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Abstract

Much work has been done to develop intelligent tutoring systems in domains
such as algebra, geometry, and computer programming. Our work is to develop
an intelligent tutoring system to train US soldiers. One main difference in this
domain is that one of the main skills to be learned is cooperation between
teammates, so the tutor must emphasize collaboration as a skill. In addition,
to help train this skill the system must be able to run in real-time, and provide
both computer generated teammates, as well as intelligent opposing forces. This
system is the first real-time, multi-user, model tracing tutor with simulated
teammates. The goal of this thesis is to build a prototype system to validate
that this is a valid approach for this domain.
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1 Introduction

In cooperation with the US Army we are attempting to answer the question
“how can we combine intelligent tutoring systems with military simulations?”
To that end we have developed a system to tutor soldiers on the use of military
operations on urban terrain (MOUT). The system is designed to tutor a group
of soldiers while they complete a military exercise. Each soldier will be sitting
at a computer running a 3D simulation of the exercise, controlling a virtual
soldier, or avatar, that can interact with both the environment as well as the
other soldiers. The system will give the soldiers feedback and advice as they
proceed through the exercise. This thesis discusses some of the difficulties in
building such a system, and a conceptual architecture for dealing with them.

There are many 3D simulation systems out there, so one goal of this project
is to develop a system that can be used with one of them to tutor human
soldiers, as opposed to developing our own simulation. This system will need
to communicate with the simulation, as well determine what feedback to give
to the soldiers and when. Another goal is that the system is able to adapt to
different simulations.

Another feature of the system is that it should have the ability to use com-
puter generated forces (CGFs) as simulated teammates. Given that the exercise
may involve a large number of soldiers, we may not have enough students to
participate in the exercise. Therefore we want to have CGFs take the place of
the real soldiers in the exercise. Having CGFs is important because we want our
system to be able to teach students how to collaborate with their teammates.

The system should also be flexible, in two ways. First, if there are multiple
ways to solve a problem, we want to allow the student to solve it in the manner
they see fit. Therefore the system must be flexible in allowing multiple solutions
to problems. Second, during an operation, events may occur that require the
soldiers to change what they are doing. Therefore the system must be flexible
to allow for changing goals during the operation.

2 Background

There are two main fields of research that this project involves. First is the
research on building intelligent tutoring systems. These have historically been
for tutoring only a single student, although there is some work on collabora-
tive tutoring. The second field is research on building military simulations for
training purposes.

2.1 Intelligent Tutoring

The earliest systems that used computers to provide tutoring to students were
known as Computer-Aided Instruction (CAI). These systems would ask the
student a series of questions, and would tell the student whether their answer
was right or wrong. These systems can give feedback on why certain answers
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are wrong or give broad hints on how to solve problems, but they can not give
more detailed feedback. In particular they cannot give feedback that is directed
towards a particular student.

The next step were systems we call Intelligent Tutoring Systems (ITS). These
systems could give feedback on the individual steps that would led to the solu-
tion. Additionally, because the systems could track where the student was in
the problem, they could give hints that were tailored to the individual student’s
progress. Likewise, when the student made a mistake, the feedback messages
given can be more appropriate. The hope was that these systems would be more
effective at tutoring than CAI systems.

Bloom did a study that compared than effects of human tutoring versus
conventional classroom study[1]. A control group received conventional class-
room instruction with about 30 students per teacher. The experimental group
received one on one tutoring. At the end of the experiments both groups were
tested. Bloom found a effect size of two sigma, which means the average score
of the experimental group was two standard deviations above the average score
of the control group. This means that 98% of those in the experimental group
did better than the average score of the control group, which is a huge effect.
Two sigma has become the goal that intelligent tutoring systems have strived to
achieve. Kulik and Kulik[2] did a study that involved a meta-analysis of several
CAI systems, and they found an effect size of 0.4 sigma. Koedinger et al[3]
found in a study of their model tracing tutor that their tutor had an effect size
of one sigma. Likewise, the Practical Algebra Tutor (PAT) was shown to have
an effect size of about one sigma for the skills it was designed to teach.[4] PAT
also had an effect size 0.3 on two standardized tests: the Iowa Algebra Aptitude
and a subset of the Math SAT suitable for ninth graders. We can see that ITS
systems can perform much better than CAI systems, but there is still room for
improvement.

2.1.1 Approaches to Tutoring

There are two approaches to tutoring. They are not so much discrete, different
approaches as they are opposite ends of the spectrum. The first method is
discovery learning, where you give the students the means to learn and allow
them to explore the problem space. The hope is that with the right tools they
will learn how the solve the problem on their own. Some argue that discovery
learning is better for teaching ideas and principles, because the student will
better remember what they discover themselves.

A good example of a discovery learning system is Green Globs[5]. In this
system the student is presented with a set of coordinate axes with several green
globs distributed randomly. The student is asked to input a function, such that
function crosses as many globs as possible. The idea is that in trying to find
functions that hit more globs they will determine the shapes and properties of
linear, quadratic, and other functions.

On the other end of the spectrum is coached problem solving. In coached
problem solving the student is given a task, and while they perform the task
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they are given feedback. This feedback will eventually direct the student to
the solution. This process is repeated until the student learns the task. Some
argue that coached problem solving can be more appropriate then discovery
learning, because in many cases discovering how to do the task can be difficult
and frustrating.

One approach to coached problem solving is constraint-based tutoring[6, 7].
In constraint-based tutoring one builds a set of constraints on the problem state.
The student is allowed to work on the problem, trying to reach some goal state.
If they ever violate any of the constraints, appropriate feedback is given.

Another approach is model tracing[8, 9]. To build a model tracing tutor
one must first build a cognitive model that knows how to perform the task to
be tutored. As the student works on the problem, the student’s actions are
compared to the actions the model produces to determine if they are correct or
not. One advantage of model tracing is that because the model “knows” how
to perform the task, it can give the student hints on how to proceed. However,
compared to constraint-based tutoring, it is more difficult to build a model
tracing tutor.

Another advantage of model tracing tutors is that they can be used to track
the student’s knowledge of the individual skills needed. The most popular
method is known as knowledge tracing[10]. First, every rule in the model is
associated with a skill, although this is not necessarily a one-to-one mapping.
Every skill is assumed to be in a learned or unlearned state, and once the skill
is learned, it can not be unlearned. Four parameters are attached to each skill

p(L0) Initial the probability the skill is learned prior to the first opportunity
to apply the skill

p(T ) Transition the probability that the student’s knowledge will transition
to a learned state after an opportunity to apply the skill

p(G) Guess the probability that the student will guess correctly from an un-
learned state

p(S) Slip the probability that the student will make a mistake from a learned
state

These parameters need to empirically estimated for each skill. Given these
parameters we can estimate the probability p(Ln) that the student has learned
the skill after n attempts by a Bayesian inference process. Though it is fairly
simple technique, knowledge tracing is fairly effective. Some research is being
done on more complex methods of tracking knowledge[11].

2.1.2 Cognitive Architectures

In order to build a model tracing tutor, we need to build a cognitive model. A
cognitive architecture provides a framework to develop a cognitive model. Most
cognitive architectures are production rules systems, and all are based on some
theory of cognition. Some examples of cognitive architectures include SOAR[12],
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ACT-R[13], and COGNET[14]. Each models different aspects of cognition, for
instance ACT-R models the limited capacity of short term memory and the
amount of time it takes to transfer information from long term memory to short
term memory.

An alternative to using a cognitive architecture is to build a cognitive model
using a general purpose production rule system. The advantage of this is that
building the model will most likely be simpler, however the disadvantage is
that the model will not benefit from the features of cognition simulated by the
architecture. However, in many applications, these features may not necessary.
For instance, it most tutoring applications we are not concerned with modeling
the capacity of short term memory.

All production rule systems store information in working memory, and have
a set of rules. These rules have some conditions on the contents of working
memory, and some actions to change working memory. When the conditions for
a rule are met, the rule fires and the actions are taken. Production rule systems
such as OPS5, ART, CLIPS, and JESS, are forward chaining systems, and given
an initial state of working memory fire any rules that apply. They use the Rete
algorithm[15] to quickly match elements from working memory to conditions.
The Rete algorithm takes advantage of the fact that most rule sets will contain
rules that share conditions. By only evaluating these shared conditions once,
the Rete algorithm can quickly determine which rules are ready to fire. Other
systems, such as Prolog or MYCIN, use backward chaining. These systems take
a goal state of working memory, and working backwards, find a sequence of rules
and an initial state of working memory that could lead to the goal state.[16]

2.1.3 Collaboration Research

There has been research on collaboration in intelligent tutoring systems. Al-
gebra Jam[17] is a system that incorporates collaboration by allowing several
students to work on an algebra problem together. It includes several tools to
enhance collaboration, for instance an object oriented chat. Each student is
sitting at their own computer, but while using the text based chat can highlight
parts of the screen to show the other students what they are talking about.
What makes Algebra Jam novel, however, is that they try to track the different
roles that students are taking, for instance, a leadership role, a critic role, or an
observer role. The hope is by understanding how the student is collaborating
with the other students the system can understand their actions better. For
instance most tutoring system interpret non-activity as a lack of knowledge.
However Algebra Jam may be able to make an more informed decision if it
knows the student is acting as an observer.

Another system that uses collaboration is the Web-based Haskell Adaptive
Tutor (WHAT)[18], which uses collaboration to teach the programming lan-
guage Haskell. WHAT includes similar tools for collaboration as Algebra Jam,
however WHAT allows for simulated virtual students. The real students are
not told which of their collaborators are virtual. The virtual students are not
perfect, in fact they designed to make mistakes. The idea is that by helping the
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virtual students, the real students will learn more.
Both of these systems are interesting, however, like many other systems in

field of collaborative tutoring, they differ from our system in that they are us-
ing collaboration to teach, not teaching collaboration. Neither programming
Haskell or solving algebra requires collaboration, but the MOUT doctrine re-
quires teamwork.

2.2 Military Simulations

The second major area of research this project involves is military simulations.
There are many different simulation systems. All provide some simulation of the
physical world, and some are more detailed than others. Additionally, computer
generated forces (CGFs) may be simulated. CGFs may either be opposing forces
or teammates. CGFs are often their own systems which are integrated with a
simulation system.

2.2.1 Simulation Systems

Many simulations are built using the High Level Architecture (HLA)[19]. HLA
defines a protocol that different simulations can use to communicate. Simu-
lations have been built for aircraft, tanks, and dismounted infantry, and they
can all work together through the HLA. Although it’s possible to extract some
information from a simulation, the general nature of the HLA allows only very
basic information to be distributed. This makes it impossible to develop a tu-
toring system solely through the HLA. Instead modifications must be made to
the simulation system.

At Fort Benning’s Dismounted Battle Space Lab, they are using the Soldier
Visualization System (SVS)[20] for training. Each soldier is placed in a 10 foot
room and a virtual environment is projected on to the walls. Each soldier has
sensors placed on their helmet and gun so that the system can track whether
they are standing or crouching and where they are pointing their gun. The
simulation strives to be an immersive environment, however it does not have any
intelligent tutoring capabilities. It is also a closed proprietary system, meaning
changes can not be made to it to allow tutoring.

Many researchers are starting to use game technology for their simulation
purposes[21]. These systems are cheaper, in both the cost of the system and the
hardware needed to run them. Game engines are also generally built to flexible,
and it is fairly easy to modify them for new purposes. Some of the games being
used include America’s Army, Half-Life, and Unreal.

2.2.2 Computer Generated Forces

There has been a lot of research in developing computer generated forces, both
as teammates and as opposing forces. The SOAR IFOR (Intelligent FORces)
project[22] is exploring the use of the SOAR cognitive architecture in devel-
oped simulated pilots, although eventually they hope to build CGFs for other
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domains. Their TacAir-SOAR model has been used as opposing forces in a
number of large scale military training operations.

In domain of MOUT operations, there have been a number of projects re-
searching CGFs. For the Virtual Training & Environments (VIRTE) program
there have been two projects of note. Wray et al[23] developed a SOAR model
for opposing forces. The other project is Best et al’s[24] work in building an
ACT-R model of computer generated teammates. Both of these projects used
Unreal as their simulation. While these projects illuminated some of the issues
in developing CGFs, the models are not publicly available so we could not use
their research directly.

2.2.3 Military Training

There has been research into how to build tutoring systems for military applica-
tions, but the field is quite varied. For instance, the Operator Machine Interface
Assistant (OMIA)[25], is a system that tutors pilot on flying the MH-60S and
MH-60R helicopters. These helicopters require collaboration between the pilot
and copilot, and the system runs in real-time. However, OMIA differs from
our system in that it uses a state-based tutoring system as opposed to model
tracing. Their approach uses a finite state machine (FSM) to determine the
possible correct actions at any point in time, and is similar to model tracing in
that the students actions are compared to those produced by the FSM. While
FSMs are easier to build, a new FSM must be built for each scenario, where as
the cognitive model built for model tracing should be flexible to any situation.

The Conversational Agents in a Pattern Oriented Training Environment
(CAPOTE)[26] system has explored the relation between the simulation and
the tutoring system. CAPOTE is designed to teach pilots situational aware-
ness, radio communications, and flight pattern geometry. Pilots study these
skills and then practice them in flight simulators. However these flight simula-
tors are expensive and the students do not get to spend a lot of time in them.
Instead of building a complete flight simulator, CAPOTE simulates only what
is really necessary to learn these skills. CAPOTE provides two dimensional
graphics for the flight pattern geometry, and synthetic agents that provide con-
versational abilities for the radio communications. By finding the right amount
of simulation needed for the task, CAPOTE can provide a more cost-effective
training method.

Another tutoring system that is similar to ours is the Advanced Embedded
Training System (AETS)[27]. AETS is used to tutor the air defense team for
Navy ships. The task is real-time and requires collaboration between the team-
mates. AETS also uses a model tracing approach to provide tutoring. AETS
differs from our system in that is an embedded system, that is, it runs on the
actual machines used in Navy ships. Also, AETS focuses on very low level ac-
tions, such as tracking the eye movements of the students. A lot of the work that
AETS does is translating these low level actions into more high level actions,
such as looking at a part of the screen and recognizing a threat on radar.
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3 Design

We have two components in our system that need to be cognitively modeled.
Cognitive modeling is a difficult task, and so we want to limit the amount of it
we need to do. The first component is the CGFs. These computer controlled
soldiers need to act like real soldiers, or else they will not be effective to train
with. In addition, we want to them to act as if they were human; that is, they
should make mistakes. Soldiers will have to learn how deal with errors that
are made in the field. Therefore our CGFs should attempt to be as close to
simulating how an actual soldier could respond to a given situation.

The second component is used to tutor human soldiers. By tutor we mean to
give appropriate feedback to soldiers based on their performance in the exercise.
When a soldier does well, the system should give positive feedback; likewise if
they fail or make mistakes the system should give negative feedback. In addition
to feedback, the system must provide assistance to soldiers who do not know
what to do. For the feedback to be useful however, the system must be aware
of the soldier’s current context. MOUT tactics used by soldiers are complex,
with many variations. Given a situation, there are many correct things to do.
Therefore we must know the state of the student’s mind at the time to give the
appropriate feedback. To do that we must have a model of the student. We
can then use model tracing algorithms to figure out the reasoning behind their
actions, and give the student appropriate feedback and assistance.

Our solution is to realize that our two modeling tasks are one and the same.
The computer controlled forces are attempting to model a real soldier. For the
tutoring task, we need a model of a real soldier to give appropriate feedback.
They both use a model of a real soldier; however they use it in different ways.
The computer controlled forces use the model to produce actions from a given
situation. For the tutoring task we take the given situation and the user’s
actions to determine a line of reasoning, which is then used to give feedback.
Therefore we can use forward chaining for the computer controlled forces, and
backward chaining for the tutoring task. We can then develop a single model
of production rules that can be used for both tasks.

Figure 1 shows the overall architecture of our system. On the left side the
students interact with the simulation. They will be producing some input, either
via a keyboard, joystick, or other input device, to control their avatars in the
simulation. The simulation will produce some output the students can perceive,
typically a graphical display and audio effects.

On the right of the diagram is the set of production rules that form the cog-
nitive model. Connected to the rules are what we refer to as the agents. Every
agent is an instance of the cognitive model, and is connected to an avatar in the
simulation. All the agents use the same set of rules, because every soldier in our
system is taking the role of an infantryman. In a more complex systems differ-
ent agents may have different sets of rules. Each agent has a distinct working
memory, which represents the knowledge and goals that a particular agent has.
The working memory of different agents will be different, since each will perceive
different events in the world. Additionally, they start with a different working
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Figure 1: Conceptual Architecture

memory, for instance the squad leader knows he is the squad leader, and has
a different set of goals and knowledge than does the platoon leader. There are
two types of agents, one for CGFs and one for human tutoring. CGF agents
command their avatars in the simulation; the human tutoring agents provide
feedback to students.

Each agent also has a distinct set of skill levels. A skill level represents the
probability that the student knows that particular skill, and ranges from 0 to 1.
Skills can either be a single rule or a group of rules. Skill levels could be set for
the computer generated forces, so that they would sometimes make mistakes.
These skill levels are determined by knowledge tracing.

The agents are connected to the simulation over a communication channel.
There are three types of messages that are exchanged: events, actions, and feed-
back. Events are things that happened in the simulation that the soldiers can
perceive. Examples would be hearing footsteps, seeing enemy soldiers, receiv-
ing orders from a team leader, etc. These are always sent from the simulation
to the agents. The simulation is responsible for deciding which agents receive
the events. For instance, if the event is seeing enemy soldiers, it is up to the
simulation to decide which soldiers can see the enemies in the simulation. The
agents use events to update their working memory.

Actions are things that the soldiers can do. Examples include moving, shoot-
ing, giving orders, etc. Where actions are sent depends on the type of agent.
CGFs send actions to the simulation; their avatars then perform the actions in
the simulation. Tutoring agents receive actions; these are the actions the stu-
dents took. The tutoring agent then uses a model tracing algorithm, described
below, to provide feedback. Some actions become events for other soldiers. For
instance, if the team leader orders his team to clear a room, that is an action,
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but the rest of the team will receive an event telling them to clear the room.
There is an important distinction between what we refer to as instant ac-

tions and latent actions. The difference between them is that instant actions
are executed in the simulation atomically, where a latent action happens over
time. This is important because it means that we can only detect latent actions
when the action is complete, not when the actions starts. For instance, when a
player moves from one place to another, we cannot tell when he starts to move
where his final destination is going to be. Generally latent actions have an event
that occurs when the action is complete. For instance, when an avatar moves,
an event is generated that specifies the avatar’s current location. In general the
model will use these events to determine when its current action is finished and
can move on to the next. For instance, when a CGF decides to move somewhere,
it will issue a move action. The model will then wait for an event telling it that
its current location is where it wants to be before it continues with its other
goals. When we are doing human tutoring, the system can look at these com-
pletion events and infer the actions the students have made. When the student
moves, a event is generated describing the avatar’s location. We can infer there
was a movement action, and model will trace both the rules that generated the
action and the rules that waited for the action’s completion. It should be noted
that these location events are not based on cartesian coordinates, but rather on
annotations on the map as described in the Implementation section. Determin-
ing latent actions after they have completed is important because the system
should capture that the student’s action was to move to a particular place, not
just to move.

Feedback messages are used to provide feedback to the student. They are
only sent from the tutoring agents to the simulation. The simulation relays the
feedback to the student. Examples of feedback include displaying text of the
screen, or highlighting an area of interest on a map.

In order to illustrate how the two types of agents use the set of rules, we
present Table 1, which shows a sample of six rules that could be used in our
system. These are not the rules we have implemented, but use them as simple
examples to illustrate the architecture. For purposes of illustration, these rules
are vastly simplified from the actual rules that we used; in addition, they are
English language versions of rules we would normally code in a computer lan-
guage. The complete set of rules we implemented can be found in Appendix
A. The rules have four components. The first is type, which marks the rule
as either a correct rule or an incorrect one. Incorrect rules are typical mistakes
soldier might make; they are used when tutoring human soldiers. The next two
parts are the “if” and “then” clauses of the rule; when the conditions under
the “if” clauses are true, then the actions under the “then” clause should fire.
Finally there is a message, which is used to give feedback. Because the rules
are presented with English language if-then clauses, the message field appears
to be the same as the “then” clause. However in an actual implementation the
“then” clause would be encoded in a programming language.

Four of the six rules have actions as their consequence, and two change
working memory. There is no restriction that rules must do one or the other,
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Rule 1
type correct
if your goal is to clear a building AND

there is a room with a threat
then order team to clear that room [action]
message “Don’t bypass threats; clear a threat-

ened room.”
Rule 2

type correct
if your goal is to clear a building AND

there is a room without a threat AND
there is no room with a threat

then order team to clear that room [action]
message “Order the team to clear a room.”

Rule 3
type incorrect
if your goal is to clear a building AND

there is a room without a threat AND
there is a room with a threat

then order team to clear the unthreatened
room [action]

message “There is a room that contains a
threat, you should have cleared that
room first.”

Rule 4
type correct
if You see an enemy enter a room AND

You are not the team leader
then tell leader you saw an enemy [action]
message “You need to tell the leader you saw

an enemy enter a room.”
Rule 5

type correct
if You see an enemy enter a room
then consider that room threatened [change

memory]
message “You saw an enemy enter a room; you

must consider that room threatened”
Rule 6

type correct
if you are told an enemy entered a room
then consider that room threatened [change

memory]
message “You were told an enemy entered a

room; you must consider that room
threatened”

Table 1: Sample Set of Rules
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in practice, most rules that produce an action also change working memory.
However the distinction between rules that produce actions and those that do
not will be important when we discuss the model tracing algorithm below.

3.1 Computer generated forces

When used to run computer generated forces, we apply the rule using forward
chaining. Consider an example where several things are currently in the agent’s
working memory: you are the team leader, the goal is to clear a building, there
are three rooms that you can reach, you saw an enemy enter a room, and a
team member told you he saw an enemy enter a different room. Rules 5 and 6
would fire, which would cause working memory to be updated, so that there are
now two threatened rooms and one unthreatened room. Rule 3 could now fire,
except that it is an incorrect action and we assume, for the moment, that the
computer generated forces do not make mistakes. Rule 1 will fire, however there
are two rooms that the agent could choose to clear. There are no other rules
that give preference one way or the other, so the system will arbitrarily choose
one. Generally production rule systems will have a conflict resolution strategy
to determine which rule to fire when many apply, but our system does not. This
is because when two rules apply it represents that there are two approaches to
take to the current situation. Therefore the system can fire either rule and the
result is still correct. The action produced by Rule 1 will then be sent to the
simulation so that his team will be ordered to clear a room.

3.2 Human tutoring

Now let us consider what happens when the system is used to tutor a human
soldier. Let us take the scenario above, with the same things in working memory.
There are three actions the human soldier could take, each action being to
order his team to clear one of the three rooms. Two of these rooms should be
considered threatened, and clearing either room is only correct action. Should
the soldier order his team to clear a threatened room, we can use backward
chaining to determine that it is correct action. We see that the action could be
the result of Rule 1, 2 or 3. To see which one could fire, the system needs to
determine if the room selected is threatened or not. Rule 5 and 6 can fire to
show that the room is threatened, which show that Rule 1 could fire, and so
we found a set of rules that from working memory produce the desired action.
Since Rule 1 is a correct rule, we know the student has made a correct action.
It is important to notice it does not matter which of two threatened rooms the
human soldier chooses to clear, they are both considered correct. This is an
important aspect of the model tracing; the student is given the flexibility to
solve the problem as they see fit.

If the student had chosen to clear the unthreatened room, then a different
set of rules would be traced. Again, Rules 1, 2 and 3 could all lead to the action
chosen, but after considering Rules 5 and 6 and the state of working memory,
Rule 3 is found to be the source of the action. Rule 3 is marked as an incorrect
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action, so the system needs to tell the student they have made a mistake. It can
easily do this by displaying the message associated with the rule to the student.
In this case the student would be told “There is a room that contains a threat,
you should have cleared that room first.”

The system can give additional information about the mistake by displaying
the messages of the rules that caused the room to be considered threat; in this
case the student would see “You were told an enemy entered a room; you must
consider that room threatened” or “You saw an enemy enter a room; you must
consider that room threatened.” The student therefore gets immediate feedback
that is appropriate to the situation.

If the student doesn’t know which room to clear, he can ask the system
for assistance. The system can run the system in forward chaining mode to
determine what one of the correct actions would be. This will be done in the
same way as when the CGF ran the model; Rule 5 and 6 will fire causing Rule
1 to fire. However this time the system keeps track of the messages that are
associated with these rules, and then presents them to the student. It presents
each message in the order they were fired each time the student asks for help.
In this case the system would produce “You saw an enemy enter a room; you
must consider that room threatened” followed by “Don’t bypass threats; clear
a threatened room.” By presenting each message individually, the system will
only give enough assistance as the student needs.

4 Implementation

We have built a prototype system that implements the above architecture. The
cognitive model used is not complex, but the purpose is to show it is possible to
use the same model for both the CGFs and for tutoring students. A screenshot
of our system can be seen in Figure 2.

We are using Unreal Tournament 2003 (UT2003), a commercial off the shelf
game, as our simulation system. UT2003 allows the users to make modifications
to the game to support different game types. These modifications are written
in a language called UnrealScript, which the Unreal game interprets. We have
written such a modification that has several responsibilities. First, it maintains
a TCP/IP connection to a server program we have written that we call UTJess.
These programs communicate using a protocol we developed which is described
below. The modification also detects events and student actions and sends them
to UTJess program. It also receives actions for the CGFs, and has the avatars
perform those actions in the simulation. Finally, it takes the feedback messages
from the UTJess program and relays them to student in an appropriate manner.
The UTJess program is a simple program that has three main purposes: to
translate network messages to and from working memory, running the models
forward for CGFs, and implementing the model tracing and knowledge tracing
algorithms for tutoring. The UTJess program also determines which latent
actions have been performed by looking at events, although moving is currently
the only latent action.
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Figure 2: Screenshot of our prototype system

4.1 The Environment

The tutoring system should be able to support different scenarios. Each scenario
will have different features, such as buildings, trees, enemy forces and so on. Also
each scenario will have different objectives. We could define scenarios by the
events that happen during the exercise. For instance, a scenario might say that
the team leader will be shot after the clearing the third room. Our system does
not do this, and defines a scenario only on its initial settings. So during any
exercise the team leader may or may not be killed after clearing the third room,
and the soldiers will need to act accordingly.

UT2003 supports custom maps, as well as placing custom information in
the maps. Our system stores all the scenario information in a map file. In
addition to information about the objectives, we store other information in the
map. One problem with computer controlled forces is that they are blind. A
human player can look at a room in UT2003 and identify where all the exits are,
but it is not as easy for the computer to do. Therefore we placed information
about the location of rooms and doors into the map that allow the computer to
tell where things are. Another way that we use extra information to help the
computer controlled forces is by predefining paths. The MOUT doctrine has
specific rules about how rooms should be entered, that involve such factors the
form of the room and whether the doors swing in or out. In order to simplify
this for the computer controlled forces, we place all of the paths in the map.
This information is also used when tutoring human players, to make sure they
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are moving along the correct paths.
In this sense, the model has more information than the student does. We

do this because it is a very difficult problem to model perception, so instead of
trying to determine whether or not the student has seen, for instance, all the
doors in a given room, we assume that he has. For this domain, this is generally
not a problem, because the model is supposed to be an expert student, and has
to make sure that they are fully aware of their situation. However, this can
lead to suboptimal tutoring. For instance, if a student is in a room, and doesn’t
see any more rooms to clear, they may backtrack. This is an error, and the
system will give them a diagnostic message “You need to clear all rooms before
backtracking.” The student will likely look back and find the room they were
supposed to clear, but the system would have been more helpful if it had said
“You did not see a room, you need to clear it before backtracking.” However this
can only be done if we model student perception very finely. For our prototype,
we have not done this, but we hope to model some elements of perception more
accurately in the future.

4.2 The Cognitive Model

JESS (Java Expert System Shell) was used to implement the cognitive model
as a series of production rules. The complete model can be found in Appendix
A. We currently have 24 rules that code a simple model of clearing a building.
Working memory is set of objects, each object belonging to a particular tem-
plate. A template defines the attributes, or slot as they are called in JESS, that
the objects of that template have. For instance, there is a person template,
which has name slot. There may be two person objects in working memory,
with names Joe and Bob. The templates we used can also be seen in Appendix
A. We assume that working memory elements are never forgotten. This is not a
problem because the model is supposed to know how to do the task correctly, so
it should not forget things. Events are represented by working memory elements
that are automatically asserted by the UTJess program. Likewise actions are
working memory elements that automatically retracted and sent to Unreal by
the UTJess program.

The production rules are categorized over six different goals: clearing a
building, clearing a room, moving, shooting, waiting, and controlling civilians.
Each goal can have subgoals; in this way clearing a building is composed of
several clear room goals. Clearing rooms is in turn composed of movement
goals and wait goals. A movement goal represents the task of moving along a
particular path, while a wait goal represents the need for the team to wait until
everyone is ready before moving on. The controlling civilians goal represents
the task of securing and watching over civilians. Finally, the shooting goal is
fairly simple: shoot enemies, do not shoot civilians or teammates. The shooting
goal is implied, in that it is assumed that every soldier always has that goal.
The other goals represent tasks that are started and completed.

The clearing building goal is represented by four rules. The first rule Begin-
ClearBuilding recognizes that the soldier has been ordered to clear a building,
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and creates the goal. The ClearNextRoom rule recognizes that there is another
room to clear, and orders the team to clear that room. The BackTrack rule fires
when there are no rooms to clear, that is, the team has reached a dead end,
and orders the team backtrack. The final rule FinishClearBuilding determines
when the entire building is clear, and marks the goal as complete and retracts
it.

Clearing rooms is represented by five rules. The first rule, BeginClearRoom,
recognizes that the soldier has been ordered to clear a room and creates the
goal. The Stack rule is fired first, which moves the soldier to stack outside the
doorway by setting a move goal. A wait goal is also set so the soldier waits
until the rest of the team is stacked at the doorway. When they are all ready,
the Assault rule can fire, which sets a move goal to move the soldier into the
room as prescribed by the MOUT doctrine. Once they are in the room, the
TakeCommand rule can fire, but only for the team leader. This rule recognizes
that there are civilians in the room, and the consequence of the rule is that
the team leader orders the civilians to clear out of the room. Another team
will have the control civilians goal, and will watch over the civilians. The last
rule FinishClearRoom fires when all enemies and civilians in the room are dealt
with, and completes and retracts the goal.

The remaining rules deal with moving, waiting, shooting and watching over
civilians. They are fairly straight forward so we do not discuss all of them in
detail here, but show two JESS rules used by our system in Table 2 so that we
can see how these rules are implemented.

These rules are both part of the implied shooting goal. The rules are very
similar, and both check some knowledge in working memory, and produce an
action. However, the ShootCivilian rule is an incorrect rule, that is, it should
never fire for a properly behaving student. It is marked by the (incorrect) token
so that CGFs do not run it. The two rules also have messages associated with
them; ShootEnemy has a hint message that is shown when the rule is applicable
and the student asks for help. The ShootCivilian rule has a buggy message that
is displayed to the student if he uses the rule, that is, this is the message that
provides negative feedback.

4.3 Algorithms

We can implement model tracing using backward chaining. JESS has a facility
for doing backward chaining, however it is primarily a forward chaining system
and its backward chaining capabilities are limited. There are not many systems
that can do both forward and backward chaining, so we implemented model
tracing in a way that does not rely on backward chaining. This is actually the
typical approach to model tracing[28].

To implement the model tracing algorithm, we used a depth-first search.
Whenever we need to trace the model, we start with current state of working
and then look at rules that can fire. We fire one of these rules, and again
look at rules that can fire. When we have tried all the rules at a certain level,
we backtrack. When a rule produces an action, we stop and backtrack. We
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(defrule ShootEnemy "Engaging enemy"

; figure out which room we’re in

(self (room ?room))

; is there a enemy in this room?

(person

(name ?person)

(type enemy)

(room ?room)

)

=>

; hint message

(assert (advice-message

(message "You need to engage the enemy")

) )

; produce the action

(assert (shoot-person-action

(person ?person)

) )

)

(defrule ShootCivilian "Violating ROE"

; mark this as an incorrect action

(incorrect)

; figure out which room we’re in

(self (room ?room))

; is there a civilian in this room?

(person

(name ?person)

(type civilian)

(room ?room)

)

=>

; buggy message

(assert (advice-message

(message "BUG: Do not shoot civilians!")

) )

; produce the action

(assert (shoot-person-action

(person ?person)

) )

)

Table 2: Two rules from the prototype architecture.
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Ordered To Clear A Room
Enemy is in Room
Civilian is in Room

Ordered To Clear A Room
Enemy is in Room
Civilian is in Room

Ordered To Clear A Room
Enemy is in Room
Civilian is in Room

Clear Room Goal
Enemy is in Room
Civilian is in Room

Clear Room Goal
Enemy is in Room
Civilian is in Room

Clear Room Goal
Enemy is in Room
Civilian is in Room

Shoot Enemy Shoot Civilian

Move

Say Ready

BeginClearRoom
ShootCivilian

ShootEnemy

InPosition

Stack

Knowledge
Actions Produced States

Rules Searched

Rules Not Searched
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Figure 3: Portion of a model tracing search

continue until we have exhausted the search. In this way we can find all the
possible actions from a given knowledge state. Part of an example search is
shown in Figure 3. Here we see that from the initial state, three rules can fire.
BeginClearRoom can fire because the soldier has been ordered clear a room, and
the soldier can shoot either civilians or enemies because they are present. We are
concerned only with the possible actions the soldier can take, not whether or not
they are correct. When BeginClearRoom fires, it modifies working memory so
that there is ClearRoomGoal, which allows the Stack rule to fire. This produces
a movement action. This is simplified from the actual implementation, where
there are several movement rules so that the soldier follows a particular path.
Once the movement is complete, the IsPosition rule can fire and the soldier
should tell his teammates that he’s ready. However, this rule will not be searched
because the previous state produced an action. Therefore, the set of possible
actions contains three elements: shooting a civilian, shooting an enemy, and
moving to a stack position. Whenever the student takes one of these actions
we must recompute the set of possible actions. Additionally, whenever an event
occurs we must recompute the set of possible actions because the event will
change the current state of working memory.

One simple optimization we have made is to use a lazy approach to model
tracing. Whenever an event occurs we need to model trace and recompute
the set of possible actions. However, we only need this set when the student
has performed an action. If several events occur before the student makes an
action, we will waste time recomputing the set. Instead we mark the set as

21



invalid, and the next time we need it we recompute it. This is different than
recomputing the set every time an action is performed, because some actions,
such as movement, can be ignored. For instance if the set of possible actions
contains only a communication action, we do not want to recompute the set for
every step of movement the student makes.

We also employed some heuristics to increase the search speed. We know
that some of the rules are independent and can be applied in any order. For
instance, when hearing two teammates say they are ready, if does not matter in
which order the rules fired to mark them as ready. Even though the order does
not matter, the näıve search will search both orders. We mark such rules and
when searching, we only consider one order. There is much work that can be
done in finding more heuristics to speed up the search.

Since we used a depth-first search, it is possible that our system could get
into an infinite loop. However the model is simple, and the domain does not
lend itself to rules that could produce looping. However, other, more general
systems have used an iterative deepening search to prevent infinite looping [29].
Also, more general model tracing algorithms assume that if a given action is
not in the set of possible actions, then the student has made an error. We
have modified this assumption slightly to take into account latent actions. For
instance, if the student walks forward a few feet, we do not want to call that an
error unless the model specifically says that movement is an error. Therefore,
when a latent action is not traced, we ignore it, and do not produce an error
message.

The distinction between rules that produce actions and rules that do comes
in to play here. We can only observe the actions that students perform; therefore
we can not directly tell whether or not the student has performed the rules that
do not produce actions. For instance, in Figure 3, we can not tell whether or
not the student has recognized that they have been ordered to clear a room,
that is, performed the BeginClearRoom rule, if they have not taken any actions.
However, we can infer that they have if they then move into a stacking position.
This is why we must search through all the rules until we find a sequence that
produces an action. The strength of the model tracing algorithm is that we can
detect these rules, and therefore track whether or not a student knows them
using knowledge tracing.

Our system implements the knowledge tracing algorithm to determine the
skill levels of the students. Unlike most model tracing tutors, we also track how
often the student has made common errors. For each rule we can attach a skill
name. Whenever a rule is fired, we can update our estimate of whether a student
knows the skill by a Bayesian inference process. For the two rules in Table 2, the
skill names are “Engaging Enemy” and “Violating ROE1.” Using the knowledge
of what skills the student knows, and what the student needs to “unlearn,” we
can grade the aptitude of the student. These skills are represented to the user
or instructor by skill bars, which can be seen in Figure 4. “Violating ROE” and
“Improper Communication” are both errors, and appear in red. Although our

1Rules of Engagement
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Figure 4: Knowledge tracing skill bars

knowledge tracing algorithm is completely implemented, for each skill we should
need to empirically estimate the four parameters described in the Background
section. However we do not have access to soldiers to test our system, so we
can not determine these parameters.

4.4 Network Protocol

We have a simple network protocol. Each message is an ASCII string of the
form [header, timestamp, param1, param2]. A list of all the messages we use
can be found in Table 3.

There are four classes of messages: setup, actions, events, and feedback
messages. Actions, events, and feedback messages are those described in the
conceptual architecture. Setup messages are used to prepare the exercise. The
information about the scenario, including the information about doors, rooms,
etc, are all sent from the simulation to the agent at the beginning of the exercise.
This information is stored in working memory. The simulation also sends infor-
mation about the participants in the exercise, such as the rank of the individual
and which teams they are part of. Additionally a message is sent to the agent
to tell it which soldier it is controlling.

5 Evaluation

The purpose of our prototype is to determine whether or not the conceptual
architecture we developed is feasible. In order to test that we built a small
scenario for a fire team (four soldiers) consisting of a series of connected rooms.
The exercise is to clear all the rooms properly. The purpose of this evaluation
was not to judge the effectiveness of our CGFs or the effectiveness of the system
at teaching students; we are only trying to show that our architecture is sound.

We ran the exercise with four CGFs, and they cleared all the rooms in
the proper manner, that is, by stacking outside of the door, waiting until the
team was ready, then assaulting the room as a group, and finally moving into a
formation inside the room.
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Setup Messages
Path Describes a path
Door Describes a door
Room Describes a room
Person Describes a person
Team Describes a team
Self Tells the agent which

person it’s controlling

Event Messages
At Avatar is at a certain lo-

cation
Receive Ready Heard Someone said they were

in position
Receive Clear Room Was ordered to clear a

room, through a partic-
ular door

Receive Clear Building Was ordered to clear the
building

Person Died Some person died
Person Changed Room Some person changed

rooms
Person Changed Type Some person changed

type

Action Messages
Move To Move the avatar to par-

ticular location
Say Ready Tell your team you are

ready
Say Clear Room Tell your team to clear a

room through a particu-
lar door

Say Get Down Tell civilians to get down
Say Move Out Tell civilians to move out
Shoot Person Shoot a person

Feedback Messages
Advice Displays some text on

the users screen
Highlight Displays a graphic image

over a particular location

Table 3: Communication Protocol
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We also ran the same exercise with two CGFs, and one student playing the
role of the team leader and another playing the role of another team member.
The team leader could choose to clear the rooms in any order they chose, and
the system would give the student feedback saying that they had made a correct
decision. Either student could also ask for hints at any point in the exercise,
and the system would give them appropriate feedback. For instance, when a
student was clearing a room, the system gave these messages:

“your goal is to clear a room”
“you need to move into position”
“move to the highlighted node”

After the last message the system would also tell UT2003 to display a graphic on
top of the position the student needed to move to. The system also gives feed-
back when the students make a mistake. Once a student moved into position,
he should tell his teammates he is in position so that they know when everyone
is ready to enter the room. If the student said he was in position before moving
to the correct location the system would respond with “incorrect action: you
said you were in position, but you are not in position.” Also the CGFs acted as
they should; they followed the team leader’s orders and stacked outside rooms,
and told their team members they were in position as before.

Once concern we had was the run-time performance of the system. Given
that the model tracing is using an exhaustive search, it is possible that with a
large number of rules that the performance would be unacceptable. However,
this would only affect the tutoring, as the CGF simply use forward chaining.
This concern affects all model tracing tutors, not just our system. Some research
has been done on how the branching factor and the depth of the search affects the
model tracing time[28]. For our system we did a simple evaluation to determine
how much collaboration was affecting the model tracing time. The concern
is that having more people working together may cause the time spent model
tracing to rise intractably. To test this we ran an experiment comparing the time
spent model tracing to the size of the team. We had a human participant play
the team leader with zero to three CGF teammates. We recorded the total time
spent model tracing as the participant completed the task of clearing a single
room. We only recorded the time that was spent model tracing, not the time
spent processing other information, and we took the average over five runs to
account for variability. The results can be seen in Figure 5. We see that there is
a lot of variability, but the time required to model trace appears to constant. If
this relation holds, then as more students are added to the simulation, then total
time processing all the different students would increase linearly. The system is
designed to be distributed, with the simulation and the cognitive model running
on separate machines, and so if the linear response holds, the system can scale
to any number of users by increasing the number of computer systems used.
However, the time spent model tracing is very dependent on the exact model,
so we can not be sure the linear response will hold for more complex models.
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Figure 5: Team Size vs Model Tracing Time (97.5% confidence intervals)

6 Future Work

There are many things that could be explored for future research on this project.
At this point, our model is very simple, but demonstrates the functionality of
our conceptual architecture. Work could be done to extend the model to handle
more of the MOUT doctrine.

The purpose of using one model for two tasks is that, presumably, less effort
goes into developing the system overall. However, if it takes as long to make
a model that does two tasks as it does to make two models for separate tasks,
nothing has been saved. Since we developed our model from scratch to do both
CGFs and tutoring, we cannot say for certain that any work was saved, although
we feel that the effort was less than if we had built two models independently.
However we believe that it is not necessary to build the model from scratch in
order to use it for both tasks.

To test this belief, we are currently looking for an existing model of CGFs
that we can convert into a tutoring model. Although we do not have a model
yet, looking at some other models shows promising results. For instance, SOAR
Quakebot[30] has an architecture similar to ours, where the simulation sends
events to the model and the model responds with actions. This gives us hope
that it may be possible to add the tutoring part of our architecture. Table 4 has
a production from TacAir-Soar with an accompanying source comment. Most
of TacAir-Soar’s productions are similar to this one, in that they look at the
current knowledge of the world, and then create new goals or execute actions,
much like the rules in our cognitive model. In order for this particular rule
to be used in model tracing, we would have to attach a skill name and a hint
message to this production. The skill name could be “Employ Weapons”, and
the hint message could be “There is a bandit out there, and you need to employ
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; Propose employ-weapons if there is a

; bandit out there, but not if we should

; be doing something more important, like

; chasing him, confusing him, bugging out,

; or evading a missile.

(sp intercept*suggest-proposal*employ-weapons

(goal <g> ^problem-space.name intercept

^state <s>)

(<s> ^bogey <b>)

(<b> ^roe-achieved *yes*

^intention known-hostile

^contact *yes*

^intercept-geometry-selected *yes*)

-{ (goal <g> ^operator <o> +)

(<o> ^name << pincer chase-bandit

change-piece-of-sky

bug-out evade blow-through

blow-through-continue >>) }

-->

(<s> ^suggest-proposal <p> + &)

(<p> ^name employ-weapons ^bogey <b>)

)

Table 4: A production from TacAir-Soar[22]

weapons.” Of course we can not be sure that this is all that is needed to make
TacAir-Soar into a tutor until we actually try to implement it. Seeing that
TacAir-Soar has over 5,000 rules, we plan to start with a smaller model first.
However, we were not able to get in contact with the authors of any models
that were willing to participate.

Currently our system is using a single model that produces all tutoring.
However, a better method involves the use of two models[31], a student model
and a tutor model. The student model provides a cognitive model of the student;
our current model is a student model. The student model is used with the model
tracing algorithm to provide a diagnosis of the student, which is the trace of rules
fired. Our system attaches some extra information in the form of hint and buggy
messages to provide feedback from this trace. However, a better system would
pass this trace to a cognitive model of a human tutor. This model would take
the trace and decide what feedback to give the student. Using the second tutor
model is more flexible, in that the tutor model can decide to give immediate or
delayed feedback, or change the feedback based on other factors. For instance,
the tutor model might decide to give no feedback, if it thinks that the student
will discover the mistake on their own. In our domain, say a student moves into
a room without clearing it first. There’s a good chance they will be shot if there
are opposing forces in the room. Model tracing the student model will find that
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the moving into the room is incorrect, but the tutor model may decide not to
say anything if knows there are opposing forces in the room. When the student
is shot, they will hopefully learn their lesson. Adding a second tutor model
would be fairly easy in that no changes would have be made to the existing
student model or the model tracing algorithm, however the development of a
tutor model would not be a simple task.

7 Conclusion

One goal of this thesis was to determine if model tracing is a feasible solution
to tutoring a real-time collaborative task. By building a prototype architecture
we found it was feasible, and found some evidence that our approach would
scale to more complex models. Another goal of this thesis was to show that one
could use the same cognitive model for two tasks, computer generated forces
and human tutoring. Our prototype system shows that this is indeed possible.
In addition we have developed a conceptual architecture that generalizes this
approach to using a cognitive model in this manner. The potential benefits of
this approach are clear: the necessary modeling for such a task is cut in half.
More practically, however, is that there has already been much research on de-
velopment of computer generated forces. We hope that by using the techniques
in this thesis, it would not be hard to extend these some of these existing models
into models that can also be used as tutors.
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A Cognitive Model

; Cognitive Model for Warrior Tutoring Project
; Copyright 2004 Tom Livak
; ===================================================================

; Working Memory Structure
; ===================================================================

(deftemplate setup
)

; -- Teams ----------------------------------------------------------
(deftemplate self

(slot name)
(slot goal)
(slot room)
(slot team)

)

(deftemplate person
(slot name)
(slot room)
(slot type)

)

(deftemplate soldier extends person
(slot team)
(slot pos)

)

(deftemplate team extends setup
(slot name)
(slot type)
(slot leader)
(multislot team)

)

; -- Map -----------------------------------------------------------
(deftemplate room extends setup

(slot name)
(slot type)
(slot status)
(multislot doors)

)
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(deftemplate door extends setup
(slot name)
(slot type)
(slot room-from)
(slot room)
(multislot positions)
(multislot paths)

)

(deftemplate path extends setup
(slot name)
(slot node)
(slot pos (type INTEGER))

)

; -- Events -----------------------------------------------------------
(deftemplate event
)

(deftemplate at-event extends event
(multislot nodes)

)

(deftemplate ready-event extends event
(slot name)

)

(deftemplate clear-room-event extends event
(slot door)
(slot team)

)

(deftemplate clear-building-event extends event
(slot team)

)

(deftemplate person-died-event extends event
(slot name)

)

(deftemplate person-changed-room-event extends event
(slot name)
(slot room)

)

(deftemplate person-changed-type-event extends event

33



(slot name)
(slot type)

)

; -- Actions ----------------------------------------------------------
(deftemplate action

(slot message)
)

(deftemplate move-action extends action
(slot node)

)

(deftemplate ready-action extends action
(multislot team)

)

(deftemplate clear-room-action extends action
(slot door)
(slot team)

)

(deftemplate say-get-down-action extends action
)

(deftemplate say-move-out-action extends action
)

(deftemplate shoot-person-action extends action
(slot person)

)

; -- Feedback ---------------------------------------------------------
(deftemplate feedback
)

(deftemplate highlight-message extends feedback
(slot node)

)

(deftemplate advice-message extends feedback
(slot message)

)

; -- Goals ------------------------------------------------------------
(deftemplate goal
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(slot complete (default FALSE) )
(multislot subgoals )

)

(deftemplate idle-goal extends goal
)

(deftemplate move-goal extends goal
(slot position (type INTEGER) (default 0))
(slot waiting (default FALSE))
(slot path)
(multislot team)

)

(deftemplate wait-goal extends goal
(slot said-ready (default FALSE))
(multislot waiting-on)

)

(deftemplate clear-room-goal extends goal
(slot door)
(slot step (default 1))
(slot team)

)

(deftemplate control-civilians-goal extends goal
)

(deftemplate clear-building-goal extends goal
(slot team)
(multislot last-room)

)

; Rules
; ===================================================================

; clear-building
; -------------------------------------------------------------------

; if you are told to clear a building, and you’re in charge of
; teamA, set a goal to clear the building

(defrule clear-buildingA0
(self (name ?self-name))
?event <- (clear-building-event)
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(team (name team1A) (leader ?self-name))
=>

(retract ?event)

(assert (advice-message
(message "You’ve been ordered to clear a building")

) )

(bind ?new-goal (assert (clear-building-goal
(team team1A)
(last-room )

) ) )
)

; if you are told to clear a building, and you’re in charge of
; teamB, set a goal to control civilians

(defrule clear-buildingB0
(self (name ?self-name) )
?event <- (clear-building-event)

(team (name team1B) (leader ?self-name))
=>

(retract ?event)

(assert (advice-message
(message "You’ve been ordered to watch civilians")

) )

(bind ?new-goal (assert (control-civilians-goal
) ) )

)

; if your goal is to clear a building, and there’s an
; uncleared room, order your team to clear that room

(defrule clear-building1-decision "Commanding team"
?self <- (self (name ?self-name) (room ?room))
(room (name ?room) (doors $? ?door $?))

(door (name ?door) (room ?next-room))
(room (name ?next-room) (status uncleared))

?goal <- (clear-building-goal (subgoals )
(team ?team-name)
(last-room $?room-stack)
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)

(test (neq ?room (nth$ (length$ $?room-stack) $?room-stack)))

=>
(assert (advice-message

(message (str-cat "You need to order a team to clear " ?door))
) )

(assert (clear-room-action
(message "commanding team")
(door ?door)
(team ?team-name)

))

(modify ?self (goal ?goal))
(modify ?goal (last-room ?room $?room-stack))

)

; if your goal is to clear a building, and there’s no
; more uncleared room, backtrack

(defrule clear-building2
?self <- (self (name ?self-name) (room ?room))

(room (name ?room) (doors $? ?door $?))
(door (name ?door) (room ?last-room))

?goal <- (clear-building-goal (subgoals )
(team ?team-name)
(last-room ?last-room $?room-stack)

)

(not (and
(room (name ?room) (doors $? ?doorX $?) )
(door (name ?doorX) (room ?next-roomX) )
(room (name ?next-roomX) (status uncleared) )

) )
=>

(assert (advice-message
(message (str-cat "You need to backtrack" ))

) )

(modify ?self (goal ?goal) (room ?last-room))
(modify ?goal (last-room $?room-stack))

)
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; if your goal is to clear a building, and there’s an
; no uncleared rooms left, you are finished

(defrule clear-building3 "clear-building3"
(self (name ?self-name) (room ?room))

?goal <- (clear-building-goal (subgoals ) (complete FALSE)
(last-room )

)

(not (and
(room (name ?room) (doors $? ?door $?) )
(door (name ?door) (room ?next-room) )
(room (name ?next-room) (status uncleared) )

) )
=>

(assert (advice-message
(message (str-cat "You finished clearing the building"))

) )

(modify ?goal (complete TRUE) )
)

; control civilians
; -------------------------------------------------------------------

; if your goal is to control civilians, and there’s
; standing civilians in your room, order them to
; get down

(defrule control-civilians-decision "Securing Civilians"
?goal <- (control-civilians-goal)

(self (name ?self-name))
(soldier (name ?self-name) (room ?room-name))

(person (room ?room-name) (type standing))
=>

(assert (advice-message
(message "You need control the civilans")

) )

(assert (say-get-down-action
(message "securing civilians")

) )
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)

; clear-room
; -------------------------------------------------------------------

; if ordered to clear a room, set a goal to clear that room

(defrule clear-room0
?event <- (clear-room-event (door ?door) (team ?team-name))
(self (name ?self-name) (goal ?goal))

=>
(retract ?event)

(assert (advice-message
(message "You’ve been ordered to clear a room")

) )

(bind ?new-goal (assert (clear-room-goal
(door ?door)
(team ?team-name)
(step 1)

) ) )

(if (neq ?goal nil) then (modify ?goal (subgoals ?new-goal)))
)

; if your goal is clear a room, you first need to go to
; your stacking position outside the door, and wait
; for everyone else to stack

(defrule clear-room1-decision "Stacking"
(self (name ?self-name))
(soldier (name ?self-name) (pos ?man))
(team (name ?team-name) (team $?team))

(door (name ?door) (positions $? ?man ?path $?) )

?goal <- (clear-room-goal (subgoals )
(door ?door)
(team ?team-name)
(step 1)

)
=>

(assert (advice-message
(message "You need to move into position")

) )
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(bind ?new-goal1 (assert (move-goal
(path ?path)
(team $?team)

) ) )

(bind ?new-goal2 (assert (wait-goal
(waiting-on $?team)

) ) )

(modify ?goal (step 2) (subgoals ?new-goal1 ?new-goal2) )
)

; if your goal is clear a room, and everyone is stacked
; in the room, enter the room and move to your position
; inside

(defrule clear-room2-decision "Assaulting the room"
(self (name ?self-name))
(soldier (name ?self-name) (pos ?man))
(team (name ?team-name) (team $?team))

(door (name ?door) (paths $? ?man ?path $?) )

?goal <- (clear-room-goal (subgoals )
(door ?door)
(team ?team-name)
(step 2)

)
=>

(assert (advice-message
(message "You need to enter the room")

) )

(bind ?new-goal1 (assert (move-goal
(path ?path)
(team $?team)

) ) )

(bind ?new-goal2 (assert (wait-goal
(waiting-on $?team)

) ) )

(modify ?goal (step 3) (subgoals ?new-goal1 ?new-goal2) )
)
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; if your goal is clear a room, you’re the team leader,
; and everyone is in the room, and there are civilians
; in the room, you need to take command

(defrule clear-room3-decision "Taking command"
(door (name ?door) (room ?room-name))
?room <- (room (name ?room-name))
?self <- (self (name ?self-name))

?goal <- (clear-room-goal (subgoals )
(team ?team-name)
(door ?door)
(step 3)
(complete FALSE)

)

(team (name ?team-name) (leader ?self-name))

(not (person (room ?room-name) (type hostile)))
(person (room ?room-name) (type standing))

=>
(assert (advice-message

(message "You need to take command")
) )

(assert (say-move-out-action
(message "taking command")

) )
)

; if your goal is clear a room, and the room is
; clear of enemies and civilians, you are done

(defrule clear-room4
(door (name ?door) (room ?room-name))
?room <- (room (name ?room-name))
?self <- (self (name ?self-name))

?goal <- (clear-room-goal (subgoals )
(team ?team-name)
(door ?door)
(step 3)
(complete FALSE)

)

(not (person (room ?room-name) (type standing)))
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(not (person (room ?room-name) (type hostile)))
=>

(assert (advice-message
(message "You’re done clearing the room")

) )

(modify ?self (room ?room-name))
(modify ?room (status cleared))

(modify ?goal (complete TRUE) )
)

; move
; -------------------------------------------------------------------

; if your goal is move somewhere, and you’re ready to
; to move to the next on the path, than move

(defrule move-goal1-decision "Knowing where to move"
(path (name ?name) (node ?node) (pos ?n))
(self (name ?self-name))

?goal <- (move-goal (subgoals )
(position ?n)
(path ?name)
(waiting FALSE)

)
=>

(assert (highlight-message
(node (str-cat ?node))

) )

(assert (move-action
(message "moving into position")
(node ?node)

))

(modify ?goal (waiting TRUE) )
)

; if your goal is move somewhere, and you’re arrived
; at the next node, than make note that you’re ready
; to move to the next node.

(defrule move-goal2
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(path (name ?name) (node ?node) (pos ?n))
?event <- (at-event (nodes $? ?node $?))
(self (name ?self-name))

?goal <- (move-goal (subgoals )
(position ?n)
(path ?name)
(waiting TRUE)

)
=>

(retract ?event)

(modify ?goal (position (+ ?n 1)) (waiting FALSE))
)

; if your goal is move somewhere, and you’re arrived
; at the final destination, you’re done

(defrule move-goal3
(self (name ?self-name))

?goal <- (move-goal (subgoals )
(position ?n)
(path ?name)
(waiting FALSE)
(complete FALSE)

)

(not (path (name ?name) (pos ?n)))
=>

(modify ?goal (complete TRUE))
)

; waiting
; -------------------------------------------------------------------

; if you’re waiting for your team, and someone say they
; are ready, make note that they are ready

(defrule person-ready
?goal <- (wait-goal (waiting-on $?n1 ?name $?n2) )
?event <- (ready-event (name ?name))
(self (name ?self-name))

=>
(retract ?event)
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(modify ?goal (waiting-on $?n1 $?n2) )
)

; if you’re are doing something that requires waiting
; for everyone, and you’re ready for to move on,
; tell your teammates

(defrule say-ready-decision "Proper communication"
?goal <- (goal (subgoals ?subgoal))
?subgoal <- (wait-goal (said-ready FALSE))

(self (name ?self-name))
=>

(assert (advice-message
(message "Tell everyone you’re in position")

) )

(assert (ready-action
(message "saying in position")

) )

(modify ?subgoal (said-ready TRUE) )
)

; BUGGY RULE
; if you’re are doing something that requires waiting
; for everyone, and you’re NOT ready for to move on,
; tell your teammates

(defrule say-ready-buggy-decision "Improper communication"
(buggy)

?goal <- (goal (subgoals $? ? ?subgoal $?))
?subgoal <- (wait-goal)

=>
(assert (advice-message

(message "BUG: You said in position when you were not!")
) )

(assert (ready-action
) )

)

; if you’re are doing something that requires waiting
; for everyone, and everyone is ready, you’re done
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; waiting

(defrule wait-done
?goal <- (wait-goal (waiting-on ) (said-ready TRUE) (complete FALSE) )

(self (name ?self-name))
=>

(modify ?goal (complete TRUE))
)

; persons
; -------------------------------------------------------------------

; if there’s an enemy in the room, shoot him

(defrule shoot-hostile-decision "Engaging enemy"
(self (name ?self-name))
(soldier (name ?self-name) (room ?room))

(person (name ?person-name) (type hostile) (room ?room) )
=>

(assert (advice-message
(message "You need to engage the enemy")

) )

(assert (shoot-person-action
(message "engaging enemy")
(person ?person-name)

) )
)

; BUGGY RULE
; if there’s a civilian in the room, shoot him

(defrule shoot-other-buggy-decision "Violating ROE"
(buggy)

(self (name ?self-name))
(soldier (name ?self-name) (room ?room))
(person (name ?person-name) (type standing|down) (room ?room) )

=>
(assert (advice-message

(message "BUG: Do not shoot unarmed civilians!")
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) )

(assert (shoot-person-action
(person ?person-name)

) )
)

; misc
; -------------------------------------------------------------------

; if a person died, update working memory

(defrule person-died
?event <- (person-died-event (name ?name))
?person <- (person (name ?name))

(self (name ?self-name))
=>

(retract ?event)
(retract ?person)

)

; if a person changed rooms, update working memory

(defrule person-changed-room
?event <- (person-changed-room-event (name ?name) (room ?room))
?person <- (person (name ?name))

(self (name ?self-name))
=>

(retract ?event)
(modify ?person (room ?room))

)

; if a person changed type, update working memory

(defrule person-changed-type
?event <- (person-changed-type-event (name ?name) (type ?type))
?person <- (person (name ?name))

(self (name ?self-name))
=>

(retract ?event)
(modify ?person (type ?type))

)
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; if you have a goal, and one it’s subgoals is complete
; than make some mental notes

(defrule advance-goal
?goal <- (goal (subgoals $?s1 ?subgoal $?s2) )
?subgoal <- (goal (complete TRUE) )
(self (name ?self-name))

=>
(retract ?subgoal)
(modify ?goal (subgoals $?s1 $?s2) )

)
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