
Microarchitectural Vulnerabilities in
Heterogeneous Computing and Cloud Systems

Zane Weissman

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements
for the

Degree of Doctor of Philosophy in
Electrical and Computer Engineering

April 2024

APPROVED:

Professor Berk Sunar
Advisor
Worcester Polytechnic Institute

Professor Thomas Eisenbarth
Committee Member
University of Lübeck

Professor Shahin Tajik
Committee Member
Worcester Polytechnic Institute

2

Abstract

This dissertation brings together some of the defining trends of early 21st

century computing—cloud computing, heterogeneous computing, and the

increasingly complex microachitectures that support them—and analyzes

the microarchitectural threat landscapes of these systems while presenting

a number of new vulnerabilities which they introduce. Microarchitectural

attacks made headlines in 2018 with the disclosures of Spectre and Meltdown,

two CPU vulnerabilities affecting devices as diverse as smartphones, laptops,

and enterprise servers, and the following wave of research interest has uncov-

ered countless variants and new, unrelated microarchitectural vulnerabilities.

These vulnerabilities stem from bugs (and features) of the increasingly com-

plex microachitectures of modern CPUs that squeeze as much performance

as possible out of every transistor. While it remains to be seen if Moore’s law

is truly dead, diminishing returns in CPU performance gains and increased

interest in specialized computing tasks as diverse as 3D graphics rendering,

cryptography, and machine learning have driven the development of GPUs,

FPGAs, and other devices that work heterogeneously alongside traditional

CPUs. CPUs, in turn, have gained new features to tightly integrate these

peripherals with their large shared caches and main memory for heterogeneous

parallelism. Cloud service providers (CSPs) have lowered the cost of entry to

heterogeneous computing by leasing compute time on GPUs and FPGAs, and

i

even customers who don’t specifically rent one of these peripherals will often

have their CPU workloads optimized by smart network cards and storage

devices that rely on the same technologies. However, the integration of these

devices broadens the attack surfaces of several known microarchitectural

vulnerabilities and even introduces new ones. This is of particular concern in

cloud environments, where service providers share computational resources of

all kinds between many users to maximize power and cost efficiency, often in

ways that are opaque to their customers and to end users whose private data is

handled in shared environments. Therefore, CSPs bear a major responsibility

in ensuring that microarchitectural threats are mitigated where possible, and

that client workloads are architecturally isolated where mitigations don’t exist

or are unfeasibly expensive to implement.

First, this work analyzes the architectural features of Intel’s Arria 10 GX

FPGA platform, a system designed specifically for heterogeneous computing

and presents the first FPGA to FPGA, FPGA to CPU, and CPU to FPGA

cache timing side-channels. Then, we present Jackhammer, a novel, efficient,

and stealthy hardware implementation of the Rowhammer for the Arria 10

GX FPGA. Next, we show that I/O memory management units—intended to

ensure proper isolation of peripherals—are the source of a new attack surface

between FPGAs, GPUs, or other peripherals. Turning to cloud computing, we

investigate the microarchitectural security of the Firecracker virtual machine

manager, which powers a significant portion of AWS’s compute services. we

demonstrate that Firecracker provides negligible defense against major classes

ii

of microarchitectural attacks, uncover holes in AWS’s setup recommendations

for the microarchitectural security of Firecracker production hosts, and even

identify a variant of the Medusa side-channel attack that works in a Firecracker

virtual machine but not outside of it. Finally, we investigate a new fault

injection technique enabled by the latest and most sophisticated Rowhammer

techniques: adjacent bit memory faults; these faults in combination with a

recently discovered lattice attack algorithm enable an incredibly powerful key

recovery attack against ECDSA signatures. we establish the existence of such

faults in modern hardware and lay out solutions to the practical problems an

attacker must address to put together a real-world attack.

In the course of evaluating these vulnerabilities, we also suggest and

analyze a variety of countermeasures, both hypothetical and available, to be

implemented in hardware, firmware, system software, or user-level software.

We highlight the specific challenges of securing heterogeneous and cloud

systems against microarchitectural attacks and emphasize the need for defenses

at every level. We hope that this work encourages hardware designers, cloud

systems engineers, and cloud service developers to reassess threat models

and isolation assumptions when developing secure systems with shared and

heterogeneous hardware.

iii

Acknowledgments

This work would not have been possible without my advisor, Berk Sunar,

who pushed me to take pride in my work and always held the highest respect

for my autonomy; Thore Tiemann, whose dependability, intellectual curiosity,

and hard work made him the best research partner I could ask for; Thomas

Eisenbarth, who always gave measured advice and who lent me his bike while

I was in Lübeck; Shahin Tajik, who was always a pleasure to work with

as a TA, and who served on my committee with Berk Sunar and Thomas

Eisenbarth; and Evan Custodio, without whom the research project that

got me interested in (and funded a good part of) my Ph.D. would not have

existed.

Thank you to Daniel Moghimi, Andrew Adiletta, Caner Tol, Kemal Derya,

Saad Islam, Yarkin Doroz, Kristi Rahman, and all the other students and

faculty of CHIPS lab with whom I’ve exchanged ideas, papers, or code; Alpa

Trivedi, Sayak Ray, and Thomas Unterluggauer of Intel for their advice,

comments, and conversations; and the anonymous reviewers of all of my

conference paper submissions.

i

Finally, thank you to everyone who supported me outside of this work: my

parents, my wonderful partner Oscar, his parents, my grandma, my sisters,

and my friends. Your love has made this long journey worth the effort.

Research presented in this work was funded in part by the Intel Corpora-

tion, the Qatar National Research Fund, and National Science Foundation

(NSF) grants CNS-1814406 and CNS-2026913.

ii

Contents

1 Introduction 1

1.1 Heterogeneous Computing in the Cloud 2

1.2 Serverless Cloud Computing 5

1.3 Signature Correction Attacks 8

1.4 Contributions . 10

1.5 Previous Publications and Coauthors 11

2 Background 13

2.1 Cache Attacks . 13

2.2 Translation Look-Aside Buffers TLBs 17

2.3 Attacks on TLBs . 17

2.4 PCIe . 18

2.5 IOMMUs . 20

2.6 Rowhammer . 21

2.7 Meltdown and MDS . 25

2.7.1 Basic MDS Variants 26

iii

2.7.2 Medusa . 27

2.7.3 TSX Asynchronous Abort 28

2.7.4 MDS Mitigations . 28

2.8 Spectre . 30

2.8.1 Spectre Mitigations . 31

2.9 RSA-CRT Signing . 31

2.10 ECDSA Signing . 32

2.11 Lattice Attacks on the Hidden Number Problem (HNP) 34

2.12 Bleichenbacher’s Fourier Analysis Based Technique 38

2.13 Serverless Cloud Computing and MicroVMs 39

2.14 AWS Firecracker . 40

2.14.1 Firecracker Security Recommendations 42

3 Related Works 43

3.1 Works on FPGA Security . 43

3.2 Works on Heterogeneous Microarchitectural Attacks 44

3.3 Attacks on IOMMUs . 44

3.4 Works on MicroVM Security 45

4 JackHammer 47

4.1 Introduction . 47

4.1.1 Contributions . 47

4.1.2 Experimental Setup . 49

4.2 Analysis of Intel FPGA-CPU Systems 50

iv

4.2.1 Intel FPGA Platforms 51

4.2.2 Intel’s FPGA-CPU Compatibility Layers 52

4.2.3 Cache and Memory Architecture on the Intel FPGAs . 54

4.3 JackHammer Attack . 57

4.3.1 JackHammer: Our FPGA Implementation of Rowhammer 58

4.3.2 JackHammer on the FPGA PAC vs. CPU Rowhammer 59

4.3.3 JackHammer on the Integrated Arria 10 vs. CPU Rowham-

mer . 63

4.3.4 The Effect of Caching on Rowhammer Performance . . 66

4.4 Fault Attack on RSA using JackHammer 68

4.4.1 RSA Fault Injection Attacks 69

4.4.2 Our Attack . 71

4.4.3 Performance of the Attack 73

4.5 Cache Attacks on Intel FPGA-CPU Platforms 75

4.5.1 Cache Attacks from FPGA PAC to CPU 77

4.5.2 Cache Attacks from Integrated Arria 10 FPGA to CPU 79

4.5.3 Cache Attacks from CPU to Integrated Arria 10 FPGA 83

4.5.4 Intra-FPGA Cache Side-Channels 85

4.6 Countermeasures . 86

5 IOTLB-SC 89

5.1 Introduction . 89

5.2 Identifying IOTLB Side-Channels 91

v

5.2.1 System Setup . 92

5.2.2 IOTLBs Cause Timing Behavior 94

5.2.3 Tools for Testing IOMMU Behavior 95

5.2.4 Threat Models . 97

5.3 Constructing Eviction Sets . 100

5.3.1 Initial IOTLB Organization Hypothesis 100

5.3.2 A New Approach to Eviction Set Construction 102

5.4 Analysis of Side-Channel Leakages 108

5.4.1 Web Access Leakage 109

5.4.2 GPU-Accelerated SQL Database Leakage 111

5.4.3 Side-Channel Impact 113

5.5 Covert Channels . 114

5.5.1 Covert Channel between Peripherals 115

5.5.2 Covert Channel from CPU to Peripheral 118

5.6 Countermeasures . 120

5.6.1 Securing Existing Systems 121

5.6.2 Securing Future IOMMUs 122

6 Firecracker 132

6.1 Introduction . 132

6.1.1 Responsible Disclosure 133

6.2 Threat Models . 134

6.3 Analysis of Firecracker’s Containment Systems 135

vi

6.4 Analysis of microarchitectural attacks and defenses in Fire-

cracker microVMs . 138

6.4.1 Medusa . 139

6.4.2 RIDL and More . 143

6.4.3 Spectre . 145

6.5 Impact . 150

6.6 Related Works . 151

7 DoubleHammer 152

7.1 Introduction . 152

7.1.1 Our Contributions . 154

7.2 Threat Model . 155

7.3 Profiling . 156

7.3.1 OpenSSL Profiling . 156

7.3.2 DRAM Profiling . 164

7.3.3 Hammering Techniques 165

7.4 Collection . 168

7.4.1 Physical Co-location 169

7.4.2 Allocation of a Target Page 169

7.5 Analysis . 170

7.5.1 Signature Correction on Adjacent Nonce Faults 170

7.6 Countermeasures . 173

7.6.1 Hardware Countermeasures 174

vii

7.6.2 Software Countermeasures 176

8 Conclusion 178

Appendix A Mean Spectral Data Per Site 209

Appendix B Extended RIDL Mitigations Table 211

viii

List of Tables

4.1 Overview of the caching hints configurable over CCI-P on an

integrated FPGA. 55

4.2 Performance of our JackHammer exploit compared to a stan-

dard software CPU Rowhammer with various eviction intervals. 75

4.3 Summary of our cache attacks analysis. 76

5.1 Overview of the system setups used in this work. 92

5.2 Notation used in algorithms. 102

5.3 Comparison of eviction set finding algorithms on the IOTLB. . 107

5.4 Throughput and error rate for the covert channels tested on

the a10l system. 115

6.1 Overview of discovered microarchitectural vulnerabilities not

fully prevented by the recommended production host settings

for AWS Firecracker prior to our disclosure. 139

6.2 Presence of Medusa side-channels with all microarchitectural

defense kernel options disabled. 140

ix

6.3 Mitigations necessary to protect the host vs. Firecracker vic-

tims from Medusa attacks. 141

6.4 Mitigations necessary to protect the host vs. Firecracker

victims from RIDL and other microarchitectural data sam-

pling (MDS) attacks. 142

6.5 Spectre PoCs run with Amazon Web Services (AWS) Fire-

cracker recommended countermeasures. 147

7.1 Virtual addresses of the nonce throughout operation of the

SSL/TLS server. 157

7.2 Results of page baiting experiment. 161

7.3 Influence of data pattern on occurrence of double bit flips. . . 168

7.4 Comparison of lattice reduction cost estimates for 2-bit nonce

leakage. 173

x

List of Figures

2.1 Major MDS attack pathways and variant names on Intel CPUs. 26

2.2 Fsrecracker threat containment diagram—adapted from AWS. 41

4.1 Overview of the architecture of Intel FPGAs. 51

4.2 Distributions of hammering rates on FPGA PAC and i7-3770. 60

4.3 Distributions of flip rates on FPGA PAC and i7-3770. 61

4.4 Distributions of total flips after 200 million to 2 billion hammers

on PAC. 62

4.5 Distributions of total flips after 200 million to 2 billion hammers

on i7-3770. 63

4.6 Time series plotting number of flips on a row-by-row basis. . . 64

4.7 Distributions of hammering rates on integrated Arria 10 and

Xeon E5-2600 v4. 65

4.8 Distributions of hammering rates with cachable and uncachable

memory. 65

4.9 WolfSSL RSA Fault Injection Attack. 68

4.10 Mean number of signatures to fault at various eviction intervals. 76

xi

4.11 Latency for PCIe read requests on an FPGA PAC served by

the CPU’s LLC or main memory. 77

4.12 Latency for UPI read requests on an integrated Arria 10 served

by the FPGA’s local cache, CPU’s LLC, or main memory. . . 78

4.13 Covert channel measurements and decoding. 80

4.14 Memory access and flush latency from the CPU. 84

5.1 Comparison of threat models. 124

5.2 Stack diagram of the network card side-channel test. 125

5.3 Variation in caching behavior of network card across system

reboots. 126

5.4 Number and size of constructed eviction sets. 127

5.5 Stack diagram of the web access fingerprinting attack. 128

5.6 Stack diagram of the CPU to peripheral and peripheral to

peripheral covert channel and side-channel tests. 128

5.7 Measurements for the conducted experiments with the SQL

database. 129

5.8 Peripheral to peripheral covert channel transmissions 130

5.9 Stack diagram of the GPU accelerated SQL database covert

channel across virtual machines. 131

6.1 Spectre mitigations enabled in the host and guest kernel during

the Spectre tests. 145

xii

7.1 Distribution of 12-bit memory page offsets of the nonce k in

OpenSSL on DDR4 system. 159

7.2 Attack window hit rates with SMC denial of service. 163

7.3 Using a sliding window approach to finding adjacent bit flips. . 166

7.4 Average number of bit flips on an 128MB buffer vs the number

of sides in a multi-sided Rowhammer attack. 167

xiii

Chapter 1

Introduction

Microarchitectural vulnerabilities have been studied for decades, but the most

drastic change in the known threat landscape occurred only a few years ago

when Spectre and Meltdown were both disclosed in 2018. These speculative

execution attacks exploit bugs in out-of-order execution, a feature crucial for

performance and deeply integrated into the microarchitecture of modern CPUs,

to leak data directly across CPU cores and threads. Spectre and Meltdown

were soon followed by many more speculative execution attacks, many of

which proved costly to mitigate, requiring simultaneous multi-threading to

be disabled. Other, older classes of microarchitectural attacks have also seen

steady improvements in this time. Cache timing side-channel techniques

have been expanded to meet increasingly large and complex cache systems.

Machine learning techniques empower attackers to recover secret data out of

noisier, more subtle channels. New strategies in crafting Rowhammer attacks,

1

which use rapid memory accesses to cause electrical faults, have thwarted

memory vendors’ defenses time after time. As computer architectures and

microarchitectures evolve, so too do the vulnerabilities present in them.

This work explores microarchitectural vulnerabilities with a focus on two

important and rapidly changing areas of computing: heterogeneous computing

and cloud computing. Heterogeneous computing systems use two or more

different processors or other computing cores in tandem, allowing for more

specialized hardware to perform certain tasks. Cloud systems—which are

increasingly heterogeneous themselves—have shaken up the economics of

server computing by offering a wide variety of computational resources for

rent. This work introduces new microarchitectural vulnerabilities, threat

models, and defenses native to these two paradigms and the many new and

old technologies that underly them. Beyond presenting these examples, we aim

to guide the reader in reconceptualizing microarchitectural security broadly to

meet the realities of the present moment and anticipate the trends of the future.

We emphasize the necessity of defense in depth against microarchitectural

security, and hope that this work aids readers with a variety of backgrounds

and interests in understanding and implementing secure systems.

1.1 Heterogeneous Computing in the Cloud

Modern server-grade computing infrastructures are becoming more heteroge-

neous: computational needs are spread over fast and flexible CPUs as well as

2

powerful peripherals such as smart storage, GPUs, smart NICs and FPGAs.

CSPs like Amazon Web Services [8] and Alibaba Cloud [6] already offer FPGA

instances with ultra-high performance Xilinx Virtex UltraScale+ and Intel

Arria 10 GX FPGAs to the consumer market. Furthermore, major CSPs

have started to shift tasks such as networking, memory management and

VM management into more specialized hardware peripherals [7, 9, 48], freeing

up precious CPU time that is rented to more tenants who share the same

hardware. Multi-tenant, peripheral-heavy cloud systems rely on increasingly

interlinked memory systems to provide high throughput for shared, scalable

and parallelized cloud infrastructure. Technologies like VT-d, DDIO, and

CXL allow peripherals to not only directly read and write to the memory of a

virtual machine, but to also use a CPU’s shared cache to speed up repeated

reads and writes. Among all heterogeneous computational devices, FPGAs

are particularly interesting for cloud computing applications, as they can be

reconfigured for the needs of different users at different times. These FPGAs

are designed for high I/O bandwidth and high compute capacity, making them

ideal for server workloads. New Intel FPGAs offer cache-coherent memory

systems for even better performance when data is being passed back and

forth between CPU and FPGA.

The flexibility of FPGA systems can also open up new attack vectors

for malicious users in public clouds or more efficiently exploit existing ones.

Integrated FPGA platforms connect the FPGA right into the processor bus

interconnect giving the FPGA direct access into cache and memory [78].

3

Similarly, high-end FPGAs can be integrated into a server as an accelerator,

e.g. connected via PCIe interface [85, 214]. Such combinations provide un-

precedented performance over a high-throughput and low-latency connection

with the versatility of a reprogrammable FPGA infrastructure shared among

cloud users. However, the tight integration may also expose users to new

adversarial threats.

On a logic layer, input-output memory management units (IOMMUs)

enforce memory isolation between these peripherals and guest VMs running

on CPUs, making IOMMUs a key component for ensuring security of the

cloud infrastructure [15,92,129]. The IOMMU ensures that accesses to virtual

memory spaces are isolated and appropriately virtualized: e.g., devices may

handle only I/O-specific virtual addresses and not the CPU-side virtual

addresses or the underlying system’s physical addresses; in addition, devices

may only access memory with the appropriate permissions set.

However, when many tenants share the same hardware, side effects in

these complex shared memory systems weaken the security promises of virtu-

alization that make highly scalable multi-tenant cloud computing possible.

These side effects of shared hardware are exploited by microarchitectural at-

tacks, most prominently cache attacks. Cache attacks exploit the measurable

difference in access times to the many tiers of modern caches to overcome

the sophisticated memory isolation mechanisms that protect tenants’ data

and computation from each other. Besides cache attacks, which have been

successfully applied in commercial cloud settings [82, 131], microarchitectural

4

attacks like Meltdown [123] and related MDS attacks [29, 182, 201] as well

as Rowhammer attacks pose a real threat in shared cloud environments.

One malicious tenant may, after successful co-location [172,223], use these

microarchitectural side effects to glean sensitive information from co-located

VMs.

While most research in microarchitectural attacks has focused on attacks

from core to core on CPUs, caches are no longer only accessible by CPUs.

Intel’s DDIO technology, present on all recent Intel server architectures,

allows high speed peripherals to directly access a CPU’s shared cache without

interrupting CPU execution [90]. Cloud users may rent peripherals such as

purpose-specific GPU or FPGA cloud instances for higher performance in

particular workloads. In such heterogeneous compute environments, security

is even more challenging, as tenants are no longer confined to virtual machines

(VMs) on the CPU, but may additionally have control over peripherals. With

CSPs renting instances that grant tenants full access to FPGAs designed

specifically for heterogeneous computation [6, 8, 55], it becomes trivial for

attackers to gain sufficient control over peripherals in the cloud that are more

than capable of exploiting microarchitectural vulnerabilities.

1.2 Serverless Cloud Computing

Outside of the world of heterogeneous computing, the CPU services offered by

cloud providers are changing rapidly too, requiring new system infrastructure

5

and presenting new security challenges. Serverless computing is an emerging

trend in cloud computing where CSPs serve runtime environments to their

customers. This way, customers can focus on maintaining their function

code while leaving the administrative work related to hardware, operating

system (OS), and sometimes runtime to the CSPs. Since individual functions

are typically small, CSPs aim for fitting as many functions on a single

server as possible to minimize idle times and, in turn, maximize profit.

This must be achieved while preserving security for both the provider and

clients. Containers offer some isolation at the operating system level with

relatively little performance overhead, but they are unable to take advantage

of some of the powerful virtualization features of modern CPUs and OSs that

provide deeper isolation at an architectural level. To use these features with

performance suitable for serverless computing, developers slimmed down the

virtual machines (VMs) used for heavier cloud computing, creating what are

now called MicroVMs.

Firecracker [2] is a virtual machine monitor (VMM) designed to run

microVMs with memory overhead and start times comparable to those of

common container systems. Firecracker is actively developed by AWS and

has been used in production for serverless compute services since 2018 [2].

AWS’s design paper [2] describes the features of Firecracker, how it diverges

from more traditional virtual machines, and the intended isolation model

that it provides: safety for “multiple functions run[ning] on the same hard-

ware, protected against privilege escalation, information disclosure, covert

6

channels, and other risks” [2]. Furthermore, AWS provides production host

setup recommendations [13] for securing parts of the CPU and kernel that

a Firecracker VM interacts with. In this paper, we challenge the claim that

Firecracker protects functions from covert and side-channels across microVMs.

We show that Firecracker itself does not add to the microarchitectural attack

countermeasures but fully relies on the host and guest Linux kernels and CPU

firmware/microcode updates.

Microarchitectural attacks like the various Spectre [36,77,113,116,128,208]

and MDS [37, 138, 182, 201] variants pose a threat to multi-tenant systems

as they are often able to bypass both software and architectural isolation

boundaries, including those of VMs, when CPU core resources are shared. In

serverless environments, resources are expected to be overcommitted, which

leads to multiple functions competing for and sharing compute resources on

the same hardware. This directly leads to an increased microarchitectural

attack surface for serverless environments. The attack surface is the greatest

if simultaneous multi-threading (SMT) is enabled—as is the compute power

of a CPU, as SMT increases performance by up to 30% [130]. But even

with SMT disabled, functions sharing compute resources in a time-sliced way

remain vulnerable to some microarchitectural attacks.

7

1.3 Signature Correction Attacks

One powerful application of fault injection vulnerabilities like Rowhammer is

signature correction attacks. Digital signature schemes, e.g. DSA, ECDSA,

and RSA, are widely deployed to protect the integrity of security protocols

like TLS, SSH, and IPSec. For instance, in TLS, RSA and ECDSA and DSA

are used to sign the state of the agreed upon protocol parameters during the

handshake phase. Consequently, DSA implementations have been targeted by

powerful side-channel attacks, requiring cryptographic libraries to be patched

repeatedly over the past two decades. Developers have come a long way in

protecting against side-channel attacks, especially in hardening crypto libraries

against timing attacks via so-called constant time implementations [99]. While

most (basic) leakages have been fixed, cryptanalytic techniques for recovery

have advanced to the point where extremely subtle leakages as small as a

bit have been exploited to yield full key recovery [4,19]. Hence, it becomes

important to reassess cryptographic implementations with a more critical eye.

Signature Correction Algorithms (SCA) A particularly effective soft-

ware-only technique to recover leakage from signature implementations was

discovered by Mus et al. [144]. The attack works by injecting faults via

Rowhammer and then tracing the fault to the faulty signature output, recov-

ering a fraction of the internal secret bits in the process. A more enhanced

version, called the signature correction attack, was developed by Islam et

al. [98] to target CRYSTALS-Dilithium, the finalist of the NIST post-quantum

8

signature competition. The attack again injects faults during signing, and

subsequently corrects faulty signatures to deduce the error patterns and sub-

sequently the key bits of CRYSTALS-Dilithium. Most relevant to our work, is

Jolt [143] where Mus et al. demonstrated that signature schemes in common

cryptographic libraries are still vulnerable to software-only fault injection

attacks. They employed Rowhammer and showed how signature correction

can be adapted to work with (EC)DSA, Schnorr and RSA signatures to

achieve full key recovery. Jolt takes advantage of the fact that the private key

(unlike the nonce), which remains unchanged across sessions, slowly recovering

scattered bits. The remaining bits are recovered via a costly computation of

a modified version of Shank’s Algorithm. For instance, if all but 100 bits are

recovered the cost of Shank’s Algorithm is 250 in time and space. Hence for

Jolt to be practical most bits must be recovered via Signature Correction.

Lattice Based Cryptanalysis and the Hidden Number Problem

Lattice reduction algorithms first found their uses in cryptanalysis [53,54,

121, 179, 180] Later lattice-based attacks inlcude Coppersmith’s approach,

factoring RSA keys with a partial understanding of the secret key [147,153]

and side-channel attacks where lattices are used to solve the Hidden Number

Problem (HNP) and break (EC)DSA and Diffie-Hellman. [3, 5, 24, 43, 74].

Depending on key size and the number of leaked nonce bits, a HNP can be

formulated as a Closest Vector Problem (CVP). Lattice-based approaches,

e.g. [127], [149], [139] enable effective key recovery for modest signature

9

sizes, such as 2-bit leakage for 160-bit signatures and at least 4-bit leakage

for 256-bit signatures, with only a few hundred faulty signatures.

1.4 Contributions

This work presents a number of novel contributions to the fields of microarchi-

tectural security, heterogeneous computing, cloud security, and fault injection

attacks. Chapter 4, JackHammer, introduces a hardware Rowhammer design

for FPGAs that runs twice as fast as a comparable CPU attack and causes

faults that CPU Rowhammer cannot replicate. We tested JackHammer in

a fault injection attack against a newly discovered vulnerability in Wolf-

SSL’s implementation of RSA (CVE-2019-19962 [134]) and found that it

performs up to 200% faster than CPU Rowhammer with common counter-

measures employed. This section also presents the first evidence of cache

timing side-channels in heterogeneous FPGA-CPU systems and a reliable

FPGA to CPU covert channel. Chapter 5, IOTLB-SC, demonstrates the first

microarchitectural vulnerability internal to IOMMUs—a timing side-channel

in shared translation look-aside buffers, analyzes the threat this channel poses,

and measures the performance of the channel with a GPU to FPGA covert

channel. Chapter 6, Microarchitectural Vulnerabilities in AWS Firecracker,

provides a comprehensive analysis of the security features, system setup

recommendations, and threat model of AWS’s MicroVM, Firecracker. We test

Firecracker’s defenses against a wide range of microarchitectural attack proof

10

of concepts in multiple major classes of attacks and find that Firecracker

provides negligible defenses in most cases, and in one case even opens a new

vulnerability. We also identify poorly-mitigated Spectre variants of particular

concern. We reported our findings to AWS along with our concerns about

Firecracker’s documentation. Following our disclosure, AWS updated its

security documentation to emphasize that Firecracker itself does not protect

against microarchitectural attacks and direct system administators to the

CPU and OS vendor websites that provide full documentation of available

system level microarchitectural mitigations and the most up-to-date microar-

chitectural security advisories and recommendations. These contributions are

elaborated in more detail at the start of each section.

1.5 Previous Publications and Coauthors

I have published most of the contributions of this work in peer reviewed

journals, and most of this work is comprised of portions of my previously

written papers, the names of which correspond to the names of chapters 2–5.

JackHammer was coauthored with Thore Tiemann, Daniel Moghimi, Evan

Custodio, Thomas Eisenbarth, and Berk Sunar and published in TCHES

2020 [207] IOTLB-SC was coauthored with Thore Tiemann, Thomas Eisen-

barth, and Berk Sunar and published in AsiaCCS 2023 [193] Contributions

from JackHammer and IOTLB-SC were also included in a chapter for Security

of FPGA-Accelerated Cloud Computing Environments, edited by Jakub Szefer

11

and Russell Tessier and published by Springer [194]. The work on Firecracker,

coauthored with Thore Tiemann, Thomas Eisenbarth, and Berk Sunar is

presently available in pre-print on arXiv [205]. DoubleHammer is unpublished

at the time of writing, but the writing in this dissertation is drawn from a

draft coauthored with Kristi Rahman and Berk Sunar.

12

Chapter 2

Background

2.1 Cache Attacks

Cache attacks have been proposed attacking various applications [23, 32,

67, 69,154,197]. In general, cache attacks use timing of the cache behavior

to leak information. Modern cache systems use a hierarchical architecture

that includes smaller, faster caches and bigger, slower caches. Measuring

the latency of a memory access can often confidently determine which levels

of cache contain a certain memory address (or if the memory is cached

at all). Many modern cache subsystems also support coherency, which

ensures that whenever memory is overwritten in one cache, copies of that

memory in other caches are either updated or invalidated. Cache coherency

may allow an attacker to learn about a cache line that is not even directly

accessible [95]. Cache attacks have become a major focus of security research

13

in cloud computing platforms where users are allocated CPUs, cores, or virtual

machines which, in theory, should offer perfect isolation, but in practice may

leak information to each other via shared caches [82]. Timing side-channel

attacks against the CPU’s cache are widely studied and well understood:

researchers have crafted several variants [45, 66, 126, 164, 217], used them

as part of more complicated microarchitectural attacks [113,123], and built

defenses against them [61,125,219]. An introduction to various cache attack

techniques is given below:

Flush+Reload Flush+Reload (F+R) [217] has three steps: 1) The attacker

uses the clflush instruction to flush the cache line that is to be monitored.

After flushing this cache line, 2) she waits for the victim to execute. Later, 3)

she reloads the flushed line and measures the reload latency. If the latency is

low, the cache line was served from the cache hierarchy, so the cache line was

accessed by the victim. If the access latency is high, the cache line was loaded

from main memory, meaning that the victim did not access it. F+R can work

across cores and even across sockets, as long as the LLC is coherent, as is

the case with many modern multi-CPU systems. Flush+Flush (F+F) [66] is

similar to F+R, but the third step is different: the attacker flushes the cache

line again and measures the execution time of the flush instruction instead of

the memory access.

Orthogonal to F+R, if the attacker does not have access to an instruction

to flush a cache line, she can instead evict the desired cache line by accessing

14

cache lines that form an eviction set in an Evict+Reload (E+R) [122] attack.

Eviction sets are described shortly. E+R can be used if the attacker shares

the same CPU socket (but not necessarily the same core) as the victim and

if the last-level cache (LLC) is inclusive.1 F+R, F+F, and E+R are limited

to shared memory scenarios, where the victim and attacker share data or

instructions, e.g. when memory de-duplication is enabled.

Prime+Probe Prime+Probe (P+P) gives the attacker less temporal res-

olution than the aforementioned methods since the attacker checks the

status of the cache by probing a whole cache set rather than flushing

or reloading a single line. However, this resolution is sufficient in many

cases [93,122,135,154,155,172,222]. P+P has three steps: 1) The attacker

primes the cache set under surveillance with dummy data by accessing a

proper eviction set, 2) she waits for the victim to execute, 3) she accesses the

eviction set again and measures the access latency (probing). If the latency

is above a certain threshold, some parts of the eviction set was evicted by the

victim process, meaning that the victim accessed cache lines belonging to the

cache set under surveillance [126]. Unlike F+R, E+R, and F+F, P+P does

not rely on shared memory. However, it is noisier, only works if the victim is

located on the same socket as the attacker, and relies on inclusive caches. An

alternative attack against non-inclusive caches is to target the cache directory

structure [216].

1A lower-level cache is called inclusive of a higher-level cache if all cache lines present in
the higher-level cache are always present in the lower-level cache.

15

Evict+Time In scenarios where the attacker can not probe the target cache

set or line, but she can still influence the target cache line, an Evict+ Time

(E+T) is still possible depending on the target application. In an E+T attack,

the attacker only evicts the victim’s cache line and measures the aggregate

execution time of the victim’s operation, hoping to observe a correlation

between the execution time of an operation such as a cryptographic routine

and the cache access pattern.

Eviction Sets Caches store data in units of cache lines that can hold 2b

bytes each (64 bytes on Intel CPUs). Caches are divided into 2s sets, each

capable of holding w cache lines. w is called the way-ness or associativity of

the cache. An eviction set is a set of congruent cache line addresses capable

of filling a whole cache set. Two cache lines are considered congruent if they

belong to the same cache set. Memory addresses are mapped to cache sets

depending on the s bits of the physical memory address directly following

the b cache line offset bits, which are the least significant bits. Additionally,

some caches are divided into n slices, where n is the number of CPU cores. In

the presence of slices, each slice has 2s sets with w ways each. Previous work

has reverse-engineered the mapping of physical address bits to cache slices on

some Intel processors [94]. A minimal eviction set contains w addresses and

therefore fills an entire cache set when accessed.

16

2.2 Translation Look-Aside Buffers TLBs

While a cache stores data for faster access, a translation look-aside buffer

(TLB) is technically just another cache, though rather than caching the

data or instructions stored at an address, it caches an address translation.

However, throughout this paper we will refer to memory caches as simply

“caches.” Intel’s documentation [91] and several works reverse-engineering

cache architectures [79,94,126,154] and TLB architectures [58,192] reveal that

TLBs on modern Intel CPUs are organized very similarly to modern CPU

memory caches. Modern TLBs and caches are typically organized into sets

and ways. The number of ways is the number of entries each set can contain.

For TLBs, each virtual address is mapped to one set, but can occupy any

way within that set. When a set is full, old entries may be evicted to make

room for new ones. A set of addresses which reliably causes the eviction of

all other entries in a set when accessed is called an eviction set. A minimal

eviction set contains as many addresses as there are ways in the cache/TLB

and therefore fills an entire cache set when accessed [203].

2.3 Attacks on TLBs

In 1995, Silbert et al. remarked in a security analysis of Intel CPU archi-

tectures that ”all 80x86 [now more commonly called x86] processors have a

translation look-aside buffer (TLB) that . . . has potential for use as a covert

timing channel” [188]. In 2013, Hund et al. [79] demonstrated that a TLB

17

timing side-channel on then-modern Intel CPUs could reveal if a page was

mapped by the operating system even if the user does not have permission

to access the page directly. They demonstrated that this exploit could be

used to identify the pages used by the kernel, even when the addresses of

the pages were randomized (a common defense against side-channel attacks

of many types). In 2017, Gras et al. crafted an attack that uses a cache

side-channel to identify TLB evictions. This was a robust attack that can

be mounted even from JavaScript to de-randomize kernel pages [59]. Gras et

al.’s “TLBleed” in 2018 [58] showed that TLBs in modern Intel CPUs were

vulnerable to timing side-channel attacks of the sort that are typically used on

CPU memory caches, and can be used for similarly complex attacks: with the

help of some machine learning, the TLB side-channels on Skylake, Broadwell,

and Coffeelake CPUs can be used to recover a key from an Edward-curve

cryptographic function.

2.4 PCIe

Peripheral Component Interconnect Express (PCIe) [159] is the backbone of

modern desktop and server systems. While often referred to as a bus, PCIe

uses a high-speed point-to-point topology with devices being connected to

switches or directly to a root port via serial links. The root complex connects

the PCIe network to the CPU and the main memory. On a PCIe network,

all devices can send memory requests to each other and to the main memory.

18

An IOMMU can be used to virtualize addresses used by PCIe devices and to

implement access restrictions. If supported, each root port of a root complex

may define access rules for inter-device communication and implement them

in the PCIe switches.

Two recent works [106,189] describe covert- and side-channel attacks that

rely on PCIe bus contention. A preliminary is that the two devices involved

share the same PCIe switch. In contrast, our work assumes the two devices

to share a PCIe root port. Our assumption is less restrictive as any two PCIe

devices sharing a switch share a root port, but devices sharing a root port do

not necessarily share a switch, as root ports can have many lanes to support

multiple devices without sharing a physical bus [159].

Currently, PCIe 3.0 is the prevailing PCIe specification for commodity

hardware. After a short period of CPUs supporting PCIe 4.0, PCIe specifica-

tion 5.0 is the upcoming standard for the next generations of server-grade

CPUs. CPUs supporting PCIe 5.0 are scheduled for November 2022 and Jan-

uary 2023, respectively [16,186]. PCIe 5.0 doubles transfer rates compared to

PCIe 4.0, making the interconnect compete with main memory speeds. As a

result, PCIe 5.0 physical layer is also used by a new protocol named Compute

eXpress Link (CXL) [185]. CXL supports three sub-protocols: CXL.io is

based on PCIe and enables CXL devices to share the PCIe infrastructure

with PCIe devices unaware of CXL. With CXL.cache, devices are enabled

to cache data from main memory while maintaining coherency between the

main memory, the CPU caches and the accelerator cached copy. CXL.mem is

19

used by a host CPU to access CXL device memory and manage its coherent

usage.

2.5 IOMMUs

Input-Output Memory Management Units (IOMMUs) are located between

PCIe devices and the main memory. Usually, they are implemented as part of

the root complex. Modern server systems feature one IOMMU per root port.

Similar to MMUs in the CPU, IOMMUs provide address translation and

protection for memory regions that are made accessible to PCIe devices [15,92].

Address virtualization allows to isolate or virtualize such devices. Also, it

allows 32-bit peripherals to use memory regions above 4GB.

The translation process of the IOMMU works very similar to the process

in a CPU’s MMU. Modern IOMMUs map PCIe devices to IOMMU groups or

domains. The operating system, hypervisor, or VMM maintains a page table

with all address mappings per group/domain. The page table is organized in

a tree structure. Its depth depends on the width of the I/O virtual addresses

(IOVAs) supported by the IOMMU. For IOVAs referencing 4KB pages, the 12

least significant address bits (page offset) remain untranslated. Accordingly,

the 21/30 least significant bits of IOVAs pointing to 2MB/1GB pages remain

untranslated.

IOVAs are translated to physical addresses (PAs) by the IOMMU perform-

ing a page table walk. Since this is quite time consuming, modern IOMMUs

20

feature a translation look-aside buffer called IOTLB. This cache is used to

store translated IOVA→PA mappings and is shared by all devices managed

by the IOMMU.

2.6 Rowhammer

In a Rowhammer attack, rapid accesses to carefully chosen memory addresses

cause a memory fault of a single bit (referred to as a bit flip) in memory that

was not directly accessed. Synchronous Dynamic Random-Access Memory

(SDRAM) interfaces like DDR3, DDR4, and DDR5 are designed around

the concept of memory rows, the smallest unit of memory that is loaded at

one time from the main storage chips on the memory module. As silicon

manufacturing techniques have improved, the memory cells that make up each

row run at lower voltages and are smaller and more densely packed, improving

speed, reducing power consumption, and increasing available memory size.

However, these features also reduce the reliability of the memory. Lower

voltage circuits have smaller margins of error between the encodings of

“0” and “1” and smaller electrical components are prone to variation in

the manufacturing process. Most importantly, high density between cells

increases electromagnetic crosstalk, which is the fundamental reason for the

Rowhammer error. Under normal operation, the effect of row-to-row crosstalk

is not enough to cause faults, but rapid, repeated accesses can drain or charge

nearby memory cells enough to flip a bit from 0 to 1 or 1 to 0. [145]

21

Since the first widely released findings in 2014, Rowhammer faults have

been observed on DDR3 [109] and DDR4 [51,63], on mobile platforms [199],

and on SDRAMs with Error-Correcting Codes [42]. Rowhammer attacks have

been mounted from JavaScript inside a web browser [64], across networks [124,

191], and from FPGAs [206]. Researchers have demonstrated a wide variety of

practical exploits based on Rowhammer, including privilege escalation [63,184],

cross-virtual-machine attacks [213], and fault injection attacks against machine

learning models [195] and cryptographic schemes [25,97,143,144].

Multi-Sided Rowhammer

The first widely distributed research on Rowhammer [109] observed bit flips

triggered by alternating memory accesses to two addresses in two rows, now

referred to as a “double-sided” Rowhammer attack. However, double-sided

Rowhammer attacks are mostly prevented by target row refresh (TRR), a

broad class of Rowhammer defenses implemented in the majority of DDR4

memory modules and some memory controllers. TRR aims to identify rows

that are targeted by a Rowhammer attack in real time and refresh their

values before a fault can occur. Later Rowhammer variants have bypassed

TRR detection mechanisms by increasing the number of addresses or “sides”

and complicating the access patterns (in both order and timing) [44,51,100].

Since TRR implementations vary, much of the later Rowhammer research has

focused on methods for dynamically finding effective hammering patterns.

22

Finding Rowhammer Targets

Since Rowhammer attacks rely on the physical layout of a system’s memory,

techniques for reverse engineering properties of physical address layouts greatly

assist attackers in finding successful attack locations. SPOILER [96] showed

that row conflicts in the DRAM can be detected through timing side-channel

and used to quickly and reliably find large blocks of memory with contiguous

physical addresses without root access or ever directly viewing the addresses

themselves. This allows an attacker to select pages with nearby physical

addresses, which are in turn likely to be stored near to each other in the

DRAM chip, a necessary condition for a Rowhammer attack. Pessl et al.

demonstrated how the DRAMA [162] row conflict side channel can be used to

reverse-engineer the mappings from physical addresses to the channels, ranks,

banks, columns, and rows that make up the organization of memory at the

silicon level.

To use Rowhammer for a practical attack such as privilege escalation within

an operating system or fault injection against a cryptographic algorithm, a

seemingly random flip generated by the bug must occur in a very particular

location in memory. The first technique to achieve this reliably, published

by Seaborn et al. [184], is called page-table spraying or simply page spraying.

There are four main steps to this method:

1. The attacker allocates a large amount of memory and searches it for

a target page with flip(s) occurring at a specific page offset to flip the

23

intended bit(s). The address(es) used to hammer this page are also

noted.

2. The attacker deallocates the page that had flips at the right offset.

3. The attacker causes the allocation of many pages containing the targeted

memory. With the target page recently deallocated, the probability

that it will be refilled with the targeted memory values is high.

4. The attacker uses the previously found address(es) to hammer the target

page.

The major limitations of this method are that the attacker must know the

offset of the target bit, and must be able to cause the victim to allocate

pages. In the case of Seaborn’s attack, which targets privilege control bits

in page table entries, the layout of page table entries is publicly known, and

simply allocating pages of memory allocates page table entries as well. The

advantage of page spraying is its flexibility across architectures, operating

systems, and runtime environments. Other techniques rely on more particular

memory features, like deduplication [168], which can be disabled for security,

or specific deterministic memory allocation algorithms [199], which are not

present on all systems.

24

2.7 Meltdown and MDS

In 2018, the Meltdown [123] attack showed that speculative execution could

access data across security boundaries and encode it into a cache side-channel.

This soon led to a whole class of similar attacks, known as microarchitectural

data sampling (MDS), including Fallout [37], Rogue In-flight Data Load

(RIDL) [201], TSX Asynchronous Abort (TAA) [201], and Zombieload [182].

These attacks all follow the same general pattern to exploit speculative

execution:

1. The victim handles secret data that passes through a cache or CPU

buffer.

2. The attacker executes a specifically chosen instruction that causes the

CPU to speculatively forward the secret to the attacker’s instruction.

3. The attacker preserves the transiently learned secret by sending it

through a covert channel.

The original Meltdown vulnerability targeted cache forwarding and allowed

data extraction in this manner from any memory address that was present in

the cache. Newer MDS attacks target specific buffers in the on-core microar-

chitecture and work under more specific timing and co-location conditions.

25

Victim data source Buffer Speculative forward Encode Fault

Generic read

Generic write

L1DES
L1D eviction

RIDL

Vector read

Off-core
special register

read (e. g.
RDRAND)

(not MDS)
Cache

Meltdown

MSBDS
Store buffer

Fallout

MFBDS
Line fill buffer
Zombieload,

RIDL

VRS
Store buffer

RIDL

MLPDS
Load port

RIDL, Medusa

SRBDS
Staging buffer

Crosstalk

Generic read

Vector read

Off-core
special register

read (e. g.
RDRAND)

O
u
t-o

f-o
rd

e
r
e
x
e
c
u
tio

n
re

g
iste

rs
E
n
c
o
d
e
to

sid
e
-

c
h
a
n
n
e
l
(ty

p
-

ic
a
lly

c
a
c
h
e
)

General
protection
(e. g. non-
canonical
vector mis-
alignment)

Page fault
(e. g. ker-
nel/user

boundaries,
protection key)

Alignment fault
(misaligned

generic
memory access)

Other fault

T
A
A

T
S
X

A
sy

n
c
h
ro

n
o
u
s
A
b
o
rt

(o
p
tio

n
a
l)

Figure 2.1: Major MDS attack pathways and variant names on Intel CPUs.
The blue names at the top are names of vulnerabilities given by Intel; the
red names at the bottom are names given by researchers or the names of the
papers in which the vulnerabilities were reported. Not all fault types work
with all vulnerabilities on all systems—cataloging every known combination
would be beyond the scope of this paper.

2.7.1 Basic MDS Variants

Figure 2.1 charts the major known MDS attack pathways on Intel CPUs and

the names given to different variants by Intel and by the researchers who

reported them. Intel tends to categorize MDS vulnerabilities in their CPUs

by the specific buffer from which data is speculatively forwarded, since these

buffers tend to be used for a number of different operations. Intel names in

this style include Microarchitectural Load Port Data Sampling (MLPDS),

Microarchitectural Fill Buffer Data Sampling (MFBDS), Microarchitectural

Store Buffer Data Sampling (MSBDS), Special Register Buffer Data Sampling

26

(SRBDS), and Vector Register Sampling (VRS). L1 Data Eviction Sampling

(L1DES) and TSX Asynchronous Abort (TAA) describe closely related vul-

nerabilities. L1DES is a method by which the attacker forces the victim’s

data from the cache into the buffer from which it is eventually leaked. TAA,

described in detail in section 2.7.3, is an alternate method for triggering

speculative execution.

2.7.2 Medusa

Medusa [138] is a category of MDS attacks classified by Intel as MLPDS vari-

ants [88]. The Medusa vulnerabilities exploit the pattern-matching algorithms

used to speculatively combine stores in the write-combine (WC) buffer (part

of the load port) of Intel processors. There are three known Medusa variants,

each exploiting a different feature of the WC buffer to cause a speculative

leakage:

Cache Indexing: a faulting load is speculatively combined with an earlier

load with a matching cache line offset.

Unaligned Store-to-Load Forwarding: a valid store followed by a dependent

load that triggers an misaligned memory fault causes random data from the

WC buffer to be forwarded.

Shadow REP MOV: a faulting REP MOV instruction followed by a dependent

load leaks the data of a different REP MOV.

27

2.7.3 TSX Asynchronous Abort

The hardware vulnerability TSX Asynchronous Abort (TAA) [87] is a spec-

ulation mechanism for carrying out an MDS attack. While standard MDS

attacks access restricted data with a standard speculated execution, TAA

uses an atomic memory transaction as implemented by TSX. When an atomic

memory transaction encounters an asynchronous abort due to a fault, the

architectural state is ”rolled back” to its state before the transaction started.

During this rollback, instructions that have started speculatively executing

can continue to do so, as in steps (2) and (3) of other MDS attacks. TAA

impacts all Intel processors that support TSX, and the case of newer pro-

cessors that are not affected by other MDS attacks, MDS mitigations or

TAA-specific mitigations (such as disabling TSX) are required for protection

against TAA [87].

2.7.4 MDS Mitigations

Though Meltdown and MDS-class vulnerabilities exploit low level microarchi-

tectural operations, they can be mitigated with microcode firmware patches

on most vulnerable CPUs.

Page table isolation Historically, kernel page tables have been included in

user-level process page tables so that a user-level process can make a system

call to the kernel with minimal overhead. Page table isolation (first proposed

by Gruss et al. as KAISER [62]) maps only the bare minimum necessary

28

kernel memory into the user page table and introduces a second page table

only accessible by the kernel. With the user process unable to access the

kernel page table, accesses to the rest of kernel memory are stopped before

they reach the lower level caches where a Meltdown attack begins. Page

table isolation works best when layered on top of kernel Adress Space Layout

Randomization (ASLR), which randomizes the layout of kernel memory on

each boot.

Buffer overwrite MDS attacks that target on-core CPU buffers require a

lower-level and more targeted defense. Intel introduced a microcode update

that overwrites vulnerable buffers when the first-level data (L1d) cache (a

common target of cache timing side-channel attacks) is flushed or the VERW

instruction is run [88]. The kernel can then protect against MDS attacks by

triggering a buffer overwrite when switching to an untrusted process.

The buffer overwrite mitigation targets MDS attacks at their source, but is

imperfect. Processes remain vulnerable to attacks from concurrently running

threads on the same core when SMT is enabled (since both threads share

vulnerable buffers without the active process actually changing on either

thread). On some Skylake CPUs, buffers are overwritten with stale data [201],

and remain vulnerable even with mitigations enabled and SMT disabled. Still

other processors are vulnerable to TAA but not non-TAA MDS attacks, and

did not receive a buffer overwrite microcode update. On these CPUs, TSX

must be disabled to prevent MDS attacks [71,87].

29

2.8 Spectre

In 2018, Jan Horn and Paul Kocher [113] independently reported the first

Spectre variants. Since then, many different Spectre variants [77,113,116,128]

and sub-variants [36,111,208] have been discovered. Spectre attacks make the

CPU speculatively access memory that would not be accessed architecturally

and leak the data into the architectural state. Therefore, all Spectre variants

consist of three components [102]:

The first component is the Spectre gadget that the CPU executes specu-

latively. Spectre variants are commonly distinguished by the source of the

misprediction they exploit. Spectre-PHT–which allows for speculative bounds

check bypass–results from the prediction outcome by the pattern history

table (PHT) for conditional branches [36, 111,113]. The branch target buffer

(BTB) predictions of branch targets for indirect jumps allows for specula-

tive return-oriented programming attacks through Spectre-BTB [36, 113],

Spectre-RSB exploits the return address prediction by the return stack buffer

(RSB) [36,116,128]. Spectre-STL [77] exploits store-to-load (STL) dependency

prediction to read stale data or provoke transient buffer overflows.

The second component is the attacker’s control over the gadgets. Control

may be possible through user input, file contents, or other architectural

mechanisms. Additionally, transient mechanisms like LVI [34] or floating

point value injection [166] may allow an attacker the necessary control over

accessed data or executed instructions.

30

The third component is the covert channel that transfers the transient

microarchitectural state into an architectural state to exfiltrate data. Cache

covert channels [156,164,218] are the most prominent candidates but Spectre

attacks using MDS [37, 182, 201] or port contention [52, 174, 175] are also

known in the literature.

2.8.1 Spectre Mitigations

Many countermeasures are discussed in the literature. Early countermeasures

target the availability or accuracy of covert channels [107, 110, 113, 215],

though, such countermeasures tend to be incomplete due to the numerous

covert channels that may be used. Countermeasures that focus on removing

the attacker’s control over the prediction outcome are more promising and used

today. Spectre-BTB is mitigated by Retpoline [198] or microcode updates like

IBRS, STIBP, and IBPB [86]. Spectre-RSB can be mitigated through RSB

filling or the IBRS microcode update and the SSBD [86] microcode update

protects against Spectre-STL. Disabling SMT partitions branch prediction

hardware between concurrent tenants but implies a significant performance

penalty and still allows sequential tenants to share the branch prediction unit.

2.9 RSA-CRT Signing

RSA signatures are computed by raising a plaintext m to a secret power d

modulo N = pq, where p and q are prime and secret, and N is public [27].

31

These numbers must all be large for RSA to be secure, which makes the

exponentiation rather slow. However, there is an algebraic shortcut for

modular exponentiation: the Chinese Remainder Theorem (CRT), used in

many RSA implementations, including in the WolfSSL we attack in section 4.4

and in OpenSSL [39]. The basic form of the RSA-CRT signature algorithm

is shown in algorithm 1. The CRT algorithm is much faster than simply

computingmd mod N because dp and dq are of order p and q respectively while

d is of order N , which, being the product of p and q, is significantly greater

than p or q; it is around four times faster to compute the two exponentiations

mdp and mdq than it is to compute md outright [20].

1 Function sign(m, d, p, q)
input :m – message to be signed; d – private exponent; p –

private factor; q – private factor
output :S – signature

2 Sp ← mdp mod p// equivalent to md mod p
3 Sq ← mdq mod q// equivalent to md mod q
4 Iq ← q−1 mod p // inverse of q
5 return S ← Sq + q ((Sp − Sq)Iq mod p)

Algorithm 1: Chinese remainder theorem RSA signature.

2.10 ECDSA Signing

The US 1994 NIST standard Digital Signature Algorithm (DSA) is based on

the ElGamal Signature Scheme [47]. The Elliptic Curve Digital Signature

Algorithm (ECDSA) is an algorithmic conversion of a step from the multi-

plicative group of a finite field to the group of points on an elliptic curve.

32

While DSA has been officially phased out by NIST [152], ECDSA is a common

digital signature algorithm [17,103,105] employed in blockchain applications,

the TLS and SSH protocols [170], and document signing, among other things.

The best known algorithms for solving the discrete logarithm problem in the

finite field are currently sub-exponential, while those for solving the elliptic

curve discrete logarithm problem (ECDLP) are exponentially complex, so

using the elliptic curve group as opposed to the multiplicative group of a

finite field allows for the use of smaller parameters while still maintaining the

same security level [112,133]. More details can be found in [1, 22].

Despite being one of the most widely used signature schemes now in

use, ECDSA has a number of implementation issues, particularly because

the random value nonce created as part of the signing method is extremely

sensitive. The scalar multiplication of a point on the elliptic curve by a

secret nonce that is created pseudo-randomly is one of the most fundamental

operations of the ECDSA algorithm. The nonce’s confidentiality is crucial

to the algorithm’s security. Previous studies show that attacks on the secret

key can be effectively used to take advantage of nonce bits’ partial exposure

[33,151]. As was the situation with the PlayStation 3 gaming system, which

used a fixed value for signing its binaries, every reuse of the nonce for a

different message trivially results in key recovery. However, there are other

types of bias that has been proven to make an ECDSA key vulnerable than

repeated nonce values. In fact, if there are enough signatures, a variety of

ECDSA signature nonuniformities can actually reveal the secret key. However,

33

it is now possible to recover the secret key even if short bit substrings of

the nonces are compromised by expanding this straightforward observation,

according to cryptanalysts.

2.11 Lattice Attacks on the Hidden Number

Problem (HNP)

Boneh and Venkatesan [28] introduced the HNP in order to study the bit

security of the Diffie-Hellman scheme. For a secret d and public modulus

n we are given samples ki = tid (mod n) for 0 ≤ ki < n for uniformly and

randomly chosen integers ti ∈ Z∗
n. Boneh and Venkatesan showed how to

recover the secret integer d in polynomial time using lattice-based algorithms,

if the attacker learns sufficiently many samples from the most significant ℓ

bits of ti. This problem can be formulated as a variant of the Closest Vector

Problem (CVP) called Bounded Distance Decoding (BDD). BDD works by

finding the closest vector in a lattice according to some target point t. This

close vector can be found through lattice reduction, and using this close vector

the secret parameter is recovered. The constraints of solving the secret lies in

the uniqueness of the vector.

Formulating Biased ECDSA Samples as HNP If information on nonces

is leaked, e.g. through a side-channel, one may formulate the ECDSA signature

key recovery problem as a HNP. Here we closely follow the notation given

34

in [4]. Assume we are given a signature sample s = k−1(H(M) + dr) mod n

where (r, s) is the signature, k is the biased nonce, H(M) denotes the message

hash, d is the secret key, and r = (kP)x, i.e. the x coordinate of the random

point kP . Reformulating the signature s we obtain

k − s−1rd− s−1H(m) = 0 mod n

Assume we are given m such signature samples. Relabelling a = −s−1r, and

t = s−1H(m), we end up with a system of m equations with m+ 1 unknowns

ki and d. We can eliminate the unknown d by simply taking a sample, e.g.

a0 + k0 = t0d and by scaling with an appropriate multiple, i.e. t−1
0 ti and

subtracting it from each sample: (ai + ki) − t−1
0 ti(a0 + k0) = tid − t−1

0 tit0d

(mod n). Hence, our updated parameters become a′i = ai − t−1
0 tia0 (mod n),

and t′i = tit
−1
0

Assume the nonces are bounded: ki < K < n. We can now define a lattice

35

by reformulating m signature samples: ki + ti = aid mod n as follows

Λ =

n

n

n

. . .

n

t′1 t′2 t′3 . . . t′m−1 1

a′1 a′2 a′3 . . . a′m−1 K

The rows of Λ form a lattice in which by construction k = (k1, k2, . . . , km, K)

is a short vector. Finding k, we can recover the secret signing key d =

−t−1
i (ki + bi) mod n.

The Lattice Barrier The basic form of the attack is effective as long as a

BDD solver can recover the target vector from Λ. The BDD solver is expected

to succeed as long as ||k||2 =
√
m+ 1K is less than the Gaussian Heuristic

gh(Λ) ≈
√

dimΛ/(2πe)Vol(Λ)1/dimΛ. Here Vol(Λ) = nm−1K. Hence,

gh(Λ) ≈
√
(m+ 1)/(2πe)Vol(Λ)1/(m+1)

=
√

(m+ 1)/(2πe)(nm−1K)1/(m+1)

36

When the leakage (or nonce bias) is high the condition will hold and given

sufficient samples the BDD solver will recover the nonce vector. However,

when the leakage is limited to a single bit then the condition becomes hard to

satisfy and lattice based techniques are expected to fail with high probability,

given that the secret vector is no longer significantly shorter than the other

lattice vectors [19]. This view motivated a hard limit, the so-called “lattice

barrier” that seems impossible to overcome for single bit leakage [18]. This

belief extends to 2-bit biases, and even 3-bit biased HNPs are considered hard

to tackle regardless of the number of samples.

BDD with Predicate Albrecht and Heninger [4] introduced several opti-

mizations to bridge the lattice barrier. First they note that the upper bound

norm estimate on the secret vector is too conservative and instead they use

the expected norm of a uniformly distributed vector. The second observation

of they make is that the lattice barrier can be overcome. Even if ||k|| ≥ gh(Λ),

then it is possible to recover k by spending additional computation time.

To this end, the authors introduce the unique-SVP with predicate problem

we are seeking for a short vector v, that also satisfies a predicate function

f(v) = 1. The authors proposed two algorithms to solve the unique-SVP

with predicate problem: one based on enumeration and one based on sieving.

The algorithms were implemented by modifying the fpLLL and G6k libraries.

Running extensive experiments they were able to show that indeed one can

37

use efficient lattice based techniques to target cases with fewer than 4-bit

nonce bias, and most notably, the two bit nonce bias for 256-bits is within

reach.

2.12 Bleichenbacher’s Fourier Analysis Based

Technique

Aranha et al. [18] employed the FFT approach to attack 160-bit ECDSA

where k is 1-bit biased. They can succeed in retrieving the secret key with

233 signatures in about 237 time and with 233 memory complexity. To recover

a 256-bit ECDSA key d, they estimate that HNP can be solved with 252

signatures with 1-bit leakage. A more recent work [19] takes advantage

of leakage in the Montgomery ladder implementation of ECDSA for FFT

based key recovery with fewer signatures. They estimate that 220 and 245

signatures, for 160-bit and 256-bit curves, respectively, will be required in

the best scenario with 1 bit nonce leakage. The authors also estimate that

around 210 signatures with 3 MSB bits leakage are needed for full secret key

recovery.

38

2.13 Serverless Cloud Computing and Micro-

VMs

An increasingly popular model for cloud computing is serverless computing,

in which the CSP manages scalability and availability of the servers that run

the cloud user’s code. The CSP can manage its users’ workloads however it

pleases, optimize for minimal operating cost, and implement flexible pricing

where users pay for the execution time and memory that they use. The user

does not need to worry about server infrastructure design or management,

and so reduces the costs of development and maintenance work.

Serverless providers use a variety of systems to manage running functions

and containers. Container systems like Docker, Podman, and LXD provide a

convenient and lightweight way to package and run sandboxed applications in

any environment. However, compared to the virtual machines used for many

more traditional forms of cloud computing, containers offer less isolation

and therefore less security. In recent years, major CSPs have introduced

microVMs that back traditional containers with lightweight virtualization

for extra security [2, 220]. The efficiency of hardware virtualization with

kernel-based virtual machine (KVM) and lightweight design of microVMs

means that code in virtualized, containerized or container-like systems can

run nearly as fast as unvirtualized code and with comparable overhead to a

traditional container.

39

2.14 AWS Firecracker

Firecracker [2] is a microVM developed by AWS to isolate workloads on its

serverless platforms. As a microVM, Firecracker sacrifices hardware, OS,

and I/O flexibility to be very light-weight in the size of its code base and

in-memory overhead, as well as very quick to boot or shut down. In their

paper, AWS itemizes the design requirements for the isolation system that

eventually became Firecracker as follows [2]:

Isolation: It must be safe for multiple functions to run on the

same hardware, protected against privilege escalation, information

disclosure, covert channels, and other risks.

Overhead and Density: It must be possible to run thousands of

functions on a single machine, with minimal waste.

Performance: Functions must perform similarly to running na-

tively. Performance must also be consistent, and isolated from

the behavior of neighbors on the same hardware.

Compatibility: AWS Lambda [10] allows functions to contain

arbitrary Linux binaries and libraries. These must be supported

without code changes or recompilation.

Fast Switching: It must be possible to start new functions and

clean up old functions quickly.

Soft Allocation: It must be possible to over commit CPU, mem-

ory and other resources, with each function consuming only the

40

device
emulation

IO
emulation

rate
limitingVMM

IMDS

API

Customer Zone

Firecracker Zone

IO

Host Zone

Client

KVM IOHost Zone

Host

Jailer barrier

Virtualization barrier

Figure 2.2: Firecracker threat containment diagram—adapted from [11]. The
jailer provides container-like protections for components running in the host
user space. The customer workload runs inside a virtual machine.

resources it needs, not the resources it is entitled to.

We are particularly interested in the isolation requirement and stress that

microarchitectural attacks are declared in-scope for the Firecracker threat

model. The “design” page in AWS’s Firecracker Git repository elaborates

on the isolation model and provides a useful diagram which we reproduce in

fig. 2.2. The outermost layer of protection is the jailer, which uses container

isolation techniques to limit interactions between the Firecracker process and

the host kernel. Within the Firecracker process, there are threads for the

VMM, management components, and guest workload inside the VM. Since

the VM is isolated via hardware virtualization techniques, the user’s code, the

guest kernel, and the VMM operate in separate address spaces and cannot

architecturally or transiently access each other’s memory. However, many

microarchitectural attacks including MDS and Spectre variants ignore address

space boundaries and leak data or manipulate execution through internal

CPU buffers.

41

2.14.1 Firecracker Security Recommendations

Prior to our disclosure to AWS, the Firecracker documentation recommended

the following precautions for protecting against microarchitectural side-chan-

nels [13]: (1) disable SMT, (2) enable kernel page-table isolation, (3) disable

kernel same-page merging, (4) use a kernel compiled with Spectre-BTB

mitigation (e. g., IBRS and IBPB on x86), (5) verify Spectre-PHT mitigation,

(6) enable L1TF mitigation, (7) enable Spectre-STL mitigation, (8) use

memory with Rowhammer mitigation, and (9) disable swap or use secure swap.

As a result of this work, the current version of this documentation [14] includes

many of the same recommendations but emphasizes the incompleteness of

the list and strongly recommends the use of security documentation from the

Linux kernel and CPU vendors for the most up-to-date firmware patches and

configuration recommendations.

42

Chapter 3

Related Works

3.1 Works on FPGA Security

Classical power analysis techniques like Kocher et al.’s differential power

analysis [114] have been applied in new attacks on inter-chip FPGAs [177,178,

224]. Such integrated and inter-chip FPGAs are available in various cloud

environments and system-on-chips (SoCs) products. In particular, Zhao et

al. [224] demonstrated how to build an on-chip power monitor using ring

oscillators (ROs) which can be used to attack the host CPU or other FPGA

tenants. In multi-tenant FPGA scenarios where partial reconfiguration by two

separate security domains is possible, more powerful attacks become possible.

For instance, the long wires on the FPGA can spy on adjacent wires using

ROs [56, 163, 167]. Ramesh et al. [167] exploited the speed of ROs to infer

the carried bit in the adjacent wire and demonstrated a key recovery attack

43

on AES. ROs can also be used as power wasters to create voltage drop and

timing faults [57,117]. Note that such attacks rely on FPGA multi-tenancy

which is not widely used yet. In contrast, in this work, we only assume that

the FPGA-CPU memory subsystem is shared among tenants.

3.2 Works on Heterogeneous Microarchitec-

tural Attacks

A number of researchers have contructed timing side-channels from CPUs

to GPUs, enabling key recoveries, neural network model extraction, and

other exploits [146]. Our initial publication of Jackhammer [207] in 2020

was the first demonstration of FPGA-based Rowhammer and FPGA-CPU

timing side-channels. This was followed by Purnal et al.’s 2022 paper “Double

Trouble,” which presented a new and powerful approach for finding eviction

sets in non-inclusive shared caches that requires both a CPU and an FPGA

working together [165].

3.3 Attacks on IOMMUs

In the past, several attacks have been shown that circumvent the IOMMU

to gain direct memory access or use the misconfiguration of the IOMMU

to exploit device drivers through code injection or control-flow hijacking.

However, the root cause always was a misconfigured IOMMU or a software

44

vulnerability. We are not aware of any attacks that were made possible solely

by the IOMMU hardware.

For example, a malicious peripheral can bypass the IOMMU by adding

appropriate entries to the page table on startup before the IOMMU is activated

by the BIOS [140, 141], or by exploiting PCIe address translation services

(ATS), which allows a peripheral to mark any memory request as “translated”

and bypass IOMMU translation and isolation [129]. Malicious devices may

also exploit vulnerabilities in the kernel or device drivers. IOMMU address

translation only works on a page-granular level, so memory that was never

intended to be shared might be allocated to a shared page, leaking secret data

or enabling code injection attacks that can compromise the whole system [129].

3.4 Works on MicroVM Security

To our knowledge, this work is the first that evaluates a class of attacks in and

out of a particular virtual machine platform. Other works have investigated

software vulnerabilities in microVMs. Xiao et al. showed that even with the

minimal attack surface between a microVM and the host kernel, an attacker

from within the VM can trigger host kernel functions and system calls to

perform a wide range of attacks, including privilege escalation, performance

degradation, and crashing the host [212].

A number of works have focused on efficiently integrating trusted execution

environments into MicroVMs or serverless platforms, with implementation

45

methods including Intel SGX [30], Trusted Platform Modules (TPMs) [158],

and pure software enclaves [225]. While these environments can harden and

verify high-priority code, they can still be vulnerable to microarchitectural

attacks. In some cases, the additional microcode and hardware in SGX

and TPMs intended to provide isolation even introduce new exploits that

strengthen existing attacks [35,139].

46

Chapter 4

JackHammer

Efficient Rowhammer on Heterogeneous FPGA-CPU

Platforms

4.1 Introduction

4.1.1 Contributions

We demonstrate novel attacks between the memory interface of Intel Arria

10 GX platforms and their host CPUs. Furthermore, we demonstrate a

Rowhammer mounted from the FPGA against the CPU to cause faults in the

WolfSSL RSA signature implementation, and to leak a private RSA modulus

factor. In summary:

– We thoroughly reverse-engineer and analyze the cache behavior and

47

investigate the viability of cache attacks on realistic FPGA-CPU hybrid

systems.

– Based on our study of the cache subsystem, we build JackHammer, a

Rowhammer from the FPGA that bypasses caching to hammer the main

memory. We compare JackHammer with the CPU Rowhammer and

show that JackHammer is twice as fast as a CPU attack, causing faults

that the CPU Rowhammer is unable to replicate. JackHammer remains

stealthy to CPU monitors since it bypasses the CPU microarchitecture.

– Using both JackHammer and conventional CPU Rowhammer, we demon-

strate a fault attack on recent versions of RSA implementation in the

WolfSSL library and recover private keys. We show that the base blind-

ing used in this RSA implementation leaves the algorithm vulnerable

to the Bellcore fault injection attack.

– We systematically analyze cache attack techniques on different scenarios:

FPGA to CPU, CPU to FPGA, and FPGA to FPGA, and demonstrate

a cache covert channel that can transmit up to 1.5 – 1.8MBit/s from

the FPGA to the CPU.

Vulnerability Disclosure We informed the WolfSSL team about the vul-

nerability to Bellcore-style RSA fault injection attacks on November 25,

2019. WolfSSL acknowledged the vulnerability on the same day, and released

WolfSSL 4.3.0 with a fix for the vulnerability on December 20, 2019. The

48

vulnerability can be tracked via CVE-2019-19962 [134].

4.1.2 Experimental Setup

We experiment with two distinct FPGA-CPU platforms with Intel Arria

10 FPGAs: 1) integrated into the CPU package and 2) Programmable

Acceleration Card (PAC). The integrated Intel Arria 10 is based on a prototype

E5-2600v4 CPU with 12 physical cores. The CPU has a Broadwell architecture

in which the last level cache (LLC) is inclusive of the L1/L2 caches. The

CPU package has an integrated Arria 10 GX 1150 FPGA running at 400MHz.

All measurements done on this platform are strictly done from userspace only,

as access is kindly provided by Intel through their Intel Lab (IL) Academic

Compute Environment.1 The IL environment also gives us access to platforms

with PACs with Arria 10 GX 1150 FPGA installed and running at 200MHz.

These systems have Intel Xeon Platinum 8180 CPUs that come with non-

inclusive LLCs. We carried out the Rowhammer experiments on our local

Dell Optiplex 7010 system with an Intel i7-3770 CPU, and a single DIMM of

Samsung M378B5773DH0-CH9 1333MHz 2GB DDR3 DRAM equipped with

the same Intel PAC running with a primary clock speed of 200MHz.2

The operating system (OS) running in the IL is a 64-bit Red Hat Enterprise

Linux 7 with Kernel version 3.10. The OPAE version was compiled and

installed on July 15th, 2019 for both the FPGA PAC and the integrated

1https://wiki.intel-research.net/
2The PAC is intended to support 400MHz clock speed, but the current version of the

Intel Acceleration Stack has a bug that halves the clock speed.

49

https://wiki.intel-research.net/

FPGA platform. We used Quartus 17.1.1 and Quartus 16.0.0 to synthesize

AFUs for the PACs and integrated FPGAs, respectively. The bitstream

version of the non-user-configurable Board Management Controller (BMC)

firmware is 1.1.3 on the FPGA PAC and 5.0.3 on the integrated FPGA. The

OS on our Optiplex 7010 workstation is Ubuntu 16.04.4 LTS with Linux

kernel 4.13.0-36. On this system, we installed the latest stable release of

OPAE, 1.3.0, and on its FPGA PAC, we installed the compatible 1.1.3 BMC

firmware bitstream.

4.2 Analysis of Intel FPGA-CPU Systems

This section explains the hardware and software interfaces that the Intel Arria

10 GX FPGA platforms use to communicate with their host CPUs and the

firmware, drivers, and architectures that underlay them. Figure 4.1 gives an

overview of such architecture.

Introduction to Intel Terminology Intel refers to a single logical unit

implemented in FPGA logic and having a single interface to the CPU as an

Accelerator Functional Unit (AFU). So far, available FPGA platforms only

support one AFU per Partial Reconfiguration Unit (PRU, also called the

Green Region). The AFU is an abstraction similar to a program that captures

the logic implemented on an FPGA. The FPGA Interface Manager (FIM)

is part of the non-user-configurable portion (Blue Region) of the FPGA and

50

L1/L2

L3 / Last Level Cache

IOMMU
FIU

FPGAPRU AFU
CPU Package

D
R
A
M

U
P
I

P
C
Ie

CCI-P

Core 0

Cache

PAC

PCIe

L1/L2
Core 1

FIU

FPGA
PRU

AFU

C
C
I-
P

IO
M
M
U

OPAE
FPGA Drivers

FPGA API
Application

OS

Figure 4.1: Overview of the architecture of Intel FPGAs. The software part
of the Intel Acceleration Stack called OPAE is highlighted in orange. Its API
is used by applications (yellow) to communicate with the AFU. The Green
Region marks the part of the FPGA that is re-configurable from userspace
at runtime. The Blue Region describes the static soft core of the FPGA. It
exposes the CCI-P interface to the AFU.

contains external interfaces like memory and network controllers as well as

the FPGA Interface Unit (FIU), which bridges those external interfaces with

internal interfaces to the AFU.

4.2.1 Intel FPGA Platforms

Intel’s Arria 10 GX Programmable Acceleration Card (PAC) is a PCIe

expansion card for FPGA acceleration [85]. The Arria 10 GX FPGA on the card

communicates with its host processor over a single PCIe Gen3x8 bus. Memory

reads and writes from the FPGA to the CPU’s main memory use physical

addresses; in virtual environments, the PCIe controller on the CPU side

implements an I/O memory management unit (IOMMU) to translate physical

addresses in the virtual machine (what Intel calls I/O Virtual Addresses or

IOVA) to physical addresses in the host. Alongside the FPGA, the PAC

51

carries 8GB of DDR4, 128MB of flash memory, and USB for debugging.

An alternative accelerator platform is the Xeon server processor with

an integrated Arria 10 FPGA in the same package [78]. The FPGA and

CPU are closely connected through two PCIe Gen3x8 links and an UltraPath

Interconnect (UPI) link. UPI is Intel’s high-speed CPU interconnect (replacing

its predecessor QPI) in Skylake and later Intel CPU architectures [142]. The

FPGA has a 128KiB directly mapped cache that is coherent with the CPU

caches over the UPI bus. Like the PCIe link on the PAC, both the PCIe links

and the UPI link use I/O virtual addressing, appearing as physical addresses

to virtualized environments. As the UPI link bypasses the PCIe controller’s

IOMMU, the FIU implements its own IOMMU and Device TLB to translate

physical addresses for reads and writes using UPI [84].

4.2.2 Intel’s FPGA-CPU Compatibility Layers

Open Programmable Acceleration Engine (OPAE) Intel’s latest gen-

erations of FPGA products are designed for use with the OPAE [83] which

is part of the Intel Acceleration Stack. The principle behind OPAE is that

it is an open-source, hardware-flexible software stack designed for interfac-

ing with FPGAs that use Intel’s Core Cache Interface (CCI-P), a hardware

host interface for AFUs that specifies transaction requests, header formats,

timing, and memory models [84]. OPAE provides a software interface for

software developers to interact with a hosted FPGA, while CCI-P provides

a hardware interface for hardware developers to interact with a host CPU.

52

Excluding a few platform-specific hardware features, any CCI-P compatible

AFU should be synthesizable (and the result should be logically identical) for

any CCI-P compatible FPGA platform; OPAE is built on top of hardware-

and OS-specific drivers and as such is compatible with any system with the

appropriate drivers available. As described below, the OPAE/CCI-P system

provides two main methods for passing data between the host CPU and the

FPGA.

Memory-mapped I/O (MMIO) OPAE can send 32- or 64-bit MMIO

requests to the AFU directly or it can map an AFU’s MMIO space to OS

virtual memory [83]. CCI-P provides an interface for incoming MMIO requests

and outgoing MMIO read responses. The AFU may respond to read and

write requests in any way that the developer desires, though an MMIO read

request will time out after 65,536 cycles of the primary FPGA clock. In

software, MMIO offsets are counted as the number of bytes and expected to

be multiples of 4 (or 8, for 64-bit reads and writes), but in CCI-P, the last two

bits of the address are truncated, because at least 4 bytes are always being

read or written. There are 16 available address bits in CCI-P, meaning that

the total available MMIO space is 216 32-bit words, or 256KiB [84].

Direct memory access (DMA) OPAE can request the OS to allocate a

block of memory that can be read by the FPGA. There are a few important

details in the way this memory is allocated: most critically, it is allocated in

a contiguous physical address space. The FPGA will use physical addresses

53

to index the shared memory, so physical and virtual offsets within the shared

memory must match. On systems using Intel Virtualization Technology for

Directed I/O (VT-d), which employs the IOMMU to provide an IOVA to

PCIe devices, the memory will be allocated in continuous IOVA space. Either

way, this ensures that the FPGA will see an accessible and continuous buffer

of the requested size. For buffer sizes up to and including one 4 kB memory

page, a normal memory page will be allocated to the calling process by the

OS and configured to be accessible by the FPGA with its IOVA or physical

address. For buffer sizes greater than 4 kB, OPAE will call the OS to allocate

a 2MB or 1GB huge page. Keeping the buffer in a single page ensures that

it will be contiguously allocated in physical memory.

4.2.3 Cache and Memory Architecture on the Intel

FPGAs

Arria 10 PAC The Arria 10 PAC has access to the CPU’s memory system

as well as its own local DRAM with a separate address space from that of the

CPU and its memory. The PAC’s local DRAM is always directly accessed,

without a separate caching system. When the PAC reads from the CPU’s

memory, the CPU’s memory system will serve the request from its LLC if

possible. If the memory that is read or written is not present in the LLC,

the request will be served by the CPU’s main DRAM. The PAC is unable to

place cache lines into the LLC with reads, but writes from the PAC update

54

the LLC.

Integrated Arria 10 The integrated Arria 10 FPGA has access to the host

memory. Additionally, it has its own 128 kB cache that is kept coherent with

the CPU’s caches over UPI. Memory requests over PCIe take the same path

as requests issued by an FPGA PAC. If the request is routed over UPI, the

local coherent FPGA cache is checked first, on a cache miss, forwarding the

request to the CPU’s LLC or main memory.

Table 4.1: Overview of the caching hints configurable over CCI-P on an
integrated FPGA. * I hints invalidate a cache line in the local cache. Reading
with RdLine S stores the cache line in the shared state. Writing with WrLine M

caches the line modified state.

Cache Hint RdLine I RdLine S WrLine I WrLine M WrPush I

Desc. No FPGA
caching

Leave
FPGA
cache in S
state

No FPGA
caching

Leave
FPGA
cache in
M state

Intent to
cache in
LLC

Available UPI, PCIe UPI UPI, PCIe UPI UPI, PCIe

Reverse-engineering Caching Hint Behavior

An AFU on the Arria 10 GX can exercise some control over caching behavior by

adding caching hints to memory requests. The available hints are summarized

in table 4.1. For memory reads, RdLine I is used to not cache data locally

and RdLine S to cache data locally in the shared state. For memory writes,

WrLine I is used to prevent local caching on the FPGA, WrLine M leaves

55

written data in the local cache in the modified state. WrPush I does not

cache data locally but hints the cache controller to cache data in the CPU’s

LLC. The CCI-P documentation lists all caching hints as available for memory

requests over UPI [84]. When sending requests over PCI, only RdLine I,

WrLine I, and WrPush I can be used while other hints are ignored. However,

based on our experiments, not all cache hints are implemented exactly to

specification.

To confirm the behavior of caching hints available for DMA writes, we

designed an AFU that writes a constant string to a configurable memory

address using a configurable caching hint and bus. We used the AFU to write

a cache line and afterward timed a read access to the same cache line on

the CPU. These experiments confirm that nearly 100% of the cache lines

written to by the AFU are placed in the LLC, as access times stay below 100

CPU clock cycles while main memory accesses take 175 cycles on average.

This behavior is independent of the caching hint, the bus, or the platform

(PAC, integrated Arria 10). The result is surprising as the caching hint meant

to cache the data in the cache of the integrated Arria 10 and the caching

hint meant for writing directly to the main memory are either ignored by

the Blue Region and the CPU or not implemented yet. Intel later verified

that the Blue Region in fact ignores all caching hints that apply to DMA

writes. Instead, the CPU is configured to handle all DMA writes as if the

WrPush I caching hint is set. The observed LLC caching behavior is likely

caused by Intel’s Data Direct I/O (DDIO), which is enabled by default in

56

recent Intel CPUs. DDIO is meant to give peripherals direct access to the

LLC and thus causes the CPU to cache all memory lines written by the AFU.

DDIO restricts cache access to a subset of ways per cache set, which reduces

the attack surface for Prime+Probe attacks. Nonetheless, attacks against

other DDIO-enabled peripherals are possible [118,190].

4.3 JackHammer Attack

Contribution In this section, we present and evaluate a simple AFU for

the Arria 10 GX FPGA that is capable of performing Rowhammer against

its host CPU’s DRAM as much as two times faster and four times more

effectively than its host CPU can. In a Rowhammer, a significant factor in the

speed and efficacy of an attack is the rate at which memory can be repeatedly

accessed. On many systems, the CPU is sufficiently fast to cause some bit

flips, but the FPGA can repeatedly access its host machine’s memory system

substantially faster than the host machine’s CPU can. Both the CPU and

FPGA share access to the same memory controller, but the CPU must flush

the memory after each access to ensure that the next access reaches DRAM;

memory reads from the FPGA do not affect the CPU cache system so no

time is wasted flushing memory with the FPGA implementation. We further

measure the performance of CPU and FPGA Rowhammer implementations

with caching both enabled and disabled, and find that disabling caching brings

CPU Rowhammer speed near that of our FPGA Rowhammer implementation.

57

Crucially, the architectural difference also means that it is much more difficult

for a program on the CPU to detect the presence of an FPGA Rowhammer

than that of a CPU Rowhammer — the FPGA’s memory accesses leave far

fewer traces on the CPU.

4.3.1 JackHammer: Our FPGA Implementation of

Rowhammer

JackHammer supports configuration through the MMIO interface. When the

JackHammer AFU is loaded, the CPU first sets the target physical addresses

that the AFU will repeatedly access. It is recommended to set both addresses

for a double-sided attack, but if the second address is set to 0, JackHammer

will perform a single-sided attack using just the first address. The CPU must

also set the number of times to access the targeted addresses.

When the configuration is set, the CPU signals the AFU to repeat memory

accesses and issue them as fast as it can, alternating between addresses

in a double-sided attack. Note that unlike a software implementation of

Rowhammer, the accessed addresses do not need to be flushed from cache

— DMA read requests from the FPGA do not cache the cache line in the

CPU cache, though if the requested memory is in the last-level cache, the

request will be served to the FPGA by the cache instead of by memory

(see section 4.2.3 for more details on caching behavior). In this attack, the

attacker needs to ensure that the cache lines used for inducing bit flips are

58

never accessed by the CPU during the attack. The number of times to access

the target addresses can be read again to get the number of remaining accesses;

this is the simplest way to check in software whether or not the AFU has

finished sending these accesses. When the last read request has been sent

by the AFU, the total amount of time taken to send all of the requests is

recorded.3

4.3.2 JackHammer on the FPGA PAC vs. CPU Row-

hammer

Figure 4.2 shows a box plot of the 0th, 25th, 50th, 75th, and 100th percentile of

measured “hammering rates” on the Arria 10 FPGA PAC and its host i7-3770

CPU. Each measurement in these distributions is the average hammering rate

over a run of 2 billion memory requests. Our JackHammer implementation

is substantially faster than the standard CPU Rowhammer, and its speed

is far more consistent than the CPU’s. The FPGA can manage an average

throughput of one memory request, or “hammer,” every ten 200MHz FPGA

clock cycles (finishing 2 billion hammers in an average of 103.25 seconds); the

CPU averages one hammer every 311 3.4GHz CPU clock cycles (finishing

2 billion hammers in an average of 183.41 seconds). Here we can see that

even if the FPGA were clocked higher, it would still spend most of its time

3The time to send all the requests is not precisely the time to complete all the requests,
but it is very close for sufficiently high numbers of requests. The FPGA has a transaction
buffer that holds up to 64 transactions after they have been sent by the AFU. The buffer
does take some time to clear, but the additional time is negligible for our performance
measurements of millions of requests.

59

Arria 10 PAC @ 200 MHz Core i7-3770 @ 3392 MHz

Platform

1

1.2

1.4

1.6

1.8

H
a

m
m

e
rs

 p
e

r
s
e

c
o

n
d

10
7

Figure 4.2: Distributions of hammering rates (memory requests per second)
on FPGA PAC and i7-3770.

waiting for entries in the PCIe transaction buffer in the non-reconfigurable

region to become available.

Figure 4.3 shows measured bit flip rates in the victim row for the same

experiment. Runs where zero flips occurred during hardware or software

hammering were excluded from the flip rate distributions, as they are assumed

to correspond with sets of rows that are in the same logical bank, but

not directly adjacent to each other. The increased hammering speed of

JackHammer produces a more than proportional increase in flip rate, which

is unsurprising due to the highly nature of Rowhammer. As the Rowhammer

is underway, electrical charge is drained from capacitors in the victim row.

However, the memory controller also periodically refreshes the charge in the

capacitors. When there are more memory accesses to adjacent rows within

60

Arria 10 PAC @ 200 MHz i7-3770 @ 3392 MHz

Platform

0

0.2

0.4

0.6

0.8

1

1.2

F
lip

s
 p

e
r

s
e

c
o

n
d

Figure 4.3: Distributions of flip rates on FPGA PAC and i7-3770.

each refresh window, it is more likely that a bit flip occurs before the next

refresh. This is why the FPGA’s increased memory throughput is more

effective for conducting Rowhammer against the same DRAM chip.

Another way to look at hammering performance is by counting the total

number of flips produced by a given number of hammers. Figure 4.4 and

fig. 4.5 show minimum, maximum, and every 10th percentile of the number of

flips produced by the AFU and CPU respectively for a range of total number

of hammers from 200 million to 2 billion. These graphs demonstrate how

much more effectively the FPGA PAC can generate bit flips in the DRAM

even after the same number of memory accesses. For hammering attempts

that resulted in a non-zero number of bit flips, the AFU exhibits a wide

distribution of flip count in the range of 200 million to 800 million hammers

which then rapidly narrows in the range of 800 million to 1.2 billion and

61

Billions of hammers

0

50

100

N
u
m

b
e
r

o
f
fl
ip

s

.2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2

Maximum

90th Percentile

80th Percentile

70th Percentile

60th Percentile

50th Percentile

40th Percentile

30th Percentile

20th Percentile

10th Percentile

Minimum

Figure 4.4: Distributions of total flips after 200 million to 2 billion hammers
on PAC.

finally levels out by 1.8 billion hammers. This set of distributions seems to

indicate that “flippable” rows will ultimately reach about 80-120 total flips

after enough hammering, but it can take anywhere from 200 million hammers

(about 10 seconds) to 2 billion hammers (about 100 seconds) to reach that

limit.

There are also a few rows that only incur a few flips. These samples

appear in a consistent pattern demonstrated in fig. 4.6, which plots a portion

of the data used to create fig. 4.4 in detail.Each impulse in this plot represents

the number of flips after a single run of 2 billion hammers on a particular

target row. In fig. 4.6, at indices 23 and 36, two of these outliers are visible,

each appearing two indices after several samples in the standard 80-120 flip

range. These outliers could indicate rows that are affected vary slightly by

hammering on rows that are nearby but not adjacent.

62

Billions of hammers

0

50

100

N
u
m

b
e
r

o
f
fl
ip

s

.2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2

Maximum

90th Percentile

80th Percentile

70th Percentile

60th Percentile

50th Percentile

40th Percentile

30th Percentile

20th Percentile

10th Percentile

Minimum

Figure 4.5: Distributions of total flips after 200 million to 2 billion hammers
on i7-3770.

4.3.3 JackHammer on the Integrated Arria 10 vs. CPU

Rowhammer

The JackHammer AFU we designed for the integrated platform is the same

as the AFU for the PAC, except that the integrated platform has access to

more physical channels for the memory reads. The PAC only has a single

PCIe channel; the integrated platform has one UPI channel and two PCIe

channels, as well as an “automatic” setting which lets the interface manager

select a physical channel automatically. Therefore we present the hammering

rates on this platform with two different settings — alternating PCIe lanes

on each access and using the automatic setting.

However, this platform is only available to us on Intel’s servers, so we

have only been able to test on one DRAM setup and have been unable to

63

0

0.2

0.4

0.6

0.8

1

1.2
F

lip
s
 a

ft
e
r

2
 m

ill
io

n
 h

a
m

m
e
rs

10 15 20 25 30 35 40

Index in array of all conflicting addresses

Figure 4.6: Time series plotting number of flips on a row-by-row basis, showing
an example of the consistent placement of small-valued outliers (samples 23
and 36 on this graph) relative to their much larger neighbors. These rows only
ever incur a few flips, compared to most “flippy” rows which incur dozens
of flips, and always are located two rows away from a block of rows that flip
much more.

get bit flips on this DRAM.4 The integrated Arria 10 shares the package with

a modified Xeon v4-style CPU. The available servers are equipped with an

X99 series motherboard with 64GB of DDR4 memory. Figure 4.7 shows

distributions of measured hammering rates on the integrated Arria 10 platform.

Compared to the Arria 10 PAC, the integrated Arria 10’s hammering rate is

more varied, but with a similar mean rate.

4There are several reasons why this could be the case. Some DRAM is simply more
resistant to Rowhammer by its physical nature. DDR4 memory, which can be found in this
system, sometimes has hardware features to block Rowhammer style attacks [101]; though
some methods have been developed to circumvent these protections [63], these methods
ultimately still rely on the ability of the attacker to repeatedly access the DRAM very
quickly, so we consider those methods outside of the scope of this research, which is focused
on the relative ability of the FPGA platforms to quickly access DRAM.

64

Platform

1.6

1.7

1.8

1.9

2

2.1

H
a
m

m
e
rs

 p
e
r

s
e
c
o
n
d

10
7

Integrated Arria 10 @ 400

Mhz

Integrated Xeon E5-2600v4

@ ~3400 MHz

Figure 4.7: Distributions of hammering rates on integrated Arria 10 and Xeon
E5-2600 v4.

Platform

1

2

3

H
a
m

m
e
rs

 p
e
r

s
e
c
o
n
d

10
7

Cachable

Arria 10 PAC

Cachable

Xeon

E5-2670 v2

Uncachable

Arria 10 PAC

Uncachable

Xeon

E5-2670 v2

Figure 4.8: Distributions of hammering rates with cachable and uncachable
memory.

65

4.3.4 The Effect of Caching on Rowhammer Perfor-

mance

We hypothesized that a primary reason for the difference in Rowhammer

performance between JackHammer on the FPGAs and a typical Rowhammer

implementation on the CPUs is that when one of the FPGAs reads a line

of memory from DRAM, it is not cached, so the next read will miss the

cache and be directed to the DRAM as well. On the other hand, when the

CPUs access a line of memory, it is cached, and the memory line must be

flushed from cache before the next read is issued, or the next read will hit

the cache instead of DRAM, and the physical row in the DRAM will not be

“hammered.”

To evaluate our hypothesis that caching is an important factor in the

performance disparity we observed between FPGA- and CPU-based Rowham-

mer, we used the PTEditor [181] kernel module to set allocated pages as

uncachable before testing hammering performance. We edited the setup of

the Rowhammer performance tests to allocate many 4 kB pages and set all of

those as uncachable instead of one 2MB huge page, as the kernel module we

used to set the pages as uncachable was not correctly configuring the huge

pages as uncachable. However, it is still easy to find a large continuous range

of physical addresses — when these pages are allocated by OPAE, the physical

address is directly available to the software. So the software simply allocates

thousands of 4 kB pages, sorts them, and then finds the biggest continuous

66

range within them and attempts to find colliding row addresses within that

range. The JackHammer AFU required no modifications from the initial

performance tests; the assembly code to hammer from the CPU was edited to

not flush the memory after reading it, since the memory will not be cached

in the first place.

We performed this experiment by placing the FPGA PAC on a Dell

Poweredge R720 system with a Xeon E5-2670 v2 CPU fixed to a clock speed

of 2500MHz and two 4GB DIMMs of DDR3 DRAM clocked at 1600MHz.

Figure 4.8 shows the performance of the FPGA PAC and this system’s CPU

with caching enabled and disabled. Disabling caching produces a significant

speedup in hammering for both the PAC and the CPU, but especially for the

CPU, which saw a 188% performance increase. With caching enabled, the

median hammering rate of the PAC was more than twice that of the CPU,

but with caching disabled, the median hammering rate of the PAC was only

22% faster than that of the CPU. Of course, memory accesses on modern

systems are extremely complex (even with caching disabled), so there are

likely some factors affecting the changes in hammering rate that we cannot

describe, but our experimental evidence supports our hypothesis that time

spent flushing the cache is a major factor slowing down CPU Rowhammer

implementations compared to FPGA implementations.

67

FPGA

FIU

CPU

Main Memory

Core 0 Core 1

WolfCrypt
RSA

RSA KeyMemory for
Hammering

Malicious
App

Rowhammer
AFU

2 The malicious app
prepares the shared

(with AFU) memory for
hammering.

3 The AFU hammers
the memory shared

with the malicious app,
while the victim is
performing RSA.

1 The victim
application initializes

the RSA Key.

4 The RSA signature
will become faulty due
to the induced bit flips

in the key.

LLC

Figure 4.9: WolfSSL RSA Fault Injection Attack.

4.4 Fault Attack on RSA using JackHammer

Rowhammer has been used for fault injections on cryptographic schemes [25,

26] or for privilege escalation [63,184,200]. Using JackHammer, we demon-

strate a practical fault injection attack from the Arria 10 FPGA to the WolfSSL

RSA implementation running on its host CPU. In the RSA fault injection

attack proposed by Boneh et al. [27], an intermediate value in the Chinese

remainder theorem modular exponentiation algorithm is faulted, causing an

invalid signature to be produced. Similarly, we attack the WolfSSL RSA

implementation using JackHammer from the FPGA PAC and Rowhammer

from the host CPU, and compare the efficiency of the two attacks. The

increased hammering speed and flip rate of the Arria 10 FPGA makes the

attack more practical in the time frame of about 9 RSA signatures.

Figure 4.9 shows the high-level overview of our attack: the WolfSSL RSA

application runs on one core, while a malicious application runs adjacent to

it, assisting the JackHammer AFU on the FPGA in setting up the attack.

68

JackHammer causes a hardware fault in the main memory, and when the

WolfSSL application reads the faulty memory, it produces a faulty signature

and leaks the private factors used in the RSA scheme.

4.4.1 RSA Fault Injection Attacks

We implement a fault injection attack against the Chinese remainder theorem

implementation of the RSA algorithm, commonly known as the Bellcore

attack [27]. Algorithm 1 shows the Chinese remainder theorem (CRT) RSA

signing scheme where the signature S is computed by raising a message m to

the private exponent dth power, modulo N . dp and dq, are precomputed as

d mod p− 1 and d mod q − 1, where p and q are the prime factors of N [20].

When one of the intermediates Sq or Sp is computed incorrectly, an interesting

case arises. Consider the difference between a correctly computed signature

S of a message m and an incorrectly computed signature S ′ of the same

message, computed with an invalid intermediate S ′
p. The difference S − S ′

leaves a factor of q times the difference Sp− S ′
p, so the GCD of S − S ′ and N

is the other factor p [20]. This reduces the problem of factoring N to a simple

subtraction and GCD operation, so the private factors (p, q) are revealed if

the attacker has just one valid signature and one faulty signature, each signed

on the same message m. These factors can also be recovered with just one

faulty signature if the message m and public key e are known; it is also equal

to the GCD of S ′e −m and N .

69

Fault Injection Attack with RSA Base Blinding A common modifi-

cation to any RSA scheme is the addition of base blinding, effective against

simple and differential power analysis side-channel attacks, but vulnerable

to a correlational power analysis attack demonstrated by [210]. Base blind-

ing is used by default in our target WolfSSL RSA-CRT signature scheme.

In this blinding process, the message m is blinded by a randomly gener-

ated number r by computing mb = m · re mod n. The resulting signature

Sb = (m · re)d mod n = md · r mod n must then be multiplied by the inverse

of the random number r to generate a valid signature S = Sb · r−1 mod n.

This blinding scheme does not prevent against the Bellcore fault injection

attack. Consider a valid signature blinded with random factor r1 and an

invalid signature blinded with r2. When the faulty signature is subtracted by

the valid signature, the valid and blinded intermediates Spb are each unblinded

and cancel as before, as shown in eq. (4.1).

S − S ′ =
[
Sqb + q ·

(
(Spb − Sqb) · q−1 mod p

)]
· r−1

1 mod N

−
[
Sqb + q ·

(
(S ′

pb − Sqb) · q−1 mod p
)]
· r−1

2 mod N

= q · [
(
Spb · q−1 mod p

)
· r−1

1 −
(
S ′
pb · q−1 mod p

)
· r−1

2] mod N

(4.1)

Ultimately, there is still a factor of q in the the difference S − S ′ which can

be extracted with a GCD as before.

70

4.4.2 Our Attack

Approach and Justification We developed a simplified attack model to

test the effectiveness of the Arria 10 Rowhammer in a fault injection scenario.

Our model simplifies the setup of the attack so that we can efficiently measure

the performance of both CPU Rowhammer and JackHammer. We sign the

same message with the same key repeatedly while the Rowhammer exploit

runs, and count the number of correct signatures until a faulty signature is

generated, which is used to leak the private RSA key.

Attack Setup In summary, our simplified attack model works as follows:

The attacker first allocates a large block of memory and checks it for conflicting

row addresses. It then quickly tests which of those rows can be faulted with

hammering using JackHammer. A list of rows that incur flips is saved so

that it can be iterated over. The program then begins the “attack,” iterating

through each row that incurred flips during the test, and through the sixty-four

1024-bit offsets that make up the row. During the attack, the JackHammer

AFU is instructed to repeatedly access the rows adjacent to the target row.

Meanwhile, in the “victim” program, the targeted data (the precomputed

intermediate value d mod q − 1) is copied to the target address, which is

computed as an offset of the targeted row. The victim then enters a loop

where it reads back the data from the target row and uses it as part of an

RSA key to create a signature from a sample message. Additionally, the

“attacker” opens a new thread on the CPU which repeatedly flushes the target

71

row on a given interval. It is necessary for the attacker to flush the target

row because the victim is repeatedly reading the targeted data and placing it

in cache, but the fault will only ever occur in main memory. For the victim

program to read the faulty data from DRAM, there cannot be an unaffected

copy of the same data in cache or the CPU will simply read that copy. As we

show below, the performance of the attack depends significantly on the time

interval between flushes.

One of the typical complications of a Rowhammer fault injection attack

is ensuring that the victim’s data is located in a row that can be hammered.

In our simplified model, we choose the location of the victim data manually

within a row that we have already determined to be one that incurs flips

under a Rowhammer attack so that we may easily test the effectiveness of

the attack at various rows and various offsets within the rows. In a real

attack, the location of the victim program’s memory can be controlled by

the attacker with a technique known as page spraying [184], which is simply

allocating a large number of pages and then deallocating a select few, filling

the memory in an attempt to cause the victim program to allocate the

right pages. Improvements in this process can be made; for example, [25]

demonstrated how cache attacks can be used to gather information about the

physical addresses of data being used by the victim process.

The other simplification in our model is that we force the CPU to read

from DRAM using the clflush instruction to flush the targeted memory

from cache. In an end-to-end attack, the attacker would use an eviction set

72

to evict the targeted memory since it is not directly accessible in the attack

process’s address space. However, the effect is ultimately the same — the

targeted data is forcibly removed from the cache by the attacker.

4.4.3 Performance of the Attack

In this section, we show that our JackHammer implementation with optimal

settings can cause a faulty signature an average of 17% faster than a typi-

cal CPU-based, software-driven Rowhammer implementation with optimal

settings. In some scenarios, the performance is as much as 4.8 times that of

the software implementation. However, under some conditions, the software

implementation can be more likely to cause a fault over a longer period of time.

Our results indicate that increasing the DRAM row refresh rate provides

significant but not complete defense against both implementations.

The performance of this fault injection attack is highly dependent on the

time interval between evictions, and as such we present all of our results in

this section as functions of the eviction interval. Each eviction triggers a

subsequent reload from memory when the key is read for the next signature,

which refreshes the capacitors in the DRAM. Whenever DRAM capacitors are

refreshed, any accumulated voltage error in each capacitor (due to Rowhammer

or any other physical effect) is either solidified as a new faulty bit value or

reset to a safe and correct value. Too short of an interval between evictions

will cause the DRAM capacitors to be refreshed too quickly to be flipped with

a high probability. On the other hand, however, longer intervals can mean

73

the attack is waiting to evict the memory for a longer time while a bit flip

has already occurred. It is crucial to note, also, that DRAM capacitors are

automatically refreshed by the memory controller on a 64 ms interval5 [65].

On some systems, this interval is configurable: faster refresh rates reduce the

rate of memory errors, including those induced by Rowhammer, but they can

impede maximum performance because the memory spends more time doing

maintenance refreshes rather than serving read and write request. For more

discussion on modifying row refresh rates as a defense against Rowhammer,

see section 4.6.

In table 4.2 we present two metrics with which we compare JackHammer

and a standard CPU Rowhammer implementation. This table shows the mean

number of signatures until a faulty signature is produced and the ultimate

probability of success of an attack within 1000 signatures against a random key

in a randomly selected chunk of memory within a row known to be vulnerable

to Rowhammer. With an eviction interval of 96ms, the JackHammer attack

achieves the lowest average number of signatures before a fault, at only

58, 25% faster than the best performance of the CPU Rowhammer. The

CPU attack is impeded significantly by shorter eviction latency, while the

JackHammer implementation is not, indicating that on systems where the

DRAM row refresh rate has been increased to protect against memory faults

and Rowhammers, JackHammer likely offers substantially improved attack

5More specifically, DDR3 and DDR4 specifications indicate 64ms as the maximum
allowable time between DRAM row refreshes.

74

Table 4.2: Performance of our JackHammer exploit compared to a standard
software CPU Rowhammer with various eviction intervals. JackHammer is
able to acheive better performance in many cases because it bypasses caching
architecture, sending more memory requests during the eviction interval and
causing bit flips at a higher rate.

Eviction Mean signatures to fault Successful fault rate
Interval CPU JackHammer % Inc. Speed CPU JackHammer % Inc. Rate

16 280 186 51% 0.4% 0.2% -46%
32 627 219 185% 0.2% 0.8% 264%
48 273 124 120% 14% 19% 39%
64 81 76 7% 17% 26% 56%
96 74 58 27% 46% 49% 8%
128 73 70 4% 52% 50% -1.2%
256 106 115 -7% 57% 55% -3%

Best performance 73 58 25% 57% 55% -3%

performance. Figure 4.10 highlights the mean number of signatures until a

faulty signature for the 16ms to 96ms range of eviction latency.

4.5 Cache Attacks on Intel FPGA-CPU Plat-

forms

In section 4.2.3, we reverse-engineered the behavior of the memory subsystem

on current Arria 10 based FPGA-CPU platforms. In this section, we system-

atically analyze cache attacks exploitable by an AFU- or CPU-based attacker

attacking the CPU or FPGA, respectively, and demonstrate a cache covert

channel from FPGA to CPU. At last, we discuss the viability of intra-FPGA

cache attacks. table 4.3 summarizes our findings.

To measure memory access latency on the FPGA, we designed a timer

clocked at 200MHz/400MHz. The advantage of this hardware timer is that

75

16 32 48 64 96

Eviction latency (ms)

0

100

200

300

400

500

600

700
M

e
a

n
 s

ig
n

a
tu

re
s
 t

o
 f

a
u

lt Hardware

Software

Figure 4.10: Mean number of signatures to fault at various eviction intervals.

it runs uninterruptible in parallel to all other CPU or FPGA operations.

Therefore, the timer precisely counts FPGA clock cycles, while timers on the

CPU, such as rdtsc, may yield noisier measurements due to interruptions by

the OS and the CPU’s out-of-order pipeline.

Table 4.3: Summary of our cache attacks analysis: OPAE accelerates eviction
set construction by making huge pages and physical addresses available to
userspace.

Attacker Target Channel Attack

FPGA PAC AFU CPU LLC PCIe E+T, E+R, P+P
Integrated FPGA AFU CPU LLC UPI E+T, E+R, P+P
Integrated FPGA AFU CPU LLC PCIe E+T, E+R, P+P

CPU FPGA Cache UPI F+R, F+F
Integrated FPGA AFU FPGA Cache CCI-P E+T, E+R, P+P

76

130 140 150 160 170 180

FPGA clock cycles (200 MHz)

0

0.1

0.2

0.3
R

e
la

ti
v
e
 f
re

q
u
e
n
c
y

LLC

Memory

Figure 4.11: Latency for PCIe read requests on an FPGA PAC served by the
CPU’s LLC or main memory.

4.5.1 Cache Attacks from FPGA PAC to CPU

The Intel PAC has access to one PCIe lane that connects it to the main

memory of the system through the CPU’s LLC. The CCI-P documentation [84]

mentions a timing difference for memory requests served by the CPU’s LLC

and those served by the main memory. Using our timer we verified the

suggested differences as shown in fig. 4.11. Accesses to the LLC take between

139 and 145 cycles; accesses to main memory take 148 to 158 cycles. These

distinct distributions of access latency form the basis of cache attacks, as

they enable an attacker to tell which part of the memory subsystem served a

particular memory request. Our results indicate that FPGA-based attackers

can precisely distinguish memory responses served by the LLC from those

served by main memory.

In addition to probing, some way of influencing the state of the cache is

77

0 50 100 150 200 250

FPGA clock cycles (400 MHz)

0

0.2

0.4

0.6

0.8

1
R

e
la

ti
v
e
 f
re

q
u
e
n
c
y

Local cache

LLC

Main memory

Figure 4.12: Latency for UPI read requests on an integrated Arria 10 served
by the FPGA’s local cache, CPU’s LLC, or main memory.

needed to perform cache attacks. We investigated all possibilities of cache

interaction offered by the CCI-P interface on an FPGA PAC and found that

cache lines read by the AFU from the main memory will not get cached.

While this behavior is not usable for cache attacks, it boosts Rowhammer

performance as we saw in section 4.3. On the other hand, cache lines written

by an AFU on the PAC end up in the LLC with nearly 100% probability. The

reason for this behavior was already discussed together with the analysis of

the caching hints. This can be used to evict other cache lines from the cache

and perform eviction based attacks like Evict+Time, Evict+Reload, and

Prime+Probe. For E+T, DMA writes can be used to evict a cache line and

our hardware timer measures the victim’s execution time. Even though an

AFU cannot load data into the LLC, E+R can be performed as the purpose

of reloading a cache line is to learn the latency and not literally reloading

78

the cache line. So the primitives for E+R on the FPGA are DMA writes

and timing DMA reads with a hardware timer. P+P can be performed using

DMA writes and timing reads. In the case where DDIO limits the number of

accessible ways per cache set, other DDIO-enabled peripherals are attackable.

Flush-based attacks like Flush+Reload or Flush+Flush cannot be performed

by an AFU as CCI-P does not offer a flush instruction.

4.5.2 Cache Attacks from Integrated Arria 10 FPGA to

CPU

The integrated Arria 10 has access to two PCIe lanes (each functioning much

like the PCIe lane on the FPGA PAC) and one UPI lane connecting it to the

CPU’s memory subsystem. It also has its own additional cache on the FPGA

accessible over UPI (cf. section 4.2.3).

By timing memory requests from the AFU using our hardware timer, we

show that distinct delays for the different levels of the memory subsystem

exist. Both PCIe lanes have delays similar to those measured on a PAC

(cf. fig. 4.11). Our memory access latency measurements for the UPI lane,

depicted in fig. 4.12, show an additional peak for requests being answered

by the FPGA’s local cache. The two peaks for LLC and main memory

accesses are likely narrower and further apart than in the PCIe case because

UPI, Intel’s proprietary high-speed processor interconnect, is an on-chip and

inter-CPU bus only connecting CPUs and FPGAs. On all interfaces, read

79

1800

2000

C
P

U
 c

lo
c
k
 c

y
c
le

s

-0.5

0

0.5

1

T
h
re

s
h
o
ld

 n
o
rm

a
liz

a
ti
o
n

20 40 60 80 100 120 140 160 180 200

Measurement

0

0.5

1

C
la

s
s
if
ic

a
ti
o
n

S
a
m

p
lin

g
 c

lo
c
k

1

0 0

1

0

1 1

0

1

0 0

1

0

1 1

0

1

0 0

1

0

1 1

0

1

0 0

1

0

1 1

0

1

Figure 4.13: Covert channel measurements and decoding. The AFU sends
each bit three times, which results in three peaks at the receiver if a ‘1’ is
transmitted (middle plot).

requests, again, are not usable for evicting cache lines from the LLC. DMA

writes, however, can be used to alter the LLC on the CPU. Because the UPI

and PCIe lanes behave much like the PCIe lane on a PAC, we state the same

attack scenarios (E+T, E+R, P+P) to be viable on the integrated Arria 10.

Constructing a Covert Channel from AFU to CPU

The fact that an AFU can place data in at least one way per LLC slice allows

us to construct a covert channel from the AFU to a co-operating process

on the CPU using side effects of the LLC. To do so, we designed an AFU

that writes a fixed string to a pre-configured cache line whenever a ‘1’ is

transmitted and stays quiet whenever a ‘0’ is sent. Using this technique, the

AFU sends messages which can be read by the CPU. For the rest of this

80

section, we will refer to the address the AFU writes to as the target address.

The receiver process6 first constructs an eviction set for the set/slice-pair

the target address is in. To find an eviction set, we run a slightly modified

version of Algorithm 1 using Test 1 in [204]. Using the OPAE API to allocate

hugepages and get physical addresses (cf. section 4.2.2) allows us to construct

the eviction set from a rather small set of candidate addresses all belonging

to the same set.

We construct the covert channel on the integrated platform as the LLC

of the CPU is inclusive. Additionally, the receiver has access to the target

address via shared memory to have the receiver test its eviction set against

the target address directly. This way, we do not need to explicitly identify the

target address’s LLC slice. In a real-world scenario, either the slice selection

function has to be known [79, 81, 94] or eviction sets for all slices have to

be constructed by seeking conflicting addresses [126,154]. The time penalty

introduced by monitoring all cache sets can be prevented by multi-threading.

Next, the receiver primes the LLC with the eviction set found and probes

the set in an endless loop. Whenever the execution time of a probe is above a

certain threshold, the receiver assumes that the eviction of one of its eviction

set addresses was the result of the AFU writing to the target address and

therefore interprets this as receiving a ‘1’. If the probe execution time stays

below the threshold, a ‘0’ is detected as no eviction of the eviction set addresses

6This process is not the software process directly communicating with the AFU over
OPAE/CCI-P.

81

occurred. An example measurement of the receiver and its decoding steps

are depicted in fig. 4.13.

To ease decoding and visualization of results, the AFU sends every bit

thrice and the CPU uses six probes to detect all three repetitions. This high

level of redundancy comes at the expense of speed, as we achieve a bandwidth

of about 94.98 kBit/s, which is low when compared to other work [126,132,211].

The throughput can be increased by reducing the three redundant writes per

bit from the AFU as well as by increasing the transmission frequency further

to reduce the redundant CPU probes per AFU write. Also, multiple cache sets

can be used in parallel to encode several bits at once. The synchronization

problem can be solved by using one cache set as the clock, where the AFU

writes an alternating bit pattern [190]. An average probe on the CPU takes

1855 clock cycles. With the CPU operating in the range of 2.8 – 3.4GHz,

this results in a theoretic throughput of 1.5 – 1.8MBit/s. On the other side,

the AFU can on average send one write request every 10 clock cycles without

filling the CCI-P PCIe buffer and thereby losing the write pattern. In theory,

this makes the AFU capable of sending 40MBit/s over the covert channel

when clocked at 400MHz.7

Even though caching hints for memory writes are being ignored by the Blue

Region, an AFU can place data in the LLC because the CPU is configured to

handle write requests as if WrPush I is set, allowing for producing evictions

7This is a worst-case scenario where every transmitted bit is a ‘1’-bit. For a random
message, this estimation goes up again as ‘0‘-bits do not fill the buffer, allowing for faster
transmission.

82

in the LLC. We corroborated our findings by establishing a covert channel

between the AFU and the CPU with a bandwidth of 94.98 kBit/s. By exposing

physical addresses to the user and by enabling hugepages, OPAE further eases

eviction set finding from userspace.

4.5.3 Cache Attacks from CPU to Integrated Arria 10

FPGA

We also investigated the CPU’s capabilities to run cache attacks against the

coherent cache on the integrated Arria 10 FPGA. First, we measured the

memory access latency depending on the location of the address accessed

using the rdtsc instruction. The results in fig. 4.14a show that the CPU can

clearly distinguish where an accessed address is located. Therefore, the CPU

is capable of probing a memory address that may or may not be present in

the local FPGA cache. It is interesting to note that requests to main memory

return faster than those going to the FPGA cache. This can be explained

by the much slower clock speed of the FPGA running at 400MHz while the

CPU operates at 1.2–3.4GHz. Another explanation is that our test platform

is one of the prototypes and the coherency protocol implementation of the

Blue Region is still buggy. As nearly all known cache attack techniques rely

on some form of probing phase, the capability to distinguish location of data

is a good step in the direction of having a fully working cache attack from

the CPU against the FPGA cache.

83

0 100 200 300 400

CPU clock cycles

0

0.2

0.4

0.6

0.8

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

Main memory

LLC

FPGA cache

(a) Memory access latency from the
CPU with data being present in FPGA
local cache, CPU LLC, or main memory.

200 400 600 800 1000 1200 1400

CPU clock cycles

0

0.05

0.1

0.15

0.2

0.25

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

Absent

Present

(b) The flush execution time on the CPU
with the flushed address being absent or
present in the FPGA cache.

Figure 4.14: Memory access and flush execution latency measured from a
Broadwell CPU with integrated Arria 10.

Besides the capability of probing the FPGA cache, we also need a way

of flushing, priming, or evicting cache lines to put the FPGA cache into

a known state. While the AFU can control which data is cached locally

by using caching hints, there is no such option documented for the CPU.

Therefore, priming the FPGA cache to evict cache lines is not possible. This

disables all eviction-based cache attacks. However, as the CPU has a clfush

instruction, we can use it to flush cache lines from the FPGA cache, because

it is coherent with the LLC. Hence, we can flush and probe cache lines located

in the FPGA cache. This enables us to run a Flush+Reload attack against

the victim AFU where the addresses used by the AFU get flushed before

the execution of the AFU. After the execution, the attacker then probes

all previously flushed addresses to learn which addresses were used during

the AFU execution. Another possible cache attack is the more efficient

Flush+Flush attack. Additionally, we expect the attack to be more precise

as flushing a cache line that is present in the FPGA cache takes about 500

84

CPU clock cycles longer than flushing a cache line that is not (cf. fig. 4.14b),

while the latency difference between memory and FPGA cache accesses adds

up to only about 50-70 CPU clock cycles.

In general, the applicability of F+R and F+F is limited to shared memory

scenarios. For example, two users on the same CPU might share an instantia-

tion of a library that uses an AFU for acceleration of a process that should

remain private, like training a machine learning model with confidential data

or performing cryptographic operations.

4.5.4 Intra-FPGA Cache Side-Channels

As soon as FPGAs support simultaneous multi-tenancy, that is, the capability

to place two AFUs from different users on the same FPGA at the same

time, the possibility of intra-FPGA cache attacks arises. As the cache on the

integrated Arria 10 is directly mapped and only 128 kB in size, finding eviction

sets becomes trivial when giving the attacker AFU access to huge pages. As

this is the default behavior of the OPAE driver when allocating more than one

memory page at once, we assume that it is straightforward to run eviction

based attacks like Evict+Time or Prime+Probe against a neighboring AFU

to e.g. extract information about a machine learning model. Flush-based

attacks would still be impossible due to the lack of a flush instruction in

CCI-P.

85

4.6 Countermeasures

Hardware Monitors Microarchitectural attacks against CPUs leave traces

in hardware performance counters (HPCs) like cache hit and miss counters.

Previous works have paired these HPCs with machine learning techniques

to build real-time detectors for these attacks [31,40,68,221]. In some cases,

CPU HPCs may be able to trace incoming attacks from FPGAs. While HPCs

do not exist in the same form on the Arria 10 GX platforms, they could be

implemented by the FIM. A system combining FPGA and CPU HPCs could

provide thorough monitoring of the FPGA-CPU interface.

Increasing DRAM Row Refresh Rate An approach to reduce the

impact of Rowhammer is increasing the DRAM refresh rate. DDR3 and

DDR4 specifications require that each row is refreshed at least every 64ms,

but many systems can be configured to refresh each row every 32 or 16 ms

for better memory stability. When we measured the performance of our fault

injection attack in section 4.4, we measured the performance with varying

intervals between evictions of the targeted data, simulating equivalent intervals

in row refresh rate, since each eviction causes a subsequent row refresh when

the memory is read by the victim program. Table 4.2 shows that under 1%

of attempted Rowhammers from both CPU and FPGA were successful with

an eviction interval of 32ms, compared to 14% of CPU attacks and 26%

of FPGA attacks with an interval of 64ms, suggesting that increasing the

row refresh rate would significantly impede even the more powerful FPGA

86

Rowhammer.

Cache Partitioning and Pinning Several cache partitioning mechanisms

have been proposed to protect CPUs against cache attacks. While some

are implementable in software [108, 110, 219, 226] others require hardware

support [60, 61, 125]. When trying to protect FPGA caches against cache

attacks, hardware-based approaches should be taken into special consideration.

For example, the FIM could partition the FPGA’s cache into several security

domains, such that each AFU can only use a subset of the cache lines in

the local cache. Another approach would introduce an additional flag to the

CCI-P interface telling the local caching agent which cache lines to pin to the

cache.

Disabling Hugepages and Virtualizing AFU Address Space Intel

is aware of the fact that making physical addresses available to userspace

through OPAE has negative security consequences [83]. Additionally to

exposing physical addresses, OPAE makes heavy use of hugepages to ensure

physical address continuity of buffers shared with the AFU. However, it is

well known that disabling hugepages increases the barrier of finding eviction

sets [93, 126] which in turn makes cache attacks and Rowhammer more

difficult. We suggest disabling OPAE’s usage of hugepages. To do so, the AFU

address space has to be virtualized independent of the presence of virtual

environments.

87

Protection Against Bellcore Attack Defenses against fault injection

attacks proposed in the original Bellcore whitepaper [27] include verifying

the signature before releasing it, and random padding of the message before

signing, which ensures that no unique message is ever signed twice and that the

exact plaintext cannot be easily determined. OpenSSL protects against the

Bellcore attack by verifying the signature with its plaintext and public key and

recomputing the exponentiation by a slower but safer single exponentiation

instead of by the CRT if verification does not match [39]. After we reported

the vulnerability to WolfSSL, they issued a patch in version 4.3.0 including a

signature verification to protect against Bellcore-style attacks.

88

Chapter 5

IOTLB-SC

An Accelerator-Independent Leakage Source in Modern

Cloud Systems

5.1 Introduction

Our Contribution This work exposes a vulnerability in an overlooked

attack surface present in multi-tenant, peripheral-heavy cloud systems: the

microarchitecture of the I/O Memory Management Unit (IOMMU). Know-

ing that the IOMMUs in modern CPUs have translation look-aside buffers

(IOTLBs) to speed up repeated translations [15,92,148], we present a hard-

ware design for an FPGA acceleration card that uses memory access timing

to reliably identify whether or not a translation is present in an IOTLB. With

that design, we propose and evaluate an algorithm for IOTLB eviction set

89

finding. With those eviction sets, we demonstrate the first two IOTLB-based

covert channels. We use the FPGA to collect side-channel IOTLB traces from

two other peripheral devices and analyze the viability and threat models of a

full side-channel attack.

We show that the IOTLB is the source of side-channel vulnerability that

CSPs are currently not aware of and thus do not protect against. We show

that the IOTLB is an excellent source for constructing covert channels between

co-located peripherals and can also be abused to extract information from

neighboring peripherals such as GPU-accelerated databases. We provide

comprehensive threat analysis of this vulnerability, in both the present and

the near future, and present viable defenses and countermeasures. In summary,

our main contributions are:

– We demonstrate a previously ignored IOTLB timing side-channel against

PCIe peripherals before technologies such as CXL and PCIe 5.0 gain

widespread adoption, and fine-grained attacks become viable on a large

installation base.

– We develop a new algorithm that finds eviction sets without any prior

assumptions of organization and demonstrate its advantages in finding

IOTLB eviction sets over a similar eviction set finding algorithm.

– We use a custom FPGA hardware function to exploit the IOTLB

timing side-channel and study traces collected from an SQL database

acceleration library for a GPU.

90

– We leak IOTLB timing side-channel traces from a GPU-accelerated

SQL database library and analyze the vulnerability of the library to a

practical attack.

– We demonstrate the first two IOTLB covert channels, including a

peripheral-to-peripheral channel with a generic application as the sender

and our custom FPGA function as the receiver.

– We propose countermeasures for applications, cloud systems, and IOM-

MU implementations to counter the side-channel we identified.

5.2 Identifying IOTLB Side-Channels

In this section, we demonstrate two fundamental techniques for implementing

IOTLB side-channel attacks on these or similar systems. We measure the

latency difference between DMA accesses to addresses with cached and

uncached translations in the IOMMU. We also demonstrate a new algorithm

for reliably finding IOTLB eviction sets with no prior assumptions about size

or organization. We have access to three different system setups that we will

investigate throughout this work. Table 5.1 summarizes the key features of

each. A detailed description of the setups is given next.

91

Table 5.1: Overview of the system setups used in this work.

Name a10l a10v s10v

CPU 2 Xeon Silver
4114

2 Xeon Plat-
inum 8180

2 Xeon Plat-
inum 8280

#PCIe RP 4 per CPU 4 per CPU 4 per CPU
#IOMMUs 4 per CPU 4 per CPU 4 per CPU
FPGA PAC Arria 10 Arria 10 Stratix 10
OPAE ver. 1.1.2-1 2020-01-01 2020-01-01
Bitstream ver. 1.2.3 1.1.3 2.0.3
Root/phys. ac-
cess

yes no no

5.2.1 System Setup

For our experiments, we rely on three systems that are representative of

modern cloud services featuring FPGA resources. The systems feature recent

server-grade CPUs as well as FPGA extension cards based on Intel FPGAs.

The FPGAs are managed by the Intel Acceleration Stack (IAS) which is

designed to ease management of cloud deployments. The first system, a10l,

is a system we have physical and administrative access to. The other two

systems a10v and s10v are cloud-like systems that are accessible through the

Intel Labs (IL) Academic Compute Environment (ACE)1. We operate the

two IL ACE systems with user privileges only. This is why we evaluate our

eviction set finding algorithm on all three systems but rely solely on a10l for

the side- and covert channel experiments. More detailed information about

the different systems is given in table 5.1 and in the following paragraphs.

a10l : As our local setup, we use a Dell PowerEdge R740 server with two

1https://wiki.intel-research.net/

92

Intel Xeon Silver 4114 CPUs. Each CPU reports 4 PCIe root bridges with

one IOMMU per root port. The system contains a Realtek PCIe ethernet

network interface card (NIC). It is assigned to a dedicated IOMMU group.

The NIC is passed-through to a virtual machine (VM) on the server. An

ethernet cable connects the NIC with one of the on-board NICs. An NVIDIA

Tesla T4 GPU is assigned to another dedicate IOMMU group that is managed

by a different IOMMU than the NIC. Therefore, the NIC and the GPU do not

share an IOTLB. An Intel Programmable Acceleration Card (PAC) with Intel

Arria 10 GX FPGA shares the IOTLB with the NIC or the T4, depending

on the experiment, by connecting it to PCIe slots that are managed by the

IOMMU also managing the NIC or the GPU respectively. All other PCIe

devices like the on-board NICs, memory controllers, etc. are connected to

different IOMMUs and therefore cannot interfere with our measurements. The

system has IAS 1.2 installed which contains OPAE version 1.1.2-1. Running

fpgainfo reports bitstream id 0x123000200000185 and bitstream version

1.2.3. We execute the GPU-accelerated database OmniSciDB2 in version

5.10., which is the latest version at the time of writing. Additionally, CUDA

version 11.4 and GPU driver version 470.57.02 are installed. The database

consists of one table filled with the Meta Kaggle data set3. We have root

access to this machine.

a10v : The IL ACE contains servers with two Intel Xeon Platinum 8180

2https://docs.omnisci.com/overview/overview#omniscidb
3https://www.kaggle.com/kaggle/meta-kaggle

93

https://docs.omnisci.com/overview/overview#omniscidb
https://www.kaggle.com/kaggle/meta-kaggle

CPUs. Each CPU reports 4 PCIe root bridges with IOMMU per root port.

Two PCIe PACs with Arria 10 GX FPGAs are managed by two separate

IOMMUs. All other PCIe devices are managed by other IOMMUs. The

servers use IAS 1.1 and OPAE was installed on 01/01/2020 from the Git

repository. Running fpgainfo reports bitstream id 0x113000200000177 and

bitstream version 1.1.3. We operate these machines with user privileges

only.

s10v : The IL ACE features servers with two Intel Xeon Platinum 8280

CPUs. Each CPU reports 4 PCIe root bridges with one IOMMU per root

port. An Intel FPGA PAC D5005 is connected via PCIe. All other PCIe

devices are managed by other IOMMUs than the one managing the PAC.

The servers use IAS 2.0 and OPAE was installed on 01/01/2020 from the Git

repository. Running fpgainfo reports bitstream version 2.0.3 and bitstream

id 0x203000200000339. We operate these machines with user privileges only.

5.2.2 IOTLBs Cause Timing Behavior

During their PCIe performance benchmarking, Neugebauer et al. [148] found

that an IOTLB miss results in a latency increase of 330 ns. Since the FPGAs

in our systems are clocked at 200MHz, the expected difference between

fast and slow accesses is 66 clock cycles. Peglow’s [161] work matches our

expectation. With disabled IOMMU, the memory read latency for any address

in main memory is distributed around 160 and 185 cycles. When the system

is configured to use the IOMMU, this distribution shifts to 225 and 270 cycles

94

for addresses that are accessed for the first time. Access times for subsequent

accesses are distributed similarly to access times measured without IOMMU.

Thus the measurable latency difference between accesses to addresses where

the translation is present in or absent from the IOTLB lies between 65 and

85 clock cycles. We reproduced all values for the a10l system. On the IL

ACE systems a10v and s10v, the latency difference between first accesses and

subsequent accesses lies in the expected range. However, we cannot disable

the IOMMU on the IL ACE systems to check whether the latency difference

disappears.

5.2.3 Tools for Testing IOMMU Behavior

The IOMMU translates addresses for peripherals. Therefore, the CPU alone

can only interact with the IOMMU in limited ways; we have to rely on a

peripheral device to perform the experiments. For this purpose we used

the PCIe PACs with DMA capabilities. We implement a hardware function

for the FPGA that is programmable from software to capture the required

measurements.

IOTLB Control from the CPU

To assist with these experiments, we also develop a kernel module that en-

ables a program on the CPU to flush all entries from the IOTLB of a given

IOMMU. When loaded, the kernel module uses a variety of functions and struc-

tures from the Linux kernel source, including those found in <linux/pci.h>,

95

<linux/iommu.h>, and <linux/dmar.h> to find a PCIe device structure

based on its vendor and device IDs, and from there find the device structure

corresponding to the IOMMU that manages that PCIe device. That IOMMU

device structure already contains a pointer to a function for flushing the

IOMMU, so that function merely needs to be called. The kernel module uses

a character file and ioctl as an interface by which user programs can call

for the kernel module to flush the IOMMU. However, it takes root access to

load a kernel module, since the module must read and write kernel memory.

Therefore, we only tested algorithm 2 with the optional flush on our local

system a10l.

Hardware Design

Our iotlb pnp hardware module is designed against the Intel Acceleration

Stack as would be the case in a cloud environment. The module is capable of

performing memory accesses and timing the access latency. iotlb pnp can

be programmed with up to 7 instructions. Currently, the design supports 5

instructions: evset prime, evset probe, target prime, target probe, and

wait. Configuration and programming of the hardware module is performed

via MMIO through OPAE. The prime instructions make the hardware module

access a configured address (target) or set of addresses (eviction set). Probe

instructions behave in the same way as the prime instructions but additionally

count clock cycles. When probing an eviction set, the module can be configured

to either measure the overall execution time of the instruction or time each

96

memory access individually. The eviction sets used during priming and

probing can be configured independent from each other, as is the case for the

target instructions. The wait instruction simply makes the hardware module

do nothing for a configured number of clock cycles.

Software

The software counterpart to the hardware module uses the OPAE C library

to interact with the hardware design on the FPGA. This library allows us

to control and observe the operation of the hardware module with memory-

mapped I/O (MMIO) as well as — crucially for the work that this module

must do — allocate shared pages of the system’s main memory that the

FPGA as well as the CPU can read and write.

5.2.4 Threat Models

We consider two general threat models with two variants each, as illustrated

in fig. 5.1. All four threat models include a malicious actor that can program

and control a fast and programmable PCIe device (referred to in this section

as the monitoring device) with direct memory access (such as an FPGA or

GPU) and an IOMMU providing address translation services for that device.

Each model also includes a second peripheral (referred to in this section as

the sending device) which also uses the same IOMMU for DMA address

translation but does not need to be fast or directly programmable as part of

the threat model. The monitoring device must be capable of timing memory

97

accesses and reliably differentiate IOTLB hits from misses. The attacker must

further be able to program the monitoring device directly to find eviction sets

and execute Prime+Probes. The sending device only needs to have memory

access patterns that can be triggered by a user, either by direct control, or

triggerable through an application or system interface.

Models 1k and 1u are adversarial threat models for a side-channel attack,

where a malicious user in control of the monitoring device exploits IOTLB

contention to gain secret information from another user’s application that

triggers memory accesses in the sending device. Models 2k and 2u outline the

requirements for a covert channel with cooperative sending and monitoring

devices, where colluding malicious users in control of applications in separate

security domains uses the IOTLB to transmit data covertly across the two

devices. Models ending in k include kernel access alongside the monitoring

device, and models ending in u do not. Kernel access is necessary to implement

an IOTLB flush through a custom kernel module as outlined in section 5.2.3.

In section 5.3 we show how fine-grained flushing control allows for more

reliable eviction set construction. However, eviction set construction and

Prime+Probe-based IOTLB side-channel attacks are still possible without

flushing capabilities.

Whereas some side-channel attacks can be carried out with JavaScript from

a web browser against a personal computer, we consider cloud environments

as the primary site of IOTLB attacks, since the attacker must already have

control of a peripheral. Renting a single GPU or FPGA in a cloud environment

98

is easy; the primary logistical challenge of setting up a practical IOTLB side-

channel or covert channel is IOMMU co-location – that is, ensuring that the

monitoring device shares an IOMMU (and IOTLB) with the sending device.

However, research into similar problems, like co-locating cloud instances for

cache attacks, has yielded strategies for co-location that can be adapted to

the IOTLB channel. İnci et al. [80] demonstrated two reliable co-location

techniques for last-level caches that rely only on basic cache contention and

so could be adapted to the IOTLB relatively easily. In a cooperative (covert

channel) scenario, the sender instance sends a predetermined signal and the

receiving instance searches the channel for a signal and attempts to match it

with the agreed-upon signal. In an adversarial (attack) scenario, the attacker

first chooses a target program and profiles it locally to learn to identify the

traces it leaves. Then the attacker searches for such traces. For cache profiling,

co-location is not necessary; the target program can be profiled within a single

instance. In the case of IOTLB profiling, covert channel co-location may be

used to first co-locate the cloud instance controlling the monitoring peripheral

with another cloud instance that runs the target program which relies on a

sending peripheral.

99

5.3 Constructing Eviction Sets

5.3.1 Initial IOTLB Organization Hypothesis

Initially, we hypothesized that the IOTLB would be organized like the CPU

TLBs reverse-engineered in [58], with 2s sets where s is an integer, some small

number of ways per set, and a set mapping algorithm wherein the lowest s bits

of the page address select the set number or some other combination of various

bits of the page address forms the set number that the page is associated with.

Initial experiments on all three systems showed that 128-address eviction sets

of any randomly allocated pages reliably evicted any other single page, so we

hypothesized that the IOTLB was organized with 128 sets and 1 way. We

tested this hypothesized eviction set architecture in a scenario on a10l where

the FPGA used Prime+Probe to monitor an IOTLB that it shared with a

network card.

Figure 5.2 shows the hardware and software setup for this test, an example

of threat model 1u. A virtual machine is configured with the IOMMU in

a pass-through mode (Virtual Function I/O or VFIO) to allow a Realtek

8168 NIC direct access to the virtual environment, where it uses the standard

r8169 drivers. The test application runs directly on the host, and uses the

Broadcom BCM57416 NIC to exchange packets with the Realtek NIC over

ethernet. The test application also manages our Prime+Probe hardware on

the Arria 10 GX FPGA and uses it to collect IOTLB side-channel traces

while the network is active. The eviction sets used in the Prime+Probe tests

100

are constructed under the assumption that the IOTLB contains 128 sets of

one way each.

Prime+Probe data from this experiment are visualized in fig. 5.3. There

was substantial variation of IOTLB activity after a reboot of the virtual

machine operating the Realtek NIC, so results are plotted as means across

many reboots. More evictions were detected in the probes of the Prime+Probe

while the network was active, indicating a side-channel leakage in the IOTLB

that originated from the Realtek NIC. There are two other phenomena of

note that are observable in the data from this experiment. First, the excess

evictions caused by the network activity (shown in blue in the figure) varied

substantially in the number of sets they occupied. Whenever the virtual

machine was rebooted, the number of sets that were evicted during network

activity changed, but there were always evictions in one set (set 11). After

examining the network driver source code, we found that it allocates the

transaction buffers used by the network card by calling a kernel function

dma map single on startup, and we verified that by unloading and reloading

the network driver, we could reproduce the randomizing effect of rebooting

the virtual machine. Second, sets 1-10 and 126-128 were always evicted in the

probe, even absent any network activity or with the network drivers unloaded.

This showed that the 128-page eviction sets, while effective in evicting IOTLB

entries, were actually bigger than necessary, since they were evicting their

own members.

101

Table 5.2: Notation used in algorithms.

Symbol Meaning

A← B A gets the value of B
A←∈ B A chosen randomly from B
A←+ B B added to the set A
A←− B B removed from the set A
A←/ B Elements in B removed from A

5.3.2 A New Approach to Eviction Set Construction

We developed a novel and platform-independent algorithm for finding

eviction sets for any TLB or cache where the timing difference between a

present entry and an evicted entry is known and measurable. Our approach

is inspired by the baseline reduction algorithm in [203], which only reduces an

already existing eviction set to its minimum necessary size, and the grow-split

eviction set construction approach of Algorithm 1 in [126].

Like [126], our algorithm constructs eviction sets from a large pool of

addresses by gathering candidates for an eviction set and then systematically

discarding unnecessary ones; addresses not present in candidate eviction sets

are used as test targets. The grow-split algorithm in [126] is specifically

designed for a partitioned cache: it first constructs an eviction set for the

entire cache, and then splits it into separate sets for each of the partitions.

Our grow-reduce algorithm makes no assumption about cache organization,

and uses a more generalized approach of building one eviction set at a time by

adding addresses until evictions are reliable and then testing which addresses

102

1 Function evicts(target, evset)
input : target – address to be evicted

evset – eviction set used for eviction attempt
output :True, if 100 eviction attempts are successful

False, otherwise
2 count ← 0 // # of contentions

3 for 0 ≤ i < 100 do
4 flush IOTLB // optional

5 target prime()
6 evset prime()
7 time ← target probe()
8 if time ¿ threshold then
9 count ← count + 1

10 return count == 100

Algorithm 2: The algorithm tests whether a given eviction set
evicts a given target address from the IOTLB. The target prime
and evset prime function calls have the FPGA access the re-
spective set of addresses. The function call target probe has the
FPGA time the access time to the target address.

can be discarded without losing reliability. It aims to create an exhaustive

set of eviction sets by searching the entire address pool; redundant sets are

avoided by ensuring that potential test targets are not already reliably evicted

by another set.

Grow-Reduce Algorithm

The most basic function in our algorithm tests whether or not a hypo-

thetical eviction set evicts a given target address (see algorithm 2). The

software uses the hardware module described previously to perform a prime

and probe test. First, the FPGA accesses the target followed by an access to

each address in the eviction set. Then the target is accessed again and the

103

1 Function constructEvset(target, pool)
input : target – target address to be evicted

pool – address pool
output : evset – an eviction set for target

2 evset ← ∅
3 count ← 0 // # of contentions

// Grow

4 while count ¡ 50 and |pool| ¿ 0 do
5 page ←∈ pool; evset ←+ page; pool ←− page
6 if evicts(target, evset) then
7 count ← count + 1

// Reduce

8 foreach page in evset do
9 evset ←− page

10 if not evicts(target, evset) then
11 evset ←+ page

12 return evset

Algorithm 3: The algorithm constructs an IOTLB eviction set
for a given target address. The addresses for the eviction set
are chosen from the given address pool.

access latency is measured. We define that an eviction set evicts a target if

the latency of the second access to the target is above a certain threshold.

We choose the threshold in the middle of the observed latency gap between

fast and slow accesses observed on the different systems. Before each prime

and probe test, we optionally cleared the IOTLB.

The construction of an eviction set for a fixed target address is given in

algorithm 3. It takes a target address and a pool of addresses as inputs. The

eviction set is initialized as an empty set. During the ”grow” step random

addresses are chosen from the address pool and added to the eviction set until

the eviction set contains enough addresses to evict the target. Obviously, the

eviction set may contain unnecessary addresses at this point. This is why

104

1 Function evsetFinding(poolSize)
input : poolSize – number of addresses to be allocated
output : evsets – Eviction sets for the IOTLB

2 pool ← alloc(poolSize)
3 targets ← ∅
4 evsets ← ∅
5 while poolSize ¿ 0 do
6 target ←∈ pool // Random page as target

7 pool ←− target
8 if evsets do not evict target then
9 targets ←+ target

10 evsets ←+ constructEvset(target, pool)
11 pool ←/ evsets

12 poolSize ← size(pool);

13 return evsets

Algorithm 4: This algorithm constructs as many eviction sets
as needed to evict any target address from the IOTLB. The
algorithm takes an integer as input that indicated the size of the
address pool that is used to construct the eviction sets. A pool
size of 4096 was used for the tests in this paper.

a reduction step follows where each address is tested for its necessity. If an

address is not needed, it is removed from the eviction set and put back in the

address pool.

At the highest level, our algorithm shown in algorithm 4 automatically

constructs as many eviction sets as it can find. The program first allocates

a pool of memory pages. For our experiments we used a pool size of 4096

addresses. The algorithm manages two sets: The targets set is used to store

the different target addresses used during eviction set construction. The

evsets set stores all eviction sets constructed by the algorithm. After this

initialization step, the algorithm picks a random target address from the pool

and removes it from the pool. If evsets does not contain an eviction set for

105

the target address yet, a new eviction set is constructed. The target address

and the new eviction set are added to their corresponding sets. All addresses

in the newly constructed eviction set are then removed from the pool. This

procedure is repeated until the pool does not contain any addresses anymore.

Evaluation of New Eviction Set Algorithm

We found that the optional flushing of the IOTLB has an impact on the size

and reliability of IOTLB eviction sets. 4 The major differences are laid out in

table 5.3, which enumerates general performance metrics of eviction sets con-

structed with our grow-reduce algorithm and [126]’s grow-split algorithm both

with and without flushing. Enabling IOTLB flushes before the Prime+Probe

step will make both algorithms return a single eviction set containing 118

addresses. The success rate of such eviction sets is 100% in every case we

observed.

Without IOTLB flushes, neither algorithm produces such consistently

sized or reliable eviction sets. This is likely due to a replacement policy that

we were unable to deduce. In this scenario we can better see the advantage

of our grow-reduce algorithm. It produces eviction sets that are both smaller

and twice as reliable than those produced by the grow-split algorithm.

Figure 5.4 visualizes in detail the results of further experimentation with

small implementation tweaks in our algorithm. In these experiments we found

that the size and number of eviction sets constructed were very similar on

4Flushing the IOTLB requires kernel access; see threat models 1k and 2k in section 5.2.4.
For this reason, table 5.3 contains data only from experiments on the a10l system.

106

Table 5.3: Comparison of eviction set finding algorithms on the IOTLB of the
a10l test system. All tests were conducted on the a10l system using pools of
4096 addresses, and repeated 40 times. Eviction set orders were randomized
between prime and probe steps during testing.

F
lu
sh

A
lgorith

m
#

of
sets

S
et

size
U
sefu

l
sets

p
er

target
A
verage

b
est

ev
iction

rate

en
ab

led

{
G
row

-R
ed
u
ce

(th
is
w
ork

)
1.00

118.00
1.00

100.00
%

G
row

-S
p
lit

(
[126])

1.00
118.00

1.00
100.00

%

d
isab

led {
G
row

-R
ed
u
ce

(th
is
w
ork

)
32.08

110.05
0.98

82.23
%

G
row

-S
p
lit

(
[126])

10.70
50.69

0.98
28.00

%

107

all tested systems, a10l, a10v, and s10v. We thus conclude that the IOTLB

architecture on all tested systems is very similar in terms of IOTLB size,

organization and replacement policy.

5.4 Analysis of Side-Channel Leakages

We now use the constructed eviction sets to further investigate the amount

of leakage from PCIe devices observable in the IOMMU. Though we use

the FPGA for channel monitoring outside of a virtualized environment for

simplicity’s sake, this channel still poses a threat from one virtual environ-

ment to another or from a virtual environment to hypervisor. Major cloud

platforms like AWS and Alibaba Cloud now allow users to rent direct access

to FPGAs with DMA capabilities, meaning that malicious tenants could

easily run hardware designs that monitor the IOMMU side-channel without

root privileges. Any other PCIe devices that are co-located on the IOMMU

with a malicious FPGA and using translated DMA (most modern devices

use DMA, and virtualized DMA always requires translation if the IOMMU

is shared) are sources of leakage and therefore potential attack targets. We

focus our analysis on an in-memory SQL database accelerated by a graphics

card.

108

5.4.1 Web Access Leakage

In section 5.3.1 we showed that the operation of a network card leaves

traces in the IOTLB. With that, we set out to explore a common target

for side-channel attacks: web fingerprinting. In a web fingerprinting attack,

an attacker collects side-channel data while accessing various websites in a

controlled environment and uses those data to build a model. Attacks have

been built using a wide variety of data sources on a variety of platforms,

including network traffic [73,157], cache traces [70,183,187], and hardware

performance events [69]. Then the attacker collects side-channel data from

the victim and uses the model to predict the sites the victim was accessing.

We collected IOTLB Prime+Probe fingerprints while accessing a variety

of websites from virtual machine using a PCIe network card co-located with

the FPGA. As a browser, we used Firefox 88.0, the stable version available

from the standard Ubuntu repositories at the time of data collection. We

also collected side-channel data while the browser was inactive. Periodically,

data collection was paused so the network card drivers could be reloaded.

This triggers a reallocation of the relevant transmission buffers as described

in section 5.3.1; an attack on this network card to be practical it would have

to work after any driver reset. IOTLB probing generates an extremely large

amount of data, even when artificially slowed. We collected traces at 4,000

probes per second, or one probe every 250 microseconds. As a result, the data

requires some pre-processing before a machine learning model can effectively

learn the fingerprints of the sites.

109

First, each timing measurement is converted to a logical 1 or 0, 1 rep-

resenting a probable eviction (a slow memory access), and 0 representing a

faster access to an address that was not evicted. This binary signal is still

quite information-dense, but a spectrogram reveals patterns in its frequency

content that shift over time and visibly vary between websites. The lowest

frequency in the spectrogram was found to be extremely noisy compared to

all others and was removed completely. The spectral data is then converted

from amplitude to power and represented in decibels to tighten and normalize

the distribution of data. Changes in the trace from one network driver reset

to another must be accounted for in pre-processing as well. The mean of a

random 70% of the idle signal (so that some variation from the remaining

30% could be observed) after a given reset of the network driver is subtracted

from each other sample taken after that same reset. Because of the nature of

the decibel scale, data points with zero power correspond to negative infinity

decibels, which is inconvenient for batch comparisons of data, so all points

below −100 decibels were raised to −100 decibels. Finally, all the samples

were averaged; the interested reader may inspect the mean spectral data for

each class after pre-processing in chapter A.

Some distinguishing features of various sites are immediately clear in

these spectrograms, like the relative absence of IOTLB activity when there

is no network activity, a vertical band (broad spectrum signal across a

short period of time) of activity early in the signal for all the sites followed

by horizontal bands (consistent activity in certain frequency ranges across

110

time). With a sophisticated machine learning model like those used in other

web fingerprinting attacks [70, 171], these traces could likely be classified

automatically.

5.4.2 GPU-Accelerated SQL Database Leakage

We now inspect the amount of IOTLB leakage observable from the FPGA

when it is co-located with a GPU that runs an SQL database. For our tests,

we co-locate the FPGA with an NVIDIA Tesla T4 GPU that runs the OmniSci

SQL server on it. We wish to understand the data leakage patterns of the

GPU-accelerated database application, so for these experiments we consider

threat model 1k, where the attacker has the most precise control over the

channel. Figure 5.6 shows a stack diagram of the setup on our a10l platform.

The test application interacts with our hardware module on the FPGA to

construct, prime and probe an eviction set for the IOTLB. Additionally, the

application can issue SQL queries to the database which computes the result

on the GPU.

After constructing an eviction set for the IOTLB, the test app primes the

IOTLB. During the waiting phase, the app runs an SQL query on the GPU.

The tested queries differ (significantly) in the size of the returned results.

After the SQL result is returned to the test application, the FPGA probes

the IOTLB and reports the access latency back to the application.

Figure 5.7 (b) - (d) show probe measurements for queries returning no, one

111

and 409,600 rows5 of data from the database. During the measurement shown

in fig. 5.7 (a), no query was executed on the GPU. The separate access times

for each eviction set address are plotted along the x-axis. The y-axis shows

the measured latency for this address. Clearly, the GPU leaves a footprint

in the IOTLB when it computes an SQL query. But, there is no measurable

difference between the queries even if their results significantly differ in size.

Changing the test app to probe the eviction set while the SQL query

executes on the GPU shows that the observable activity in the IOTLB is

similar for all queries over time, besides the fact that queries with larger results

produce longer traces as it takes longer to compute the result. Interestingly,

the activity in the IOTLB happens towards the beginning of the query’s

computation. At the time where the computed result is sent back to the

CPU, there is no activity in the IOTLB. This is easily explained by the way

CUDA realizes the data transfer of the result from the GPU to the CPU: it

uses MMIO6 instead of DMA7. We verified the explanation by inspecting the

PCIe performance counters with the PCM tools8. The performance counters

showed an increased amount of MMIO read requests that in total match the

size of the returned result.

5One row in our case contains 36 bytes of data.
6The CPU initializes the data transfer.
7The peripheral initializes the transfer.
8pcm-pcie – https://github.com/opcm/pcm

112

https://github.com/opcm/pcm

5.4.3 Side-Channel Impact

So far, the observed leakage introduced by the IOTLB is mostly limited to a

single bit describing whether a neighboring accelerator is in use or not. This

is caused by two facts:

(a) Controlling an accelerator via MMIO rather than through DMA is

a common usage model and limits the attack surface for IOTLB-based side-

channel attacks because the CPU performs the address translation in the

CPU’s MMU instead of the GPU translating addresses via the IOMMU.

(b) Current PCIe devices usually perform DMA as bulk transfers, thereby

limiting the overall PCIe protocol overhead. Loading data in a bulk transfer

into device memory, computing on the data locally and eventually transferring

the result back to the main memory in a bulk transfer means that no data-

dependent access patterns – which would leak information – are observable

in general.

The two facts mentioned will likely change in the near future as PCIe

5.0 is rolled-out and Compute eXpress Link (CXL) is introduced. 9 PCIe

5.0 reaches transfer speeds that are comparable with CPU main memory

accesses. This may lead device developers to include smaller memory on their

devices and in turn access the main memory more often. Furthermore, CXL

features a coherency protocol that streamlines caching between main memory

and PCIe device memory. Again, this will lead device and driver developers

9AMD CPUs and Intel FPGAs supporting CXL are already available. Intel plans rolling
out compatible CPUs in the beginning of 2023 [16,186].

113

to change from bulk transfers to more fine-grained data-dependent DMA

accesses.

In addition, FPGA vendors keep pushing for FPGA devices being the

first-class compute device in a system while the CPU is merely used to

manage the system and provide the FPGA with (increasingly sensitive) data.

Therefore, while the described side-channel is not yet very dangerous at the

time of writing, it will become important in the near future. We highlight

the side-channels existence and relevance before widespread deployment of

CXL and PCIe 5.

5.5 Covert Channels

After identifying the IOTLB leakage and different ways to trigger and observe

it, we now use our knowledge to construct two covert channels to prove

the practicality of the channel with threat models 2u and 2k. The first

channel is constructed between two peripherals and requires user privileges

and DMA access to pages in main memory (model 2u). This channel could

be implemented between two virtual machines, each with control of a DMA-

enabled peripheral, such as Amazon’s F1 FPGA instances or various GPU-

enabled EC2 instances, as long as the two instances’ peripherals share an

IOMMU. The performance of the covert channel can be improved if the

receiver has root access on the host. The second channel is unidirectional

from CPU to peripheral and requires the sender to have root access to the

114

host machine (model 2k), thereby mostly serving as a proof of concept. For

both channels, the receiver must be able to measure time, e. g. through precise

internal timers or high-speed network connection with external timers. This

is the case for, e. g. GPUs [49], NICs and FPGAs. All experiments in this

section were run on the a10l system.

Table 5.4: Throughput and error rate for the covert channels tested on the
a10l system. For the peripheral-peripheral channel, sender and receiver are
perfectly synchronous. The channel itself is very reliable which leads to nearly
no errors. The throughput depends on the number of 1-bits in the message
as each 1-bit is encoded into running a SQL-query on the sender peripheral
which takes a rather long time of 0.3 seconds. For the CPU-peripheral channel,
sender and receiver are not perfectly synchronous which leads to the rather
high error rate. The throughput is limited by the speed of the CPU flushing
the IOTLB. For both channels, plain bits were sent without encoding.

Sender Receiver Method Environment Throughput Error rate Content of
message

Section 5.5.1 Peripheral Peripheral Prime+Probe Bare metal

3.4 bps 0% All 1s
6.65 bps 0% Even mix of

1s and 0s
246.15 bps 0.1% All 0s
7.58 bps 0% ASCII

Section 5.5.2 CPU Peripheral Flush+Reload Bare metal 15023 bps 30.09%
Performance
not dependent
on content

5.5.1 Covert Channel between Peripherals

Another research question is whether two peripherals can use the IOTLB to

construct a covert channel between each other. To answer this question, we

co-locate the Arria 10 with the Tesla T4. Our goal is to use the footprint that

an SQL query computed on the GPU leaves in the IOTLB to send information

to the FPGA. Such a covert channel exists in a scenario where the sender

115

uses a website that, depending on the actions performed on the website, runs

SQL queries on a GPU-accelerated database. The sender can then exploit

the website to send information to the co-located FPGA.

We prepare a10l as shown in fig. 5.6. The sender encodes a one into running

an SQL query and running no query encodes a zero. The receiver uses the

iotlb pnp hardware function on the FPGA to monitor the IOTLB using the

Prime+Probe technique. Each SQL query evicts 18-20 entries of the receiver’s

eviction set (cf. fig. 5.7 (b) - (d)). A plot of the number of IOTLB misses

measured during message transmission is given in fig. 5.8a. We found that

basically no errors occur if sender and receiver are synchronized. This means

that the channel is nearly free of bit-flip errors. If perfect synchronization

is not achievable, the channel suffers from insertion and deletion errors. In

this case techniques from [131] can be applied to overcome these errors. The

channel’s throughput highly depends on the number of one bits in the message.

This is because the execution time of a single SQL query takes about 0.3

seconds. Table 5.4 shows more detailed measurements for different 0-1-ratios

in the message that is transferred over the covert channel. Of course, a GPU

application optimized for acting as a sender in this scenario would allow us

to increase the bandwidth of the channel.

For the previous test, the eviction set used by the FPGA was constructed

with IOTLB flushes to work with eviction sets of optimal reliability. As

mentioned earlier, IOTLB flushes require kernel privileges on commodity host

Linux systems. User-level receivers or receivers located in virtual machines

116

have to use the less reliable eviction sets constructed without IOTLB flushes.

As can be seen in fig. 5.8b, this results in more noise in the measurements.

The depicted transmission is still free of errors but some bits are at the edge

of being falsely classified. To overcome potential bitflip errors, error detection

mechanisms like CRC codes or error correction codes like Hadamard codes

can be applied [131]. The presented covert channel works between any two

peripherals that use DMA to access the main memory. For the receiver, the

accessible memory region needs to be sufficiently large to allow for eviction

set construction. Additionally, the receiver needs a mechanism to measure

the memory access latency. Programmable or configurable peripherals like

FPGAs or GPUs will meet both receiver requirements even in the most

stringent cloud environments if bare metal instances are available for rent.

An FPGA or GPU sender has fine-grained control of the channel, but a more

opaque sender like a smart NIC or PCIe-enabled storage device could work

as a sender, albeit more likely to be noisy or unreliable.

Peripherals that manage secrets and perform DMAs depending on the

value of the secret must be aware that neighboring devices connected to the

same IOMMU may be able to observe their access patterns. This is especially

true for peripherals where the programming model assumes unified memory

that abstracts separate physical memory locations like device and system

memory away from the developer as in this case the leaking DMA may occur

without the knowledge of the developer. As of today, data-dependent DMA

is used seldomly due to the overhead that renders it inefficient. But we

117

expect this behavior to change with the introduction of PCIe 5.0 and CXL as

mentioned in earlier sections.

5.5.2 Covert Channel from CPU to Peripheral

The CPU is very limited in interacting with the IOTLB directly. Because

the IOMMU translates addresses for peripherals only, memory accesses from

the CPU do not interfere with the IOTLB. The only way for the CPU to

interfere with the IOTLB is by changing page table entries or instructing the

IOMMU to flush certain (or all) entries in the IOTLB. Usually, only the OS,

hypervisor or VMM issues page table changes or IOTLB flushes, which is

why the Linux kernel does not provide an interface for flushing the IOTLB to

userland. To overcome this problem, we load a self-developed kernel module

that exposes a IOTLB flush API to our test application. An overview of our

system setup for this covert channel is given in fig. 5.6.

Since a peripheral can distinguish IOTLB hits from misses, flushing the

IOTLB allows the CPU to send information covertly to peripherals. A global

IOTLB flush takes 17µs on average. Flushing all entries from the IOTLB

encodes a 1 and sleeping for 17µs encodes a 0. As the receiver we use the

iotlb pnp hardware module described in section 5.2.3. The hardware function

is programmed to continuously probe a fixed target address. Whenever a probe

reports a slow access, a 1 is received. Otherwise, the hardware receives a 0. We

implement the covert channel in a trivial way without applying any encoding

for error correction or synchronization. Because a memory access from the

118

FPGA running at 200MHz only takes around 1µs we roughly synchronize

the FPGA with the CPU by making the FPGA wait for a certain amount of

cycles. We determined the number of cycles to wait by repeatedly flushing

the IOTLB and increasing the number of wait cycles until all FPGA memory

accesses are slow. After this very rough synchronization step, a message of

216 − 1 bits generated by a linear feedback-shift register is transmitted to

measure throughput and error rates. The result is given in table 5.4. As

can be seen, this basic covert channel without further optimizations already

achieves a throughput of around 15 kBit/s. The error rate is 30% which can

be improved significantly by applying error-correction and error-handling

techniques as e. g. described in [131].

Because so far the covert channel only offers communication in one direc-

tion, we tried to improve the channel to offer bi-directional message transfer.

To do so we checked the timing behavior of flushing the IOTLB. The clflush

instruction on x86 CPUs has a data-dependent execution time [66]. In our

case, a data-dependency of the flush time on IOTLB entries would allow us

to construct the reverse covert channel. However, our experiments show no

measurable timing behavior of the flush that can be related to the usage of the

IOTLB; an IOTLB flush takes around 17µs independent of FPGA memory

accesses before or even during the flush. The latency is also independent from

whether only addresses of a certain peripheral or all entries of the IOTLB

are flushed. However, peripheral-to-CPU covert channels based on the CPU

cache do exist [207].

119

The demonstrated covert channel is reliable without applying special

synchronization, error-correction, or error-detection techniques. However,

only peripherals can act as the receiver while the CPU is limited to the role

of the sender. Also, with the standard IOMMU drivers in Linux, the sending

process is required to run kernel-level code to perform IOTLB flushes. A

privileged device driver that flushes the IOTLB under certain circumstances

may expose this flushing capability to an unprivileged user. Device drivers

that make extensive use of IOTLB flushes may also be vulnerable to a side-

channel attack from an untrusted peripheral device that monitors the IOTLB

for flushes. For example, a driver developer may chose to include IOTLB

flushes to remove traces of a trusted peripheral’s activity for security; however,

the timing between flushes could leak information about the operation of an

application using that peripheral.

5.6 Countermeasures

Like many microarchitectural attacks, there are a variety of defenses against

IOTLB side-channels that can be implemented at nearly any level of a system.

We first present immediately available actions that can be taken by system

administrators and cloud application developers, and then discuss defenses

that can be built into future IOMMU architectures.

120

5.6.1 Securing Existing Systems

In cases where multiple users who do not trust each other may use the same

machine, ensuring that no two users (or no one user and the hypervisor) have

access to peripherals on the same IOMMU hardware is sufficient to protect

against IOTLB side-channel attacks. On a Linux host, /sys/class/iommu/

provides information on a system’s IOMMU devices and the PCIe devices

that use them [169]. Typically, systems have several IOMMU devices, each of

which is linked to a few PCIe endpoints, which may be internal PCIe devices

or external devices plugged into PCIe slots on the motherboard. Endpoints

cannot be reassigned to new IOMMUs, so ensuring full isolation may limit

scaling capacity.For example, a CSP could not use a motherboard with eight

full-size, full-speed PCIe slots managed in pairs by four IOMMUs to provide

eight fully isolated single-GPU cloud instances, even though eight GPUs fit

in the PCIe slots of the system.

On the application level, code and hardware involved in data dependent

computation can rely on constant time algorithms with constant memory

access patterns, so no information about the operations is leaked through

the IOTLB. For cryptographic implementations this is a common technique

but for database systems constant memory access patterns and timings are

not easily achieved. Private Information Retrieval (PIR) protocols [41,119]

can be a solution, but modern implementations10 usually only support index

queries. Recent attempts [72] to also support range queries may still leak

10e. g. https://github.com/ReverseControl/MuchPIR

121

https://github.com/ReverseControl/MuchPIR

information about the response size.

A hypervisor can enable Address Translation Services (ATS) [160] for a

peripheral to remove all of its traces from its IOTLB. Address Translation

Services (ATS) allows a device to maintain and use a local on-device TLB

for address translation and selectively bypass IOMMU translation. Since

locally-translated requests are not translated by the IOMMU, they do not

leave any trace in the IOTLB. However, devices must specifically support

ATS to use it, and furthermore, allowing ATS for untrusted devices is not

advisable.

ATS allows a device to provide any physical address as part of a DMA

request and mark it as “translated”. Malicious devices may exploit ATS for

unrestricted physical memory access [129]. Therefore, ATS must only be

allowed for trusted devices.

Hypervisors can also achieve a separation of the IOTLB between mutually

untrusted tenants by IOTLB partitioning. For set-associative IOTLBs, set

partitioning can be done by the hypervisor in software by only allocating I/O

virtual addresses of sets to each tenant [219]. However, set-based partitioning

may not work with peripherals that rely on the address space being contiguous.

5.6.2 Securing Future IOMMUs

If hardware modifications are a viable option to implement countermeasures,

then way-based partitioning is another option. It needs to be supported by

the IOMMU hardware so that the hypervisor can map each address of a

122

thread to a fixed number of ways like is possible with Intel CAT [125,150] for

CPU-internal caches.

Future IOMMUs could include support for flagging a page translation as

uncacheable. This would ensure that it is never stored in the IOTLB and

that the use of that page would never affect the IOTLB state, so it would be

invisible to any side-channel attack. However, all accesses to that page would

be as slow as IOTLB misses, increasing latency and likely reducing maximum

throughput.

123

Kernel

IOMMU

Tenant Tenant

Peripheral Peripheral

(a) Model 1u. Side-channel attacker
with user privilege.

Kernel

IOMMU

Tenant Tenant

Peripheral Peripheral

(b) Model 1k. Side-channel attacker
with kernel module.

Kernel

IOMMU

Tenant Tenant

Peripheral Peripheral

(c) Model 2u. Covert channel with
user privilege.

Kernel

IOMMU

Tenant Tenant

Peripheral Peripheral

(d) Model 2k. Covert channel with
kernel module.

Figure 5.1: Comparison of threat models. Dark red fills indicate functional
units controlled by a malicious actor, and light green fills indicate functional
units controlled by a victim. Diagonal lines indicate functional units that are
only under coarse or indirect control, e.g., a simple network interface card
or an accelerator that assists with certain applications but is not directly
programmable. The dashed arrows indicate the flow of data through the
channel.

124

CPU

IOMMU IOMMU

vfio-pci intel-fpga-pci bnxt-en-bpo

KVM

r8169

TCP Server Test Application

Realtek
8168 NIC

Arria 10 FPGA BCM57416 NIC

applications

drivers in VM

hypervisors

drivers

internal hardware

PCI-e linkage

peripheral devices

(no virtual machine)

Ethernet

Figure 5.2: Stack diagram of the network card side-channel test. The Realtek
network interface card (NIC) is ”passed through” to a virtual machine with
the VFIO driver. The test application exchanges packets with the TCP server
in the virtual machine over the ethernet connection between the two network
cards; meanwhile, the FPGA (connected to the same IOMMU as the VM’s
network card) probes the IOTLB for traces of network activity.

125

16 32 48 64 80 96 112 128

Hypothesized Set Number

P
er
-R

eb
o
ot

P
ro
b
a
b
il
it
y
of

P
ri
m
e+

P
ro
b
e
C
au

si
n
g
E
v
ic
ti
o
n Evictions in IOTLB During Network Test

Evicted During Network Activity

Evicted Regardless

Figure 5.3: Behavior is consistent after a reboot of the virtual machine shown
in fig. 5.2, but inconsistent between reboots; this graph shows the likelihood
that an IOTLB entry will be consistently evicted by a Prime+Probe after
a reboot of the system. Entries marked in red are evicted whether or not
there is network activity and do not vary between reboots; entries in blue are
those that are evicted when there is network activity but not when there is
no activity and vary significantly.

126

10 20 30 40

10
20
30 (Ca)

10 20 30 40

10
20
30 (Cb)

10 20 30 40

10
20
30 (Cc)

10 20 30 40

10
20
30 (Cd)

#Eviction Sets

N
u
m
b
er

of
O
cc
u
rr
en
ce
s

Distributions of Number of Eviction Sets

10 15 20 25 30
0

500

1,000 (Sa)

80 100 120

50

100 (Sb)

10 15 20 25 30
0

500

1,000 (Sc)

80 100 120

50

100 (Sd)

Eviction Set Size

N
u
m
b
er

of
O
cc
u
rr
en
ce
s

Distributions of Size of Eviction Sets

Figure 5.4: Number of eviction sets and the size of each constructed set
needed to evict any target IOVA after running algorithm 4 for 100 times
each. During eviction set construction, randomization of the eviction set was
turned off for measurements (a) and (c) and turned on for (b) and (d). For
measurements (c) and (d), the algorithm waited 100 ns between each eviction
test. For measurements (a) and (b) this was not the case. If the order of
accesses during the evset_prime() is static throughout one run of algorithm 4, the
resulting eviction sets contain 20 to 25 addresses each. The average success
rate is slightly below the average success rate of eviction sets constructed
with randomized access order during evset_prime(). In turn, randomizing the
access order yields on average slightly less but bigger sets. The success rate
of these sets, with or without randomized access order, evict a target with
probabilities above 90%.

127

CPU

IOMMU

vfio-
pci

intel-
fpga-
pci

KVM

r8169

Firefox

Attack
Ap-
pli-
ca-
tion

Realtek
8168
NIC

Arria
10
FPGA

applicationsdrivers
in
VMhypervisors

drivers

internal
hard-
ware

PCI-
e
link-
age

peripheral
de-
vices

(no
vir-
tual
ma-
chine)

Figure 5.5: Stack diagram of the web access fingerprinting attack. The
Firefox web browser runs on the VM and uses the network card with VFIO
pass-through to access various websites. Meanwhile, the attacker periodically
probes an IOTLB eviction set to collect fingerprints of network activity.

CPU

IOMMU

cuda

intel-
fpga-
pci
intel-
iommu

Omnisci
DB

Receiver
AppTest
App

NVIDIA
T4
GPU

Arria
10
FPGA

applications

drivers

internal
hard-
ware

PCI-
e
link-
age

peripheral
de-
vices

Figure 5.6: Stack diagram of the CPU to peripheral and peripheral to
peripheral covert channel and side-channel tests.

128

200

300 (a)
Threshold

(b)
Threshold

0 20 40 60 80 100 120

200

300 (c)
Threshold

0 20 40 60 80 100 120

(d)
Threshold

Eviction Set Address

L
at
en
cy

(#
F
P
G
A

C
y
cl
es
)

Figure 5.7: Measurements for the conducted experiments with the SQL
database. During measurement (a), the test app did not run any query. The
queries run in measurements (b) - (d) returned no, one and 409600 rows of
data from the database. It is clearly visible that the SQL queries leave a
footprint in the IOTLB.

129

0 8 16 24 32 40
0

10

20
0 1 0 0 1 0 0 0

H
011 0 0 1 0 1

e
0 1 1 0 1 1 0 0

l
0 1 1 0 1 1 0 0

l
0 1 1 0 1 1 1 1

o

Bit #

#
IO

T
L
B

M
is
se
s

(a) Scenario as in fig. 5.6; big endian transmission. The FPGA uses an
eviction set that was constructed using IOTLB flushes. This results in
very reliable eviction sets and in turn a reliable transmission.

0 8 16 24 32 40
0

10

20

30 0 0 0 1 0 0 1 0
H

101 0 0 1 1 0
e

0 0 1 1 0 1 1 0
l

0 0 1 1 0 1 1 0
l

1 1 1 1 0 1 1 0
o

Bit #

#
IO

T
L
B

M
is
se
s

(b) Scenario as in fig. 5.9; little endian transmission. The FPGA uses
eviction sets constructed without IOTLB flushes. Even though the trans-
mission is free of errors, it turns out to be more noisy.

Figure 5.8: Peripheral to peripheral covert channel transmissions. The
message “Hello” was sent in big endian format.

130

CPU

IOMMU

vfio-
pci

vfio-
pci

KVMKVM

intel-
fpga-
pcicuda

Omnisci
DB

Receiver

NVIDIA
T4
GPU

Arria
10
FPGA

applications
drivers
in
VMhypervisor

drivers

internal
hard-
ware

PCI-
e
link-
age

peripheral
de-
vices

Figure 5.9: Stack diagram of the GPU accelerated SQL database covert
channel across virtual machines.

131

Chapter 6

Microarchitectural Security of AWS Firecracker VMM

for Serverless Cloud Platforms

6.1 Introduction

AWS claims that a Firecracker virtual machine running on a system with up-

to-date microarchitectural defenses will provide sufficient hardening against

microarchitectural attacks [2]. The Firecracker documentation also contains

specific recommendations for microarchitectural security measures that should

be enabled. In this work, we examine Firecracker’s security claims and

recommendations and reveal oversights in its guidance as well as wholly

unmitigated threats. After reviewing a pre-print of this paper, AWS has

updated the Firecracker production host setup recommendations [14] to clearly

acknowledge Firecracker’s inability to provide microarchitectural security for

the host machine. The new recommendations also refer to operating system

and hardware vendor guides which include corrections to specific oversights

132

we identified. In summary, our main contributions are:

– We provide a comprehensive security analysis of the cross-tenant and

tenant-hypervisor isolation of serverless compute when based on Fire-

cracker VM.

– We test Firecracker’s defense capabilities against microarchitectural

attack proof-of-concepts (PoCs), employing available hardware and

kernel protections. We show that the virtual machine itself provides

negligible protection against major classes of microarchitectural attacks.

– We identify a variant of the Medusa MDS attack that becomes ex-

ploitable from within Firecracker VMs even though it is not present on

the host. The mitigation that protects against this exploit is not men-

tioned by AWS’s Firecracker host setup recommendations. Additionally,

we show that disabling SMT provides insufficient protection against the

identified Medusa variant which urges the need of this mitigation.

– We identify Spectre-PHT and Spectre-BTB variants which leak data

with recommended countermeasures in place. The Spectre-PHT variants

even remain a problem when SMT is disabled if the attacker and victim

share a CPU core in a time-sliced fashion.

6.1.1 Responsible Disclosure

We informed the AWS security team about our findings and discussed tech-

nical details. The AWS security team claims that the AWS services are not

133

affected by our findings due to additional security measures. AWS agreed that

Firecracker does not provide micro-architectural security on its own but only

in combination with microcode updates and secure host and guest operating

systems. As such, the Firecracker developers have updated the microarchitec-

tural attack section of the production host setup recommendations to make

this very clear [14]. Updates to this section also include direct referral to OS

and CPU vendor documentation on microarchitectural vulnerabilities and

mitigations.

6.2 Threat Models

We propose two threat models applicable to Firecracker-based serverless cloud

systems:

1. The user-to-user model: a malicious user runs arbitrary code sandboxed

within a Firecracker VM and attempts to leak data, inject data, or oth-

erwise gain information about or control over another user’s sandboxed

application. In this model, we consider

(a) the time-sliced sharing of hardware, where the instances of the two

users execute in turns on the CPU core, and

(b) physical co-location, where the two users’ code runs concurrently

on hardware that is shared in one way or another (for example,

two cores on the same CPU or two threads in the same core if

SMT is enabled).

134

2. The user-to-host model: a malicious user targets some component of

the host system, e. g., the Firecracker VMM, KVM, or another part of

the host system kernel. For this scenario, we only consider time-sliced

sharing of hardware resources because the host only executes code if

the VM exits, e. g. due to a page fault that has to be handled by the

host kernel or VMM.

For both models, we assume that a malicious user is able to control the

runtime environment of its application. In our models, malicious users do not

possess guest kernel privileges. Therefore, both models grant the attacker

slightly fewer privileges than the model assumed by [2] where the guest

kernel is chosen and configured by the VMM but assumed to be compromised

at runtime. Rather, the attacker’s capabilities in our models match the

capabilities granted to users in deployments of Firecracker in AWS platforms.

6.3 Analysis of Firecracker’s Containment Sys-

tems

fig. 2.2 shows the containment offered by Firecracker, as presented by AWS. In

this section, we analyze each depicted component and their defenses against

and vulnerabilities to microarchitectural attacks.

Kernel-based virtual machine (KVM) is the hypervisor implemented in

modern Linux kernels that manages hardware virtualization of supervisor and

user mode execution and context switches between VMs. Crucially, KVM’s

135

hardware virtualization includes address spaces for the guest kernel and guest

user code that are separate from those of the host and of other guests—a

significant barrier to both user-to-user and user-to-host attacks. Besides these

architectural isolation mechanisms, KVM also implements mitigations against

Spectre attacks on a VM-exit to protect the host OS or hypervisor from

malicious guests. However, in contrast to most modern kernels, Firecracker

guest kernels lack kernel ASLR support, making them especially vulnerable

to microarchitectural attacks that ignore address space boundaries [76]. Since

KVM is part of the Linux kernel, we define KVM to not be a part of Fire-

cracker. Therefore, countermeasures against microarchitectural attacks that

are implemented in KVM cannot be attributed to Firecracker’s containment

system.

The metadata, device, and I/O services are the parts of the Firecracker

VMM that interact directly with a VM. AWS touts the simplicity of these

interfaces (for a reduced attack surface) and that they are written from

scratch for Firecracker in Rust, a language known for its security features [21].

However, Rust most notably provides in-process protection against invalid

and out-of-bounds memory accesses, but microarchitectural attacks can leak

information between processes without directly hijacking a victim’s process.

Another notable difference between Firecracker and many other VMMs

is that all of these services are run within the same host process as the VM

itself, albeit in another thread. While the virtualization of memory addresses

within the VM provides some obfuscation between the guest’s code and the

136

I/O services, some Spectre attacks work specifically within a single process.

Intra-process attacks may pose less of a threat to real world systems, however,

since two guests running on the same hardware each have their own copy of

these services.

The jailer provides an additional barrier of defense around a Firecracker

instance in the event that the API or VMM are compromised. It protects

the host system’s files and resources with namespaces and control groups

(cgroups), respectively [12]. Microarchitectural attacks do not threaten files,

which are by definition outside the microarchitectural state. Cgroups allow

a system administrator to assign processes to groups and then allocate and

monitor system resource usage on a per-group basis [46]. It is plausible that

limitations applied with cgroups could impede an attacker’s ability to carry

out certain microarchitectural attacks which rely on the ability to allocate

large amounts of memory or precisely measure the timing of CPU operations.

In practice, Firecracker is not distributed with any particular cgroup rules [12];

in fact, it is specifically designed so that the default Linux resource allocation

can run many VMs efficiently [11].

None of Firecracker’s isolation and containment systems seem to directly

protect against user-to-user or user-to-host attacks. Thus, we proceeded to

test various microarchitectural attack PoCs inside and outside of Firecracker

VMs.

137

6.4 Analysis of microarchitectural attacks and

defenses in Firecracker microVMs

In this section we present our analysis of a number of microarchitectural

side-channel and speculative attack PoCs on Firecracker microVMs. We test

these PoCs on the host and in Firecracker VMs, and test relevant microcode

defenses in the various scenarios. We run our tests on a server with an

Intel Skylake 4114 CPU which has virtualization hardware extensions and

SMT enabled. The CPU runs on microcode version 0x2006b061. The host

OS is Ubuntu 20.04 with a Linux 5.10 kernel. We used Firecracker v1.0.0,

v1.4.0, and v1.5.0–the latest version as of Oct 2023–to run an Ubuntu 18.04

guest with Linux kernel 5.4 which is provided by Amazon when following the

quick-start guide.2

In summary, the recommended production host setup provided with

AWS Firecracker is insufficient when it comes to protecting tenants from

malicious neighbors. Firecracker therefore fails in providing its claimed

isolation guarantees. This is because

1. we identify a Medusa variant that only becomes exploitable when it is

run across microVMs. In addition, the recommended countermeasures

at the time of the research did not contain the necessary steps to

1Updating the microcode to a newer version would disable TSX on our system which
would make tests with TSX-based MDS variants impossible.

2https://github.com/firecracker-microvm/firecracker/blob/

dbd9a84b11a63b5e5bf201e244fe83f0bc76792a/docs/getting-started.md

138

https://github.com/firecracker-microvm/firecracker/blob/dbd9a84b11a63b5e5bf201e244fe83f0bc76792a/docs/getting-started.md
https://github.com/firecracker-microvm/firecracker/blob/dbd9a84b11a63b5e5bf201e244fe83f0bc76792a/docs/getting-started.md

Table 6.1: Overview of discovered microarchitectural vulnerabilities not fully
prevented by the recommended production host settings for AWS Firecracker
prior to our disclosure.

Exploit Description
Firecracker

only?
Cross-VM? Mitigations

Medusa (CIa + block write secret) ✓ ✓ mds (host)
Medusa (UStLb) ✗ ✓ mds (host) + nosmt

RIDL/MFBDS (alignment fault) ✗ ✓ mds (host)
RIDL/MFBDS (in-process) ✗ ✗ mds (host or VM)

a Cache Indexing variant
b Unaligned Store-to-Load variant

mitigate the side-channel, or most other Medusa variants.

2. we show that tenants are not properly protected from information

leaks induced through Spectre-PHT or Spectre-BTB when applying the

recommended countermeasures. The Spectre-PHT variants remain a

problem even when disabling SMT.

3. we observed no differences in PoC performance between the tested

Firecracker versions.

We conclude that the virtualization layer provided by Firecracker has lit-

tle effect on microarchitectural attacks, and Firecracker’s system security

recommendations were incomplete prior to revisions prompted by this work.

6.4.1 Medusa

We evaluated Moghimi’s PoCs [136] for the Medusa [138] side-channels (clas-

sified by Intel as MLPDS variants of MDS [88]) on the host system and in

Firecracker VMs. There is one leaking PoC for each of the three known

139

Table 6.2: Presence of Medusa side-channels with all microarchitectural
defense kernel options disabled. Note that the combination of cache indexing
leak and block write secret (highlighted) works in Firecracker VMs but not
on the host.

Leak Secret Host Firecracker

Cache Indexing

{
Block Write ≠⇒ =⇒
REP MOV =⇒ =⇒

Unaligned
Store-to-Load

{
Block Write =⇒ =⇒
REP MOV =⇒ =⇒

Shadow
REP MOV

{
Block Write ≠⇒ ≠⇒
REP MOV ≠⇒ ≠⇒

=⇒ – Side-channel leakage is observable with all mitigations disabled.

≠⇒ – Side-channel leakage is not observable.

variants described in section 2.7.2. We used two victim programs from the

PoC library:

– The “Block Write” program writes a large amount of consecutive data in

a loop (so that the processor will identify repeated stores and combine

them).

– The “REP MOV” program performs a similar operation, but with the REP

MOV instruction instead of many instructions moving smaller blocks of

data in a loop.

Results

Table 6.2 shows the cases in which data is successfully leaked with all mi-

croarcitectural protections in the kernel disabled. The left two columns show

140

Table 6.3: Mitigations necessary to protect the host vs. Firecracker victims
from Medusa attacks. Note that AWS’s recommended mitigation–nosmt–
does not prevent the highlighted cache indexing/block write variant that is
enabled by Firecracker (cf. table 6.2), or any other variants. All results were
reproduced with Firecracker versions 1.0.0, 1.4.0, and 1.5.0.

Bare metal Firecracker

Leak Secret mds nosmt mds(VM) mds(H) nosmt

Cache
Indexing

{
Block Write N/A N/A ✗ ✓ ✗

REP MOV ✓ ✓ ✓ ✓ ✓

Unaligned
Store

{
Block Write ✓ ✗ ✗ ✓ ✗

REP MOV ✚ ✚ ✗ ✚ ✚

✓ – mitigation prevents side-channel attack.
✚ – mitigation prevents attack only in combination with other mitigation(s) marked ✚.

✗ – mitigation has no effect on this attack.

the possible combinations of the three Medusa PoCs and the two included

victim programs. The right columns indicate which configurations work

on the host and with the secret and leaking program running in parallel

Firecracker instances. Most notably, with the Cache Indexing variant, the

Block Write secret only works with Firecracker. This is likely because of the

memory address virtualization that the virtual machine provides: the guest

only sees virtual memory regions mapped by KVM, and KVM traps memory

access instructions and handles the transactions on behalf of the guest. We

found that the Shadow REP MOV variant did not work inside or outside of

Firecracker.

We tested the effectiveness of mds and nosmt defenses against each com-

141

Table 6.4: Mitigations necessary to protect the host vs. Firecracker victims
from RIDL and other MDS attacks. The recommended nosmt mitigation
protects against most but not all of these variants. All proof of concepts were
tested on Firecracker v1.0.0, v1.4.0, and v1.5.0 with identical results.

Exploit Details Host Firecracker

Name Target Buffer Fault nosmt mds nosmt (H) mds (H) mds (VM)

RIDL
Fill Buffer Alignment ✚ ✚ ✚ ✚ ✗

Fill Buffer Page ✗b ✓ ✗b ✓ ✓

Fill Buffer Page ✓ ✗ N/Ac N/Ac N/Ac

L1DES Fill Buffer TSX abort ✓ ✗ ✓ ✗ ✗

RIDL Load Port Page ✓ ✗ ✓ ✗ ✗

RIDL/VRS Store Buffer Page ✓ ✗ ✓ ✗ ✗

Crosstalk Fill Buffer Page ✓ ✗ N/Aa N/Aa N/Aa

✓ – mitigation prevents side-channel attack.
✚ – mitigation prevents attack only in combination with other mitigation(s) marked ✚.

✗ – mitigation has no effect on this attack.
a CPUID instruction used in this PoC is emulated by the VM and has no microarchitectural

effect.
b This attack leaks information about pages used in its own thread.
c PoCs had to be modified to run in two processes before they could be tested in the virtual

machine. These PoCs did not work on bare metal or in virtual machines when split into

two processes.

bination of attacker and victim PoC on the host and in Firecracker VMs.

Table 6.3 lists the protections necessary to prevent Medusa attacks in the host

and Firecracker scenarios. Across the four vulnerabilities in Firecracker, only

one is mitigated by nosmt alone, and AWS does not explicitly recommend

enabling the mds protection, though most Linux distributions ship with it

enabled by default. That is to say, a multi-tenant cloud platform could

be using Firecracker in a way that is compliant with AWS’s recommended

security measures and still be vulnerable to the majority of Medusa variants,

142

including one where the Firecracker VMM itself leaks the user’s data that

would not otherwise be leaked.

6.4.2 RIDL and More

In this section, we present an evaluation of the RIDL PoC programs [202]

provided alongside van Schaik et al.’s 2019 paper [201]. RIDL is a class of

MDS attacks that exploits speculative loads from buffers inside the CPU (not

from cache or memory). The RIDL PoC repository also includes examples of

attacks released in later addenda to the paper as well as one variant of the

Fallout MDS attack.

Results

Table 6.4 shows some basic information about the RIDL PoCs that we tested

and the efficacy of relevant countermeasures at preventing the attacks. Table

B.1 in the appendix shows more details. We compared attacks on the host

and in Firecracker to evaluate Amazon’s claims of the heightened hardware

security of the Firecracker microVM system. For tests on the Firecracker

system, we distinguish between countermeasure flags enabled on the host

system (H) and the Firecracker guest kernel (VM). Besides the nosmt and mds

kernel flags, we tested other relevant flags (cf. section 2.7.4, [75]), including

kaslr, pti, and l1tf, but did not find that they had an affect on any of these

programs. We excluded the tsx async abort mitigation since the CPU we

tested on includes mds mitigation which makes the tsx async abort kernel

143

flag redundant [71].

In general, we found that the mds protection does not adequately protect

against the majority of RIDL attacks. However, disabling SMT does mitigate

the majority of these exploits. This is consistent with Intel’s [88] and the

Linux developers’ [75] statements that SMT must be disabled to prevent

MDS attacks across hyperthreads. The two outliers among these PoCs are

alignment write, which requires both nosmt and mds on the host, and

pgtable leak notsx, which is mitigated only by mds countermeasures. The

leak relying on alignment write uses an alignment fault rather than a page

table fault leak to trigger speculation [201]. The RIDL paper [201] and

Intel’s documentation of the related VRS exploit [89] are unclear about

what exactly differentiates this attack from the page-fault-based MFBDS

attacks found in other PoCs, but our experimental findings indicate that the

microarchitectural mechanism of the leakage is distinct. There is a simple

and reasonable explanation for the behavior of pgtable leak notsx, which

is unique among these PoCs for one key reason: it is the only exploit that

crosses security boundaries (leaking page table values from the kernel) within

a single thread rather than leaking from another thread. It is self-evident

that disabling multi-threading would have little effect on this single-threaded

exploit. However, the mds countermeasure flushes microarchitectural buffers

before switching from kernel-privilege execution to user-privilege execution

within the same thread, wiping the page table data accessed by kernel code

from the line-fill buffer (LFB) before the attacking user code can leak it.

144

1 Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp

2 Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization

3 Vulnerability Spectre v2: Mitigation; Full generic retpoline, IBPB conditional, IBRS_FW, STIBP conditional, RSB

filling

Figure 6.1: Spectre mitigations enabled in the host and guest kernel during
the Spectre tests. This setup is recommended by AWS for host production
systems [13].

In contrast to Medusa, most of these PoCs are mitigated by AWS’s

recommendation of disabling smt. However, as with Medusa, the Firecracker

VMM itself provides no microarchitectural protection against these attacks.

6.4.3 Spectre

While there have been many countermeasures developed since Spectre at-

tacks were first discovered, many of them either come with a (significant)

performance penalty or only partially mitigate the attack. Therefore, system

operators often have to decide for a performance vs. security trade-off. To

evaluate the wide range of Spectre attacks, we rely on the PoCs provided

in [38]. For Spectre-PHT, Spectre-BTB, and Spectre-RSB, the repository

contains four PoCs each. They differ in the way the attacker mistrains the

branch prediction unit (BPU). The four possibilities are (1) same-process:

the attacker has control over the victim process or its inputs to mistrain the

BPU, (2) cross-process : the attacker runs its own code in a separate process

to influence the branch predictions of the victim process, (a) in-place: the

attacker mistrains the BPU with a branch instruction that resides at the

same virtual address as the target branch, and (b) out-of-place: the attacker

145

mistrains the BPU with a branch instruction at an address that is congruent

to the target branch in the victim process. The first two and latter two options

are orthogonal, so each PoC combines two of them. For Spectre-STL, only

same-process variants are known, which is why the repository only provides

two PoCs in this case. For cross-VM experiments, we disabled address space

layout randomization for the host and guest kernels3 as well as for the host

and guest user level to ease finding congruent addresses that are used for

mistraining.

Results

With AWS recommended countermeasures [13]–the default for the Linux

kernels in use–enabled on the host system and inside Firecracker VMs, we see

that Spectre-RSB is successfully mitigated both on the host and inside and

across VMs (cf. table 6.5). On the other hand, Spectre-STL, Spectre-BTB,

and Spectre-PHT enabled information leakage in particular situations.

The PoCs for Spectre-STL show leakage. However, the leakage only occurs

within the same process and the same privilege level. As no cross-process

variants are known, we did not test the cross-VM scenario for Spectre-STL.

In our user-to-user threat model, Spectre-STL is not a possible attack vector,

as no cross-process variants are known. If two tenant workloads would be

isolated by in-process isolation within the same VM, Spectre-STL could still

be a viable attack vector. In the user-to-host model, Spectre-STL is mitigated

3In fact, Firecracker does not randomize the guest kernel address space anyway [76].

146

Table 6.5: Spectre PoCs run with AWS Firecracker recommended counter-
measures (cf. fig. 6.1 and [13]). Experiments with Firecracker v1.0.0, v1.4.0,
and v1.5.0 yielded identical results.

Variant Platform Configuration
Same process Cross process

in-place out-of-place in-place out-of-place

PHT
á, \ any ✗ ✗ ✗ ✗

\↔\ any N/A N/A ✗ ✗

BTB

á any ✗ ✓ ✗ ✓

\

� ✗ ✓ ✗ ✓

s ✗ ✓ ✓ ✓
r ✗ ✓ ✗ ✓

\↔\
s N/A N/A ✓ ✓
r N/A N/A ✗ ✓

RSB
á, \ any ✓ ✓ ✓ ✓

\↔\ any N/A N/A ✓ ✓

STL á, \ any ✗ N/A N/A N/A

Experiments were run on the host system (á), inside a single VM (\), or across two
VMs (\↔\). Victim and attacker share the same virtual and physical thread (�), the
same physical thread in separate virtual cores (s), or two neighboring physical threads in
separate virtual cores (r).
✓ – mitigation prevents side-channel attack.
✗ – mitigation has no effect on this attack.

by countermeasures that are included in current Linux kernels and enabled

by default.

For Spectre-PHT, the kernel countermeasures include the sanitization

of user-pointers and the utilization of barriers (lfence) on privilege level

switches. We therefore conclude that Spectre-PHT poses little to no threat to

the host system. However, these mitigations do not protect two hyperthreads

from each other if they execute on the same physical core in parallel. This

is why all four Spectre-PHT mistraining variants are fully functional on the

147

host system as well as inside Firecracker VMs. As can be seen in table 6.5,

VMs remain vulnerable even if SMT is disabled4. This makes Spectre-PHT a

significant threat for user-to-user.

Spectre-BTB PoCs are partially functional when AWS recommended

countermeasures are enabled. The original variant (1a) is fully functional

while (1b) is successfully mitigated. Also, all attempts to leak information

(2b) did not show any leakage. With (2a), however, we observed leakage. On

the host system, the leakage occurred independent of SMT. Inside a VM, the

leakage only occurred if all virtual CPU cores were assigned to a separate

physical thread. Across VMs, disabling SMT removes the leakage.

Besides the countermeasures listed in fig. 6.1, the host kernel has Spectre

countermeasures compiled into the VM entry and exit point5 to disable

malicious guests from attacking the host kernel while the kernel handles a

VM exit.

In summary, we can say that the Linux default countermeasures–which are

recommended by the Firecracker developers –only partially mitigate Spectre.

Precisely, we show:

– Spectre-PHT and Spectre-BTB can still leak information between ten-

ants in the guest-to-guest scenario with the AWS recommended counter-

measures—which includes disabling SMT–in place.

– The host kernel is likely sufficiently protected by the additional precau-

4Simulated by making attacker and victim share the same physical core (� and s)
5https://elixir.bootlin.com/linux/v5.10/source/arch/x86/kvm/vmx/vmenter.

S#L191

148

https://elixir.bootlin.com/linux/v5.10/source/arch/x86/kvm/vmx/vmenter.S#L191
https://elixir.bootlin.com/linux/v5.10/source/arch/x86/kvm/vmx/vmenter.S#L191

tions that are compiled into the Linux kernel to shield VM entries and

exits. This, however, is orthogonal to security measures provided by

Firecracker.

All leakage observed was independent of the Firecracker version in use.

Evaluation

We find that Firecracker does not add to the mitigations against Spectre but

solely relies on general protection recommendations, which include mitigations

provided by the host and guest kernels and optional microcode updates. Even

worse, the recommended countermeasures insufficiently protect serverless

applications from leaking information to other tenants. We therefore claim

that Firecracker does not achieve its isolation goal on a microarchitectural

level, even though microarchitectural attacks are considered in-scope of the

Firecracker threat model.

The alert reader might wonder why Spectre-BTB remains an issue with

the STIBP countermeasure in place (cf. fig. 6.1) as this microcode patch was

designed to stop the branch prediction from using prediction information that

originates from another thread. This also puzzled us for a while until recently

Google published a security advisory6 that identifies a flaw in Linux 6.2 that

kept disabling the STIBP mitigation when IBRS is enabled. We verified that

the code section that was identified as being responsible for the issue is also

present in the Linux 5.10 source code. Our assumption therefore is that the

6https://github.com/google/security-research/security/advisories/GHSA-

mj4w-6495-6crx

149

https://github.com/google/security-research/security/advisories/GHSA-mj4w-6495-6crx
https://github.com/google/security-research/security/advisories/GHSA-mj4w-6495-6crx

same problem identified by Google also occurs on our system.

6.5 Impact

This work highlights the need for low-level defenses against microarchitectural

attacks even when sophisticated virtualization and containerization isolation

measures are in place. At the time of publishing, most of the vulnerabilities we

evaluate in this paper are a few years old, and most have some countermeasures

available or are even no longer present in the latest hardware; however, we

consider wide selections of attack classes that have remained relevant for the

better part of a decade since their initial discoveries. Meltdown and MDS-

class attacks exploit a fundamental problem with the dependent speculative

execution model that all modern CPU architectures employ for its powerful

performance advantages. Buffer-clearing mitigations are only capable of

plugging holes in this leaky ship one at a time, and there is no reason to

believe that every hole has been found or that new designs won’t introduce

new holes. Similarly, Spectre attacks were introduced by sophisticated branch

prediction techniques which are a source of significant performance gains in

modern pipelined and out-of-order processors. In particular, Spectre-PHT

remains an open attack vector that is not mitigated in newer CPUs by either

changes in the prediction units or microcode updates; the OS, VMM, or other

software must provide protections. Therefore, it is likely that Spectre will

remain an issue for software developers in future CPU generations.

150

6.6 Related Works

To our knowledge, this work is the first that evaluates a class of attacks in and

out of a particular virtual machine platform. Other works have investigated

software vulnerabilities in microVMs. Xiao et al. showed that even with the

minimal attack surface between a microVM and the host kernel, an attacker

from within the VM can trigger host kernel functions and system calls to

perform a wide range of attacks, including privilege escalation, performance

degradation, and crashing the host [212].

A number of works have focused on efficiently integrating trusted execution

environments into MicroVMs or serverless platforms, with implementation

methods including Intel SGX [30], Trusted Platform Modules (TPMs) [158],

and pure software enclaves [225]. While these environments can harden and

verify high-priority code, they can still be vulnerable to microarchitectural

attacks. In some cases, the additional microcode and hardware in SGX

and TPMs intended to provide isolation even introduce new exploits that

strengthen existing attacks [35,139].

151

Chapter 7

DoubleHammer

Exploiting Adjacent Bit Faults

7.1 Introduction

In this work, we exploit fault injection and signature correction on ECDSA,

targeting the nonce. We achieve this by overcoming two challenges:

Challenge 1: Adjacent Flips Rowhammer is a powerful software-only tool

for fault injection however has many practical limitations. In particular,

memory pages with flippable locations must be first identified and the

victim baited into locating into such a page where the flip locates where

a secret key or nonce would be allocated. The problem is flippable

locations are far and few between and typically, we get isolated flips.

By extensive Rowhammer experiments and bringing in the latest fault

152

acceleration technique we were able to, for the first time, locate pages

with adjacent flippable locations.

Challenge 2: Synchronization The identified pages allow us to inject

faults into adjacent bit locations making it possible to recover 2-bits

of information from the nonces via the signature correction algorithm

proposed by Mus et al. in Jolt. However, as in Jolt, we need many

signatures generated by baiting the victim process to be allocated into

the vulnerable pages. Synchronizing with the victim process over many

signing sessions is a time consuming process. But unlike Jolt, we are

targeting the nonce which is freshly generated for each signature. Hence,

we can use the same vulnerable page over and over again. Indeed, we

only need the victim to land once on the vulnerable page upon which

we can request signing operations repeatedly (without losing more time

for synchronization).

Challenge 3: Breaking the Lattice Barrier Once the faulty signatures

are collected using Signature Correction we can recover 2 bits from the

nonce of each signature. From here, using FFT to solve for the private

key would be far too costly (requiring at least millions of signatures

to be collected following by expensive post-processing). Instead, we

employ the recently proposed lattice-based bounded distance decoding

with predicate technique by Albrecht and Heninger [4] to recover the

key much faster and with under 200 signatures.

153

7.1.1 Our Contributions

We introduce DoubleHammer a Signature Correction attack on signature

scheme implementations. Specifically:

– We demonstrate the first real-world lattice attack by targeting on

OpenSSL TLS key exchange recovering the full 196-bit and 256-bit

ECDSA signing keys of a server. We only require co-location in a shared

memory subsystem vulnerable to Rowhammer fault injection and a

mechanism of carrying out a TLS handshake.

– The attack only requires co-location on system susceptible to Rowham-

mer fault injection as achieved in shared cloud instances or via Browser

pages. Hence the proposed attack is a pure software-only attack, requir-

ing no direct physical access.

– We demonstrate how an adversary can exploit Rowhammer vulnera-

bilities in shared memory systems to recover nonce leakages by post-

processing faulty signatures.

– The earlier Jolt proposal [143], requires 1000’s of signatures and many

pages to achieve non-repeated coverage of secret key bits and expensive

post-processing via Shank’s algorithm. In contrast, our attack targets

adjacent faulty locations in the nonce, allowing for reuse of the same

vulnerable memory page. Using the same page we achieve 2-bit leakage

recovery per faulty signature sample, enabling full key recovery with

154

only 200 faulty signatures and inexpensive post-processing.

– The nonce changing from one signing operation to the next is to our

advantage since it allows us to use a single page over and over again.

Compared to Jolt our attack only requires the victim process to land

only once into the vulnerable page. We can collect all faulty signature

required for the attack in one shot (by repeatedly asking for new

signatures in the same session). Hence our attack is much faster than

Jolt in the online signature collection phase.

7.2 Threat Model

We describe a brand-new fault injection attack against ECDSA in this section.

The attack is effective in extracting secret key bits from faulty signatures,

using only software-only Rowhammer attacks. The fault injection attack is

composed of three stages. We start by locating susceptible memory regions

where we can find adjacent two bit flips, known as pre-processing phase.

Then in the online phase, we conduct a multi-sided Rowhammer attack on

the victim and gather the faulty signatures. Finally, using the lattice attack

algorithm, we post-process the faulty signatures and retrieve the secret key

bits that were flipped. In the pre-processing phase, we assume the attacker

knows what the victim program will be and can run that program on their

own system, and that the attacker can run user-level code on the system

where the attack will take place. In the online attack phase, we assume only

155

the one requirement of every Rowhammer attack: physical co-location in

memory with the victim. We discuss known practical methods for achieving

this in section 7.4.1.

7.3 Profiling

Before the online phase of the attack, we extensively profiled DRAM modules

to identify locations of adjacent bit flips due to Rowhammer. We also profiled

how OpenSSL allocates the nonce of an ECDSA signature. At a page level,

we are concerned with how the dynamic variable of the nonce is allocated

and reallocated throughout the lifetime of the OpenSSL server as it intializes

itself and serves handshakes. Within the page, we are concerned with the

offset of the nonce’s memory, as adjacent Rowhammer bit flips are relatively

rare. To complete the attack, we will need a 4096-byte page where adjacent

bit flips can occur within the 256-bit nonce. Furthermore, the attacker will

need to be able to release such a page in such a way that it is likely that the

victim OpenSSL server grabs that page while allocating memory and places

the nonce within it.

7.3.1 OpenSSL Profiling

For this attack, we use the OpenSSL 1.0.1i SSL/TLS client and server provided

in the OpenSSL executable for testing. While these features of the program

are not intended to be used for production systems, they are the nearest

156

Virtual Address Physical Address Note

0x26394d0 0x4c8e24d0 Initialize server
0x2639c00 0x4c8e2c00

0x2664d70 0x4c78bd70

0x267b430 0x5933b430 1st handshake

0x267ce30 0x4e1ffe30 2nd handshake
0x267ce30 0x4e1ffe30 3rd handshake
0x267ce30 0x4e1ffe30 4th handshake
0x267ce30 0x4e1ffe30 5th handshake

Table 7.1: Virtual addresses of the nonce throughout operation of the SS-
L/TLS server. Starting with the second handshake, the memory is reused for
subsequent handshakes.

example of a reference implementation of SSL/TLS with the OpenSSL library

that exists. We use link this executable with the OpenSSL FIPS 2.0.8 library.

For profiling purposes, we made slight modifications to the OpenSSL library

to log the virtual and physical address of the ECDSA nonce whenever it is

allocated during the signature process. We then ran the SSL/TLS server

using this library as a certificate server. We used an SSL/TLS client with the

unmodified library as a client which initiates a standard SSL/TLS handshake

with the server, thus triggering an ECDSA signature.

Virtual memory usage

By running the SSL/TLS server and client manually while monitoring the

address log, a pattern was immediately apparent, illustrated with an example

in table 7.1:

1. When the server is initialized, it performs three signatures, each allo-

157

cating the nonce at a different address in memory.

2. The first handshake triggers one signature, which allocates the nonce at

another new address.

3. All subsequent handshakes trigger additional signatures with the nonce

allocated at the same address each time.

The third property of memory allocation is extremely useful for this attack

because once the victim has chosen the right memory location for Rowhammer

fault injection, the attacker can reliably repeat the fault injection without

relying on the randomness of memory allocation.

Page offsets

The nonce of a standard ECDSA signature system is 256 bits, but a standard

memory page on x86 (32- and 64-bit versions) is 4096 bits. Therefore, aligning

the offset of the nonce with the site of an adjacent pair of Rowhammer

errors will be essential for producing an effective attack. We restarted the

OpenSSL server 10,000 times, each time executing 5 handshakes after the

server was started (as modeled in table 7.1). In 9,999 iterations, the second

through fourth addresses allocated matched; in just one iteration, there was a

communication error between the client and server and the handshakes were

not completed.

Figure 7.1 plots a histogram of the memory offset within the page of the

nonce; that is, the 12 least-significant bits of the virtual address which also

158

000 200 400 600 800 a00 c00 e00
0

100

200

300

Page offset of nonce (hexadecimal)

O
cc
u
rr
en
ce
s
ou

t
of

10
,0
00

Figure 7.1: Distribution of 12-bit memory page offsets of the nonce k in
OpenSSL on DDR4 system.

match the 12 least-significant bits of the physical address.

The nonce is always aligned to 16 bytes, so there are actually only 4096÷

16 = 256 possible offsets within a page. The most probable offsets are

concentrated near 0xd00, with smaller concentrations at the start and end

of a page. Notice, also, that the nonce itself is 256 bits long —graphically,

the width of 16 bars of fig. 7.1, each of which represents 16 bytes of the page.

Therefore, the chance of a random pair of faulty bits being in a page offset

that corresponds to a possible page offset of the nonce is not as low as the

visual sparsity of fig. 7.1 might suggest.

159

Physical page allocation

Last but not least, the attacker needs to understand the pattern of physical

page allocation by the SSL/TLS server. After the attacker has found a

physical page that is a candidate for side-by-side Rowhammer fault injection

at an offset where the server might allocate the nonce, the attacker still needs

to release that page in such a way that the server actually uses it for storing

the nonce. Linux prefers to reuse recently deallocated pages, but the page

usage of the victim program is not trivial to determine, nor is it deterministic.

We devised an experiment as follows:

1. Allocate a pool of pages, and note the physical address of each in order.

2. Start the server and complete a single handshake.

3. Deallocate all pages in the same order they were recorded

4. Complete a second handshake and note the physical address that the

server uses for the nonce during this handshake.

5. Compare the page that the nonce resides in to the list of pages that

were deallocated to determine the order of reallocation.

In the attack, one of the deallocated pages will be the target page, which the

attacker hopes that the victim will allocate and use for the nonce. Therefore,

during the profiling stage, we are merely looking for the most likely page

within a given pool to be allocated and used in this way. We found that

160

Pages in pool Most frequently grabbed page Frequency

1000 989 2.3%
100 100 2.3%
75 75 2.5
50 50 4%
45 45 2.8%
40 40 4.2%
37 37 2.4%
20 20 1.7%
10 10 2.9%
1 1 2.1%

Table 7.2: Results of the experiment described in section 7.3.1. Page numbers
are given in the order of deallocation; that is, page 100 out of 100 pages is
the page that is deallocated last. For small numbers of pages, the last page
to be deallocated is most likely to be grabbed by the victim program.

differently sized pools perform in different ways, so we searched for a pool

size with best odds of success for a single page, and decide. Table 7.2 shows

a sampling of results from this test. We selected 40 pages as a practical and

relatively reliable pool size.

Attack window timing

The window of time for a fault injection in the nonce of an ECDSA key during

signing is relatively small. If the fault is injected too early or too late, the

same nonce is used for both r and s, so the signature is valid and leaks no

information about the secret key. We devised a simple experiment to find the

timing of the window relative to the initiation of a handshake (the timing of

which will be controlled by the attacker).

161

First we modified the OpenSSL library to include a variable indicating

the state of the program in relation to the window (before, during or after).

Then we added a signal handler to the OpenSSL server executable that logs

the value of that variable when a particular signal is received. The actual

test proceeds as follows: First, an SSL/TLS server is started. A Bash script

initiates a handshake with the server in the background and then immediately

sleeps for a predetermined time. When the sleep is finished, the script signals

the server, which records its execution state.

We searched for the best sleep time by first trying sleep times of 0.0s, 0.1s,

0.2s,. . .,0.9s. We found that 0.0 seconds was too quick (the program reported

that the window had not been reached) but 0.1 seconds was too long (the

program reported being past the window already), so we proceeded to try

0.00s, 0.01s,. . .,0.9s. By following this process we eventually found that the

window could be hit after sleeping for 0.00436 to 0.00438 seconds, but hitting

the window was not reliable. We tested sleep times between 0.00430 and

0.00440 1000 times each, and no sleep time achieved a hit rate of more than

0.3%. We concluded that to make this attack practical, we would need to

slow down the execution of the OpenSSL server, and decided to do this with

a microarchitectural denial of service attack.

When running an self-modifying code (SMC)-based denial of service attack

in a hyperthread adjacent to the server, we found that the window moved

to around 0.0078, but more importantly, it widened significantly to the

point where it became practical to target the window with just Bash’s sleep

162

7.6 7.7 7.8 7.9 8 8.1 8.2
0

20

40

60

80

100

Sleep time (ms)

O
cc
u
rr
en
ce
s

late
hit
early

Figure 7.2: Attack window hit rates with for various sleep times between
launching the victim and starting the attack, with SMC denial of service
running. The bars represent the portion of early misses, late misses, and hits
for each tested time. Sleep times of 7.7-7.9 ms achieve 22-25% hit rates.

163

command. As shown in fig. 7.2, sleep times of 0.0077, 0.0078, and 0.0079 all

achieve window hit rates of 22-25%. SMC widened the attack window by

about 10 times, from around 30 µs to 300 µs, and in doing so increased the

timing accuracy of the attacker nearly 100-fold, from just 0.3% to as much as

25%.

7.3.2 DRAM Profiling

DRAM profiling determines the susceptibility of system hardware to our

adjacent bit flip Rowhammer attack. The first step of DRAM profiling is the

pre-processing phase, which includes templating on the same system as the

victim. In this phase it is not necessary for the victim to be present or active.

Rather, the information gathered during this phase will be used to inform

the setup of the attack phase.

Memory Preparation

Contiguous Memory Detection Rowhammer attacks rely on the physical

proximity of the attacker and victim rows in the DRAM chip. While we cannot

measure this directly without probing the DRAM chip itself, proximity in

physical address space tends is a reliable alternative. Therefore, to construct

the most effective hammering patterns, we first search a 512 MB buffer for

continuous physical memory. To do this without simply sorting pages by

physical address, which would be quick and error-free but requires root access

(or another exploit), we use the SPOILER side-channel [96].

164

Bank Co-location For a successful rowhammer attack the attacker and

the victim should be in the same bank. After finding continuous memory, we

employ a row-conflict side-channel to identify the virtual addresses mapping

to the same bank. It takes longer to access two addresses from the same bank

than it does to access two addresses from separate banks. This is due to the

fact that before loading another row, a loaded row in the row buffer must be

written back to its original location. Another option, if physical addresses are

known, is to do preliminary row layout profiling with this channel as described

in [162] and reverse engineer the mappings from physical addresses to DRAM

hardware layout, including channels, ranks, banks, and rows. This allows

for deterministic sorting of rows by bank by simply decoding the physical

address.

7.3.3 Hammering Techniques

Experiment Setup For our experiments we used an Intel Core i9-9900K

CPU with a Coffee Lake microarchitecture. We chose the DDR4 DRAM

chip with part number CMU64GX4M4C3200C16 and 16GB capacity. DRAM

row refresh time was maintained at 64 ms, which is the standard setting in

most systems. The operating system was Ubuntu 20.04.01 LTS with the

5.15.0-58-generic Linux kernel.

Method for Finding Adjacent Bit Flips An important component of

this attack is finding adjacent bit flips. These are rows that are determined

165

Figure 7.3: Using a sliding window approach to finding adjacent bit flips.

to have at least two faulty cells adjacent to each other. To detect these

pages with adjacent bit flips we use a sliding window approach. After the

page is hammered during the profiling stage, each 8-bit address is searched

for a double-bit flip, as seen in fig. 7.3. When searching for bit flips 0 to 1,

we iterate through each 8-bit address in the page, and compare the Least

Significant Bit (LSB) with the Most Significant Bit (MSB) of the current

address, and to determine if they form an adjacent bit flip pair. Then we

compare each adjacent pair in the 8-bit address for a double flip, then finally

we compare the LSB of the current address with the MSB of the next address.

Multi-sided Hammering For systems using DDR4 memory with TRR

protection, a double-sided Rowhammer attack is generally insufficient to

achieve bit flips. Instead, we use a multisided attack as first introduced by

[51] to achieve flips in DDR4. We select a continous block of rows within

a single bank and use every other row as an attacker. The remaining rows

between the attacker rows are the victim rows. Accessing a large number

of attacker rows overwhelms DDR4’s TRR system so that it is unable to

detect the attack and defensively refresh victim rows. Experimentally, we

determined that at least 9 or 10 sided hammmering is needed to observe

166

10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25

30

35

Number of Attacker Rows

A
ve
ra
ge

n
u
m
b
er

of
b
it
fl
ip
s

Figure 7.4: Average number of bit flips on an 128MB buffer vs the number of
sides in a multi-sided Rowhammer attack.

adjacent two bit flips in the DDR4 system. Figure 7.4 shows the total number

of adjacent bit flips found after hammering each set of attacker and victim

rows in a 128MB buffer.

Data Pattern Dependence

Since the Rowhammer vulnerability is based on the electrical phenomena

underlying the storage of zeros and ones in DRAM, it is not safe to assume

that Rowhammer faults are data-independent. Therefore, we tested a number

of data patterns in the aggressor and victim rows and counted the frequency

of adjacent bit flips. We tried filling all victim rows with ones (i.e., looking for

167

#Aggressor Rows Flip Direction #Adj. bit flips

12-sided 1→0 320
12-sided 0→1 114
13-sided 1→0 312
13-sided 0→1 177
14-sided 1→0 191
14-sided 0→1 80
15-sided 1→0 269
15-sided 0→1 173

Table 7.3: An experiment was conducted with diverse multi-sided access
patterns to illustrate how the data pattern influences the occurrence of double
bit flips.

one to zero flips) and all attacker rows with zeros and vice versa. In table 7.3

we compare the results While running the experiments we observed a relation

between data pattern and generation of bit flips. With each n-sided setting,

we saw more 1 to 0 flips—in some cases more than twice as many.

7.4 Collection

In this section we demonstrate how an attacker who has profiled a system can

collect faulty signatures where the nonce has had two adjacent bits flipped.

We walk through the steps of physical co-location, allocation of the target

page, and finally verification and collection of signatures. At each step, we

explain our own test setup as well as how the attack would be modified to

work in a realistic scenario.

168

7.4.1 Physical Co-location

In our tests, we are not using a distributed cloud environment, but a single

computer. Physical co-location is not a problem, since any two programs run-

ning on this computer will use the same RAM. In an actual cloud environment,

co-location is possible with cache side-channels and other techniques [80].

Alternatively, Rowhammer attacks can be carried out by malicious scripts

running inside a web browser [64].

7.4.2 Allocation of a Target Page

As explained in section 7.3, the nonce must be stored in a physical page that

meets very particular requirements. As we describe in section 7.3.2, there

are quite few physical pages that incur adjacent bitflips with any regularity,

and furthermore, they must occur within the right page offset. For our

attack, since we performed profiling separately, we allocated a known target

page by brute force; that is, allocating a large number of pages and then

searching their physical addresses one at a time. We used root privileges

to check physical addresses most efficiently, but they could also be checked

by a single-thread exploit of the RIDL side-channel [201]. Alternatively, an

attacker could construct a single program that profiles the memory for a

usable page and then immediately uses it for the attack, without handling

physical addresses at all.

169

7.5 Analysis

7.5.1 Signature Correction on Adjacent Nonce Faults

In our attack we make use of the signature correction algorithm as applied to

ECDSA to recover bits from the nonces. We follow the fault injection attack

given by Jolt [143] but instead of injecting faults into the decryption key d we

target the Nonce k. The ECDSA signing and verification algorithms for the

case of a faulty Nonce k are given below. All faulty parameters are marked

by a bar. Note that the faults are injected after the nonce is used to compute

R = kP and before s̄ = (k̄)−1(H(M) + dr) mod n is computed. Hence, R

and r is correctly computed and returned allowing signature correction.

1 Function sign(M , d, P)
input :M – message to be signed; d – private key; P – elliptic

curve generator
output : signature pair (r, s)

2 k ← random ∈ Z∗
n

3 R← kP // R is an elliptic curve point generated with

k
4 r ← (kP)x // r is the x coordinate of R
5 k̄ = k +∆k // inject a fault into k
6 s̄ = (k̄)−1(H(M) + dr) mod n // faulty s generated with k̄
7 return (r, s̄) // signature has correct r, faulty s̄

Algorithm 5: ECDSA Signing with a faulty nonce

Clearly the faulty nonce k̄ = k +∆k corrupts the half signature s̄ which

then fails to verify r̄ ̸= r during Signature Verification. Note that the

Verification function can be run by anybody by knowledge of the public

170

key and faulty signature. Hence all parameters shown including the faulty

intermediate values are available to the attacker.

For Signature Correction we need to understand the impact of the faults

on the parameters computed inside the verification function. As shown in

Jolt (Appendix, Claim 2) [143], the following holds true for the faulty R̄ value

that is computed during Signature Verification

R̄ = R +∆kP

Note that both R and the generator P are public. The value R̄ is computed

via knowledge of the faulty signature. Hence, the only unknown is ∆k. As

long as the faults are isolated to a few flips, ∆k can be recovered by exhaustive

search by checking if the equation is verified. For instance, for 256-bit nonces

for single bit flips, we need to try 2×
(
256
1

)
(times two for both flip directions),

4 ×
(
256
2

)
values, etc. In any case, we only get very few isolated errors via

Rowhammer anyway.

Decoding ∆k to Nonce Bit Values Once the error pattern ∆k is recovered,

it needs to be decoded to the actual corresponding bit value in the nonce.

This is best illustrated by a simple example: Assume we recover the additive

fault value as ∆k = −32 in a setup where we can only inject single bit flips.

This means the nonce k̄ = k +∆k = k − 32 = k − 25. Or in other words the

6-th bit of k must have been flipped from a logic 1 to a 0. Hence the 6-th bit

of k must have been a 1.

171

Impact of Adjacency to Signature Correction For lattice based key

recovery to succeed, we require adjacent flips (and adjacent bits) from nonces.

In this case the decoding is a bit more complicated. There are four possible

error patterns

(00 7→ 11) : ∆k = +32i (11 7→ 00) : ∆k = −32i

(01 7→ 10) : ∆k = +2i (10 7→ 01) : ∆k = −2i

Here i denotes the position where the adjacent faults start impacting the

nonce. Note that during decoding our starting point is the ∆k. The two error

patterns ∆k = ±2i are somewhat problematic since they might have also been

caused by single bit faults. Since Rowhammer is imperfect, we might indeed

inadvertently inject single faults which might mistakenly be decoded as a

double bit fault. The lattice reduction based key recovery step is intolerant to

noise. Hence in of our attack we discard such samples and only use samples

with ∆k = ±32i. If ∆k = +32i then we deduce nonce bits to be 00 starting

at bit position i, and otherwise if ∆k = +32i then the nonce bits in the same

position are decoded as 11.

Postprocessing Complexity Once the faulty signatures are collected,

error patterns computed using signature correction, and the two nonce bits

recovered, we formulate the information recovered into a HNP instance as

explained in section 2.11. The instance is then processed using the BDD-

172

|n| |k| m bkz-enum bkz-sieve enum-pred sieve-pred

192 190 110 259.8 261.8 259.8 249.7

192 190 98 n/a n/a 253.9 245.2

256 254 146 280.8 276.3 280.8 263.2

256 254 130 n/a n/a 273.7 257.2

Table 7.4: Comparison of lattice reduction cost estimates for 2-bit nonce
leakage without and with predicate optimization proposed in [4] for ECDSA
key size |n|-bits, with |k| unknown nonce bits, with m collected signature
samples.

predicate technique [4]. In table 7.4 we have listed complexity estimates

obtained using the Git package bdd-predicate1. We report the number

samples m for optimal 192-bit and 256-bit cases, i.e. 245.2 and 257.2 time

complexities, respectively, in rows 2 and 4. Rows 1 and 3, the optimal setting

where enumeration and sieving still report results for comparison with the

predicate versions provided in the last columns. In addition to these results,

the estimator reports about 5.77 hours and 60K CPU hours, for the 192-bit

and 256-bit sizes, respectively. For the 256-bit key size this may seem excessive

but its attainable since the algorithm is easily parallelized2.

7.6 Countermeasures

There are some proposed hardware and software level solutions against

Rowhammer attack. Unfortunately, newer attacks or technological advance-

1https://github.com/malb/bdd-predicate
2The bdd-predicate software library supports scaling via more threads.

173

https://github.com/malb/bdd-predicate

ments keep breaking these remedies.

7.6.1 Hardware Countermeasures

As of yet, rowhammer attacks on legacy systems have no immediate defense.

In this section, we propose some hardware-only defense against rowhammer

attacks that is both practical and effective.

Error Correcting Code (ECC)

Use of ECC, which is widely available in many chipsets, was initially advised

as a defense against Rowhammer [109]. In general ECC works by including

redundancy that can correct single bit flips and double bit flips. [109] proved

that by identifying and flipping three or more bit locations within a word

utilizing timing side-channels, it is possible to overcome ECC. In particular,

it is anticipated that the ECC algorithm will fix or reveal any bits that they

manage to flip in memory under actual conditions. In [42] the authors

have practically shown that, ECC-equipped memory is still vulnerable to

Rowhammer attack. Using ECCploit an attacker can reverse engineer the

ECC function and trigger Rowhammer bit flips bypassing ECC memory

without crashing the system.

Targeted Row-Refresh (TRR)

The TRR feature, which refreshes the neighbors of a select few frequently

accessed rows, has been added by DRAM makers to DDR4 memory modules

174

and some memory controllers. It’s a fact that the details of TRR working are

not publicly available [50]and implementations vary chip wise. [51] showed

that it is possible to cause Rowhammer attack even with TRR in the modern

DDR4 system. According to Halfdouble [115], by hammering distance-2

aggresor row it is possible to expliot the TRR refreshes which is caused in

distance-1 aggressor rows and increases the probability of getting bit flips.

Most recently, Jattke et al. [100] successfully used TRR to flip bits in all 40

of their newly acquired DDR4 DIMMs.

Alternatives to TRR

In [176] Saileshwar et al. suggested substituting an attacker-oriented defense

for victim-oriented defenses like TRR. After a predetermined number of

activations, they suggest utilizing a permutation layer to switch attacker rows

with another row from the same bank. Using this mechanism it is possible

to break the locality between aggressor and victim rows which consequently

decreases the probability of hammering the same victim row repeatedly.

Cryptographic Security and Integrity against Rowhammer

[104] suggested that CSI:Rowhammer, a hardware-software hybrid that uses

a cryptographic MAC for hardware error detection, completely counteract

Rowhammer assaults. In 256 bits of data, CSI:Rowhammer can identify

any number of bit flips and fix up to 8 bit flips in a reasonable amount of

time. when it comes to performance measure CSI:Rowhammer outperforms

175

ECC and TRR protected DRAMs against rowhammer attack. With the

capacity to rectify a single bitflip in less than 20 ns during the rowhammer

attack, CSI:Rowhammer maintains a low latency, as opposed to standard

ECC-DRAM that can take up to 63 µs.

7.6.2 Software Countermeasures

[143] proposes careful fault checking especially to prevent leakage of faulty

signatures. Indeed several vendors have already implemented fault checking,

i.e. wolfSSL, LibreSSL while others such as OpenSSL did not, citing that

fault injection attacks are outside their threat model.

Verify after Sign

A sender can identify the presence of an adversary inserting flaws using

Rowhammer by using the verify after sign technique. The verification algo-

rithm has the benefit of being around three times quicker than the double

signing process. In addition, adding a verification step to libraries is simple.

The disadvantage, however, is that employing instruction skips through op-

code flipping [63], which skips the checking phase, increases the risk of the

checking system itself falling prey to an attack.

Redundant Signing

Another way to check for injected faults is to sign many times with the

identical values where each copy is stored in a separate region of memory

176

and then compare the results. To be successful, the attacker would need

to repeatedly inject the same fault into the same places during all signing

operations. The two downsides of the countermeasure are overhead and

another one is the instruction skip attack which might target the check step.

It’s possible that other attacks, like RAMBleed [120], which target a single

computation, will still be able to get past this basic defense.

Masking Sensitive Values

Masking [173] is a randomization technique which is used against strong side

channel attacks. Often, the input to a cryptographic algorithm is concealed

by employing random values that are hidden from an opponent. Because of

this, the intermediate outcomes of the algorithm calculation are unrelated to

the input, and the adversary is unable to use the side-channel to gather any

meaningful information. As masking is randomized higher order masking can

also be used to increase the scheme’s resilience. As long as the initial mask

randomization procedure is safe from fault injection, masking will offer safety.

But the system will become vulnerable to the attack if the fault is injected

before the initial step.

177

Chapter 8

Conclusion

In chapter 4, we show that modern FPGA-CPU hybrid systems can be more

vulnerable to well-known hardware attacks that are traditionally seen on

CPU-only systems. We show that the shared cache systems of the Arria 10

GX and its host CPU present possible CPU to FPGA, FPGA to CPU, and

FPGA to FPGA attack vectors. For Rowhammer, we show that the Arria 10

GX is capable of causing more DRAM faults in less time than modern CPUs.

Our research indicates that defense against hardware side-channels is just as

essential for modern FPGA systems as it is for modern CPUs. Of course,

the security of any device physically installed in a system, like a network

card or graphics card, is important, but FPGAs present additional security

challenges due to their inherently flexible nature. From a security perspective,

a user-configurable FPGA on a cloud system needs to be treated with at least

as much care and caution as a user-controlled CPU thread, as it can exploit

178

many of the same vulnerabilities.

In the IOTLB-SC chapter, we demonstrated a new side-channel attack

against IOTLBs in such IOMMUs that works across virtual environments and

threatens cloud tenants. We developed a new eviction set finding algorithm

that works without prior assumptions of cache or TLB organization and a

hardware module for an FPGA that implements the fundamentals necessary to

exploit the IOTLB side-channel. We used these tools to record a side-channel

trace from a GPU running a database acceleration library. The results prove

that the IOTLB can be used as a side-channel to spy on co-located devices.

We highlight this fact by showing a very reliable covert channel from the GPU

to the FPGA where we use the database application running on the GPU to

encode messages into the GPU’s system memory access patterns. While we

acknowledge the limitations of the IOTLB channel with current hardware and

applications, we argue that with the upcoming PCIe 5.0 and CXL standards,

IOMMU usage patterns will change and fine-grained IOTLB side-channel

attacks will become practical. To overcome the threat of the side-channel, we

suggest a variety of countermeasures that can be implemented on different

system levels ranging from hardware modifications up to the implementation

of applications. Many of these countermeasures fully eliminate the threat of

IOTLB side-channels, but at the same time reduce the speed of peripherals

or scalability of the systems that host them. Therefore, when designing or

choosing hardware for large-scale, high-performance, secure services, IOTLB

threats must be acknowledged and IOTLB isolation measures must be carefully

179

considered for the specific needs of the system. Furthermore, when designing

security-critical peripherals or security-critical software or firmware that makes

use of peripherals, timing leakages from peripheral memory accesses must be

addressed with constant-time design practices.

We showed that the previously recommended countermeasures for the

Firecracker VMM were incomplete and insufficient to meet its isolation goals

and, with our disclosure to AWS, prompted a revision to the recommen-

dations. Furthermore, many of the tested attack vectors showed leakage

while countermeasures where in place. We identified the Medusa cache in-

dexing/block write variant as an attack vector that only works across VMs,

i. e. with additional isolation mechanisms in place. Additionally, we showed

that disabling SMT–an expensive mitigation technique recommended and

performed by AWS–does not fully protect against Medusa variants. The

aforementioned Medusa variant, and Spectre-PHT are still capable of leaking

information between VMs when SMT is disabled, if the attacker and target

threads keep competing for hardware resources of the same physical CPU core.

Unfortunately this is inevitably the case in high-density serverless environ-

ments. Furthermore, processor designs continue to evolve and speculative and

out-of-order execution remain important factors in improving performance

from generation to generation. So, it is unlikely that we have seen the last of

new microarchitectural vulnerabilities, as the recent wave of newly discovered

attacks [137,196,209] shows.

Finally, we demonstrated that adjacent bit flips—enabling incredibly

180

powerful lattice attacks—are possible with Rowhammer and addressed all

of the practical challenges to carrying out a Rowhammer attack in a real

world setting with minimal assumptions in the threat model. We explain the

latest and most powerful techniques for finding continuous physical memory

and sorting pages by bank. We use a CPU denial of service attack to slow

the victim process and show that this widens the attack window enough for

Bash’s sleep command to provide timing control for the attack. We discuss

the many choices of hammering patterns that evade DDR4’s built-in defenses

and find good parameters for achieving adjacent bit flips on our test system.

In combination, these contributions make a multi-faceted but surely in-

complete picture of the microarchitectural threat landscape for cloud and

heterogeneous computing systems. We analyze several specific vulnerabilities,

including ones novel to these systems, and focus on how the specific hard-

ware needs of cloud and heterogeneous paradigms present new threats and

challenges. Both computing models require the integration at the hardware

level of seemingly disparate computational processes: in the case of cloud

computing, multiple users’ programs are executed on shared hardware; in the

case of heterogeneous computing, radically different hardware components

share memory and other computational resources. Wherever these disparate

processes meet, there is potential for microarchitectural leakage or interfer-

ence. The scale and complexity of modern cloud and heterogeneous systems

makes it extremely difficult to identify every attack surface, and every new

microarchitectural feature that introduces increased performance (or even

181

increased security) to these systems is also a potential source of a new threat.

To look at these systems more optimistically, their depth and complexity also

provides opportunities for microarchitectural defenses at every level, from

hardware and microcode to kernel and user code. This work provides new

perspectives which we hope will help others to identify new vulnerabilities,

reassess old ones, and implement effective defenses in heterogeneous and cloud

systems.

182

Bibliography

[1] Leonard M Adleman and Jonathan DeMarrais. A subexponential
algorithm for discrete logarithms over all finite fields. Mathematics of
Computation, 61(203):1–15, 1993.

[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori,
Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight virtualization for serverless applications. In NSDI, pages
419–434. USENIX Association, 2020.

[3] Martin R Albrecht, Amit Deo, and Kenneth G Paterson. Cold boot
attacks on ring and module lwe keys under the ntt. Cryptology ePrint
Archive, 2018.

[4] Martin R. Albrecht and Nadia Heninger. On bounded distance decoding
with predicate: Breaking the “lattice barrier” for the hidden number
problem. In Anne Canteaut and François-Xavier Standaert, editors,
Advances in Cryptology – EUROCRYPT 2021, pages 528–558, Cham,
2021. Springer International Publishing.

[5] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015.

[6] Alibaba Cloud. FPGA-based compute-optimized instance families, 2019.
Access: 2019-10-15.

[7] Alibaba Cloud ECS. Introducing the sixth generation of Alibaba Cloud’s
elastic compute service, 2020. Access: 2022-01-31.

[8] Amazon AWS. Amazon EC2 F1 instances, 2017. Access: 2019-10-12.

183

[9] Amazon AWS. AWS Nitro System, 2018. Access: 2022-01-31.

[10] Amazon Web Services. AWS Lambda features, 2023. accessed: Aug 17,
2023.

[11] Amazon Web Services. Firecracker design, 2023.

[12] Amazon Web Services. The Firecracker jailer, 2023. accessed: August
14, 2023.

[13] Amazon Web Services. Production host setup recommendations, 2023.
accessed: May 22, 2023.

[14] Amazon Web Services. Production host setup recommendations (up-
dated), 2024. accessed: Mar 29, 2024.

[15] AMD. AMD I/O Virtualization Technology (IOMMU) Specification,
3.06-pub edition, 2021.

[16] AMD. Offering unmatched performance, leadership energy efficiency
and next-generation architecture, AMD brings 4th gen AMD EPYC
processors to the modern data center, 2022. Access: 2022-12-04.

[17] X9 ANSI. 62: public key cryptography for the financial services indus-
try: the elliptic curve digital signature algorithm (ecdsa). Am. Nat’l
Standards Inst, 1999.

[18] Diego F. Aranha, Pierre-Alain Fouque, Benôıt Gérard, Jean-
Gabriel Kammerer, Mehdi Tibouchi, and Jean-Christophe Zapalowicz.
GLV/GLS decomposition, power analysis, and attacks on ECDSA sig-
natures with single-bit nonce bias. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11,
2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer
Science, pages 262–281. Springer, 2014.

[19] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi
Tibouchi, and Yuval Yarom. Ladderleak: Breaking ecdsa with less than
one bit of nonce leakage. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, page 225–242,
New York, NY, USA, 2020. Association for Computing Machinery.

184

[20] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and
Jean-Pierre Seifert. Fault attacks on RSA with CRT: Concrete results
and practical countermeasures. In Burton S. Kaliski, Çetin K. Koç, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2002, pages 260–275, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[21] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Au-
rojit Panda, Zvonimir Rakamaric, and Leonid Ryzhyk. System pro-
gramming in Rust: Beyond safety. In HotOS, pages 156–161. ACM,
2017.

[22] Ramachandran Balasubramanian and Neal Koblitz. The improbability
that an elliptic curve has subexponential discrete log problem under
the menezes—okamoto—vanstone algorithm. Journal of cryptology,
11:141–145, 1998.

[23] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom.
“Ooh Aah... Just a Little Bit” : A Small Amount of Side Channel
Can Go a Long Way. In Lejla Batina and Matthew Robshaw, editors,
Cryptographic Hardware and Embedded Systems – CHES 2014, pages
75–92, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[24] Daniel J Bernstein. Introduction to post-quantum cryptography. Springer,
2009.

[25] Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic
Hardware and Embedded Systems – CHES 2016, pages 602–624, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[26] Sarani Bhattacharya and Debdeep Mukhopadhyay. Advanced Fault
Attacks in Software: Exploiting the Rowhammer Bug. In Sikhar Patran-
abis and Debdeep Mukhopadhyay, editors, Fault Tolerant Architectures
for Cryptography and Hardware Security, pages 111–135. Springer Sin-
gapore, Singapore, 2018.

[27] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the
Importance of Checking Cryptographic Protocols for Faults. In Walter

185

Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, pages
37–51, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[28] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the
most significant bits of secret keys in diffie-hellman and related schemes.
In Advances in Cryptology—CRYPTO’96: 16th Annual International
Cryptology Conference Santa Barbara, California, USA August 18–22,
1996 Proceedings, pages 129–142. Springer, 2001.

[29] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel
Gruss, and Michael Schwarz. ÆPIC leak: Architecturally leaking
uninitialized data from the microarchitecture. In USENIX Security
Symposium, pages 3917–3934. USENIX Association, 2022.

[30] Stefan Brenner and Rüdiger Kapitza. Trust more, serverless. In SYS-
TOR, pages 33–43. ACM, 2019.

[31] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisen-
barth. CacheShield: Detecting Cache Attacks through Self-Observation.
In Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, CODASPY ’18, pages 224–235, New York, NY,
USA, 2018. Association for Computing Machinery.

[32] Billy Bob Brumley and Risto M. Hakala. Cache-Timing Template
Attacks. In Mitsuru Matsui, editor, Advances in Cryptology – ASI-
ACRYPT 2009, pages 667–684, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[33] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still
practical. In Computer Security–ESORICS 2011: 16th European Sym-
posium on Research in Computer Security, Leuven, Belgium, September
12-14, 2011. Proceedings 16, pages 355–371. Springer, 2011.

[34] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. LVI: hijacking transient execution through microar-
chitectural load value injection. In IEEE Symposium on Security and
Privacy, pages 54–72. IEEE, 2020.

186

[35] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
practical attack framework for precise enclave execution control. In
SysTEX@SOSP, pages 4:1–4:6. ACM, 2017.

[36] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and
Daniel Gruss. A systematic evaluation of transient execution attacks
and defenses. In USENIX Security Symposium, pages 249–266. USENIX
Association, 2019.

[37] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz,
Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking data on
meltdown-resistant CPUs. In CCS, pages 769–784. ACM, 2019.

[38] Claudio Canella, Jo Van Bulck, Michael Schwarz, Daniel Gruss, Cather-
ine Easdon, and Saagar Jha. Transient fail [code], 2019.

[39] Sébastien Carré, Matthieu Desjardins, Adrien Facon, and Sylvain Guil-
ley. OpenSSL Bellcore’s Protection Helps Fault Attack. In 2018 21st
Euromicro Conference on Digital System Design (DSD), pages 500–507,
August 2018.

[40] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detec-
tion of cache-based side-channel attacks using hardware performance
counters. Applied Soft Computing, 49:1162 – 1174, 2016.

[41] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan.
Private information retrieval. J. ACM, 45(6):965–981, 1998.

[42] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
Exploiting correcting codes: On the effectiveness of ECC memory
against rowhammer attacks. In IEEE S&P, pages 55–71. IEEE, 2019.

[43] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi.
Lwe with side information: attacks and concrete security estimation.
In Advances in Cryptology–CRYPTO 2020: 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,
August 17–21, 2020, Proceedings, Part II, pages 329–358. Springer,
2020.

187

[44] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cris-
tiano Giuffrida, and Kaveh Razavi. Smash: Synchronized many-sided
rowhammer attacks from javascript. In USENIX Security Symposium,
pages 1001–1018, 2021.

[45] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M. Tullsen.
Prime+Abort: A timer-free high-precision L3 cache attack using intel
TSX. In USENIX Security Symposium, pages 51–67. USENIX Associa-
tion, 2017.

[46] Marie Dolez̆elová, Milan Navrátil, Eva Majors̆inová, Peter Ondrejka,
Douglas Silas, Martin Prpic̆, and Rüdiger Landmann. Red Hat Enter-
prise Linux 7 Resource Management Guide–Using cgroups to manage
system resources on RHEL. Red Hat, Inc, Dec 2020. accessed: Aug 17,
2023.

[47] T El Gamal. A public key cryptosystem abd a signature scheme based
on discrete logarythms. In Proceedings of “Advances in Cryptology–
CRYPTO, volume 84, 1985.

[48] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian M. Caulfield, Eric S. Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg.
Azure accelerated networking: SmartNICs in the public cloud. In NSDI,
pages 51–66. USENIX Association, 2018.

[49] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Grand
Pwning Unit: Accelerating microarchitectural attacks with the GPU.
In IEEE S&P, pages 195–210. IEEE, 2018.

[50] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor van der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Trrespass: Exploiting the many sides of target row refresh. In 2020
IEEE Symposium on Security and Privacy (SP), pages 747–762, 2020.

188

[51] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
TRRespass: Exploiting the many sides of target row refresh. In IEEE
S&P, pages 747–762. IEEE, 2020.

[52] Jacob Fustos, Michael Garrett Bechtel, and Heechul Yun. Spectr-
eRewind: Leaking secrets to past instructions. In ASHES@CCS, pages
117–126. ACM, 2020.

[53] Nicolas Gama and Phong Q Nguyen. Finding short lattice vectors
within mordell’s inequality. In Proceedings of the fortieth annual ACM
symposium on Theory of computing, pages 207–216, 2008.

[54] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly
cca-secure encryption without pairings. In Advances in Cryptology–
EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part I, pages 1–27. Springer, 2016.

[55] Silvia E. Gianelli. Xilinx announces general availability of Virtex Ultra-
Scale+ FPGAs in Amazon EC2 F1 instances, 2017. Access: 2019-10-15.

[56] Ilias Giechaskiel, Ken Eguro, and Kasper B. Rasmussen. Leakier Wires:
Exploiting FPGA Long Wires for Covert- and Side-Channel Attacks.
ACM Trans. Reconfigurable Technol. Syst., 12(3), August 2019.

[57] Dennis R. E. Gnad, Fabian Oboril, and Mehdi B. Tahoori. Voltage
drop-based fault attacks on FPGAs using valid bitstreams. In 2017 27th
International Conference on Field Programmable Logic and Applications
(FPL), pages 1–7, September 2017.

[58] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation Leak-aside Buffer: Defeating cache side-channel protections with
TLB attacks. In USENIX Security Symposium, pages 955–972. USENIX
Association, 2018.

[59] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU. In
NDSS. The Internet Society, 2017.

189

[60] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui,
Johann Heyszl, and Thomas Eisenbarth. AutoLock: Why Cache Attacks
on ARM Are Harder Than You Think. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1075–1091, Vancouver, BC,
August 2017. USENIX Association.

[61] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, István
Haller, and Manuel Costa. Strong and efficient cache side-channel
protection using hardware transactional memory. In USENIX Security
Symposium, pages 217–233. USENIX Association, 2017.

[62] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. KASLR is dead: Long
live KASLR. In ESSoS, volume 10379 of Lecture Notes in Computer
Science, pages 161–176. Springer, 2017.

[63] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. An-
other Flip in the Wall of Rowhammer Defenses. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), pages 245–261, May 2018.

[64] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In
Juan Caballero, Urko Zurutuza, and Ricardo J. Rodŕıguez, editors,
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 300–321, Cham, 2016. Springer International Publishing.

[65] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A Remote Software-Induced Fault Attack in JavaScript. In
Juan Caballero, Urko Zurutuza, and Ricardo J. Rodŕıguez, editors,
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 300–321, Cham, 2016. Springer International Publishing.

[66] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: A fast and stealthy cache attack. In DIMVA, volume
9721 of LNCS, pages 279–299. Springer, 2016.

[67] Berk Gülmezoğlu, Thomas Eisenbarth, and Berk Sunar. Cache-Based
Application Detection in the Cloud Using Machine Learning. In Pro-
ceedings of the 2017 ACM on Asia Conference on Computer and Com-

190

munications Security, ASIA CCS ’17, pages 288–300, New York, NY,
USA, 2017. Association for Computing Machinery.

[68] Berk Gülmezoğlu, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. FortuneTeller: Predicting Microarchitectural Attacks via Unsu-
pervised Deep Learning, 2019.

[69] Berk Gülmezoğlu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar.
PerfWeb: How to Violate Web Privacy with Hardware Performance
Events. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes,
editors, Computer Security – ESORICS 2017, pages 80–97, Cham, 2017.
Springer International Publishing.

[70] Berk Gülmezoglu, Andreas Zankl, Caner Tol, Saad Islam, Thomas
Eisenbarth, and Berk Sunar. Undermining user privacy on mobile
devices using AI. CoRR, abs/1811.11218, 2018.

[71] Pawan Gupta. TAA - TSX Asynchronous Abort. The Linux Kernel
Organization, Dec 2020. accessed: Aug 17, 2023.

[72] Junichiro Hayata, Jacob C. N. Schuldt, Goichiro Hanaoka, and Kanta
Matsuura. On private information retrieval supporting range queries. In
ESORICS (2), volume 12309 of LNCS, pages 674–694. Springer, 2020.

[73] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In 25th USENIX Security Symposium
(USENIX Security 16), pages 1187–1203, Austin, TX, August 2016.
USENIX Association.

[74] Gottfried Herold, Elena Kirshanova, and Alexander May. On the
asymptotic complexity of solving lwe. Designs, Codes and Cryptography,
86:55–83, 2018.

[75] Tyler Hicks. MDS – Microarchitectural Data Sampling. The Linux
Kernel Organization, November 2019. accessed: Aug 17, 2023.

[76] Benjamin Holmes, Jason Waterman, and Dan Williams. KASLR in the
age of MicroVMs. In EuroSys, pages 149–165. ACM, 2022.

[77] Jann Horn. Speculative execution, variant 4: speculative store bypass,
2018. accessed: Aug 17, 2023.

191

[78] Jennifer Huffstetler. Intel processors and FPGAs – better to-
gether. https://itpeernetwork.intel.com/intel-processors-

fpga-better-together/, 2018. accessed: 21-05-19.

[79] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing
side channel attacks against kernel space ASLR. In IEEE S&P, pages
191–205. IEEE, 2013.

[80] Mehmet Sinan Inci, Berk Gülmezoglu, Thomas Eisenbarth, and Berk
Sunar. Co-location detection on the cloud. In COSADE, volume 9689
of LNCS, pages 19–34. Springer, 2016.

[81] Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. Seriously, get off my cloud! Cross-VM RSA Key
Recovery in a Public Cloud. IACR Cryptology ePrint Archive, 2015.

[82] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. Cache attacks enable bulk key recovery on the
cloud. In CHES, volume 9813 of LNCS, pages 368–388. Springer, 2016.

[83] Intel. Open Programmable Acceleration Engine, 1.1.2 edition, 2017.
https://opae.github.io/1.1.2/index.html.

[84] Intel. Acceleration Stack for Intel Xeon CPU with FPGAs Core
Cache Interface (CCI-P) Reference Manual, 1.2 edition, December
2018. https://www.intel.com/content/dam/www/programmable/

us/en/pdfs/literature/manual/mnl-ias-ccip.pdf.

[85] Intel. Accelerator cards that fit your performance needs.
https://www.intel.com/content/www/us/en/programmable/

solutions/acceleration-hub/platforms.html, 2018. accessed:
21-05-19.

[86] Intel. Speculative execution side channel mitigations, 2018. rev. 3.0
accessed: Mar 22, 2023.

[87] Intel. Intel transactional synchronization extensions (Intel TSX) asyn-
chronous abort. Technical report, Intel Corp., 2019. accessed: Aug 17,
2023.

192

https://itpeernetwork.intel.com/intel-processors-fpga-better-together/
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/
https://opae.github.io/1.1.2/index.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/platforms.html
https://www.intel.com/content/www/us/en/programmable/solutions/acceleration-hub/platforms.html

[88] Intel. Microarchitectural data sampling. Technical report, Intel Corp.,
2019. ver. 3.0, accessed: Aug 17, 2023.

[89] Intel. Vector register sampling. Technical report, Intel Corp., 2020.
accessed: Aug 17, 2023.

[90] Intel Corporation. Intel Data Direct I/O Technology (Intel DDIO): A
Primer, 1 edition, 2012.

[91] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Ref-
erence Manual, Jun 2016.

[92] Intel Corporation. Intel Virtualization Technology for Directed I/O –
Architecture Specification, 3.1 edition, 2019.

[93] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A Shared
Cache Attack That Works across Cores and Defies VM Sandboxing –
and Its Application to AES. In 2015 IEEE Symposium on Security and
Privacy (SP), pages 591–604, May 2015.

[94] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic
reverse engineering of cache slice selection in intel processors. In DSD,
pages 629–636. IEEE, 2015.

[95] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Processor
Cache Attacks. In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, ASIA CCS ’16, pages 353–364,
New York, NY, USA, 2016. Association for Computing Machinery.

[96] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk
Gülmezoglu, Thomas Eisenbarth, and Berk Sunar. Spoiler: Specu-
lative load hazards boost rowhammer and cache attacks. In USENIX
Security Symposium, pages 621–637, 2019.

[97] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk
Sunar. Signature correction attack on dilithium signature scheme. In
2022 IEEE 7th European Symposium on Security and Privacy (Eu-
roS&P), pages 647–663. IEEE, 2022.

[98] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk
Sunar. A signature correction attack on the post-quantum scheme

193

dilithium. In Proceedings of the IEEE European Workshop on Security
and & Privacy, 2022.

[99] J. Jancar, M. Fourné, D. De Almeida Braga, M. Sabt, P. Schwabe,
G. Barthe, P. Fouque, and Y. Acar. “they’re not that hard to mitigate”:
What cryptographic library developers think about timing attacks. In
2022 2022 IEEE Symposium on Security and Privacy (SP) (SP), pages
755–772, Los Alamitos, CA, USA, may 2022. IEEE Computer Society.

[100] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. Blacksmith: Scalable rowhammering in the frequency
domain. In 2022 IEEE Symposium on Security and Privacy (SP), pages
716–734. IEEE, 2022.

[101] JC-42.6 Low Power Memories Comittee. Low Power Double Data Rate
4 (LPDDR4). Standard JESD209-4B, JEDEC Solid State Technology
Association, March 2017.

[102] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. Kasper: Scanning for generalized transient
execution gadgets in the linux kernel. In NDSS. The Internet Society,
2022.

[103] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve
digital signature algorithm (ECDSA). International journal of infor-
mation security, 1(1):36–63, 2001.

[104] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria Eichlseder,
Moritz Lipp, and Daniel Gruss. Csi: Rowhammer-cryptographic security
and integrity against rowhammer. In 2023 IEEE Symposium on Security
and Privacy (SP), pages 236–252. IEEE Computer Society, 2022.

[105] Cameron F Kerry and Patrick D Gallagher. Digital signature standard
(dss). FIPS PUB, pages 186–4, 2013.

[106] Salman Abdul Khaliq, Usman Ali, and Omer Khan. Timing-based side-
channel attack and mitigation on PCIe connected distributed embedded
systems. In HPEC, pages 1–7. IEEE, 2021.

[107] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song,
Dmitry Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh.

194

SafeSpec: Banishing the Spectre of a Meltdown with leakage-free spec-
ulation. In DAC, page 60. ACM, 2019.

[108] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTH-
MEM: System-Level Protection Against Cache-Based Side Channel
Attacks in the Cloud. In 21st USENIX Security Symposium (USENIX
Security 12), pages 189–204, Bellevue, WA, 2012. USENIX.

[109] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: An experimental study of
DRAM disturbance errors. In ACM SIGARCH Computer Architecture
News, volume 42, pages 361–372. IEEE Press, 2014.

[110] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 974–987, October 2018.

[111] Vladimir Kiriansky and Carl A. Waldspurger. Speculative buffer over-
flows: Attacks and defenses. CoRR, abs/1807.03757, 2018.

[112] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[113] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting speculative execution. In IEEE S&P, pages 1–19. IEEE, 2019.

[114] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Anal-
ysis. In Michael Wiener, editor, Advances in Cryptology — CRYPTO’
99, pages 388–397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[115] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz
Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss.
{Half-Double}: Hammering from the next row over. In 31st USENIX
Security Symposium (USENIX Security 22), pages 3807–3824, 2022.

195

[116] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song,
and Nael B. Abu-Ghazaleh. Spectre returns! speculation attacks using
the return stack buffer. In WOOT @ USENIX Security Symposium.
USENIX Association, 2018.

[117] Jonas Krautter, Dennis R. E. Gnad, and Mehdi B. Tahoori. FPGA-
hammer: Remote Voltage Fault Attacks on Shared FPGAs, suitable
for DFA on AES. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018(3):44–68, August 2018.

[118] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Her-
bert Bos, and Kaveh Razavi. NetCAT: Practical cache attacks from
the network. In IEEE S&P, pages 20–38. IEEE, 2020.

[119] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed:
SINGLE database, computationally-private information retrieval. In
FOCS, pages 364–373. IEEE, 1997.

[120] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Ram-
bleed: Reading bits in memory without accessing them. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 695–711. IEEE, 2020.

[121] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Fac-
toring polynomials with rational coefficients. Mathematische annalen,
261(ARTICLE):515–534, 1982.

[122] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile Devices.
In 25th USENIX Security Symposium (USENIX Security 16), pages
549–564, Austin, TX, August 2016. USENIX Association.

[123] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security Symposium, pages
973–990. USENIX Association, 2018.

[124] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster,
Misiker Tadesse Aga, Clémentine Maurice, and Daniel Gruss. Netham-
mer: Inducing rowhammer faults through network requests. In 2020

196

IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW), pages 710–719. IEEE, 2020.

[125] Fangfei Liu, Qian Ge, Yuval Yarom, Frank McKeen, Carlos V. Rozas,
Gernot Heiser, and Ruby B. Lee. CATalyst: Defeating last-level cache
side channel attacks in cloud computing. In HPCA, pages 406–418.
IEEE, 2016.

[126] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In IEEE S&P, pages
605–622. IEEE, 2015.

[127] Mingjie Liu and Phong Q Nguyen. Solving bdd by enumeration: An
update. In Topics in Cryptology–CT-RSA 2013: The Cryptographers’
Track at the RSA Conference 2013, San Francisco, CA, USA, February
25-March 1, 2013. Proceedings, pages 293–309. Springer, 2013.

[128] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative ex-
ecution using return stack buffers. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
2109–2122. ACM, 2018.

[129] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison
Pearce, Peter G. Neumann, Simon W. Moore, and Robert N. M. Watson.
Thunderclap: Exploring vulnerabilities in operating system IOMMU
protection via DMA from untrustworthy peripherals. In NDSS. The
Internet Society, 2019.

[130] Debora T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A.
Koufaty, J. Alan Miller, and Michael Upton. Hyper-threading technology
architecture and microarchitecture. Intel Technology Journal, 6(1):4–15,
2002.

[131] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the other side: SSH over robust cache covert channels in the
cloud. In NDSS. The Internet Society, 2017.

[132] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Romer.

197

Hello from the Other Side: SSH over Robust Cache Covert Channels in
the Cloud. In 24th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, 2017. Internet Society.

[133] Victor S Miller. Use of elliptic curves in cryptography. Springer, 1986.

[134] CVE-2019-19962. Available from MITRE, CVE-ID CVE-2019-19962.,
December 2019.

[135] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom:
How SGX Amplifies the Power of Cache Attacks. In Wieland Fischer
and Naofumi Homma, editors, Cryptographic Hardware and Embedded
Systems – CHES 2017, pages 69–90, Cham, 2017. Springer International
Publishing.

[136] Daniel Moghimi. Medusa [code], 2020.

[137] Daniel Moghimi. Downfall: Exploiting speculative data gathering. In
USENIX Security Symposium, pages 7179–7193. USENIX Association,
2023.

[138] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural data leakage via automated attack syn-
thesis. In USENIX Security Symposium, pages 1427–1444. USENIX
Association, 2020.

[139] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.
TPM-FAIL: TPM meets timing and lattice attacks. In USENIX Security
Symposium, pages 2057–2073. USENIX Association, 2020.

[140] Benôıt Morgan, Eric Alata, Vincent Nicomette, and Mohamed Kaâniche.
Bypassing IOMMU protection against I/O attacks. In LADC, pages
145–150. IEEE, 2016.

[141] Benôıt Morgan, Eric Alata, Vincent Nicomette, and Mohamed Kaâniche.
IOMMU protection against I/O attacks: a vulnerability and a proof of
concept. J. Braz. Comput. Soc., 24(1):2:1–2:11, 2018.

[142] David Mulnix. Intel Xeon processor scalable family technical
overview. https://software.intel.com/en-us/articles/intel-

xeon-processor-scalable-family-technical-overview, 2017. Ac-
cessed: 2019-07-10.

198

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview

[143] K. Mus, Y. Doröz, M. Tol, K. Rahman, and B. Sunar. Jolt: Recovering
tls signing keys via rowhammer faults. In 2023 2023 IEEE Symposium
on Security and Privacy (SP) (SP), pages 1719–1736, Los Alamitos,
CA, USA, may 2023. IEEE Computer Society.

[144] Koksal Mus, Saad Islam, and Berk Sunar. Quantumhammer: a practical
hybrid attack on the luov signature scheme. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
pages 1071–1084, 2020.

[145] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(8):1555–1571, 2019.

[146] Hoda Naghibijouybari, Esmaeil Mohammadian Koruyeh, and Nael Abu-
Ghazaleh. Microarchitectural attacks in heterogeneous systems: A
survey. ACM Comput. Surv., 55(7), dec 2022.

[147] Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and Vashek
Matyas. The return of coppersmith’s attack: Practical factorization
of widely used rsa moduli. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1631–
1648, 2017.

[148] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. Understanding PCIe
performance for end host networking. In SIGCOMM, pages 327–341.
ACM, 2018.

[149] Nguyen and Shparlinski. The insecurity of the digital signature algo-
rithm with partially known nonces. Journal of Cryptology, 15:151–176,
2002.

[150] Khang T. Nguyen. Usage models for Cache Allocation Technology in
the Intel Xeon Processor E5 v4 family, 2016.

[151] Phong Q Nguyen and Igor E Shparlinski. The insecurity of the elliptic
curve digital signature algorithm with partially known nonces. Designs,
codes and cryptography, 30:201–217, 2003.

199

[152] National Institute of Standards and Technology. Digital signature
standard (DSS). Technical Report Federal Information Processing Stan-
dards Publications (FIPS PUBS) 186-5, U.S. Department of Commerce,
Washington, D.C., 2023.

[153] Wakaha Ogata and Kaoru Kurosawa. Optimum secret sharing scheme
secure against cheating. In Advances in Cryptology—EUROCRYPT’96:
International Conference on the Theory and Application of Crypto-
graphic Techniques Saragossa, Spain, May 12–16, 1996 Proceedings 15,
pages 200–211. Springer, 1996.

[154] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and An-
gelos D. Keromytis. The spy in the sandbox: Practical cache attacks
in JavaScript and their implications. In CCS, pages 1406–1418. ACM,
2015.

[155] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, volume 3860 of LNCS,
pages 1–20. Springer, 2006.

[156] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, volume 3860 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2006.

[157] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, An-
dreas Zinnen, Martin Henze, and Klaus Wehrle. Website fingerprinting
at internet scale. In 23rd Annual Network and Distributed System Se-
curity Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society, 2016.

[158] Alexandra Parkegren and Melker Veltman. Trust in lightweight vir-
tual machines: Integrating TPMs into Firecracker, 2023. Chalmers
University of Technology, University of Gothenburg, master thesis.

[159] PCI-SIG. PCI Express Base Specification, 2006. Rev. 2.0.

[160] PCI-SIG. Address Translation Services, 2009. Rev. 1.1.

[161] Christoph Peglow. Security analysis of hybrid Intel CPU/FPGA plat-
forms using IOMMUs against I/O attacks. Master’s thesis, University
of Lübeck, 2020.

200

[162] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. DRAMA: exploiting DRAM addressing for cross-cpu
attacks. In USENIX Security Symposium, pages 565–581. USENIX
Association, 2016.

[163] George Provelengios, Chethan Ramesh, Shivukumar B. Patil, Ken
Eguro, Russell Tessier, and Daniel Holcomb. Characterization of Long
Wire Data Leakage in Deep Submicron FPGAs. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’19, pages 292–297, New York, NY, USA, 2019.
Association for Computing Machinery.

[164] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope:
Overcoming the observer effect for high-precision cache contention
attacks. In CCS, pages 2906–2920. ACM, 2021.

[165] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Double Trou-
ble: Combined heterogeneous attacks on Non-Inclusive cache hierarchies.
In USENIX Security Symposium, pages 3647–3664. USENIX Associa-
tion, 2022.

[166] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida.
Rage against the machine clear: A systematic analysis of machine clears
and their implications for transient execution attacks. In USENIX
Security Symposium, pages 1451–1468. USENIX Association, 2021.

[167] Chethan Ramesh, Shivukumar B. Patil, Siva Nishok Dhanuskodi,
George Provelengios, Sébastien Pillement, Daniel Holcomb, and Russell
Tessier. FPGA Side Channel Attacks without Physical Access. In 2018
IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 45–52, April 2018.

[168] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuf-
frida, and Herbert Bos. Flip feng shui: Hammering a needle in the
software stack. In 25th USENIX Security Symposium (USENIX Security
16), pages 1–18, Austin, TX, August 2016. USENIX Association.

[169] RedHat, Inc. /sys/class/iommu/¡iommu¿/devices/, 2014.

[170] Eric Rescorla. The transport layer security (tls) protocol version 1.3.
Technical report, 2018.

201

[171] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van Goethem, and
Wouter Joosen. Automated feature extraction for website fingerprinting
through deep learning. CoRR, abs/1708.06376, 2017.

[172] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In CCS, pages 199–212. ACM, 2009.

[173] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order
masking of aes. In Cryptographic Hardware and Embedded Systems,
CHES 2010: 12th International Workshop, Santa Barbara, USA, August
17-20, 2010. Proceedings 12, pages 413–427. Springer, 2010.

[174] Thomas Rokicki, Clémentine Maurice, Marina Botvinnik, and Yossi
Oren. Port contention goes portable: Port contention side channels in
web browsers. In AsiaCCS, pages 1182–1194. ACM, 2022.

[175] Thomas Rokicki, Clémentine Maurice, and Michael Schwarz. CPU port
contention without SMT. In ESORICS (3), volume 13556 of Lecture
Notes in Computer Science, pages 209–228. Springer, 2022.

[176] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant J
Nair. Randomized row-swap: mitigating row hammer by breaking
spatial correlation between aggressor and victim rows. In Proceedings
of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 1056–1069,
2022.

[177] Falk Schellenberg, Dennis R. E. Gnad, Amir Moradi, and Mehdi B.
Tahoori. An Inside Job: Remote Power Analysis Attacks on FPGAs.
In 2018 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1111–1116, March 2018.

[178] Falk Schellenberg, Dennis R. E. Gnad, Amir Moradi, and Mehdi B.
Tahoori. Remote Inter-Chip Power Analysis Side-Channel Attacks
at Board-Level. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–7, November 2018.

[179] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis
reduction algorithms. Theoretical computer science, 53(2-3):201–224,
1987.

202

[180] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction:
Improved practical algorithms and solving subset sum problems. Math-
ematical programming, 66:181–199, 1994.

[181] Michael Schwarz. PTEditor: A small library to modify all page-table
levels of all processes from user space for x86 64 and ARMv8. https:
//github.com/misc0110/PTEditor, April 2019.

[182] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS, pages 753–768. ACM, 2019.

[183] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: High-resolution microar-
chitectural attacks in JavaScript. In Aggelos Kiayias, editor, Financial
Cryptography and Data Security, pages 247–267, Cham, 2017. Springer
International Publishing.

[184] Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer
bug to gain kernel privileges. Black Hat, 15, 2015.

[185] Debendra Das Sharma. Compute express link. Whitepaper, Compute
Express Link Consortium, 2019.

[186] Anton Shilov. Intel’s Sapphire Rapids formal launch date revealed, 2022.
Access: 2020-12-04.

[187] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust website fin-
gerprinting through the cache occupancy channel. In 28th USENIX
Security Symposium (USENIX Security 19), pages 639–656, Santa Clara,
CA, August 2019. USENIX Association.

[188] Olin Sibert, Phillip A. Porras, and Robert Lindell. The Intel 80×86
processor architecture: pitfalls for secure systems. In IEEE S&P, pages
211–222. IEEE, 1995.

[189] Mingtian Tan, Junpeng Wan, Zhe Zhou, and Zhou Li. Invisible probe:
Timing attacks with PCIe congestion side-channel. In IEEE S&P, pages
322–338. IEEE, 2021.

203

https://github.com/misc0110/PTEditor
https://github.com/misc0110/PTEditor

[190] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Packet
Chasing: Spying on Network Packets over a Cache Side-Channel. arXiv
preprint arXiv:1909.04841, 2019.

[191] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer
attacks over the network and defenses. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), Boston, MA, 2018. USENIX
Association.

[192] Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and Herbert Bos.
TLB;DR: Enhancing TLB-based attacks with TLB desynchronized
reverse engineering. In USENIX Security Symposium, pages 989–1007.
USENIX Association, 2022.

[193] Thore Tiemann, Zane Weissman, Thomas Eisenbarth, and Berk Sunar.
Iotlb-sc: An accelerator-independent leakage source in modern cloud
systems. In Proceedings of the ACM Asia Conference on Computer and
Communications Security, ASIA CCS ’23. ACM, July 2023.

[194] Thore Tiemann, Zane Weissman, Thomas Eisenbarth, and Berk Sunar.
Microarchitectural Vulnerabilities Introduced, Exploited, and Accelerated
by Heterogeneous FPGA-CPU Platforms, pages 203–237. Springer
International Publishing, Cham, 2024.

[195] M. Tol, S. Islam, A. J. Adiletta, B. Sunar, and Z. Zhang. Don’t
knock! rowhammer at the backdoor of dnn models. In 2023 53rd
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 109–122, Los Alamitos, CA, USA, jun 2023.
IEEE Computer Society.

[196] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi. Inception: Ex-
posing new attack surfaces with training in transient execution. In
USENIX Security Symposium, pages 7303–7320. USENIX Association,
2023.

[197] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and
Hiroshi Miyauchi. Cryptanalysis of DES Implemented on Computers
with Cache. In Colin D. Walter, Çetin K. Koç, and Christof Paar,

204

editors, Cryptographic Hardware and Embedded Systems - CHES 2003,
pages 62–76, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[198] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection, 2018. accessed: Mar 22, 2023.

[199] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic rowham-
mer attacks on mobile platforms. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages
1675–1689, 2016.

[200] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages
1675–1689, New York, NY, USA, 2016. Association for Computing
Machinery.

[201] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: rogue in-flight data load. In IEEE S&P, pages 88–105. IEEE,
2019.

[202] Stephan van Schaik, Alyssa Millburn, genBTC, Paul Menzel, jun1x,
Stephen Kitt, pit fr, Sebastian Österlund, and Cristiano Giuffrida. Ridl
[code], 2020.

[203] Pepe Vila, Boris Köpf, and José F. Morales. Theory and practice of
finding eviction sets. In IEEE S&P, pages 39–54. IEEE, 2019.

[204] Pepe Vila, Boris Köpf, and José Francisco Morales. Theory and Practice
of Finding Eviction Sets. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 39–54, May 2019.

[205] Zane Weissman, Thore Tiemann, Thomas Eisenbarth, and Berk Sunar.
Microarchitectural security of aws firecracker vmm for serverless cloud
platforms, 2023.

205

[206] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custo-
dio, Thomas Eisenbarth, and Berk Sunar. Jackhammer: Efficient
rowhammer on heterogeneous fpga-cpu platforms. arXiv preprint
arXiv:1912.11523, 2019.

[207] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custo-
dio, Thomas Eisenbarth, and Berk Sunar. JackHammer: Efficient
rowhammer on heterogeneous FPGA-CPU platforms. IACR TCHES,
2020(3):169–195, 2020.

[208] Johannes Wikner and Kaveh Razavi. RETBLEED: arbitrary specu-
lative code execution with return instructions. In USENIX Security
Symposium, pages 3825–3842. USENIX Association, 2022.

[209] Johannes Wikner, Daniël Trujillo, and Kaveh Razav. Phantom: Exploit-
ing decoder-detectable mispredictions. In MICRO (to appear). IEEE,
2023.

[210] Marc F. Witteman, Jasper G. J. van Woudenberg, and Federico Menar-
ini. Defeating RSA Multiply-Always and Message Blinding Counter-
measures. In Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA
2011, pages 77–88, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[211] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-
space: High-speed Covert Channel Attacks in the Cloud. In 21st
USENIX Security Symposium (USENIX Security 12), pages 159–173,
Bellevue, WA, 2012. USENIX.

[212] Jietao Xiao, Nanzi Yang, Wenbo Shen, Jinku Li, Xin Guo, Zhiqiang
Dong, Fei Xie, and Jianfeng Ma. Attacks are forwarded: Breaking the
isolation of microVM-based containers through operation forwarding. In
USENIX Security Symposium, pages 7517–7534. USENIX Association,
2023.

[213] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One Bit Flips, One Cloud Flops: Cross-VM row hammer attacks and
privilege escalation. In USENIX Security Symposium, pages 19–35,
2016.

206

[214] Xilinx. Accelerator Cards. https://www.xilinx.com/products/

boards-and-kits/accelerator-cards.html, 2019. Accessed: 2019-
10-15.

[215] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher W. Fletcher, and Josep Torrellas. InvisiSpec: Making speculative
execution invisible in the cache hierarchy. In MICRO, pages 428–441.
IEEE Computer Society, 2018.

[216] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack Directories, Not
Caches: Side Channel Attacks in a Non-Inclusive World. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 888–904, May 2019.

[217] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high reso-
lution, low noise, L3 cache side-channel attack. In USENIX Security
Symposium, pages 719–732. USENIX Association, 2014.

[218] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high reso-
lution, low noise, L3 cache side-channel attack. In USENIX Security
Symposium, pages 719–732. USENIX Association, 2014.

[219] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. COLORIS: a
dynamic cache partitioning system using page coloring. In PACT, pages
381–392. ACM, 2014.

[220] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. The true cost of containing:
A gVisor case study. In HotCloud. USENIX Association, 2019.

[221] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. CloudRadar: A
Real-Time Side-Channel Attack Detection System in Clouds. In Fabian
Monrose, Marc Dacier, Gregory Blanc, and Joaquin Garcia-Alfaro,
editors, Research in Attacks, Intrusions, and Defenses (RAID), pages
118–140, Cham, 2016. Springer International Publishing.

[222] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM Side Channels and Their Use to Extract Private Keys. In
Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security, CCS ’12, pages 305–316, New York, NY, USA, 2012.
Association for Computing Machinery.

207

https://www.xilinx.com/products/boards-and-kits/accelerator-cards.html
https://www.xilinx.com/products/boards-and-kits/accelerator-cards.html

[223] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In CCS, pages 990–
1003. ACM, 2014.

[224] Mark Zhao and G. Edward Suh. FPGA-Based Remote Power Side-
Channel Attacks. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 229–244, May 2018.

[225] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yinqian
Zhang, and Zhiqiang Lin. Reusable enclaves for confidential serverless
computing. In USENIX Security Symposium, pages 4015–4032. USENIX
Association, 2023.

[226] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A Software Ap-
proach to Defeating Side Channels in Last-Level Caches. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, pages 871–882, New York, NY, USA, 2016.
Association for Computing Machinery.

208

Appendix A

Mean Spectral Data Per Site

209

fr
eq

ue
nc

y

no network activity wikipedia.org github.com

fr
eq

ue
nc

y

cnn.com bankofamerica.com chase.com

time

fr
eq

ue
nc

y

wellsfargo.com

time

xinhuanet.com

time

youtube.com

Mean of all training observations for each class in the model, after all
pre-processing.

210

Appendix B

Extended RIDL Mitigations

Table

Table B.1. Mitigations necessary to protect the host vs. Firecracker victims

from RIDL and other MDS attacks. The recommended nosmt mitigation

protects against most but not all of these variants. All proof of concepts were

tested on Firecracker v1.0.0, v1.4.0, and v1.5.0 with identical results.

211

E
x
p
lo
it

D
e
ta

ils
B
a
r
e
M

e
ta

l
F
ir
e
c
r
a
c
k
e
r

C
o
m
m
o
n
N
a
m
e

T
a
rg
et

B
u
ff
er

F
a
u
lt

T
y
p
e

n
o
s
m
t

m
d
s

n
o
s
m
t
(H

)
m
d
s
(H

)
m
d
s
(V

M
)

T
S
X

req
u
ired

?

a
l
i
g
n
m
e
n
t
w
r
i
t
e

R
ID

L

F
ill

B
u
ff
er

A
lig

n
m
en

t
✚

✚
✚

✚
✗

n
o

p
g
t
a
b
l
e
l
e
a
k
n
o
t
s
x

F
ill

B
u
ff
er

P
a
g
e

✗
b

✓
✗
b

✓
✓

n
o

r
i
d
l
b
a
s
i
c

F
ill

B
u
ff
er

P
a
g
e

✓
✗

N
/
A

c
N
/
A

c
N
/
A

c
n
o

r
i
d
l
i
n
v
a
l
i
d
p
a
g
e

F
ill

B
u
ff
er

P
a
g
e

✓
✗

N
/
A

c
N
/
A

c
N
/
A

c
n
o

p
g
t
a
b
l
e
l
e
a
k

R
ID

L
/
T
A
A

F
ill

B
u
ff
er

T
S
X

a
b
o
rt

✓
✗

✓
✗

✗
y
es

t
a
a
r
e
a
d

F
ill

B
u
ff
er

T
S
X

a
b
o
rt

✓
✗

✓
✗

✗
y
es

t
a
a
b
a
s
i
c

F
ill

B
u
ff
er

T
S
X

a
b
o
rt

✓
✗

N
/
A

c
N
/
A

c
N
/
A

c
y
es

v
e
r
w
b
y
p
a
s
s
l
1
d
e
s

R
ID

L
/
T
A
A

F
ill

B
u
ff
er

T
S
X

a
b
o
rt

✓
✗

✓
✗

✗
y
es

l
o
a
d
p
o
r
t

R
ID

L
L
o
a
d
P
o
rt

P
a
g
e

✓
✗

✓
✗

✗
n
o

v
r
s

R
ID

L
/
V
R
S

S
to
re

b
u
ff
er

P
a
g
e

✓
✗

✓
✗

✗
n
o

c
p
u
i
d
l
e
a
k

C
ro
ssta

lk
F
ill

B
u
ff
er

P
a
g
e

✓
✗

N
/
A

a
N
/
A

a
N
/
A

a
n
o

✓
–
m
itiga

tion
p
reven

ts
sid

e-ch
an

n
el

attack
.

✚
–
m
itiga

tion
p
reven

ts
atta

ck
on

ly
in

com
b
in
a
tio

n
w
ith

o
th
er

m
itig

a
tio

n
(s)

m
a
rked

✚
.

✗
–
m
itiga

tion
h
as

n
o
eff

ect
o
n
th
is

attack
.

a
C
P
U
I
D
in
stru

ctio
n
is

em
u
la
ted

b
y
v
irtu

a
l
m
a
ch

in
e
a
n
d
h
a
s
n
o
m
icro

a
rch

itectu
ra
l
eff

ect.
b
T
h
is

a
tta

ck
lea

k
s
in
fo
rm

a
tio

n
a
b
o
u
t
p
a
g
es

u
sed

in
its

o
w
n
th

rea
d
.

c
P
o
C
s
h
a
d
to

b
e
m
o
d
ifi
ed

slig
h
tly

to
ru

n
in

tw
o
p
ro
cesses

b
efo

re
th

ey
co

u
ld

b
e
tested

in
th

e
v
irtu

a
l
m
a
ch

in
e.

T
h
ese

P
o
C
s
d
id

n
o
t
w
o
rk

o
n
b
a
re

m
eta

l
o
r
in

v
irtu

a
l
m
a
ch

in
es

w
h
en

sp
lit

in
to

tw
o
p
ro
cesses.

212

	Introduction
	Heterogeneous Computing in the Cloud
	Serverless Cloud Computing
	Signature Correction Attacks
	Contributions
	Previous Publications and Coauthors

	Background
	Cache Attacks
	Translation Look-Aside Buffers TLBs
	Attacks on TLBs
	PCIe
	IOMMUs
	Rowhammer
	Meltdown and MDS
	Basic MDS Variants
	Medusa
	TSX Asynchronous Abort
	MDS Mitigations

	Spectre
	Spectre Mitigations

	RSA-CRT Signing
	ECDSA Signing
	Lattice Attacks on the Hidden Number Problem (HNP)
	Bleichenbacher's Fourier Analysis Based Technique
	Serverless Cloud Computing and MicroVMs
	AWS Firecracker
	Firecracker Security Recommendations

	Related Works
	Works on FPGA Security
	Works on Heterogeneous Microarchitectural Attacks
	Attacks on IOMMUs
	Works on MicroVM Security

	JackHammer
	Introduction
	Contributions
	Experimental Setup

	Analysis of Intel FPGA-CPU Systems
	Intel FPGA Platforms
	Intel's FPGA-CPU Compatibility Layers
	Cache and Memory Architecture on the Intel FPGAs

	JackHammer Attack
	JackHammer: Our FPGA Implementation of Rowhammer
	JackHammer on the FPGA PAC vs. CPU Rowhammer
	JackHammer on the Integrated Arria 10 vs. CPU Rowhammer
	The Effect of Caching on Rowhammer Performance

	Fault Attack on RSA using JackHammer
	RSA Fault Injection Attacks
	Our Attack
	Performance of the Attack

	Cache Attacks on Intel FPGA-CPU Platforms
	Cache Attacks from FPGA PAC to CPU
	Cache Attacks from Integrated Arria 10 FPGA to CPU
	Cache Attacks from CPU to Integrated Arria 10 FPGA
	Intra-FPGA Cache Side-Channels

	Countermeasures

	IOTLB-SC
	Introduction
	Identifying IOTLB Side-Channels
	System Setup
	IOTLBs Cause Timing Behavior
	Tools for Testing IOMMU Behavior
	Threat Models

	Constructing Eviction Sets
	Initial IOTLB Organization Hypothesis
	A New Approach to Eviction Set Construction

	Analysis of Side-Channel Leakages
	Web Access Leakage
	GPU-Accelerated SQL Database Leakage
	Side-Channel Impact

	Covert Channels
	Covert Channel between Peripherals
	Covert Channel from CPU to Peripheral

	Countermeasures
	Securing Existing Systems
	Securing Future IOMMUs

	Firecracker
	Introduction
	Responsible Disclosure

	Threat Models
	Analysis of Firecracker's Containment Systems
	Analysis of microarchitectural attacks and defenses in Firecracker microVMs
	Medusa
	RIDL and More
	Spectre

	Impact
	Related Works

	DoubleHammer
	Introduction
	Our Contributions

	Threat Model
	Profiling
	OpenSSL Profiling
	DRAM Profiling
	Hammering Techniques

	Collection
	Physical Co-location
	Allocation of a Target Page

	Analysis
	Signature Correction on Adjacent Nonce Faults

	Countermeasures
	Hardware Countermeasures
	Software Countermeasures

	Conclusion
	Appendix Mean Spectral Data Per Site
	Appendix Extended RIDL Mitigations Table

