
Project Code: FJL-CIT2

Automated GPS Mapping of Road Roughness

A Major Qualifying Project Report

submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

Project Team: Advisors:

 Carlton Stedman II Fred Looft, PhD
 sageman@wpi.edu fjlooft@ece.wpi.edu

 Andrew DeMarco Fabio Carrera, PhD
 ademarco@wpi.edu carrera@wpi.edu

1 June 2007

This document represents the work of WPI students. The opinions expressed in this report are
not necessarily those of the Worcester Polytechnic Institute.

mailto:mplanka@wpi.edu
mailto:fjlooft@wpi.edu
mailto:branded@wpi.edu
mailto:carrera@wpi.edu

ABSTRACT

Many roads across the United States are in poor condition, which can lead to unnecessary
accidents and repair costs. In order to alleviate these problems, our group built a second generation road
roughness detector that could identify these troubled roads. With the aid of GPS and a mapping program,
city officials would now be able to keep track of the condition of their roads. Through examining the first
generation design and researching applicable topics, our team created a more compact product that was
easy to use.

 2

TABLE OF CONTENTS

ABSTRACT... 2
1 INTRODUCTION... 9

1.1 Report Summary... 10
2 BACKGROUND .. 11

2.1 Current Methods of Measuring Road Roughness... 11
2.1.1 Profilograph .. 11
2.1.2 Response-Type Road Roughness Measuring System... 12
2.1.3 Road Roughness Profiling Device... 13
2.1.4 Multi-Laser Profiler .. 14
2.1.5 Road Roughness Indices.. 14

2.2 Past WPI Road Roughness Projects ... 17
2.3 Accelerometer Basics ... 17

2.3.1 Introduction to accelerometers ... 18
2.3.2 Accelerometer theory of operation.. 18
2.3.3 Accelerometer characteristics ... 19
2.3.4 Accelerometer applications ... 20
2.3.5 Accelerometer summary .. 21

2.4 GPS Basics ... 21
2.4.1 GPS Signals... 22
2.4.2 Triangulation... 22
2.4.3 GPS Inaccuracies .. 22
2.4.4 Techniques to Improve Accuracy .. 23
2.4.5 GPS Summary ... 23

2.5 Background Summary .. 24
3 METHODS ... 25

3.1 Specifications.. 25
3.2 Process .. 26
3.3 Summary... 26

4 SYSTEM DESIGN ... 28
4.1 Power Module... 28

4.1.1 Power Module Requirements .. 30
4.1.2 Power Module Circuit Description ... 30
4.1.3 Power Module Testing .. 36

4.2 Accelerometer Module ... 38
4.2.1 Accelerometer Requirements... 39
4.2.2 Accelerometer Selection .. 39
4.2.3 Accelerometer Circuit Description ... 43
4.2.4 Accelerometer Testing ... 44

4.3 GPS Module ... 52
4.3.1 GPS Module Requirements ... 52
4.3.2 GPS Module Selection... 52
4.3.3 GPS Module Circuit Description .. 56
4.3.4 GPS Module Testing.. 56

4.4 Microcontroller Module ... 57
4.4.1 Microcontroller Requirements .. 58
4.4.2 Microcontroller Selection ... 59
4.4.3 Microcontroller Circuit Description ... 60

 3

4.4.4 Microcontroller Testing .. 63
4.5 Memory Module ... 64

4.5.1 Memory Requirements... 66
4.5.2 Memory Selection .. 67
4.5.4 Memory Circuit Description ... 67
4.5.5 Memory Testing... 68

4.6 USB Interface Module.. 69
4.6.1 USB Module Requirements ... 70
4.6.2 USB Module Selection... 71
4.6.3 USB Module Circuit Description .. 72
4.6.5 USB Module Testing.. 72

4.7 LCD Module... 73
4.7.1 LCD Module Requirements ... 76
4.7.2 LCD Module Selection .. 76
4.7.3 LCD Module Circuit Description.. 78
4.7.4 LCD Module Testing ... 79

4.8 Summary... 79
5 SOFTWARE DESIGN .. 80

5.1 Data Structures ... 80
5.1.1 IOdevice .. 80
5.1.2 IObuffer ... 81
5.1.3 IOstate ... 81
5.1.4 IOport .. 82
5.1.5 AXLint ... 82
5.1.6 AXLaxis ... 82
5.1.7 AXL3.. 82
5.1.8 Timer ... 82
5.1.9 TimerStatus ... 83

5.2 Libraries and APIs .. 83
5.2.1 Accelerometer.. 83
5.2.2 DIP Switch .. 84
5.2.3 GPS ... 84
5.2.4 LCD ... 85
5.2.5 Memory ... 88
5.2.6 Timer ... 90
5.2.7 USART... 92
5.2.8 USB ... 92

5.3 Operating Modes .. 93
5.3.1 Datalog Mode.. 94
5.3.2 Delete Mode .. 95
5.3.3 Download Mode .. 95

5.4 MATLAB Code to Create .kml File ... 96
5.5 Summary... 96

6 SYSTEM INTEGRATION AND TESTING .. 97
6.1 Soldered Prototype ... 97
6.3 PCB... 100
6.3 Enclosure .. 104
6.4 Run Time Analysis ... 104
6.4 Google Earth Test ... 106
6.5 Summary... 107

7 CONCLUSIONS AND RECOMMENDATIONS .. 108

 4

7.1 Summary of Project Design.. 108
7.2 Future Recommendations ... 109
7.3 Conclusions .. 109

8 REFERENCES... 110
8.1 Works Cited.. 110
8.2 Datasheets... 113

APPENDIX A: SCHEMATICS ... 114
APPENDIX B: MATLAB CODE TO CREATE .KML FILE ... 117
APPENDIX C: “C” CODE .. 126

 5

TABLE OF FIGURES

Figure 1: Profile of Road Surface (Sayers, page 2) .. 11
Figure 2: Sketches of California Profilograph and Rainhart Profilograph (Budras, para. 10).................... 12
Figure 3: A Car with a Mays Meter (Budras, para. 16) .. 13
Figure 4: A Van Equipped with an Inertial Profilometer (Sayers, page 6) ... 13
Figure 5: Multi-Laser Profiler Vehicle (Budras, para. 26).. 14
Figure 6: Determining the Profile Index from a Profile (Achieving, para. 15)... 15
Figure 7: Quarter Car Model (Achieving, para. 17).. 16
Figure 8: Graph of IRI Ranges (Sayers, page 48)... 16
Figure 9: Pothole Detector (Angelini, page 40) .. 17
Figure 10: Analog Devices MEMS Accelerometer Implementation (Accelerometer Design, page 1) 19
Figure 11: Satellite Positions (How GPS Receivers Work, para. 5) ... 22
Figure 12: Inaccuracies in Sphere Sizes (GPS, para. 5).. 23
Figure 13: Component Design Block.. 26
Figure 14: Process Block Diagram ... 27
Figure 15: System Block Diagram.. 28
Figure 16: Power Module ... 28
Figure 17: Battery Charger Circuit ... 31
Figure 18: Input Power Circuit ... 32
Figure 19: Source Chooser Circuit.. 34
Figure 20: LDO Schematic ... 35
Figure 21: Charge Pump Regulator Schematic... 36
Figure 22: Testing the Charger Circuit ... 37
Figure 23: Battery Discharge Curve ... 38
Figure 24: Accelerometer Module .. 38
Figure 25: Accelerometer Circuit ... 43
Figure 26: Accelerometer Breakout Board (Triple Axis, page 1)... 44
Figure 27: Bode Plot for Low Pass Filter ... 45
Figure 28: Bode Plot for Voltage Follower .. 46
Figure 29: Bode Plot for Total Design.. 47
Figure 30: Soldered Accelerometer Circuit .. 47
Figure 31: Accelerometer, X,- +1g ... 50
Figure 32: Accelerometer, X, -1g ... 50
Figure 33: Accelerometer, Y, +1g .. 51
Figure 34: Accelerometer, Y, -1g ... 51
Figure 35: Accelerometer, Z, shaken .. 51
Figure 36: Accelerometer, Z, -1g.. 51
Figure 37: Lassen iQ GPS Module (Lassen iQ GPS, page 23)... 56
Figure 38: GPS Module Circuit .. 56
Figure 39: Lassen iQ Evaluation Board (Lassen iQ Evaluation, page 1) ... 57
Figure 40: Microcontroller Source Schematic .. 60
Figure 41: Microcontroller Schematic .. 61
Figure 42: Alcoswitch FSMJSMA Push Button (Tact Switches, page 1) .. 62
Figure 43: 6mm Crystal (Crystal, page 1)... 62
Figure 44: HC49/S Crystal (Quarts Crystals, page 1)... 62
Figure 45: Microcontroller DIP Switch Schematic... 63
Figure 46: A6H-4101 DIP Switch .. 63
Figure 47: GDS04 DIP Switch ... 63

 6

Figure 48: In-Circuit Debugging in IAR Embedded Workbench... 64
Figure 49: Memory Module Block Diagram .. 65
Figure 50: Memory Circuit Schematic.. 67
Figure 51: M25P64 SO16-wide Packaging (M25P64, page 1)... 68
Figure 52: Memory Testing - "Flash_Success" .. 69
Figure 53: USB Module Block Diagram .. 70
Figure 54: 4D Systems CP2102-microUSB Module (Micro-USB Module, page 1).................................. 71
Figure 55: USB-UART Bridge Circuit ... 72
Figure 56: Testing Results of USB Module.. 73
Figure 57: LCD Module Block Diagram .. 75
Figure 58: CFAH0802A-YMI-JP LCD Module... 78
Figure 59: CFAH1602A-YYH-JP LCD Module .. 78
Figure 60: LCD Circuitry Schematic .. 78
Figure 61: PV37P Potentiometer (Trimmer, page 4) .. 79
Figure 62: LCD Module Testing Results .. 79
Figure 63: LCD Initialization (4-bit) (CFAH1602A-YYH-JP, page 17).. 86
Figure 64: Operation mode general structure.. 94
Figure 65: Sparkfun CP2102 Module ... 97
Figure 66: Sparkfun MSP430F169 Breakout Board... 97
Figure 67: GPS Connector for Prototype.. 98
Figure 68: Image of Completed Prototype (Top View) .. 99
Figure 69: Image of Completed Prototype (Side View) ... 99
Figure 70: Second PCB Revision.. 102
Figure 71: Assembled PCB inside Enclosure ... 103
Figure 72: Test Setup for PCB.. 103
Figure 73: Google Earth Sample... 107

 7

TABLE OF TABLES

Table 1: Reference "g" Points ... 18
Table 2: Key Features of Analog Devices MEMS Accelerometers (iMEMS, para. 3) 20
Table 3: Accelerometer Selection Analysis .. 42
Table 4: Actual Output Voltages (Rotate Around X Axis)... 48
Table 5: Adjusted Output Voltages (Rotate Around X Axis) ... 48
Table 6: Actual Output Voltages (Rotate Around Y Axis)... 49
Table 7: Adjusted Output Voltages (Rotate Around Y Axis) ... 49
Table 8: Actual Output Voltages (Rotate Around Z Axis) ... 49
Table 9: Adjusted Output Voltages (Rotate Around Z Axis) ... 50
Table 10: GPS Module Selection Analysis... 55
Table 11: Microcontroller Module Selection.. 60
Table 12: Memory Module Symbol Description .. 66
Table 13: USB Module Symbol Description .. 70
Table 14: LCD Module Selection ... 74
Table 15: LCD Module Symbol Description.. 75
Table 16: LCD Commands (CFAH1602A-YYH-JP, page 13) .. 87
Table 17: Currents for Normal Mode ... 104
Table 18: Currents for Standby Mode... 105

 8

1 INTRODUCTION

 According to TRIP, a nonprofit organization that promotes transportation policies, thirty-five
percent of major roads in the United States are in “poor to mediocre condition” and that millions of
Americans are affected by these conditions every day (Key Facts, page 2). One particular impact is that
many motorists have to pay for vehicle repairs due to damage caused by rough roads. Even worse, the
substandard conditions of roads have been shown to result in unsafe conditions for drivers, often playing
a primary role in traffic related accidents and deaths.
 A paper published by TRIP claims that motorists throughout the nation pay an extra fifty-four
billion dollars a year in vehicle repairs, due to driving on roads which have not been properly maintained
(Key Facts, page 1). This is, on average, roughly 275 dollars per motorist. In urban areas, motorists are
paying even more, approximately 401 dollars (Rough Ride Ahead, page 2). The TRIP paper also noted
that traffic congestion due to accidents caused by poor road conditions cost American motorists 63.1
billion dollars in wasted time and fuel. Vehicle crashes cost drivers 230 billion dollars a year, which
includes medical costs, insurance costs, legal costs, and workplace costs (Key Facts, page 1).
 The worst problem concerning the condition of roads is the possible danger imposed on
motorists. In the same TRIP paper mentioned above, it was determined that in approximately one out of
every three traffic related fatalities, roadway conditions played a significant role. In 2004, over fourteen
thousand deaths resulted largely due to roads that had not been maintained (Key Facts, page 2). With
appropriate road improvements, traffic fatalities and accidents can be significantly reduced. According to
the Federal Highway Administration, 100 million dollars spent on these improvements will save 145 lives
over a ten year period (Key Facts, page 2).

The number of roads in poor condition has grown each year since 1998. In particular, urban
environments have some of the worst road conditions in the country. Many major cities aim to maintain
seventy-five percent of its roads in good condition. However, only thirteen of the nation’s urban areas
with a population of 500,000 or more have at least fifty percent of their roads maintained in fair or better
condition (Rough Ride in the City, page 2). As an example, forty-nine percent of the roads in Boston are
considered to be in substandard condition (Rough Ride Ahead, page 2). With significant increases in
traffic expected in the future, it is almost certain that road conditions will continue to deteriorate if
nothing is done.
 Even though poor road conditions are a major problem, the ability of cities to find problem areas
in their roads is not well developed. Many municipalities, such as those throughout Massachusetts, rely
on motorists to report problems in the roads, for instance potholes. These cities need to be able to easily
and inexpensively determine the condition of their roads. This requires measuring the roughness of a road
and coordinating the reading with a geographical location.
 The goal of our project was to design an inexpensive, small, low power, and autonomous system
that logs data for road roughness measurements, which are coordinated with geographical locations. The
device can be placed inside any type of municipal vehicle without being obstructive. It continually
monitors the road condition as the vehicle drives. After the system records data, it is plugged into a
computer and the data is uploaded. This data is overlaid onto a map which shows where rough spots in
the road are located and how relatively rough they are.

 9

1.1 Report Summary
 This introduction has provided an overview of the state and implications of the road roughness
problem. Additionally, it has been described how our project provides a solution to this problem. The
report will continue on into a background section, providing an understanding of the history of the road
condition problem, as well as other important related areas. A problem statement section will then follow,
describing the goals, objectives, and tasks of the project, in addition to providing a schedule. Next, in a
methodology section, an approach to accomplishing our project will be described. A system design
section will then present detailed descriptions of how our system works, followed by results. A
conclusion section to this report provides an overall summary and analysis of the project work.

 10

2 BACKGROUND

 In the section, background material will be presented to help further understand the problem of
rough roads in the United States. It will detail how cities across the nation currently measure the
roughness of roads and the problems that go along with these methods. Our project will improve upon
these methods to make it easier and more efficient to determine which roads need to be fixed before
serious damage occurs. The theory of how the project operates will also be discussed in this section.

2.1 Current Methods of Measuring Road Roughness
 In order for cities to improve their rough roads, it needs to be determined which roads actually
need to be fixed. One simple method is for people to call and complain about rough roads in their area. A
more useful method is physically determining the roughness of the road. There are various pieces of
equipment used in measuring the roughness of pavement.

2.1.1 Profilograph
One device is a profilograph, which is used to measure the longitudinal profile of the pavement.

A profile is a two dimensional slice of the road surface, taken along a continuous imaginary line. This
profile shows the roughness and texture of the road (Sayers, page 2). Figure 1 shows an example of a road
profile.

Figure 1: Profile of Road Surface (Sayers, page 2)

 Profilographs come in a variety of forms with different number of wheels. They are manually
operated by moving the device across the road at walking speed. There are two major types of
profilographs. The first is known as the California type profilograph. It consists of four to twelve wheels
that are attached to the ends of a 25 foot truss, as well as wheels at the centerline of the truss. The other
model is known as the Rainhart profilograph. This particular type is similar to the California profilograph.
The main difference is that this type uses twelve wheels arranged in four groups of three. This
arrangement allows for twelve longitudinal profiles at once as opposed to only three, as with the
California type (Budras, para. 6). These two types are shown below in Figure 2.

 11

Figure 2: Sketches of California Profilograph and Rainhart Profilograph (Budras, para. 10)

There are many problems with this method of determining road roughness. One problem is the

device is quite large. It is 25 feet long and a challenge to maneuver. Another problem is the device is
unusable for large stretches of roads. Since the device must be manually operated, only a small section of
road can be analyzed at a time.

2.1.2 Response-Type Road Roughness Measuring System
 Another piece of equipment used to measure the roughness of pavement is response-type road
roughness measuring system (RTRRMS). This device determines road roughness by measuring the
response of a vehicle to the road texture. Unlike profilographs, this device can operate at highway speeds.
The most commonly used version of the RTRRMS is the Mays Ride Meter. A diagram of the Mays meter
can be found in Figure 3. This meter measures the space between the attached axle housing and the car
itself. It consists of a transducer, a distance measuring instrument, and a pavement condition recorder.
The transducer is used in this system to convert the movement into an electrical signal. The recorder
processes information received from the transducer, the keyboard, and the distance measuring instrument,
which acts like an electronic odometer. The output of this meter is relative motion (in inches) over a
distance (Budras, para. 10).

 12

Figure 3: A Car with a Mays Meter (Budras, para. 16)

 There are some problems associated with this type of device. One problem is that the road profile
is not being directly measured. The vehicle response to the road is being measured. This measurement is
not reliable because of its dependence on the vehicle. One vehicle could be different from another.
Another problem is the processing is done all inside the vehicle. This takes up at lot of room in the
vehicle and requires another person to control the meter.

2.1.3 Road Roughness Profiling Device
 A third device used to measure road roughness is known as a road roughness profiling device,
which measures the longitudinal profile of the road. An inertial profilometer is a commonly used profiling
device in the United States. A diagram of the inertial profilometer is located below in Figure 4 (Budras,
para. 16). This particular profilometer uses an accelerometer to create an inertial reference that defines the
height of the accelerometer located on the vehicle. A height sensor is used to determine the height to the
pavement surface from the vehicle. A laser is most commonly used for the height sensor. This height and
the reference level are used to measure and compute the longitudinal profile of the pavement (Achieving,
para. 10). The processing is done on a computer located inside the vehicle. The computations are
performed in real time as the vehicle is moving. It can operate at speeds between 10 and 70 miles per
hour.

Figure 4: A Van Equipped with an Inertial Profilometer (Sayers, page 6)

 13

 As with the previous devices, the inertial profilometer has certain drawbacks. One potential
problem is the laser used in the height sensor. Since road surfaces present many dynamically-changing
targets including tarmac, concrete, yellow striping, and white striping, the distance provided by the laser
might not be that accurate (Laser, para. 1). Another problem is size. In order to process the data, a
computer needs to be installed inside the vehicle. This wastes space and requires an additional person to
operate.
 There are also non-contact lightweight profiling devices used to determine the roughness of the
road. They are similar to the previous profiling devices, but are much smaller and lighter. However, these
devices can only operate at speeds between 8 and 25 miles per hour (Budras, para. 24).

2.1.4 Multi-Laser Profiler
 A fourth piece of equipment used to measure the roughness of pavement is the Multi-Laser
Profiler (MLP). Figure 5 shows a vehicle that contains the MLP system. This system measures
longitudinal profiles of the road surface by using lasers. It is useful for monitoring large amounts of roads
(370 miles) and works well at highway speeds (18 to 75 miles per hour). The MLP comes with a
computer system that handles data acquisition and analysis. This system also offers additional features,
such as GPS, digital mapping system, and defect logging, which logs the road defects while driving
(Budras, para. 25).

Figure 5: Multi-Laser Profiler Vehicle (Budras, para. 26)

 One drawback to the MLP system is it requires a two person operation. One person must drive,
while the other takes care of the computer. Another problem with this device is the price. It is very
expensive, with an approximate cost of $75,000 (Budras, para. 25).

2.1.5 Road Roughness Indices
 All the above devices will measure a longitudinal profile of the road. A profile measurement is a
series of numbers that represent elevation relative to a reference. The data will then need to be analyzed to
relate it to road roughness. The most common way to interpret these profiles is to reduce them down to
summary roughness indices. Since there is no set standard, there are various procedures to reduce the

 14

profiles.
 One index used is known as a profile index. It is a number that is calculated from the numbers of
the profile. The first step in reducing these values is creating an outline trace. This step averages out any
spikes and other inconsistent data. These deviations are often caused by dirt, rocks, or grooves in the road.
The next step in reducing the profile data is adding a blanking band. This band, often 5 mm wide, is
placed on the trace to cover as much as the profile as possible. The remaining data above and below the
blanking band will be balanced. This step removes any minor changes in the road smoothness (minimal
roughness) (Achieving, para. 15).
 The remaining profile data is used to determine the profile index. Figure 6 shows the profile
index determination method for a particular stretch of road. The heights of the deviations above and
below the blanking band are measured in millimeters and totaled. The deviations are only counted if they
measure more than 0.6 mm and maintain this minimum for more than 0.6 m on the road. The sum of
heights in a particular section is the profile index for that segment. The index is in units of mm/km
(Achieving, para. 15).

Figure 6: Determining the Profile Index from a Profile (Achieving, para. 15)

 Another example of an index used is the International Roughness Index (IRI). The IRI is
determined by a mathematical model known as the quarter car model. The model is simulated on the
measured profile to calculate the suspension deflection of a mechanical system similar to that of a car
(Sayers, page 45). This simulation set up can be seen in Figure 7.

 15

Figure 7: Quarter Car Model (Achieving, para. 17)

The totaled data from this simulation is divided by the distance traveled by the system during the

measurement. This calculated value is used as the IRI. The units of the IRI are m/km or mm/m. Figure 8
shows IRI ranges of various roughnesses of roads (Sayers, page 45).

Figure 8: Graph of IRI Ranges (Sayers, page 48)

 16

2.2 Past WPI Road Roughness Projects
This road roughness project has already been examined at WPI. A previous team had designed a

device that could determine when the vehicle hit a pothole. Their design is shown below in Figure 9. This
was achieved by using an accelerometer and a peak detector circuit. Whenever the accelerometer
outputted a voltage above a certain threshold voltage, this data was saved to an onboard memory card. In
addition to the accelerometer reading, the location of the pothole was saved into memory. A GPS module
was used to determine the location. After the data was collected, it was uploaded to a mapping program.
For each GPS location, a colored dot was placed on a map of the area driven. The color represented the
severity of the pothole. With this map, cites could easily determine where potholes were located, and
decide if they needed to be repaired.

Figure 9: Pothole Detector (Angelini, page 40)

There were some drawbacks to this project. One problem was power. Since the device used a

substantial amount of power, it had to be plugged into the cigarette lighter outlet to provide power. This
limits the number of locations in the vehicle where the device can be placed. Another problem was the
accelerometer had to be placed outside the vehicle to achieve accurate readings. The long wire needed to
connect the accelerometer to the device unit is undesirable. This designed could be improved upon in
several areas, such as power and size.

2.3 Accelerometer Basics
 Defined, acceleration is the change of velocity in respect to time. Often, when describing the
force exerted due to acceleration, the “g” is used as a unit of measurement. As a unit, a “g” is equal to the
sea level gravity of the Earth, approximately 32.2 ft/s2 or 9.81 m/s2. Thus, the inherent acceleration
experienced due to the gravitational field of the Earth is simply one g. In fact, rarely does an individual
experience more than two g’s of acceleration, and at seven times the acceleration of gravity a person will
typically fall unconscious. Some reference levels for different g values are displayed in the table below.

 17

Table 1: Reference "g" Points

 A key note concerning acceleration is that it is a vector. Relative to a given axis, an acceleration
has both a magnitude and a direction. Acceleration can therefore have negative values, where the sign
simply indicates the direction of the acceleration. Due to being a vector, acceleration can be used to find
the angle of tilt with respect to a given axis. Additionally, the change in acceleration can be used to
determine how an object is moving. The former concerns static acceleration, while the latter pertains to
dynamic acceleration. The acceleration vector can be used to measure tilt and analyze object movement.

2.3.1 Introduction to Accelerometers
 The accelerometer is an electromechanical device which is designed to measure acceleration.
Accelerometers can be constructed in a number of ways, making use of different phenomena and
electrical effects. Due to the distinctions in accelerometer design, there are variable characteristics for
accelerometers. There are many applications for accelerometers, including tilt sensors, vibration sensors
and inputs to control systems. A multitude of designs, characteristics and applications exist for
accelerometers.

2.3.2 Accelerometer Theory of Operation
 Accelerometers can be constructed in many different ways, exploiting different electrical effects.
In the past, accelerometers were designed mostly using piezoelectric properties of materials. Now, with
the advent of MEMS technology, different, smaller accelerometers are being designed. Different
construction techniques, pertaining to piezoelectric and variable capacitance effects are the primary types
of designs for accelerometers.

Earlier accelerometers were designed based on the piezoelectric effect. These devices contained
piezoelectric materials which, when stressed by acceleration forces, causes a voltage to be generated. By
measuring this voltage, the acceleration can be obtained. Other designs are based on the piezoresistive
effect, which is similar, with the resistance of the material changing as stress is applied via acceleration
forces. Piezoelectric and piezoresistive effects have been used to design accelerometers.

A more recent design used in microelectromechanical systems (MEMS) concerns changing the
capacitance of a material within the accelerometer. As a MEMS device, the accelerometer typically
consists of a cantilever “proof mass” beam and some fixed plates. In a typical micromachined

 18

accelerometer, the proof mass is on the order of 0.1 micrograms. The beam has a conductor which can
move between the fixed plates to vary the capacitance. As a mechanical stress is applied via acceleration
forces, the beam moves between the fixed plates and the capacitance is varied. An example of this
implementation is that of Analog Devices, as pictured below.

Figure 10: Analog Devices MEMS Accelerometer Implementation (Accelerometer Design, page 1)

 The “fixed outer plates” seen in the figure above are set to create a differential capacitor. This
differential capacitor measures the deflection induced by an applied acceleration. The changing
capacitance varies the voltage output, a signal proportional to acceleration. In the case of an analog
accelerometer, the amplitude of the output voltage signal is proportional to acceleration. The MEMS
surface mount accelerometers are tiny compared to the larger piezoelectric accelerometers of the past,
making use of a variable capacitor to measure the acceleration applied.

2.3.3 Accelerometer Characteristics
 Many different characteristics differentiate the varied selection of accelerometers on the market.
Both analog and digital accelerometers are developed, for different application integration. The number of
axes, swing, sensitivity and bandwidth of accelerometers are primary characteristics. Additionally, as
lower power applications are becoming more and more prevalent, accelerometers which operate on lower
voltages and consume less current are becoming available.
 One of the first decisions, when integrating accelerometers into a design, is often the choice
between analog and digital. With digital outputs, typically a pulse width modulated output varies
frequency and voltage high time to be proportional with acceleration. An analog outputting
accelerometer, however, simply changes the amplitude of the output signal, proportional to acceleration.
In general, it can be easier to work with an analog accelerometer if an analog to digital converter (ADC)
is available. Otherwise, a digital accelerometer is necessary, which can bring along heavy computations is
a PWM input is not available and a general purpose digital input must be used. The choice between
analog and digital accelerometers is largely mitigated by the hardware available, with analog
accelerometers typically considered easier to work with, if hardware permits.
 Many characteristics of accelerometers depend on the application. These include number of axes,
swing, sensitivity and bandwidth. Accelerometers can be single-, dual- or triple-axis, providing one, two

 19

or three dimensions of measurement, respectively. Swing refers to the range of the acceleration that can
be measured, with low-g accelerometers typically measuring ±1 to ±10 g’s or more, and high-g
accelerometers measuring up to ±100 g’s or more. The sensitivity is a measurement of a change in the
output signal, based on a given change in acceleration; generally, a higher sensitivity is better, since it can
be easier to measure and allows for more precise readings. A measurement of how frequently a reliable
reading from the accelerometer can be taken, bandwidth requirements can range from less than 20 Hz to
several hundred. The number of axes, swing, sensitivity and bandwidth requirements vary from
application to application.
 As low power applications are growing in number, many accelerometers are designed for
different levels of power consumption. Although some applications do not worry as much about power
consumption, other applications, such as battery-operated devices, can make use of low voltage
accelerometers. There are accelerometers designed to run at three volts or less. Additionally, current draw
is important in lowering power consumption. Many newer accelerometers have current consumption on
the order of hundreds of microamps or less. There are many new accelerometers designed to be optimal in
low power applications where low voltage and current consumption are key.
 Below is an abbreviated listing of some features for a selection of Analog Devices MEMS
accelerometers.

Table 2: Key Features of Analog Devices MEMS Accelerometers (iMEMS, para. 3)

 As seen in the previous figure, there are many characteristics associated with accelerometers.
These include the choice between analog and digital, characteristics such as number of axes, swing
(range), sensitivity and bandwidth, as well as power requirements.

2.3.4 Accelerometer Applications
There are many applications for accelerometers, ranging from tilt and vibration sensors, to

dynamic measurement for use in a control system. The applications are based on the fact that acceleration
is a vector and the accelerometer measures acceleration relative to its own “axis of sensitivity”. The
acceleration vector has a magnitude and direction relative to the axis of sensitivity of the accelerometer.
When an accelerometer is used to measure dynamic acceleration, it can be used as an input into a control
system, which may then correct the system based on changing conditions. By measuring the acceleration

 20

vector, accelerometers can be used as tilt sensors. Accelerometers are also used in vibration measuring
applications.

Accelerometers are used as inputs to a control system and in tilt sensing applications. In this case,
the dynamic acceleration is monitored, which relates to the changing velocity and position of the system.
The accelerometer readings are fed back into a control system which may then provide corrective
measures affecting the system. Accelerometers can also measure tilt. A tilt sensor works by varying the
outputs of a dual axis accelerometer. The outputs are proportional to the angle of tilt, thus, the tilt is
measured. Accelerometers can be used as inputs fed into control systems and as tilt sensors.

Another use for accelerometers is in vibration sensors. This is because an accelerometer can be
used to isolate mechanical vibrations from external sources. This is done by performing analysis on
recorded results in the frequency domain to separate different sources. Additionally, filtering can be used
to remove the effect of sources at particular frequencies to zone in on the vibrations from only one source.
 There are many applications of accelerometers. Common applications include measuring
dynamic behavior of a system to provide feedback to a control, as well as tilt sensing using dual axis
accelerometers. Accelerometers are also used to measure vibrations in conjunction with a filter to isolate
specific sources of vibration.

2.3.5 Accelerometer Summary
 Accelerometers measure the acceleration vector. This is accomplished by making use of the
piezoelectric phenomena or using a voltage producing differential capacitance MEMS device, among
other ways. The choice of analog or digital output accelerometers, as well as considering the number of
axes, swing, sensitivity, bandwidth and power requirements depend on the application and a wide range
of all the characteristics is present for a varied selection of accelerometers. Used as inputs to control
systems, tilt and vibration sensors, as well as in many other functions, there are countless applications for
accelerometers.

2.4 GPS Basics
 The Global Positioning System (GPS) is a navigation system that uses satellites and radio signals
to determine locations on the Earth. This system was created by the United States Department of Defense
by launching the first satellite in 1978. The system’s official name was NAVSTAR GPS (Navigation
Signal Timing and Ranging Global Positioning System). GPS is available to the civilian population as a
public good (Global, para. 2).
 By 1994, there were 24 GPS satellites orbiting the Earth at an altitude of 12,600 miles. Only 21
satellites are active at a time. The other three are used as spares. As the years went on, more satellites
were added. Each satellite is built to last about 10 years, with replacements constantly being built. The
satellites are spaced so that at any location on Earth, at least four are visible in the sky. Figure 11 shows
the satellite positions with respect to the Earth (What is GPS, para. 6).

 21

Figure 11: Satellite Positions (How GPS Receivers Work, para. 5)

2.4.1 GPS Signals
 Two radio signals are transmitted by the GPS satellites that are used to determine location. They
are known as L1 and L2. L1 uses the frequency of 1575.42 MHz, whereas L2 uses the frequency 1227.60
MHz. Civilian GPS receivers use the L1 signal. These signals travel by line of sight and will not travel
through solid objects (Global, para. 13). Three different types of data are sent in these two radio signals.
The first piece of data is known as the almanac. The almanac contains information about the status of the
satellite, as well as the current time and date. The second piece of data is known as the ephemeris. The
ephemeris contains orbital information about the satellites, such as where the satellite should be at any
time throughout the day. This allows the GPS receiver to calculate the satellites’ position at any time. The
last piece of data is a pseudorandom code. This data is a unique code that allows the satellite to be
identified. It is used as an I.D. (What is GPS, para. 9).

2.4.2 Triangulation
A GPS receiver calculates its location by using a technique called triangulation. Triangulation is a

method of determining the relative position of an object by using triangles and geometry. In order to
triangulate its location, the receiver first has to determine the distance from itself to a satellite. This is
accomplished by using the travel time of the radio signals. The receiver measures the time delay between
when the satellite sent out the signal to when the signal was received. This delay is used to determine the
distance. The receiver also knows the position of the satellite from the ephemeris data sent in the signal.
From these two pieces of information, the time delay and satellite position, it is known that the receiver’s
position must lie on the surface of an imaginary sphere with a radius equal to the distance between the
receiver and the satellite. This process is repeated at least twice to create three or more of these imaginary
spheres. The receiver is located at the intersection point of the spheres (How GPS Works, para. 1).

2.4.3 GPS Inaccuracies
 Unfortunately, since the satellite clocks are not precise, there will be errors in the GPS
calculations. The receiver can only roughly estimate its distance from the satellite. Figure 12 demonstrates
this problem. The dotted lines represent the actual location of the spheres and the solid lines represent the

 22

estimated value. Since the three spheres do not intersect at one point, the GPS receiver slightly alters the
size of the spheres until an intersection is found. This can cause inaccuracies up to several meters (GPS,
para. 1).

Figure 12: Inaccuracies in Sphere Sizes (GPS, para. 5)

There are several other problems that can affect the accuracy of the GPS receiver. One potential

problem is signal scattering. This happens if the satellite signal is reflected off of a large object, such as a
building. This will cause the signal to be slowed down and increase the delay time between the receiver
and the satellite. Another problem is troposphere and ionosphere delays. When the signal passes through
the atmosphere, the troposphere and ionosphere layers will cause the signal to slow down. Again, this will
increase the calculated signal delay. A third possible problem is errors in the ephemeris data. Since the
ephemeris data is sent out every 12.5 minutes, the GPS receiver could be using outdated data. The
satellite might not be in that specified location at that time. This will affect the triangulation process
(What is GPS, para. 13).

2.4.4 Techniques to Improve Accuracy
Many solutions exist to help reduce these inaccuracies. One solution is Differential GPS (DGPS).

This system improves the accuracy of the GPS receiver by adding a local reference station to compute
corrections to GPS parameters, error sources, and resultant positions. Since the reference station knows its
exact location, it can determine errors in the satellite signal. It accomplishes this by comparing the ranges
of the signals received by the receiver to the actual ranges calculated from the reference station. These
corrections are then sent to the receiver to remove most of the inaccuracies (Differential, para. 1). Another
solution is Wide Area Augmentation System (WAAS). As with DGPS, reference stations are used to
calculate the difference between the GPS signal and the actual signal range calculated by the station. Two
master stations collect this data then broadcast it through one or two satellites with a fixed position over
the equator. GPS receivers compatible with WAAS can read this signal and correct its errors (What is
WAAS, para. 3).

2.4.5 GPS Summary
For our project, we will be using a GPS module in our design. This module contains a digital

signal processor, real-time clock, UART, and memory all in one small package. This package is ideal for

 23

our purposes because it performs all the previous mentioned GPS tasks in a compact size. It will track up
to twelve satellites, determine its location using triangulation, and save the results to memory. It is ideal
for embedded projects.

2.5 Background Summary
 This chapter discussed the current methods cities use to measure the roughness of roads. Many
different devices were shown, each with their own drawbacks. The major problems were size and cost.
Most of the devices required a separate vehicle in which to operate. This increases the cost significantly,
which may scare away potential city investments in that product. Our device will try to overcome these
problems to make it more appealing to the cities. Also, the theory behind accelerometers and GPS
receivers were described. This will help us in our product design.

 24

3 METHODS

 This section is concerned with defining the methods followed to accomplish our project. First, the
specifications required for the project will be described. Second, the process in which the project was
accomplished will be detailed.

3.1 Specifications
 Once we had finished researching the topic and past devices, a list of specifications for our
project was devised. These specifications acted as a guide for our design and component selection. Every
decision made throughout the projects took these provisions into consideration.
 The first specification was the device had to be inexpensive. Since most cities do not have a lot of
spending money, a low cost device would be ideal. City officials would be more apt to purchase a product
with a reasonable price. In addition, the cost needs to be low so the cities can afford multiple units. More
units will enable the city to better track the condition of their roads, since more roads will be traveled. For
our project, we tried to stay under $250 for a total cost.
 Another specification was the device needed to be small. Since this device would be placed inside
municipal vehicles, minimizing the occupied space would be optimal. The device should not be intrusive
and easily stored on a seat or windshield. The device should be no bigger than 6.5 in. (L) x 7.5 in. (W) x
3.5 in. (H), which was the size of the previous WPI road roughness project.

A third specification was the device needed to be in one enclosure. One problem with the
previous WPI pothole detector project was the accelerometer had to be placed outside the vehicle. Our
design needed to bring the device into one small enclosure.
 A fourth specification was low power. Since the device was designed to run on batteries, a low
power system would be the best. This would extend the life of the batteries. Fewer batteries would need to
be purchased, which would cut down on the maintenance cost. A target power level for our device was
100mA or less.
 Another specification for our device was reliability. Before cities make an investment in our
device, they need to know if they can depend on the product. It should be able to be simply placed inside
the vehicle and forgotten about until the data needs to be uploaded to a computer. Also, minimum
maintenance should be required.
 A sixth specification was recording length. We needed to make sure that the memory would be
able to hold all the data during a recording period. For our design, we decided to have a recording length
of one week. The device would be placed inside a municipal vehicle at the beginning of the work week
and would record data while the vehicle drove around. At the end of the work week, the data would be
uploaded to a computer and analyzed.
 Another specification was accuracy. We needed to decide how accurate the device should be.
Since we were measuring the roughness of the road, it was not necessary to achieve an exact location.
Finding the general area would be sufficient. It was decided that an accuracy of up to 15m would be
acceptable. This value was around the average accuracy for GPS modules without error correction
capabilities.

 25

3.2 Process
 The diagram in Figure 14 shows the process used to accomplish the project. First, we came up
with a project goal (Chapter 1). This goal was the basis for our project. Next, background research was
conducted to learn about previous roughness detection methods (Chapter 2). Various devices were
examined to determine what improvements were necessary. Afterwards, a list of specifications was
developed (Chapter 3). These provisions aided us in our decisions made throughout the project. Then, the
design process began. We broke down the system into modules and designed each components (Chapter
4). The component design was broken into three parts, shown in Figure 13. First the requirements and
specifications for each component were developed. Next, the various options for each component were
compared to choose the best option for the project. Then, each component was tested individuality to
verify functionality.

Figure 13: Component Design Block

Once each module had been tested, they were all placed together on a soldered breadboard. The

entire system was then tested as a whole to verify the hardware and software functioned correctly. This
testing included a field test to see if the device was able to locate the rough spots in the road. Once the
first prototype was working, we then designed a PCB. After various revisions, the PCB was made,
populated, and tested. The testing was similar to that of the breadboard prototype. Once the PCB was
working, an enclosure was chosen to house the board. Then, a final field test was performed.

3.3 Summary
 After completing the specifications and process, we were able to start designing the device. The
specifications gave us a guideline of what to look for in components. We can rule out components that do
not fit our expectations. Also, the described process gave us a method of tackling our design. Following
the steps will assure a successful project.

 26

Figure 14: Process Block Diagram

 27

4 SYSTEM DESIGN

 This section will present the overall system design of the project. Figure 15 shows the block
diagram for the system. The overall design was broken down into several subsections. These sections
include the power module, accelerometer module, GPS module, microcontroller module, memory
module, USB interface module, and LCD module.

Figure 15: System Block Diagram

4.1 Power Module
 The power module was the first module of our design. The purpose of this module was to provide
power to each component of the project. A more detailed breakdown of the power module is shown below
in Figure 16.

Figure 16: Power Module

 28

The main source of power for the device was provided by batteries. Batteries were chosen to help
keep the device more autonomous and offer flexibility in placement inside the vehicle. With batteries, the
device did not need to be located near a cigarette lighter to provide power. In addition, the types of
batteries were chosen to be nickel metal hydride (NiMH). By using rechargeable batteries, the cost of
replacing batteries would be greatly reduced. A total of four “AA” NiMH batteries were used to power
the device. A battery charger circuit was designed to recharge the batteries. The MAX712 was chosen for
this circuit. The MAX712 was a fast charge control IC which charged by forcing a constant current into
the batteries. Charging began when power from a wall or car adapter was applied to the charging circuit.
 Another subsection of the power module was the car or wall adapter. The main purpose of this
part was to charge the batteries. Whenever an adapter was plugged into the device, the batteries would
start the charging process. While in charging mode, the car or wall adapter became the main source of
power for the device. MOSFETS were used to disconnect the batteries and allow the adapter to provide
power. This was done so the batteries would charge faster and more efficiently.
 The USB connector was another method of powering the device. Whenever a USB cable was
connected to upload the stored data, the same MOSFETS mentioned above would disconnect the
batteries. The USB was then the main source of power for the device. This method was chosen to help
extend the life of the batteries.

 The main system voltage subsystem provided a regulated voltage to power the digital and analog
devices of the embedded system, with the exception of the LCD. The systems which it drove included the
microcontroller, GPS, accelerometer, and serial flash memory. These were all powered with 3.3V. The
LCD required 5V, which was provided by a charge pump.

A number of design choices were possible for the main system voltage subsystem. The main
decision was between a linear and switched-mode regulation topology.

Switched-mode power supplies, or SMPS systems, regulate from DC to DC via step-up, step-
down or step-up/step-down topologies. SMPS converters such as a buck or a buck-boost allow for high
efficiency and a wider operating range, even less than the output voltage, in the case of step-up/step-down
topologies.

The main disadvantages of SMPS systems over LDOs are added complexity, increased size, high
part count, higher cost, lower stability, and increased quiescent current consumption. The increase in
complexity, size and cost are from the fact that switch-mode regulation uses a controller IC to drive an
external switching device, usually a MOSFET, which charges inductors and capacitors to set a stable
output voltage. Stability is an especial concern with switch-mode regulation, due to the fact that in order
to stabilize the feedback compensation loop, application-specific external discrete components must be
chosen. Once properly compensated, SMPS systems can be just as stable as LDOs, but compensation is a
difficult process. Additionally, there is typically much more output ripple, due to the switched-mode
design, causing more noise to be injected into the supply lines. The relatively high quiescent current
consumption, on the order of 20 mA or more, can make the SMPS less efficient than LDOs in low
conversion ratios (such as going from 4V to 3.3V).

Linear-mode regulation works by effectively shunting excess voltage to provide a stable output
voltage. A Zener reference pulls the input voltage down and an internal MOSFET is switched on and off
with a PWM signal to provide regulated output voltage. The use of linear regulators is very
straightforward, typically requiring only some input and output capacitance to stabilize the output voltage
during input line transients and output load transients. An important characteristic of linear-mode

 29

regulators is the dropout voltage, defined as the minimum difference in input and output voltages required
for regulation. Most modern linear regulators are described as low-dropout voltage regulators, or LDOs
(Kolanko, para. 1).

The main advantages of LDOs over SMPS systems are simplicity, small size, low cost, low part
count, low electro-magnetic interface (EMI), and very low quiescent current consumption. The EMI could
get coupled into signals, especially analog ones, like the accelerometer, and the clock like of the
microcontroller, causing stability issues. Additionally, the inductor that SMPS systems require could itself
be a cause of EMI. LDOs require no inductor, just a few capacitors, which can be very small. The main
draw for low-power design is the very low quiescent current consumption used by LDOs, which, when
used with low conversion ratios, can actually make LDOs more efficient than SMPS systems. An LDO
was chosen to power the device.

4.1.1 Power Module Requirements
 A source chooser was first designed for the power module. The purpose of the source chooser
subsystem was to dynamically switch the power source, which supplied the input voltage to the main
system and LCD driving voltage subsystems. The design goals for this subsystem were as follows:

• Minimize losses in general, but especially from the battery
• Use the battery as the input voltage supply only when no other sources are present
• Disconnect the battery from the input voltage supply while it is being charged
• Support power over USB
• Allow powering via the car/wall adapter
• Provide a constant input voltage supply, even during source switching
• Prioritize the source to use as input voltage supply when more than one is present

The priority of the sources to use was as follows:

1) Car/wall adapter
2) USB
3) Batteries

Therefore, when no other sources were present, the batteries were used. If the USB became

present, the batteries would be disconnected and the input voltage would be drawn from the USB. If the
car/wall adapter became present, the batteries would be disconnected, and input voltage would be drawn
from the car/wall while the batteries were being charged. Additionally, the USB would be disconnected
from the input voltage supply if all three of the sources were present, thus prioritizing the car/wall adapter
over the USB.

4.1.2 Power Module Circuit Description
 First, the battery charger circuit will be described. The charger circuit is shown below in Figure

17. The main component of the circuit was the MAX712. This controller was designed to fast charge
Nickel Metal Hydride (NiMH) batteries from a DC source by injecting a large current. The MAX712 was
always in one of two states, fast charge or trickle charge. The device entered fast charge when either a DC
source was applied, or when the batteries were installed (DC source already connected). The device was

 30

able to terminate fast charge three different ways. It could terminate fast charge by detecting zero voltage
slope, battery temperature, and a timer. Once full charge was determined, the current was reduced to
trickle charge.

Figure 17: Battery Charger Circuit

The battery charger circuit was powered by 12V DC. This voltage was provided by the car battery

or a wall adapter (BTCAR1). The capacitor, CB1, was included to help filter the input voltage. The actual
MAX712 device was powered by an internal +5V shunt regulator (V+ pin). The resistor, RV1, was
chosen to be 698Ω to limit the current into V+ to 10mA. This was the recommended current given in the
datasheet.
 When the 12V was applied to the circuit, CV1 charged through RV1. When the capacitor reached
5V, the shunt regulator adjusted V+ to 5V, which started fast charge. The DRV pin sunk current for
driving the PNP current source. The diode was used to prevent current from flowing into the DRV pin
when the 12V was not connected.

The values for CQ1 and RQ1 were chosen by selecting CC1, which was a compensation capacitor
for the input. CC1 was chosen to be 0.01μF, which gave a bandwidth for the current regulation loop equal
to180kHz (BW = gm/CC1, where gm = 0.0018A/V). From this bandwidth, RQ1 was chosen to be 150Ω
and CQ1 to be 0.01μF. Also, this bandwidth needed to be less than the pole frequency of the PNP. The
pole frequency was found by dividing the gain-bandwidth product by the DC current gain. For the
2N6109, the pole frequency was 333MHz (10MHz/30). This value was less than the bandwidth.

The diode needed to be able to handle the fast charge current. Since the batteries were 2500mAh
and the charge rate was C/4, the expected current was 0.625A (2500mAh/4h). The 1N4001 diode was

 31

chosen because it could handle up to 1.0A of current. From this current, the sense resistor, RSNS1, was
chosen to be 0.4Ω (0.25V/0.625A).

One method of detecting full charge is the battery temperature. However, for our design, we
decided not to use this feature. To disable this method of detection, THI was connected to V+ and TLO
was connected to BATT-. Also, a 68kΩ resistor from REF to TEMP, and a 22kΩ resistor from BATT- to
TEMP were needed.
 The methods of detection used in this circuit were zero voltage slope and a timer. The MAX712
has an internal ADC that determines if the battery voltage is rising, falling, or the same. To implement the
zero voltage slope and timer features, pins PGM0 – PGM3 were used. PGM0 and PGM1 set the number
of cells to be charged. Since four batteries were being charged, PGM0 was connected to V+ and PGM1
was connected to BATT-. PGM2 and PGM3 set the maximum time allowed for fast charge. Since the
charge rate was C/4, the maximum time allowed (264 minutes) was used. Also these pins were used to
enable zero voltage slope detection. Both PGM2 and PGM3 were connected to BATT-.
 The output pin, _FASTCHG, was used to determine when power was applied to the circuit, and
when fast charge was occurring. This pin sunk current when the device was in fast charge. When trickle
charge began, the pin stopped sinking current. For testing purposes, two LEDs were used to signal when
12V was applied (LEDPOW), and when fast charge was taking place (LEDFST).
 Next, the input power circuitry will be described. A schematic for the power circuitry input stage
can be seen below.

Figure 18: Input Power Circuit

A power jack connector was used to plug in both the car and wall adapter. This circuitry used a

very low DC resistance (DCR) power inductor from Sumida, the CDRH125 with 47µH of inductance.
This inductor was chosen due to very low DCR, small surface mount package with some shielding, and
low cost. It was rated for 1.8A, which was more than enough to power the battery charging circuitry, and
had a low DCR of typically 58mΩ (maximum of 78mΩ). The part can be used in automotive
environments.

Two input capacitors were used on the input line to filter the signal. A 0.1µF ceramic capacitor
was used to filter out high noise, and a 10µF tantalum was used to improve dynamic line response, such
as on a line transient. Additionally, a 15V Zener diode in parallel with the capacitors provided a very fast
response to over-voltage conditions. The Zener used was the 1SMB5913BT3 from ON Semiconductor. It

 32

is intended for automotive applications and rated to withstand up to 200V, and up to 3W continuous DC
power. On a transient event, which the Zener was intended for, the power would only be surged, so the
power handling capability was much higher. The Zener had a breakdown voltage of 15.2V. This Zener
was chosen due to its small SMB surface mount package, 15.2V breakdown voltage, power rating, and
1µA leakage current.

The node marked with the test point, TPV0, was used to power the battery charger circuitry. The
rest of the board could not handle the relatively high voltages that the power jack would draw. Therefore,
a pre-regulator was used to step the voltage down from the car voltage (nominally 13.2V) or wall voltage
(nominally 12V) to approximately 5V. An adjustable regulator could be used to compensate for losses
that VCHARGE was subject to in the source chooser circuitry. However, the adjustable version of the
regulator we wanted was not available, so we are currently using a 5V output version.

The NCV4276 was used, due to previous experience with the part and its excellent characteristics.
The main characteristics of interest for the pre-regulator were the following:

• Surface mount package
• High thermal dissipation
• Large input voltage range
• Excellent transient response

The NCV4276 was available in a DPAK-5 surface mount package, which, compared to the LDO

and other parts, was enormous, but relative to the overall size of the board, was not too large. This
package can dissipate a lot of heat, making it ideal for automotive applications where the input voltage
could be typically 14V and spike as high as 40V. Additionally, a 1” spreader board was built on the PCB
to help dissipate heat, as instructed in the data sheet. This brings the junction-to-ambient thermal
resistance down to 46.8 degrees C/W, which was very low, meaning there was a lot of thermal
dissipation. The maximum power dissipation was calculated, assuming an absolute worst quiescent
current of 100mA. This was very unlikely (depended on ambient temperature due to BJT passive
element). With an average load current requirement of 50mA (plus 70mA with backlight enabled), a 14V
input, and a 5V output, the dissipation was calculated as seen below:

() () WmAmAmAVVPd 98.17050100514 =++∗−=

At this power dissipation, the calculated temperature in the junction would be approximately 92.7

degrees C above ambient, which with an ambient temperature of 25 degrees C would yield approximately
117.7 degrees C. This was below the rated 150 degrees C junction temperature, so the part would act fine.

In reality, this was a worst case scenario, since the quiescent current was likely to not be nearly as
high. The car battery voltage should be nominally 13.2V, the average load current could be less, and the
backlight current would be zero with the backlight turned of, as would be typical operation.

We had run the NCV4276 part with a 30V input and maximum load at room temperature with no
issues. The NCV4276 could accept input voltages as high as 45V. It could source up to 400mA of current.
The transient response was optimized to respond very quickly to an input voltage transient or an output
load transient. This made the NCV4276 work very well for our application as a pre-regulator.

For our application, the NCV4276 may be overkill. A smaller regulator may be able to handle the

 33

thermal dissipation and use a MOSFET passive element, thus having a much lower Iq which does not rise
up to as high as 100mA as temperature increases. Additionally, more heatsinking, including a larger
copper pour area on the PCB, could provide better thermal characteristics. A step-down SMPS regulator
could also be considered, in lieu of a pre-regulator/LDO combination, which would largely avoid any
power dissipation and thermal issues due to the very high power transfer efficiency. However, this would
increase the overall size of the system, since a power inductor would be required, which is approximately
the size of the DPAK-5 the NCV4276 uses.
 Finally, the source chooser will be described. The schematic is shown below.

Figure 19: Source Chooser Circuit

When no other source was present, the batteries were used as the input voltage supply. In this

case, the gates of both QS1 and QS2 were pulled to ground through RS0. Since QS1 and QS2 were
PMOS FETs, they were each in the active region of operation, effectively acting as a resistor. This
resistance was equal to the r_DS(on) of the PMOS FETs. The NTR2101P from ON Semiconductor was a
very low r_DS(on) power PMOS, with a specified r_DS(on) of approximately 39mΩ and 4.5V Vsg. Two
were used in series, due to the parasitic drain-to-source diode in power MOSFETs. By putting two in
series, current was blocked in both directions, allowing the battery to be fully disconnected from the input
voltage supply when another source was present. However, the equivalent resistance was raised to
approximately 78mΩ. Our Vsg was typically 4.8V, which would mean that r_DS(on) was actually less.
However, going with a worst case calculation and assuming r_DS(on) was effectively 78mΩ for the two
in series, the calculated losses for a typical 50 mA load is as follows:

3.90mV50mA78)(_ =∗Ω=∗= mIdsonDSrVds

When another source was present, either DS1 or DS2 was forward biased. The USB voltage was

approximately 5V. The diodes were all low forward-voltage Schottkey diodes. This was to minimize the
voltage losses, since a typical diode could have a Vf as high as 0.7V. The MBR120VLSF from ON
Semiconductor was specified to have a maximum Vf of 0.275V at room temperature with a 100mA load.
The measured voltage drop was actually on the order of 100 to 200mV. With the two diodes in series, this

 34

corresponded to a measured voltage drop of less than 400mV.
The NCV551 from ON Semiconductor was chosen as the LDO. This part was designed for harsh

automotive environments and had an incredibly low dropout voltage of only 40mV and a maximum of
150mV for the 3.3V version. The quiescent current consumption (Iq) was ultra low, typically at only
4.0µA. The part could source up to 150mA of current, which was more than enough for our application.
The input voltage could be as high as 12V, which was much higher than necessary for our application.
The extremely low dropout voltage and Iq, as well as very small TSOP-5 surface mount package, made
the NCV551 our choice for LDO.

The LDO schematic is shown in Figure 20. The input capacitor, CLDO1, was a 10µF tantalum
surface mount capacitor. This was recommended in the NCV551 datasheet and was used to quell input
line transients. The output, VOUT, originally had no output capacitor, since the DREF and AREF lines
had capacitors. However, on the PCB, an output capacitor was added, 4.7µF (tantalum) to improve load
transient response. The two 0Ω resistors, RZ4 and RZ5, separated the digital and analog 3.3V references,
DREF and AREF, respectively. This provided isolation between the digital and analog sources, which
decreased digital/analog noise coupling.

Figure 20: LDO Schematic

The LCD required a 5V reference. While running off of 4 NiMH batteries, the maximum voltage

was expected to be 4.8V, and this decreases as the batteries are discharged. Therefore, some sort of
voltage step-up was required to drive the LCDs. A SMPS converter was one choice, but a charge pump
regulator was decided on for the following reasons: ease of use, low parts count, low cost, small size, and
no inductors. The final point, that a charge pump requires no inductors, was important to reduce electro-
magnetic interference (EMI), size, cost, and complexity.

The MAX619 charge pump doubler/regulator was chosen due to high availability, low cost, small
SOIC 8-pin surface-mount package, low pin count, low part count, and integrated 5V regulator (as
compared to simple charge pump ICs). The MAX619 regulated to 5V from inputs ranging from 2.5V to
5V, and sources up to 50mA. It doubled the input voltage (and halved the current) by using just two
switching capacitors. The capacitors were charged up in parallel and then switched to series to get double
the input voltage. This voltage was then regulated to 5V. The MAX619 can provide a stable 5V output
with an input voltage of only 2.5V. The power was regulated, not just the voltage, as with a linear voltage
regulator. Therefore, for the maximum output current of 50mA, the input current would have to be
100mA at an input voltage of 2.5V, not counting quiescent current losses.

A schematic for the charge pump circuit is shown in Figure 21. The switching capacitors, CCP1
and CCP2 were 0.22µF surface mount ceramic capacitors. These were suggested in the application note

 35

of the MAX619 datasheet. The input and output capacitors, CCP3 and CCP4, were 10µF tantalum surface
mount capacitors, which were used to quell input line transient and output load transients, respectively.
The surface mount 47kΩ resistor, RCP1, was used to pull down the SHDN pin, which enabled the part.
The SHDN pin, when low, put the MAX619 in a low-power, non-regulating state, like the EN pin on
other parts. This pin was also connected to the microcontroller. The intent was that the microcontroller
can turn off the charge pump regulator when the LCD was not required in order to reduce power
consumption.

Figure 21: Charge Pump Regulator Schematic

4.1.3 Power Module Testing
To test the charger circuit, we first discharged the batteries for a set amount of time. This way we

knew how many milliamp-hours had be discharged. In the experiment, the voltage was regulated to 3.26V
across a load of 62.2Ω. From these two values, the current flowing through the load was determined to be
52.4mA. The batteries were discharged for 32.25 hours. This corresponded to 1690mAh drained from the
batteries.
 To charge the batteries, 12V from the laboratory DC power supply was applied to the circuit with
the batteries already connected. This set up can be seen in Figure 22. Both the power LED and fast charge
LED turned on. The circuit remained in fast charge for approximately two hours. During this time, the
current was 630mA. When trickle charge mode was entered, the current was reduced to 170mA. This
current remained constant for the remaining 144 minutes of the charge time. Fast charge was most likely
terminated early to prevent damage to the batteries. With trickle charge, the battery voltage could slowly
reach its maximum without overshooting the value.

 36

Figure 22: Testing the Charger Circuit

During the two hours of fast charge, approximately 1260mAh was injected into the batteries

(2hrs*630mA). For the remaining time spent in trickle charge, around 408mAh was injected
(2.4hrs*170mA). After the total 426 charge time, approximately 1668mAh was restored into the batteries.
This circuit charged the batteries to 98.7% of the original milliamp-hours.
 In addition, the temperature of the PNP case was monitored to ensure that the transistor could
handle the power. During the entire 426 minutes, the maximum temperature was 105°C. At this
temperature, the PNP can dissipate up to 15W. Since our circuit would never reach that point (7.56W
max), the 2N6109 PNP was suitable for this design.
 The results from the battery charger circuit were fairly reasonable. All the components met the
required specifications in the MAX712 datasheet. Also, the batteries were almost fully charged to their
original state. One reason for not fully recharging was that the charging efficiency can be as low as 80%,
depending on the battery. The efficiency with which electrical energy was converted to chemical energy
in the batteries was not the same as the power conversion efficiency of the MAX712. To fully charge the
batteries, more time would be needed.
 Next, the LDO was analyzed. The efficiency of the NCV551 was calculated with three and four
NiMH batteries, with a nominal voltage of 3.6V and 4.8V, respectively. The average load current was
assumed to be 50 mA, which was calculated as a typical value. Therefore, the following math was valid.

%7.91
)004.050(6.3

)50(3.3_ =
+

=
mAmAV

mAVLDOη

%7.68
)004.050(8.4

)50(3.3_ =
+

=
mAmAV

mAVLDOη

Clearly, the use of only three NiMH batteries, coupled with the low conversion ratio and ultra-

low Iq, made the LDO more efficient than most SMPS systems. However, in our system, we are currently
using four NiMH batteries. To use three, we’d have to redesign charging circuitry. Also, the runtime is

 37

slightly longer with four batteries, even though the efficiency is not as high, due to the discharge curves of
NiMH batteries. This is shown in the below figure.

Figure 23: Battery Discharge Curve

In the above figure, the red line represents the discharge curve of one NiMH battery. The value

graphed is the average of four batteries discharge curve. The batteries where measured at different
intervals to generate the curve. The blue line represents the needed voltage if three batteries were used, of
approximately 1.15V per battery to get 3.3V regulated with 150mV dropout. This was the worst case. The
green line represented the needed voltage if four batteries were used, of approximately 0.86V per battery.

Results of this analysis show that using three batteries would provide an effective charge of only
1.65Ah. Using four batteries would provide an effective charge of 2.15Ah. This means that, even with the
efficiency hit, the four batteries would last 1.3 times as long as just three batteries.

 4.2 Accelerometer Module
 The next module of the project was the accelerometer module. The complete module block
diagram can be found in Figure 24. The accelerometer was used to measure the dynamic acceleration
resulting from vibrations caused by the rough road conditions. The accelerometer output was ratiometric,
which meant that output voltage varied proportionally with the changing acceleration.

Figure 24: Accelerometer Module

 38

4.2.1 Accelerometer Requirements
 We decided to choose an accelerometer that had three axes. This would enable the user to place
the device in any position inside the vehicle. The magnitude vector from the vibration could then be found
by simply calculating the resultant vector from all three axes. The accelerometer should also have an
output range of around ±2 – 3 g. In the background section, it was shown that the average g force
experienced from a rough road was approximately 2 g’s. The low number of g’s also would
increase the sensitivity of the output.

The accelerometer should minimize the interference from the vehicle vibration. A filter
system was added to the accelerometer output to remove any vibration contributed by the vehicle. A
simple RC low pass filter was used for each axis. The filters were designed to block high frequencies
(greater than 20 Hz) from the vehicle. These high frequencies could potentially have a negative impact on
the readings. The vibrations experienced by the rough roads would have a smaller frequency.

The accelerometer should also be small and low power. A small accelerometer would reduce the
size of the overall device. The size should be less than 0.5 in. x 0.5 in. Low power would help to extend
the life of the batteries. A power less than 5mW would be ideal.
 From the above information, a list of specifications could be derived. This list is shown below.

• Accurately output magnitude no matter what the accelerometer orientation
• High sensitivity
• Minimize interference
• Small
• Low power

4.2.2 Accelerometer Selection
 In order to meet our goals for the project, the correct accelerometer needed to be chosen. To make
the best decision, a trade analysis was performed. Three accelerometers were examined in different areas
of importance and assigned a rating. The higher the rating, the better suited the accelerometer was for our
project. The examined areas are listed below. The scale used for each area ranged from 1 to 5 (low to
high).

Power: Power was an important specification in choosing the correct accelerometer. Since the device was
running on batteries, low power was required for our accelerometer. The metrics used to rate the
accelerometers are as follows:

• Less than 1 mW => 5
• Between 1 and 5 mW => 4
• Between 5 and 9 mW => 3
• Between 10 and 14 mW => 2
• 15 mW or more => 1

 39

Cost: Cost was another important specification that was examined. To keep the price of the device low, a
less expensive accelerometer would be the best. The metrics used to rate the accelerometers are as
follows:

• Between $0 and $4.99 => 5
• Between $5 and $9.99 => 4
• Between $10 and $14.99 => 3
• Between $15 and $19.99 => 2
• More than $20 => 1

Size: Another important consideration for the accelerometer was size. In order to minimize the overall
size of the device, the accelerometer needed to be small. The metrics used to rate the accelerometers are
as follows (decided from maximum dimension):

• Between 0 and 5.9 mm (length and width) => 5
• Between 6 and 10.9 mm (length and width) => 4
• Between 11 and 15.9 mm (length and width) => 3
• Between 16 and 20.9 mm (length and width) => 2
• More than 21 mm (length and width) => 1

Sensitivity: The sensitivity of the accelerometer was examined. The sensitivity was the scale factor for the
accelerometer output. The larger the sensitivity, the larger the output range would be for our device. The
metrics used to rate the accelerometers are as follows:

• More than 500 mV/g => 5
• Between 500 and 401 mV/g => 4
• Between 400 and 301 mV/g => 3
• Between 300 and 201 mV/g => 2
• 200 mV/g or less => 1

Axes: The number of axes for the accelerometer was an important consideration. More axes meant that the
impact on the output from the orientation of the accelerometer would be decreased. The more axes it had,
the more flexibility in placement of the device inside the vehicle. The metrics used to rate the
accelerometers are as follows:

• Three => 5
• Two => 3
• One => 1

 40

Supply Voltage: Supply Voltage was another consideration. To reduce the power consumed by the device,
an accelerometer with a low supply voltage would be ideal. The metrics used to rate the accelerometers
are as follows:

• Less than 3 V => 5
• Between 3 and 3.9 V => 4
• Between 4 and 4.9 V => 3
• Between 5 and 5.9 V => 2
• 6 V or more => 1

Maximum Rating: The maximum ‘g’ rating for the accelerometers were examined. The more g’s the
accelerometer could withstand, the longer it would last. The metrics used to rate the accelerometers are as
follows:

• More than 10,000 g’s => 5
• Between 10,000 and 5,000 g’s => 4
• Between 4,999 and 1,000 g’s => 3
• Between 999 and 100 g’s => 2
• Less than 100 g’s => 1

Temperature: The final consideration for the accelerometer was operating temperature. In order for the
device to properly operate, the accelerometer needed to be able to operate over a wide range of
temperatures. The metrics used to rate the accelerometers are as follows (decided from cold temperature):

• Between -50 and 90 °C => 5
• Between -40 and 80 °C => 4
• Between -30 and 70 °C => 3
• Between -20 and 60 °C => 2
• Between -10 and 50 °C => 1

After coming up with the accelerometer categories, all three accerelometers were examined. For

each category, the relevant information was listed. The three accelerometers were the MMA1250 (made
by Freescale Semiconductor), the ADXL320, and the ADXL330 (both made by Analog Devices). The
information for each accelerometer is shown below:

MMA1250:
Power: 2.1 mA at 5.0 V => 10.5 mW
Cost: $11.51 from Digikey
Size: 10.67 mm x 10.45 mm (L x W)
Sensitivity: 400 mV/g
Axes: 1 (Z)
Supply Voltage: 5.0 V
Maximum Rating: 1500 g’s (Powered); 2000 g’s (Unpowered)
Temperature: -40 to 105 °C

 41

ADXL320:
Power: 0.48 mA at 3.3 V => 1.58 mW
Cost: $8.60 from Digikey
Size: 4 mm x 4 mm (L x W)
Sensitivity: 174 mV/g
Axes: 2 (X, Y)
Supply Voltage: 3.3 V
Maximum Rating: 10,000 g’s (Powered); 10,000 g’s (Unpowered)
Temperature: -55 to 125 °C

ADXL330:
Power: 0.32 mA at 3.3 V => 1.06 mW
Cost: $11.58 from Digikey
Size: 4 mm x 4 mm (L x W)
Sensitivity: 300 mV/g
Axes: 3 (X, Y, Z)
Supply Voltage: 3.3 V
Maximum Rating: 10,000 g’s (Powered); 10,000 g’s (Unpowered)
Temperature: -55 to 125 °C

With all the specifications listed for each accelerometer, they could then be rated and compared.
The importance of the category is shown next to the name in the parentheses. The scale used for each
category ranged from 1 to 5 (low to high). The results are shown in Table 3. The raw scores were
computed by adding the values in each row. The weighted score was computed by scaling each value and
finding the sum. The accelerometer with the highest score was the ADXL330. This accelerometer was the
best choice for our project.

Categories Freescale ADXL320 ADXL330
Power (5) 2 4 4
Cost (5) 3 4 3
Size (4) 4 5 5

Sensitivity (4) 4 1 3
Axes (4) 1 3 5

Supply Voltage (5) 2 4 4
Max. Rating (3) 3 4 4
Temperature (2) 4 5 5

Raw Score 23 30 33
Weighted Score 88 118 129

Table 3: Accelerometer Selection Analysis

 42

4.2.3 Accelerometer Circuit Description
The circuit is shown below in Figure 25.

Figure 25: Accelerometer Circuit

The accelerometer output a voltage related to the g-level sensed. When an axis of the

accelerometer was experiencing zero g’s, the output voltage was equivalent to VDD/2, or 1.65V. If the
axis was rotated, then the output changed according to the sensitivity of the accelerometer. For the
ADXL330, the sensitivity was approximately 330mV/g. This meant that if the axis was experiencing one
g, then its output was 1.65V (zero g) plus 0.330V (one g), or 1.98V. If the axis was experiencing negative
one g, then the output was 1.65V (zero g) minus 0.330V (negative one g), or 1.32V. Since the
accelerometer could range from ±3g, the output range per axis was 0.66 V to 2.64V.
 A single pole RC low pass filter system was used to filter out unwanted vibrations from the
vehicle. The cutoff for the filters was chosen to be 20Hz. A low frequency was selected because defects in
the road would not vibrate the vehicle too rapidly. Since the accelerometer had 32kΩ resistors built inside
the unit, only the capacitor values had to be selected. The values were chosen by the following equation:

· C = 1 / [2πRf]
· C = 1/ [2π * 32000 * 20]
· C = 0.249 μF

The final value for the capacitors was selected to be 0.22μF.
 A voltage follower was included after the low pass filter to serve as a buffer for the ADC of the
microcontroller. A TLV2402 op-amp was used in this design. A buffer was added because the

 43

microcontroller had a low input impedance. The buffer will counteract any loading effects.
 Since the accelerometer was so small, it was difficult to solder. To overcome this problem, a
breakout board from Sparkfun was purchased. The board came with an accelerometer already soldered.
The board can be seen in Figure 26.

Figure 26: Accelerometer Breakout Board (Triple Axis, page 1)

4.2.4 Accelerometer Testing
 First, to verify that the filter system functioned correctly, Bode plots were graphed. For this

experiment, the accelerometer was removed and replaced with the function generator. The input signal
from the generator was a 1.96V(pk-pk) sine wave with a bias of 1.65V. The frequency of the signal was
varied and the output voltages were measured. First, only the low pass filter was tested. The Bode plot is
shown below in Figure 27. For low frequencies, the gain of the system was around one. Also, the 3-dB
frequency was measured to be approximately 21.012Hz. This value was 5.06% higher than the expected
frequency of 20Hz.

 44

100 101 102 103
-35

-30

-25

-20

-15

-10

-5

0

5

f (Hz)

G
ai

n
(d

B
)

Bode Plot for Low Pass Filter

Figure 27: Bode Plot for Low Pass Filter

Next, the voltage follower circuit was tested. Again, the frequency of the input signal was varied

from 1Hz to 1kHz, and the output was measured. The Bode plot is shown below in Figure 28. For low
frequencies, the gain of the follower was one. However, as the frequencies exceeded 200Hz, the
performance of the op-amp deteriorated. For a gain of one, the 3-dB frequency of the op-amp is 5.5kHz,
so this was not the problem. The real issue was the slew rate. The slew rate for this op-amp is 2.5V/ms. At
around 285Hz, the slope of the input signal reached 2.5V/ms. As the frequency increased, so did the input
signal slope. Since this value exceeded the slew rate, the op-amp’s performance decreased.

 45

100 101 102 103
-7

-6

-5

-4

-3

-2

-1

0

1

f (Hz)

G
ai

n
(d

B
)

Bode Plot for Op-Amp

Figure 28: Bode Plot for Voltage Follower

Finally, the entire system was tested (low pass filter and voltage follower). The frequency of the

same input signal was varied from 1Hz to 1kHz, and the output voltage was measured. The Bode plot is
shown below in Figure 29. The measured data corresponded to the expected results. For low frequencies,
the gain was one. The 3-dB frequency was measured to be 21.012Hz. For frequencies near 1kHz, the
output was affected due to the decreased op-amp performance.

 46

10
0

10
1

10
2

10
3

-35

-30

-25

-20

-15

-10

-5

0

5

f (Hz)

G
ai

n
(d

B
)

Bode Plot for Total Design

Figure 29: Bode Plot for Total Design

Next, the accelerometer was tested in various positions to verify that the expected output was the

same as the actual output. By simply rotating the accelerometer, it was expected that the resultant vector
would equal one g (0.330V). This resultant vector was calculated by taking the square root of the squares
of the axes’ output. All possible orientations were examined. Figure 30 shows the circuit that was tested.

Figure 30: Soldered Accelerometer Circuit

 47

 First, the accelerometer was rotated around the X axis. By using this axis as the center, it was
expected that its output would remain constant. The accelerometer was rotated 360° in increments of 45°.
The output data can be seen in Table 4 and Table 5. Table 4 shows the measured data that was outputted
from the accelerometer. These values included the DC offset voltage of VDD/2 (1.65V).

To measure the number of g’s, the bias was removed from the output voltages. These adjusted
values are shown in Table 5. From this data, the amount of force experienced can be determined (in volt
form). The resultant vectors were calculated from these values. All of the magnitudes were around the
expected 0.330V (one g). An error column in Table 5 shows how far the measured magnitudes were away
from the expected 0.330V. Also, there was some additional error by assuming the DC bias level was
VDD/2. In reality, the bias level for all the accelerometers will not be this value. Since our roughness data
does not have to be too accurate (less than 10 % error), this assumption is acceptable.

Actual Accelerometer Output Voltages
Position (°) Xout (V) Yout (V) Zout (V) Magnitude (V)

0 1.66 1.66 2.0 3.084023
45 1.64 1.9 1.9 3.147952
90 1.62 1.96 1.64 3.025822

135 1.62 1.8 1.4 2.797213
180 1.64 1.6 1.34 2.65428
225 1.68 1.38 1.46 2.618855
270 1.68 1.3 1.68 2.708284
315 1.68 1.4 1.9 2.896964

Table 4: Actual Output Voltages (Rotate Around X Axis)

Adjusted Accelerometer Output Voltages

Position (°) Xout (V) Yout (V) Zout (V) Magnitude(V) Error (%)
0 0.01 0.01 0.35 0.350286 6.147151

45 -0.01 0.25 0.25 0.353695 7.180237
90 -0.03 0.31 -0.01 0.311609 5.573112

135 -0.03 0.15 -0.25 0.293087 11.18575
180 -0.01 -0.05 -0.31 0.314166 4.798315
225 0.03 -0.27 -0.19 0.331512 0.458088
270 0.03 -0.35 0.03 0.352562 6.836985
315 0.03 -0.25 0.25 0.354824 7.522394

Table 5: Adjusted Output Voltages (Rotate Around X Axis)

 Next, the accelerometer was rotated around the Y axis. Again, the accelerometer was rotated 360°
in increments of 45°. The output data can be seen in Table 6 and Table 7. Table 6 shows the actual
voltage outputted by the accelerometer. Table 7 shows these values without the DC bias. As previously
done, the magnitudes were calculated. The results were fairly accurate. Most were within 2% of the
expected 0.330V.

 48

Actual Accelerometer Output Voltages
Position (°) Xout (V) Yout (V) Zout (V) Magnitude (V)

0 1.66 1.66 2.0 3.084023
45 1.4 1.62 1.86 2.836195
90 1.32 1.62 1.66 2.668782

135 1.42 1.62 1.42 2.580155
180 1.64 1.64 1.34 2.678582
225 1.9 1.66 1.42 2.895168
270 1.98 1.66 1.68 3.081947
315 1.8 1.66 1.94 3.123972

Table 6: Actual Output Voltages (Rotate Around Y Axis)

Adjusted Accelerometer Output Voltages

Position (°) Xout (V) Yout (V) Zout (V) Magnitude (V) Error (%)
0 0.01 0.01 0.35 0.350286 6.147151

45 -0.25 -0.03 0.21 0.327872 0.644871
90 -0.33 -0.03 0.01 0.331512 0.458088

135 -0.23 -0.03 -0.23 0.32665 1.015255
180 -0.01 -0.01 -0.31 0.310322 5.962905
225 0.25 0.01 -0.23 0.339853 2.98573
270 0.33 0.01 0.03 0.331512 0.458088
315 0.15 0.01 0.29 0.32665 1.015255

Table 7: Adjusted Output Voltages (Rotate Around Y Axis)

Finally, the accelerometer was rotated around the Z axis. The accelerometer was rotated 360° in

increments of 45°. The output data can be seen in Table 8 and Table 9. Table 8 shows the actual voltage
outputted by the accelerometer, and Table 9 shows these values without the DC bias. The magnitudes of
the resultant vectors were calculated. The results were similar to the expected 0.330V. About half of the
magnitudes were below 3% in error.

Actual Accelerometer Output Voltages

Position (°) Xout (V) Yout (V) Zout (V) Magnitude (V)
0 1.98 1.66 1.66 3.071091

45 1.88 1.86 1.66 3.122435
90 1.64 1.96 1.68 3.058366

135 1.36 1.8 1.68 2.812828
180 1.3 1.62 1.66 2.658947
225 1.42 1.42 1.66 2.605456
270 1.68 1.3 1.66 2.695923
315 1.9 1.42 1.68 2.906682

Table 8: Actual Output Voltages (Rotate Around Z Axis)

 49

Adjusted Accelerometer Output Voltages
Position (°) Xout (V) Yout (V) Zout (V) Magnitude (V) Error (%)

0 0.33 0.01 0.01 0.330303 0.091785
45 0.23 0.21 0.01 0.311609 5.573112
90 -0.01 0.31 0.03 0.311609 5.573112

135 -0.29 0.15 0.03 0.327872 0.644871
180 -0.35 -0.03 0.01 0.351426 6.492627
225 -0.23 -0.23 0.01 0.325423 1.38703
270 0.03 -0.35 0.01 0.351426 6.492627
315 0.25 -0.23 0.03 0.341028 3.341775

Table 9: Adjusted Output Voltages (Rotate Around Z Axis)

The results from the initial accelerometer tests were reasonable. The Bode plots were close to the

expected results. For low frequencies, the gain was equal to one. Also, the 3-dB frequency was close to
the expected 20Hz. The results from the orientation tests were similar to the expected output. In all the
different orientations, the accelerometer experienced a force of approximately one g (0.330V). The
average error for all the positions was 4.08%. These results increase our confidence that the data from the
car test will be accurate. The next step was to place the accelerometer in the car and measure the
vibrations from the road.

 After the initial testing, the accelerometer was interfaced with the microcontroller through the
ADC, channels 0-3. Results in the following graphs, Figure 31, Figure 32, Figure 33, Figure 34, Figure
35, and Figure 36, show readings, on a scale from 0 to 4095, of the different axes. The data shows that
each axis can be independently modified.

Figure 31: Accelerometer, X,- +1g

Figure 32: Accelerometer, X, -1g

 50

Figure 33: Accelerometer, Y, +1g

Figure 34: Accelerometer, Y, -1g

Figure 35: Accelerometer, Z, shaken

Figure 36: Accelerometer, Z, -1g

This data was collected on the PCB in the in-circuit debugger of IAR Embedded Workbench. The

data shows that the accelerometer can be read through the ADC channels of the microcontroller. In each
case, the PCB was rotated to intentionally affect one axis. It was then rotated 180° on the same axis. The
results are “+1g” and “-1g” readings.

 51

4.3 GPS Module
 The purpose of this module was to accurately locate the rough spots measured by the
accelerometer. This was accomplished by recording the longitude and latitude positions every few
seconds. The information was sent to the GPS from satellites via an antenna. The type of information
received was date, time, and orbital information of the satellites. This information was used to determine
the location. The output from the GPS module was a National Marine Electronics Association (NMEA)
string. The relevant information contained in these strings was date, time, longitude, and latitude. This
data was then sent to the microprocessor to be stored.

4.3.1 GPS Module Requirements
 The main requirement for the GPS was low power. The GPS module would require more
power than any other module. Since the overall power draw of the device was desired to be less
than 100mW, the selected GPS module could not use more than this amount. A power of 50mW
or less would be ideal. The lower power would greatly help extend the life of the batteries.
 Another important area was accuracy. As previously stated, the accuracy did not have to
be too exact in determining the location. Since our device would locate a general area of road
roughness, an accuracy of 5m was not too far off from an accuracy of 10m. Most GPS modules
have an accuracy of 15m or less (without error correction), so a distance of 15m or less would be
acceptable.
 A third requirement would be inexpensive. Similar to power, the GPS module cost more
than any other module. To keep the cost of the overall device down, a GPS module with a cost
between $50 and $100 would be desired. Size would also be another concern. A smaller GPS
module would reduce the overall size of the device.

From the above information, a list of specifications could be derived. This list is shown below.
• Low Power
• Moderately accurate
• Inexpensive
• Small

4.3.2 GPS Module Selection
 As with the accelerometer, a trade analysis was performed to determine the right GPS module.
Four modules were examined in different areas of importance and assigned a rating. The higher the rating,
the better suited the GPS module was for our project. The examined areas are shown below. The scale
used for each category ranged from 1 to 5 (low to high).

Power: Power was the most important specification in choosing the correct GPS module. Since the GPS
used the most power, finding a low power module would be preferred. The metrics used to rate the
modules are as follows:

• Between 0 and 49 mW => 5
• Between 50 and 99 mW => 4
• Between 100 and 149 mW => 3
• Between 150 and 199 mW => 2
• 200 mW or more => 1

 52

Cost: Cost was another important specification that was examined. An inexpensive GPS module would
help reduce the overall cost of the device. The metrics used to rate the modules are as follows:

• Less then $50 => 5
• Between $50 and $64 => 4
• Between $65 and $79 => 3
• Between $80 and $94 => 2
• $94 or More => 1

Size: Another important consideration for the GPS was size. In order to minimize the overall size of the
device, the module needed to be small. The metrics used to rate the GPS modules are as follows (decided
from maximum dimension):

• Between 0 and 29 mm (length and width) => 5
• Between 30 and 39 mm (length and width) => 4
• Between 40 and 49 mm (length and width) => 3
• Between 50 and 59 mm (length and width) => 2
• 60 mm or More (length and width) => 1

Accuracy: The accuracy of the accelerometer was examined. In order to properly locate the rough spots in
the road, the GPS coordinates need to be as accurate as possible. The metrics used to rate the modules are
as follows:

• Less than 0.5 meter error => 5
• Between 0.5 and 1 meter error => 4
• Between 1.1 and 5 meter error => 3
• Between 5.1 and 10 meter error => 2
• More than 10 meter error => 1

Performance: The performance of the GPS module was an important consideration. The performance was
measured by the GPS cold start time. This was the time needed by the GPS to reacquire the needed
information to determine its location. This information included the current time and the orbits of the
satellites. The metrics used to rate the GPS modules are as follows:

• Less then 25 seconds => 5
• Between 25 and 49 seconds => 4
• Between 50 and 74 seconds => 4
• Between 75 and 99 seconds => 4
• 100 seconds or More => 1

 53

Supply Voltage: Supply Voltage was another consideration. To reduce the power consumed by the device,
a GPS module with a low supply voltage would be the best choice. The metrics used to rate the modules
are as follows:

• Less than 3 V => 5
• Between 3 and 3.9 V => 4
• Between 4 and 4.9 V => 3
• Between 5 and 5.9 V => 2
• 6 V or more => 1

Temperature: The final consideration for the GPS modules was operating temperature. In order for the
device to properly operate, the GPS needed to be able to operate over a wide range of temperatures. The
metrics used to rate the modules are as follows (decided from cold temperature):

• Between -50 and 90 °C => 5
• Between -40 and 80 °C => 4
• Between -30 and 70 °C => 3
• Between -20 and 60 °C => 2
• Between -10 and 50 °C => 1

After selecting the categories, all four GPS modules were examined. For each category, the

relevant information was listed. The four modules were the 25LP LVS (made by Garmin), the Lassen iQ
(made by Trimble), the PG-31 (made by Laipac), and the RGPSM002 (made by Semtech). The
information for each GPS module is shown below:

25LP LVS:
Power: 115 mA at 5.0 V => 575 mW
Cost: $99.99
Size: 46.5 mm x 69.9 mm x 11.4 mm (L x W x H)
Accuracy: 15 meters (non WAAS)
Performance: 45 seconds
Supply Voltage: 5.0 V
Temperature: -30 to 85 °C

Lassen iQ:
Power: 27 mA at 3.3 V => 89.1 mW
Cost: $49.95 from Sparkfun
Size: 26 mm x 26 mm x 6 mm (L x W x H)
Accuracy: 8 meters (90% of time) (non WAAS)
Performance: 84 seconds (90% of time)
Supply Voltage: 3.3 V
Temperature: -40 to 85 °C

 54

PG-31:
Power: 70 mA at 3.3 V => 231 mW
Cost: $55.00
Size: 30.6 mm x 26 mm x 9.8 mm (L x W x H)
Accuracy: 25 meters (non WAAS)
Performance: 45 seconds
Supply Voltage: 3.3 V
Temperature: -40 to 85 °C

RGPSM002:
Power: 19 mA at 3.3 V => 62.7 mW
Cost: $68.75 from Digikey
Size: 26.59 mm x 31.59 mm x 11.2 mm (L x W x H)
Accuracy: 5 meters (50% of time) (non WAAS)
Performance: 120 seconds (50% of time)
Supply Voltage: 3.3 V
Temperature: -40 to 85 °C

With all the specifications listed for each GPS module, they could then be rated and compared.

Again, the importance of the category is shown next to the name in the parentheses. The scale used for
each category ranged from 1 to 5 (low to high). The results are shown in Table 10. The raw scores were
computed by adding the values in each row. The weighted score was computed by scaling each value and
finding the sum. The module with the highest score was the Lassen iQ. This GPS module was the best
choice for our project. The Lassen iQ module can be seen in Figure 37.

Categories 25LP LVS Lassen iQ PG-31 RGPSM002
Power (5) 1 4 1 4
Cost (5) 1 5 4 3
Size (4) 1 5 4 4

Accuracy (3) 1 2 1 3
Performance (3) 4 2 4 1

Supply Voltage (5) 2 4 4 4
Temperature (2) 3 4 4 4

Raw Score 13 26 22 23
Weighted Score 45 105 84 91

Table 10: GPS Module Selection Analysis

 55

Figure 37: Lassen iQ GPS Module (Lassen iQ GPS, page 23)

4.3.3 GPS Module Circuit Description
 The GPS circuit is shown below in Figure 38.

Figure 38: GPS Module Circuit

The Lassen iQ GPS module ran off a 3.3V supply provided by the voltage regulator. A lithium

cell battery (BTGPS1) was included as a back up power supply. The battery kept the module’s RAM
memory alive and powered the real time clock when the receiver’s main power source was turned off.

Two serial ports were available with this GPS module. Serial port B (Port 2) was used to transmit
data to the microcontroller (TXDB) and receive data from the microcontroller (RXDB). Both pins were
able to be connected directly to the microcontroller UART. Serial port A (Port 1) was unused. In order to
prevent damage to the unused serial port, the receive pin (RXDA) was tied to the 3.3V supply via a pull
up resistor. The transmit pin (TXDA) was able to be left floating.

4.3.4 GPS Module Testing
 A special breakout board designed for the Lassen iQ was used to verify that the GPS was
functioning. The board was purchased from Sparkfun and can be seen in
Figure 39. The RS-232 output was used to verify that the GPS module did output the expected NMEA
strings (Port 2).

 56

Figure 39: Lassen iQ Evaluation Board (Lassen iQ Evaluation, page 1)

4.4 Microcontroller Module
The purpose of the microcontroller module was to interface all of the embedded system hardware

and run the embedded system software. There were various ways that this module could be implemented.
A microcontroller, microprocessor, and FPGA were all considered.

A microcontroller combines a processing unit with many interfaces and built-in RAM and ROM
memory all on one chip. They are available with 8, 16, and 32-bit support with kilobytes of RAM and
ROM running at tens or a couple of hundred of MHz for the more robust and expensive chips. The
software can be written in a variety of languages, including BASIC and assembly, with C being the most
common. At the high-end, ARM microcontrollers, available from many different manufacturers, currently
dominate the market. Some low-power consuming examples include the TI MSP430, Atmel AVR, and
Microchip PICs. Since one of our primary objectives was to minimize power consumption, a low-power
microcontroller was ideal.

A microprocessor would be used in a single board computer (SBC), where there is separate RAM,
ROM, and interface IC’s connected to the microprocessor. These also are available with 8, 16, 32, and 64-
bit support with kilobytes to megabytes, or even gigabytes, of RAM and ROM running from a few MHz
to over a GHz. There are numerous languages in which to write the software, but C and C++ are most
popular, with Java making some headway and BASIC still a popular choice. Some examples include the
old 8051 to the more modern chips available from companies such as Freescale, IBM, and Intel. For our
system, new microprocessor SBC systems would be overkill, and the old chips do not provide as much
functionality as a microcontroller. A microcontroller, with features such as ROM, RAM, and serial
interfaces on-chip, is much smaller than a microprocessor or SBC system. Additionally, both the old, less
feature-full, and newer microprocessors use much more power than modern low-power microcontrollers.
Therefore, microprocessor systems were ruled out at the beginning.

Another possible implementation would be to use a FPGA. A FPGA is essentially programmable
hardware. In this system, hardware is written in a hardware description language such as VHDL or
Verilog to interface all the units together. The interfacing would be fairly easy, but some aspects are more
straightforward in a software programming language, such as instructing the chip to run a sequence of
commands in order. However, with the prevalence of soft cores, where a microprocessor can be run on

 57

the FPGA chip itself, one could get the best of both worlds.
The main reason we went with a microcontroller was that drivers to interface with certain

hardware, especially the memory, were available as C libraries. Porting the code over to run in hardware
initially seemed more difficult to do than modifying the library to work for our particular architecture. In
the end, porting the code to the FPGA and using a soft core seemed like it would take more time and be
less straightforward than implementing the system using a microcontroller. We decided to use a low-
power microcontroller for our design.

4.4.1 Microcontroller Requirements
We came up with a list of requirements for the microcontroller module based on the overall

design requirements. They are listed below.
• Ultra-low power consumption
• Economical performance
• Interfaces for all devices
• In-circuit debugging support
• Extensive documentation
• High-level language support
• Low cost

The requirements for in-circuit debugging, extensive documentation, and high-level language

support were practical in nature. Without these features, it would be very difficult to work with the
microcontroller module. Based on these requirements, some specifications were derived. The following
paragraphs outline the process arriving at the specifications from the requirements.

Minimization of power consumption was the primary design goal. Most modern microcontrollers
are designed to minimize power consumption, and this includes running off of a lower voltage than the
typical 5V supply used in the past. The power saving microcontrollers can operate on a couple of
milliamps or less. Additionally, power-saving modes are desired to minimize power consumption during
down time. A specification of drawing under 1mA during power saving modes was compatible with
modern low-power microcontroller specifications.

Running at a lower voltage level meant the other devices would need to be compatible with the
logic levels of the microcontroller; otherwise, unnecessary complexity and cost would have to be added
by introducing logic level converters. The 3.3V logic level was the next step down from 5V in common
use, which included a wide array of devices compatible with this logic. Stepping down to 3.0V, 2.7 V, or
lower would make it more difficult to find compatible devices, especially a GPS module.

For our system, we did not require a high level of processing performance. It simply needed to
take data, perform minimal processing on-board, and record it. More intense post-processing used the
power of the PC, allowing for a microcontroller which did not require much performance. For this reason,
low performance microcontrollers (by modern standards), running at under 20 MIPS, typically at under
20 MHz, could be used. This additionally meant that a full 32-bit microcontroller would be overkill and
16 or even 8-bit microcontrollers were suitable.

To interface with all the devices, we needed serial ports. These could be emulated in “bit
banging” drivers in software, but hardware drivers greatly increase performance and decrease the power

 58

consumption by decreasing the amount of work required from the microcontroller’s processing unit itself.
We needed at least two hardware serial ports, since we would only be using two serial devices at a time.
Additionally, based on the interfaces of the other devices, these ports needed to be compatible with both
the asynchronous UART and synchronous SPI.

The accelerometer module chosen provided an analog output. In order to interface with the
microcontroller, an analog-to-digital converter (ADC) was required. The accelerometer used was triple-
axis, so at least three ADC channels were required.

In order to do in-circuit programming and debugging, an interface to achieve this was required.
The JTAG interface is nearly ubiquitous for this use. We needed support for JTAG or some equivalent
interface.

We decided to program in C due to the availability of a C library for the memory and extensive
experience in C. Therefore, we needed a microcontroller with a C compiler. In order to perform the in-
circuit debugging, a full-featured IDE was also required, so we could step through the C code and view
the values of memory locations and variables. On such IDE is IAR Embedded Workbench. The derived
specifications are listed below.

• Power-saving modes to draw < 1 mA
• Runs off of 3.3V logic
• 5-20 MIPS performance
• 8- or 16-bit architecture
• At least two hardware serial ports including SPI and UART
• 3 or more channel on-board ADC
• JTAG or equivalent interface for in-circuit programming and debugging
• C compiler and IDE availability
• Less than $10

4.4.2 Microcontroller Selection
Based on the specifications, a number of different microcontrollers were identified. These

included the general groups of Microchip PIC18F, Atmel AVR ATmega, and TI MSP430.
The PIC18F was ruled out early due to weak support of in-circuit programming and debugging, C

compilers, and full-featured IDEs. Also, personal experience with tools for performing these tasks with
PIC18F chips led us away from them.

The main choice was between the ATmega and MSP430 series. They both operate from 1.8 to
3.6V, have standby and sleep modes that draw hundreds of microamps, and implement brown out
protection and reset. Additionally, both are RISC architectures with C compilers available. Full-featured
IDEs with focus on in-circuit debugging are available and well-developed for each series. Also, they have
on-board oscillators. Lastly, both have extensive documentation.

There are some important architectural differences between the ATmega and MSP430. These are
listed in Table 11 below.

 59

 ATmega MSP430
Bus width 8-bit 16-bit

ADC 10-bit 10-,12- and 16-bit
USART Up to 3 Up to 2

Table 11: Microcontroller Module Selection

In the end, the major deciding factor was that the ECE department was switching over to the

MSP430 microcontrollers from the PICs. The addition of more support and a development environment
already installed pushed the MSP430 over the ATmega. The MSP430F169 was chosen due to its large
programming size (60KB), two UART/SPI ports, internal 8 MHz clock, built-in brownout safety features,
8 channels of 12-bit ADCs, internal temperature sensor, small size, incredibly low power consumption,
and low cost.

4.4.3 Microcontroller Circuit Description
The schematic for the microcontroller voltage sources is shown in Figure 40.

Figure 40: Microcontroller Source Schematic

The microcontroller had two voltage sources: analog and digital. The analog reference, AREF,

was connected to the AVCC input. The analog ground, AGND, was connected to the AVSS input. The
digital reference, DREF, was connected to the DVCC input. The digital ground, DGND, was connected to
the DVSS input. The analog and digital grounds were isolated planes on the PCB.

The capacitors, CA1, CA2, CD1, and CD2 acted as decoupling capacitors to reduce noise and
transient disruption of the references. CA1 and CD1 were 0.1µF ceramic surface mount capacitors used to
block high frequency noise. Ceramic capacitors were chosen due to their low equivalent series resistance
(ESR), a key element in increasing reference stability. Additionally, they were offered in very small and
inexpensive surface mount packages which were relatively invariable over time and temperature. One
downfall of ceramic capacitors was their mechanical fragility, so the PCB could not be heavily
mechanically stressed or the capacitors could easily crack. In our application, this was a non-issue. The
capacitors, CA2 and CD2 were 4.7µF tantalum surface mount capacitors used to reduce transient
disruption of the references. Tantalum capacitors were chosen due to there small, surface mount packages
and relative invariability over time and temperature.

 60

In Figure 41, the schematic for the main microcontroller circuitry is shown.

Figure 41: Microcontroller Schematic

Shown in the figure above are the interconnections of other modules with the microcontroller.

The labels (in red) on each pin of the microcontroller correspond to labels found in other module
schematics.

The JTAG connector was used to program and debug the microcontroller. In-circuit debugging
was possible using IAR Embedded Workbench with the JTAG connector. The TDO, TDI, TMS, and
TCK pins of the JTAG connector connected to the corresponding pins on the microcontroller. These were
used for JTAG communication.

The reset button was a simple surface-mount push button, the FSMJSMA by Alcoswitch, as
shown in Figure 42. This was used to minimize the size of the button, which would not be used
frequently. The logic was active-low, connecting to the _RST line of the microcontroller. A 47kΩ
surface-mount resistor pull up to the 3.3V digital reference was used to keep the microcontroller from not
resetting by default. When the button was pushed, the _RST line was shorted to ground, causing the
microcontroller to reset.

 61

Figure 42: Alcoswitch FSMJSMA Push Button (Tact Switches, page 1)

The crystals, YXT1 and YXT2, together with their load capacitors, CXT11 and CXT12, and

CXT21 and CXT22, provided external clocks to use in the microcontroller. YXT1 was a small, 6-mm
“can”-type through-hole crystal, like the one seen in Figure 43. This was chosen due to the small size and
mechanical strength of through-hole connections, as well as low cost. YXT1 oscillated at 32kHz with
12pF ceramic surface-mount load capacitors attached. This crystal was used to drive the internal hardware
timer, Timer A, of the microcontroller.

Figure 43: 6mm Crystal (Crystal, page 1)

The crystal, YXT2 was a low-profile though-hole HC49/S crystal, like the one seen in Figure 44.

This was chosen due to the low-profile, small board space requirement, mechanical strength of through-
hole components, low cost, and ease of soldering (versus leadless surface mount crystals). YXT2
oscillated at 8MHz with 18pF ceramic surface-mount load capacitors attached. This crystal was used to
drive the fast clock needed for 1Mbaud communication by the USB and the fast SPI communication used
by the serial flash memory (SFM).

Figure 44: HC49/S Crystal (Quarts Crystals, page 1)

 62

The figure below shows the DIP switch connection to the microcontroller.

Figure 45: Microcontroller DIP Switch Schematic

The DIP switch was used to select the operating mode of the microcontroller. Originally, a small,

low-profile surface mount 4-pole DIP switch was used, but this proved to be too small to use effectively.
This was the A6H-4101 model by Omron Electronics, shown in Figure 46. A standard, low-profile
through-hole 4-pole DIP switch is now used, such as the GDS04 available by Tyco. An 8-pole version of
this switch is shown in Figure 47.

Figure 46: A6H-4101 DIP Switch

(Half-Pitch Dip, page 1)

Figure 47: GDS04 DIP Switch

(DIP Switches, page 1)

4.4.4 Microcontroller Testing
The microcontroller was tested by seeing if IAR Embedded Workbench could identify, program

and perform in-circuit debugging on it. This works. An example of in-circuit debugging is shown in
Figure 48.

 63

Figure 48: In-Circuit Debugging in IAR Embedded Workbench

4.5 Memory Module
The purpose of the memory module was to provide storage for data recordings. First, a number of

design decisions needed to be made. These include the volatility, interface, and type of the memory.
The memory could be either volatile or non-volatile. Volatile memory would require constant

powering of the memory because when power is lost, volatile memory is erased. A separate battery can be
used to keep the volatile memory powered even when the rest of the device is not powered; however, this
increases the size, cost, and complexity. Non-volatile memory does not require power in order to maintain
the values stored in memory. Since our device is designed to run for up to a week, potentially losing that
much data is undesirable. Therefore, we decided to use non-volatile memory.

There are a number of interfaces for memory. These can be generally broken down into two
categories, based on their addressability: parallel and serial. Parallel-addressable memory is very simple
to address, send data to, and receive data from. However, a large number of address lines is required. This
increases the size of the memory, as well as uses many pins of the processing device. Additionally,
special circuitry is needed to multiplex the address and data lines with tri-state buffers. Serial-addressable
memory removes all these problems, but can be harder to interface, since special commands must be

 64

issued serially to the memory in order to select an address and transfer data. This issue is too often lost
since many serial-addressable memory devices have software libraries written by the developers. This
greatly increases their ease of use. Due to the decreased pin count, smaller size, and lack of necessary
special multiplexing and buffering circuitry, we decided to use serially-addressable memory.

Having decided on non-volatile memory, there are a number of different memory types which
could be used. The options we considered included non-volatile random access memory (NVRAM),
electronically-erasable programmable read-only memory (EEPROM), and Flash. NVRAM works by
storing data magnetically. This is a low-power and newer solution, but is much more expensive than
EEPROM or Flash. Also it is not available in large capacities as current Flash. Therefore, NVRAM was
ruled out as a viable option. EEPROM allows many, practically limitless writes and is very inexpensive,
but is not available in as large capacities as modern Flash. Additionally, it requires a higher voltage to
program than to operate. Flash is available in very large capacities and can be programmed with the same
voltage as the supply. Unfortunately, it suffers from limited erase/write cycles, typically more than
EEPROM. Due to the increased capacity and the ability to program with the supply voltage, we decided
to use a Flash memory.

 A block diagram for the memory module is shown in Figure 49 below.

Figure 49: Memory Module Block Diagram

As seen in Figure 49, the memory module had a positive voltage supply, control pins for the

memory device (_HOLD, _S, _W/VPP), SPI clock, input and output (C, D, Q), and a return path to
ground. These pins are described in Table 12.

 65

VCC Positive voltage supply input.
_HOLD Active-low memory hold. When set (low) the memory is disabled. To enable the

memory, a high signal must be applied.
_S Flash memory select line, active-low. When set (low) the memory is de-selected.

To select the memory, a high signal must be applied.
_W/VPP Active-low write protect. When set (low) the memory can be written to. To

disable writing, a high signal must be applied.
C SPI clock input.
D SPI data input.
Q SPI data output.
VSS Return path to ground.

Table 12: Memory Module Symbol Description

4.5.1 Memory Requirements
The next step was to decide on the specifications for our serially-addressable Flash memory. The

key characteristics included the following: capacity, erase/write cycles, voltage level, and serial interface.
The capacity needed was determined by the size of the data we were storing, and the fact that we

wanted to design a system to record a week’s worth of data. The data being stored in each reading
included the following, with data size.

• Longitude – 8 bytes
• Latitude – 8 bytes
• Time – 6 bytes
• X-Axis maximum – 12 bits
• X-Axis minimum – 12 bits
• Y-Axis maximum – 12 bits
• Y-Axis minimum – 12 bits
• Z-Axis maximum – 12 bits
• Z-Axis minimum – 12 bits

The total was 31 bytes per reading, or 248 bits. If a reading was stored every two seconds, then a

weeks worth of data, accounting for 604800 seconds, required 74995200 bits, uncompressed. This would
require at least 75Mbits of storage. With compression, this could be reduced. This amount of storage is
more than was easily available in serial flash memory devices when we first began looking into them.
This figure assumed 24 hour/day recording, 7 days a week. If, instead, it was assumed data was only
recorded during the work week of Monday through Friday, and that when immobile, the system did not
record data (so that only approximately 20 hours per day is recorded), then only 100 hours, or 360000
seconds, need to be recorded. This would require approximately 45Mbits of storage. Therefore, we
decided on using the largest available serial flash memory at the time of 64Mbit.

The number of erase/write cycles was an important characteristic of Flash memory devices. This
value can range from 10,000 to over 1,000,000. Using 45 Mbits per week would effectively required one
full erase/write cycle per week, in the worst case, with no compression used and without a rotating
memory use algorithm. This meant that there would be 52 erase/write cycles per year. Even with only
10,000 erase/write cycles, the 64Mbit memory would last approximately 192 years. With 1,000,000
erase/write cycles, as is becoming common, the memory would theoretically last for about 19,200 years.

 66

Unfortunately, due to end of life failure, it would be likely that the memory would become corrupt for
other reasons past the 10 years of typical expected lifetime, before reaching the maximum number of
erase/write cycles. Therefore, this statistic was weighed low in decided on a serial flash memory.

Since we were trying to minimize our power consumption, a lower voltage memory device was to
be used. We decided to look for a device which could operate at 3.3V to meet this requirement.
Additionally, it would need to be able to be programmed at this supply voltage. The main reason for this
voltage choice was practical: the next step after 5V logic is down to 3.3V logic. Operating lower than
3.3V is possible, but since we could not find any GPS units at the time which would operate lower than
this voltage and we wanted the majority of the system to run off of the same voltage, 3.3V was the
obvious choice.
 A number of serial interfaces for memory exist, but the most common two are I2C and SPI. SPI is
a synchronous version of UART, requiring three lines for shared clock, transmit and receive. I2C is
another synchronous serial interface, but only uses two lines, for a shared clock and a bidirectional data
line for both transmit and receive. Both interfaces are straight-forward to implement on most modern
microcontrollers and typically have hardware interfaces available. In the end, the choice was based on
availability. For the capacity we wanted, there were many more SPI devices available at the time.

The results of the above process produced the following specifications for the memory module:
• Flash
• 64Mbit or Higher capacity
• Runs off of 3.3V logic and supply for programming
• SPI interface for serial-addressability

4.5.2 Memory Selection
We considered a number of different manufacturers of Flash memory with the previous

specifications, including STMicroelectronics, Atmel, and SST. In the end, we decided to use memory
from ST Microelectronics due to the vast documentation and freely-available, widely-documented C
libraries for interfacing with the memory. The libraries were written in such a way so that only a
minimum amount of application-specific code is required to interface with the memory device.

4.5.4 Memory Circuit Description
 The schematic for the memory circuitry is shown in Figure 50.

Figure 50: Memory Circuit Schematic

 67

The M25P64 is a 64 Mbit SPI flash memory. It can run off of a 2.7V to 3.6V supply, making it
ideal for our 3.3V supply. The M25P64 can operate at up to 50MHz, with an external synchronization
clock signal applied to the C pin (MEMC). The device is rated for over 20 years of data retention and
over 100,000 write/erase cycles. It features a 512kB sector that can be erased in one instruction and a fast
bulk erase mode to erase the entire memory. Additionally, the M25P64 has very low power consumption,
requiring only 100µA maximum of quiescent current, uses 8mA during a read and 15mA during a write.
The M25P64 is available in a wide SO16 package as shown in Figure 51.

Figure 51: M25P64 SO16-wide Packaging (M25P64, page 1)

The capacitor, CMEM1, was a 1µF surface-mount tantalum capacitor. It was used to decouple the

3.3V digital supply line for the memory. It was located very close to the M25P64 chip on the PCB. VCC
was connected to the digital supply reference and VSS to the digital ground plane, which was isolated
from the other planes to reduce noise.

The resistor, RH1 was a 47kΩ surface-mount resistor used to pull the active-low _HOLD signal
low to the digital ground, DGND, by default. This put the M25P64 in low power mode, disabling the part.
This acted just like an enable pin on other ICs. The signal, _HOLD was connected to pin 2.4 on the
microcontroller.

The active-low signal, _S, was used to select the memory. This was intended in case multiple SPI
devices were connected together on the same bus. The signal, _S was connected to pin 2.5 on the
microcontroller.

The active-low signal, _W/VPP, was used to enable writing to the memory. When low, data could
be written to the memory; otherwise, it was write protected. It had a secondary function for fast page
programming which was unused in our application. The signal, _W/VPP was connected to pin 2.6 on the
microcontroller. Combined, _HOLD, _S and _W/VPP made up the control signals for the M25P64, and
was connected to pins 2.4-2.6 on the microcontroller for coding convenience.

The data input, D, was connected to both SIMO0 (pin 3.1) and SIMO1 (pin 5.1) on the
microcontroller. The data output, Q, was connected to both SOMI0 (pin 3.2) and SOMI1 (pin 5.2) on the
microcontroller. The C signal was the SPI clock synchronization input. It was connected to both SCL0
(pin 3.3) and SCL1 (pin 5.3) on the microcontroller. These three pins, D, Q and C, made up the 3-wire
SPI bus connecting to ports 3 and 5 (SPI0 and SPI1) on the microcontroller.

4.5.5 Memory Testing
Testing was performed by attempting to read the device and manufacturer identification from the

M25P64 chip. This was successful, returning the “Flash_Success” value. This value is printed on the
LCD. The first read always comes up as “Flash_Error”, but the second as “Flash_Success”. This value
was parsed with the flash error to ASCII string converter function, which returned the string, “Flash –
Success” when the “Flash_Success” error (an integer) was passed in. This was the case whether SPI0 or

 68

SPI1 was used. A picture of the LCD showing this message is shown in Figure 52.

Figure 52: Memory Testing - "Flash_Success"

4.6 USB Interface Module
 The purpose of the USB interface module was to provide input and output to a PC over a USB
connection. The USB interface module allowed for transferring the data from the embedded system’s
internal storage to a PC. A program on the PC-side could also be used to communicate with the USB to
clear memory, request data transfer, and provide a debugging interface. Additionally, it powered the
device via the USB connection, in lieu of using the batteries.

A number of different interfaces could have been used to communicate between the embedded
system and a PC. The main choices included RS-232 serial ports, USB, and Ethernet. RS-232 serial ports
are old technology. Although they are very simple to interface and write drivers for, the ports are
disappearing in modern PCs. This reason alone made RS-232 serial ports a poor decision. USB is
ubiquitous, included in all PCs and even PDAs. There are many easy-to-use integrated circuits to help
implement USB in a system. Receiving power over USB is trivial, since a 5V line is always present in
every USB cable. Ethernet is nearly in every PC, but is less common in other devices. Additionally, using
Ethernet is more difficult, potentially requiring implementing layers of the TCP/IP or UDP
communication standards, and requires more work on the PC –side. Typically, more components are
required to implement Ethernet, as well as more software. Also, powering over Ethernet (PoE) requires
isolation transformers and more complicated circuitry. Due to the ubiquity, ease of implementation, and
simplicity in powering from the interface, USB was chosen.

There are two main ways of implementing USB: implementing the interface directly or using a
bridge. A direct implementation would require a great deal of knowledge about the USB standard and
require implementing the USB stack in software on the embedded system side, as well as writing drivers
on the PC side. A bridge, however, acts as a “black box”, with a connection to the embedded system on
one side, and a USB connection to the PC on the other side. The PC drivers are often provided by the
manufacturers’ of the bridge, making implementation on the PC-side very simple as well. Due to ease of

 69

implementation, a USB bridge was chosen.
USB bridges that connect to microcontroller or microprocessor typically use the UART interface.

A USB-UART bridge was used in our design. A simplified block diagram for the USB module is shown
in Figure 53. It only shows the used pins from the USB-UART IC.

Figure 53: USB Module Block Diagram

As seen in Figure 53, the USB module has connections for input voltage, UART and ground. The

pins are described in Table 13.

5V Positive voltage supply input from the USB bus.
RX UART receive input.
TX UART transmit output.
GND Return path to ground.

Table 13: USB Module Symbol Description

4.6.1 USB Module Requirements
The USB-UART bridge had a number of specifications used in determining which part to use.

Firstly, it had to be compatible with the rest of the system, so it needed to be compatible with 3.3 V logic.
Additionally, it should be able to be powered directly off of the USB. The USB 5 V line would also be
used to power the rest of the system when it was available. Also, the USB-UART bridge needed to be
able to communicate over UART with the embedded system, meaning it would have to have baud rates
which the microcontroller could handle. The part also needed to be compatible with all current USB
implementations, including USB 2.0, 1.1 and 1.0, even though it will not be transferring anywhere near
the USB 2.0 maximum, due to limitations of the microcontroller. Finally, the driver must be well-
documented with ease of use a desire.

 70

The specifications for the USB-UART bridge are listed below.
• Compatible with 3.3V logic
• Can be powered off of USB
• UART communication with embedded system
• Compatible with USB 2.0, 1.1, 1.0
• Well-documented driver

4.6.2 USB Module Selection
There were a number of possibilities for USB-UART bridges. The devices considered included

one device by FTDI, the FT232RL and two by SiLabs, the CP2102 and CP2103. In the end, the CP2102
was decided upon due to lowest cost, having more buffer space than the FT232RL, and not needing the
extra features of the FT232RL and CP2103, which offer additional general purpose digital input and
output pins. Additionally, a very small module was found for the CP2102.

In our design, we actually used a pre-built module for the CP2102 available from 4D Systems.
This was due to the fact that our prototype and final PCB were hand-soldered, and the CP2102 is not
available in a package designed for hand-soldering. The package used by the CP2102, like the
accelerometer package, is designed for reflow soldering. Due to the complexity and our inexperience with
reflow soldering, it was decided that a hand-solderable module would be a better solution. This module,
the CP2102-microUSB, interfaces the CP2102 with a USB connector for plugging in a standard USB
cable. The breakout board fits beneath the USB connector itself, making the module as small as possible.
A picture of the breakout board can be seen in Figure 54 below.

Figure 54: 4D Systems CP2102-microUSB Module (Micro-USB Module, page 1)

 71

4.6.3 USB Module Circuit Description
 The schematic for the USB-UART bridge is shown in Figure 55.

Figure 55: USB-UART Bridge Circuit

The CP2102-microUSB module was used. Some test point connections were included for easier

PCB probing. The UART lines, TX, and RX were connected to URXD1 and UTXD1 on the
microcontroller, respectively, corresponding to pins 3.7 and 3.6. The suspend, reset, and 3.3V output
signals were unused.

The 5V output signal, labeled VUSB, was an input to the source chooser circuitry. A ceramic
0.1µF surface-mount capacitor was placed on this output to ground to provide decoupling. This helped
with high-frequency noise and transients on the USB’s 5V line. Additionally, a Zener diode was placed in
parallel with the capacitor, to help quickly pull down transients on the line. In design, a 5.1V Zener was
used. Later on, it was decided that this breakdown voltage was too close to the 5V output of the USB. A
Zener with a larger breakdown voltage, perhaps 6 or 7V, should be used. On the PCB, the Zener was not
populated.

The 1SMB5913BT3 was chosen here for the same reasons expressed in the power input stage
description. The Zener is an ultra-fast, small surface mount diode in a SMB package with relatively high
thermal dissipation ability.

4.6.5 USB Module Testing
 Text was sent from the microcontroller to a PC to test the USB circuitry. A HyperTerminal client
was used on the PC side, configured to receive input from a USB connection at almost 1 Mbaud. This
tested the USB hardware and API, which worked. Results are shown in Figure 56.

 72

Figure 56: Testing Results of USB Module

As shown in the above figure, text was sent from the microcontroller via the UART interface to

the CP2102 USB-UART bridge, where it was sent via USB to the PC and read in HyperTerminal. The
figure shows the connection was set up for 921600 baud eight-none-one connection. The results show the
initial printing of a menu via a call to usbPrintMenu, and then the re-printing, upon receiving the ‘h’
character.

4.7 LCD Module
The purpose of the LCD module was to act as a display for the embedded system. There were a

number of choices for displays, including a set of LEDs, LED segment display, a LCD, and an
OLED/PLED display.

LEDs and LED segments are an older technology and are therefore widely available and
inexpensive. Both LEDs and LED segment displays have the advantage of being very easy to read at
different angles and from a distance. Another advantage is the ability to operate off of lower voltages,
which is compatible with the voltage used to drive the rest of the system. However, they have the
disadvantage of large power consumption, on the order of 5-20 mA per LED or LED segment. A segment
display is limited to the characters it can display, being just hexadecimal values. The user interface for
LEDs is even worse, being completely binary. In order to minimize losses, an LED driver would need to
be used to regulate the current, adding to the complexity and total cost.

Although a newer technology than LEDs, LCDs have been around for a long time and are also

 73

widely available. LCDs use much less power than LEDs, on the order of 2 mA for a character display
module, without a backlight. The backlight, being a LED itself, can use 20 mA or more. However, in
many applications, a backlight would not be necessary. A disadvantage is that it is very difficult to find
LCD modules which use lower voltages. Therefore, it would be necessary to generate a higher voltage for
the LCD than for the rest of the system. In practice, this is not overly difficult, due to the availability of
easy to use charge pump regulators. However, the LCD can be controlled by a lower voltage, compatible
with 3.3V logic, even though the supply for the LCD is a higher voltage. This means that a level-
converter is not necessary. An LCD has a lower contrast ratio and viewing angle than LEDs or
OLED/PLED displays, making an LCD much less readable. LCDs have tremendously longer response
time, but the response time is not very important, since the display will not be updated at very high
frequencies. The one caveat is that the response time of LCDs is dependent on temperature, so the display
could greatly slow down at lower temperatures.

OLED/PLED displays are a newer technology, and are much less available, especially a year ago
when this project began. Currently, many new products are in the process of coming out, and their pricing
is competitive with LCDs. They are very bright and easy to read, like LEDs, with a contrast ratio two
orders of magnitude more than an LCD. The view angle is over twice the range of an LCD, and the
response time is over five orders of magnitude greater than an LCD. Additionally, being a solid-state
device, the response time of OLED/PLED displays is not very dependent on temperature. OLED/PLED
displays consume much less power than LEDs. In fact, the supply current required is approximately one-
third that required for similar LCD modules. However, they still require 10-30 mA of current to light the
LEDs, in order to make the device readable. Therefore, they require a higher amount of power than a
LCD without the backlight turned on. With the backlight turned on, the power consumption of the
OLED/PLED module is slightly lower than a LCD. Additionally, there are OLED/PLED displays which
are pin-for-pin compatible with the most common character LCDs, making them a drop-in replacement.
OLED/PLED displays can typically operate over the same range of supply voltages as LCDs.

A trade analysis of the possible display choices is shown in Table 14 below. The three choices
were LEDs, including segments, LCDs and OLED/PLED displays. They were compared on availability,
power consumption, brightness, user interface, complexity to implement, and cost. The scale used for
each category ranged from 1 to 5 (low to high).

Categories LEDs LCD OLED/PLED
Availability (5) 5 5 1
Power Consumption (5) 1 5* 3
Brightness (2) 5 2 4
User Interface (4) 2 5 5
Complexity (3) 2 3 3
Cost (4) 5 3 3
Raw Score 20 23 19
Weighted Score 74 95 69

* Without the backlight

Table 14: LCD Module Selection

 74

From trade analysis, it was decided that a LCD screen would be the most suitable display.
However, it is worth noting that when OLED/PLED displays become more available, they could be a
better choice for this project, if a backlit LCD was used. Using a LCD without a backlight is the best
choice, due to the lower power consumption.

A block diagram for the LCD module is shown in Figure 57.

Figure 57: LCD Module Block Diagram

As seen in Figure 57, the LCD module has two supply inputs, a control bus input, a bidirectional

data bus, a return path to ground and an internal LED for backlighting. The signals seen in the block
diagram are described in Table 15 below.

VDD Positive voltage supply for logic.
VO Positive voltage supply for lighting.
K Cathode of LED for backlighting.
Control Bus Inputs to control functionality of the LCD, including the following:

RW – read/write pin
RS – reset/set pin
EN – active low enable

Data Bus Bidirectional pins for sending data to or receiving data from the LCD.
DB7-DB0 for 8-bit data bus
DB7-DB4 for 4-bit data bus

GND Return path to ground.
A Anode of LED.

Table 15: LCD Module Symbol Description

The logic supply, VDD is specified to be 5.0V with respect to GND. Since the main system voltage

is only 3.3V, and the batteries only supply a nominal 4.8V, a step-up regulator is required to drive the
LCD. This is accomplished by using a 5.0V regulating charge pump doubler. The IC doubles the input
voltage and then regulates it down to 5.0V using a shunt regulator, as found in linear regulation schemes.
This provides a stable 5.0V for the LCD. More information is available in the power section.

 75

 The voltage supply for LCD lighting, VO, is set by using a potentiometer between VDD and GND.
This value is temperature-dependent, but a typical value of around 2.0V from VDD to VO is suggested for a
wide operation below and above room temperature. In order to simplify the process of setting this value
and allow for field calibration, a trimpot is used.

The cathode and anode of an internal LED can be optionally used to turn on the backlight of the
LCD. A current-limiting resistor is required between the cathode and VDD in order to set the current for
the LED. Positive display LCDs do not require a backlight to be visible, but negative display LCDs do. In
practice, a potentiometer can be used in lieu of a discrete resistor to allow for an adjustable amount of
backlighting.

The control and data bus are connected from the LCD to the microcontroller. Simple digital
input/output pins on the microcontroller are used. The control bus contains three pins to enable the LCD
(EN), and set the function (RW and RS). The data bus can be operated in either 8-bit or 4-bit mode. In 8-
bit mode, an entire byte is sent in parallel. In 4-bit mode, the high nybble is sent, followed by the low
nybble.

4.7.1 LCD Module Requirements
The LCD module acted as a visual output for the roughness detector. The LCD could be used to

show pertinent run-time information, including the following:
• Mode of operation
• Number of satellites present
• When data is recorded or uploaded
• Powering mode
• Debugging information

4.7.2 LCD Module Selection
The next choice was on the type of LCD to use. There are a number of design choices, listed

below:
• Character or graphics display
• Serial module, parallel module or software-driven
• Positive or negative display
• Size

The display itself could be character or graphics based. Character devices are very simple to use

and operate. Graphics displays are more complicated to use and more expensive than character devices.
For this project, it was realized that all of the information to be displayed could be simple text. This led to
deciding on a character display.

When using LCDs, they can be controlled in software or hardware. In hardware, LCD modules
are used, where the module receives commands and then translates them into logic to control the many
pins of a LCD. In software, the code controls the logic to drive the LCD directly. The downfall of the
software mode is that it requires much more processing time and can use many I/O pins. Additionally, the
software is much more complex to interface straight to a LCD, instead of using a LCD module. However,
a LCD is less expensive than getting a whole LCD module. LCD modules can be controlled via a serial or

 76

parallel interface. Serial modules use very few I/O pins but can require more difficult software to
interface and cost more than parallel modules. Parallel modules require more I/O pins than a serial
module, but are relatively inexpensive and simple to interface. We decided to use a parallel LCD module,
due to the lower cost than a serial module, the expansive documentation and ease of interfacing.

LCD modules may or may not require a backlight. LCDs requiring a backlight are known as
negative displays, whereas LCDs that don’t require backlights are known as positive displays. The
advantage of negative displays is that they are much brighter than positive displays, can be read in the
dark, and are much easier to read. However, due to requiring a backlight, negative displays draw more
current than a positive display. Positive displays can be harder to read than negative displays and cannot
be read in the dark, but consume less power than a negative display. Positive displays can have an
optional backlight which allows them to be read in the dark. A positive display was decided upon, with
optional backlight, due to the large power savings.

LCD modules come in many sizes. We did not need to display a lot of information, so a 8x2 or
16x2 module would be able to display all the necessary information. By using a parallel module, we could
simply plug in a bigger screen and only make slight modifications to the code to make it work out-of-the-
box.

The LCD has to work with the rest of the system. This means that it must be able to be interfaced
with the microcontroller on a logic level. The most common and most well-documented parallel LCD
module is the HD44780, which was chosen due to its documentation. This is compatible with 3.3V logic
but requires a 5V supply. Since the batteries for our system cannot provide 5V, some step-up regulation
would be required. The choice of a charge pump to provide a regulated 5V for the LCD supply is
explained in the power supply section.

The requirements for the LCD are as follows.
• Parallel HD44780-compatible module
• Positive display with optional backlight
• 8x2 or 16x2 text display

The company, CrystalFontz, makes many different HD44780-compatible LCD modules. We
chose to go with CrystalFontz because of previous experience using their LCDs, expansive
documentation, and availability. Any HD44780-compatible LCD module will work with our hardware
design, but for testing purposes, we chose the CFAH0802A-YMI-JP 8x2 negative module from
CrystalFontz and the CFAH1602A-YYH-JP 16x2 positive module with optional backlight. The
CFAH0802A-YMI-JP can be seen in Figure 58 and the CFAH1602A-YYH-JP can be seen in Figure 59.

 77

Figure 58: CFAH0802A-YMI-JP LCD Module

(CFAH0802A, page 1)

Figure 59: CFAH1602A-YYH-JP LCD Module

(CFAH1602A, page 1)

4.7.3 LCD Module Circuit Description
 The schematic for the LCD circuitry is shown in Figure 60.

Figure 60: LCD Circuitry Schematic

The connector, JLCD1, was a small through-hole male connector. There was a cable from this

connector, mounted on the PCB, to the LCD. The LCD was used in 4-bit mode, with data bus lines DB7-
DB4 connected to the microcontroller at pins 4.7-4.4. The control lines, enable (EN), read/write (R/_W)
and data/command mode set (RS) were connected to the microcontroller on pins 4.1-4.3 respectively.
With this configuration, the entire LCD used only one of the six available ports on the microcontroller
(with pin 4.0 unused by the LCD).

The LCD was powered by the 5V reference from the charge pump regulator. The ceramic 0.1µF
capacitor, C5V1, acted as a decoupling capacitor to compensate for high frequency transient events and
noise, causing a more stable 5V to be applied to the LCD.

The input voltage, VDD was tied to the 5V reference which was the output of the charge pump
regulator. This was the logic voltage input of the LCD. The ground, VSS was tied to the 5V ground plane,
which was isolated from the other ground planes. RLCD1 was a 20kΩ 12-turn side-adjust miniature

 78

through-hole potentiometer which was used to see the display voltage of the LCD, VO. This was set so
that the voltage, VDD-VO was approximately 4.0V at 25 °C. If a different ambient temperature was
present, this potentiometer could be turned to allow for the correct VDD-VO, based on temperature.
The brightness of the backlight of the LCD could be controlled with RLCD2. RLCD2 was a 20kΩ 12-turn
side-adjust miniature through-hole potentiometer. This type of potentiometer was used to minimize the
cost and improve mechanical connection, as compared to a surface-mount potentiometer. It provided an
easy-to-use side adjustment in a small package and a large enough range of resistance values to accurately
and easily trim into a selected value. The resistor, RLCD2, limited the current going into the backlighting
LED of the LCD. This was typically 70mA for CrystalFontz LCDs with a backlight. This value could be
adjusted to increase brightness or could be turned down to decrease backlight brightness, while greatly
increasing battery life. Both RLCD1 and RLCD2 were PV37P potentiometers, made by Murata, as shown
in Figure 61.

Figure 61: PV37P Potentiometer (Trimmer, page 4)

4.7.4 LCD Module Testing
 The LCD was tested by writing the LCD API and a sample application for the microcontroller to
display text on the LCD. This worked well. The results are shown in Figure 62.

Figure 62: LCD Module Testing Results

4.8 Summary
 In this chapter, each module was shown how they were designed. First, the specifications for each
module were derived. Each module was then designed to fit those specifications (as best as we could).
The circuits were then shown with an explanation of why we made those decisions. Finally, each module
was tested to verify that our design worked.

 79

5 SOFTWARE DESIGN

This chapter explains the software design in detail. First, the data structures used will be
explained. Libraries and APIs designed will be described next. A section discussing modes of operation
will follow. The last section talks about the code for Google Earth.

5.1 Data Structures
A number of data structures were used to organize the software design. This section will explain

each of them.

5.1.1 IOdevice
The IOdevice data structure was the top-view encapsulation used for interfacing serial devices,

including the GPS, memory, and USB bridge devices. The structure contained the following information:
• Transmission buffer
• Reception buffer
• Receive function
• Send function
• Port

The transmission and reception buffers were instances of IObuffer. They were used as temporary

storage which was accessed by the programmer through the APIs. They provided buffering for serial
communication. They allowed the programmer to access information through the serial device without
having to directly read from or write to internal registers, which are actually used to send or receive
information. Additionally, they provided an abstraction to allow the receive and send functions to work in
a general case.

The receive and send functions were handled as function pointers. This allowed for
generalization, where each device could have a specific send or receive function associated with it. This
was important, especially for the memory device, which could be operated on either USART port, and
required distinct functions for handling transmission and reception depending on which port was being
used. By providing function pointers, the programmer could simply call the send or receive function
without caring which true function was actually being called.

The port was an instance of IOport. This was used to distinguish which port a device was
currently operating on. The MSP430 only allowed for one set of transmit and receive interrupts per
USART port, whether it was being operated in UART or SPI mode.

There were two IOdevice instances used, one for each of the two USART ports: dusart0 and
dusart1. The GPS, memory, and USB bridge were implemented as handles (pointers) to IOdevices: hgps,
hsfm, and husb respectfully. As the hardware was configured, hgps always pointed to dusart0, since the
GPS device was always connected to the first UART. Likewise, husb always pointed to dusart1, since the
USB bridge was always connected to the second UART. The serial flash memory (SFM), with handle
hsfm, would point to either dusart0 or dusart1, depending on whether it was using SPI0 or SPI1.

One main reason for this type of implementation was the MSP430’s interrupt vector

 80

implementation. Each serial port (USART0 and USART1) had only two interrupt vectors, transmission
and reception. Both UART0 and SPI0 (USART0) used the same interrupt vectors, as did UART1 and
SPI1 (USART1). Thus, in order to run the appropriate function when the USART0 interrupt was called,
the program either needed to know which mode it was in and have an ability to check this within the
interrupt, or some abstraction was needed. The IOdevice and function pointers provided this abstraction.
For example, during a USART0 transmit interrupt, just the receive function pointer for dusart0 was
called. As the function pointer was de-referenced, either the GPS or memory receive functions were
called, depending on the mode of operation.

5.1.2 IObuffer
The IObuffer structure was an encapsulation of a buffer to be used for IOdevice instances. The

IObuffer structure had the following distinct elements:
• Character buffer
• Length of used buffer
• Maximum size of buffer
• Status
• Position in buffer (transmitting) or stop byte (receiving)

The character buffer was implemented as a character pointer which was pseudo-dynamically

allocated. In reality, there was a number of static character arrays allocated. This character buffer was
simply a pointer to one of the static character arrays. Implementing in this fashion meant that as an
operating mode was changed, a different IOdevice could point to one of the now unused static character
arrays. This saved memory, since not every device required its own static memory space. Additionally, it
required less processing and was more optimized than trying to do real dynamic allocation, through using
malloc and free. Also, it required no garbage collection.

The length of the used buffer and maximum size of the buffer were used to manage storage in the
buffer. Other routines could use these to make sure there was no buffer overflow.

The status flag was an instance of IOstate. It was used effectively as a semaphore to tell whether
or not the buffer was free.

A union was used to store either the position in the buffer, when transmitting, or an optional stop
byte, when receiving. When transmitting, the position was used to identify where the next character of the
buffer should be read from. The stop byte could be used to stop reception upon receiving a specific
character. This was used as a serial message delimiter.

5.1.3 IOstate
IOstate was implemented as an enumeration which could have two states: free and used. The

purpose of this enumeration was to act as a status flag or semaphore. The semaphore was used to allow or
disallow access to a specific buffer. This allowed for resource availability checking, so multiple interrupts
did not access the same buffer at the same time.

Additionally, the status was used to check if an expected interrupt was finished. For example,
when the GPS was read from, the state was first set as used. Then, once the reception from the GPS had
completed or overflowed, the state was set to free. The main application used a wait loop to check if the
status flag was free. If it was still used, then the application would do something else.

 81

5.1.4 IOport
IOport was implemented as an enumeration which could have one of four values: UART0,

UART1, SPI0, SPI1. The purpose was to identify which serial device was being used by an IOdevice.

5.1.5 AXLint
AXLint was a type definition for the values read in from the accelerometer via the ADC. For our

application, this was an unsigned integer, providing 16 bits. In reality, the ADC was only 12 bits, but the
next step down, a short integer, would only provide 8 bits.

5.1.6 AXLaxis
The AXLaxis structure encapsulated a single axis of an accelerometer. This structure could be

application specific. For our application, it was decided that we would record the worst readings during a
time frame or a rolling average value during the time frame. Therefore, the AXLaxis structure held the
following data:

• Current/latest reading
• Rolling average or maximum and minimum values read

The current accelerometer reading was implemented as an AXLint type. It held the latest read in

conversion value from the ADC. The other element of the structure was implemented as a union which
either held a rolling average or two values: the maximum and minimum values read. In each case, the
values stored were of type AXLint.

The values were automatically updated on each ADC conversion with code in the accelerometer
API. By changing the data stored in this structure and minimal accelerometer API code, other data could
be stored in addition to the latest reading, such as an RMS value.

5.1.7 AXL3
The AXL3 structure was used to encapsulate an entire triple-axis accelerometer. It had three

AXLaxis instances, one for each of the three axes: X, Y and Z. Multiple AXL3 instances could be used for
a multiple accelerometer system, with minor modification to the accelerometer API.

5.1.8 Timer
The Timer structure was used by the timer API. It provided a generalized encapsulation for

MSP430 hardware timers. The Timer structure had the following elements:
• Start function
• Stop function
• Number of iterations to count
• Current number of iterations run
• Timer offset
• Timer status

The start and stop functions were implemented as function pointers. They were only called

internally. This allowed for an abstraction of the timer. The user could simply call for a hardware delay on

 82

a specific timer, using hwDelay of the timer API. The appropriate start and stop functions were called by
dereferencing the start and stop function pointers.

The number of iterations to count was set in the main application. This told the timer how many
times it should count up and overflow. By setting this value and the timer offset, the hardware delay could
be set. The current number of iterations run was an internal value to keep track of how many timer
overflows had taken place. The timer offset could be set to achieve hardware delays which were not a
multiple of the timer overflow time. For example, if the timer was set to overflow every one second, the
offset could be set to achieve a hardware delay of just 500ms. Likewise, with a combination of timer
offset and number of iterations to count, a 2.5 second hardware delay could be set.

The timer status value was implemented as a TimerStatus. The value of the timer status told if the
timer had finished or not.

There could be multiple timers, depending on the architecture and application. For our
application, only Timer A from the MSP430 was used. One instance of Timer, timerA, interfaced with this
hardware timer.

5.1.9 TimerStatus
The TimerStatus enumeration was used to check the status of a timer. It could have one of two

values: done and running. When the timer was counting, it would be set as “running”. When the timer had
finished counting, the status would change to “done”. The intent was for the main application to use a
wait loop to check the status of the timer.

5.2 Libraries and APIs
A number of libraries and APIs were designed. They are explained in this section.

5.2.1 Accelerometer
The accelerometer was driven by on-demand IO. This meant that the accelerometer was only read

when a specific function was called, in lieu of interrupt-driven IO. The header file for the accelerometer
API included a number of application specific constants. The values could be changed and the source re-
compiled if, for example, the accelerometers were not connected to channels 0, 1 and 2 of the ADC.

The accelerometer API included the four following functions:
• axlInit
• axlReset
• axlConvert
• axlRead

The axlInit function was used to initialize the ADC channels for the accelerometer. For this

application, channels 0, 1 and 2 were set up for measurement with respect to AVss, the MSP430’s analog
ground. This meant that the voltage could not be higher than AVcc, the MSP430’s analog power. Since
the accelerometer and the MSP430’s analog power shared the same source, this was not an issue. At the
end of the axlInit function, ADC conversion was enabled. Additionally, axlReset was called.

The axlReset function initialized the accelerometer device, an instance of AXL3. For this
application, each of the three axes had their current value set to zero, maximum value set to zero, and
minimum value set to INTMAX. This ensured that the first reading would replace the current value and

 83

both the maximum and minimum values. This function could be called at the end of each datalogging
period, to clear the accelerometer device values.

The axlConvert function was called internally to read a conversion from the ADC into ADC
memory registers. The ADC memory registers, ADC12MEMx, where x is the channel, stored the newly
converted values. This function then went into a wait loop to hang until the conversion was done.

The axlRead function was called externally by the programmer in order to request a new
accelerometer reading. It called the axlConvert function to issue a conversion and then stored the new
data in the accelerometer device structure. It checked if the new value was a new maximum or minimum,
and updated the appropriate field in the accelerometer device structure.

5.2.2 DIP Switch
The DIP switch API provided a simple interface to reading from the DIP switch. The header file

for the DIP switch API included a number of application specific constants, including the port and bits to
use for the DIP switch. These values could be changed if a larger or smaller DIP switch was used, or if
the DIP switch was connected to a different port. In our application, the DIP switch was configured for
Port 1, bits 0-3 (P1.0, P1.1, P1.2, P1.3). Additionally, there were a number of constants defined for the
different modes of operation.

The DIP switch API had two functions:
• dipswInit
• dipswRead

The dipswInit function set up the application specific port for input by the DIP switch. The

dipswRead function could be called by the programmer to immediately read from the DIP switch. It
returned the byte read in. The intent was to use the dipswRead function to read from the DIP switch and
compare the returned value against one of the defined constants for mode of operation.

5.2.3 GPS
The GPS API provided interrupt-driven IO code for communicating with the GPS device. The

GPS API had the following five functions:
• gpsInit
• gpsEnable
• gpsDisable
• gpsRecv
• gpsSend

The gpsInit function initialized USART0 for GPS communication. The USART0 was set up for a

4800 baud 8-none-1 UART connection with no flow control. The serial device was configured for
interrupt-driven IO. Additionally, the function set up the dusart0 IOdevice structure for using the GPS on
USART0. This included setting the receive and send function pointers to gpsRecv and gpsSend,
respectively. Also, the stopbyte was set to “0x0A”, which corresponded to the end of a NMEA sentence.
This meant that data would be read into the receive buffer until the end of the NMEA sentence was
reached.

 84

The gpsEnable and gpsDisable functions were used to enable and disable the interrupts for the
GPS device. These were used so that each of the interrupt-driven devices could be individually enabled or
disabled for interrupt service.

The gpsRecv function was used to receive and buffer characters from the GPS via a UART
connection. For our application, this meant reading from Port 2 of the Lassen IQ, which was configured
for NMEA output. The receive function also did boundary checking on the receive buffer, so that buffer
overflow did not occur. When a stopbyte was reached or an overflow has occurred, the status flag was
freed.

The gpsSend function was used to transmit buffered characters to the GPS via a UART
connection. The intent would be to connect to Port 1 of the Lassen IQ, which is configured for TSIP
interface. This port was used to configure the Lassen IQ. To actually implement this, another initialization
function would be required, since the TSIP interface uses 9600 baud, not 4800 baud. For our application,
the default configuration of the Lassen IQ was all that was needed, so this functionality was not
implemented.

5.2.4 LCD
The LCD API was used to interface with a HD44780-compatible LCD character module. The

API could use both the 8-bit or 4-bit interfaces. An application specific constant, LCD8BIT, could be
defined to use the 8-bit code; otherwise, the 4-bit code would be used. The application code could be
written once and then simply by setting or not setting LCD8BIT, the appropriate interface code would be
compiled. This presented a layer of abstraction, since the main application programmer did not need to
know or care if the actual hardware implementation was using eight or four data lines. In fact, this
hardware implementation could change, with no change in application code.

Additionally, a number of application specific constants were defined to specify which port of the
MSP430 the LCD is using. When set for 8-bit mode, this would encompass the entire port. When set for
4-bit mode, the high nybble would be used. In our application, Port 4 of the MSP430 was used with the 4-
bit interface. Therefore, pins P4.4, P4.5, P4.6 and P4.7 were used. The LCD API had nine functions:

• lcdInit
• lcdClock
• lcdWrite
• lcdCmd
• lcdLine1
• lcdLine2
• lcdClear
• lcdPrint
• lcdPrints

Of these nine, only lcdInit, lcdPrints, lcdClear, and perhaps lcdPrint would typically be called in

the main application. The functions, lcdClock, lcdWrite, lcdCmd, lcdLine1, and lcdLine2 were internal
calls.

The lcdInit function initialized the LCD for either 8-bit or 4-bit communication, as appropriate.
The initialization routine for a 4-bit interface is shown in Figure 63. The 8-bit initialization was very

 85

Figure 63: LCD Initialization (4-bit) (CFAH1602A-YYH-JP, page 17)

 86

similar. The delays were implemented through software delays, using the swDelay function from the
timer API. Each of the lines specifying bit values were implemented through calls to lcdCmd. The display
clear was implemented through a call to lcdClear.

Once the data bits were set on the LCD, the LCD needed to have the enable flashed in order to
read in and latch the current values. This was accomplished with the lcdClock function. The lcdClock
function cleared the enable, waited 4ms, set the enable, waited 2ms, and then cleared the enable again.
This forced the LCD to latch the current data bits’ values.

The lcdWrite function was used to write data onto the data lines of the LCD and cause the LCD to
read in and latch this data. An 8-bit value was passed into the function, which got written to the
appropriate pins of the MSP430 which were connected to the LCD. Then, with a call to lcdClock, the data
was latched in the LCD. In 8-bit mode, the data was written all at once. In 4-bit mode, only the high
nybble was written.

The lcdCmd function was used to send a command to the LCD. It used the same code, whether a
8-bit or 4-bit interface was used. The RS and RW inputs of the LCD were both set low, to specify that a
command was being entered. A 8-bit value was passed into the function, which would be written to the
data lines with lcdWrite. This value specified which function was called. A list of commands is shown in
Table 16. In 4-bit mode, two calls to lcdCmd were required, once for the high nybble and then for the low
nybble.

Table 16: LCD Commands (CFAH1602A-YYH-JP, page 13)

 87

The lcdLine1 and lcdLine2 functions were used to set the LCD cursor to the beginning of row one

or row two, respectively. They were implemented as defined macros, making appropriate calls to lcdCmd.
Likewise, lcdClear was a defined macro, making appropriate calls to lcdCmd and then lcdLine1. The
lcdClear function cleared the LCD and set the cursor back to the first position of row one.

The lcdPrint function printed an ASCII character on the LCD. First R/W was set low to enable
writing to the LCD, and then RS was set high to specify that the data was not a command, but should be
printed to the display. Then, the HD44780-compatible LCDs simply needed an ASCII value on their data
lines to print the character on the screen. In 8-bit mode, one call to lcdWrite was made to print the whole
8-bits passed into the function. In 4-bit mode, first the high nybble and then the low nybble were passed
into calls to lcdWrite.

The lcdPrints function was used to print a string starting at the cursor on the LCD. It used the
same code regardless of whether an 8-bit or 4-bit interface was used. The entire string was printed to the
LCD. This might cause the string to wrap around and start overwriting characters. This was left to the
responsibility of the application programmer. When the newline character was encountered, lcdLine2 was
called. Again, it was up to the application programmer to know if there was too much data to display on
one line before the newline character was called; no row wrapping was implemented. Each character was
passed into a call to lcdPrint.

5.2.5 Memory
The memory API provided an interface to the serial flash memory (SFM) device connected

through the SPI interface. The code worked with a library provided by STMicroelectronics. The library
had to be modified to work with the MSP430 and for our specific application. The modifications included
writing six functions, as follows:

• SelectSlave
• DeSelectSlave
• EnableTrans
• DisableTrans
• EnableRcv
• DisableRcv

 SelectSlave and DeSelectSlave functions toggled the active-low select line (S) of the SFM device.
The EnableTrans and DisableTrans functions toggled the active-low hold line (HOLD) of the SFM
device. The EnableRcv and DisableRcv functions toggled the active-low write enable line (W) of the SFM
device. These functions were used internally by the STMicroelectronics library.
 In the STMicroelectronics library, the function Serialize was used as a general purpose function
to send data to and receive data from the SFM device. All the other functions to perform specific tasks,
such as writing, reading, erasing a sector, et cetera, worked by going through the Serialize function. The
Serialize function had to be modified to work with the MSP430 and in our particular application. The
code was modified to use the IOdevice for the SFM device (hsfm). This allowed a level of abstraction, so
that the same library code would work, regardless of what SPI port the SFM device was connected to.

 88

The memory API included ten functions, as follows:
• sfmInit0
• sfmInit1
• sfmEnable
• sfmDisable
• sfmRecv
• sfmSend
• sfmPost
• sfmErase
• sfmBuffer
• sfmFlush

 The sfmInit0 and sfmInit1 functions were used to initialize the SFM device for SPI0 and SPI1,
respectively. Both functions set up the MSP430's port 2, bits 2 through 4 to the SFM device's active-low
hold (HOLD), select (S), and write enable (W). Either SPI0 or SPI1 was configured for interrupt-driven
IO using the external 8 MHz crystal with an 8-bit SPI interface. The actual clock that drove the SFM
device was divided by two, so a 4 MHz clock was used. Either dusart0 or dusart1, corresponding to the
IOdevice for USART0 or USART1, was configured to use sfmRecv and sfmSend for the receive and send
functions. Also, transmit and receive buffers were set up. An integer, sfmpos, was initialized. The purpose
of sfmpos was to hold the current position in the memory for writing. There was an additional buffer set
up, sfmbuffer, of type IObuffer. The IOdevice handle for the SFM device, hsfm, was set to point to either
dusart0 or dusart1.
 The buffers internal to the IOdevice were used in the Serialize code, but the sfmbuffer was used to
store what would be sent, before it was sent. When data was being sent, it was transferred to the internal
buffers of the IOdevice. The intent was to allow for buffering of a lot of data in the sfmbuffer using
sfmBuffer, before the data was flushed out, using sfmFlush. After initialized for the appropriate port, the
rest of the memory API and STMicroelectronics' library were generalized to work for either port.
 After initialization, sfmpos could be set to the next free area of the SFM device. This was
accomplished by scanning the memory and finding the first location with a block of 0xFF values. This
was the value given when the memory was erased. By searching for a contiguous block, the occasional
0xFF would be ignored.
 The sfmEnable and sfmDisable functions enabled and disabled the interrupts for the SFM device.
This allowed for independently selecting which interrupts were allowed to run, instead of globally
allowing all interrupts. The global interrupt flag must also be set in order for the USB interrupts to be
triggered, by using the _EINT macro.
 The sfmRecv function was used to receive data from the SFM device. By looking at the port value
stored in the IOdevice which hsfm points to, either RXBUF0 or RXBUF1 (for SPI0 and SPI1) was read
from and added to the receive buffer. Boundary checking ensured that the buffer did not overflow. This
function would be called when the receive interrupt was triggered for the port the SFM device was using.
 The sfmSend function was used to send data to the SFM device. By looking at the port value
stored in the IOdevice which hsfm pointed to, either TXBUF0 or TXBUF1 (for SPI0 and SPI1) was given
the next value in the transmit buffer. Once the transmit buffer was empty, the transmit status flag was set

 89

to free, and the index and length were reset to zero. This function would be called when the transmit
interrupt was triggered for the port the SFM device was using.
 The sfmPost function was used for a Power-On Self Test (POST) for the SFM device. First, the
manufacturer ID was read from the SFM device using the Flash function, provided by the
STMicroelectronics' library. The Flash function was used for all of the commands to send and receive
data between the MSP430 and SFM device. If this was not the value specified for the M25P64, then
Flash_Error was returned. Otherwise, Flash_Success was returned. A loop, waiting for Flash_Success
was used to make sure the right device was used. This loop timed out after a number of iterations, to make
sure the program was not held up in this loop forever.
 The sfmErase function was used to erase the entirety of the SFM device. After a countdown from
five, displayed on the LCD screen, the Flash function was called to erase the entire memory.
 The sfmBuffer function was used to buffer data sent to the SFM device into the sfmbuffer
IObuffer. The sfmBuffer function provided boundary checking so that buffer overflow did not occur. If the
buffer was full, SFMFULL was returned; otherwise, SFMNFULL was returned. This allowed the main
application program to keep adding data to the buffer until it was full, and then send it all along to the
SFM device, using sfmFlush.
 The sfmFlush function was used to send along all of the data in sfmbuffer to the SFM device. The
Flash function was used to program the SFM device with the data in sfmbuffer starting at position stored
in sfmpos. The position, sfmpos was then updated.

5.2.6 Timer
The timer API provided an interface to software and hardware delays. It included the Timer and

TimerStatus data structures. The timer was interrupt-driven. An interrupt was called every time that the
timer overflowed. The interrupt was associated with the specific hardware timer. For example, in our
application, only Timer A was used; the Timer A interrupt was called whenever its value overflows.

There were six functions in the timer API, as follows:
• taInit
• taStart
• taStop
• timerA_interrupt
• hwDelay
• swDelay

The taInit function was called to initialize Timer A. The function associated Timer A with the

timerA instance of the Timer structure, pointing the start and stop functions to taStart and taStop,
respectively.

The taStart, taStop and timerA_interrupt functions were internally called to interface with Timer
A. The taStart function set the timer A offset register, TAR, to the timer offset, and set up the timer A
control register, TACTL, to use ACLK as a reference, be interrupt-driven, and continuously count. Upon
calling the taStart function, Timer A began to count. It was set to overflow after one second.

When Timer A overflowed, the timerA_interrupt function was called automatically. This function
incremented the timer iteration counter and checked to see if counting was done. If so, taStop was called.

 90

Otherwise, Timer A was instructed that the interrupt has been processed and it should continue counting.
The taStop function was called when the timer had finished counting. This set TACTL to stop

counting and set the timer status to done.
The application programmer interface to the hardware timers was through the function, hwDelay.

This function had a number of arguments, as follows:
• Pointer to timer to use
• Number of iterations to count
• Timer offset to use

The pointer to the timer to use was available so that hwDelay could work with any Timer

instance. The number of iterations to count and timer offset to use were set in the de-referenced timer.
Then, the start function was called. Since the start function was a function pointer and the Timer passed
in was a pointer, the hwDelay function would work for an arbitrary number of Timer instances.

The direct advantage of the hardware timer was that it was much more accurate than the software
timer. The software timer was directly proportional to the clock frequency, which changed rapidly on the
MSP430 in order to optimize power consumption. An indirect advantage was due to the interrupt-driven
nature of the MSP430’s hardware timers. The application programmer could set up a timer to start
running and then perform some other task while waiting for the status value to be “done”. This was used
in a number of places in our application code.

The software delay function, swDelay, was used to make a software delay. It had two arguments,
as follows:

• Delay length
• Delay multiplier

The actual delay was intended to be the delay length multiplied by the delay multiplier. There

were a few experimentally determined constants defined to set up a half-second (DHSEC), millisecond
(DMSEC), and 100-µsecond (DHUSEC) delay multipliers. For example, if a 20ms delay was intended,
then the delay length would be set to 20 and the delay multiplier would be set to the millisecond constant
(DMSEC).

The delay was accomplished by simply running through two nested loops. Therefore, the
accuracy of the timer was not very high. This, coupled with the changing frequency of the MSP430, made
the overall accuracy of the software delay poor. It was not intended to be used when an accurate delay
was required. In our application, we used the software delays only for LCD initialization and in few other
places, in order to get delays on the order of hundreds of microseconds, or less than one hundred
milliseconds. These were situations where we did not yet have, or want, interrupts enabled, and thus could
not use the interrupt-driven hardware timers.

 91

5.2.7 USART
 The USART API provided generalized interrupt code for use with UART0, UART1,
SPI0, and SPI1. The MSP430 implemented a shared set of interrupt vectors for UART0 and
SPI0, as well as for UART1 and SPI1. There were two interrupts, the transmit and receive
interrupts. The USART API provided four interrupt service routines (ISRs), as follows:

• usart0_tx
• usart0_rx
• usart1_tx
• usart1_rx

 The usart0_tx and usart0_rx ISRs were shared between UART0 and SPI0 for transmit
and receive interrupts, respectively. The usart1_tx and usart1_rx ISRs were shared between
UART1 and SPI1 for transmit and receive interrupts, respectively. In each case, the IOdevice,
dusart0 or dusart1, called the send or receive function that it was pointing to. This was the
purpose of the function pointers, to allow this simple redirection in the ISRs.
 In the receive interrupts, there was also a line to set a random scratch variable to the value
in RXBUF0 or RXBUF1. The purpose of this was to actively pull out the value in RXBUF0 or
RXBUF1, which told the MSP430 that the ISR had been processed.
 In any case, the global interrupt enable (GIE) must be set to allow interrupts to be
triggered. The macro, _EINT, was used to set this flag. Likewise, the macro, _DINT, was used to
clear this flag, disabling all interrupts.

5.2.8 USB
The USB API was used to interface with the USB-UART bridge. The USB API provided

nine functions, as follows:
• usbInit
• usbEnable
• usbDisable
• usbRecv
• usbSend
• usbPost
• usbPrint
• usbPrintMenu
• usbDump

The usbInit function initialized the USB device. The result was that USART1 was set up

for a 921600 baud 8-none-1 UART connection. The external 8 MHz crystal was used to clock
the USB communication. The connection was set up with no flow control and was interrupt-
driven. The IOdevice, dusart1, was configured to use usbRecv and usbSend for receive and send
functions. The newline character was set as the stop byte for receiving. The intent was to enter
commands via HyperTerminal over the USB connection. The command would be terminated
with a newline. The IOdevice handle for the USB device, husb, was set to point to dusart1.

 92

The usbEnable and usbDisable functions were used to enable and disable the interrupts
for the USB device. This was independent of any other interrupts. The global interrupt flag must
also be set in order for the USB interrupts to be triggered, by using the _EINT macro.

The usbRecv function was used to receive data from the USB-UART bridge. The intent
was to send data from a PC through a USB connection to the bridge. This function received that
data. The data in RXBUF1 was stored in the USB receive buffer. Boundary checking was done
to ensure buffer overflow did not occur.

The usbSend function was used to send data to the USB-UART bridge. The intent was to
send data from the microcontroller to the bridge where it was automatically forwarded along to
the PC through a USB connection. The current byte in the transmit buffer was stored to
TXBUF1, which caused it to be sent via the UART connection. The position in the transmit
buffer was updated. If the transmit buffer had been emptied, the transmit status flag was set to
free. The intent was for the main application program to wait until the transmit flag was free to
ensure all the data has been sent.

The usbPost function was used as a Power-On Self Test (POST) for the USB device. As
implemented, it used usbPrint to send the text message, "GPS Road Roughness", and version
information. The intent was for HyperTerminal to be running on the PC, where this message
would be displayed.

The usbPrint function was used to send characters to the PC through the USB connection.
A string was passed into this function which was copied into the transmit buffer. No checks were
done to see if this would overflow the transmit buffer. Such functionality was up to the main
application programmer. To initialize transfer, the first character was put in TXBUF1, which
caused the USB interrupt to trigger. In the interrupt, through successive calls to usbSend, the
characters were iterated through, sending the entire string.

The usbPrintMenu function was used to print a pre-defined menu over the USB
connection. The intent was to use HyperTerminal to see the menu and enter in commands. The
menu printed is as below:

USB Menu

 c clear memory
 d download from memory
 h print this help menu again

The main application program handled the processing of data received, corresponding to this
menu.

The usbDump function was used to send the entire contents of the SFM device over the
USB connection. The intent was to use HyperTerminal on the PC with logging in order to store
the data read from the SFM device. The usbDump function iteratively went through the entire
SFM memory, filling up the USB transmit buffer and sending that data along. The function
assumed the global interrupt flag (GIE) was set before being called.

5.3 Operating Modes
The system was designed to run in one of a number of modes. The general structure of the datalog

and download modes was very similar, as shown in Figure 64. Each mode began with an initialization
routine. Then, the loop function for the mode was entered and repeated. The loop would run endlessly
unless the system detected that a new mode had been selected. When this happened, the mode terminated

 93

by running a kill function and returned to the main program event loop.

Figure 64: Operation mode general structure

Three modes are implemented, as follows:

• Datalog Mode
• Delete Mode
• Download Mode

5.3.1 Datalog Mode
 The Datalog Mode was used for collecting data. In this mode, the GPS and accelerometer were
read from, and data was stored in the serial flash memory (SFM). The USB was unused. The LCD was
used to provide some pertinent runtime information.

The datalogMode function was called to start Datalog Mode. In this function, datalogInit was
first called to initialize needed resources for this mode. Then, a while loop kept running the datalogLoop
function. At the start of each loop, it checked the DIP switch with dipswRead to make sure the mode was
still set for datalogging. If the mode was changed, the loop exited and datalogKill was called. Control was
then transferred back to the main program.

The datalogInit function started by disabling interrupts. This was to quell spurious interrupts
which could interfere with device and resource initialization. The GPS was first configured for UART0
with a call to gpsInit. Then, the SFM was configured for SPI1 with a call to sfmInit1. This was followed
by calling sfmPost and seeing the result of a power-on self test for the SFM. If the result was not
successful, an error message was displayed on the LCD, and the system was halted with a call to exit.
This required a reset. When sfmPost was successful, the accelerometer was next initialized with a call to
axlInit. The function ended by clearing the LCD.

The datalogLoop function began by starting Timer A with a 2.5 second hardware delay, using
hwDelay. The GPS device’s interrupts were then enabled with gpsEnable, and the accelerometer structure
values were reset, by calling axlReset. While waiting for the timer to be finished, the accelerometer was
continuously sampled by calls to axlRead. The result was that the accelerometer structure would have the
maximum and minimum values read for the time period of roughly 2.5 seconds, between successive GPS
reads.

The GPS device’s interrupts were then disabled after the timer was done with a call to

 94

gpsDisable, and the GPS receive buffer’s length was checked to determine if any data has been received.
If so, the string was parsed to find out what type of NMEA string had been received. In the case of a
“GPGGA” string, the string was parsed to find the UTC time, latitude, north/south indicator, longitude,
east/west indicator and number of satellites. The number of satellites was printed to the LCD, and if at
least four satellites were present, the data was recorded. Recorded data included UTC time, latitude,
north/south indicator, longitude, east/west indicator, and accelerometer maximum and minimum values
for the X-axis, Y-axis, and Z-axis. The location in the SFM was then updated.

The datalogKill function freed up the buffers for the dusart0 and dusart1 functions through
pointer nullification.

5.3.2 Delete Mode
 The Delete Mode was used to clear the entire contents of the serial flash memory (SFM). This
“mode” was an exception to the general structure shown in Figure 64. In this mode, the SFM was just
initialized and a power on self test was performed on it.

If successful, there was a count down visible on the LCD from 5 to 0, with a one second pause
between each number. When 0 was reached, the entire memory was erased with one bulk erase instruction
passed to the Flash function. The microcontroller then intentionally hung until a reset was performed to
ensure that this function was not accidentally set with the DIP switch and continuously run, which would
erase the memory over and over again. This would be possibly damaging for a flash memory structure,
since it has a limited number of writes.

If the power on self test was not successful, then the LCD printed an error message that the
memory may be bad and hangs, waiting for a reset. Again, this was intentional, to avoid selecting this
mode by accident.

5.3.3 Download Mode
The Download Mode was used to transfer data from the embedded system to a PC. In this mode,

the serial flash memory (SFM) was read from, and data was sent over the USB connection via the USB-
UART bridge. The GPS and accelerometer were unused. The LCD was used to provide some pertinent
runtime information.

The downloadMode function was called to start Download Mode. In this function, downloadInit
was first called to initialize needed resources for this mode. Then, a while loop kept running the
downloadLoop function. At the start of each loop, it checked the DIP switch with dipswRead to make sure
the mode was still set for downloading. If the mode was changed, the loop exited and downloadKill was
called. Control was then passed back to the main program.

The downloadInit function started by disabling interrupts. This was to quell spurious interrupts
which could interfere with device and resource initialization. The USB-UART bridge was first configured
for UART1 communication. The power-on self-test for the USB was then run, followed by printing a
menu over the USB. The intent was to connect to the embedded system via HyperTerminal, where this
menu would be displayed, and commands could be entered. Then, the SFM was configured for SPI0 with
a call to sfmInit0. This was followed by calling sfmPost and seeing the result of a power-on self test for
the SFM. If the result was not successful, an error message was displayed on the LCD, and the system
was halted with a call to exit, which required a reset. When sfmPost was successful, the position to start
reading from, sfmreadpos, was set, and initialization was finished.

 95

The downloadLoop function began by setting up Timer A for a 2.5 second hardware delay,
through a call to hwDelay. The USB device’s interrupts were enabled with a call to usbEnable, and the
global interrupt enable (GIE) flag was set with a call to _EINT. A loop waited for either a USB command
to be entered or for the timer to time out. Once this happened, the USB receive buffer was looked at to see
if any data was received. If so, it was parsed to figure out which command was given. Three commands
were implemented, as follows:

• ‘c’: Clear memory device
• ‘d’: Download entire memory device
• ‘h’: Print menu again

If the ‘c’ command was entered, the entire SFM was cleared by calling sfmErase. When the ‘d’

command was entered, the function usbDump was called, to get the entire contents of the SFM and print
them out over the USB connection. The intent was to have HyperTerminal running on the PC, and to use
the logging feature to record all of the data. When the ‘h’ command was entered, the function,
usbPrintMenu, was called, in order to display the menu again.

The downloadKill function freed up the buffers for the dusart0 and dusart1 functions through
pointer nullification.

5.4 MATLAB Code to Create .kml File
 The mapping program chosen for this project was Google Earth. This section discusses the
MATLAB code that creates a .kml file for Google Earth. When this program was run, four statements
were displayed. The first told the user to enter an input file. This refers to the ASCII text file that was
created in HyperTerminal. The file was read into MATLAB using the fread function. The second
statement asked to assign a name for the new .kml file. The third and fourth statements asked the user to
input a test name and description. Once the file was read into MATLAB, the array containing the inputted
data was parsed using strtok. A while loop was used to separate each section of the string into different
variables. For example, all the latitude readings were stored into the lat variable. Once separated, the
longitude, latitude, and time was converted into a format that would be recognized by Google Earth. Also,
the output magnitude from the accelerometer was calculated by taking the square roots of the squares of
each axis output (both maximum and minimum). The maximum value between the two was chosen.
 Next, the .kml file was created. The diary function was used to create a new file to save the
program output. The .kml file was created using all disp commands to print out each line. The standard
.kml file format was used (as shown on Google Earth’s website). Also, the different pin colors were
chosen by ‘if’ statements. The program examined the accelerometer magnitudes and decided which color
to assign. When the program was complete, the new .kml file appeared in the current MATLAB directory.

5.5 Summary
 In this chapter, all the software written for the device was explained. The data structures created
for the project were described, along with the libraries and APIs that were designed. Also, the various
modes of operation were detailed. They were Datalog, Delete, and Download. In addition, the code
written for Google Earth was explained. This code converted the stored data into a .kml to display in
Google Earth.

 96

6 SYSTEM INTEGRATION AND TESTING

This chapter will present the integration of the individual modules and final testing. First, the
modules were combined on a soldered protoboard and tested to prove functionality. Once the prototype
was working, the PCB was build and tested. In addition, a run time analysis of the modules will be
derived, and a Google Earth test will be presented.

6.1 Soldered Prototype
 This section will discuss the building and testing of the soldered prototype. The prototype was
built on a solderable protoboard. Sockets were used for the USB-UART bridge, LCD, and memory. A
different USB module was used at this time from Sparkfun, as seen in
Figure 65. The USB module used was the CP2102, which was similar to the CP2102-microUSB module
that was eventually used. A socket was constructed out of other sockets, cut in half, and aligned in a
square, for the microcontroller breakout board. This board can be seen in
Figure 66, also from Sparkfun.

Figure 65: Sparkfun CP2102 Module

(Breakout Board, page 1)

Figure 66: Sparkfun MSP430F169 Breakout Board

(Header Board, page 1)

The GPS was initially attached via a socket; however, this did not work very well. The first
revision of the PCB was cut up, and the section for the GPS unit was used and connected to the socket on
the protoboard. This can be seen in Figure 67.

 97

Figure 67: GPS Connector for Prototype

The prototype was built up, module-by-module, iteratively testing each part. The microcontroller

was first tested. Then, the LCD API was written and tested. During testing, a logic probe was used to
make sure each line got the right signals, at the right time. This also required writing software delay code.

Next, general interrupt-driven UART code was written and tested. This was tested by using code
for the USB, which was very straightforward. Code for the GPS was written and tested to make sure that
strings could be read from the GPS and parsed. A sample string was used to test against the parsing code.
The parsing code broke the string up into string type, UTC time, latitude, north/south identifier, longitude,
east/west identifier and number of satellites.

Next, SPI code was written and tested. It was tested by hooking up a function generator to the
input of one SPI port and setting up the output of the port to echo it. By looking at the function generator
output and SPI port output on an oscilloscope, it was shown that the synchronous serial connection
worked.

Afterwards, a full SFM API was built up and tested with the SPI code. This required reading
documentation on the STMicroelectronic’s libraries and modifying them to work with the MSP430. Then,
code was written, tested, and debugged to get the device and manufacturer ID to return successfully.
Upon this, code was written to store a specific string in the memory and then read back that location. This
was tested in the debugger and worked. Memory erasing was then also tested, after having written data to
the SFM. This was tested and worked for both SPI0 and SPI1 ports. Below are images of the completed
prototype.

 98

Figure 68: Image of Completed Prototype (Top View)

Figure 69: Image of Completed Prototype (Side View)

 99

6.3 PCB
 This section will discuss the building and testing of the PCB. The PCB was designed after having
built the above working prototype. Some design decisions were made:

• 2-layer board
• 1 oz copper
• Minimize board space
• Use thick traces for power paths
• Separate ground planes for analog, digital, 5V and power
• Use 0805 components when possible
• Use mostly surface mount components

A 2-layer board is standard. We decided to use only two layers to minimize cost. For the same

budgetary reason, 1 oz copper was to be used. Additionally, the board space was to be minimized. The
first revision of the PCB had components on both sides in order to minimize space. Unfortunately, this
was overly ambitious, and did not work.

Power paths require thick traces. Since a standard trace width is 12 mils, a power path would have
50, 60 or up to 75 mils, where possible. This included input voltage, output voltage rails, and ground rails,
where needed (no direct path to ground plane). This figure was chosen because it would work with 1 oz
copper for fairly high currents, much higher than the currents on the board. However, the traces were
thickened to reduce trace resistance. Additionally, they would not heat up as much with the higher
currents, especially in the battery charger circuitry where up to 1 or even 2A could be used. Therefore, the
thicker traces help with thermal relief. A copper pour heatsink was also attached to the pre-regulator’s tab
in order to provide thermal relief. Also, there was room for a heatsink to be screwed on to the power BJT
in the battery charger circuitry.

To minimize ground corruption noise, separate ground planes were used with analog, digital, 5V,
and power ground. The ground planes connected to each other to provide a common return, but only
through a thin, 12 mil trace. This helped provide some ground isolation. The ground planes were only on
the bottom side of the board for the second board revision, due to issues with putting grounds on both
sides that was found on the first revision.

Initially, there were planes on both sides of the board. This was overly ambitious, and there was
not enough thermal clearance in some areas, causing difficult to find and fix plane-to-plane and plane-to-
pin shorts. This made the first revision of the board unusable.

It was decided to use a design which focused on using surface mount components. The reason for
this was that surface mount components are typically much smaller than through-hole components.
Additionally, it allowed for more room for routing, since traces could run on the layer below surface
mount components, whereas with through-hole components, there would be many holes on the bottom
layer that the routing would have to avoid. Also, surface mount components, with shorter and smaller
leads, could have less parasitic elements, such as decreased pin inductance, than through-hole
components.

There were many surface mount package sizes. It was decided to use 0805 packages, where
available, for resistors and capacitors. The needed power rating for each resistor was checked, and, where

 100

needed, 1206 or larger resistors were used. A 2W wire-wound resistor was used for RQ1 in the battery
charger circuitry. In reality, since this 2W was calculated as a worst case and was not constant, we could
have relied upon the pulse power rating and used a smaller resistor. The wire-wound was chosen for its
smaller size. A different resistor might be a better choice, to minimize the inductance of this resistor;
wire-wounds are known for having a high amount of parasitic inductance.

Additionally, the needed voltage rating of each capacitor was checked. In some cases, 1206 or
larger capacitors were required. The power supply input capacitor, rated for 33µF, for example, required a
larger package. Tantalum capacitors were used for capacitor values rated for 1µF and greater, due to their
excellent invariability with time and temperature. Ceramic capacitors were used for small capacitor
values, such as 0.1µF decoupling capacitors, due to the very low equivalent series resistance (ESR),
which aids in blocking higher frequency noise and has excellent thermal characteristics.

Decoupling capacitors were placed as close as possible between each module and the input pins.
Capacitors in general were placed as close as possible to the pins they were connected to. This often
reduces the effects of trace resistance and inductance, and provides a more stable voltage. Often, a 0.1µF
ceramic was placed in parallel with a larger tantalum capacitor to help block out high frequency noise.

The program, PADS (version 2005), by Mentor Graphics, was used for the PCB layout and
routing. The routing strategy was configured to route the power nets first, then ground, and then the rest.
This was done to reduce the resistance, especially with connections to power and ground, in order to
increase efficiency by reducing power losses through trace resistance. Additionally, smaller traces mean
less trace inductance, which means less parasitic effects, especially on analog circuitry. The decoupling
capacitors, right next to the part they were decoupling, also helped. The Auto-Router was configured to
route in this fashion and provide a high level of routing optimization, while maintaining enough clearance
from pin-to-trace, trace-to-trace, and trace-to-via. This optimization included trying to reduce the number
of vias, not by increasing the length of traces. Trace length minimization first, and then via minimization
was the goal.

The resulting second revision PCB worked well, but still has not been completely debugged. The
working features are outlined in the following list.

• The pre-regulator system works completely.
• There is clean power regulation of 3.3V from the LDO and 5V from the charge pump,

whether the USB, wall, car or four NiMH batteries are used.
• The power source switching system has been tested and works. There are no unwanted

voltages feeding back in; there is a clean “break before make” of sources.
• The battery charger seems to draw current through the wall/car adapter and put a voltage onto

the batteries when they are present, indicating that charging should work.
• The microcontroller can be programmed and debugged, in-circuit.
• The hardware timer of the microcontroller works, which means the 32kHz crystal works.
• The reset button and DIP switch works completely.
• The LCD module works completely.
• The USB module works completely.
• The accelerometer module works completely.
• The memory can be identified, read, and erased from either SPI0 or SPI1.
• Strings can be read and parsed from the GPS.

 101

There are a number of issues that have not been debugged, which are outlined below:

• The GPS does cannot find satellites to “lock on” to.
• The writing functionality of the memory has not been tested.
• The Download Mode code only works 100% when the Datalog Mode code is commented out.

This likely indicates that the code is running close to or over the 60KB limit of the MSP430.
• The battery charger circuitry has not been extensively tested.

Below are images of the second PCB revision. The first image, Figure 70, shows the PCB layout.

The second image, Figure 71, shows the assembled PCB inside the enclosure. The third image, Figure 72,
shows the test setup for the PCB.

Figure 70: Second PCB Revision

 102

Figure 71: Assembled PCB inside Enclosure

Figure 72: Test Setup for PCB

 103

6.3 Enclosure
 The enclosure chosen was the LH57-130 from PacTec. The dimensions were 7.2 in. x 5.5 in. 1.5
in. The second PCB revision was designed to specifically fit the enclosure. Some modifications were
made to allow connections from the PCB to the outside of the enclosure. Holes were drilled in the sides to
accommodate the GPS antenna, JTAG connector, LCD module, USB connector, and the power adapter.
This enclosure can be seen in Figure 72.

6.4 Run Time Analysis
This section examined various run times for the device. This was accomplished by finding the

currents used by all the components in the design. The components that were analyzed were the battery
charger, voltage regulator, accelerometer, LCD, microcontroller, GPS, memory, and the USB to UART
bridge. Also, the accelerometer block contained three op-amps.
 Since the exact usage of the device cannot be predicted, several scenarios were examined. They
predicted the worst case run times for the device. The first scenario was if all the components were
running in normal mode and were never turned off. These current values were the maximum amount the
components could draw. Table 17 shows the maximum currents for all the components when the device
was in use. All the data was taken from the component datasheets.

Module Current
Microprocessor 2.64mA

LCD1 2.28mA
Voltage Regulator 8μA

Charge Pump 150μA
Battery Charger 5μA
Accelerometer 0.32mA

Op-Amp 0.95μA
GPS2 27.02mA

Memory3 101.2μA
USB to UART 330μA

Table 17: Currents for Normal Mode

Notes:
1 This current value for the LCD was a combination of the module running with and without the backlight. Without
the backlight, the LCD used 1.2mA. With the backlight, the LCD used 130mA. Since the backlight drew too much
current for our application, it was assumed that the backlight would only be on for 30 seconds every hour. To find
the current for this assumption, the following steps were taken:

· Percent of time backlight is on = 30sec/3600sec = 0.0083
· Current used for backlight = 0.0083*130mA = 1.08mA
· Total current for LCD = 1.2mA+1.08mA = 1.28mA

2 The current for the GPS was a combination of current drawn (27mA) and current for the battery backup (20μA).

3 This current for the memory took into account both standby time and write time. The read time current was
supplied by the USB. The standby current was 100μA and the current for a write was 15mA. To determine the
current for the memory, the following steps were taken:

 104

· Since data was stored in a buffer, a write to memory only occurred when the buffer was full. This was
approximately every 18 seconds. A write lasted approximately 1.4ms.
· Number of writes per hour = 3600sec/18sec = 200 writes
· Length of writes = 200*1.4ms = 0.28sec
· Percent of time for writing = 0.28sec/3600sec = 7.78*10-5

· Current used for writing = 7.78*10-5 * 15mA = 1.167μA
· Percent of time in standby = (3600sec-0.28sec)/3600sec = 0.9999
· Current used in standby = 0.9999*100μA = 99.99μA
· Total current for memory = 1.167μA+99.99μA = 101.2μA

 The total current drawn by all the components was 32.855mA. This current determined how long
the unit could run on 4 “AA” batteries (2500mAh). Since the battery capacities were not perfect and the
total voltage could not drop below 3.45V, it was assumed that only 2000mAh was drawn from the
batteries. The total run time for this scenario was 60.87 hours (2300mAh/38.603mA). This was
approximately two and a half days.
 Another scenario was analyzed in order to extend the run time for the roughness detector. This
time, all the components were fully running for only 10 hours a day (approximately one work day). For
the other 14 hours, the components were in standby mode to conserve power. To determine the power for
this scenario, the total current for standby mode needed to be calculated in addition to normal running
mode. Table 18 shows the minimum currents for the components when the device was in standby mode.

Module Current
Microprocessor 1.1μA

LCD1 2.28mA
Voltage Regulator 8μA

Charge Pump 150μA
Battery Charger 5μA
Accelerometer2 ≈ 0

Op-Amp2 ≈ 0
GPS3 20μA

Memory 100μA
USB to UART 330μA

Table 18: Currents for Standby Mode

Notes:
1 The current for the LCD was calculated the same way as in the previous scenario.

2 The currents drawn by the accelerometer and op-amp were assumed to be negligible.

3 The GPS current only took into account battery backup.

 The total current drawn by all the components in standby mode was 2.894mA. The current for
normal mode was previously found to be 32.855mA. To determine the run time for this scenario, two
situations were analyzed. The first situation was if the operator forgot to turn the unit off at the end of the
day. If this occurred, then the unit was automatically turned off after 30 minutes of inactivity. The steps to
determine the total run time were as follows:

 105

· Current used in normal mode = [(10hrs+0.5hrs)/24hrs]*32.855mA = 14.374mA
· Current used in standby mode = [(14hrs-0.5hrs)/24hrs]*2.894mA = 1.628mA
· Total current = 14.374mA+1.628mA = 16.002mA
· Run Time = 2000mAh/16.002 = 124.98hrs

 The total run time for the first situation was 124.98 hours. This was approximately 5.21 days. The
second situation for this scenario was if the operator did turn the power off at the end of the day. The
steps to determine the total run time were as follows:

· Current used in normal mode = (10hrs/24hrs)*32.855mA = 13.690mA
· Current used in standby mode = (14hrs/24hrs)*2.894mA = 1.688mA
· Total current = 13.690mA+1.688mA = 15.378mA
· Run Time = 2000mAh/15.378 = 130.06hrs

 The total run time for the second situation was 130.06 hours. This is approximately 5.42 days.
The run times for both situations were fairly close. It did not make a big difference if the detector was not
turned off at the end of the day.
 These two scenarios give a sense of how long the device can run on 4 “AA” batteries. If the
device was always left on and never set to standby mode, it would only last approximately 2.5 days.
However, if standby mode was used when the vehicle was not in use, the run time would be doubled. This
would be the preferred method of operation. The device would be able to run for the entire work week
without needing to be recharged.

6.4 Google Earth Test
 Since our team did not perform a road test, we were not able to produce accurate results.
However, doctored data was used to simulate a road test. We were able to create dummy data by using
GPS values found by the previous WPI road roughness project. Since we did perform a road test with just
the accelerometer in a car, we had an idea of what the accelerometer values should be. To get this
accelerometer data, we used the PicoScope oscilloscope to record the accelerometer output from the
soldered test board in Figure 30. The output was between 0.3 – 0.45 V. This corresponded to a g value
around 1 (0.330 V is one g). A sample string is shown below.

152540,4215.5430,N,07149.3225,W,2195,2016,2096,1920,2225,2236;

The fields are as follows: time, latitude, north or south hemisphere, longitude, east or west hemisphere, x-
axis maximum, x-axis minimum, y-axis maximum, y-axis minimum, z-axis maximum, and z-axis
minimum. The accelerometer values are expressed in 12-bit values from the ADC.
 With the input text file created, we ran the MATLAB code to create the .kml file. The data was
saved to the specified file. Once MATLAB was complete, the .kml file could be opened in Google Earth.
The output can be seen below.

 106

Figure 73: Google Earth Sample

 The road roughness was classified into five categories: very smooth, smooth, average, rough,
very rough. The magnitude of 0.3 – 0.45V was divided into five sections to obtain the levels. The higher
the number, the rougher the road was. Each roughness level has an associated colored push pin. For a
very smooth point, a green pin was assigned. For a smooth point, a light blue pin was assigned. For an
average point, a yellow pin was assigned. For a rough point, a pink pin was assigned. For a very rough
point, a red pin was assigned.
 Also, when each push pin was selected, a balloon with relevant information was displayed. The
information was the point number, time, roughness level, and magnitude. The magnitude was expressed
in both volts and g’s.

6.5 Summary
 This chapter discussed the building of the prototype and PCB design. The building process was
documented step by step. Even though the prototype was built up, no field test was performed. Due to the
problems with the first PCB revision, there was not enough time to test the second PCB on the road.
However, the mapping program was still tested using dummy data. With GPS data from a previous
project and accelerometer data from an initial road test, a sample text file was created to test Google
Earth. The output was as expected. The only task needed to complete this project was to drive around
with the second PCB and see if the rough areas show up in Google Earth.

 107

7 CONCLUSIONS AND RECOMMENDATIONS

 This chapter summarizes the completed project. The overall goal of the project was to design a
small, low power, and inexpensive system that would record the roughness of the road and coordinate it
with a GPS location. This data would then be uploaded to a computer and overlaid on a map, indicating
the magnitude of roughness. The projected needed to be simple and easy so a city could monitor the
condition of their roads.

7.1 Summary of Project Design
 To accomplish our project, we followed a process that led us from the project goal to the final
PCB testing. This process can be seen in Figure 14. The overall design can be broken down into various
modules.
 The first module was power. This module provided power to the device with three options. The
main source of power was four “AA” NiMH batteries that were charged every week. An alternate source
of power was the car adapter. When the car adapter was plugged in, the device ran off the car, while
charging the batteries. The third power source was the USB connection, which provided 5 V when
attached.
 The next module was the accelerometer. This module detected vibrations for the road and
outputted a voltage proportional to the vibration. This information was used to determine the roughness of
the road. The output voltage from all three axes were used to determine the overall magnitude.
 The third module was the GPS. This module was responsible for determining the location of the
data points collected from the accelerometer. Standard NMEA strings were outputted from the GPS. The
information in these strings included latitude, longitude, and time. These readings were coordinated with
the accelerometer readings.
 The fourth module was the microcontroller. This module controlled the device and provided on
board processing. The microcontroller inputted the accelerometer readings and corresponding GPS
locations, and stored them in the memory. The on board processing included buffering the accelerometer
readings and choosing the worst case for each GPS reading.
 The next module was the memory. This module was responsible for storing the accelerometer and
GPS data collected while driving. At the end of the week, the data was uploaded to a computer and the
memory was cleared.
 The sixth module was the USB interface. This module dealt with transferring data between the
device and the computer. When all the data had been collected, the USB was connected to the device, and
the USB mode was selected. This started the data upload to the computer via HyperTerminal. The data
was stored in an ASCII text file, which was used to import the data into Google Earth.
 The last module was the LCD. This module served as the visual output of the device. It aided in
debugging the system and outputted various information, such as the number of satellites, mode of
operation, when data is recorded or uploaded, and power mode.
 Once each module was tested, they were interfaced with each other and tested as a whole.
Software was also written for testing the prototype. The final system was tested on the road to verify the
functionality.

 108

7.2 Future Recommendations
 There are several improvements that can be made to this project. Once improvement would be to
use multiple accelerometers located in the vehicle. Since our project only uses one accelerometer, the
output magnitude is only taking into account the vibration from one part of the car. For a better output
reading, an accelerometer at each wheel would provide better information for determining the vibration
magnitude.
 Another improvement would be to have a real time output to a PDA or laptop. With this addition,
the roughness can be plotted on the map as the vehicle is driving. This would aid in debugging. If a rough
section of road was driven over, the user could instantly confirm if the device was working properly.
 A third improvement would be to upload the data to a USB flash drive. This would simplify the
project even more. If a flash drive was used, then a USB cable and computer would not be needed to
upload the data from the memory. With the press of a button, the data would be saved into a file on the
flash drive.

7.3 Conclusions
 We were able to successfully accomplish our goal for the project. Most of the specifications
described in Chapter 3 were met. The device was small (7 in. x 5.5 in. x 1.5 in.). This was lower than the
specification of 7 in. x 5.5 in. x 1.5 in. It was also inexpensive (approximately $150). The predicted price
was $250. The low power specification was not met. The device drew 32.9mA at 3.3V, which
corresponds to a power of 108.57mW. Our goal was to have 100mW. The device was all in one enclosure
and was accurate to at least 15 m. The memory could store more than one week’s worth of data, which
surpassed the specification. However, the device was not too reliable. There were bit errors in the GPS
strings that affected the MATLAB parsing. Once these errors were deleted from the text file, the .kml file
was created successfully. When the second PCB is field tested, then we will know if the project was a
complete success. Overall, this system could help cities locate roads in need of repairs before more
damage occurs to vehicles.

 109

8 REFERENCES

This chapter lists the references used in this report. Each reference corresponds to the appropriate
citation in the main text. Also the datasheets used will be listed.

8.1 Works Cited

“Accelerometer Design and Applications.” (n.d.). Analog Devices. Retrieved September 15, 2006, from

http://www.analog.com/en/content/0,2886,764%255F800%255F122115,00.html.

“Achieving a High Level of Smoothness in Concrete Pavements Without Sacrificing Long Term

Performance.” (n.d.). Federal Highway Administration. Retrieved October 8, 2006, from
http://www.fhwa.dot.gov/pavement/pccp/pubs/05068/02chapter2.cfm.

Angelini, Nicholas, Matt Gdula, Craig Shevlin, and Jose Brache. “Mapping City Potholes.” (2006, April

27). Worcester Polytechnic Institute. Retrieved September 16, 2006, from
http://www.wpi.edu/Pubs/E-project/Available/E-project-042706-141742/unrestricted/
Final_Pothole_Report.pdf.

“Breakout Board for CP2102 USB to Serial.” (n.d.). Sparkfun. Retrieved November 12, 2006, from

http://www.sparkfun.com/commerce/product_info.php?products_id=198.

Budras, Joseph. “A Synopsis on the Current Equipment Used for Measuring Pavement Smoothness.”

(2001, August). Federal Highway Administration. Retrieved October 8, 2006, from
http://www.fhwa.dot.gov/pavement/smoothness/rough.cfm#iii.

“CFAH0802A Color Standard LCD Modules.” (n.d.). Crystalfontz. Retrieved November 2, 2006, from

http://www.crystalfontz.com/products/0802a-color/index.html#CFAH0802AYMIJP.

“CFAH1602A Color Standard LCD Modules.” (n.d.). Crystalfontz. Retrieved November 2, 2006, from

http://www.crystalfontz.com/products/1602a/index.html#CFAH1602AYYHJP.

“CFAH1602A-YYH-JP.” (n.d.). Crystalfontz. Retrieved November 2, 2006, from

http://www.crystalfontz.com/products/1602a/CFAH1602AYYHJP.PDF.

“Crystal.” (n.d.). Pic Fun. Retrieved April 24, 2007, from http://www.picfun.com/module/crystal.jpg.

“Differential GPS.” (n.d.). Wikipedia. Retrieved October 10, 2006, from

http://en.wikipedia.org/wiki/Differential_GPS.

 110

“DIP Switches, Low Profile, Slide Actuator, Through Hole and Surface Mount.” (2004, September). Tyco
Electronics. Retrieved March 15, 2007, from
http://ecommas.tycoelectronics.com/commerce/DocumentDelivery/DDEController?Action=show
doc&DocId=Catalog+Page%7F1308390_0904_A3_A4%7F1104%7Fpdf%7FEnglish%7FENG_
CAT_1308390_0904_A3_A4_1104.pdf.

“Global Positioning System.” (n.d.). Wikipedia. Retrieved October 10, 2006, from

http://en.wikipedia.org/wiki/Gps.

“GPS in More Detail.” (n.d.). Smithsonian National Air and Space Museum. Retrieved October 10, 2006,

from http://www.nasm.si.edu/gps/spheres.html.

“Half-Pitch DIP Switch.” (2005, March). Omron Electronic Components LLC. Retrieved March 15, 2007,

from http://oeiwcsnts1.omron.com/ocb_pdfcatal.nsf/PDFLookupByUniqueID/
1488E4BE7C28FFC486256FC7005E9221/$File/D22A6H0305.pdf?OpenElement.

“Header Board for MSP430F169.” (n.d.) Sparkfun. Retrieved September 14, 2006, from

http://www.sparkfun.com/commerce/product_info.php?products_id=48.

“How GPS Receivers Work.” (n.d.). Howstuffworks. Retrieved October 10, 2006, from

http://www.howstuffworks.com/gps.htm.

“How GPS Works.” (n.d.). Trimble. Retrieved October 10, 2006, from

http://www.trimble.com/gps/howgps.shtml.

“iMEMS Accelerometers.” (n.d.). Analog Devices Inc. Retrieved October 16, 2006, from

http://www.analog.com/en/subCat/0,2879,764%255F800%255F0%255F%255F0%255F,00.html.

“Key Facts About America’s Road and Bridge Conditions and Federal Funding.” (2006, March). TRIP.

Retrieved October 8, 2006, from http://www.tripnet.org/NationalFactSheetMarch2006.pdf.

Kolanko, Frank. “Linear Regulators vs. Switchers for Automotive Applications.” (2006, June 12).

Automotive Design Line. Retrieved March 26, 2006, from
http://www.automotivedesignline.com/189400333;jsessionid=VC1GHESMHQSTOQSNDLQCK
H0CJUNN2JVN?printableArticle=true.

“Laser Sensors Used for Road Profiling.” (n.d.). Acuity. Retrieved October 16, 2006, from

http://www.acuityresearch.com/products/ar600/common-applications-road-profiling.shtml.

“Lassen iQ Evaluation Board – RS232.” (n.d.). Sparkfun. Retrieved October 10, 2006, from
 http://www.sparkfun.com/commerce/product_info.php?products_id=167#.

“Lassen iQ GPS Receiver.” (2005, February). Sparkfun. Retrieved September 24, 2006, from
 http://www.sparkfun.com/datasheets/GPS/Lassen%20iQ_Reference%20Manual.pdf.

 111

“M25P64.” (2006, September). STMicroelectronics. Retrieved September 15, 2006, from

http://www.st.com/stonline/products/literature/ds/10987.pdf.

“Micro-USB Module.” (n.d.). Dontronics. Retrieved March 10, 2007, from

http://www.dontronics-shop.com/product.php?productid=16141.

“Quartz Crystals, Crystal Clock Oscillators, Crystal Filters.” (n.d.). Component Marketing Services, Inc.
 Retrieved April 24, 2007, from http://www.cms-mkt.com/images/stest.gif.

“Rough Ride Ahead: Metro Areas With the Roughest Rides and Strategies to Make our Roads

Smoother.” (2005, May). TRIP. Retrieved October 8, 2006, from
http://www.tripnet.org/RoughRoadsReport052605.pdf.

“Rough Ride in the City: Metro Areas With the Roughest Rides and Strategies to Make our Roads

Smoother.” (2006, October). TRIP. Retrieved October 816, 2006, from
http://www.tripnet.org/RoughRideReportOct2006.pdf.

Sayers, Michael W. and Steven M. Karamihas. “The Little Book of Profiling.” (1998, September).

University of Michigan. Retrieved October 8, 2006, from
http://www.umtri.umich.edu/content/LittleBook98R.pdf.

“Tact Switches.” (2004, January). Anglia Components Ltd. Retrieved April 24, 2007, from
 http://www.anglia.com/tyco/datasheets/6053.pdf.

“Trimmer Potentiometers / Rotary Position Sensors.” (2007, March 20). Murata Manufacturing Co.

Retrieved April 15, 2007, from http://www.murata.com/catalog/r50e15.pdf.

“Triple Axis Accelerometer Breakout – ADXL330.” (n.d.).Sparkfun. Retrieved April 12, 2007, from
 http://www.sparkfun.com/commerce/product_info.php?products_id=692.

“What is GPS?” (n.d.). Garmin International Inc. Retrieved September 16, 2006, from

http://www8.garmin.com/aboutGPS/.

“What is WAAS?” (n.d.). Garmin International Inc. Retrieved September 16, 2006, from

http://www8.garmin.com/aboutGPS/waas.html.

 112

8.2 Datasheets

Accelerometer: ADXL330
Datasheet: http://www.analog.com/UploadedFiles/Data_Sheets/ADXL330.pdf

Battery Charger: MAX712
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX712-MAX713.pdf

Charge Pump: MAX619
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX619.pdf

GPS: Lassen iQ
Datasheet: http://www.sparkfun.com/datasheets/GPS/Lassen%20iQ_Reference%20Manual.pdf

LCD: CFAH1602A-YYH-JP
Datasheet: http://www.crystalfontz.com/products/1602a/CFAH1602AYYHJP.PDF

Low-Dropout Voltage Regulator: NCV551
Datasheet: http://www.onsemi.com/pub/Collateral/NCP551-D.PDF

Memory: M25P64
Datasheet: http://www.st.com/stonline/books/pdf/docs/10987.pdf

Microprocessor: MSP430F169
Datasheet: http://focus.ti.com/lit/ds/symlink/msp430f169.pdf

Op-Amp: TLV2404
Datasheet: http://focus.ti.com/lit/ds/symlink/tlv2404.pdf

USB to UART: CP2102
Datasheet:
http://www2.silabs.com/public/documents/tpub_doc/dsheet/Microcontrollers/Interface/en/CP2102.pdf

 113

APPENDIX A: SCHEMATICS

This appendix contains the schematics for the device.

 114

 115

 116

 117

PPENDIX B: MATLAB CODE TO CREATE .KML FILE A

This appendix contains the MATLAB code from which the .kml file is created for Google
Earth.

% Input file name to which .kml file will be saved, test name, and test
% description
file_input_name = input('Enter Textfile Name to Examine (no extention): ',
's');
file_name = input('Enter .kml File Name to Save (no extention): ', 's');
test_name = input('Enter Test Name: ', 's');
desc_name = input('Enter Test Description: ', 's');

% Import data into MATLAB and parse for ','
fid = fopen([file_input_name '.txt'], 'r');
A = fread(fid, 'uint8=>char');
fclose(fid);

% Variables for parsing GPS strings:
% time = time of GPS reading
% lat = latitude of GPS reading
% n_s = hemisphere of latitude reading (North or South)
% long = longitude of GPS reading
% e_w = hemisphere of longitude reading (East or West)
% xmin = minimum x axis output from accelerometer
% xmax = maximum x axis output from accelerometer
% ymin = minimum y axis output from accelerometer
% ymax = maximum y axis output from accelerometer
% zmin = minimum z axis output from accelerometer
% zmax = maximum z axis output from accelerometer
time = char(zeros(1,length(A)));
lat = char(zeros(1,length(A)));
n_s = char(zeros(1,length(A)));
long = char(zeros(1,length(A)));
e_w = char(zeros(1,length(A)));
xmax = char(zeros(1,length(A)));
xmin = char(zeros(1,length(A)));
ymax = char(zeros(1,length(A)));
ymin = char(zeros(1,length(A)));
zmax = char(zeros(1,length(A)));
zmin = char(zeros(1,length(A)));
f1 = zeros(1,length(A));
f2 = zeros(1,length(A));
f3 = zeros(1,length(A));
f4 = zeros(1,length(A));
f5 = zeros(1,length(A));
f6 = zeros(1,length(A));
f7 = zeros(1,length(A));
f8 = zeros(1,length(A));
f9 = zeros(1,length(A));
f10 = zeros(1,length(A));
f11 = zeros(1,length(A));
b = 1;
c = 1;

 117

d = 1;
 = 1; e
f = 1;
g = 1;

 = 1;
 = 1;

f1;
ngth(f1)) = ' ';

',');

;

remain, ',');
; end
;
1) = f5;
 ';

emain, ',');
 end

 + length(f6) 1) = f6;
 length(f6)) = ' ';

h = 1;
i
j
k = 1;
l = 1;
m = 0;

% Parsing the GPS string

---------- % ------------------ BEGIN PARSING------------
remain = A;

le true whi
 [str, remain] = strtok(remain, ',');
 if isempty(str), break; end

 f1 = sprintf('%s', str);
length(f1) - 1) = time(b:b +

 time(b + le
 b = b + length(f1) + 1;
 m = 1;

 [str, remain] = strtok(remain, ',');
 if isempty(str), break; end

 f2 = sprintf('%s', str);
 lat(c:c + length(f2) - 1) = f2;
 lat(c + length(f2)) = ' ';
 c = c + length(f2) + 1;

 [str, remain] = strtok(remain, ',');
 if isempty(str), break; end
 f3 = sprintf('%s', str);

; n_s(d:d + length(f3) - 1) = f3
 n_s(d + length(f3)) = ' ';
 d = d + length(f3) + 1;

 [str, remain] = strtok(remain,
 if isempty(str), break; end
 f4 = sprintf('%s', str);
 long(e:e + length(f4) - 1) = f4
 long(e + length(f4)) = ' ';
 e = e + length(f4) + 1;

 [str, remain] = strtok(
 if isempty(str), break
 f5 = sprintf('%s', str)
 e_w(f:f + length(f5) -
 e_w(f + length(f5)) = '
 f = f + length(f5) + 1;

 [str, remain] = strtok(r
 if isempty(str), break;
 f6 sprintf('%s', str);

-
=

 xmax(g:g
 xmax(g +

 118

 g = g + length(f6) + 1;

main] = strtok(remain, ',');
ty(str), break; end
intf('%s', str);
 + length(f7) - 1) = f7;
 length(f7)) = ' ';
 length(f7) + 1;

 remain] = strtok(remain, ',');
; end

ength(f8)) = ' ';

',');

f9;
';

length(f9) + 1;

;

(2:length(f11));
' ';

ccelerometer [V]
rom GPS

 from GPS

m and minimum outputs (minimum output
)

);
 = zeros(1,length(zmin));

 [str, re
 if isemp
 f7 = spr
 xmin(h:h
 xmin(+h

 + h = h

[str,
 if isempty(str), break
 f8 = sprintf('%s', str);
 ymax(k:k + length(f8) - 1) = f8;
 ymax(k +
 k = k + l

l
ength(f8) + 1;

ain, [str, remain] = strtok(rem

 if isempty(str), break; end
 f9 = sprintf('%s', str);

) = ymin(i:i + length(f9) - 1
 length(f9)) = ' ymin(i +

= i + i

','); [str, remain] = strtok(remain,
end if isempty(str), break;

 f10 = sprintf('%s', str);
= f10 zmax(j:j + length(f10) - 1)

 '; zmax(j + length(f10)) = '
= j + length(f10) + 1; j

';'); [str, remain] = strtok(remain,

end if isempty(str), break;
 f11 = sprintf('%s', str);

= f11 zmin(l:l + length(f11) - 2)
 = zmin(l + length(f11) - 1)

= l + length(f11); l
end
% ------------------ END PARSING ---------

% Calculating input variables:

rom a% mag_test = magnitude voltage f
es f% long_test = longitude valu

_test = latitude values% lat
% time = time from GPS
% ----------------BEGIN CALCULAT NS-----IO
% mag_test
% Find maximum magnitude from maximu
% rearranged to compare with ximumma
x1min = zeros(1,length(xmin));
y1m = zeros(1,length(ymin)in
z1min

x1max = zeros(1,length(xmax))
y1max = zeros(1,length(ymax))

;
;

z1max = zeros(1,length(zmax));

 119

x1 = zeros(1,length(xmax));
y1 = zeros(1,length(ymax));

;
4095);

3 / 4095);

);

4095);
3 / 4095);

;

(z1.^2));

st(i))) / 0.33;

/ 0.33;

g)));
str2num(lat)));

] and minutes [M])

th hemisphere for Google Earth

z1 = zeros(1,length(zmax));

xmin1 = str2num(xmin) .* (3.3 4095)/
ymin1 = str2num(ymin) .* (3 / 3.
zmi = str2num(zmin) .* (3.n1

x1min = (3.3/2) + ((3.3/2) - xmin1
y1min = (3.3/2) + ((3.3/2) ymin1

);
-

z1min = (3.3/2) + ((3.3/2) - zmin1);

3 / x1max = str2num(xmax) .* (3.
 = str2num(ymax) .* (3.y1max

z1max = str2num(zmax) .* (3.3 / 4095);

3)/2)x1 = max(x1min, x1max) - ((3.
y1 = max(y1min, y1max) - ((3.3)/2);

2); z1 = max(z1min, z1max) - ((3.3)/
^2)+mag_test = sqrt((x1.^2)+(y1.

% Calculate number of g's from magnitude
g_s = zeros(1,length(mag_test));
for i = 1:length(mag_test)
 if mag_test(i) < 0.33

mag_te g_s(i) = (0.33 + (0.33 -
 else

 g_s(i) = mag_test(i)
 end
end

% long_test and lat_test
format long g

(str2num(lonlong_new = zeros(1,length
ew = zeros(1,length(lat_n

long_new = str2num(long);
_new = str2num(lat); lat

% Convert MNEA longitude and latitude style (degrees [D
into
% degress

M.MMMM % longitude (NMEA): DDDM
% latitude (NMEA): DDMM.MMMM

(or DD) = whole degrees % NOTE: DDD
% MM = whole minutes
% .MMMM = partial minutes
long1 = long_new.*(1e-2);
long2 = long1 - floor(long1);
long3 = long2.*(1e2);

g4 = long3./60; lon
long5 = floor(long1)+long4;

% Take into account north or sou
if e_w(1) == 'W'

 120

 long_test = long5.*(-1);

phere for Google Earth

rd style

num(time).*(1e-4);
floor(t1);

;

;
NS--------------------

, test name, test description, and style of
ssification

oding="UTF-8"?>')
h.google.com/kml/2.1">')

')

elseif e_w(1) == 'E'
 long_test = long5;
end

lat1 = lat_new.*(1e-2);
lat2 = lat1 - floor(lat1);
lat3 = lat2.*(1e2);

4 = lat3./60; lat
lat5 = floor(lat1)+lat4;

% Take into account east or west hemis

n_s(1) == 'S' if
 lat_test = lat5.*(-1);
elseif n_s(1) == 'N'
 lat_test = lat5;

 end

% Convert MNEA time style into standa
% date (NMEA): DDMMYY
% time (NMEA): HHMMSS.SS (UTC)

OTE: DD = day % N
% MM = month
% YY = year
% HH = hours
% MM = minutes
% SS = whole seconds

S = partial seconds % .S

% time

str2t1 =
= t2

t3 = str2num(time).*(1e-2)
(t3); t4 = t3 - floor

t5 = round(t4.*(1e2));
t6 = str2num(time) - t5;

 t7 = str2num(time).*(1e-4);
t8 = t7 - floor(t7);

= round(t8.*(1e2)); t9
hour = t2 - 5;
minute = t9;
second = t5
% ----------------END CALCULATIO

% Start saving .kml file
diary ([file_name '.kml'])
diary on

% Start creating .kml file

 heading% Adds the appriopriate
cla% pin for roughness

disp('<?xml version="1.0" enc
p('<kml xmlns="http://eartdis

disp('<Document>')
="style1">') disp(' <Style id

disp(' <Icon>

 121

disp(' <href>http://maps.google.com/mapfiles/kml/pushpin/grn-

' </Style>')
Style id="style2">')

maps.google.com/mapfiles/kml/pushpin/ltblu-

">')

in/ylw-

yle4">')
' <Icon>')

files/kml/pushpin/pink-

style5">')

>http://maps.google.com/mapfiles/kml/pushpin/red-

 <name>' test_name '</name>'])

_name '</description>'])

locations with accelerometer data
-BEGIN LOOP-----------------------------
of road roughness, point number, and description

nitudes less than 0.34 (green) <= CHANGE
es between 0.34 and 0.375 (light blue)

gnitudes between 0.375 and 0.41 (yellow)
itudes between 0.41 and 0.445 (pink)

Rough) = Magnitudes above 0.445 (red)
(mag_test)

ption>Point ' num2str(i) '
Time: '
ur(i)) ':0' num2str(minute(i)) ':0' num2str(second(i)) '.<hr

b>Roughness Level 1 r/>Location is very smooth.
 Magnitude is '
m2str(g_s(i)) ' g`s).</description>'])

>Point ' n 2str(i) '
Time: '
2str(cond(i)) '.<hr

 Magnitude is '
 ' (' num2 r(g_s(i)) ' g`s).</de ription>'])

pushpin.png</href>')
disp(' </Icon>')
disp(
disp(' <
disp(' <Icon>')
disp(' <href>http://
pushpin.png</href>')

>')disp(' </Icon
disp(' </Style>')

p(' <Style id="style3dis
disp(' <Icon>')

ef>http://maps.google.com/mapfiles/kml/pushpdisp(' <hr
pushpin.png</href>')
disp(' </Icon>')
disp(' </Style>')

' <Style id="stdisp(
p(dis

disp(' <href>http://maps.google.com/map
pushpin.png</href>')
disp(' </Icon>')

) disp(' </Style>'
disp(' <Style id="

)disp(' <Icon>'
disp(' <href
pushpin.png</href>')
disp(' </Icon>')
disp(' </Style>')

p('<Folder>') dis
disp(['
disp(' <open>1</open>')
disp([' <desc ption>' descri

to GPS % Adds placement pins
% ----------------------
% Loop to determine level
% Level 1 (Very Smooth) = Mag

agnitud% Level 2 (Smooth) = M
% Level 3 (Average) = Ma

) = Magn% Level 4 (Rough
y % Level 5 (Ver

for i=1:length
disp(' <Placemark>')

(mag_test(i) < 0.34) if
if minute(i) < 10
 if second(i) < 10
 sp([' <descridi
n 2str(houm
/>< <b
num2str(mag_test(i)) ' (' nu
 else
 disp([' <description><b um
num2str(hour(i)) ':0' num2str(minute(i)) ':' num se
/>Roughness Lev 1
Location is very smooth.

sc
el

num2str(mag_test(i)) st
 end
elseif second(i) < 10

 122

 disp([' <description>Point ' num2str(i) '
Time: '
num2str(hour(i)) ':' n m2str(minute(i)) ':0' num2str(second(i)) '.<hru
/>Roughness Leve 1<

'

/b>
Location is very smooth.
 Magnitude is '
(' num2 r(g_s(i)) ' g`s).</description>'])

is '
(' num2str(g_s(i)) ' g`s).</description>'])

tyleUrl>')

) && (mag_test(i) < 0.375)

n>Point ' num2str(i) '
Time: '

(' num2str(g_s(i)) ' g`s).</description>'])

n>Point ' num2str(i) '
Time: '
nute(i)) ':' num2str(second(i)) '.<hr

cription>Point ' num2str(i) '
Time: '
:0' num2str(second(i)) '.<hr
s smooth.
 Magnitude is '

ription>'])

 disp([' <description>Point ' num2str(i) '
 me: '
hr
is '

cription>Point ' num2str(i) '
Time: '
um2str(minute(i)) ':0' num2str(second(i)) '.<hr

r

'
m2str(minute(i)) ':0' num2str(second(i)) '.<hr

l
num2str(mag_test(i)) st
else
 disp([' <description>Point ' num2str(i) '
Time: '
num2str(hour(i)) ':' num2str(minute(i)) ':' num2str(second(i)) '.<hr
/>Roughness Level 1 /b>
Location is very smooth.
 Magnitude <
num2str(mag_test(i) ')
end
disp(' <styleUrl>#style1</s
end

if (mag_test(i) >= 0.34
if minute(i) < 10
 if second(i) < 10

descriptio disp([' <
num2str(hour(i)) ':0' num2str(minute(i)) ':0' num2str(second(i)) '.<hr
/>Roughness Level 2
Location is smooth.
 Magnitude is '
num2str(mag_test(i)) '
 else
 disp([' <descriptio
num2str(hour(i)) ':0 num2str(mi'
/>Roughness Level 2
Location is smooth.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
 end

 elseif second(i) < 10
 disp([' des <
num2str(hour(i)) ':' num2str(minute(i)) '

br/>Location i/>Roughness Level 2<
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</desc
else
 Ti
num2str(hour(i)) ':' num2str(minute(i)) ':' num2str(second(i)) '.<
/>Roughness Level 2
Location is smooth.
 Magnitude
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
end
disp(' <styleUrl>#style2</styleUrl>')
end

if (mag_test(i) >= 0.375)
if minute(i) < 10

&& (mag_test(i) < 0.41)

 if second(i) < 10
 disp(['
num2str(hour(i)) ':

 <des
0' n

/>Roughness Level 3
Location is average.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
 else
 disp([' <description>Point ' num2str(i) '
Time: '

ur(i)) ':0' num2str(minute(i)) ':' num2str(second(i)) '.<hnum2str(ho
/>Roughness Level 3
Location is average.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
 end
elseif second(i) < 10
 dis [' <description>Point ' num2str(i) '
Time: p(
num2str(hour(i)) ':' nu

 123

/>Roughness Level 3
Location is average.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
else
 disp([' <description>Point ' num2str(i) '
Time:

hr

'
r(hour(i)) ':' num2str(minute(i)) ':' num2str(second(i)) '.<

ag_test(i) >= 0.41) && (mag_test(i) < 0.445)
minute(i) < 10

 escription>Point ' num2 r(i) '
Time: '
um2str(minute(i)) ':0' num2str(second(i)) '.<hr

me: '
ur(i)) ':0' num2str(minute(i)) ':' num2str(second(i)) '. r

'
m2str(minute(i)) ':0' num2str(second(i)) '.<hr

'

ag_test(i) >= 0.445)
minute(i) < 10

 escription>Point ' num2 r(i) '
Time: '
um2str(minute(i)) ':0' num2str(second(i)) '.<hr

me: '
ur(i)) ':0' num2str(minute(i)) ':' num2str(second(i)) '. r

iption>Point ' num2str(i) '
Time '
m2str(minute(i)) ':0' num2str(second(i)) '.<hr

s '

else

num2st
/>Roughness Level 3
Location is average.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
end
disp(' <styleUrl>#style3</styleUrl>')
end

i (mf
if
 if second(i) < 10

st disp([' <d
num2str(hour(i)) ':0' n
/>Roughness Level 4
Location is rough.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
 else
 sp([' <description>Point ' num2str(i) '
Ti

<h
di

num2str(ho
/>Roughness Level 4
Location is rough.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
 end
elseif second(i) < 10

[' <des iption>Point ' num2str(i) '
Time: disp(cr
num2str(hour(i)) ':' nu
/>Roughness Level 4
Location is rough.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
else
 disp([' <description>Point ' num2str(i) '
Time:

r(hour(i)) ':' num2str(minute(i)) ':' num2str(second(i)) '.<hrnum2st
/>Roughness Level 4
Location is rough.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
end
disp(' <styleUrl>#style4</styleUrl>')
end

i (mf
if
 if second(i) < 10

st disp([' <d
num2str(hour(i)) ':0' n
/>Roughness Level 5
Location is very rough.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
 else
 sp([' <description>Point ' num2str(i) '
Ti

<h
di

num2str(ho
/>Roughness Level 5
Location is very rough.
 Magnitude is '
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
 end
elseif second(i) < 10

: disp([' <descr
num2str(hour(i)) ':' nu
/>Roughness Level 5
Location is very rough.
 Magnitude i
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])

 124

 disp([' <description>Point ' num2str(i) '
Time: '
num2str(hour(i)) ':' num2str(minute(i)) ':' num2str(second(i)) '.<hr
/>Roughness Level 5
Location is very rough.
 Magnitude
num2str(mag_test(i)) ' (' num2str(g_s(i)) ' g`s).</description>'])
end
disp(' <styleUrl>#style5</styleUrl>')
end

is '

' <Point>')
) num2str(',')

>'

)

% Add
d p(

s GPS location to point
is
disp([' <coordinates>' num2str(long_test(i)
num2str(lat_test(i)) '</coordinates>'])
disp(' </Point)
disp(' </Placemark>')
end
% ------------------------END LOOP----------------------------

% Finishes .kml file
disp('</Folder>')
disp('</Document>')
disp('</kml>')
diary off

 file is complete. It is located in the current directory.'disp('The

 125

 APPENDIX C: “C” CODE

 This appendix contains the C code.

***/**

*********** STFL-I based Serial Flash Memory Driver **********************

the M25P05A, M25P10A, M25P20, M25P40, M25P80

oelectronics, Shanghai (China)
ectronics.

ITH
S A

CS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
TH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT OF SUCH

 MADE BY CUSTOMERS OF THE CODING INFORMATION CONTAINED HEREIN
R PRODUCTS.
**

 1.0 16/11/2004 Initial release
 2.0 20/07/2005 Add support for M25P32, M25P64
 Add JEDEC ID support for M25P05A, M25P10A

**

 This source file provides library C code for M25P05A, M25P10A, M25P20,
 M25P40, M25P80, M25P16, M25P32, M25P64 serial flash devices.

 The following functions are available in this library(some memories may only support
 a subset of the list, refer to the specific product datasheet for details):

 Flash(WriteEnable, 0) to disable Write Protect in the Flash memory
 Flash(WriteDisable, 0) to enable Write Protect in the Flash memory
 Flash(ReadDeviceIdentification, ParameterType) to get the Device Identification from the
device
 Flash(ReadManufacturerIdentification, ParameterType)(if available in the memory) to get
the manufacturer Identification from the device
 Flash(ReadStatusRegister, ParameterType) to get the value in the Status Register from
the device
 Flash(WriteStatusRegister, ParameterType) to set the value in the Status Register from
the device
 Flash(Read, ParameterType) to read from the Flash device
 Flash(FastRead, ParameterType) to read from the Flash device in a faster way
 Flash(PageProgram, ParameterType) to write an array of elements within one page
 Flash(SectorErase, ParameterType) to erase a whole sector
 Flash(BulkErase, ParameterType) to erase the whole memory
 Flash(DeepPowerDown, 0) to set the memory into the low power
consumption mode
 Flash(ReleaseFromDeepPowerDown, 0) to wake up the memory from the low power
consumption mode
 Flash(Program, ParameterType) to program an array of elements
 FlashErrorStr() to return an error description (define
VERBOSE)

 Note that data Bytes will be referred to as elements throughout the document unless otherwise
specified.

 For further information consult the related Datasheets and Application Note.
 The Application Note gives information about how to modify this code for
 a specific application.

 Filename: c2082.c
ines for Description: Library rout

 M25P16, M25P32, M25P64 Serial Flash Memories

 Version: V2.0
 Date: 20/07/2005
 Authors: Tan Zhi, STMicr

yright (c) 2004 STMicroel Cop

 THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS W

ODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. A C
 RESULT, STMICROELECTRONI

S WI CONSEQUENTIAL DAMAGE
 SOFTWARE AND/OR THE USE
 IN CONNECTION WITH THEI

 Version History.
 Ver. Date Comments

 126

ns which may need to be modified by the user are:

 FlashWrite() used to write an element (uCPUBusType) to the Flash memory
 FlashRead() used to read an element (uCPUBusType) from the Flash memory
 F ction has timed out

 A list of the error conditions can be found at the end of the header file.

Header file with global prototypes */
ader file with SPI master abstract prototypes */

()) \

pe *fp)

ailable Instructions

***/

int8 ucStatusRegister;

 The hardware specific functio

 lashTimeOut() to return after the fun

**/ *

#include <stdlib.h>
#include <string.h>

#include "c2082.h" /*
#include "Serialize.h" /* He

#ifdef TIME_H_EXISTS
 #include <time.h>

#endif

#ifdef SYNCHRONOUS_IO
#define WAIT_TILL_Instruction_EXECUTION_COMPLETE(x) FlashTimeOut(0); while(IsFlashBusy
 { \

lashTimeOut(x)) return Flash_OperationTimeOut; \ if(Flash_OperationTimeOut == F
 };

#else
 // do nothing

if #end

/**

bal variables: none Glo
***/

/**

ParameterTyFunction: ReturnType Flash(InstructionType insInstruction,
rguments: insInstruction is an enum which contains all the avA

 of the SW driver.
ters fp is a (union) parameter struct for all Flash Instruction parame

eturn Value: The function returns the following conditions: R

 Flash_AddressInvalid,
 Flash_MemoryOverflow,
 Flash_PageEraseFailed,
 Flash_PageNrInvalid,
 Flash_SectorNrInvalid,
 Flash_FunctionNotSupported,
 Flash_NoInformationAvailable,
 Flash_OperationOngoing,
 Flash_OperationTimeOut,
 Flash_ProgramFailed,
 Flash_SpecificError,
 Flash_Success,
 Flash_WrongType

Description: This function is used to access all functions provided with the
 current Flash device.

Pseudo Code:
 Step 1: Select the right action using the insInstruction parameter
 Step 2: Execute the Flash memory Function
 Step 3: Return the Error Code

ReturnType Flash(InstructionType insInstruction, ParameterType *fp) {
 ReturnType rRetVal;

ST_u
 ST_uint16 ucDeviceIdentification;
#ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE

rIdentification; ST_uint8 ucManufacture

 127

#endif
 switch (insInstruction) {
 case WriteEnable:
 rRetVal = FlashWriteEnable();
 break;

 case WriteDisable:
 rRetVal = FlashWriteDisable();
 break;

 case ReadDeviceIdentification:
 rRetVal = FlashReadDeviceIdentification(&ucDeviceIdentification);

DeviceIdentification.ucDeviceIdentification = ucDeviceIdentification;

cturerIdentification:
lashReadManufacturerIdentification(&ucManufacturerIdentification);

ManufacturerIdentification.ucManufacturerIdentification =
fication;

 break;

tusRegister:
 ucStatusRegister = (*fp).WriteStatusRegister.ucStatusRegister;

 rRetVal = FlashWriteStatusRegister(ucStatusRegister);

 (*fp).Read.udNrOfElementsToRead
);

((*fp).PageProgram.udAddr,
*fp).PageProgram.pArray,

(*fp).PageProgram.udNrOfElementsInArray
);

 FlashSectorErase((*fp).SectorErase.ustSectorNr);

hBulkErase();
ak;

Down();

 (*fp).Read
 break;

#ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE
 case ReadManufa
 rRetVal = F
 (*fp).Read

turerIdentiucManufac
 break;
#endif

 case ReadStatusRegister:
 rRetVal = FlashReadStatusRegister(&ucStatusRegister);

 (*fp).ReadStatusRegister.ucStatusRegister = ucStatusRegister;

 case WriteSta

 break;

 case Read:
 rRetVal = FlashRead((*fp).Read.udAddr,
 (*fp).Read.pArray,
 (*fp).Read.udNrOfElementsToRead
);
 break;

 case FastRead:
 rRetVal = FlashFastRead((*fp).Read.udAddr,

 (*fp).Read.pArray,

 break;

 case PageProgram:
 rRetVal = FlashProgram
 (

 break;

se: case SectorEra
 rRetVal =
 break;

 case BulkErase:

 rRetVal = Flas
 bre

 #ifndef NO_DEEP_POWER_DOWN_SUPPORT
 case DeepPowerDown:
 rRetVal = FlashDeepPowerDown();
 break;

 case ReleaseFromDeepPowerDown:
 rRetVal = FlashReleaseFromDeepPower
 break;

 128

#endif

 case Program:
 rRetVal = FlashProgram((*fp).Pro

 (*fp).Pr
gram.udAddr,

ogram.pArray,
 (*fp).Program.udNrOfElementsInArray);

= Flash_FunctionNotSupported;

ize the data (i.e. Instruction) packet to be sent serially
ly

****/

r_stream_send;

be sent serially

he packet serially
ream_send,

ccess;

uction) packet to be sent serially

***/
)

.e. Instruction) packet to be sent serially

 break;

 default:

tVal rRe
 break;

 } /* EndSwitch */
 return rRetVal;
} /* EndFunction Flash */

/***
Function: FlashWriteEnable(void)
Arguments: void

Return Value:

_Success Flash

Description: This function sets the Write Enable Latch(WEL)
 by sending a WREN Instruction.

Pseudo Code:

 Step 1: Initial
 Step 2: Send the packet serial

ReturnType FlashWriteEnable(void)
{
 CharStream cha
 ST_uint8 cWREN = SPI_FLASH_INS_WREN;

 // Step 1: Initialize the data (i.e. Instruction) packet to
 char_stream_send.length = 1;

N; char_stream_send.pChar = &cWRE

 // Step 2: Send t
 Serialize(&char_st
 ptrNull,
 enumEnableTransOnly_SelectSlave,
 enumDisableTransOnly_DeSelectSlave
);
 return Flash_Su
}

/***
Function: FlashWriteDisable(void)
Arguments: void

Return Value:
 Flash_Success

Description: This function resets the Write Enable Latch(WEL)

ding a WRDI Instruction. by sen

Pseudo Code:
 Step 1: Initialize the data (i.e. Instr

packet serially Step 2: Send the
**
ReturnType FlashWriteDisable(void
{
 CharStream char_stream_send;
 ST_uint8 cWRDI = SPI_FLASH_INS_WRDI;

 Step // 1: Initialize the data (i
 char_stream_send.length = 1;
 char_stream_send.pChar = &cWRDI;

 129

 // Step 2: Send the packet serially
stream_send,

int16 *uwpDeviceIdentification)

eviceIdentificaiton, 16-bit buffer to hold the DeviceIdentification read from

 memory type residing in the higher 8 bits, and
ty in the lower ones.

D_TWO_BYTE_SIGNATURE defined)

 function returns the Device Identification (memory type + memory capacity)
nding an SPI_FLASH_INS_RDID Instruction.

 routine checks if the device is
If not,

If USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE is defined, the returned 16-bit

wer
ed 16-bit word is valid information,i.e. the

on.
city of more than 16Mb(inclusive),
GNATURE is defined by default.

rned
**************************************/

n(ST_uint16 *uwpDeviceIdentification)

LASH_INS_RDID;
 ST_uint8 pIdentification[3];

cv.length = 3;
v.pChar = &pIdentification[0];

enumEnableTansRecv_SelectSlave,

 returned (memory type + memory capacity)
ar_stream_recv.pChar[1];

recv.pChar[2];

 Serialize(&char_
 ptrNull,
 enumEnableTransOnly_SelectSlave,
 enumDisableTransOnly_DeSelectSlave
);

ccess; return Flash_Su
}

/***

ReadDeviceIdentification(ST_uFunction: Flash
guments: uwpDAr

the
 memory, with
 memory capaci

Return Value:
 Flash_Success

f USE_JEDEC_STANDAR Flash_WrongType(i

Description: This
 by se
 After retrieving the Device Identificaiton, the
 an expected device(defined by EXPECTED_DEVICE).
 Flash_WrongType is returned.

 word comprises memory type(higher 8 bits) and memory capacity
 (lower 8 bits).
 If USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE is NOT defined, only the lo
 8-bit byte of the return
 Device Identificati
 For memories that have a capa
 USE_JEDEC_STANDARD_TWO_BYTE_SI

Pseudo Code:

nstruction) packet to be sent serially Step 1: Initialize the data (i.e. I
 Step 2: Send the packet serially
 Step 3: Device Identification is retu

catioReturnType FlashReadDeviceIdentifi
{
#ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE
 CharStream char_stream_send;

r_stream_recv; CharStream cha
 ST_uint8 cRDID = SPI_F

 // Step 1: Initialize the data (i.e. Instruction) packet to be sent serially
 char_stream_send.length = 1;

.pChar = &cRDID; char_stream_send

 char_stream_re
 char_stream_rec

 // Step 2: Send the packet serially
 Serialize(&char_stream_send,

 &char_stream_recv,

 enumDisableTansRecv_DeSelectSlave
);

 // Step 3: Device Identification is
 *uwpDeviceIdentification = ch
 *uwpDeviceIdentification <<= 8;
 *uwpDeviceIdentification |= char_stream_

 if(EXPECTED_DEVICE == *uwpDeviceIdentification)
 return Flash_Success;
 else

 return Flash_WrongType;

 130

YTE_S#else // USE_JEDEC_STANDARD_TWO_B IGNATURE not defined

on;

ecv.length = 1;

fication)
 identification

ANUFACTURER_ST(0x20) is returned
_ST(0x20) is correctly returned

the Manufacturer Identification(0x20) by sending an

 if the device

ot, Flash_WrongType is returned.

ecked in the appropriate datasheet

truction) packet to be sent serially
y

******************************/
 ST_uint8 *ucpManufacturerIdentification)

 packet to be sent serially

cRDID;

 CharStream char_stream_send;
 CharStream char_stream_recv;
 ST_uint8 pIns[4];

FLASH_INS_RES; ST_uint8 cRDID = SPI_
 ST_uint8 pIdentificati

 // Step 1: Initialize the data (i.e. Instruction) packet to be sent serially
 char_stream_send.length = 4;
 char_stream_send.pChar = &pIns[0];
 pIns[0] = SPI_FLASH_INS_RES;
 pIns[1] = SPI_FLASH_INS_DUMMY;
 pIns[2] = SPI_FLASH_INS_DUMMY;
 pIns[3] = SPI_FLASH_INS_DUMMY;

 char_stream_r
 char_stream_recv.pChar = &pIdentification;

 // Step 2: Send the packet serially
 Serialize(&char_stream_send,
 &char_stream_recv,
 enumEnableTansRecv_SelectSlave,
 enumDisableTansRecv_DeSelectSlave
);

 // Step 3: Get the returned device Identification
 *uwpDeviceIdentification = *char_stream_recv.pChar;

 if(EXPECTED_DEVICE == *uwpDeviceIdentification)
 return Flash_Success;
 else
 return Flash_WrongType;
#endif
}

#ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE

********************************/**
Function: FlashReadManufacturerIdentification(ST_uint8 *ucpManufactureIdenti
Arguments: ucpManufacturerIdentification, 8-bit buffer to hold the manufacturer
 being read from the memory

Return Value:

ther than M Flash_WrongType: if any value o
 Flash_Success : if MANUFACTURER

Description: This function returns
 SPI_FLASH_INS_RDID Instruction.
 After retrieving the Manufacturer Identification, the routine checks
is
 an ST memory product. If n

Note: The availability of this function should be ch
 for each memory.

Pseudo Code:

. Ins Step 1: Initialize the data (i.e
 Step 2: Send the packet seriall
 Step 3: get the Manufacturer Identification

eadManufacturerIdentification(ReturnType FlashR
{
 CharStream char_stream_send;
 CharStream char_stream_recv;
 ST_uint8 cRDID = SPI_FLASH_INS_RDID;
 ST_uint8 pIdentification[3];

 // Step 1: Initialize the data (i.e. Instruction)

1; char_stream_send.length =
 char_stream_send.pChar = &
 char_stream_recv.length = 3;

 131

 char_stream_recv.pChar = &pIdentification[0];

ially // Step 2: Send the packet ser
 Serialize(&char_stream_send,
 &char_stream_recv,
 enumEnableTansRecv_SelectSlav

_DeSelect
e,

Slave

tification[0];
rIdentification)

RD_TWO_BYTE_SIGNATURE

ucpStatusRegister)

 hold the Status Register value read
m the memory

ds the Status Register by sending an
R Instruction.

ode:
 1: Initialize the data (i.e. Instruction) packet to be sent serially

Status Register content

DSR = SPI_FLASH_INS_RDSR;

ansRecv_SelectSlave,

**
uint8 ucStatusRegister)
 value to be written to the Status Register

 Status Register by sending an
ction.

 enumDisableTansRecv
);

 Identification // Step 3: get the Manufacturer
 *ucpManufacturerIdentification = pIden

facture if(MANUFACTURER_ST == *ucpManu
 {
 return Flash_Success;
 }
 else
 {
 return Flash_WrongType;
 }
}

TANDA#endif // end of #ifdef USE_JEDEC_S

/***
Function: FlashReadStatusRegister(ST_uint8 *

tatusRegister, 8-bit buffer toArguments: ucpS
 fro

Return Value:

 Flash_Success

Description: This function rea
 SPI_FLASH_INS_RDS

Pseudo C

Step
 Step 2: Send the packet serially, get the

***/
ReturnType FlashReadStatusRegister(ST_uint8 *ucpStatusRegister)
{
 CharStream char_stream_send;

 CharStream char_stream_recv;
 ST_uint8 cR

 // Step 1: Initialize the data (i.e. Instruction) packet to be sent serially
 char_stream_send.length = 1;
 char_stream_send.pChar = &cRDSR;
 char_stream_recv.length = 1;
 char_stream_recv.pChar = ucpStatusRegister;

 // Step 2: Send the packet serially, get the Status Register content
 Serialize(&char_stream_send,

 m_recv, &char_strea
 enumEnableT

 enumDisableTansRecv_DeSelectSlave
);

 return Flash_Success;
}

/*********************************
Function: FlashWriteStatusRegister(ST_
Arguments: ucStatusRegister, an 8-bit new

Return Value:
 Flash_Success

Description: This function modifies the

stru SPI_FLASH_INS_WRSR In

 132

 The Write Status Register (WRSR) Instru
WIP) of the

ction has no effect
Status Register.b6 and b5 are

& value) packet to be sent serially

timeout occurs.
***************************/

ister)

p 1: Disable Write protection

ta (i.e. Instruction & value) packet to be sent serially

umEnableTransOnly_SelectSlave,
DisableTransOnly_DeSelectSlave

.

ash_Success;

fElementsToRead)

ned, counted in bytes.

ction.
 memory space can be read with one READ Instruction

d rolling to 0x0 automatically,
s and sectors.

on) packet to be sent serially
e buffer with the data being returned
******************************/

8 *ucpElements, ST_uint32 udNrOfElementsToRead)

send;
_recv;

 ST_uint8 pIns_Addr[4];

end.length = 4;
nd.pChar = pIns_Addr;

 on b6, b5, b1(WEL) and b0(
 always read as 0.

Pseudo Code:
 Step 1: Disable Write protection
 Step 2: Initialize the data (i.e. Instruction

e packet serially Step 3: Send th
 Step 4: Wait until the operation completes or a
**
ReturnType FlashWriteStatusRegister(ST_uint8 ucStatusReg
{

rStream char_stream_send; Cha
 ST_uint8 pIns_Val[2];

 // Ste
 FlashWriteEnable();

Step 2: Initialize the da //
 char_stream_send.length = 2;
 char_stream_send.pChar = pIns_Val;
 pIns_Val[0] = SPI_FLASH_INS_WRSR;
 pIns_Val[1] = ucStatusRegister;

 // Step 3: Send the packet serially

, Serialize(&char_stream_send
 ptrNull,

 en
 enum
);
 // Step 4: Wait until the operation completes or a timeout occurs
 WAIT_TILL_Instruction_EXECUTION_COMPLETE(1)
 return Fl
}

*******/***
Function: FlashRead(ST_uint32 udAddr, ST_uint8 *ucpElements, ST_uint32 udNrO
Arguments: udAddr, start address to read from

ed ucpElements, buffer to hold the elements to be return
d, number of elements to be retur udNrOfElementsToRea

Return Value:
 Flash_AddressInvalid

 Flash_Success

Description: This function reads the Flash memory by sending an
 SPI_FLASH_INS_READ Instru
 by design, the whole Flash
 by incrementing the start address an
 that is, this function is across page

Pseudo Code:
 Step 1: Validate address input
 Step 2: Initialize the data (i.e. Instructi
 Step 3: Send the packet serially, and fill th

ead(uAddrType udAddr, ST_uintReturnType FlashR
{
 CharStream char_stream_

 CharStream char_stream

 // Step 1: Validate address input
 if(!(udAddr < FLASH_SIZE)) return Flash_AddressInvalid;

Initialize the data (i.e. Instruction) packet to be sent serially // Step 2:
 char_stream_s
 char_stream_se
 pIns_Addr[0] = SPI_FLASH_INS_READ;
 pIns_Addr[1] = udAddr>>16;
 pIns_Addr[2] = udAddr>>8;

 133

 pIns_Addr[3] = udAddr;

dNrOfElementsToRead; char_stream_recv.length = u
am_recv.pChar = char_stre

ucpElements;

rned

ad(ST_uint32 udAddr, ST_uint8 *ucpElements, ST_uint32

r of elements to be returned, counted in bytes.

the Flash memory by sending an
n.

ace can be read with one FAST_READ Instruction
matically,

Step 1: Validate address input

char_stream_recv;
];

lidate address input

Addr>>16;

ially, and fill the buffer with the data being returned

Addr, ST_uint8 *pArray, ST_uint32

 // Step 3: Send the packet serially, and fill the buffer with the data being retu
 Serialize(&char_stream_send,
 &char_stream_recv,
 enumEnableTansRecv_SelectSlave,
 enumDisableTansRecv_DeSelectSlave
);

 return Flash_Success;
}

/**
Function: FlashFastRe
udNrOfElementsToRead)
Arguments: udAddr, start address to read from

d the elements to be returned ucpElements, buffer to hol
 udNrOfElementsToRead, numbe

Return Value:
 Flash_AddressInvalid
 Flash_Success

ion reads Description: This funct
 SPI_FLASH_INS_FAST_READ Instructio
 by design, the whole Flash memory sp
 by incrementing the start address and rolling to 0x0 auto
 that is, this function is across pages and sectors.

Pseudo Code:

 Step 2: Initialize the data (i.e. Instruction) packet to be sent serially
 Step 3: Send the packet serially, and fill the buffer with the data being returned
***/

_uint32 ReturnType FlashFastRead(uAddrType udAddr, ST_uint8 *ucpElements, ST
udNrOfElementsToRead)
{

 CharStream char_stream_send;
 CharStream
 ST_uint8 pIns_Addr[5

 // Step 1: Va
 if(!(udAddr < FLASH_SIZE)) return Flash_AddressInvalid;

 // Step 2: Initialize the data (i.e. Instruction) packet to be sent serially
 char_stream_send.length = 5;
 char_stream_send.pChar = pIns_Addr;

[0] = SPI_FLASH_INS_FAST_READ; pIns_Addr
 pIns_Addr[1] = ud
 pIns_Addr[2] = udAddr>>8;
 pIns_Addr[3] = udAddr;
 pIns_Addr[4] = SPI_FLASH_INS_DUMMY;

 char_stream_recv.length = udNrOfElementsToRead;

 char_stream_recv.pChar = ucpElements;

 // Step 3: Send the packet ser

d, Serialize(&char_stream_sen
 &char_stream_recv,
 enumEnableTansRecv_SelectSlave,
 enumDisableTansRecv_DeSelectSlave
);

 return Flash_Success;
}

*******/**
Function: FlashPageProgram(ST_uint32 ud

 134

udNrOfElementsInArray)
Arguments: udAddr, start address to write to
 pArray, buffer to hold the elements to be

 element
 programmed

s to be programmed, counted in bytes

s function writes a maximum of 256 bytes of data into the memory by sending an
_PP Instruction.

 by design, the PP Instruction is effective WITHIN ONE page,i.e. 0xXX00 - 0xXXff.
lly.

 Software
se the PP

ected at

ct the memory, please call FlashWriteStatusRegister(ST_uint8

to the datasheet for the setup of a proper ucStatusRegister value.

le is on going

to be sent serially
nd the packet (Instruction & address only) serially

ta to be programmed) packet to be sent serially

nput
)) return Flash_AddressInvalid;

ase cycle is on-going

 only) packet to be sent serially

he data (data to be programmed) packet to be sent serially
h = udNrOfElementsInArray;

 udNrOfElementsInArray, number of

Return Value:
 Flash_AddressInvalid
 Flash_OperationOngoing
 Flash_OperationTimeOut
 Flash_Success

scription: ThiDe
 SPI_FLASH_INS

 when 0xXXff is reached, the address rolls over to 0xXX00 automatica
Note:
 This function does not check whether the target memory area is in a
 Protectio otection Mode(HPM), in which can Mode(SPM) or Hardware Pr
 Instruction will be ignored.
 The function assumes that the target memory area has previously been unprot
both

the hardware and software levels.
 To unprote
ucStatusRegister),

refer and
eudo Code: Ps

 Step 1: Validate address input
 or Erase cyc Step 2: Check whether any previous Write, Program

 Step 3: Disable Write protection (the Flash memory will automatically enable it again after
 the execution of the Instruction)
 Step 4: Initialize the data (Instruction & address only) packet
 Step 5: Se
 Step 6: Initialize the data (da
 Step 7: Send the packet (data to be programmed) serially
 Step 8: Wait until the operation completes or a timeout occurs.
***/
ReturnType FlashPageProgram(uAddrType udAddr, ST_uint8 *pArray , ST_uint16
udNrOfElementsInArray)
{
 CharStream char_stream_send;
 ST_uint8 pIns_Addr[4];

s i // Step 1: Validate addres
 if(!(udAddr < FLASH_SIZE

 // Step 2: Check whether any previous Write, Program or Er
 if(IsFlashBusy()) return Flash_OperationOngoing;

 // Step 3: Disable Write protection
 FlashWriteEnable();

on & address // Step 4: Initialize the data (Instructi
 char_stream_send.length = 4;
 char_stream_send.pChar = pIns_Addr;
 pIns_Addr[0] = SPI_FLASH_INS_PP;
 pIns_Addr[1] = udAddr>>16;
 pIns_Addr[2] = udAddr>>8;
 pIns_Addr[3] = udAddr;

 // Step 5: Send the packet (Instruction & address only) serially
 Serialize(&char_stream_send,
 ptrNull,
 enumEnableTransOnly_SelectSlave,
 enumNull
);

 // Step 6: Initialize t

 char_stream_send.lengt
 char_stream_send.pChar = pArray;

 // Step 7: Send the packet (data to be programmed) serially

 135

 Serialize(&char_stream_send,
 ptrNull,
 enumNull,
 enumDisableTransOnly_DeSelectSlave

);

 // Step 8: Wait until
 WAIT_TILL_Instruction_E

the operation completes or a timeout occurs.
XECUTION_COMPLETE(1)

rned.

PP

 unprotected at

nt8

ber input
ious Write, Program or Erase cycle is on going

ection (the Flash memory will automatically enable it
 the Instruction)

to be sent serially

*************************/
e uscSectorNr)

 Flash_SectorNrInvalid;

rogram or Erase cycle is on going
Ongoing;

 & address) packet to be sent serially

ar = &pIns_Addr[0];
 = SPI_FLASH_INS_SE;

uccess; return Flash_S

}

*********************************** /**
Function: ReturnType FlashSectorErase(uSectorType uscSectorNr)
Arguments: uSectorType is the number of the Sector to be erased.

Return Values:
 Flash_SectorNrInvalid
 Flash_OperationOngoing
 Flash_OperationTimeOut
 Flash_Success

Description: This function erases the Sector specified in uscSectorNr by sending an
 SPI_FLASH_INS_SE Instruction.
 The function checks that the sector number is within the valid range

before issuing the erase Instruction. Once erase has completed the status
 Flash_Success is retu
Note:
 This function does not check whether the target memory area is in a Software
 Protection Mode(SPM) or Hardware Protection Mode(HPM), in which case the
 Instruction will be ignored.
 The function assumes that the target memory area has previously been
both
 the hardware and software levels.
 To unprotect the memory, please call FlashWriteStatusRegister(ST_ui
ucStatusRegister),

e. and refer to the datasheet to set a proper ucStatusRegister valu

Pseudo Code:
 Step 1: Validate the sector num

rev Step 2: Check whether any p
 Step 3: Disable Write prot

 again after the execution of
 Step 4: Initialize the data (Instruction & address) packet

 Step 5: Send the packet (Instruction & address) serially
 Step 6: Wait until the operation completes or a timeout occurs.
**
ReturnType FlashSectorErase(uSectorTyp
{

m_send; CharStream char_strea
 ST_uint8 pIns_Addr[4];

nput // Step 1: Validate the sector number i
 if(!(uscSectorNr < FLASH_SECTOR_COUNT)) return

te, P // Step 2: Check whether any previous Wri
 if(IsFlashBusy()) return Flash_Operation

 // Step 3: Disable Write protection
 FlashWriteEnable();

 // Step 4: Initialize the data (Instruction
 char_stream_send.length = 4;
 char_stream_send.pCh
 pIns_Addr[0]
 #ifdef FLASH_SMALLER_SECTOR_SIZE
 pIns_Addr[1] = uscSectorNr>>1;
 pIns_Addr[2] = uscSectorNr<<7;
 #else
 pIns_Addr[1] = uscSectorNr;
 pIns_Addr[2] = 0;

 136

 #endif
 = 0; pIns_Addr[3]

ess) serially

the operation completes or a timeout occurs.
 WAIT_TILL_Instruction_EXECUTION_COMPLETE(3)

FlashBulkErase(void)

k whether the target memory area (or part of it)
PM),

 Program or Erase cycle is on going
ble it

_BE;

previous Write, Program or Erase cycle is on going
ing;

packet(Instruction & address) serially

 or a timeout occurs.
TIMEOUT)

 // Step 5: Send the packet (Instruction & addr

r_stream_send, Serialize(&cha
 ptrNull,
 enumEnableTransOnly_SelectSlave,
 enumDisableTansRecv_DeSelectSlave
);

 // Step 6: Wait until

 return Flash_Success;
}
/**************
Function: ReturnType
Arguments: none

Return Values:
 Flash_OperationOngoing
 Flash_OperationTimeOut
 Flash_Success

Description: This function erases the whole Flash memory by sending an
 SPI_FLASH_INS_BE Instruction.
Note:

 This function does not chec
 is in a Software Protection Mode(SPM) or Hardware Protection Mode(H
 in which case the PP Instruction will be ignored.
 The function assumes that the target memory area has previously been unprotected at
both
 the hardware and software levels.
 To unprotect the memory, please call FlashWriteStatusRegister(ST_uint8
ucStatusRegister),
 and refer to the datasheet to set a proper ucStatusRegister value.

Pseudo Code:
 Step 1: Check whether any previous Write,
 Step 2: Disable the Write protection (the Flash memory will automatically ena
 again after the execution of the Instruction)
 Step 3: Initialize the data (Instruction & address) packet to be sent serially

y Step 4: Send the packet (Instruction & address) seriall
 Step 5: Wait until the operation completes or a timeout occurs.

******************/ ***
ReturnType FlashBulkErase(void)
{
 CharStream char_stream_send;
 ST_uint8 cBE = SPI_FLASH_INS

ny // Step 1: Check whether a
 if(IsFlashBusy()) return Flash_OperationOngo

 // Step 2: Disable Write protection
 FlashWriteEnable();

ss) packet to be sent serially // Step 3: Initialize the data(Instruction & addre
 char_stream_send.length = 1;

 char_stream_send.pChar = &cBE;

 // Step 4: Send the
 Serialize(&char_stream_send,
 ptrNull,
 enumEnableTransOnly_SelectSlave,
 enumDisableTansRecv_DeSelectSlave
);

 // Step 5: Wait until the operation completes

BE_ WAIT_TILL_Instruction_EXECUTION_COMPLETE(

 return Flash_Success;

 137

}

#ifndef NO_DEEP_POWER_DOWN_SUPPORT
/**

oid)

 sending an SPI_FLASH_INS_DP.
 this routine, the Flash memory will not respond to any

) packet to be sent serially
ether any previous Write, Program or Erase cycle is on going

 serially
**/
wn(void)

truction) packet to be sent serially

ing;

truction) packet to be sent serially

ction) packet to be sent serially

ansOnly_DeSelectSlave

Function: FlashDeepPowerDown(v
Arguments: void

Return Value:

Ongoing Flash_Operation
 Flash_Success

e lowest consumption Description: This function puts the device in th

 mode (the Deep Power-down mode) by
 After calling
 subsequent Instruction except for the RDP Instruction.

Pseudo Code:

e the data (i.e. Instruction Step 1: Initializ
k wh Step 2: Chec

 Step 3: Send the packet

ReturnType FlashDeepPowerDo
{
 CharStream char_stream_send;
 ST_uint8 cDP = SPI_FLASH_INS_DP;

Step 1: Initialize the data (i.e. Ins //
 char_stream_send.length = 1;
 char_stream_send.pChar = &cDP;

 // Step 2: Check whether any previous Write, Program or Erase cycle is on going
 if(IsFlashBusy()) return Flash_OperationOngo

 // Step 3: Send the packet serially
 Serialize(&char_stream_send,
 ptrNull,

 enumEnableTransOnly_SelectSlave,
 enumDisableTransOnly_DeSelectSlave
);

 return Flash_Success;
}

/***
Function: FlashReleaseFromDeepPowerDown(void)
Arguments: void

Return Value:
 Flash_Success

Description: This function takes the device out of the Deep Power-down
 mode by sending an SPI_FLASH_INS_RES.

Pseudo Code:

 data (i.e. Ins Step 1: Initialize the
 Step 2: Send the packet serially
***/

rDown(void) ReturnType FlashReleaseFromDeepPowe
{

 CharStream char_stream_send;
 ST_uint8 cRES = SPI_FLASH_INS_RES;

 // Step 1: Initialize the data (i.e. Instru
 char_stream_send.length = 1;
 char_stream_send.pChar = &cRES;

 // Step 2: Send the packet serially
 Serialize(&char_stream_send,
 ptrNull,

ansOnly_SelectSlave, enumEnableTr
 enumDisableTr

 138

);

Program(ST_uint32 udAddr, ST_uint8 *pArray, ST_uint32 udNrOfElementsInArray)

t address to program
ss of the buffer that holds the elements to be programmed

tsInArray, number of elements to be programmed, counted in bytes

ess

ly,
equentially by
e boundary

this function assumes that the memory to be programmed
d or that bits are only changed from 1 to 0.

eck whether the target memory area is in a Software
 the PP

at the target memory area has previously been unprotected at

shWriteStatusRegister(ST_uint8

for a proper ucStatusRegister value.

le memory
 the page containing the start address(udAddr)

oundary is crossed, invoke FlashPageProgram() repeatedly
undary is not crossed, invoke FlashPageProgram() once only

***/
turnType FlashProgram(ST_uint32 udAddr, ST_uint8 *pArray, ST_uint32 udNrOfElementsInArray)

Count, ucRemainder;
 typeReturn;

date address input

return Flash_MemoryOverflow;

start

invoke FlashPageWrite() repeatedly
argin)

immediately if

n; // re-calculate the

 // modify the pointer to

 // modify the start

 return Flash_Success;
}
#endif // end of #ifndef NO_DEEP_POWER_DOWN_SUPPORT

*********************/*******************
FlashFunction:

Arguments: udAddr, star
 pArray, addre

fElemen udNrO

Return Value:
 Flash_AddressInvalid
 Flash_MemoryOverflow
 Flash_OperationTimeOut
 Flash_Succ

Description: This function programs a chunk of data into the memory at one go.
 If the start address and the available space are checked successful
 this function programs data from the buffer(pArray) to the memory s
 invoking FlashPageProgram(). This function automatically handles pag
 crossing, if any.

am(), Like FlashPageProgr
 has been previously erase
Note:

 This function does not ch
 Protection Mode(SPM) or Hardware Protection Mode(HPM), in which case

ignored. Instruction will be
 The function assumes th
both
 the hardware and software levels.
 To unprotect the memory, please call Fla
ucStatusRegister),
 and refer to the datasheet

Pseudo Code:
 Step 1: Validate address input
 Step 2: Check memory space available on the who

e memory space available within Step 3: calcult
 Step 3-1: if the page b
 Step 3-2: if the page bo

Re
{
 ST_uint16 ucMargin;
 ST_uint16 ucPage
 ReturnType

 // Step 1: Vali
 if(!(udAddr < FLASH_SIZE)) return Flash_AddressInvalid;

ole memory // Step 2: Check memory space available on the wh
 + udNrOfElementsInArray > FLASH_SIZE) if(udAddr

 // Step 3: calculte memory space available within the page containing the
address(udAddr)
 ucMargin = (ST_uint8)(~udAddr) + 1;

 // Step 3-1: if the page boundary is crossed,
 if(udNrOfElementsInArray > ucM
 {
 typeReturn = FlashPageProgram(udAddr, pArray, ucMargin);
 if(Flash_Success != typeReturn) return typeReturn; // return
Not successful

 udNrOfElementsInArray -= ucMargi
number of elements

 pArray += ucMargin;
the buffer
 udAddr += ucMargin;
address in the memory

 139

 ucPageCount = udNr
of pages to be programmed

OfElementsInArray / FLASH_WRITE_BUFFER_SIZE; // calculate the number

ITE_BUFFER_SIZE; // calculate the

rogram(udAddr, pArray, ucRemainder);

e boundary is not crossed, invoke FlashPageWrite() once only

Progress (WIP) bit to determine whether

***/

IP)

enerate a text string describing the
tines.

rrorStr(ReturnType rErrNum)

 ucRemainder = udNrOfElementsInArray % FLASH_WR
remainder after filling up one or more whole pages
 while(ucPageCount--)
 {
 typeReturn = FlashPageProgram(udAddr, pArray, FLASH_WRITE_BUFFER_SIZE);

diately if if(Flash_Success != typeReturn) return typeReturn; // return imme
Not successful
 pArray += FLASH_WRITE_BUFFER_SIZE;

 udAddr += FLASH_WRITE_BUFFER_SIZE;
 };
 return FlashPageP
 }
 // Step 3-2: if the pag
 else
 {
 return FlashPageProgram(udAddr, pArray, udNrOfElementsInArray);
 }
}

/***
Function: IsFlashBusy()
Arguments: none

Return Value:
 TRUE
 FALSE

Description: This function checks the Write In
 the Flash memory is busy with a Write, Program or Erase cycle.

Pseudo Code:
 Step 1: Read the Status Register.

eck the WIP bit. Step 2: Ch

BOOL IsFlashBusy()
{
 ST_uint8 ucSR;

 // Step 1: Read the Status Register.
 FlashReadStatusRegister(&ucSR);

 // Step 2: Check the WIP bit.
 if(ucSR & SPI_FLASH_W
 return TRUE;
 else
 return FALSE;
}

#ifdef VERBOSE
/***
Function: FlashErrorStr(ReturnType rErrNum);
Arguments: rErrNum is the error number returned from other Flash memory Routines

Return Value: A p the error message ointer to a string with

scription: This function is used to gDe
 error from the Flash memory. Call with the return value from other Flash memory rou

Code: Pseudo
 Step 1: Return the correct string.
***/
ST_sint8 *FlashE
{
 switch(rErrNum)
 {
 case Flash_AddressInvalid:
 return "Flash - Address is out of Range";
 case Flash_MemoryOverflow:
 return "Flash - Memory Overflows";

 140

 case Flash_PageEraseFailed:
 return "Flash - Page Erase failed";
 case Flash_PageNrInvalid:
 return "Flash - Page Number is out of Range";

 case Flash_SectorNrInvalid:
 return "Flash - Sector Number is out of Range";
 case Flash_FunctionNotSupported:
 return "Flash - Function not supported";
 case Flash_NoInformationAvailable:
 return "Flash - No Additional Information Available";

rn "Flash - Program failed";

return "Flash - Wrong Type";

ring */
efinition */

**
 FlashTimeOut(ST_uint32 udSeconds)

 {

h_OperationTimeOut) break;
5 Seconds before the operation is aborted

**/

nction provides a timeout for Flash polling actions or
ch would otherwise never return.

The Routine uses the function clock() inside ANSI C library "time.h".
--*/

ash_OperationOngoing;

--
or Flash polling actions or
turn.

onsidered to be a loop that
apted to the target Hardware.

 case Flash_OperationOngoing:
 "Flash - Operation ongoing"; return

 case Flash_OperationTimeOut:
 return "Flash - Operation TimeOut";
 case Flash_ProgramFailed:
 retu
 case Flash_Success:
 return "Flash - Success";

 Flash_WrongType: case

 default:
 return "Flash - Undefined Error Value";
 } /* EndSwitch */

shErrorSt} /* EndFunction Fla
ndif /* VERBOSE D#e

/*********

nction:Fu
Arguments: udSeconds holds the number of seconds before TimeOut occurs

Return Value:
 Flash_OperationTimeOut
 Flash_OperationOngoing

Example: FlashTimeOut(0) // Initializes the Timer

 While(1)
 ...
 If (FlashTimeOut(5) == Flas
 // The loop is executed for
 } EndWhile

#ifdef TIME_H_EXISTS
/*--------------------
Description: This fu
 other operations whi

ReturnType FlashTimeOut(ST_uint32 udSeconds){
 static clock_t clkReset,clkCount;

 if (udSeconds == 0) { /* Set Timeout to 0 */
 clkReset=clock();
 } /* EndIf */

 clkCount = clock() - clkReset;

if (clkCount<(CLOCKS_PER_SEC*(clock_t)udSeconds))
 return Fl
 else
 return Flash_OperationTimeOut;
}/* EndFunction FlashTimeOut */

#else
/*-----------------------------
Description: This function provides a timeout f
 other operations which would otherwise never re

ch is c The Routine uses COUNT_FOR_A_SECOND whi
 counts for one second. It needs to be ad

 141

ReturnType FlashTimeOut(ST_uint32 udSeconds)

----------------------------------*/
 {

*******************************/

Definitions, constants, etc for msp430F169

******************/

"

mer A to wait for .5 second */

/* set up timer A to wait for .5 second */

itch */

e DATALOGMODE:

 static ST_uint32 udCounter = 0;
 if (udSeconds == 0) { /* Set Timeout to 0 */
 udCounter = 0;
 } /* EndIf */

 if (udCounter == (udSeconds * COUNT_FOR_A_SECOND)) {
 udCounter = 0;

t; return Flash_OperationTimeOu
 } else {
 udCounter++;
 return Flash_OperationOngoing;
 } /* Endif */

} /* EndFunction FlashTimeOut */
#endif /* TIME_H_EXISTS */

/************************************
 End of c2082.c
**

/* SPI MEMORY TEST PROGRAM */

nclude "msp430x16x.h" // #i

#define DEBUG
#include "mqp.h"
#include "mqpdipsw.h"

#define LCD4BIT
#include "mqplcd.h"

/******************* FUNCTION DECLARATIONS **********
/* Modes */

" #include "mqpdatalog.h
#include "mqpdownload.h
#include "mqpdebug.h"

/********************* MAIN FUNCTION *********************/
void main(void)

 {
 WDTCTL = WDTPW + WDTHOLD; /* stop the watchdog timer */

 /* initialize the LCD */ lcdInit();
 dipswInit(); /* initialize the DIP switch */
 taInit();
 _EINT();

 /* print welcome message */
 lcdPrints("GPS Road\nMapping");

et up ti hwDelay(&timerA, 1, 0x7FFF); /* s
 while(timerA.status != DONE);
 lcdClear();

"); lcdPrints("v0.9
 hwDelay(&timerA, 1, 0x7FFF);
 while(timerA.status != DONE);

lcdClear();

 /* main loop */
 while(1){
 run specified mode based on DIP sw /*
 switch(dipswRead()){
 cas
 lcdPrints("Datalog\nMode");
 hwDelay(&timerA, 3, 0x7FFF); /* set up timer A to wait for 1.5 second */
 while(timerA.status != DONE);
 datalogMode();
 break;
 case DOWNLOADMODE:

 142

 lcdPrints("Download\nMode");
timer A to wait for 1.5 second * hwDelay(&timerA, 3, 0x7FFF); /* set up

);
/

bug\nMode");
to wait for 1.5 second */

elete\nMode");
 /* set up timer A to wait for 1.5 second */

rA.status != DONE);

or SFM */

);

("No Mode?\n");
merA, 3, 0x7FFF); /* set up timer A to wait for 1.5 second */

tus != DONE);

ond */

al Flash Memory Driver *****

 Support to c2076.c. This files is aimed at giving a basic
h STMicroelectronics

nvironment where the

 1.0

ronics, Shanghai (China)

S WITH
R PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A

RONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
OF SUCH
ED HEREIN

**

l release

;

 while(timerA.status != DONE
 downloadMode();
 break;
 case DEBUGMODE:

De lcdPrints("
 hwDelay(&timerA, 3, 0x7FFF); /* set up timer A
 while(timerA.status != DONE);
 debugMode();
 break;

TEMODE: case DELE
 lcdPrints("D
 hwDelay(&timerA, 3, 0x7FFF);
 while(time

 /* set up USART1 for SPI f
 _DINT();
 sfmInit1();
 if(sfmPost() == Flash_Success){
 sfmErase();
 } else {
 lcdClear();
 lcdPrints("Bad Mem!"

 }
 break;

 default:
 lcdPrints
 hwDelay(&ti
 while(timerA.sta
 }

 /* sleep a bit */
 hwDelay(&timerA, 3, 0x7FFF); /* set up timer A to wait for 1.5 sec
 while(timerA.status != DONE);
 lcdClear();
 }
}

/****** implementation File for support of STFL-I based Seri

erialize.c Filename: S
scription: De

 example of the SPI serial interface used to communicate wit
in an e serial Flash devices. The functions below are used

 master has an embedded SPI port (STMicroelectronics µPSD).

 Version:
 Date: 08-11-2004
 Authors: Tan Zhi, STMicroelect
 Copyright (c) 2004 STMicroelectronics.

GUIDANCE ONLY AIMS AT PROVIDING CUSTOMER THE PRESENT SOFTWARE WHICH IS FOR
MATION REGARDING THEI CODING INFOR

 RESULT, STMICROELECT
 CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
 SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION CONTAIN

S. IN CONNECTION WITH THEIR PRODUCT

 Version History.
 Ver. Date Comments

 1.0 08/11/2004 Initia

***/
#include "Serialize.h"

 /* added by Carlton */
void SelectSlave(void);
void DeSelectSlave(void)

 143

void EnableTrans(void);
void DisableTrans(void);
void EnableRcv(void);
void DisableRcv(void);

*//*******************

rbo_SPI.h"

his function.
figuration for the CPU to set some

n they have multiple functions. For
ports can be GPIO pins or SPI pins if

c CPU datasheet for proper
rations.

***/

/ P4.7 works in GPIO mode as the Slave Select signal

//bit3:TEIE=0. SPI transmission end interrupt disable
interrupt disable
isable

//select frequency divider=0x2C

 //bit3:SSEL=0. SPI Slave select output is

t
ge of the

**/

gOptions opt)

lectSlave_Relevant) (opt & MaskBit_SlaveSelect) ? SelectSlave() :

_Relevant)(opt & MaskBit_Trans) ? EnableTrans():DisableTrans();
elevant) (opt & MaskBit_Recv) ? EnableRcv():DisableRcv();

/** uPSD specific includes
#include ".\uPSD\uPSD3300.h"
#include ".\uPSD\TurboLite_hardware.h"

bo_timer.h" #include ".\uPSD\Tur
SD\Tu#include ".\uP

**/
/************************************
Function: InitSPIMaster(void)
Arguments:
Return Values:There is no return value for t
Description: This function is a one-time con

 to work in SPI mode (whe ports
 example, in some CPUs, the
 properly configured).

refer to the specifi please
 configu

PIMaster(void) void InitS
{
/*
 P4SFS0 |= 0x70;
 P4SFS1 |= 0x70; // Setup P4[4..6] Port as SPI
 /

 SPICON1=0x00;
 //bit2:RORIE=0. SPI receive overrun
 //bit1:TIE=0. SPI transmission interrupt d

//bit0:RIE=0 SPI reception interrupt disable

SPICLKD=0x2C;

 SPICON0=0x72; //bit6:TE=1. SPI Transmitter enable
 //bit5:RE=1. SPI Receiver enable

 //bit4:SPIEN=1. SPI enable

disabled,use P4.7 as the Select Slave signal
 //bit2:FLSB=0. SPI Transfer the MSB firs

d //bit1:SPO=1. SPI Sample data on the rising e
clock
*/
}

/***

onfigOptions opt) Function: ConfigureSpiMaster(SpiMasterC
Arguments: opt configuration options, all acceptable values are enumerated in
 SpiMasterConfigOptions, which is a typedefed enum.
Return Values:There is no return value for this function.
Description: This function can be used to properly configure the SPI master
 before and after the transfer/receive operation
Pseudo Code:

elect slave Step 1 : perform or skip select/des
 Step 2 : perform or skip enable/disable transfer

 Step 3 : perform or skip enable/disable receive

void ConfigureSpiMaster(SpiMasterConfi
{

 if(enumNull == opt) return;

 if(opt & MaskBit_Se
DeSelectSlave();
 if(opt & MaskBit_Trans
 if(opt & MaskBit_Recv_R

 144

}

lt/********* added by Car on *************/

2.5 = S = Low (selected) */

S = High (deselected) */

/* P2.6 = W = Low (enabled) */

P2OUT

nctio end,
 a

 to the SPI master, usually contains data to be read from the memory.
 optBefore, configurations of the SPI master before any transfer/receive

 optAfter, configurations of the SPI after any transfer/receive

r cycle. it usually involves:
ta-register is ready

ew byte

cific CPU)
ear the receive-data-register.

 Step 2-2-2: receive the byte stream cycle after cycle. it usually involves:
ng a dummy cycle
until the transfer-data-register is ready(full)

void SelectSlave(void)
{
 P2OUT &= ~(SPIS); /* P
}

void DeSelectSlave(void)
{

 P2OUT |= SPIS; /* P2.5 =
}

void EnableTrans(void)
{
 P2OUT |= SPIHOLD; /* P2.4 = HOLD = High */
}

void DisableTrans(void)
{
 P2OUT &= ~(SPIHOLD); /* P2.4 = HOLD = Low */
}

void EnableRcv(void)
{

2OUT &= ~(SPIW); P
}

void DisableRcv(void)
{
 |= SPIW; /* P2.6 = W = High (disabled) */
}

/***/

****** * ************************* /* ************** ********************************
Fu n: Serialize(const CharStream* char_stream_s

m_ CharStre m* char_strea recv,
 SpiMasterConfigOptions optBefore,
 SpiMasterConfigOptions optAfter
)
Arguments: char_stream_send, the char stream to be sent from the SPI master to
 the Flash memory, usually contains instruction, address, and data to be
 programmed.
 char_stream_recv, the char stream to be received from the Flash memory

Return Values:TRUE
Description: This function can be used to encapsulate a complete transfer/receive
 operation
Pseudo Code:
 Step 1 : perform pre-transfer configuration
 Step 2 : perform transfer/ receive
 Step 2-1: transfer ...
 (a typical process, it may vary with the specific CPU)

available Step 2-1-1: check until the SPI master is
 Step 2-1-2: send the byte stream cycle afte
 a) checking until the transfer-da
 b) filling the register with a n
 Step 2-2: receive ...
 (a typical process, it may vary with the spe
 Step 2-2-1: Execute ONE pre-read cycle to cl

 a) triggeri
 b) checking
 c) reading the transfer-data-register
 Step 3 : perform post-transfer configuration
***/
Bool Serialize(const CharStream* char_stream_send,
 CharStream* char_stream_recv,

 145

 SpiMasterConfigOptions optBefore,
ter

pre-transfer configuration

 swDelay(5, DMSEC);

 length = char_stream_send->length;
_send->pChar;

byte stream cycle after cycle
ngth; ++i)

 while (!(IFG1 & UTXIFG0)); // check until the transfer-data-register is

 (*hsfm).tx.length = 1;

kip if no reception needed

ummy cycle

 SpiMasterConfigOptions optAf
)
{

 ST_uint32 i;

 ST_uint32 length;
 unsigned char* pChar;

 // Step 1 : perform
 ConfigureSpiMaster(optBefore);

//

 // Step 2 : perform transfer / receive
 // Step 2-1: transfer ...

 pChar = char_stream

 // 2-1-1 Wait until SPI is available

 swDelay(5, DMSEC); //

 // 2-1-2 send the

 for(i = 0; i < le
 {

 //dusart0.tx.status=FREE;
//
ready(not full)

 (*hsfm).rx.length = 0;

 (*hsfm).tx.status = WORK;
 if((*hsfm).port == SPI0){
 TXBUF0 = *(pChar++); // fill the register with a new byte
 } else if((*hsfm).port == SPI1){

h a new byte TXBUF1 = *(pChar++); // fill the register wit
 }

 while((*hsfm).tx.status != FREE);
 }

 swDelay(5, DMSEC);

 // Step 2-2: receive ...
 // Step 2-2-1: execute ONE pre-read cycle to clear the receive-data-register.
 (*hsfm).rx.length = 0;
 (*hsfm).rx.status = WORK;
 if((*hsfm).port == SPI0){
 foo = RXBUF0; // read the transfer-data-register

ort == SPI1){ } else if((*hsfm).p
 foo = RXBUF1; // read the transfer-data-register
 }

 // Step 2-2-2: send the byte stream cycle after cycle.
 if(ptrNull != (int)char_stream_recv) // s
 {
 length = char_stream_recv->length;
 pChar = char_stream_recv->pChar;
 for(i = 0; i < length; ++i)
 {
 //dusart0.status = WRITE;
 //dusart0.status = READ;

 (*hsfm).tx.length = 1;
 (*hsfm).tx.status = WORK;
 (*hsfm).rx.length = 0;
 (*hsfm).rx.status = WORK;
 if((*hsfm).port == SPI0){

 // triggering a d TXBUF0 = SPI_FLASH_INS_DUMMY;
 } else if((*hsfm).port == SPI1){

 146

 TXBUF1 = SPI_FLASH_INS_DUMMY; // triggering a dummy cycle

 (*hsfm).tx.status != FREE);
((*hsfm).rx.status != FREE);

!(IFG1 & UTXIFG0)); // checking until the transfer-data-register is

1 & URXIFG0));

.length-1]; // read

configuration

e for STFL-I based Serial Flash Memory Driver *****

ils.

ca ion pr
ecification designed for parallel NOR Flash memories. The major
om the SPECIFICATION OF THE STFL-I SOFTWARE DRIVER INTERFACE

FL-I-V2-1a) are the following:
ion Selection is not used.
use

I Flash instructions.
t used.

 Shanghai (China)
yright (c) 2004-2005 STMicroelectronics.

CH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH
 THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A

ESPECT TO ANY CLAIMS ARISING FROM THE CONTENT OF SUCH
Y CUSTOMERS OF THE CODING INFORMATION CONTAINED HEREIN
TS.

o M25P05 5P

***********************************/

o show how the SW Drivers can be customized
e hardware and Flash memory configurations.
emory start address, the CPU Bit depth, the number of

 performance data (TimeOut Info).

 }

 while(
 while
// while (
ready
// while (!(IFG

 *(pChar++) = (*hsfm).rx.buffer[(*hsfm).rx

 the transfer-data-register
 (*hsfm).rx.length = 0;

 }
 }

 // Step 3 : perform post-transfer
 ConfigureSpiMaster(optAfter);

 return TRUE;
}

/***************** Header Fil

 Filename: c2082.h
 Description: Header file for c2082.c

 Also consult the C file for more deta

 Please note that some necessary changes are made in favor of the
 SPI-specific communi t operty which slightly differs from
 the STFL-I Sp
 differences fr
 (Specification-ST
 - Flash Configurat
 - BASE_ADDR is not d.
 - InstructionTyp muerations are re-formulated to use SPe enu
 - CONFIGURATION CONSTANTS are fixed, with #define ins(A) no
 ...

 Version: 2.0
 Date: 20-07-2005

ors: Tan Zhi, STMicroelectronics, Auth
 Cop

 PRESENT SOFTWARE WHI THE

 CODING INFORMATION REGARDING
 RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
 CONSEQUENTIAL DAMAGES WITH R
 SOFTWARE AND/OR THE USE MADE B
 IN CONNECTION WITH THEIR PRODUC
************************ ** ** *********************************** ****** ***** *

 Version History.
 Ver. Date Comments

 1.0 16/11/2004 Initial release
 2.0 20/07/2005 Add support for M25P32, M25P64

r A, M2 10A Add JEDEC ID support f

**

/*************** User Change Area ******

 The purpose of this section is t
 according to the requirements of th
 It is possible to choose the Flash m
Flash
 chips, the hardware configuration and

 The options are listed and explained below:

 147

 ********* Data Types *********
 hardware independent datatypes assuming that the The source code defines

 compiler implements the numerical types as

 unsigned char 8 bits (defined as ST_uint8)
 char 8 bits (defined as ST_sint8)
 unsi t16) gned int 16 bits (defined as ST_ n
 int 16 bits (defined as ST_s nt

ui
i 16)

e currently used numerical types,
re in the user area of the headerfile.

ata types are consequently referenced in the source code as (u)ST_sint8,
 like 'CHAR','SHORT','INT','LONG'

 Type *********
pports the following Serial Flash memory Types

 #define USE_M25P20
 #define USE_M25P40

#define USE_M25P80
 #define USE_M25P16

ash chips

face communications are controlled by the
rn, is accessed by the CPU as an 8-bit data

of the code, in order

_FOR_A_SECOND)

ine
ND

.

 COUNT_FOR_A_SECOND should have the value 100000.

ue to prevent the code
ct completion of the device

 unsigned long 32 bits (defined as ST_uint32)
 long 32 bits (defined as ST_sint32)

 In case the compiler does not support th

be easily changed just once he they can
 The d
 (u)ST_sint16 and (u)ST_sint32. No other data types
 are directly used in the code.

 ********* Flash

This driver su

 M25P05A 512Kb Serial Flash Memory #define USE_M25P05A

ial Flash Memory #define USE_M25P10A M25P10A 1Mb Ser
 M25P20 2Mb Serial Flash Memory
 M25P40 4Mb Serial Flash Memory
 M25P80 8Mb Serial Flash Memory

6Mb Serial Flash Memory M25P16 1
 M25P32 32Mb Serial Flash Memory #define USE_M25P32
 M25P64 64Mb Serial Flash Memory #define USE_M25P64

 ********* Flash and Board Configuration *********
 The driver also supports different configurations of the Fl
 on the board. In each configuration a new data Type called
 'uCPUBusType' is defined to match the current CPU data bus width.
 This data type is then used for all accesses to the memory.

 Because SPI inter
 SPI master, which, in tu
 buffer, the configuration is fixed for all cases.

 ********* TimeOut *********

 There are timeouts implemented in the loops
 to enable a timeout detection for operations that would otherwise never terminate.
 There are two possibilities:

 1) The ANSI Library functions declared in 'time.h' exist

 If the current compiler supports 'time.h' the define statement
 TIME_H_EXISTS should be activated. This makes sure that

e of the current evaluation HW does not change the performanc
 the timeout settings.

 2) or they are not available (COUNT

 If the current compiler does not support 'time.h', the def
 statement cannot be used. In this case the COUNT_FOR_A_SECO

 value has to be defined so as to create a one-second delay
 For example, if 100000 repetitions of a loop are

 needed to give a time delay of one second, then

 Note: This delay is HW (Performance) dependent and therefore needs
 to be updated with every new HW.

 This driver has been tested with a certain configuration and other
 target platforms may have other performance data, therefore, the
 value may have to be changed.

 It is up to the user to implement this val

 from timing out too early and allow corre

 148

 operations.

 ********* Additional Routines *********
 The drivers also provide a subroutine which disp
 error message instead of just an error number.

lays the full

 Routines.
on

)
 Flash memory finishes executing the Instruction

 timeout value is in

USE_M25P80

 supported */

e */

***********/

*****/

20 */
cation is 0x20 */

Memory will do */

read One-Byte

 The define statement VERBOSE activates additional
 Currently it activates the FlashErrorStr() functi

No further changes should be necessary.

***/

#ifndef __c2082__H__
#define __c2082__H__

#define DRIVER_VERSION_MAJOR 2
#define DRIVER_VERSION_MINOR 0

typedef unsigned char ST_uint8; /* All HW dependent Basic Data Types */
typedef char ST_sint8;
typedef unsigned int ST_uint16;
typedef int ST_sint16;
typedef unsigned long ST_uint32;
typedef long ST_sint32;

/* With SYNCHRONOUS_IO defined, each function that sends an Instruction(e.g. PE
 shall not return until the
 or a pre-set timeout limit is reached. the pre-set
 accordance with the datasheet of each memory.

 To achieve Send-n-Forget feature, comment out this #define*/
#define SYNCHRONOUS_IO

#define USE_M25P64
/* Possible Values: USE_M25P05A
 USE_M25P10A
 USE_M25P20

 USE_M25P40

 USE_M25P16
 USE_M25P32

USE_M25P64
 */

/*#define TIME_H_EXISTS*/ /* set this macro if C-library "time.h" is
/* Possible Values: TIME_H_EXISTS
 - no define - TIME_H_EXISTS */

#ifndef TIME_H_EXISTS
 #define COUNT_FOR_A_SECOND 0xFFFFFF /* Timer Usag
#endif

#define VERBOSE /* Activates additional Routines */
/* Currently the Error String Definition */

**********/********************** End of User Change Area ********

/***
Device Constants
**

#define MANUFACTURER_ST (0x20) /* ST Manufacturer Identification is 0x
#define MEMORYTYPE_M25Pxx (0x20) /* JEDEC Memory Type for M25Pxx Identifi

 #define ANY_ADDR (0x0) /* Any address offset within the Flash

#ifdef USE_M25P05A /* The M25P05A device */
 #define USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE /* undefine this macro to
Signature*/

 149

 #ifdef USE_JEDE
 #define EX

C_STANDARD_TWO_BYTE_SIGNATURE
PECTED_DEVICE (0x2010) /* Preferred Device Identification: please refer to the

 please refer to the datasheet

 Bytes */
n Pages */

e size in Sectors */
ector Size = 256Kb*/

Write Buffer = 256 bytes */

(0x6) /* Timeout in seconds suggested for Bulk Erase

/

 /* The M25P10A device */
O_BYTE_SIGNATURE /* undefine this macro to read One-Byte

ase refer to the

/* Device Identification: please refer to the datasheet

 /* Total device size in Bytes */

Buffer = 256 bytes */
*/
gested for Bulk Erase

evice */
fication for the M25P20 */

 size in Bytes */
 size in Pages */
 size in Sectors */
 = 256 bytes */
e Access */
econds suggested for Bulk Erase

P40 device */
dentification for the M25P40 */

evice size in Bytes */
ize in Pages */
ze in Sectors */

 256 bytes */
Write Access */
n seconds suggested for Bulk Erase

/

datasheet */
 #else
 #define EXPECTED_DEVICE (0x05) /* Device Identification:
*/
 #endif
 #define FLASH_SIZE (0x010000) /* Total device size in

 size i #define FLASH_PAGE_COUNT (0x0100) /* Total device
 #define FLASH_SECTOR_COUNT (0x02) /* Total devic

 #define FLASH_SMALLER_SECTOR_SIZE /* S
 #define FLASH_WRITE_BUFFER_SIZE 0x100 /*

 #define FLASH_MWA 1 /* Minimum Write Access */
 #define BE_TIMEOUT
Operation*/
#endif /* USE_M25P05A *

#ifdef USE_M25P10A
 #define USE_JEDEC_STANDARD_TW

gnature*/ Si
 #ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE
 #define EXPECTED_DEVICE (0x2011) /* Preferred Device Identification: ple
datasheet */
 #else
 #define EXPECTED_DEVICE (0x10)
*/
 #endif

 #define FLASH_SIZE (0x020000)
 #define FLASH_PAGE_COUNT (0x0200) /* Total device size in Pages */
 #define FLASH_SECTOR_COUNT (0x04) /* Total device size in Sectors */
 #define FLASH_SMALLER_SECTOR_SIZE /* Sector Size = 256Kb*/
 #define FLASH_WRITE_BUFFER_SIZE 0x100 /* Write
 #define FLASH_MWA 1 /* Minimum Write Access
 #define BE_TIMEOUT (0x6) /* Timeout in seconds sug
Operation*/

0A */ #endif /* USE_M25P1

#ifdef USE_M25P20 /* The M25P20 d
 #define EXPECTED_DEVICE (0x11) /* Device Identi
 #define FLASH_SIZE (0x040000) /* Total device
 #define FLASH_PAGE_COUNT (0x0400) /* Total device
 #define FLASH_SECTOR_COUNT (0x04) /* Total device
 #define FLASH_WRITE_BUFFER_SIZE 0x100 /* Write Buffer
 #define FLASH_MWA 1 /* Minimum Writ
 #define BE_TIMEOUT (0x6) /* Timeout in s
Operation*/
#endif /* USE_M25P20 */

#ifdef USE_M25P40 /* The M25
 #define EXPECTED_DEVICE (0x12) /* Device I

(0x080000) /* Total d #define FLASH_SIZE
 #define FLASH_PAGE_COUNT (0x0800) /* Total device s
 #define FLASH_SECTOR_COUNT (0x08) /* Total device si

ne FLASH_WRITE_BUFFER_SIZE 0x100 /* Write Buffer = #defi
 #define FLASH_MWA 1 /* Minimum
 #define BE_TIMEOUT (0x03) /* Timeout i
Operation*/

ndif /* USE_M25P40 */ #e

fdef USE_M25P80 /* The M25P80 device */ #i
 #define EXPECTED_DEVICE (0x13) /* Device Identification for the M25P80 *
 #define FLASH_SIZE (0x0100000) /* Total device size in Bytes */
 #define FLASH_PAGE_COUNT (0x01000) /* Total device size in Pages */
 #define FLASH_SECTOR_COUNT (0x10) /* Total device size in Sectors */
 #define FLASH_WRITE_BUFFER_SIZE 0x100 /* Write Buffer = 256 bytes */
 #define FLASH_MWA 1 /* Minimum Write Access */
 #define BE_TIMEOUT (0x14) /* Timeout in seconds suggested for Bulk Erase
Operation*/
#endif /* USE_M25P80 */

#ifdef USE_M25P16 /* The M25P16 device */

 150

 #define USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE /* undefine this macro to read One-Byte
Signature*/
 #ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE
 #define EXPECTED_DEVICE (0x2015) /* Device Identification for the USE_M25P16 */
 #else
 efine EXPECTED_DEVICE (0x14) /* Device Identification for the USE_M25P16 */ #d
 #endif
 #define FLASH_SIZE (0x0200000) /* Total device size in Bytes */
 #define FLASH_PAGE_COUNT (0x02000) /* Total device size in Pages */
 #define FLASH_SECTOR_COUNT (0x20) /* Total device size in Sectors */

 / #define FLASH_WRITE_BUFFER_SIZE 0x100 / Write Buffer = 256 bytes
 #define FLASH_MWA 1 /* Minimum Write Access */

ed #define BE_TIMEOUT (0x46) /* Timeout in seconds suggest for Bulk Erase

*/

FLASH_SECTOR_COUNT (0x40) /* Total device size in Sectors */

or Bulk Erase

ARD_TWO_BYTE_SIGNATURE /* undefine this macro to read One-Byte

64 */

e USE_M25P64 */

 */

UFFER_SIZE 0x100 /* Write Buffer = 256 bytes */
 /* Minimum Write Access */

 suggested for Bulk Erase

*/

***/

le

r

 higher speed

OWER_DOWN_SUPPORT

-down

Operation*/
#endif /* USE_M25P16 */

#ifdef USE_M25P32 /* The USE_M25P32 device
 #define USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE /* undefine this macro to read One-Byte
Signature*/
 #ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE
 #define EXPECTED_DEVICE (0x2016) /* Device Identification for the USE_M25P32 */
 #else
 #define EXPECTED_DEVICE (0x15) /* Device Identification for the USE_M25P32 */
 #endif
 #define FLASH_SIZE (0x0400000) /* Total device size in Bytes */
 #define FLASH_PAGE_COUNT (0x04000) /* Total device size in Pages */
 #define
 #define FLASH_WRITE_BUFFER_SIZE 0x100 /* Write Buffer = 256 bytes */
 #define FLASH_MWA 1 /* Minimum Write Access */
 #define BE_TIMEOUT (0x80) /* Timeout in seconds suggested f
Operation*/
#endif /* USE_M25P32 */

#ifdef USE_M2 /* The USE_M25P64 device */ 5P64
 #define USE_JEDEC_STAND
Signature*/
 #ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE
 #define EXPECTED_DEVICE (0x2017) /* Device Identification for the USE_M25P
 #else
 #define EXPECTED_DEVICE (0x16) /* Device Identification for th
 #endif

/ #define FLASH_SIZE (0x0800000) / Total device size in Bytes
ges #define FLASH_PAGE_COUNT (0x08000) /* Total device size in Pa

 #define FLASH_SECTOR_COUNT (0x80) /* Total device size in Sectors */
 #define FLASH_WRITE_B
 #define FLASH_MWA 1
 #define BE_TIMEOUT (0x160) /* Timeout in seconds
Operation*/
 #define NO_DEEP_POWER_DOWN_SUPPORT /* No support for Deep Power-down feature
#endif /* USE_M25P64 */
/***
 DERIVED DATATYPES

**
/******** InstructionsCode ********/
#define SPI_FLASH_INS_DUMMY 0xAA // dummy byte
enum
{

//Instruction set
 SPI_FLASH_INS_WREN = 0x06, // write enab
 SPI_FLASH_INS_WRDI = 0x04, // write disable
 SPI_FLASH_INS_RDSR = 0x05, // read status registe
 SPI_FLASH_INS_WRSR = 0x01, // write status register
 SPI_FLASH_INS_READ = 0x03, // read data bytes
 SPI_FLASH_INS_FAST_READ = 0x0B, // read data bytes at
 SPI_FLASH_INS_PP = 0x02, // page program
 SPI_FLASH_INS_SE = 0xD8, // sector erase

 #ifndef NO_DEEP_P
 SPI_FLASH_INS_RES = 0xAB, // release from deep power-down
 SPI_FLASH_INS_DP = 0xB9, // deep power

 151

 #endif

 #ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE
 SPI_FLASH_INS_RDID = 0x9F, // read identification
 #endif

 SPI_FLASH_INS_BE = 0xC7 // bulk erase
};

/******** InstructionsType ********/

typedef enum {
 WriteEnable,
 WriteDisable,
 ReadDeviceIdentification,
 #ifdef USE_JEDEC_STANDARD_TWO_BYTE_SIGNATURE
 ReadManufacturerIdentification,
 #endif
 ReadStatusRegister,
 WriteStatusRegister,
 Read,
 FastRead,
 PageProgram,
 SectorErase,
 BulkErase,

 #ifndef NO_DEEP_POWER_DOWN_SUPPORT
 DeepPowerDown,
 ReleaseFromDeepPowerDown,
 #endif

 Program

 /** */

 /** ***

} InstructionType;

/******** ReturnType ********/

typedef enum {
 Flash_AddressInvalid,
 Flash_MemoryOverflow,
 Flash_PageEraseFailed,

geNrInvalid, Flash_Pa
 Flash_SectorNrInvalid,
 Flash_FunctionNotSupported,
 Flash_NoInformationAvailable,
 Flash_OperationOngoing,
 Flash_OperationTimeOut,
 Flash_ProgramFailed,
 Flash_WrongType,
 Flash_Success
} ReturnType;

/******** SectorType ********/

typedef ST_uint8 uSectorType;

*** PageType ********/ /*****

typedef ST_uint16 uPageType;

/******** AddrType ********/

typedef ST_uint32 uAddrType;

/******** ParameterType ********/

typedef union {

 ** WriteEnable has no parameters ***

 ** WriteDisable has no parameters * /

 152

 /**** ReadDeviceIdentification Parameters ***
 struct {

*/

stru
 ST_uint8 ucManufacturerIdentification;

 } ReadManufacturerIdentification;

s ****/

StatusRegister;

r;

s ****/

dAddr;
dNrOfElementsToRead;

ay;

Type udAddr;
nt32 udNrOfElementsToRead;

**/

ntsInArray;

ters ****/

sInArray;

Parameters ****/

 ****/

*/

nArray;

Parameters ****/

 ST_uint16 ucDeviceIdentification;
viceIdentification; } ReadDe

 /**** ReadManufacturerIdentification Parameters ****/

ct {

 /**** ReadStatusRegister Parameter
 struct {
 ST_uint8 uc
 } ReadStatusRegister;

 /**** WriteStatusRegister Parameters ****/
 struct {

Register; ST_uint8 ucStatus
 } WriteStatusRegiste

d Parameter /**** Rea
 struct {
 uAddrType u
 ST_uint32 u

r void *pAr
 Read; }

Parameters ****/ /**** FastRead

 struct {
 uAddr
 ST_ui
 void *pArray;
 } FastRead;

 /**** PageWrite Parameters **
 struct {
 uAddrType udAddr;
 ST_uint32 udNrOfEleme
 void *pArray;
 } PageWrite;

 /**** PageProgram Parame
 struct {
 uAddrType udAddr;
 ST_uint32 udNrOfElement
 void *pArray;
 } PageProgram;

e /**** PageEras
 struct {
 uPageType upgPageNr;
 } PageErase;

 /**** SectorErase Parameters
 struct {
 uSectorType ustSectorNr;

 } SectorErase;

 /**** Write Parameters ***
 struct {
 uAddrType udAddr;
 ST_uint32 udNrOfElementsI
 void *pArray;
 } Write;

 /**** Program
 struct {
 uAddrType udAddr;
 ST_uint32 udNrOfElementsInArray;
 void *pArray;

 153

 } Program;

} ParameterType;

/**
 Standard functions

********************/
tion, ParameterType *fp);

;
uint16 *uwpDeviceIdentification);

Identification(ST_uint8 *ucpManufacturerIdentification);

*ucpStatusRegister);
ucStatusRegister);

nt8 *ucpElements, ST_uint32

Type udAddr, ST_uint8 *ucpElements, ST_uint32

ddrType udAddr, ST_uint8 *pArray, ST_uint16

SectorNr);

epPowerDown(void);
 FlashReleaseFromDeepPowerDown(void);

m(ST_uint32 udAddr, ST_uint8 *pArray , ST_uint32

ons

***/

 rErrNum);

);

**
tions and Help.

**

ess given is out of the range of the Flash device.
hether the address is in the valid range of the

Failed
 Instruction did not complete successfully.

n. If this fails once more, the device
e replaced.

**

d
ash memory is not at fault.

ted (Parameter), which is not
ge. Valid Page numbers are from 0 to

 in the valid range.
**

 at fault.

cted (Parameter), which is not
 numbers are from 0 to

 is in the valid range.

**
 ReturnType Flash(InstructionType insInstruc
 ReturnType FlashWriteEnable(void);

ReturnType FlashWriteDisable(void)
 ReturnType FlashReadDeviceIdentification(ST_

C_STANDARD_TWO_BYTE_SIGNATURE #ifdef USE_JEDE
 ReturnType FlashReadManufacturer
#endif
 ReturnType FlashReadStatusRegister(ST_uint8
 ReturnType FlashWriteStatusRegister(ST_uint8

 udAddr, ST_ui ReturnType FlashRead(uAddrType
udNrOfElementsToRead);

Addr ReturnType FlashFastRead(u
udNrOfElementsToRead);
 ReturnType FlashPageProgram(uA
udNrOfElementsInArray);
 ReturnType FlashSectorErase(uSectorType usc
 ReturnType FlashBulkErase(void);

DOWN_SUPPORT #ifndef NO_DEEP_POWER_
FlashDe ReturnType

ReturnType
#endif
 ReturnType FlashProgra
udNrOfElementsInArray);

/*********************
 Utility functi

#ifdef VERBOSE

r(ReturnType ST_sint8 *FlashErrorSt
#endif

eOut(ST_uint32 udSeconds ReturnType FlashTim

************/*****
List of Errors and Return values, Explana

**

Error Name: Flash_AddressInvalid
Description: The addr
Solution: Check w
 Flash device.

Error Name: Flash_PageErase

age eraseDescription: The P
Solution: Try to erase the Page agai
 may be faulty and need to b

**

ageNrInvaliError Name: Flash_P
te: The FlNo

Description: A Page has been selec
ithin the valid ran w

 FLASH_PAGE_COUNT - 1.
Solution: Check that the Page number given is

Error Name: Flash_SectorNrInvalid
Note: The Flash memory is not

s been seleDescription: A Sector ha
 within the valid range. Valid Page
 FLASH_SECTOR_COUNT - 1.

at the Sector number givenSolution: Check th

 154

**

_FunctionNotSupported
user has attempted to make use of a functionality not

ut
hin

ot finish an
t 7 of the Status

t that did not happen within a predetermined
as therefore cancelled by a

is damaged.
it fails a second time then it

mming. Try to erase the Page and
ils again then the device may

ead from

r
n cannot be

ntact

d

******************************/

**/

Write Protect
t2

Return Name: Flash

cription: The Des
 available on this Fash device (and thus not provided by the
 software drivers).
Solution: This may happen after changing Flash SW Drivers in existing
 environments. For example an application tries to use a

. functionality which is no longer provided with the new device
**

Return Name: Flash_NoInformationAvailable

ional information about the error. Description: The system cannot give any addit
Solution: None

Error Name: Flash_OperationOngoing
Description: This message is one of two messages that are given by the TimeO
 subroutine. It means that the ongoing Flash operation is still wit
 the defined time frame.
************************ **

Error Name: Flash_OperationTimeOut
Description: The Program/Erase Controller algorithm could n

t should have set bi operation successfully. I
bu Register from 0 to 1,

 time. The program execution w
 timeout. This may be because the device

: Try the previous Instruction again. If Solution
 is likely that the device will need to be replaced.

Error Name: Flash_ProgramFailed
Description: The value that should be programmed has not been written correctly
 to the Flash memory.

posed to receive the value Solutions: Make sure that the Page which is sup
 was erased successfully before progra

 to program the value again. If it fa
 be faulty.
**

Error Name: Flash_WrongType

evice Identifications rDescription: This message appears if the Manufacture and D
 the current Flash device do not match the expected identifier

 codes. This means that the source code is not explicitely written fo
 the currently used Flash chip. It may work, but the operatio
 guaranteed.
Solutions: Use a different Flash chip with the target hardware or co
 STMicroelectronics for a different source code library.
**

Return Name: Flash_Success
Description: This value indicates that the Flash memory Instruction was execute
 correctly.
**/

** /**********************************
 External variable declaration

// none in this version of the release

/***
Flash Status Register Definitions (see Datasheet)

enum
{
 SPI_FLASH_SRWD = 0x80, // Status Register
 SPI_FLASH_BP2 = 0x10, // Block Protect Bi
 SPI_FLASH_BP1 = 0x08, // Block Protect Bit1
 SPI_FLASH_BP0 = 0x04, // Block Protect Bit0

 155

 SPI_FLASH_WEL = 0x02, // write enable latch
 // write/program/erase in progress indicator SPI_FLASH_WIP = 0x01

};

/***

***/

**/

***/

ffer */

int value ead fr m the A

Specific Function Prototypes
**
typedef unsigned char BOOL;

#ifndef TRUE

fine TRUE 1 #de
#endif

#ifndef FALSE
#define FALSE 0
#endif

BOOL IsFlashBusy();

/***
List of Specific Errors and Return values, Explanations and Help.

*** **************************************

// none in this version of the release
**

#endif /* __c2082__H__ */
/* In order to avoid a repeated usage of the header file */

/***
 End of c2082.h

/* MQP header */
/* some general constants and functions */

#ifndef MQP_H
#define MQP_H

char char256[256]; /* sfmbuffer */

ar char180[180]; /* GPS RX buffer, USB TX buffer */ ch
char char125[125]; /* SFM RX bu
char char32[32]; /* SFM TX buffer */
char char8[8]; /* scratch value */
char char1[1]; /* USB RX buffer */

int sfmreadpos;

#endif

/* mqpadc.h */
/***************** header file for ADC interface *********************/
#ifndef MQPADC_H
#define MQPADC_H

#define INTMAX 0xFFFF

#define XAXIS ADC12MEM0
#define YAXIS ADC12MEM1

efine ZAXIS ADC12MEM2 #d

typedef unsigned int AXLint;

/* accelerometer axis */
typedef struct _AXLaxis{

nt value; /* the latest value read from the ADC */ AXLi
XL A max; /* the maximum r o DC */

 AXLint min; /* the minimum value read from the ADC */
}AXLaxis;

/* triple-axis accelerometer */

 156

typedef struct _AXL3{
 AXLaxis x; /* X axis */

s y; /* Y a is */ AXLaxi x

oid);

the accelerometer */

****** init_adc() **************************
itialize the ADC channels

el setup:
 X Axis
Y Axis

ct to Avss */

r accelerometer structure */

******/
ure */

;
.max = 0;
min = INTMAX;

TMAX;

ert() ***************************/
version from the ADC into ADC memory */
d, the ADC12MEM# has the new conversion in it */

on */
on is done */

***************************/

 AXLaxis z; /* Z axis */
}AXL3;

void axlInit(void);
void axlReset(void);

rt(void); void axlConve
void axlRead(v

; /* AXL3 axl

/***************
 * function to in
 * chann
 * 0: Accelerometer
 * 1: Accelerometer
 * 2: Accelerometer Z Axis
 */
void axlInit(void)
{
 /* set up conversion clocks, turn adc on, use multiple samples */
 ADC12CTL0 = SHT0_6 + ADC12ON + MSC;
 /* set up for samping signal select and single sequence sample */

ADC12CTL1 = SHP + CONSEQ_1;

 /* set up channel zero for input, use AVcc with respe

ADC12MCTL0 = INCH_0 + SREF_0;
 /* set up channel one for input, use AVcc with respect to Avss */
 ADC12MCTL1 = INCH_1 + SREF_0;
 /* set up channel two for input, use AVcc with respect to Avss */
 ADC12MCTL2 = INCH_2 + SREF_0 + EOS;

 /* enable conversion */
 ADC12CTL0 |= ENC;

 /* clea
 axlReset();
}

**************/********************* axlReset() *******
/* function to clear accelerometer struct
void axlReset(void)
{
 /* x axis */
 axl.x.value = 0
 axl.x
 axl.x.

 /* y axis */
 axl.y.value = 0;

 axl.y.max = 0;
 axl.y.min = IN

 /* z axis */
 axl.z.value = 0;
 axl.z.max = 0;
 axl.z.min = INTMAX;
}

/********************* axlConv
/* function to read a con
/* post: after being calle
void axlConvert(void)
{
 ADC12CTL0 |= ADC12SC; /* start up a conversi
 while(ADC12CTL0 & ADC12SC); /* hang until conversi
}

/********************* axlRead()

 157

/* function to get current AD
void axlRead(void)

C values into accelerometer structure */

re */

 = XAXIS; }

 }

l.x.min = XAXIS; }
l.y.min = YAXIS; }

xl.z.min = ZAXIS; }

fndef

nclude

d);

DATALOGMODE){

id)

rrupt is disabled */
/* set up USART0 for UART for GPS */

SPI for SFM */

){

.");

{
 /* do a conversion */

vert(); axlCon

 /* store in structu
 axl.x.value = XAXIS;
 axl.y.value = YAXIS;

; axl.z.value = ZAXIS

 /* check for new max */
if(XAXIS > axl.x.max){ axl.x.max

 if(YAXIS > axl.y.max){ axl.y.max = YAXIS; }
 if(ZAXIS > axl.z.max){ axl.z.max = ZAXIS;

 /* check for new min */
 if(XAXIS < axl.x.min){ ax
 if(YAXIS < axl.y.min){ ax

.min){ a if(ZAXIS < axl.z
}

dif #en

/* mqpdatalog.h */
/* *********** header file for datalogging mode *********************/

MQPDATALOG_H #i
#define MQPDATALOG_H

#include <stdio.h>

#include "mqptimer.h"
#include "mqpgps.h"
#i "mqpsfm.h"
#include "mqpaxl.h"

void datalogMode(void);
void datalogInit(void);

); void datalogLoop(void
d datalogKill(voivoi

void datalogMode(void)
{
 /* initialize */

atalogInit(); d

 /* run loop */
 while(dipswRead() ==
 datalogLoop();
 }

 /* kill */
 datalogKill();
}

void datalogInit(vo
{
 _DINT();

by default, each inte/*

 gpsInit();
 gpsPost();

 /* set up USART1 for
 sfmInit1();
 if(sfmPost() != Flash_S ssucce
 lcdClear();

 lcdPrints("Bad Mem!\nReset..

 _EINT();

 158

 hwDelay(&timerA, 1, 0x7FFF); /* set up timer A to wait for .5 se
atus != DONE);

cond */

 /* die */

pot in SFM */

; i++){
mpos;

oRead = 1;

 */

");
, sfmpos);

 0x7FFF); /* set up timer A to wait for 1.5 second */
!= DONE);\

r AXL */

void)

ait for 2.5 seconds */
0x7FFF);

 it */

elerometer values to default */

a received (do at least once) */

PS interrupts */

 while(timerA.st
 exit(1);
 }

 /* locate first available s
 sfmpos = 0;
 _EINT();
 sfmEnable();
 for(i=0; i<FLASH_SIZE

fp.Read.udAddr = sf
 fp.Read.udNrOfElementsT
 fp.Read.pArray = (void*)char1;
 rRetVal=Flash(Read, &fp);

 /* check - is it 0xFF?
 if(char1[0] == 0xFF){
 break;
 }

pos++; sfm
 }
 sfmDisable();
 _DINT();

lcdClear();
 lcdPrints("Start:\n
 sprintf(char8, "%i"

lcdPrints(char8);
 _EINT();
 hwDelay(&timerA, 3,
 while(timerA.status
 _DINT();

 /* set up ADC0-3 fo
 axlInit();

 /* clear LCD */
 lcdClear();
}

char buf8[9];

r *token; cha
char axls[30];

char utc[7];
char latitude[9];
char ns[2];
char longitude[10];

ew[2]; char

int inumSats;

d datalogLoop(voi
{
 /* set up timer A to w

&timerA, 3, hwDelay(
 _EINT();

 /* enable GPS interrupts so we can read from
 gpsEnable();

 /* reset acc
 axlReset();

at /* loop until timer is up or GPS d
 do{
 axlRead(); /* sample ADCs */
 }while(timerA.status != DONE);

 /* disable G

 159

 gpsDisable();

 token = NULL;

 /* has data been received? */
 if((*hgps).rx.length > 0){

gps).rx.buffer; token = (*h
// strcpy(t
);

oken, "$GPGGA,151530.05,4216.308,N,71482.544,W,1,05,v.v,w.w,M,x.x,M,y.y,zzzz*hh"

 /* null terminate */

nnn,b,XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX; */

mp(stringType, "GPGGA", 5) == 0){
umber of satelites */
trpbrk(token+1, ","); /* remove GPGGA part */

 /* skip past comma */
tc, token, 6); /* utc (minus the ".ss" part) */

] = '\0'; /* null terminate */

 /* skip past ".ss" and comma */
; /* latitude */

 /* null terminate */

 /* N/S */
= '\0'; /* null terminate */

 /* skip past comma */
n, 9); /* longitude */

 = '\0'; /* null terminate */

 /* skip past comma */
 ew, token, 1); /* E/W */

 ew[1] = '\0'; /* null terminate */

 4; /* skip past "quality" and comma */
umSats, token, 2); /* number of satelites */

] = '\0'; /* null terminate */

;
ts);

ord if number of active satelites is > 3 */
> 3){
;

%s,%d,%d,%d,%d,%d,%d;", \
ude, ew, \

.x.max, axl.x.min, axl.y.max, axl.y.min, axl.z.max, axl.z.min);

;

ps).rx.buffer;
);

h;

 /* find type of string */
 token = strpbrk(token, "$");

); strncpy(stringType, token+1, 5
 stringType[5] = '\0';

 /* hhmmss,llll.lll,a,nnnnn.

tring? */ /* GPGGA s
 strnc if(

 /* get n
 token = s

 token++;

y(u strncp
 utc[6

 token+=10;
 strncpy(latitude, token, 8)

'; latitude[8] = '\0

 token += 9; /* skip past comma */
 strncpy(ns, token, 1);
 ns[1]

 token += 2;

 longitude, toke strncpy(
 longitude[9]

10; token +=
 strncpy(

 token +=
 strncpy(n

 numSats[2
 }

 lcdLine1();
 lcdPrints("S:")

(numSa lcdPrints

 /* only rec
 if(atoi(numSats)
 lcdPrints("\nR")

 /* construct string */

"%s,%s,%s,%s, sprintf((*hgps).rx.buffer,
 latitude, ns, longit utc,

 axl

.length = strlen((*hgps).rx.buffer) (*hgps).rx

 sfmEnable();

 /* write some data */
 fp.Program.udAddr = sfmpos;

ay = (*hgps).rx.length; fp.Program.udNrOfElementsInArr
 fp.Program.pArray = (void*)(*hg
 rRetVal = Flash(Program, &fp

 sfmpos += (*hgps).rx.lengt

 160

 sfmDisable();
rwise, re-initialize */

LL;

bugInit(void)

 = NULL;

***********/

 } else { /* othe
 _DINT();
 gpsInit();
 }
 }
}

void datalogKill(void)
{
 /* flush SFM buffer to SFM */
 /** sfmFlush() **/

 /* free up buffers, nullify pointers */
 dusart0.tx.buffer = NULL;
 dusart0.rx.buffer = NULL;
 dusart1.tx.buffer = NU
 dusart1.rx.buffer = NULL;
}
#endif

/* mqpdebug.h */
/***************** header file for debug mode *********************/

#ifndef MQPDEBUG_H

efine MQPDEBUG_H #d

void debugMode(void);
void debugInit(void);
void debugLoop(void);
void debugKill(void);

void debugMode(void)
{
 /* initialize */
 debugInit();

 /* run loop */
 while(dipswRead() == DEBUGMODE){
 debugLoop();
 }

 debugKill();
}

void de
{
 _DINT();

}

void debugLoop(void)
{
}

void debugKill(void)
{
 /* free up buffers, nullify pointers */
 dusart0.tx.buffer = NULL;

0.rx.buffer = NULL; dusart
 dusart1.tx.buffer = NULL;
 dusart1.rx.buffer
}
#endif

/* mqpdipsw.h */
/***************** header file for DIPSW interface **********

#ifndef MQPDIPSW_H
#define MQPDIPSW_H

 161

void dipswInit(void);
char dipswRead(void);

#define DIPSWDIR

 DIPSWSEL
P1DIR /* dipswitch directional port */

 P1SEL /* dipswitch control port */
e DIPSWIN P1IN /* dipswitch input port */

ine DIPSWBITS (BIT3|BIT2|BIT1|BIT0) /* dipswitch bits used */
* amount to shift read in bits to the right */

/

 1111 */
E 0x01 /* 1110 */

/* 1111 */
/* 1110 */

 /* 1100 */
e DELETEMODE 0x0D /* 1101 */

TS); /* set dipswitch port to input direction */
TS); /* set dipswitch port I/O option */

* dipswRead() **************************
om the dipswitch

unneeded bits */

 shift bits to the right to ignore unused bits */
WSHR;

return(input); /* return what was read in */

mqpdownload.h */
ader file for download mode *********************/

fine MQPDOWNLOAD_H

wnloadKill(void);

(void)

) == DOWNLOADMODE){

#define
n#defi

f#de
#define DIPSWSHR 0 /

modes of operation */*
#ifdef MQPPROTO

 0x00 /* #define DATALOGMODE
efine DOWNLOADMOD #d

 #define DEBUGMODE 0x03 /* 0111 */
 #define DELETEMODE 0x0C
#else
 #define DATALOGMODE 0x0F
 #define DOWNLOADMODE 0x0E

ne DEBUGMODE 0x0C #defi
 #defin
#endif

/********************* init_dipsw() **************************

ialize the dipswitch * function to init
 */
void dipswInit(void)
{
 DIPSWDIR &= ~(DIPSWBI
 DIPSWSEL &= ~(DIPSWBI
}

/********************
 * function to read fr
 */
char dipswRead(void)
{
 char input;

 /* read in from dipswitch, mask off

& DIPSWBITS; input = DIPSWIN

 /*
 input >>= DIPS

}

#endif

/*
/***************** he

ndef MQPDOWNLOAD_H#if
#de

#include "mqptimer.h"
#include "mqpusb.h"
#include "mqpsfm.h"

void downloadMode(void);
void downloadInit(void);
void downloadLoop(void);
void do

void downloadMode
{
 /* initialize */
 downloadInit();

 /* run loop */

while(dipswRead(

 162

 downloadLoop();
 }

 downloadKill();
}

void downloadInit(void)
{
 _DINT();

 /* set up USB for UART1 */
 usbInit();
 usbPost();

 /* print menu to USB */
 usbPrintMenu();

 /* set up SFM for SPI0 */
 sfmInit0();

mPost() != Flash_Success){ if(sf
 lcdClear();
 lcdPrints("Bad Mem!\nReset...");

EINT(); _
 hwDelay(&timerA,

 while(timerA.sta
1, 0x7FFF); /* set up timer A to wait for .5 second */

tus != DONE);

d)

o wait for 2.5 seconds */
erA, 3, 0x7FFF);

 FREE);

f((*husb).rx.status == FREE)

ook at latest character */
rx.buffer[(*husb).rx.length])

ng memory.\n\r");

y cleared.\n\r");

load memory */
nloading memory.\n\r");

wnloaded.\n\r");

print menu again */

t a valid command.\n\r");

 exit(1);
 }

 sfmreadpos = 0;
}

void downloadLoop(voi
{

mer A t /* set up ti
 hwDelay(&tim
 usbEnable();
 (*husb).rx.status=WORK;
 _EINT();

 /* wait for USB command or time out */

!= DONE && (*husb).rx.status != while(timerA.status

 /* if given command to download memory */
 i
 {
 /* l
 switch((*husb).
 {
 case 'C':

 memory */ case 'c': /* clear
 usbPrint("Cleari
 sfmErase();
 usbPrint("Memor
 break;
 case 'D':
 case 'd': /* down

 usbPrint("Dow
 usbDump();
 usbPrint("Memory do
 break;
 case 'H':
 case 'h': /* help -
 usbPrintMenu();
 break;
 default:
 usbPrint("No
 }
 }

 163

 usbDisable();
NT(); _DI

}

d downloadKill(voi void)

llify pointers */
L;

LL;
.buffer = NULL;

x.buffer = NULL;

ile for GPS *********************/

oid);

];

clude <stdlib.h>

sInit() **************************

onnection
nabled

/* P3.4,5 = USART0 TXD/RXD */
AR; /* 8-bit character, SWRST=1 */

/

 machine */
terrupts */

ear inital flag on POR */

tatus = FREE;
ce */

ART0;
gpsRecv;

numSats = NULL;

{
 /* free up buffers, nu
 dusart0.tx.buffer = NUL

x.buffer = NU dusart0.r
 dusart1.tx

sart1.r du
}
#endif

/* mqpgps.h */
/***************** header f

#ifndef MQPGPS_H
#define MQPGPS_H

void gpsInit(void);
void gpsEnable(void);
void gpsDisable(void);

void); void gpsRecv(
void gpsSend(v
void gpsPost(void);

[6]; char stringType
numSats[3char

#include "mqpusart.h"
#in

/********************* gp
 * function to initialize USART 0
 * post: USART 0 set up for 4800 baud 8-none-1 c

errupts are e * with no flow control and int
 */
void gpsInit(void){

T4|BIT5); P3SEL |= (BI
TL0 |= CH UC

 UTCTL0 |= SSEL0; /* UCLK = ACLK *

 4800 baud */ /*
 UBR00 = 0x06;
 UBR10 = 0x00;
 UMCTL0 = 0x77;

 UCTL0 &= ~SWRST; /* initialize USART0 state

0 + UTXIE0; /* enable USART0 RX/TX in IE1 |= URXIE
 IFG1 &= ~UTXIFG0; /* cl

 dusart0.tx.buffer = NULL;
 dusart0.tx.index = 0;
 dusart0.tx.length = 0;

ize = 0; dusart0.tx.s
 dusart0.tx.status = FREE;

 dusart0.rx.buffer = char180;

h = 0; dusart0.rx.lengt
 dusart0.rx.size = 180;
 dusart0.rx.s
 dusart0.rx.stopbyte=0x0A; /* end of senten

 dusart0.port = U

 = dusart0.recv
 dusart0.send = gpsSend;

= &dusart0; hgps

 //

 164

}

********/** *********** gpsEnable() **************************
terrupts for GPS

sable() **************************
ion to disable interrupts for GPS

;

** gpsRecv() **************************
 characters from UART and buffer them
sing NMEA interface

th<(*hgps).rx.size){
r[(*hgps).rx.length] = RXBUF0;
++;

FREE; /* an overflow has occured */

s).rx.stopbyte){ /* stop byte reached? */

*
ART

***********/

x size of buffer */

ent status */

in buffer for transmitting */
e for recieving */

 * function to enable in
 */
void gpsEnable(void)
{
 ME1 |= URXE0;
 swDelay(500, DMSEC);
}

******************* gpsDi/**
 * funct
 */
void gpsDisable(void)
{
 ME1 &= ~(URXE0)
}

/*******************
 * function to recieve
 * from PORT 2 of GPS u
 */
void gpsRecv(void)
{
 if((*hgps).rx.leng

 (*hgps).rx.buffe
 (*hgps).rx.length
 } else {
 (*hgps).rx.status=
 }
 if(RXBUF0 == (*hgp
 (*hgps).rx.status=FREE;
 }
}

/****************** gpsSend() **********************
mit next character in buffer via U * function to trans

 * to PORT 1 of GPS using TSIP interface
 */
void gpsSend(void)
{
}

)void gpsPost(void
{
}

#endif

/* mqpio.h */

le for IO structures **********/***************** header fi

#ifndef MQPIOBUFFER_H
#define MQPIOBUFFER_H

enum IOstate{

FREE, WORK
};

typedef struct _IObuffer{
 char* buffer; /* the buffer */
 int length; /* length of used buffer */
 int size; /* ma
 enum IOstate status; /* curr
 union{
 int index; /* position

 /* stop byt char stopbyte;
 };
} IObuffer;

 165

enum IOport {

 /* reception buffer */
 /* transmission buffer */

* receive function pointer */
 send function pointer */

* port this device is attached to */
IOdevice, *IOhandle;

header file for LCD interface ********************/

. Stedman II

D Control Port defines */

BIT3 /* LCD RS */

LCD Data Port defines */
efine LCDDIR P4DIR

P4SEL
fine LCDOUT P4OUT

 LCDCOLS 16
LCDROWS 2

/

/

dCmd(0x80); }
cdCmd(0xC0); }

r() { lcdCmd(0x01); lcdLine1(); }

******** init_lcd() **************************/
d lcdInit(void)

n set: 8-bit interface */

 UART0, UART1, SPI0, SPI1
};

ice{ typedef struct _IOdev
 IObuffer rx;

 IObuffer tx;
 void (*recv)(void); /
 void (*send)(void); /*

num IOport port; / e
}

#endif

/* mqplcd.h */
/*****************
/*

uthor: Carlton C A
 Last update: 2/19/2007
*/

#ifndef MQPLCD_H
#define MQPLCD_H

d lcdInit(void);voi
void lcdClock(void);
void lcdWrite(unsigned char);

; void lcdCmd(unsigned char)
t(char); void lcdPrin

void lcdPrints(char*);

#include "mqptimer.h"
#include <string.h>

LC/*
#define LCDCTRLDIR P4DIR
#define LCDCTRLSEL P4SEL
#define LCDCTRLOUT P4OUT

/ #define LCDEN BIT1 / LCD enable
 BIT2 /* LCD R/W */#define LCDRW

#define LCDRS

/*
#d
#define LCDSEL
#de

#define
#define

/***
/************************ LCD using 8-Bit Interface ********************/

/*******************
#ifdef LCD8BIT
#define lcdLine1() { lc

e2() { l#define lcdLin
#define lcdClea

*********/***
ivo

{
 /* wait for 20ms */
 swDelay(20, DMSEC);

 /* function set: 8-bit interface */
 lcdCmd(0x30);

 /* wait for 5ms */

, DMSEC); swDelay(5

/* functio

 166

 lcdCmd(0x30);

 wait for 200us */ /*
 swDelay(2, DHUSEC);

 /* function set: 8-bit interface */
 lcdCmd(0x30);

 /* function set: 8-bit interface, two-line display with 5x8 ch
 lcdCmd(0x38);

ar font */

/
(0x08);

lay, cursor off */

lcdClock() ***************************/
he enable on the LCD */

N); /* clear enable */

; /* wait 4 ms */
 /* set enable */

 /* wait 2 ms */
 /* clear enable */

**************/
nes of the LCD */

direction */
|BIT3|BIT4|BIT5|BIT6|BIT7);
n */

BIT1|BIT2|BIT3|BIT4|BIT5|BIT6|BIT7);
 = databus */

cursor on the LCD */

P2.2-2.3 to output direction */
tion */

 on P2.2 */
DRS); /* set RS flag on P2.3 */

***/
* LCD using 4-Bit Interface ********************/

**********************************/

/* turn display off *

 lcdCmd

 /* turn display clear */
 lcdClear();

 /* set for entry mode */
 lcdCmd(0x06);

 /* turn on disp
 lcdCmd(0x0C);
}

/*******************
/* function to flash t
void lcdClock(void)
{

); LCDCTRLDIR |= (LCDEN
 LCDCTRLSEL &= ~(LCDEN);
 LCDCTRLOUT &= ~(LCDE

 swDelay(4, DMSEC)
 LCDCTRLOUT |= (LCDEN);

 swDelay(2, DMSEC);
 LCDCTRLOUT &= ~(LCDEN);
}

/****************** lcdWrite() **********
/* function to write data onto the data li

id lcdWrite(unsigned char databus) vo
{

 /* set P4.0-4.7 to output
 LCDDIR |= (BIT0|BIT1|BIT2
 /* set P4.0-4.7 I/O optio
 LCDSEL &= ~(BIT0|
 /* P4.0-4.7 output
 LCDOUT = databus;

 lcdClock();
}

********************/ /******************** lcdPrint() ******
/* function to print a character at the
void lcdPrint(char databus)
{

LCDCTRLDIR |= (LCDRW|LCDRS); /* set
 LCDCTRLSEL &= ~(LCDRW|LCDRS); /* P2.2-2.3 I/O op

DRW); /* clear R/W flag LCDCTRLOUT &= ~(LC
CDCTRLOUT |= (LC L

 lcdWrite(databus);
}

#endif

/**********************
/***********************
/*************************************
#ifdef LCD4BIT

 167

#define lcdLine1() { lcdCmd(0x80); lcdCmd(0x00); }
dCmd(0xC0); lcdCmd(0x00); }
Cmd(0x00); lcdCmd(0x10); lcdLine1(); }

et: 8-bit interface */

/

-bit interface, two-line display with 5x8 char font */

lcdClock() ***************************/
 the enable on the LCD */

d)

****************** lcdWrite() **************************/
tion to write data onto the data lines of the LCD */
Write(unsigned char databus)

#define lcdLine2() { lc
#define lcdClear() { lcd

void lcdInit(void)
{

/ / wait for 20ms
 swDelay(20, DMSEC);

8-bit interface */ /* function set:
dCmd(0x30); lc

/ /* wait for 5ms *

 swDelay(5, DMSEC);

 /* function s
 lcdCmd(0x30);

 / / wait for 200us
 swDelay(2, DHUSEC);

8-bit interface * /* function set:
cdCmd(0x30); l

 /* function set: 4-bit interface */
 lcdCmd(0x20);

* function set: 4 /
 lcdCmd(0x20);
 lcdCmd(0x80);

 /* turn display off */
 lcdCmd(0x00);
 lcdCmd(0x80);

 /* turn display on */
 lcdCmd(0x00);

cdCmd(0x10); l

 /* set for entry mode */
 lcdCmd(0x00);
 lcdCmd(0x60);

 /* turn on display, cursor off */
 lcdCmd(0x00);
 lcdCmd(0xC0);
}

/*******************

lash/* function to f
void lcdClock(voi
{
 LCDCTRLDIR |= (LCDEN);
 LCDCTRLSEL &= ~(LCDEN);
 LCDCTRLOUT &= ~(LCDEN); /* clear enable */

 swDelay(8, DMSEC); /* wait 8 ms */
 LCDCTRLOUT |= (LCDEN); /* set enable */

 swDelay(4, DMSEC); /* wait 4 ms */
 LCDCTRLOUT &= ~(LCDEN); /* clear enable */
}

/**
/* func
void lcd
{
 /* set P4.4-4.7 to output direction */
 LCDDIR |= (BIT4|BIT5|BIT6|BIT7);
 /* set P4.4-4.7 I/O option */

T4|BIT5|BIT6|BIT7); LCDSEL &= ~(BI

 168

 /* P4.4-4.7 output = databus */
 LCDOUT &= 0x0F;
 LCDOUT += databus;

 lcdClock();
}

/******************** lcdPrint() **************************/

e cursor on the LCD */

CDRW|LCDRS); /* set P4.2-4.3 to output direction */
W|LCDRS); /* P4.2-4.3 I/O option */

; /* clear R/W flag on P4.2 */
 /* set RS flag on P4.3 */

 & 0xF0); /* send high nybble of data */
4); /* send low nybble of data */

*******************/
CD */

CDRW|LCDRS); /* set P4.2-4.3 to output direction */

*/

** lcdPrints() **************************/
tring at the cursor on the LCD */
fer)

; i++){
hould skip down a line */

'\n'){
 /* set DDRAM address to line 2, position 1 */

file for SFM *********************/

d sfmRecv(void);

/* function to print a character at th
void lcdPrint(char databus)
{

DCTRLDIR |= (L LC
 LCDCTRLSEL &= ~(LCDR
 LCDCTRLOUT &= ~(LCDRW)
 LCDCTRLOUT |= (LCDRS);

 lcdWrite(databus
 lcdWrite(databus <<
}

#endif

** lcdCmd() *******/******************
/* function to send a command to the L
void lcdCmd(unsigned char databus)
{

DCTRLDIR |= (L LC
 LCDCTRLSEL &= ~(LCDRW|LCDRS); /* P4.2-4.3 I/O option */

CDRW|LCDRS); /* P4.2-4.3 output = 00 (off) LCDCTRLOUT &= ~(L

 lcdWrite(databus);
}

/******************
/* function to print a s
void lcdPrints(char* buf
{
 char i;

 for(i=0; i<strlen(buffer)

 if we s /* check to see
 if(buffer[i]==

 lcdLine2();
 } else{

fer[i]); lcdPrint(buf
 }
 }
}

#endif

/* mqpsfm.h */
/***************** header

#ifndef MQPSFM_H
#define MQPSFM_H

void sfmInit0(void);

 sfmInit1(void); void
void sfmEnable(void);
void sfmDisable(void);
voi
void sfmSend(void);
int sfmPost(void);
void sfmErase(void);

int sfmBuffer(char*, int);
int sfmFlush();

#define SFMFULL 0x0A
#define SFMNFULL 0xA0

 169

#define SFMFLUSH 0x0C
xC0 #define SFMNFLUSH 0

art.h"#include "mqpus

#include <stdlib

.h>

obarbaz;

 SPI

IT3); /* setup P3 for SPI mode */

3DIR |= 0x30;

eceive modules */

 */
 /* SPICLK = SMCLK/2 */

x00;

 enable */

; /* setup for P2.4-6 for HOLD, S and W/VPP */
 &= ~(SPIHOLD|SPIS|SPIW); /* set I/O option for output */

UT |= (SPIS); /* falling edge of select after power-up, turn on */
wDelay(2, DHUSEC); /* wait 200 us */

 &= ~(SPIHOLD|SPIS|SPIW); /* clear hold, select and disable write on slave (all
ow)*/

 = 32;
s = FREE;

char125;
0;
25;
EE;

 SPI0;
 sfmRecv;
sfmSend;

256;

#define SPIHOLD BIT4
#define SPIS BIT5
#define SPIW BIT6

SPI memory library */ /*
#include "c2082.h"
#include "c2082.c"
#include "Serialize.h"
#include "Serialize.c"

/* GLOBALS */
ParameterType fp; /* contains all flash memory parameters */

urnType rRetVal; /* return type enum for flash memory */ Ret
char fo

IObuffer sfmbuffer;
int sfmpos;

******/********************* init_spi0() ***
function to initialize USART 0 for *

 * post: USART 0 set up for 3-wire SPI connection, 8-bit master
 */
void sfmInit0(void){
 P3SEL |= (BIT1|BIT2|B
 P3OUT = 0x20;
 P

 U0ME |= UTXE0 + URXE0; /* enable USART0 transmit and r
 UCTL0 = CHAR + SYNC + MM; /* 8-bit, SPI, Master */

/* Polarity, SMCLK, 3-wire UTCTL0 = CKPL + SSEL1 - STC;
0x02; U0BR0 =

 U0BR1 = 0
 UMCTL0 = 0x00;

 IE1 |= URXIE0 + UTXIE0; /* RX and TX interrupt

 /* enable SPI */ UCTL0 &= ~SWRST;
 IFG1 &= ~UTXIFG0; /* clear initial flag on POR */

 P2DIR |= (SPIHOLD|SPIS|SPIW)
 P2SEL
 P2O
 s
 P2OUT
active l

 dusart0.tx.buffer = char32;
 dusart0.tx.length = 0;

x = 0; dusart0.tx.inde
 dusart0.tx.size
 dusart0.tx.statu

 dusart0.rx.buffer =
 dusart0.rx.length =
 dusart0.rx.size = 1
 dusart0.rx.status = FR

 dusart0.port =
 dusart0.recv =
 dusart0.send =

 hsfm = &dusart0;

 sfmbuffer.buffer = char
 sfmbuffer.index = 0;
 sfmbuffer.length = 0;

 170

 sfmbuffer.size = 256;
 sfmbuffer.status = FREE;

 init_spi1() **************************
ize USART 1 for SPI
p for 3-wire SPI connection, 8-bit master

3); /* setup P5 for SPI mode */

E1 + URXE1; /* enable USART1 transmit and receive modules */

XIE1; /* RX and TX interrupt enable */

OLD, S and W/VPP */
tput */

 /* falling edge of select after power-up, turn on */

OLD|SPIS|SPIW); /* clear hold, select and disable write on slave (all

able() **************************
pts for SFM

 /* enable the SPI module */
.port == SPI1){

 /* enable the SPI module */

 sfmpos = 0;
}

/*********************
 * function to initial
 * post: USART 1 set u

/ *
void sfmInit1(void){

2|BIT P5SEL |= (BIT1|BIT
 P5OUT = 0x20;
 P5DIR |= 0x30;

 U1ME |= UTX
 UCTL1 = CHAR + SYNC + MM; /* 8-bit, SPI, Master */
 UTCTL1 = CKPL + SSEL1 - STC; /* Polarity, SMCLK, 3-wire */
 U1BR0 = 0x02; /* SPICLK = SMCLK/2 */
 U1BR1 = 0x00;
 UMCTL1 = 0x00;

E1 + UT IE2 |= URXI
 UCTL1 &= ~SWRST; /* SPI enable */
 IFG2 &= ~UTXIFG1; /* clear initial flag on POR */

 P2DIR |= (SPIHOLD|SPIS|SPIW); /* setup for P2.4-6 for H

EL &= ~(SPIHOLD|SPIS|SPIW); /* set I/O option for ou P2S
 P2OUT |= (SPIS);
 swDelay(2, DHUSEC); /* wait 200 us */
 P2OUT &= ~(SPIH
active low)*/

 dusart1.tx.buffer = char32;
 dusart1.tx.index = 0;
 dusart1.tx.length = 0;
 dusart1.tx.size = 32;

us = FREE; dusart1.tx.stat

 dusart1.rx.buffer = char125;
 dusart1.rx.length = 0;
 dusart1.rx.size = 125;
 dusart1.rx.status = FREE;

 dusart1.port = SPI1;
 dusart1.recv = sfmRecv;
 dusart1.send = sfmSend;

 hsfm = &dusart1;

 sfmbuffer.buffer = char256;
 sfmbuffer.index = 0;
 sfmbuffer.length = 0;
 sfmbuffer.size = 256;
 sfmbuffer.status = FREE;

 sfmpos = 0;
}

/********************* sfmEn
 * function to enable interru
 */
void sfmEnable(void)
{
 if((*hsfm).port == SPI0){

 ME1 |= USPIE0;
 } else if((*hsfm)
 ME2 |= USPIE1;
 }
}

 171

/********************* sfmDisable() **************************
rupts for SFM

oid)

*/

uffer[(*hsfm).rx.length] = RXBUF0;

sfm).tx.length){
){

r[(*hsfm).tx.index];
PI1){

r[(*hsfm).tx.index];

Post() **************************
n Self Test for the SFM

dManufacturerIdentification, &fp);
acturerIdentification.ucManufacturerIdentification;

Delay(1, DHSEC);
ndif

 * function to disable inter
 */
void sfmDisable(v
{
 if((*hsfm).port == SPI0){
 ME1 &= ~(USPIE0); /* enable the SPI module
 } else if((*hsfm).port == SPI1){
 ME2 &= ~(USPIE1); /* enable the SPI module */
 }
}

***** sfmRecv() ************************** /****************
 * function to
 */
void sfmRecv(void){
 (*hsfm).rx.status=FREE;

 if((*hsfm).rx.length<(*hsfm).rx.size){

ort == SPI0){ if((*hsfm).p
 (*hsfm).rx.b
 } else if((*hsfm).port == SPI1){
 (*hsfm).rx.buffer[(*hsfm).rx.length] = RXBUF1;
 }

(*hsfm).rx.length++;
 }
}

/********************* sfmSend() **************************
 * function to
 */
void sfmSend(void){
 (*hsfm).tx.status=WORK;

 (*hsfm).tx.index++;
 if((*hsfm).tx.index < (*h
 if((*hsfm).port == SPI0
 TXBUF0 = (*hsfm).tx.buffe
 } else if((*hsfm).port == S

buffe TXBUF1 = (*hsfm).tx.
 }
 }

lse{ e
 (*hsfm).tx.status = FREE;
 (*hsfm).tx.index = 0;
 (*hsfm).tx.length = 0;
 }
}

int i;

/********************* sfm
 * function to do a Power-o
 */

id){ int sfmPost(vo
 sfmEnable();

EINT(); _

 for(i=0; i<10 && rRetVal != Flash_Success; i++){

 /* read manufacturer identification */
 rRetVal=Flash(Rea
 foo = fp.ReadManuf

#ifdef DEBUG
 lcdClear();
 lcdPrints(FlashErrorStr(rRetVal));
 lcdPrints("\n");

Prints(FlashErrorStr(rRetVal) + 8); lcd
 sw

#e

 172

 }

 sfmDisable();
 _DINT();

 return rRetVal;
}

void sfmErase(void)
{

cd l Clear();
lcdPrint('5');

;
);

rints("Deleting");

INT();

(BulkErase, &fp);

**************** sfmBuffer() **************************
on to buffer more data to send for SFM or return saying it's full

 int length)

 it full or has too much been stored to buffer this? */
f(sfmbuffer.length + length < sfmbuffer.size){

ncpy(sfmbuffer.buffer + sfmbuffer.length, buffer, length);
uffer.length += length;

/* otherwise, say it's not full */

*********** sfmFlush() **************************
SFM

r.length;
void*)sfmbuffer.buffer;

 swDelay(3, DHSEC);
 lcdPrint('4')
 swDelay(3, DHSEC
 lcdPrint('3');
 swDelay(3, DHSEC);
 lcdPrint('2');
 swDelay(3, DHSEC);
 lcdPrint('1');
 swDelay(3, DHSEC);
 lcdPrint('0');
 swDelay(3, DHSEC);

ints("\n"); lcdPr
 lcdP

Enable(); sfm
E _

 /* erase all memory */
 rRetVal = Flash

 sfmDisable();
 _DINT();

 lcdClear();
 lcdPrints(FlashErrorStr(rRetVal));
 lcdPrints("\n");
 lcdPrints(FlashErrorStr(rRetVal) + 8);
 swDelay(3, DHSEC);
}

*/****
 * functi
 */
int sfmBuffer(char* buffer,
{
 /* is
 i
 str
 sfmb
 } else{ /* yep, say it's full */
 return SFMFULL;
 }

 return SFMNFULL;
}

*******/***
 * function to flush data from the SFM buffer to the
 * pre: assumes interrupts enabled
 */
int sfmFlush(void)
{
 sfmEnable();
 _EINT();

 /* write some data */
 fp.Program.udAddr = sfmpos;

ntsInArray = sfmbuffe fp.Program.udNrOfEleme
rogram.pArray = (fp.P

 173

 rRetVal = Flash(Program, &fp);

lashErrorStr(rRetVal));
");
hErrorStr(rRetVal) + 8);

SEC);

er.length; /* update position */

mpty */
 = 0;

for timer functions and structures ****************/

_H

tatus {

er{
rt)(void); /* function pointer to start() function */

(void); /* function pointer to stop() function */
ations to do */
of iterations run */

R at */
 */

id swDelay(unsigned int, unsigned int); // simple SW delay loop

0;
NNING;

fset; /* set TAR at offset value */
 + TAIE + MC_2; /* use ACLK, interrupt-driven, cont counter */

 lcdClear();

s(F lcdPrint
 lcdPrints("\n
 lcdPrints(Flas

 swDelay(3, DH

 sfmpos += sfmbuff

 /* say it's e
 sfmbuffer.length

 sfmDisable();
 _DINT();

 return SFMFLUSH;
}

#endif

/* mqptimer.h */
/**************header file

def MQPTIMER_H #ifn
#define MQPTIMER

 TimerSenum
 DONE, RUNNING
};

typedef struct _Tim
 void (*sta
 void (*stop)
 int count; /* number of iter
 int counter; /* current number
 int offset; /* offset to start TA
 enum TimerStatus status; /* status of timer
} Timer;

vo
void hwDelay(Timer*, unsigned int, unsigned int);

taInit(void); /* initialize Timer A */ void
void taStart(void); /* start Timer A */
void taStop(void); /* stop Timer A */

Timer timerA;

void taInit(void)
{
 timerA.count = 1;

erA.offset = 0; tim
 timerA.status = DONE;
 timerA.start = taStart;

imerA.stop = taStop; t
}

void taStart(void)
{
 timerA.counter =
 timerA.status = RU
 TAR = timerA.of
 TACTL = TASSEL_1
}

void taStop(void)
{
 TACTL = MC_0; /* set to stop counting */
 timerA.status = DONE;

 174

}

#pragma vector=TIMERA1_VECTOR
__interrupt void timerA_interrupt(void)
{
 timerA.counter++; /* increment counter */

 /* check if done counting */
 if(timerA.counter >= timerA.count){

taStop(); /* stop the clock */
 } else{
 TACTL &= ~(TAIFG); /* otherwise, clear TAIFG flag */

hwDelay() ************************/
imer, unsigned int count, unsigned int offset)

(*ptimer).count = count;
mer).offset = offset;
imer).start)();

 /* 100 us delay multipler */

* swDelay() ************************/
d int max_cnt, unsigned int multiplier)

nsigned int cnt1=0, cnt2;

*********************/

.h"
dusart1; /* IOdevices on USART ports */
, hgps; /* IO handles for USB, SFM and GPS */

usart0_tx() *************************
tine for USART 0 tranmission

 must be set and a new value has been

ECTOR
interrupt void usart0_tx (void)

=WORK;

red, GIE must be set and a new value has been
XBUF0

unless buffer overflow

 }
}

/*******************
void hwDelay(Timer *pt
{

 (*pti
 (*(*pt
}

#define DHSEC 65535 /* half-second delay multiplier */

efine DMSEC 33 /* millisecond delay multiplier */ #d
#define DHUSEC 3

*****************/*
void swDelay(unsigne
{
 u

 while (cnt1 < max_cnt)
 {
 cnt2 = 0;
 while (cnt2 < multiplier)
 cnt2++;
 cnt1++;
 }
}

ndif #e

/* mqpuart.h */

**************** header file for UART interface /*

#ifndef MQPUSART_H
#define MQPUSART_H

#include "mqpio
IOdevice dusart0,
IOhandle husb, hsfm

/*******************
 * interrupt service rou
 * pre: to be entered, GIE
 * written to TXBUF0
 */

agma vector=UART0TX_V#pr
__
{

usart0.tx.status d
 (*dusart0.send)();
}

/******************* usart0_rx() *************************

interrupt service routine for USART 0 reception *
 * pre: to be ente
 * recieved in R
 * post: latest received character added to buffer,
 */
char foo;

 175

#pragma vector=UART0RX_VECTOR
id)

r */

ission

new value has been

agma vector=UART1TX_VECTOR

() *************************
tine for USART 1 reception

overflow

 /* pull out of buffer */

*** header file for USB *********************/

 MQPUSB_H
MQPUSB_H

);

) **************************

 baud 8-none-1 connection
 placed in XT2

rol and interrupts are enabled

T1 TXD/RXD

 SSEL1; // UCLK = SMCLK

__interrupt void usart0_rx (vo
{
 dusart0.rx.status=WORK;
 (*dusart0.recv)();
 foo=RXBUF0; /* pull out of buffe
}

/******************* usart1_tx() ************
 * interrupt service routine for USART 1 tranm

be entered, GIE must be set and a * pre: to
 * written to TXBUF1
 */
#pr
__interrupt void usart1_tx (void)
{
 dusart1.tx.status=WORK;
 (*dusart1.send)();
}

t1_rx/******************* usar
interrupt service rou *

 * pre: to be entered, GIE must be set and a new value has been
 * recieved in RXBUF1
 * post: latest received character added to buffer, unless buffer
 */

ragma vector=UART1RX_VECTOR #p
__interrupt void usart1_rx (void)
{
 dusart1.rx.status=WORK;
 (*dusart1.recv)();
 foo=RXBUF1;
}

#endif

/* mqpusb.h */

*/*************

#ifndef
#define

void usbInit(void
void usbEnable(void);

id usbDisable(void); vo
void usbRecv(void);
void usbSend(void);
void usbPost(void);
void usbPrint(char*);
void usbPrintMenu(void);
void usbDump(void);

#include "mqpusart.h"
#include "mqpsfm.h"
#include <string.h>
#include <stdlib.h>

/********************* usbInit(
 * function to initialize USART 1

post: USART 1 set up for 921600 *
 * using a 8 MHz crystal
 * with no flow cont
 */
void usbInit(void){
 P3SEL |= (BIT6|BIT7); // P3.6,7 = USAR

 BCSCTL1 &= ~XT2OFF; // XT2on
 BCSCTL2 |= SELM_2 + SELS; // MCLK= SMCLK= XT2 (safe)

 CHAR; // 8-bit character UCTL1 |=
 UTCTL1 |=

 176

 /* 921600 baud */
 UBR01 = 0x08;
 UBR11 = 0x00;

tion

e machine */
ts */

;

nable() **************************

d usbEnable(void)

 UTXE1 + URXE1; /* enable USART1 TXD/RXD */

id)

* usbRecv() **************************
 data over USB

FREE;

gth<(dusart1).rx.size){
er[(dusart1).rx.length] = RXBUF1;
th++;

** usbSend() **************************

 UMCTL1 = 0x5B; // modula

CTL1 &= ~SWRST; /* initialize USART1 stat U
 IE2 |= URXIE1 + UTXIE1; /* enable USART1 RX/TX interrup
 IFG2 &= ~UTXIFG1; /* clear inital flag on POR */

 dusart1.tx.buffer = char180;
 dusart1.tx.index = 0;

art1.tx.length = 0; dus
 dusart1.tx.size = 180;
 dusart1.tx.status = FREE;

 dusart1.rx.buffer = char1
 dusart1.rx.length = 0;

usart1.rx.size = 1; d
 dusart1.rx.status = FREE;
 dusart1.rx.stopbyte='\n'; /* end of input */

 dusart1.port = UART1;
 dusart1.recv = usbRecv;
 dusart1.send = usbSend;

 husb = &dusart1;
}

/********************* usbE
 * function to enable interrupts for USB
 */
voi
{
 ME2 |=
}

/********************* usbDisable() **************************

sable interrupts for USB * function to di
 */
void usbDisable(vo
{
 ME2 &= ~(UTXE1);
 ME2 &= ~(URXE1);
}

/********************
 * function to receive
 */
void usbRecv(void)
{
 (dusart1).rx.status=

n if((dusart1).rx.le
 (dusart1).rx.buff
 (dusart1).rx.leng
 } else{
 (dusart1).rx.buffer[0] = RXBUF1;
 (dusart1).rx.length = 0;
 }
}

/*******************
 * function to send data over USB
 */
void usbSend(void)
{
 (dusart1).tx.status=WORK;

 (dusart1).tx.index++;
 if((dusart1).tx.index < (dusart1).tx.length){

 177

 TXBUF1 = (dusart
 }

1).tx.buffer[(dusart1).tx.index];

Test of USB

ss\n\rv0.9\n\r");

t() **************************
 USB

s enabled

* buffer)

tring into transmit buffer */
x.buffer, buffer, strlen(buffer));

usbPrintMenu() **************************
enu of commands to USB
terrupts enabled

d)

n\r\
t this help menu again\n\r");

int() **************************
emory out to USB

ile(sfmreadpos < FLASH_SIZE){

1).tx.buffer;
ead, &fp);

tx.size;

 to initiate transfer */

 else{
 (dusart1).tx.length = 0;
 (dusart1).tx.index = 0;
 (dusart1).tx.status = FREE;
 }
}

******************** usbPost() **************************/*
 * function to do Power On Self-
 */
void usbPost(void)
{
 usbEnable();
 _EINT();

hne usbPrint("GPS Road Roug

 usbDisable();
 _DINT();
}

/********************* usbPrin
 * function to print string to

re: assumes USB interrupt * p
 */

d usbPrint(charvoi
{
// swDelay(5, DMSEC); /* wait just a tiny bit */

 /* copy passed-in s
 strncpy((dusart1).t
 (dusart1).tx.index=0;
 (dusart1).tx.length=strlen(buffer);

 /* send the first char to initialize transfer */
 TXBUF1 = (dusart1).tx.buffer[(dusart1).tx.index];
}

/*********************

function to print m *
 * pre: assumes USB in
 */

d usbPrintMenu(voivoi
{
 usbPrint("\n\r USB Menu\n\r---------\n\r c clear memory\
 d download from memory\n\r h prin
}

/********************* usbPr
 * function to print entire m
 * pre: assumes interrupts enabled
 */
void usbDump(void)
{
 sfmEnable();

 sfmreadpos = 0;

h w
 fp.Read.udAddr = sfmreadpos;
 fp.Read.udNrOfElementsToRead = (dusart1).tx.size;
 fp.Read.pArray = (void*)(dusart
 rRetVal=Flash(R

 sfmreadpos += (dusart1).

char /* send along first
 (dusart1).tx.index=0;
 (dusart1).tx.length=(dusart1).tx.size;

 178

 TXBUF1 = (dusart1).tx.buffer[(dusart1).tx.index];
 }

 sfmDisable();
}

#endif

/****** Header File for support of STFL-I based Serial Flash

 Memory Driver *****

ult also the C file for more details.

1.0
 08-11-2004

nghai (China)

FTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH
ATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A

STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
ROM THE CONTENT OF SUCH
ORMATION CONTAINED HEREIN

**

********************/

it for Transfer enable/disable
t for Receive enable/disable

whether MaskBit_Trans is necessary
x08, // check whether MaskBit_Recv is necessary

ect = 0x10, // mask bit for Slave Select/Deselect
lave_Relevant = 0x20, // check whether MaskBit_SelectSlave is

ide configuration

 // do nothing
 = 0x05, // enable transfer

 = 0x0A, // enable receive
 = 0x0F, // enable transfer & receive

 enable transfer and select slave
/ enable receive and select slave

 0x3F, // enable transfer & receive and select slave

 Filename: Serialize.h
scription: Header file for Serialize.c De

 Cons

 Version:
 Date:
 Authors: Tan Zhi, STMicroelectronics, Sha
 Copyright (c) 2004 STMicroelectronics.

 THE PRESENT SO

FORM CODING IN
RESULT,

 CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING F
 SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INF

. IN CONNECTION WITH THEIR PRODUCTS
**

 Version History.

Ver. Date Comments

 1.0 08/11/2004 Initial release

#ifndef _SERIALIZE_H_
#define _SERIALIZE_H_

#include "c2082.h"

#define ptrNull 0 // a null pointer

#define True 1
#define False 0

ef unsigned char Bool; typed

// mask bit definitions for SPI master side configuration
enum
{
 MaskBit_Trans = 0x01, // mask b
 MaskBit_Recv = 0x02, // mask bi

04, // check MaskBit_Trans_Relevant = 0x
 = 0 MaskBit_Recv_Relevant

 MaskBit_SlaveSel

ectS MaskBit_Sel
necessary

};

// Acceptable values for SPI master s
typedef enum _SpiMasterConfigOptions
{
 enumNull = 0,
 enumEnableTransOnly
 enumEnableRecvOnly
 enumEnableTansRecv

 enumEnableTransOnly_SelectSlave = 0x35, //

= 0x3A, / enumEnableRecvOnly_SelectSlave
 enumEnableTansRecv_SelectSlave =

 179

numDisableTransOnly = 0x04, // e disable transfer and deselect slave

ecvOnly = 0x08, // disable receive
ansRecv = 0x0C, // disable transfer & receive

mDisableTransOnly_DeSelectSlave = 0x24, // disable transfer and deselect slave
DisableRecvOnly_DeSelectSlave = 0x28, // disable receive and deselect slave

 and deselect

ctCharStream

address that holds the streams
f the stream in bytes

I mode

d from the

Options optBefore, // Pre-Configurations on the SPI master side
optAfter // Post-Configurations on the SPI master

 enumDisableR
 enumDisableTr

 enu
 enum
 enumDisableTansRecv_DeSelectSlave = 0x2C // disable transfer & receive
slave

}SpiMasterConfigOptions;

// char stream definition for
typedef struct _stru
{
 ST_uint8* pChar; // buffer
 ST_uint32 length; // length o
}CharStream;

void InitSPIMaster(); // one-time setting to work in SP
void ConfigureSpiMaster(
 SpiMasterConfigOptions opt // configuration options
);
Bool Serialize(

tream_send, // char stream to be sent to the const CharStream* char_s
memory(incl. instruction, address etc)

 CharStream* char_stream_recv, // char stream to be receive
memory
 SpiMasterConfig
 SpiMasterConfigOptions
side
);

#endif //end of file

 180

	 Abstract
	 1 Introduction
	1.1 Report Summary
	 2 Background
	2.1 Current Methods of Measuring Road Roughness
	2.1.1 Profilograph
	2.1.2 Response-Type Road Roughness Measuring System
	2.1.3 Road Roughness Profiling Device
	2.1.4 Multi-Laser Profiler
	2.1.5 Road Roughness Indices

	2.2 Past WPI Road Roughness Projects
	2.3 Accelerometer Basics
	2.3.1 Introduction to Accelerometers
	2.3.2 Accelerometer Theory of Operation
	2.3.3 Accelerometer Characteristics
	2.3.4 Accelerometer Applications
	2.3.5 Accelerometer Summary

	2.4 GPS Basics
	2.4.1 GPS Signals
	2.4.2 Triangulation
	2.4.3 GPS Inaccuracies
	2.4.4 Techniques to Improve Accuracy
	2.4.5 GPS Summary

	2.5 Background Summary

	 3 Methods
	3.1 Specifications
	3.2 Process
	3.3 Summary

	4 System Design
	4.1 Power Module
	4.1.1 Power Module Requirements
	4.1.2 Power Module Circuit Description
	4.1.3 Power Module Testing

	 4.2 Accelerometer Module
	4.2.1 Accelerometer Requirements
	4.2.2 Accelerometer Selection
	 4.2.3 Accelerometer Circuit Description
	4.2.4 Accelerometer Testing

	 4.3 GPS Module
	4.3.1 GPS Module Requirements
	4.3.2 GPS Module Selection
	4.3.3 GPS Module Circuit Description
	4.3.4 GPS Module Testing

	4.4 Microcontroller Module
	4.4.1 Microcontroller Requirements
	4.4.2 Microcontroller Selection
	4.4.3 Microcontroller Circuit Description
	4.4.4 Microcontroller Testing

	4.5 Memory Module
	4.5.1 Memory Requirements
	4.5.2 Memory Selection
	4.5.4 Memory Circuit Description
	4.5.5 Memory Testing

	4.6 USB Interface Module
	4.6.1 USB Module Requirements
	4.6.2 USB Module Selection
	 4.6.3 USB Module Circuit Description
	4.6.5 USB Module Testing

	4.7 LCD Module
	4.7.1 LCD Module Requirements
	4.7.2 LCD Module Selection
	4.7.3 LCD Module Circuit Description
	4.7.4 LCD Module Testing

	
	4.8 Summary

	 5 Software Design
	5.1 Data Structures
	5.1.1 IOdevice
	5.1.2 IObuffer
	5.1.3 IOstate
	5.1.4 IOport
	5.1.5 AXLint
	5.1.6 AXLaxis
	5.1.7 AXL3
	5.1.8 Timer
	5.1.9 TimerStatus

	5.2 Libraries and APIs
	5.2.1 Accelerometer
	5.2.2 DIP Switch
	5.2.3 GPS
	5.2.4 LCD
	5.2.5 Memory
	5.2.6 Timer
	5.2.7 USART
	5.2.8 USB

	5.3 Operating Modes
	5.3.1 Datalog Mode
	5.3.2 Delete Mode
	5.3.3 Download Mode

	5.4 MATLAB Code to Create .kml File
	5.5 Summary

	 6 System Integration and Testing
	6.1 Soldered Prototype
	 6.3 PCB
	6.3 Enclosure
	6.4 Run Time Analysis
	6.4 Google Earth Test
	6.5 Summary

	 7 Conclusions and Recommendations
	7.1 Summary of Project Design
	7.2 Future Recommendations
	7.3 Conclusions

	 8 References
	8.1 Works Cited
	 8.2 Datasheets

	 Appendix A: Schematics
	 Appendix C: “C” Code

