


Abstract

A numerical description of the extraordinary optoconductance (EOC) effect is pre-

sented using two separate models. Extraordinary optoconductance is part of a gen-

eral class of EXX geometric effects involving the external perturbation of the prop-

erties of a 2D electron gas in a macroscopic semiconductor or metal-semiconductor

hybrid structure. The addition of metallic inclusions, has been shown to increase

the sensitivity of devices relying on EXX effects. Following the discovery of the

first EXX effect, extraordinary magneto-resistance (EMR), an optical equivalent

was suggested. Unlike EMR, where the external perturbation is an applied mag-

netic field, EOC results from the modification of the local charge density in the

semiconductor by a focused laser.

The first model assumes Gaussian charge densities for the photo-generated electron-

hole pairs while the second model directly solves the semiconductor drift-diffusion

equations using the finite element method (FEM). Results from both models are

shown to agree with experimental EOC data, both as a function of the laser spot

position and temperature. The FEM model has the ability to describe EOC in more

complex geometries making it useful in designing EOC devices geared for particular

applications.
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Chapter 1

Introduction

The discovery of extraordinary magneto-resistance (EMR) by Solin et al.[1, 2] led

to similar metal-semiconductor hybrid (MSH) devices based on modification of the

transport properties by an external perturbation. The distinguishing feature of such

devices is the use of geometry to enhance sensitivity. In the case of EMR, an applied

magnetic field alters the current distribution in a MSH device, effectively changing

the device resistance. The magneto-resistance is the percent change in resistance

due to the applied magnetic field

MR =
R (B)−R (B = 0)

R (B = 0)
× 100. (1.1)

The resistance is measured using a four-probe resistance measurement as illustrated

in Figure 1.1.The four-probe device resistance is then R = V23
I14

such that the MR

can be written in terms of the measured voltage only. The addition of a metallic

shunt along the top side of the semiconductor, making the device a MSH, drastically

improves sensitivity with EMR reaching 500% in some cases[3]. This simple addition

makes EMR devices more sensitive than giant magneto-resistance sensors used in

some hard drive read heads.A finite element method (FEM) description of EMR in
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the van der Pauw geometry, was developed by Moussa et al.[4] and subsequently

used to describe the response of such EMR devices to a magnetic bit[5], similar to

those found in magnetic storage media.

Figure 1.1: A diagram illustrating the four-probe resistance measurement.

Extraordinary optoconductance (EOC) is a related effect in which the exter-

nal perturbation is a focused laser beam, rather than a magnetic field. Although

the geometry and electrical measurements of EOC are similar to that of EMR, the

mechanism by which the external perturbation affects the device properties is quite

different. Extraordinary optoconductance relies on the Dember effect[6], which is a

direct result of the disparity between the electron and hole mobilities in the semi-

conductor. Illumination from the laser creates electron-hole pairs and both types

of carriers diffuse away from the region illuminated by the laser spot. In certain

semiconductors such as GaAs, the electron mobility is many times larger than that

of holes[7], causing the electrons to diffuse at a faster rate. The steady state elec-

tron density is delocalized as compared to the hole density. The resulting net charge

density from photo-generated carriers is responsible for the effective change in the

device resistance and correspondingly the measured voltage. The addition of a
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metallic shunt, as in EMR, enhances the change in resistance due to the external

perturbation in EOC. The extraordinary optoconductance is the percent change in

resistance due to the addition of the shunt,

EOC =
Rshunt −Rw/o shunt

Rw/o shunt

× 100. (1.2)

The definition above makes EOC somewhat different than EMR. The EOC is a figure

of merit indicating the effectiveness of adding the metallic shunt, whereas the EMR

describes the change in resistance due to the strength of the external perturbation.

The following chapters detail two models for optoconductance. Chapter 2 de-

scribes a phenomenological model which assumes the photogenerated electron and

hole charge densities to be Gaussian functions. Chapter 3 describes the finite ele-

ment method (FEM) model which directly solves the drift-diffusion equation. The

results of the drift-diffusion model are presented in Chapter 4.
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Chapter 2

Gaussian Charge Model

Developing a theoretical model of EOC based devices requires consideration of the

physical processes involved. The laser illuminates a circular region in the semicon-

ductor, thereby creating a region of electron-hole pair generation. The electrons

and holes diffuse away from the laser spot. As noted by Dember[6], the electron

mobility is much higher than that of holes in GaAs. As a result, the electrons dif-

fuse at a faster rate leaving behind an excess positive charge density. The excess

charge in the focal region alters the device resistance depending on the laser spot

position, temperature, excitation wavelength, and power density. Most importantly,

the measured voltage depends on the proximity to the metallic shunt that enhances

the removal of the photogenerated carriers, and thus quantitatively affects the ex-

cess charge in the device. Figure 2.1 shows an EOC metal-semiconductor device

along with the coordinates used in the modeling. The focal region of the laser is a

circle of radius R centered at a position r`. The contacts, labeled 1-4 in Figure 2.1,

are at positions xi, although only x2 and x3 are shown. A constant bias current is

supplied through leads 1 and 4 while the voltage difference between leads 2 and 3

is measured.
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Figure 2.1: The EOC device geometry with a metallic shunt. A constant bias current
I14 is supplied through leads 1 and 4 while the voltage difference between leads 2
and 3 is measured. The laser illuminates a focal region of radius R at a position r`.

As mentioned previously, EOC is the result of the net charge due to the difference

in diffusion coefficients of electrons and holes. A natural choice for diffusive systems

is a Gaussian charge density as it is the fundamental solution of the free space

diffusion equation. The charge densities for electrons and holes are written as

ρn (s) =
Qn

πL2
n

exp
(
−s2/L2

n

)
, (2.1)

ρp (s) =
Qp

πL2
p

exp
(
−s2/L2

p

)
, (2.2)

where the coordinate s is relative to the center of the laser spot. The charge densities

ρn and ρp are normalized to Qn and Qp respectively, both of which are adjustable

parameters in the calculation. The quantities Ln and Lp are the diffusion lengths

5



for electrons and holes. The diffusion length is the average length over which a

carrier travels before recombination and is related to the diffusion coefficient and

the minority carrier recombination time by

L(n,p) =
√
D(n,p)τr. (2.3)

The minority carrier lifetime for n-type GaAs was taken to be τr = 0.5 ns in our

calculations leading to the following material parameters at room temperature. The

Parameter (@ T = 300 K) Electrons Holes
Mobility (cm2 V−1 s−1) 2100 150
Diffusion Coefficient (cm2 s−1) 54.3 3.9
Diffusion Length (µm) 1.65 0.44

Table 2.1: Parameters for n-type GaAs at T = 300 K with the minority carrier
lifetime assumed to be τr = 0.5 ns.

potential difference V
(n,p)

23 due to the charge density ρ(n,p) is obtained by integration

over the Green’s function evaluated at the two voltage probe locations r2 and r3,

V
(n,p)

23 =
1

4πε

∫∫
d2sρ(n,p) (s)

[
1

|r2 − (r` + s) |
− 1

|r3 − (r` + s) |

]
. (2.4)

The integration in Eq. 2.4 was performed separately for the electron and hole

charge densities because of the differing length scales. Figure 2.2 shows the electron

and hole number densities according to the parameters in Table 2.1. Figure 2.3

shows the calculated voltage difference V23 versus the laser spot x-coordinate x` for

y` = 300 µm and y` = 800 µm as compared to the corresponding experimental data.

The experimental data was obtained at y` = 0 µm and y` = 500 µm rather than

y` = 300 µm and y` = 800 µm due to difficulties in establishing the y` = 0 position.
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Figure 2.2: The electron and hole number densities (solid curves) and the net charge
density (dashed curve) as a function of the coordinate s. The diffusion lengths for
electrons and holes are indicated with dotted lines.
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Figure 2.3: The measured (points) and calculated (curves) voltage V23 as a function
of the x-coordinate of the laser spot x` with fixed values of y` = 300 µm and
y` = 800 µm.
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Chapter 3

Drift-Diffusion Model

Following the arguments of McKelvey[8] and Chuang[9] the current in a semicon-

ductor generally has both resistive and diffusive terms,

Jn = q [µnnE +Dn∇n] , (3.1)

Jp = q [µppE−Dp∇p] , (3.2)

where n (x, y) and p (x, y) are the spatially dependent electron and hole number

densities and µn and µp are their respective mobilities. The quantity q = |e| is the

magnitude of the electron charge. The quantities Dn and Dp are the temperature

dependent diffusion coefficients defined by the Einstein relations

Dn =
µnkbT

q
, (3.3)

Dp =
µpkbT

q
. (3.4)
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The effects of electron-hole generation and recombination are taken into account in

the continuity equations,

1

q
∇ · Jn +G (x, y)−Rn (x, y) =

∂n

∂t
, (3.5)

−1

q
∇ · Jp +G (x, y)−Rp (x, y) =

∂p

∂t
, (3.6)

where G (x, y) is the spatially dependent generation rate per unit volume, and

Rn (x, y) and Rp (x, y) are the recombination rates for electrons and holes. Using

Eqs. 3.1 and 3.2 in the continuity equations gives the steady state semiconductor

drift-diffusion equations,

∇ · [Dn∇n+ µnnE] +G (x, y)−Rn (x, y) = 0, (3.7)

∇ · [Dp∇p− µppE] +G (x, y)−Rp (x, y) = 0. (3.8)

The carrier number densities can be written as n = n0 + n̄ and p = p0 + p̄. In the

case at hand, the semiconductor is n-type and degenerately doped with p0 ≈ 0, and

the equilibrium electron number density n0 is much larger than the excess electron

density n̄. As noted above, in GaAs, the electron mobility is several times larger than

that of holes. As a result, the excess electrons diffuse away rapidly from the laser

spot and therefore can be viewed as a small increase in the large equilibrium electron

density. Moreover, since p0 ≈ 0, the total hole number density is simply equal to

the excess hole number density p̄. From these assumptions follows an approximate

charge neutrality, in which the electron number density remains close to n0. As

a result of these assumptions, it is suitable to solve only the hole drift-diffusion
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equation,

∇ · [Dp∇p̄− µpp̄E] +G (x, y)−Rp (x, y) = 0, (3.9)

where the quantity E is the local electric field. The recombination rate for holes is

assumed to be proportional to the hole number density, Rp (x, y) = p̄
τr

, where τr is

the minority carrier recombination lifetime. The generation rate G (x, y) is assumed

to be a Gaussian, with the average radius being equal to the spot radius R of the

illuminating laser

G (s) = G0 exp

[
π

4

( s
R

)2
]
. (3.10)

Here G0 is the generation rate per unit volume at the laser spot center, and the

value of the coordinate s is relative to the spot center position r`. The drift diffusion

equation for holes is now given by,

∇ · [Dp∇p̄− µpp̄E] +G0 exp

[
π

4

( s
R

)2
]
− p̄

τ
= 0. (3.11)

In order to solve Eq. 3.11, we set p̄ = 0 on the current ports 1 and 4, and also in

the metallic shunt region. The first boundary condition asserts that any net hole

distribution on the current ports will recombine with the electrons in the indium

leads. The second boundary condition is due to the fact that the shunt is metallic

and therefore any hole states will be short lived (ie. τr = 0 in the metal). These

boundary conditions are straightforward to implement within the framework of the

FEM.
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3.1 Finite Element Method

3.1.1 Drift-Diffusion Equation

The solution of Eq. 3.11 is obtained using the Galerkin Finite Element Method with

the weight functions φ being the same functions as the interpolation polynomials

used to represent the number density in each finite element. Multiplying Eq. 3.11

by the Galerkin weight function and integrating gives,

∫∫
φ∇ · [Dp∇p̄− µpp̄E] dA− 1

τ

∫∫
φp̄dA =

∫∫
φG0 exp

[
π

4

(
r

r`

)2
]
dA. (3.12)

The first integral in the above equation is integrated by parts to yield

−
∫∫
∇φ · [Dp∇p̄− µpp̄E] dA +

∮
φDp∇p̄ · n̂d`−

1

τ

∫∫
φp̄dA (3.13)

=

∫∫
φG0 exp

[
π

4

(
r

r`

)2
]
dA.

The surface integral in the above equation represents a flux of holes through the

external boundary and is included only at the current ports. The hole current at

the current ports can be calculated using

Iport = qd

∫
port

Dp∇p̄ · n̂d`, (3.14)

where d is the sample thickness. These diffusive currents must be included in deter-

mining the net current flowing through the device. The applied voltage necessary for

maintaining the net current at its given value is calculated by determining the effec-

tive device resistance including all carriers. This voltage is applied as the boundary

condition for the Poisson equation. Figure 3.1 shows the excess hole density for the

12



bare and MSH devices at the laser spot position (x`, y`) = (4, 0.7) mm. The excess

Figure 3.1: The excess hole density p̄ in a) the bare device and b) the MSH device
at the laser spot position (x`, y`) = (4, 0.7) mm.

hole density is larger in the MSH device due to the effectiveness of the shunt at

removing excess electrons.

3.1.2 Poisson Equation

The Poisson equation for the potential due to the excess hole density is

∇ · [ε∇V ] = −qp̄, (3.15)

where ε is the material permittivity. Equation 3.15 is solved using the Galerkin

FEM for the electrostatic potential due to the excess hole density with the boundary

conditions that the applied voltage mentioned above is applied across the current

13



ports 1 and 4, while the voltages at ports 2 and 3 (see Figure 2.1) are determined

by the solution. The steps for calculating the potential due to the photo-generated

carriers are outlined below for one laser spot position:

1. Solve the drift-diffusion equation (Eq. 3.11) for p̄.

2. Calculate the current on the input and output current ports using Eq. 3.14

from the solution of Eq. 3.11.

3. Determine the applied voltage V14 from the requirement that the net current

be equal to the applied bias current.

4. Solve the Poisson equation (Eq. 3.15) with V14 applied across ports 1 and 4.

5. Calculate V23 using the solution of Eq. 3.15.

Figure 3.2 shows the solution to Eq. 3.15 for laser spot position (x`, y`) = (4, 0.7) mm

corresponding to the excess hole densities shown in Fig. 3.1.

14



Figure 3.2: The potential due to the excess hole density p̄ in a) the bare device and
b) the MSH device at the laser spot position (x`, y`) = (4, 0.7) mm.
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Chapter 4

Results

4.1 Dependence of EOC on Laser Spot Position

The measured voltage V23 and theoretical results (solid lines) are shown in Fig. 4.1

for y` = 0.2 mm and y` = 0.7 mm as a function of x` for both the hybrid and bare

samples at a temperature of 15 K with a power density of 6.3× 104 W cm−2. As x`

increases there is a peak at the location of the V2 voltage lead. As is evident in Fig.

4.1, the theoretical model reasonably approximates the positional dependence along

the x-direction. The generation rate G0, which was the only adjustable parameter,

was varied such that the measured and calculated voltages coincided at the peak

value. The value of the voltage at other x` positions was determined using the same

generation rate which was used to match the peak value. This process of choosing

the generation rate was done separately for each value of y` and for both the bare

and shunted sample. Figure 4.2 shows the voltage V23 for x` = 3.3 mm as a function

of y`, for both the hybrid and bare sample with theory represented by solid and

dashed lines. As y` increases, the measured voltage approaches zero for both the

hybrid and bare samples. In addition, with increasing y`, the charge distributions

16



Figure 4.1: The measured voltage V23 as the laser spot is moved in the x-direction
for y` = 0.2 mm and y` = 0.7 mm for the bare sample a) and the MSH sample b).
The curves represent theoretical calculations and the points represent experimental
measurements taken at 15 K with a power density of 6.3× 104 W cm−2.

are further away from the voltage leads and closer to the shunt, thereby lowering

the measured voltage. As a result, the voltage in the hybrid sample decreases as the

laser spot is moved closer to the shunt. Because of these effects, both V23 and the

EOC decrease as a function of the y`, with their peaks being at y` = 0. Similar to

the x` dependence, one generation rate for the y` dependence was chosen such that

the theoretical voltages matched the experimental values over the entire range of y`

as closely as possible.
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Figure 4.2: The measured voltage V23 as the laser spot is moved in the y-direction for
x = 3.3mm for the bare sample and MSH sample. The curves represent theoretical
calculations and the points represent experimental measurements taken at 15 K with
a power density of 6.3× 104 W cm−2.

4.2 EOC Bias Current Dependence

The voltages in both the hybrid and bare samples show an offset such that when

the laser is not illuminating the sample, the measured voltage V23 is nonzero. The

voltage offset was seen to be additive to the voltage produced by the excess carriers

over the range of bias current I14. In order to calculate the EOC, the offset was

removed for both the bare sample and the MSH so that the data reflects the effect of

the excess carriers alone. In addition, the voltage offset was found to be proportional

to the bias current which suggests that it is associated with the intrinsic sample

resistance and not the perturbation that we are interested in.
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4.3 EOC Laser Power Dependence

The graph in Fig. 4.3 shows a the dependence of V23 on the optical power den-

sity P at laser spot position r` = (3.3, 0) mm as measured at T = 300 K. The

Figure 4.3: The measured voltage V23 versus laser power at spot position r` =
(3.3, 0) mm for the bare sample (boxes) and the MSH sample (circles) at room
temperature. The lines represent the calculated value of V23 versus the quantity
αG0, where α is a proportionality constant which differs for the bare and MSH
devices (see Table 4.1).

theoretical curves indicate that the measured voltage depends linearly on the gen-

eration rate. Similarly, the experimental data indicates that the measured voltage

depends linearly on the optical power density. These two observations suggest that

the generation rate is proportional to the incident power density P , as should be

expected in this regime. Table 4.1 lists the coefficients of proportionality used to

19



match the experimental data in Figure 4.3 for both the bare and MSH sample. The

Device α (J−1 cm−1)
Bare 4× 1018

MSH 1× 1019

Table 4.1: The proportionality coefficients α relating the laser power density P to
the generation rate G0.

difference in α for the two devices arises from geometric contributions which affect

the generation and recombination of carriers. Note that the range of power spans

approximately two orders of magnitude.

4.4 EOC Temperature Dependence

As reported previously, the EOC reaches a maximum of almost 500 % at 30 K for

optimal r` values. The EOC displays an inverse relationship to temperature which

is discussed below.

The GaAs is degenerately doped with Nd = 1.25× 1018 cm−3 implying that the

equilibrium carrier concentrations n0 and p0 change minimally over the temperature

range studied[10]. The electron mobility and dielectric constant[7] are also essen-

tially constant over that temperature range. The coefficients in the hole current

density (Eq. 3.11) contain both implicit and explicit temperature dependences. Ac-

cording to Lovejoy et al.[10] the minority hole mobility in heavily doped GaAs was

found to exhibit an inverse temperature dependence such that µp = χT−3/2. The

parameter χ was chosen such that the temperature dependence of the hole mobility

corresponds to the data obtained by Lovejoy et al.[10]. In Eq. 3.4, there is an

explicit linear temperature dependence of the diffusion coefficient. Thus the com-

bined temperature dependence of the diffusion coefficient for holes is proportional

20



to T−1/2. As a result, the effect of the diffusive component decreases with increasing

temperature. Figure 4.4 shows the temperature dependence of the EOC for vari-

Figure 4.4: The temperature dependence of the EOC. The measurements were ac-
quired at spot positions x` = 3.3 mm with various values of y` (points). The curves
are the corresponding finite element method calculations. Experimental measure-
ments were taken with a power density of 6.3× 104 W cm−2.

ous y` values with a power density of 6.3 × 104 W cm−2 at x` = 3.3 mm with the

points obtained from experiment and the curves calculated from the drift-diffusion

model. In the model, the generation rate was held constant for the bare sample,

while for the MSH it was scaled to fit the EOC value at one temperature. With G0

fixed for each y` in this manner, the temperature dependence of the EOC was then

calculated by simply incrementing the temperature. This temperature change, as

discussed above, was incorporated directly into the diffusion coefficients as well as

the hole mobility. With the exception of y` = 0 mm and y` = 0.2 mm, the value

of G0 was determined at T = 15 K, while at those two values of y` the T = 30 K

21



values were used.
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Appendix A

Experimental Procedure and

Sample Characterization

A.1 Experimental Setup

The experimental setup used to measure the EOC is shown in Figure A.1. The

bare (shunt-less) sample was illuminated with a Coherent Innova 400 Ar+ ion laser

operating at 476.5 nm with the beam focused to a 20 µm diameter. The power

density was varied from 6.3 ×104 to 5.8 ×106 W cm−2. The samples were mounted

in an ARS closed cycle helium cryostat and cooled to temperatures ranging from

10 to 300 K. The cryostat temperature was maintained by a Scientific Instruments

9650 temperature controller. The sample was positioned using a Newport Universal

Motion Controller ESP 300 system with three linear DC stepper motors. For optimal

spatial resolution, the sample was placed at the focused beam waist, thereby defining

the distance from the lens to the sample and the diameter of the laser spot. The bias

current was supplied by a Lakeshore 120 current source in the forward and reverse

direction from 1 µA to 100 mA across ports 1 and 4, as shown in Fig. 2.1. The

23



Figure A.1: The experimental setup used to characterize the EOC devices.

voltage was acquired by a Keithley 2182 nanovoltmeter. One channel measured

V23 and the other channel (not shown) measured the voltage drop across the 1.2

Ω resistor in series with the sample. The voltage across the resistor was used to

precisely determine the bias current flowing through the device.

A.2 Sample Characterization

Bare samples of dimension 2×10×0.4 mm were prepared by dicing a 2-inch diameter

n-type GaAs wafer grown in the [001] orientation along the 10 mm side. Gallium

arsenide was chosen because it is a direct gap (1.424 eV at 300 K) semiconductor

and because of optimal absorption in the spectral region of the argon ion laser. The

sample was degenerately doped with Si at a concentration Nd = 1.25 × 1018 cm−3.

The electron mobility of the semiconductor was measured to be 2100 cm2 V−1s−1.

Leads were attached first by metalizing the GaAs, in an inert nitrogen atmosphere,

with dots of In (0.2 mm diameter) arranged along the 10 mm side (see Fig. 2).

Indium was chosen for metalizing because of its low melting temperature and com-
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patibility with GaAs. This setup is similar to the typical four-lead van der Pauw

plate setup used elsewhere. This geometry is the conformal equivalent to a van der

Pauw disk with an off-centered inclusion. Next, the wires were tinned with In and

pressed onto the metalized In dots. Ohmic contacts over the temperature range

of interest were confirmed by verifying the linearity of the measured I-V response.

These same bare samples were then used to make hybrid samples via the addition

of an In shunt. This was achieved by metalizing the bare samples on the side op-

posite the leads with Indium of dimensions 10× 0.5× 0.5 mm. The hybrid sample

resistance at room temperature, as measured across ports 1 and 4, decreased by an

order of magnitude from that of the bare samples, indicating the effectiveness of the

shunt. Ohmic contact at the interface was again verified by the linearity of the I-V

response.

A.3 Experimental Procedure

Once the sample position was calibrated, the positional dependence of the voltage

V23 was studied by moving the laser spot along the x-direction for fixed values

of y`. However, in no case was the interface between the semiconductor and the

shunt illuminated by the focused laser beam. Voltages were read every 0.1 mm in

the x-direction which provided adequate resolution. Upon reaching the end of the

sample, the x-position was returned to zero and the y-position was incremented by

0.1 mm. The program Labview was used to control the sample position and to

acquire the data. The experiments were performed under the same conditions for

the bare sample and the MSH sample in order to produce consistent results. The

position-dependent data acquisition, as outlined above, was repeated for various

temperatures, bias currents, and laser power densities.
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