , u

(Un)) , view (f (Fn)) , u (Un2)) i f
(Un2 , RestUn) := (0 , 1 , 2 , 3 , 4 , 5) /\
(Fn , Rest1) := (1 ,2) /\
auth (nextF (F , Act , u (Un)) , view (f (Fn)) , u (Un2)) = permit .

endm

Kripke Module

mod KRIPKE i s

pr SYSTEM .

∗∗∗ −−− MODEL CHECKER −−−

i n c MODEL−CHECKER .

∗∗∗ a s s o c i a t i n g system with KRS
subso r t Node < State .
subso r t Fact < Prop .

var Act Act1 : Action .
var F : Facts .
var Pr : Fact .
var s Un Un1 Cn : Nat .
var Sh : SharingMode .
var Bl : Bool .
var s Rl Rl1 : Role .
var Fn : F i l e .

ops wbPer : Action Subject −> Prop .
ops wbDen : Action Subject −> Prop .
op i sAct : Action Subject −> Prop .

eq node (F Pr , Act , u (Un)) |= Pr = true .
eq node (F , Act , u (Un)) |= Pr = f a l s e [owise] .

op isRoleEq : Role Role −> Prop .
eq node (F , Act , u (Un)) |= isRoleEq (student , s tudent) = true .

−−−eq node (F , Act , u (Un)) |= isRoleEq (R1 , R2) = true i f R1 ==
R2 .

ceq node (F , Act , u (Un)) |= isAct (Act1 , u (Un1)) = true i f Act ==
Act1 and Un == Un1 .

eq node (F , Act , u (Un)) |= isAct (Act1 , u (Un1)) = f a l s e [owise] .

ceq node (F, Act , u (Un)) |= wbPer (Act1 , u (Un1)) = true i f auth (
nextF (F , Act , u (Un)) ,Act1 , u(Un1)) = permit .

eq node (F, Act , u(Un)) |= wbPer(Act1 , u (Un1)) = f a l s e [owise] .

−−− THE MODEL CHECKER asks whether our proper ty i s True FOR ALL
PATHS. I f we want to f i nd A path where i t i s t rue we have to
negate the formula :

−−− Example : red modelCheck (node (c (1) , addUser (c (1) , u (1) , ta) ,
u (0)) , <> isUserRo le (c (1) ,u (1) , s tudent)) : the way we s e t up
the system the r e WILL be a s t a t e with

−−− i sUserRo le (c (1) ,u (1) , s tudent) eventua l l y so the
counterexample to the negat ion w i l l be our " e x i s t s " path

endm

Batch Module

*** loading of modules

in SIGNATURES .
in POLICY .
in PROGRAM .

in SYSTEM .

load model-checker .

in KRIPKE .

Index

Access control, 10

Access control policy, 11

Action, 11

Authorization Function, 26

Axiom, 17

Completeness, 17

Conditional rule, 17

Conditional TRS, 17

Confluence, 17, 35

Consistency, 16

Datalog atom, 31

Datalog fact, 31

Datalog goal, 31

Datalog identifier, 31

Datalog literal, 31

Datalog predicate, 31

Datalog rule, 31

Datalog term, 31

Datalog variable, 31

Decision, 11, 19

Environment, 11

Equality, 17

Good State, 28

Ground term, 15

Irreducable term, 15

Kripke structure, 20

ks-state, 21

LTL, 20

Many-sorted signature, 15

Matching, 17

Model Checking, 29

Multiset, 16

Node Function, 27

Normal form, 15

Object, 11

Policy, 19

Request, 11

Rewrite relation, 16

Rewrite rule, 16

Satisfaction relation, 21

Signature, 15

Subject, 11

Substitution, 15

System, 20

Term, 15

TRS, 16

55

	Introduction
	Dynamic Access Model
	Term Rewriting
	Term Rewriting for Access Control
	Maude
	Functional Modules
	System Modules
	Tools
	Example

	Rewriting-Based Approaches
	Fernandez
	Oliveira

	Contributions

	Foundation of Rewriting-Based Security Policies
	Terms and Concepts
	Historical Perspective on Access Control
	Languages & Logics for Access Control

	Term Rewriting
	Equational Theory
	Conditional Rules

	Conceptual Model
	The Program
	The Policy
	The System
	The Logic

	Policy Formalization in Maude
	Signatures
	The Program
	The Policy
	The System
	The Logic
	Analysis using Maude Tools

	Datalog Policies to Maude Specifications
	Definitions
	Policy Example
	Datalog Policy to Term Rewriting Policy
	Maude Policy Module

	Conclusions
	Analysis of Turnin
	Problems & Concerns
	Future Work

	References

