
 i

A Modularized Approach for Engineering

Experimentation Measurements

A Major Qualifying Project Report

Submitted to the faculty

of the

Worchester Polytechnic Institute

By:

Jeffrey Brathwaite

Advisor:

Prof. John Sullivan

 ii

Table of Contents

Title Page number

1. Abstract iii

2. Executive Summary iv

3. Acknowledgements vi

4. Introduction vii

5. Objectives for the Overall Set of Modules ix

6. Module 1: Introduction to Microcontrollers 1

7. Module 2: Motor Control Experimentation 24

8. Module 3: Sensor control experimentation 56

9. Module 4: Culmination Project 73

10. Results and Conclusion 76

11. Appendix 77

a. Appendix Section 1: The Raspberry Pi 77

b. Appendix Section 2: The Stepper Motor 85

c. Appendix Section 3: The Servo Motor 88

d. Appendix Section 4: The DC Motor 90

e. Appendix Section 5: The PIR Motion Sensor 92

f. Appendix Section 3: The Ultrasonic Motion Sensor 93

 iii

Abstract:

 This Major Qualifying Project developed and tested a learning manual composed of

separate modules that focus on specific engineering tasks, such as detecting motion, proximity,

pressure, control and more. Each module has given tasks to evaluate the student’s understanding

of the information within each module. The final module is an open ended experiment for the

students that uses the knowledge from multiple previous modules to accomplish a multi-step

task.

 iv

Executive Summary:

As an engineering student, I sought enrollment to WPI for its project-based learning and

hands-on experimentation practices and experiences. The facilities of this institute do more than

enough to supply any curious minded student with a project with the space and instruments they

need to achieve their goal. Unfortunately much of the tools provided require a substantial amount

financial investment and an instructor that can guide you on their uses. In this wide world there

are far more mechanically minded people out there that do not have access to this school either

because of their living arrangement or the lack of funds to attend. I pursued a project using

alternative resources that could supply a similar experimental experience in a modularized

package with minimal financial investment required by the student.

 The fully assembled modules holds the combined lessons I’ve taken myself and put them

into separate lesson plans with the necessary electronic parts. The first module introduces

students to the microcontroller being used in this project: the Raspberry Pi. This module will

introduce wiring and some slight programming to get used to operating the Raspberry Pi. The

first section of this project will properly teach the assembly and use of the Raspberry Pi in

conjunction with a basic circuit. Inside this section there is background information and history

of the electronics used in this module. The module package includes all the necessary circuit

parts and everything the Raspberry Pi needs to operate. At the end of the lesson there will be a

short experiment to test the use of the Raspberry Pi along with the given circuits and LED’s.

Module 2 will introduce Motors to the students and operating them with the Raspberry

Pi. The module teaches the students about 3 different motors: the Stepper, Servo, and DC

motors. Each motor’s construction and uses are covered in this module to tell the student all the

information they would need to understand how the individual motors work. There is also in-

 v

depth instruction on wiring up the Raspberry Pi to the individual motors and basic programming

code to start the motors up. This module will also test the students programing and wiring

capabilities at the end of it.

Module 3 brings in sensors for data gathering and recording the data inside of Raspberry

Pi. This module covers the ultrasonic and the PIR motion sensors, these sensors are used

throughout many applications and the student gets to experiment with them. Inside the module

there is information on how theses sensors interact with the outside world and how they record

data to any given device they are wired to. Both sensors and a mounting plate are supplied with

instructions on how to wire the sensors into a circuit that connects and interacts with the

Raspberry Pi, along with example code for the student to upload into the Raspberry Pi for

testing. Similar to the previous modules the third module has a short experiment for the student

to test movements and distances for the Raspberry Pi to record and state if there is a change in

movement and distance.

 All of these lessons are utilized in the last Module 4 as a final experiment, the student

will devise a construction with the Raspberry Pi and the motors/sensors given in the package.

There is no explicit lesson in the last module, rather it is an open ended experiment for the

student to flex their skills on an aspects of their choosing. The module itself gives options and

potential projects for the student to look into but the choice and the method is completely up to

them.

 vi

Acknowledgements:

I would like to take this time to thank Professor John Sullivan for being patient with me

in when my workload would overwhelm me, Mrs. Barbara L. Furhman for being able to obtain

the necessary pieces for my project, and of course my dear friends that kept me sane and healthy

during this trying time

 vii

Introduction:

From the beginning there was an idea of the end product; an affordable, all in one

package for prospective students to measure states like temperature and pressure alongside

experimenting with control devices and data acquisition. The initial goals were for students to be

able to evaluate different factors like temperature and monitor different states; the question

became how to get it done. At the start the only direction given was an example course from

WPI that teaches students a method of experimenting with different sensors and recording

devices. This course utilizes multiple external sensors, a program called LabVIEW1, and of

course a data collecting device simply known as the DAQ (data acquisition) box. Of all the

material in use, the DAQ box is the most expensive part of the course; a single multifunction I/O

(C series) such as the NI USB-6229 BNC unit costs $3,289 dollars2 just to record the data from

the various sensors3. For this MQP I sought to create a far more affordable experimentation

package using similar sensors, instructions for a programming language, and a data recording

device to collect the data.

 Assembling this kit started off with a difficult choice of determining which data

recording device could replicate most the existing DAQ capabilities with an acceptable accuracy

and reproducibility. The device of choice to put into this kit is the Raspberry Pi. This

microcontroller boasts its own lineup of ready to order sensors that I used in this kit along with

some extra motors and sensors for prospective students to pick up and learn. I myself had

1 Johnson, G. W
2 National instruments
3 National instruments

 viii

experience with the Raspberry Pi and the programming language Python which made it easier to

put together a lesson plan for this project. Within the lesson plan I put together some code and

wiring instructions for each component in the kit, and also created a template, for future

production, of a base plate that can fit the various motors and sensors so that the student can

more easily wire up and test the components as the student sees fit.

 The following pages in this report are the individual modules that encompasses the

lessons and labs that I have put together for potential students. The first Module encompasses an

introduction to assembling and using the Raspberry Pi. Module 1 sets the structure for the rest of

the modules by setting up how the Raspberry Pi interacts with other components like wires and

motors. Module 2 starts off with Motors, first with a general introduction to basic definitions of

motors and how they are used. This is followed by Module 3 which covers various sensors and

how to record data using the Raspberry Pi. The final module is the culmination of all of the

modules with a final experiment that will combine all of the techniques presented in the report.

 ix

Objectives for the Overall Set of Modules:

 The purpose of all the modules in this program is to give an alternative method of

learning engineering experimentation outside the classroom environment. The standard

classroom format is divided between lectures and labs. The lectures are informational sections

that deliver engineering theories to students and gives them a chance to ask the teachers

questions. The Lab sections of the course focus on trying to put theory to practice. The

engineering experimentation laboratories at WPI are equipped with various equipment such as

computers, data acquisition devices and sensors to measure, record, and control specific physical

environments. The machines are frequently updated and maintained but the cost of buying and

using these machines can leave a sizeable debt in many budgets.

An example expense of the machinery in the lab is the Data Acquisition device, or DAQ

box as it is called, which can go to four hundred dollars per work station. This also does not take

into account the necessary wires that are needed to interface with any given components

necessary for the experiments. This gets really expensive when it comes to catering for multiple

students at once and having to maintain all of the equipment. This set of modules seeks to

provide similar laboratory measurement and control experiences at a more financially viable

option for potential students.

To achieve this goal of creating an economically viable option for this experimentation

we planned on using a micro-controller to replace the data acquisition device and the computer

itself. To combine the two pieces of technology together research was done on some of the latest

technology to see if there was a way to both minimize the amount of space used and the amount

of money that would have to be spent. Out of all options of integrating a Data acquisition device

 x

and a computer together short of buying a specific desktop, we found the most versatile and

obtainable answer is the Micro controller.

Traditionally, micro controllers were passion projects for a select few people but they

have grown into everyday tools over time. Thanks to the interest and the support from the

programming community, the micro controller’s price decreased significantly, allowing for it to

be viable for both schools and students.

 With the module pack we provide essential sensors and motors to experiment with, an

electrical platform called the Breadboard, an integrated H-bridge microchip, and the main

microcomputer Raspberry Pi. This module will go into the background and the basic operations

and programming of the computer Raspberry Pi as well as an introductory look at the

Breadboard and essential wiring introduction to electrical circuits. The Raspberry Pi is miniature

computer has the same capabilities of full sized desktops or laptops with the benefits of a lower

cost and an easier introduction to programming. The Breadboard given in this package is a

wiring tool used in almost all electrical experimentation capable of linking multiple different

tools to accomplish almost any task. Subsequent modules after this will use the information from

this packet to introduce different tools that could be used alongside the Raspberry Pi and the

breadboard culminating in a final project of your choosing with additional parameters that are

available in the last module. Each one will also provide a task to be completed to test your

understanding of the tools and how to operate them.

 Each module serves as a learning unit to instruct and challenge you to learn more

about utilizing the Raspberry Pi and the breadboard to program and command a specific tool to

test a specific concept and simply experiment with the provided motors and other tools. These

modules will cover one distinct tool for experimentation and a basic wiring schematic to allow

 xi

the Raspberry Pi to communicate with the tools properly. Each module will also give you tips on

what you can do to combine 2 different tools to mark or measure a different aspect of the natural

world.

Each tool within this kit varies from one to the other in terms of specs, purpose, and

usages. The modules will cover various motors such as a Stepper motor or Servo motor to

various sensors like a thermal sensor. Within each document will also be example code you will

use for your controller to properly interact with the Breadboard and the tool used for

experimentation. Each step will also have example images for reference when assembling the

Raspberry Pi and the given tool. As stated before, this first module is the base on which all other

modules will work off of. After completing all of the modules in this package you will be tasked

with a final project that assembles all that you have learned from the previous modules to

accomplish one final goal. After learning all the tools and sensors one can now apply them to

potentially anything that could be measured or recorded.

 1

Module 01:

Introduction to Microcontrollers

To Measure and/or Control Physical States

or Components

 2

Module 01: Table of Contents

Title Page number
1. Objectives for the Microcontroller Module-I 3

2. Goals for the Students 4

3. Measureable Outcomes 4

4. Introduction 5

a. The Raspberry Pi 5

b. The Breadboard 6

c. The integrated Circuit 8

5. Installing the Raspberry Pi Software 11

6. Experiment: Lighting up the Pi! 13

a. Materials 16

b. Connecting the Breadboard 18

c. Wiring up the PI 18

d. Testing the Connection 19

e. Experiment Variables 19

7. Conclusion 20

8. Bibliography 21

 3

Objectives for Controller Module 01:

This introductory module instructs you on the Raspberry Pi and the Breadboard; showing

how to setup and use the controller, the platform and how to go about connecting them together

to complete a simple circuit similar to the one shown below.

Raspberry Pi connected to a Breadboard with H-bridge installed

 After the introduction there will be informational passages instructing the reader on how

each individual component works. With the Raspberry Pi there will be an in-depth look at the

pins in the Raspberry Pi and how they interact with the breadboard and components installed

within it.

 4

Goals for the Student:

 By the end of this module the Student will be able to:

● Install from scratch the Raspberry Pi OS system

● Connect the Raspberry Pi to the breadboard and the LED

● Program the LED to turn off after a set amount of time

● To be able to receive information from the Raspberry Pi

Measurable Outcomes:

 By the end of the module the Student will hopefully be able to:

● Turn off and on the LED

● See when the LED would turn off and on

● Be able to install and update a micro controller OS system

● Use micro controller to write programs and routines suitable for sensing to controlling

● To be able to configure/wire an LED circuit to control illumination, both intensity and

duration

● To be able to sense or detect a change in the circuit to turn on or off the LED

 5

Introduction:

The Microcontroller:

4

Fig.1 Raspberry Pi model 2

The PI:

 In 2006 an idea came about to give students, especially kids a new way of interacting

with computers. Early concepts of the Raspberry Pi (Fig.1) were based off of the micro

controller ATMega644. The microcontroller is a computer processor with a reduced size

designed for embedded applications in complex devices such as the remote or appliances. Seeing

how this technology can replicate the functions of a computer and be morphed into a smaller

size, the foundation trustee Eben Upton5 assembled a group of teachers, academics and computer

programmers to develop a computer that will get kids interested in computer sciences.

 After the goal of creating a smaller computer came into being, inspiration and

prototyping started for the new invention. The physical frame of the un-named Raspberry Pi

drew inspiration from ACORN’s computers’ BBC Micro 1981. The BBC Micro made a name

4Raspberry Pi
5 Moorhead, Joanna

 6

for itself for being a pretty reliable computer, getting bought up by the educational market.

Almost 80% of the UK school system bought the Micro for use in computer classes. This

invention still had a lot to be desired for since the price of the computer was £235 for Model A

and £335 for Model B. This led the Founders of the Raspberry Pi to try to make the hardware

smaller and more affordable for the same educational purposes than the Micro.

On the 29th of February, The Raspberry Pi foundation came out with their first, model a,

deck of cards sized microcomputer. Right out of the gate the Foundation had thousands of orders

from various groups of buyers, from educational customers to individual people who wanted to

try it out. In subsequent years the Raspberry Pi Foundation got recognition and achievements for

its first Model A device. Multiple technology writers like Glyn Moody6 and Stephen Pritchard7

described the Raspberry Pi as the “BBC micro 2.0” and praised it for its innovations and

potential to reach and inspire the minds of children. This small computer had achieved its goal of

being a cheaper introduction to the world of computer programming.

8

Fig.2 the Breadboard

6 Glyn Moody,
7 Pritchard, Stephen

 7

The Breadboard:

 A breadboard (Fig.2) is a base containing metal clips on the inside used to construct

electrical circuits. This oddly named tool came about when people used to use cutting boards as a

platform to hold their electrical circuits. Before the “breadboard” was invented creating a circuit

board required a more resourceful mindset; using a piece of wooden board and some thumb

tacks, a person had to find ways to create their own breadboard. Other tactics include using a

paper schematic and lining them up on the wooden board as a guide. These were not only

amateur to put together but not very conducive to experimentation. The wires were attached to

some thumbnail or conductive pin and soldered into the wooden board. Since the wires and pins

could not be easily removed, this made mistakes difficult to fix.

The new breadboards we have today (shown in ingredients list) was designed by Ronald J

Portugal of EI Instruments Inc. in 1971 to replace the cutting boards of the past. The breadboard

is solderless, meaning that you can make a circuit without having to solder the wires into place.

These breadboard have different Bus strips that connect each row with an electric railway under

the plastic cover. With holes for wires. This setup allows for multiple wires to be put into and

taken out of the breadboard at any time. This also works in reducing the amount of wiring

needed for a complete circuit and making it easier to make a circuit with a lot of miniature

components such as buttons and H-bridges to get the same result as larger scaled circuits. These

miniatures circuits are easy to assemble and disassemble, making the breadboard one of the most

versatile electrical items in use today.

https://en.wikipedia.org/wiki/Breadboard
https://en.wikipedia.org/wiki/Breadboard

 8

 9

Fig.3 NTE1749 Integrated Circuit

 The Integrated Circuit:

 The Integrated Circuit (Fig.3) is simply an advanced electrical circuit. Despite the small

size the integrated circuit holds multiple components that would usually going into a computer

circuit, making it adaptable for different applications within an electrical appliance. The

components have different behavior and different jobs that can be filled. The transistor acts like a

switch for electricity, it can turn it on and off, or it can amplify currents. Transistors are used in

computers to store information and in stereo amps to make the sound signal stronger. The

resistor limits the flow of current going into or out of the circuit depending on its placement;

these are used inside of TV’s and radios to control the sound volume. The capacitor collects

energy within the circuit and releases it on command for usually simple purposes such as

providing power for the flash of a camera. The diode stops electricity under some conditions, if

those conditions change then the diode will let the energy flow. This is especially useful for

preventing sparking within the circuit or control the amount of current going through a specific

area of the circuit. These individual components come together to create a versatile tool to make

almost any electrical system from burglar alarms to computer processors.

9 Nte electronics

 9

Fig.4 Close up Transistor

The transistor (Fig.4) first came about in response to an engineering problem. For the

development of computers the transistor is the most important component to make modern

computers run. Before the Transistor, the Vacuum Tube was the go to component for controlling

electricity. The Vacuum Tube operates exactly similar to the transistor but this piece of

technology is much larger than the transistor, and it is much more prone to burning out and

slowing down the flow of electricity. This problem was solved and successfully demonstrated in

the December 23, 1947 when three individuals credited with the invention of the transistor were

William Shockley, John Bardeen and Walter Brattain. William Shockley was the man with the

theory behind it, but could not build the first transistor without the help of John Bardeen and

Walter Brattain10. These men went to work to create the first “point-contact” resistor, but the

evolution did not stop here as the men came together to make a new “bipolar” transistor that

would soon become part of a larger electronic device: the integrated circuit.

 Integrated Circuits are microchips that have grown quite a bit from their origins. From

simple transistors they include more components that increased their usefulness in daily

technology. These chips can work as amplifiers and oscillators or a timer on various appliances.

10 Brinkman

 10

Different chips now come in two different types now based on the overall circuit: Analog or

Digital. This Experiment will use an analog circuit for its simplicity and versatility to use for

controlling the motors

Python:

 No controller can function without a way to “communicate” with it, Python is the most

common way to communicate with the Raspberry Pi. Python is an open-source programming

language that is resident in with the Raspberry Pi Operating System that allows for the command

of the ports on the Raspberry Pi and any subsequent tools that are connected to the Pi. Python

boasts simple debugging software and easy readability for new users, alongside being built to

handle multiple modules and packages for versatility. 11

11 python.org

 11

Installing the Raspberry Pi software:

The first step is to get access to a computer with an SD card reader. The main site for the

Raspberry Pi (raspberrypi.org) has a step by step instruction for installing the Raspberry Pi OS

onto your micros SD then you may plug the micros SD into the Raspberry Pi for use. For

efficiency the step by step instructions for putting together the Pi follows as such:

1. Begin by placing your SD card into the SD card slot on the Raspberry Pi (Fig 5). It will

only fit one way.

2. Next, plug your keyboard and mouse (Fig 11) into the USB ports on the Raspberry Pi.

3. Make sure that your monitor or TV is turned on, and that you have selected the right

input (e.g. HDMI 1, DVI, etc.).

4. Connect your HDMI cable (Fig 10) from your Raspberry Pi to your monitor or TV.

5. If you intend to connect your Raspberry Pi to the internet, plug an Ethernet cable into the

Ethernet port, or connect a Wi-Fi dongle to one of the USB ports (unless you have a

Raspberry Pi 3).

6. When you're happy that you have plugged all the cables and SD card in correctly,

connect the micro USB power supply. This action will turn on and boot your Raspberry

Pi.

7. The Raspberry Pi has an Ethernet port, alongside the USB ports. If your Raspberry Pi is

situated close to a router, access point, or switch, you can connect to a network using an

Ethernet cable.

8. Once you've plugged the Ethernet cable into the Raspberry Pi and the other end into an

access point, your Raspberry Pi will automatically connect to the network.

 12

Fig 5 Raspberry Pi top down view Fig 6 Ethernet Cable

If you followed these instructions correctly the monitor that you are using should show the

insignia of the Raspberry Pi, a raspberry, to show that it is working. The first few of lines that

should appear on the screen will ask for a username and a password. The username is pi and the

password is raspberry for entry into the microcomputer. From here you can operate the

Raspberry Pi like it was any other computer, with access to the internet, along with the python

program.

 13

Experiment: Lighting up the PI!

Materials:
Access to a computer with a SD card reader

12 13

 Fig 7 Raspberry Pi model 2 Fig 8. 8 GB micro SD

14

Fig 9 Ethernet cable Fig 10 Monitor with hdmi input

15

Fig 11 Wired/wireless USB mouse and keyboard

12Raspberry Pi
13 Memory card readers
14 Ethernet cable
15 ebid

 14

16

17 18

Fig 12 Female/male wires Fig 13 Male/male wires

19 20

Fig 14 Power supply Fig 15 NTE1749 Integrated Circuit

16

 Computer Cable Store
17 Sparkfun Electronics
18

Male to Female Jumper Wire

19 Raspberry Pi
20 Nte electronics

 15

21

Fig 16 Bread board Fig 17 LED light

21

 Electronic Circuit Theory and Breadboarding

 16

Connecting Breadboard:

 The Raspberry Pi has multiple ports to use in conjunction with the Breadboard to

program almost anything. The Raspberry Pi has its ports set up in the configuration shown

below, with the wires one would be able to make a rudimentary electrical circuit that can connect

to motors or other devices to make it possible for the Raspberry Pi to communicate with it.

 For the purpose of this experiment you are going to be looking at various ports like 3V,

Ground, and GPI0. On both sides of the ports there are 2 ports that supply power through them

directly from the Raspberry Pi, the 3 volts (port 1 and 17) and 5 volts (ports 2 and 4) all labeled

in Fig 18. These ports will go directly into the breadboard to power the circuits. The GPIO

(general purpose input output) ports on both sides are the direct links that the programmer uses to

control different outputs from the Raspberry Pi. These ports are linked into the breadboard to

control the different motors that you will be using later.

Fig 18 Pins of a Raspberry Pi

 The breadboard as told before is a base for the electrical circuit to be built off of. The

inside of a breadboard has metal plates that connect across rows to connect the wires placed in

 17

the holds shown in the picture below (Fig 19). By bridging the metal plates you can create

different series and parallel circuits to create more complex circuits. For the experiment there

will be step by step instructions for linking the Raspberry Pi to the breadboard. There is a divide

in the breadboards to allow for up to five components on each side to optimize the amount of

components you can install on the breadboard.

Fig 19 Breadboard with the pin separated top and the inside rails view

The first thing you should know how to do is connect the power to the breadboard. The

breadboard takes in power from the Raspberry Pi through the power ports 1 or 2 and connect

directly to one of positive power tracks on the left or right of the breadboard. These power rails

will direct the energy down the line so that electricity can be diverted with wiring to power

different components on the breadboard. This setup works similar to all other electronics, with a

positive electronic input and a negative electronic input on both sides that corresponds with one

or two power sources. The power ports on the Raspberry will connect to the positive power rails

 18

via the male/female wires to supply the power. The negative output or ground will connect back

to the

The ground ports in the Raspberry Pi. This connection is going to be made with the female/male

wire but the ground port could be any of the ones already on the Raspberry Pi. With this the

Raspberry Pi can now power the breadboard and the components. For the experiment in this first

module the student will be running an led light on the breadboard and lighting it up with the

Raspberry Pi

Fig 20 LED

The next thing to wire up is the actual LED (Fig 20) which is handled in 2 parts. The

LED or Light Emitting Diode is a diode with a head that glows when electricity runs through it.

The longer leg of the diode is the positive side of the diode (called the anode) that is always

connected to the positive side of the supply, while the shorter side (called the cathode) is

connected to the negative side of the power supply known as the ground. Now for the LED to

work it needs a resistor to control the supply of power throughout the circuit

When using LED’s and a microcontroller you must always resistors in the circuit. The

Raspberry Pi can only supply the circuit 60 milliamps which is not enough for the LED. The

LED will also try to draw more power out of the Raspberry Pi potentially causing the Pi to short

 19

out and potentially damage the microcontroller. The resistor stops the LED from drawing too

much power from the microcontroller; specifically it limits the amount of current that is allowed

to flow. The measure of this resistance and the classification of this component is called Ohms

(𝛀). This is marked on the resistor by the colored bands on the sides of the resistor body. For this

experiment you will be using a 330 ohm resistor marked by:

● 4 colored bands that go Orange, Orange, Brown, then Gold

● 5 colored Bands that go Orange, Orange, Black, Black, Brown

The way that you plug in the resistor does not matter since it will reduce the flow no matter what.

Wiring the Raspberry Pi:

Steps:

1. Attach port 1 (3V) to a positive rail on the breadboard using a female/male jumper wire

2. Insert one side of a 330Ω resistor directly into the positive rail (in a parallel hole to the

jumper cable just placed)and one side into another rail on the breadboard

3. Insert the anode (longer pin) of the LED on the same rail as the resistor and the cathode

(shorter pin) on a separate rail

4. Connect port 9 of the Raspberry Pi to the same rail as the negative pin on the LED with a

male/female jumper wire, completing the circuit

 20

Testing the Connection:

 Following the instructions above, the Raspberry Pi should be supplying power to the

breadboard and the power should run through the circuit. This should supply power to the led

causing it to light up. If the LED is not lit it simply means that the LED is plugged in reverse and

should switch the pins of the LED so that they are plugged in the opposite way than it was

before. If the LED is lit then you have successfully created a circuit

Experiment Variables:

 Within the appendix you will find all of the codes for each component in the kit to use as

you go through each module. For this first module please read through Appendix Section 1 or

the introductory code lesson and the sample code along with it. After inputting the code for the

Raspberry Pi code you should have rudimentary control of the LED. The function will run but

you will experiment with the “time.sleep()” function. This will allow you to change how long the

LED stays on. Now the experiment will have you changing the resistor on the breadboard and

the time in the code.

 Try switching out the 330 Ohm resistor for a larger or smaller ohm resistor, you can see

which resistors are which with the chart provided below.

 21

Fig 21 Resistor Chart

 What happens when you switch to a larger resistor? How about a smaller resistor?

 Now to change how long the LED stays on. The line of code that affects how long it stays

on is the “time.sleep()” function. This function keeps track of how much time passes before it

goes onto the next line of code. The function keeps track of time in seconds so putting in a whole

number will be the number of seconds that the code pauses before continuing the code. Adjust

the code for 5 seconds and compare the time with a stopwatch or a counting app. Adjust the code

for 30 seconds and compare with a stopwatch to see if the code does as it says.

Assignments:
Write down below the scientific observations you made about the Raspberry Pi. What

were some difficulties that you encountered and where was it most difficult for you?

 22

Bibliography:

1. Johnson, G. W., & Jennings, R. (2006). LabVIEW graphical programming.

2. Brinkman, W. F., Haggan, D. E., & Troutman, W. W. (1997). A history of the invention of

the transistor and where it will lead us. IEEE Journal of Solid-State Circuits, 32(12), 1858-1865.

3. 1 Meter (3.28 FT) High Speed HDMI Cable with Ethernet." Computer Cable Store.

N.p., n.d. Web. 02 Dec. 2016.

4. "Raspberry Pi." Raspberry Pi - Raspberry Pi Hardware Guide Requirements |

Raspberry Pi Learning Resources. N.p., n.d. Web. 02 Dec. 2016.

5. #82931, Member. "Jumper Wires Premium 12" M/F Pack of 10." PRT-09385 -

SparkFun Electronics. N.p., n.d. Web. 02 Dec. 2016.

6. SanDisk®. "Memory to Capture the Moment." Memory Cards & Readers. N.p.,

n.d. Web. 02 Dec. 2016.

7. "Ethernet Cable." Related Keywords & Suggestions for Ethernet Cable. N.p., n.d.

Web. 02 Dec. 2016.

8. @creator_username. "Male to Female Jumper Wire." Http://www.cytron.com.my/.

N.p., n.d. Web. 02 Dec. 2016.

9. "Electronic Circuit Theory and Breadboarding." KachailF.weebly.com. N.p., n.d.

Web. 02 Dec. 2016.

10. "Ic-push-pull Four Channel Driver 16-pin DIP By NTE Electronics (NTE1749-1)

MCM Part #NTE1749-1." NTE Electronics Ic-push-pull Four Channel Driver 16-pin

DIP | NTE1749-1 (NTE17491) | NTE Electronics. N.p., n.d. Web. 05 Dec. 2016.

11. NTE. "NTE1749 Integrated Circuit Push–Pull Four Channel Driver." NTE1749.

NTE Electronics Inc., n.d. Web. 16 Nov. 2016.

12. Cellan-Jones, Rory (5 May 2011). "A £15 computer to inspire young

programmers". BBC News.

https://en.wikipedia.org/wiki/Rory_Cellan-Jones
http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/05/a_15_computer_to_inspire_young.html
http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/05/a_15_computer_to_inspire_young.html

 23

13. Moorhead, Joanna (9 January 2012). "Raspberry Pi device will 'reboot computing in

schools'". The Guardian. London. Retrieved 20 January 2012.

14. National instruments. (n.d.). NI USB-6229 BNC 16-Bit, 250 kS/s M Series, Integrated

BNC, External Power. Retrieved October 22, 2017, from

http://sine.ni.com/nips/cds/view/p/lang/en/nid/203866

https://www.theguardian.com/education/2012/jan/09/raspberry-pi-computer-revolutionise-computing-schools?newsfeed=true
https://www.theguardian.com/education/2012/jan/09/raspberry-pi-computer-revolutionise-computing-schools?newsfeed=true

 24

Module 02:

Motor Control Experimentation

Working with Different Types of Motors

 25

Module 02: Table of Contents

Title Page number
1. Objectives for the Motor Module – II 26

2. Goals for the Students 27

3. Measureable Outcomes 27

4. Introduction 28

a. What is a motor 28

b. AC motors 29

c. DC motors 32

5. Experiment: The Model Escalator Stepper motor 35

a. Materials 35

b. Wiring up the Pi 38

c. Platform assembly 41

d. Testing 42

6. Experiment: The Model Escalator Servo motor 43

a. Materials 43

b. Wiring up the Pi 44

c. Testing 45

7. Experiment: The Model Escalator DC motor 48

a. Materials 48

b. Wiring up the Pi 51

c. Testing 53

8. Assignment 53

9. Bibliography 54

 26

Objectives for the Motor Module 02:

 This module seeks to give an introduction to the design and functionality of multiple

different types of motors. Currently in today’s market, technological ingenuity keeps birthing a

plethora of different tools that are used in our day to day life, and motors are some of the most

basic and most important tools used. Different motors have been made to accompany different

purposes for industrial uses. These motors are defined into 2 sections: AC motors and DC

motors. This module will go over for the ins and outs of these sections for the student to learn

about the various classifications of each one.

 The components used in this module are the Raspberry Pi, breadboard, a Stepper motor,

and an H-Bridge motor driver plus some previously used switches and wiring. This module will

go through the step by step installation of the stepper motor to make it controllable by the

Raspberry Pi. This module will also help advance your programming skills, specifically using

Python and how to properly read it.

Fig 22 Stepper motor

Goals for the Student:

By the end of this module the Student will be able to:

 27

● Connect the Raspberry Pi to the breadboard

● Connect a motor to the breadboard

● Program the motor to turn

● Turn the motor shaft to designated angles

● Change the direction of the motor multiple times in the same program

● Have the motor turn one direction, stop for a certain amount of time and turn again

Measurable Outcomes:

By the end of the module the Student will be able to:

● Get the motor to rotate in 2 different directions

● Have the motor rotate one way, stop for some period of time and rotate another way

● Connect the motors to a tread system and test out the accuracy of the motors

 28

Introduction:

What is a motor?

The purpose of this module in this program is to give a proper introduction to motors.

The motor has been a life changing event ever since the early invention of the first electric motor

in 1834 by Thomas Davenport. This early invention did not output enough work for industrial

usages but it showed promise by running smaller items like toy trolleys and toy trains on a small

rail. As people saw this strange invention, engineers pushed to make this small machine viable

for industrial usage. This challenge was first completed by the German engineer Moritz Jacobi in

May of 1834 with the creation of the rotating electrical motor.

Figure 23 Basic Motor disassembly

 This motor was further bested by Jacobi himself in 1838, this new motor had enough

output to move a boat filled with 14 people across a river. This feat and more started the push for

electric motors to be used for practical and industrial usages.

 29

A motor, by definition, is a machine powered by electricity or internal combustion that

supplies mechanical power for a vehicle or other device with moving parts. A motor in its basic

form is a tool to provide work and movement to a system to accomplish a goal. The mechanical

energy provided by most motors comes off as a rotational movement in one given direction at a

speed based off of the amount of energy being supplied. The motor has evolved to suit many

different uses, as such many different types of motors have been created to suit various needs,

and this module will go into how some of these various motors work. Motors can be classified

under two modes of power: AC and DC motors. These two classifications and their sub-

classifications are based on the motors function or operation.

AC motors:

An AC motor runs on an Alternating Current to create motion. The AC motor converts

electricity into mechanical energy through the use of magnetic fields. Magnetic fields are created

inside of the motor by using two parts called the rotor and the stator. The stator holds fixed

magnets that surround the motor shaft. Wires coil around the fixed magnets on the inside so that

the electrical current runs directly to them. When the magnets are supplied with the alternating

current, they create a magnetic field inside the motor. The rotor has a ring of magnets, or in some

cases just 2 magnets, shown below, attached directly to the motor shaft that move when the

magnetic field is created.22

22 Woodford, C.

 30

Fig 24 Basic diagram of an AC motor

23

When the motor receives energy the rotor moves in response to the magnetic field causing the

motor shaft to spin in a given direction. AC motors vary in their internal mechanisms so there are

2 different types of AC motors used in the world: Synchronous and Asynchronous motors.

Synchronous AC motors works directly off the AC current. The motor shaft rotates at the same

frequency as the current that is being supplied to the motor. This frequency within the motor is

created by making a rotating magnetic field. Rotation of the magnetic field is accomplished with

a DC power supply on the rotor to make the rotor into its own magnet to move along with the

magnetic field from the stator to creating a harmonious movement. The Synchronous motor has a

speed that correlates with the energy input; the faster the AC frequency the faster the motor goes.

23 Polka, D

 31

 Fig 25 Basic diagram of a Sync AC motor24

The Non-Synchronous motor otherwise known as the Induction motor uses

electromagnetic induction to power the shaft or whatever rotation device is in the motor. The

way an induction motor works relies on 2 pairs of electromagnetic coils and an alternating

current. Just like regular /AC motors, these motors have a stator and a rotor with the 2 pairs of

coils attached to the stator and a rotor on the motor shaft. Each pair of coils is situated opposite

of each other with the rotor in the middle. Since alternating current works in a flow of high and

low, when one pair of coils is active, the other pair is inactive, creating specific magnetic fields

that the rotor moves in response to.

Fig 26 Basic diagram of an Induction AC motor

24 Gibbs,K

 32

DC motors:

The DC motor, so named since it uses Direct Current electricity to create mechanical

motion. The DC motor creates mechanical movement similarly to the AC motor, by using

magnetism within to create torque. This torque is created by 2 parts inside the motor: the

permanent magnets and the rotating coil connected to the power supply. When an electric current

passes through a coil in a magnetic field the coil will move in the direction of the magnetic force.

This magnetic force and its direction define the motors capabilities

DC motors use electricity running through a wire and some metal “bristles” to create a

static magnetic field. Within the wire loop is a permanent magnetic that is the polar opposite of

the created magnetic field. This opposite polarity causes the magnet to spin creating mechanical

energy that is utilized in whatever system it is installed in. AC motors utilize the magnetic field

differently by having the magnetic field oscillate between directions, causing the magnet in the

middle to move constantly to try to “catch up” with the magnetic field.25 Each type of motor uses

magnetism to produce mechanical energy but each type comes with its own strengths and

weaknesses.

Fig 27 Basic DC Motor Diagram

26

25Woodford,C
26 electrical4u

 33

Within the DC motor classification the Stepper Motor is one of the more dependable

motors. This sensor does not have outer permanent magnets and a looping metal wire to create a

magnetic field but instead has a slightly different setup. The stepper motor has multiple smaller

electromagnets attached to the rotor, or the shaft that will spin, while multiple current carrying

metal coils on the outside stator create specific magnetic fields. The outside metal coils are

positioned to be opposite of each other so that when the current runs through it makes a

positioned electrical field for the shaft to respond. The magnets on the shaft compose an inner

ring that responds to the smaller magnetic fields far more precisely. With these smaller magnets

the stepper is able to make “half-steps” in which you can control even further the movement of

the inner ring but also control the angle in which the inner ring stops at. This ability to stop the

rotation at a certain point can be called “holding torque”, allowing the rest of the body to do

other things while the motor keeps its place.27

Fig 28 Base Diagram of Stepper Motor28

27Woodford, C
28 wiki4u

 34

Another reliable DC motor that will be included in the module is the servo motor. The

servo motor is different from the regular dc motor because it is a compilation of the dc motor, a

potentiometer, and a control circuit. This creates a new device that prioritizes position. By

linking the DC motor to the potentiometer with gears the sensor will constantly measure the

position, or rotation, of the motor shaft, The potentiometer relays this information to the control

module which will act like a switch; the control module will supply power to the motor until the

potentiometer reaches an assigned value, in which case the control stops the flow of electricity

Fig 29 Diagram of Servo Motor Parts29

29 Reed,F

 35

Experiment: The Stepper Motor Escalator

For this module you will be testing out the different motors in a standard setup to

compare their capabilities. The following sections will teach you how to wire up the Raspberry

Pi to each motor so that the pi can control each motor. For this experiment you will be putting

the given motor into the base and running a tread or thread from the motor shaft to the two other

pillars to create a continuous track. This continuous track with a few markers will let you test the

various properties of each motor

Materials:
Access to a computer with a SD card reader

30

Raspberry Pi model 2

30Raspberry Pi

 36

31

Ethernet cable Monitor with hdmi input

32

 Wired/wireless USB mouse and keyboard
33

34 35

Female/male wires Male/male wires

31 Ethernet cable
32 ebid
33

 Computer Cable Store
34 Sparkfun Electronics
35

Male to Female Jumper Wire

 37

36 37

Power supply NTE1749 Integrated Circuit

Bread board Stepper motor

36 Raspberry Pi
37 Nte electronics

 38

Wiring the Raspberry Pi:

 Wiring up the Raspberry Pi will work similar to the First module. Using the same layout

image from before the instructions that follow will reference the image.

The Raspberry Pi will use the same ports and the same pins to supply power and ground to the

breadboard so re-read the first module if power is not being sent to the breadboard. Using an

LED to complete a simple circuit will tell you if the power is there. The next thing to do is to

utilize the integrated circuit to connect the motor to the Raspberry Pi. The IC works similar to the

Raspberry Pi with multiple pins that connect through the breadboard slots.

 39

Fig 30. Integrated circuit chart

The integrated circuits are used on the divide in the breadboards to connect the two sides of the

breadboards so that the components will work together. The port numbering starts from one and

sixteen at the divot on the end of the microchip. The shown image dictates where the electrical

inputs from the Raspberry Pi and the motors will go. When wiring up the Raspberry Pi and the

motors each motor will correspond to an input and output. In the case of the experiment it will

focus on one motor at a time and the Raspberry Pi. The wiring example will follow as such:

Steps:

1. Attach port 1 (3V) to a positive rail on the breadboard using a female/male jumper wire

2. Attach port 14 (Ground) of the Raspberry Pi to the negative track on the breadboard on

the same side as the previous jumper wire

3. Insert the NTE 1749 microchip into the breadboard such that it is on top of the separating

ravine and the pins are inserted to both sides of the breadboard

4. Now for the 4 wire motor is to be plugged in as such

a. The black wire goes to output 3 on the microchip in one of the adjacent holes(it

doesn’t matter which)

 40

b. The blue wire goes to output 2 on the microchip

c. The green wire goes to output 1 on the microchip

d. The red wire goes to output 4 on the chip

5. Now for the rest of the Raspberry Pi’s port

a. Attach port 7 on the Raspberry Pi with a female/male jumper wire and connect it

to input1

b. Attach port 9 on the Raspberry Pi with a similar wire to the negative rail on the

same side as the wire from port 1

c. Attach port 11 on the pi to the rail of pin 7 of the microchip (again anywhere is

fine)

d. Attach port 12 on the pi to the rail of pin 1 of the microchip

e. Attach port 16 on the pi to the rail of pin 3 of the microchip

f. Attach port 18 on the pi to the rail of pin 10 of the microchip

 41

Platform assembly:

1. Place the rectangular platform on a flat surface to keep everything balanced and steady

2. Glue the wooden wheel to the wooden block and confirm that they stay together

3. Tape the Stepper motor onto the platform with the rotary shaft oriented parallel to the

platform surface and close to one of the short edges

4. Tape the wooden block onto the platform on the opposite side of the motor with the

wooden wheel facing the same direction and is parallel to the rotary shaft of the motor.

5. Attach the rubber wheel to the rotary shaft of the motor

6. Secure the rubber wheel in place with the lock gear

7. Measure and cut a length of string to loop around the rubber and wooden wheels that is

taught and secure

8. Take a marker and mark a spot on the string as your measuring point

9. Place a ruler below the string to measure out distances

 42

The Test: movement and positioning

 With the platform completed and the motor connected to your Raspberry Pi, you should

read Appendix Section 2 for the given sample code to control the stepper motor. With the

correct setup of the platform and the code you’d be able to get the string moving in whichever

way you see fit. The given code will prompt you with the 3 questions: delay between steps, how

many steps forward, how many steps backwards. The delay is how long the motor waits in

between steps, this will give you time to record movements. The forward and backwards prompts

are self-explanatory but you can experiment with directions on your own. Keep in mind the step

ratios for the program and continue on.

 Your first challenge is to align the point on the string to the lower end of the rubber

wheel. The point on the string should hang on the bottom line of the string, positioned right on

top of a mark on the ruler. This will be your starting position for the rest of the experiment

The second challenge is to find the number of steps it takes to go from one wheel to the

next. Take into account the ratio and try out different numbers of steps to get to the other wheel.

Using the backwards code you can reset the position of the marker by inputting the same number

of steps as the forward command.

Hint: measuring how long a “step” is will go far into completing this task.

 43

Experiment: the Model Escalator with Servo Motor:

Materials:
Access to a computer with a SD card reader

38

Raspberry Pi model 2

39

Ethernet cable Monitor with hdmi input

40

 Wired/wireless USB mouse and keyboard

38Raspberry Pi
39 Ethernet cable
40 ebid

 44

41

42 43

Female/male wires Male/male wires

44 45

Power supply NTE1749 Integrated Circuit

41

 Computer Cable Store
42 Sparkfun Electronics
43

Male to Female Jumper Wire

44 Raspberry Pi
45 Nte electronics

 45

46

Bread board Servo motor

Wiring the pi:

 Using the same schematics of the Raspberry Pi we will be wiring the Raspberry Pi to

work with the servo motor. The motor itself will not work with the platform given in this kit so it

will be on the side as it connects to the breadboard. For the servo motor we will not be using the

integrated chip since the circuit can be completed in a simpler design.

Steps:

1. Connect pin 22, pin 6, and pin 2 of the Raspberry Pi to one side of the breadboard in

separate rows so they don't cross each other

2. Connect the ground wire (the black/brown wire) of the servo motor to the same row as

the wire for pin 6 of the Raspberry Pi

46

 Electronic Circuit Theory and Breadboarding

 46

3. Connect the yellow wire on the servo motor To the same row as pin 22 on the

breadboard

4. Connect the red wire on the server motor to the same row as pin 2 to get power flowing

from the Raspberry Pi to the servo motor.

 47

The Test part 1: movement and positioning

After inputting the code from Appendix Section 3 try changing the angles in the code to get the

servo motor to move to different locations. Marking an edge of the servo motor wheel with tape

to make a bookmark. Using the extension on the platform you can put the servo motor on it and

connect the wooden wheels and the treads on the assembly. Now using the code, try to measure

the accuracy of the servo motor by making some measurable mark along the tread path.

Experiment with how close you can get some point of the tread of your choice close to, if not

directly over the mark. Record your findings and the number of attempts you had before you

succeeded.

 48

Experiment: the Model Escalator with DC Motor:

Materials:
Access to a computer with a SD card reader

47

Raspberry Pi model 2

48

Ethernet cable Monitor with hdmi input

49

 Wired/wireless USB mouse and keyboard

47Raspberry Pi
48 Ethernet cable
49 ebid

 49

50

51 52

Female/male wires Male/male wires

53 54

Power supply NTE1749 Integrated Circuit

50

 Computer Cable Store
51 Sparkfun Electronics
52

Male to Female Jumper Wire

53 Raspberry Pi
54 Nte electronics

 50

55

Bread board DC motor

55

 Electronic Circuit Theory and Breadboarding

 51

Wiring the pi:

Figure 31 Completely wired motor layout

The DC motor will utilize the H-bridge chip in the setup (Figure 31). The Raspberry Pi

will be supplying power to the breadboard and the dc motor as you experiment with controlling

the dc motor from the microcontroller.

Steps:

1. Attach a wire from pin 2 (5V) of the Raspberry Pi to the same row as pin 16 of the h-

bridge (Vss)

2. Attach a wire from pin 6 (Ground) of the Raspberry Pi to the right blue column of the

breadboard

 52

3. Attach a wire from pins 13 and 12 of the H-bridge to the right blue column.

4. Attach a wire from pin 18 (GP1024) of the Raspberry Pi to the row of pin 2 (input1) of

the h-bridge

5. Attach a wire from pin 16 (GP1023) of the Raspberry Pi to the row of pin 7 (input2) of

the h-bridge

6. Attach a wire from pin 22 (GP1025) of the Raspberry Pi to the row of pin 1 (CE1)

7. Attach the positive wire of the DC motor into the row of pin 3 (output1) of the H-bridge

8. Attach the negative wire of the DC motor into the row of pin 6(output2) of the H-bridge,

put this wire in the same column as the positive wire of the DC motor

9. Attach a wire from pins 4 and 5 of the H-bridge (Ground) to the leftmost blue negative

column.

10. Use a wire to connect both ground columns of the breadboard together to complete the

circuit

 53

 Test for DC Motor: positioning and precision

 Just like earlier motors you will be testing how accurate and functional the DC motor is.

Copy and input the code provided in Appendix Section 4: The DC Motor into Python to run for

the DC motor. As you probably observed there is no in-between speed for the DC motor, it is

only high and low for the motors to operate at. Attach gear on the gear shaft of the DC motor to

work with the tread and run on the other wheels and attempt to get a point of the tread to stop

right above the same spot as the previous 2 experiments. Record your experiences and how many

attempts it took to get the point of the tread to stop on top of the stop off point.

Assignment:

Each motor has different functions and different strengths and weaknesses, write down some of

the Pros and cons of each motor

Stepper:

Servo:

DC motor:

 54

Bibliography

1. Polka, D. (2001, July). AutomatedBuildings.com Article - What Is A Drive?

Retrieved November 10, 2016, from

http://www.automatedbuildings.com/news/jul01/art/abbd/abbd.htm

2. Woodford, C. (2016, February 12). AC induction motors | How AC motors work.

Retrieved November 8, 2016, from http://www.explainthatstuff.com/induction-

motors.html

3. Woodford, C. (2016, February 03). How do stepper motors work? Retrieved

November 9, 2016, from http://www.explainthatstuff.com/how-stepper-motors-

work.html

4. Teschler, L | Machine Design, L. (2013, January 4). What's the Difference

Between Asynchronous and Synchronous Motors? Retrieved November 11, 2016, from

http://machinedesign.com/motorsdrives/whats-difference-between-asynchronous-and-

synchronous-motors

5. Reed, F. (n.d.). How Do Servo Motors Work. Retrieved November 11, 2016, from

http://www.jameco.com/Jameco/workshop/howitworks/how-servo-motors-work.html

6. Stepper Motor | Construction, Working and Types. (2011, November 11).

Retrieved November 11, 2016, from http://www.wikiforu.com/2011/11/stepper-motor-

construction-working-and.html

7. Doppelbauer, Martin. "The invention of the electric motor 1800-1854." History -

The invention of the electric motor 1800-1854. N.p., 25 Sept. 2014. Web. 25 Feb. 2017.

8. Barnett, Jason. "Controlling DC Motors Using Python With a Raspberry

Pi." Business Envato Tuts. N.p., 11 Apr. 2014. Web. 25 Feb. 2017.

http://www.automatedbuildings.com/news/jul01/art/abbd/abbd.htm
http://www.automatedbuildings.com/news/jul01/art/abbd/abbd.htm
http://www.explainthatstuff.com/how-stepper-motors-work.html
http://www.explainthatstuff.com/how-stepper-motors-work.html
http://machinedesign.com/motorsdrives/whats-difference-between-asynchronous-and-synchronous-motors
http://machinedesign.com/motorsdrives/whats-difference-between-asynchronous-and-synchronous-motors

 55

9. Gibbs, K. (2013). The a.c. motor. Retrieved November 9, 2016, from

http://www.schoolphysics.co.uk/age16-

19/Electricity%20and%20magnetism/Electromagnetism/text/Electric_motor_ac/index.ht

ml

10. How does an Induction Motor Work? (2013, August 6). Retrieved November 11,

2016, from http://www.learnengineering.org/2013/08/three-phase-induction-motor-

working-squirrel-cage.html

11. Induction Motor | Working Principle | Types of Induction Motor. (n.d.). Retrieved

November 11, 2016, from http://www.electrical4u.com/induction-motor-types-of-

induction-motor/

12. Synchronous Motor Working Principle. (2013, July 16). Retrieved November 8,

2016, from http://www.electrical4u.com/synchronous-motor-working-principle/

13. CableOrganizer.com. "Three-Phase Electric Power." Three-Phase Electric Power.

N.p., n.d. Web. 10 Feb. 2017.

14. "What is the difference between BOARD and BCM for GPIO pin

numbering?" Python - What is the difference between BOARD and BCM for GPIO pin

numbering? - Raspberry Pi Stack Exchange. N.p., n.d. Web. 25 Apr. 2017.

15. Doppelbauer, Martin. "The invention of the electric motor 1800-1854." History -

The invention of the electric motor 1800-1854. N.p., n.d. Web. 10 Feb. 2017.

http://www.explainthatstuff.com/how-stepper-motors-work.html
http://www.explainthatstuff.com/how-stepper-motors-work.html
http://www.schoolphysics.co.uk/age16-19/Electricity%20and%20magnetism/Electromagnetism/text/Electric_motor_ac/index.html
http://www.schoolphysics.co.uk/age16-19/Electricity%20and%20magnetism/Electromagnetism/text/Electric_motor_ac/index.html
http://www.schoolphysics.co.uk/age16-19/Electricity%20and%20magnetism/Electromagnetism/text/Electric_motor_ac/index.html
http://www.schoolphysics.co.uk/age16-19/Electricity%20and%20magnetism/Electromagnetism/text/Electric_motor_ac/index.html
http://www.electrical4u.com/synchronous-motor-working-principle/

 56

Module 3

Sensor control experimentation

Recording the world through Sensors

 57

Table of Contents

Title Page number
1. Objectives for the Controller Module-III 58

2. Goals for the Students 59

3. Measureable Outcomes 59

4. Introduction 60

a. The PIR Motion Sensor 61

b. The Ultrasound Sensor 63

5. Experiment: Acquiring and Recording data 64

a. Materials 64

b. Wiring up the PI for PIR Sensor 67

i. Testing the PIR Sensor 68

c. Wiring up the PI for Ultrasound sensor 69

i. Testing the Ultrasound Sensor 70

6. Assignments 71

7. Bibliography 72

 58

Objectives for the Controller Module III:

 This module seeks to give an introduction to the design and uses of multiple different

types of distance sensors. As technology grows in uses, we as a society desire our technology to

interact more with the daily physical world. Using different forms of radiation such as X-ray and

radio waves, sensors have been created to produce and use radiation to record data about various

distances. These sensors are defined by the way that they interact with the world, whether they

use sound waves or spectral light waves. This module will cover 3 different types of sensors that

use various methods to judge and interact with distance.

 The components that this module will be working with are the same Raspberry Pi and

breadboard of the previous modules, alongside the ultrasonic sensor, PIR sensor and PIR Motion

Sensor. This module will also take you through the step by step installation of each sensor as such

that the Raspberry Pi can receive information that the sensor records. This module will also

contain continued insight on the format of the programming language Python and how to

properly read it.

 59

Goals for the students:

By the end of this module the Student will hopefully be able to:

● Connect the three different sensors to the Raspberry Pi

● Get the sensors to respond to outside stimuli

● Program the Raspberry Pi to receive information

Measureable Outcomes:

By the end of the module the Student will hopefully be able to:

● Get the sensors to display distance information

● Turn on a led when an object gets to a certain distance

 60

Introduction:

What is a sensor?

The purpose of this module in this program is to give a proper introduction to multiple

different types of sensors. By basic definition a sensor is a device that detects and responds to

some input from the outside environment. Sensors respond to specific types of outside stimulus

like light, sound or temperature. These stimuli would cause an electrical input to send a signal

back to a display for the programmer to use. The first sensor, created in 1883, was an electric

thermostat invented by Warren Johnson56, which was accurate to a degree, even more than easily

accessible thermostats today. This invention started a path of inventions that allowed humans

another way to interact with the world around us.

With the different aspects of life to measure, many different types of sensors were

invented to measure previously immeasurable properties. Sensors like smoke, temperature,

humidity, and motion came through after the first sensor to suit many needs. The motion sensor

first came about in the 1940s by the man Samuel Bagno57. Its first use was simply finding a

person within a room. Since then, its potential grew as the sensor evolved to calculate the

movement of the stars. The motion sensor grew more useful in various fields of life, from the

land mines in World War 2 to the metal detectors used in airport security, sensors have become

almost fully integrated in our daily lives

56 Ali
57 ebid

 61

PIR Motion Sensor:

 A PIR Motion Sensor, the shortened name of a Pyroelectric ("Passive") Infrared sensor,

is one of the distance sensors that will be covered in this module. PIR sensors allow you to sense

motion; it’s almost always used to detect whether an object has moved in or out of the sensors

range. They are small, inexpensive, low-power, easy to use and don't wear out easily after long

time use. For that reason they are commonly found in appliances and gadgets like a microwave

and video camera software.

Figure 32 PIR Motion Sensor Automation

 The sensor itself is made up of a Fresnel lens, an infrared detector, and supporting

detection circuitry. The lens on the sensor focuses any infrared radiation/wavelengths present

around it towards the infrared detector. Our bodies generate low levels of radiation as heat and as

a result, this gets picked up by the motion sensor. The sensor outputs a 5V signal for a period of

one minute as soon as it detects us. It offers a tentative detection range of about 6-7 m and is

highly sensitive. The output from the sensor is used to trigger a transistor BC547. The transistor

then switches on a 5V relay. The relay correspondingly switches your appliance ON. This

 62

module will teach the student how to program the Raspberry Pi to read this trigger and respond

to it.

 63

Ultrasound Sensor:

 Sound consists of oscillating waves through a medium (such as air) with the pitch being

determined by the closeness of those waves to each other, defined as the frequency. Only some

of the sound spectrum is audible to the human ear, defined as the “Acoustic” range. Very low

frequency sound below Acoustic is defined as “Infrasound”, with high frequency sounds above,

called “Ultrasound”. Ultrasonic sensors are designed to sense object proximity or range using

ultrasound reflection, similar to radar, to calculate the time it takes to reflect ultrasound waves

between the sensor and a solid object. Ultrasound is mainly used because it’s inaudible to the

human ear and is relatively accurate within short distances.

A basic ultrasonic sensor consists of one or more ultrasonic transmitters (basically

speakers), a receiver, and a control circuit. The transmitters emit a high frequency ultrasonic

sound, which bounce off any nearby solid objects. Some of that ultrasonic noise is reflected and

detected by the receiver on the sensor. That return signal is then processed by the control circuit

to calculate the time difference between the signal being transmitted and received. This time can

subsequently be used, along with some mathematical calculations the distance between the

sensor and the reflected object.

 64

Experiment: Acquiring and Recording data using the

Raspberry Pi!

 Materials:
Access to a computer with a SD card reader

58

Raspberry Pi model 2

59

Ethernet cable Monitor with hdmi input

58Raspberry Pi
59 Ethernet cable

 65

60

 Wired/wireless USB mouse and keyboard
61

62 63

Female/male wires Male/male wires

64 65

Power supply NTE1749 Integrated Circuit

60 ebid
61

 Computer Cable Store
62 Sparkfun Electronics
63

Male to Female Jumper Wire

64 Raspberry Pi
65 Nte electronics

 66

66

Bread board Ultrasonic Sensor

PIR Motion Sensor

66

 Electronic Circuit Theory and Breadboarding

 67

Wiring up the Raspberry Pi for the PIR Motion Sensor:

Figure 33 Pir Motion Sensor

The PIR Motion sensor (Fig 33) has 3 pins on it that connect to the breadboard. Make

sure that the socket is the right way around (use the picture above) and that the red lead goes to

5V, the black to GND and the yellow to 18 on the Raspberry Pi.

Wiring Setup Steps:

1. Connect a wire from Pin 4 to a row on the breadboard

2. Connect the red lead of the PIR Sensor to the breadboard in the same row as the first wire

that you put in

3. Connect a wire from pin 18 on the Raspberry Pi to a different row on the breadboard

4. Connect the yellow wire of the PIR Sensor to the same row as the wire from pin 18

5. The black wire of the sensor goes directly into the ground line of the breadboard

6. Connect the wire of pin 6 (ground) to the same line as the negative ground on the

breadboard.

 68

Testing the PIR Motion Sensor:

Copy and input the code from Appendix Section 5 into Python for execution. This code

will rely on the libraries “time” and “RPI.GPIO”. The code will print the words PIR ALARM

when there is a change in distance so test if your setup works by placing something in front of

the PIR sensor. If the python writer displays the text then you have succeeded.

 69

Wiring up the Raspberry Pi for the Ultrasound Sensor:

Figure 34 Ultrasound Sensor

 The Ultrasound Sensor (Fig 34) has 4 pins on it: the Ground, Echo, Trigger, and the VCC

pins that it uses to interact with the Raspberry Pi. The sensor draws power from the Raspberry Pi

through the VCC or 5V supply to operate. Then the Raspberry Pi sends a signal through the

Trigger pin to send an ultrasonic pulse through the speakers. The Echo pin is what the sensor

uses to receive the sound waves bouncing back from the object.

 Wiring setup steps:

1. Plug male to female jumper wires into the pins of the sensor with corresponding colors:

a. Red wire for Vcc

b. Blue for Trig

c. Yellow for Echo

d. Black for Ground

2. Plug Vcc into the positive rail of your breadboard, and plug GND into your negative rail.

3. Plug GPIO 5V [Pin 2] into the positive rail, and GPIO GND [Pin 6] into the negative rail

 70

4. Plug TRIG into a blank rail, and plug that rail into GPIO 23 [Pin 16]. (You can plug

TRIG directly into GPIO 23 if you want). I personally just like to do everything on a

breadboard!

5. Plug ECHO into a blank rail, link another blank rail using R1 (1kΩ resistor)

6. . Link your R1 rail with the GND rail using R2 (2kΩ resistor). Leave a space between the

two resistors.

7. Add GPIO 24 [Pin 18] to the rail with your R1 (1kΩ resistor). This GPIO pin needs to sit

between R1 and R2

Testing the Ultrasonic Motion Sensor:

Copy and input the code from Appendix Section 6 into Python for execution. This code

will rely on the same libraries “time” and “RPI.GPIO” as the PIR Motion sensor. The code will

print the words different words from the PIR Sensor that are changeable in the code. The most

important part is that there is a reaction when a change in distance occurs.

 71

Assignment:

When done correctly each sensor should give a visual response in the Python shell. The

ultrasonic sensor and the PIR sensor have different operable distances that should become

apparent with trials and testing. Display your findings in a suitable lab book

 72

Bibliography:

1. "A Brief History of RFID." A Brief History of RFID. N.p., n.d. Web. 06 Apr.

2017.

2. Abdalla Ali, Member Follow. "History of sensors." LinkedIn SlideShare. N.p., 08

Mar. 2015. Web. 06 Apr. 2017.

3. Ada, Lady. "PIR Motion Sensor." How PIRs Work | PIR Motion Sensor | Adafruit

Learning System. N.p., n.d. Web. 06 Apr. 2017.

4. "Introduction to the RFID." Version française. N.p., n.d. Web. 06 Apr. 2017.

Adafruit. "PIR Motion Sensor Tutorial." Instructables.com. Instructables, 12 May 2016.

Web. 06 Apr. 2017.

5. Violino, Bob. "The History of RFID Technology." The History of RFID

Technology - 2005-01-16 - Page 1 - RFID Journal. N.p., 16 Jan. 2005. Web. 06 Apr.

2017.

6. Ali, Abdalla. "History of sensors." LinkedIn SlideShare. N.p., 08 Mar. 2015. Web.

26 Feb. 2017.

7. "PIR Motion Sensor Automation: The Best Tutorial." DIY Hacking. N.p., 20 Feb.

2017. Web. 26 Feb. 2017.

8. "HC-SR04 Ultrasonic Range Sensor on the Raspberry Pi." Cases for your

Raspberry Pi. N.p., 11 Sept. 2015. Web. 06 Apr. 2017.

9. Ada, Lady . "PIR Motion Sensor." How PIRs Work | PIR Motion Sensor |

Adafruit Learning System. N.p., 09 Sept. 2016. Web. 06 Apr. 2017.

 73

Module 4

Culmination Project

Putting together everything you’ve learned

 74

Table of Contents

Title Page number
1. Objectives for the Controller Module-IIII 75

2. Goals for the Students 75

3. Measureable Outcomes 75

.

Module Objectives:

 75

This module is the final module for this learning package. The project requires the

student to implement several of the previous modules in an open-ended project. The task is to

unlock a door upon approach of a person.

Goals for the students:

The goal of this module is to require the student to use the material learned from the

microcontroller module coupled with some form of control, such as a motor and some form of

sensing. Using these previous modules lessons, determine a way to satisfy the objectives –

unlock the door when a person approaches.

Measureable Outcomes:

Design your experiment specifying the functional and design constraints.

Specify the tasks and functions that the microcontroller will perform.

Determine what control actions will be implemented.

Determine what components need to be sensed, and how they will be sensed.

Write a procedure section

Specify what needs to be measured, recorded and actions taken.

 76

RESULTS:

Throughout the 3 terms working on this project I have successfully put together a blue print of a

4 module learning package for future students. Each module covers the assembly, programming,

and application of each component that would be offered in the package. Module one fully

covers what the Raspberry Pi is, how to properly wire and power the device and how to program

on it. I also held the same assembly structure among the rest of the modules so the integration of

the different components will be more fluid for students. The code provided in the appendix

works soundly in the assignments and should direct the students in.

Conclusion:

This project has taken a lot of time, effort, and mental fortitude to complete alone, and

there is much work to be done with the modules. The individual modules 1 and 2 have been

tested with the code and the assembly so I have the utmost confidence in them. Module 3 was

not tested, but following the format of the previous 2 modules, module 3 should follow the same

logic and instruction method so that students won’t become lost. Module 4 may or may not be

too vague but the idea behind it supports a freedom of choice for the students to do what they

want

 77

Appendix

Appendix Section 1: The Raspberry Pi

With the correct setup of the breadboard, you should be able to program the Raspberry Pi

to interact with the breadboard and anything you have connected on it with the program language

Python. Python is a relatively simple, general programming language used wherever

programming is used. There are many programming languages such as SQL (pronounced

sequel), Java, C++ and more that allow for communication and programming of different

components and computer systems to accomplish many great achievements. These languages are

the building blocks of modern society; programs make computers and advanced systems function

and grants us the ability to do so much with the smallest piece of technology.

With the variety of languages to choose from Python was chosen for its easily teachable

properties. Like vocal languages learning a language takes time and practice to understand its

nuances, except this relies on understanding the writing structure of the program. Python and all

other languages read the program line by line and interpret that code into actions. An example of

this format would be this counter code here:

 # Store input numbers

 num1 = input('Enter first number: ')

 num2 = input('Enter second number: ')

 # Add two numbers

 sum = float(num1) + float(num2)

 # Display the sum

 print('The sum of {0} and {1} is {2}'.format(num1, num2, sum))

 78

This code follows a certain format that python reads step by step, taking in the variables

and any pre-programmed commands and then interprets the information. Python reads the lines

[;based off of the indents in the lines and the order in which they happen. For example all of the

code in the above example start on the complete left side of the document. Indents in the code

would tell python that there are no Loops or groups of code that need to be executed. Each line

has functions and variables that do different things depending on what you type in. for now the

main things that will be focused on are Variables and Built in Functions.

Variables, just like in mathematics and science, are changeable elements that could be

used to instruct the rest of the code with what to do. The variables in python follow this format:

Name = function(data)

The variable in this line is the “Name”. The equal sign defines the name as the result of the

functions that you input. This makes it easier to link together multiple functions to get an end

result. Now a Function is just the name of a procedure that the computer will run. Each function

does something different; from adding up a list of numbers, to assembling a list of words

beginning with the letter “h”. Each function has its use but each follows a simple structure of the

function followed by “()”. The data inside along with the function will dictate the results of the

computation. These modules will use multiple modules so the following list will define what

each function does:

abs() Return the absolute value of a number.

all() Return True if all elements of the iterable are

true (or if the iterable is empty).

any() Return True if any element of the iterable is

 79

true. If the iterable is empty, return False.

ascii() Return a string containing a printable

representation of an object, but escape the

non-ASCII characters.

bin() Convert an integer number to a binary

string.

bool() Convert a value to a Boolean.

bytearray() Return a new array of bytes.

bytes() Return a new "bytes" object.

callable() Return True if the object argument appears

callable, False if not.

chr() Return the string representing a character.

classmethod() Return a class method for the function.

compile() Compile the source into a code or AST

object.

complex() Create a complex number or convert a

string or number to a complex number.

delattr() Deletes the named attribute of an object.

dict() Create a new dictionary.

dir() Return the list of names in the current local

scope.

divmod() Return a pair of numbers consisting of

quotient and remainder when using integer

division.

 80

enumerate() Return an enumerate object.

eval() The argument is parsed and evaluated as a

Python expression.

exec() Dynamic execution of Python code.

filter() Construct an iterator from elements of

iterable for which function returns true.

float() Convert a string or a number to floating

point.

format() Convert a value to a "formatted"

representation.

frozenset() Return a new frozenset object.

getattr() Return the value of the named attribute of

an object.

globals() Return a dictionary representing the current

global symbol table.

hasattr() Return True if the name is one of the object's

attributes.

hash() Return the hash value of the object.

help() Invoke the built-in help system.

hex() Convert an integer number to a hexadecimal

string.

id() Return the "identity" of an object.

input() Reads a line from input, converts it to a

string (stripping a trailing newline), and

returns that.

 81

int() Convert a number or string to an integer.

isinstance() Return True if the object argument is an

instance.

issubclass() Return True if class is a subclass.

iter() Return an iterator object.

len() Return the length (the number of items) of

an object.

list() Return a list.

locals() Update and return a dictionary representing

the current local symbol table.

map() Return an iterator that applies function to

every item of iterable, yielding the results.

max() Return the largest item in an iterable.

memoryview() Return a "memory view" object created

from the given argument.

min() Return the smallest item in an iterable.

next() Retrieve the next item from the iterator.

object() Return a new featureless object.

oct() Convert an integer number to an octal

string.

open() Open file and return a corresponding file

object.

ord() Return an integer representing the Unicode.

 82

pow() Return power raised to a number.

print() Print objects to the stream.

property() Return a property attribute.

range() Return an iterable sequence.

repr() Return a string containing a printable

representation of an object.

reversed() Return a reverse iterator.

round() Return the rounded floating point value.

set() Return a new set object.

setattr() Assigns the value to the attribute.

slice() Return a slice object.

sorted() Return a new sorted list.

staticmethod() Return a static method for function.

str() Return a str version of object.

sum() Sums the items of an iterable from left to

right and returns the total.

super() Return a proxy object that delegates method

calls to a parent or sibling class.

tuple() Return a tuple

type() Return the type of an object.

vars() Return the __dict__ attribute for a module,

class, instance, or any other object.

 83

zip() Make an iterator that aggregates elements

from each of the iterables.

__import__() This function is invoked by the import

statement.

 The sample code for this module will go as follows with some added explanation:

● import RPi.GPIO as GPIO

This first line tells the Python interpreter that it will be using a ‘library’ that will tell it

how to work with the Raspberry Pi’s GPIO pins. A ‘library’ gives a programming language

extra commands that can be used to do something different that it previously did not know how

to do.

● import time

Imports the Time library so that we can pause the script later on.

● GPIO.setmode(GPIO.BCM)

 84

Each pin on the Pi has several different names, so you need to tell the program which

naming convention is to be used.

● GPIO.setwarnings(False)

This tells Python not to print GPIO warning messages to the screen.

● GPIO.setup(18,GPIO.OUT)

This line tells the Python interpreter that pin 18 is going to be used for outputting

information, which means you are going to be able to turn the pin ‘on’ and ‘off’.

● print "LED on"

This line prints some information to the terminal. Telling the program to “print”

something post some text to the interpreter you are using, it is a good way to check if the code is

working as you properly intended if you get the right print back.

● GPIO.output(18,GPIO.HIGH)

This turns the GPIO pin ‘on’. What this actually means is that the pin is made to provide

power of 3.3volts. This is enough to turn the LED in our circuit on.

● time.sleep(1)

Pauses the Python program for 1 second

● print "LED off"

 85

This line prints some information to the terminal.

● GPIO.output(18,GPIO.LOW)

This turns the GPIO pin ‘off’, meaning that the pin is no longer supplying any power.

Appendix Section 2: The Stepper Motor0

 For the Raspberry Pi, you can program the pins and outputs using the coding language

Python. Take note that this code moves the actual motor in a ratio: 1 “step” in the code = 4

“steps” in the motor. The provided Motor has 400 Steps as a full rotation. So further calculations

should incorporate this fact. The following code will be broken up as the functions are explained

further and what the lines mean.

 import RPi.GPIO as GPIO

 import time

Within python functions work out of pre-stored data packages called “libraries”. These libraries

need to be called at the beginning of the page of code to use functions from it later

 GPIO.setmode(GPIO.BCM)

The GPIO used in front of these functions is directly programming the Raspberry Pi. This

“setmode” function specifies the numbering system on the Raspberry Pi that the code will follow

to assign the different pins with values for the

 86

 enable_pin = 18

 coil_A_1_pin = 4

 coil_A_2_pin = 17

 coil_B_1_pin = 23

 coil_B_2_pin = 24

Each line corresponds to a different pin on the Raspberry Pi, this labels each pin being used i.e:

pin 4,17,23,24, from the earlier chart of the Raspberry Pi

 GPIO.setup(enable_pin, GPIO.OUT)

 GPIO.setup(coil_A_1_pin, GPIO.OUT)

 GPIO.setup(coil_A_2_pin, GPIO.OUT)

 GPIO.setup(coil_B_1_pin, GPIO.OUT)

 GPIO.setup(coil_B_2_pin, GPIO.OUT)

The “setup” function maps the pins as output-ing pins so that any commands of the pins are put

forth to the breadboard

 GPIO.output(enable_pin, 1)

 def forward(delay, steps):

The function Def (short for define) creates a new function that you can create yourself. The

format for this is:

def name(variable1,variable2):

 Step 1

 Step 2

Naming the function allows you to call upon it when you execute the code, it can hold multiple

variables that you may also name that will be used in the equations and executables inside of the

new function. For example the previous code “forward” holds the numerical variables “delay”

and “steps” which are used inside the function. Be sure to indent any code after the def code line

 87

to signal that those functions are within that loop. The indented code pieces are marked by the

hollow circles below

 “def” loop.

 for i in range(0, steps):

o setStep(1, 0, 1, 0)

o time.sleep(delay)

o setStep(0, 1, 1, 0)

o time.sleep(delay)

o setStep(0, 1, 0, 1)

o time.sleep(delay)

o setStep(1, 0, 0, 1)

o time.sleep(delay)

 def backwards(delay, steps):

 for i in range(0, steps):

o setStep(1, 0, 0, 1)

o time.sleep(delay)

o setStep(0, 1, 0, 1)

o time.sleep(delay)

o setStep(0, 1, 1, 0)

o time.sleep(delay)

o setStep(1, 0, 1, 0)

o time.sleep(delay)

 def setStep(w1, w2, w3, w4):

o GPIO.output(coil_A_1_pin, w1)

o GPIO.output(coil_A_2_pin, w2)

o GPIO.output(coil_B_1_pin, w3)

o GPIO.output(coil_B_2_pin, w4)

 while True:

o delay = raw_input("Delay between steps (milliseconds)?")

o steps = raw_input("How many steps forward? ")

o forward(int(delay) / 1000.0, int(steps))

o steps = raw_input("How many steps backwards? ")

o backwards(int(delay) / 1000.0, int(steps))

 88

 This experiment will test out the accuracy of the Stepper motor by utilizing a pulley

system to test the motor’s positioning capabilities. The testing should be simple assembly with

some trial and error. Using the platform provided, a shaft,the wheel and a piece of string, a

rudimentary pulley system will be assembled to attach to the motor. The assembly instructions

goes as such:

Appendix Section 3: The Servo Motor

The servo motor will use the same Python language so some of the functions will be similar to

the stepper motor code but there are some new functions that will be explained in Red so it will

be easier for you to read and understand. The new function that the servo motor uses is called

pwm. PWM or Pulse Width Modulation is a digital signal that moves the servo motor to a

specific position. The length of the pulse determines the position of the servo. The Servo works

off of “duty cycles” which are measurements of how long the servo motor runs and at what angle

the servo motor stops. After receiving the duty cycle the Raspberry Pi will send a pulse to the

servo to move it however much the duty cycle dictates.

 import RPi ## Import GPIO Library.

 import time ## Import ‘time’ library for a delay.

These are libraries. similar to the libraries used in the stepper motor code, and these are

completely necessary to operate any new functions that you will see afterwards

 GPIO.setmode(GPIO.BOARD) ## Use BOARD pin numbering.

 89

This line of code allows you to use the same board pin numbering as the picture

schematic given in the stepper motor experiment

 GPIO.setup(22, GPIO.OUT) ## set output.

 pwm=GPIO.PWM(22,100) ## PWM Frequency

 pwm.start(5)

 angle1=10

 duty1= float(angle1)/10 + 2.5 ## Angle To Duty cycle Conversion

 angle2=160

 duty2= float(angle2)/10 + 2.5

 ck=0

 while ck<=5:

 pwm.ChangeDutyCycle(duty1)

 time.sleep(0.8)

 pwm.ChangeDutyCycle(duty2)

 time.sleep(0.8)

 ck=ck+1

 time.sleep(1)

 GPIO.cleanup()

The code given moves the servo motor 180 degrees. The length of the pulse will

determine the position of the servo. The duty cycle is calculated for an angle and the Raspberry

Pi sends the signal every 10 milliseconds. The servo motor will move back and forth between the

2 duty cycles and the 2 angles. For this motor test out changing the second angle to see how far

the rotation can go and how many full 360 rotations you can do.

 90

Appendix Section 4: The DC Motor

 The following code will not include any new functions you have not seen before, but will

make use of the variables Motor 1A, 1B, 1E, and the sleep function to pause the code.

1.import RPi.GPIO as GPIO

2.from time import sleep

3.

4.GPIO.setmode(GPIO.BOARD)

5.

6.Motor1A = 16

7.Motor1B = 18

8.Motor1E = 22

9.

10.GPIO.setup(Motor1A,GPIO.OUT)

11.GPIO.setup(Motor1B,GPIO.OUT)

12.GPIO.setup(Motor1E,GPIO.OUT)

13.

14.print "Turning motor on"

15.GPIO.output(Motor1A,GPIO.HIGH)

16.GPIO.output(Motor1B,GPIO.LOW)

17.GPIO.output(Motor1E,GPIO.HIGH)

18.

19.sleep(2)

20.

21.print "Stopping motor"

22.GPIO.output(Motor1E,GPIO.LOW)

23.

24.GPIO.cleanup()

 With this given script, the Raspberry Pi is ready to turn the motors. It will turn on some

pins, wait two seconds then turn them off again, shown in the remainder of the script. When

using the “NTE1749” you can give the DC motors a direction, by turning one side on to turn in

one direction, called pin A and vice versa is pin B. To turn the motor on use a pin called

“Enable”, labelled E in the test script connected to pin 22. I'll cover this a bit more later. If the

 91

motor didn’t turn, double check your wiring or batteries. Debugging and finding out why

something doesn’t work can be annoying, but is a useful step in learning something new!

Within the code direction is dictated by the words HIGH and LOW, seen after GPIO.

Turning the DC motor a different direction you alter which motors go high or low. The section of

the code you want to focus on is:

14.print "Turning motor on"

15.GPIO.output(Motor1A,GPIO.HIGH)

16.GPIO.output(Motor1B,GPIO.LOW)

17.GPIO.output(Motor1E,GPIO.HIGH)

Switch around the HIGH and LOW and see which setup turns the motor the opposite

direction and save the code for later.

 92

Appendix Section 5: The PIR Motion Sensor

For this sensor you will be using the following example code given:

 import time

 import RPi.GPIO as io

 io.setmode(io.BCM)

 pir_pin = 18

 door_pin = 23 take out door stuff

 io.setup(pir_pin, io.IN) # activate input

 io.setup(door_pin, io.IN, pull_up_down=io.PUD_UP) # activate input with PullUp

 while True:

o if io.input(pir_pin):

o print("PIR ALARM!")

 if io.input(door_pin):

o print("DOOR ALARM!")

 time.sleep(0.5)

 93

Appendix Section 6: The Ultrasound Motion Sensor
The Ultrasound Motion Sensor requires some new code and some calculations that will be

explained section by section. For the Actual input of code into the Python shell just copy and

paste all of the dotted lines into the window, making sure each line is separate.

First, declare the libraries that are being used like the previous code.

 import RPi.GPIO as GPIO

 import time

 GPIO.setmode(GPIO.BCM)

Next, we need to name our input and output pins, so that we can refer to it later in our Python

code. We’ll name our output pin (which triggers the sensor) GPIO 23 [Pin 16] as TRIG, and our

input pin (which reads the return signal from the sensor) GPIO 24 [Pin 18] as ECHO.

 TRIG = 23

 ECHO = 24

We’ll then print a message to let the user know that distance measurement is in progress. . . .

 print "Distance Measurement In Progress"

Next, set your two GPIO ports as either inputs or outputs as defined previously.

 GPIO.setup(TRIG,GPIO.OUT)

 GPIO.setup(ECHO,GPIO.IN)

Then, ensure that the Trigger pin is set low, and give the sensor a second to settle.

 GPIO.output(TRIG, False)

 print "Waiting For Sensor To Settle"

 time.sleep(2)

The HC-SR04 sensor requires a short 10uS pulse to trigger the module, which will cause the

sensor to start the ranging program (8 ultrasound bursts at 40 kHz) in order to obtain an echo

response. So, to create our trigger pulse, we set out trigger pin high for 10uS then set it low

again.

 94

 GPIO.output(TRIG, True)

 time.sleep(0.00001)

 GPIO.output(TRIG, False)

Now that we’ve sent our pulse signal we need to listen to our input pin, which is connected to

ECHO. The sensor sets ECHO to high for the amount of time it takes for the pulse to go and

come back, so our code therefore needs to measure the amount of time that the ECHO pin stays

high. We use the “while” string to ensure that each signal timestamp is recorded in the correct

order.

The time.time() function will record the latest timestamp for a given condition. For example, if a

pin goes from low to high, and we’re recording the low condition using the time.time() function,

the recorded timestamp will be the latest time at which that pin was low.

Our first step must therefore be to record the last low timestamp for ECHO (pulse_start) e.g. just

before the return signal is received and the pin goes high.

 while GPIO.input(ECHO)==0:

o pulse_start = time.time()

Once a signal is received, the value changes from low (0) to high (1), and the signal will remain

high for the duration of the echo pulse. We therefore also need the last high timestamp for ECHO

(pulse_end).

 while GPIO.input(ECHO)==1:

o pulse_end = time.time()

We can now calculate the difference between the two recorded timestamps, and hence the

duration of pulse (pulse_duration).

 pulse_duration = pulse_end - pulse_start

With the time it takes for the signal to travel to an object and back again, we can calculate the

distance using the following formula.

 95

The speed of sound is variable, depending on what medium it’s travelling through, in addition to

the temperature of that medium. However, some clever physicists have calculated the speed of

sound at sea level so we’ll take our baseline as the 343m/s. If you’re trying to measure distance

through water, this is where you’re falling down – make sure you’re using the right speed of

sound!

We also need to divide our time by two because what we’ve calculated above is actually the time

it takes for the ultrasonic pulse to travel the distance to the object and back again. We simply

want the distance to the object! We can simplify the calculation to be completed in our Python

script as follows:

We can plug this calculation into our Python script:

 distance = pulse_duration x 17150

Now we need to round our distance to 2 decimal places (for neatness!)

 distance = round(distance, 2)

 96

Then, we print the distance. The below command will print the word “Distance:” followed by the

distance variable, followed by the unit “cm”

 print "Distance:",distance,"cm"

Finally, we clean our GPIO pins to ensure that all inputs/outputs are reset

