Antidepressants alter the behavior and physiology of *C. elegans*
Kathryn Nipper (BC and PSY), Emily Stead (BBT), Luigi Apollon (BC)
Advisors: Professor Jagan Srinivasan (BBT), Angela Rodriguez (SSPS), Carissa Olsen (CBC)

Depression affects 264 million people worldwide and is a pressing health crisis(1). Despite this, research regarding the physiology of depression and how egg laying rate is changed(2) is lacking. This study aims to provide insight into these mechanisms by studying the biological effects of one antidepressant, selegiline, a monoamine oxidase inhibitor (MAOI), on *C. elegans*. MAOIs prevent degradation of monoamines, such as serotonin and dopamine, by inhibiting an enzyme called monoamine oxidase(3,4). However, the mechanisms behind antidepressants is largely unknown. This study investigates how egg-laying, thrashing, and lipid composition of *C. elegans* are affected by Selegiline. These functions are modulated by homologous neurotransmitter pathways in humans and in *C. elegans* these same pathways are implicated in depression(5). This research will help to define the pathways with which MAOIs interact to treat depressive symptoms.

Introduction

- Synchronized adult WT worms on treated NGM plate
- Egg count per day

Methodology

Egg-Laying Assay
- Adult Egg Laying Rate Observed for Selegline Treated *C. elegans*

Thrashing Assay
- Thrashing recorded 30 minutes & 24 hours post selegline exposure
- Thrashing assay results indicate that selegline redistributes egg laying significantly decreased frequency of thrashes following acute exposure and normal thrashing was not regained for at least 24 hours (Fig. 2)

Lipid Assay
- Neutral lipid GC-MS relative analysis of lipid samples
- GC/MS relative analysis of lipid samples

Results

Egg-Laying Assay
- Treatment with selegline redistributes egg laying
- Egg laying rate and decreased thrashing indicates dysregulation of neutral lipid GC-MS data

Thrashing Assay
- Selegline Treatment Results in Modified Thrashing in *C. elegans*

Lipid Assay
- Selegline Treatment Changes % FA Composition of Phospholipid in *C. elegans*

Future Research
- Future Research: To better understand the molecular pathways affected by selegline...

References

Acknowledgements

The success of this project was made possible thanks to the support of many individuals whom we would like to acknowledge. First and foremost, we would like to thank our advisor Dr. Jagan Srinivasan, who ceaselessly provided direction and encouragement to our group. We are especially grateful to Professor Angela Rodriguez who was an invaluable asset when it came to the presentation and integration of our studies. Our final thanks go to Professor Carissa Olsen who allowed us to work in her lab and provide interpretation skills needed to analyze our data.

Conclusions, Limitations, and Future Directions

Conclusions:
1. Increased egg laying rate and decreased thrashing indicate selegline activates hermaphrodite specific motor neurons and VC motor neurons
2. Observed pattern of up/down regulation of lipids suggests possible FAT2 and FAT7 dysregulation

Limitations:
1. Stress and contamination seen in egg laying assay by day 5 causing worm death from over handling
2. High variability in lipid assay selegline trials compared to control trials

Future Research:
To better understand the molecular pathways affected by selegline...

- Utilize FAT2 and FAT7 *C. elegans* mutants
- VC circuit knockout
- Dopamine/serotonin receptor mutants