
Project Number: CS-MKH 2008

Manipulations in maple

A Major Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Matthew D. Dailey

Date: May 1, 2009

Approved:

Professor Micha Hofri, Major Advisor

Abstract

The symbolic programming language maple uses different algorithms to find closed forms
for symbolic indefinite summations. These algorithms do not explicitly contain a proce-
dure to interchange the order of summation. As a result, maple will return the original
summation or a small variation of it when simply interchanging the order of summation
would allow for a closed form expression to be found. In this project we look into the task
of interchanging the order of summation over a specific domain, and provide a maple

procedure which automates this task. We then look into identities involving harmonic
numbers which we show through this new procedure, existing maple summation tech-
niques and user manipulation. We then analyze the well known algorithm Quicksort
using these identities. Lastly, we look into the summation procedure by Moenck which
is used by maple for summations of rational functions.

Contents

1 Introduction 3

1.1 Purpose . 4

2 Limitations and Problems 6

2.1 Limitations on Input . 6
2.1.1 Parameter as a double summation 6
2.1.2 Linear bounds . 7

2.2 Problems encountered . 7
2.2.1 Summations being evaluated . 7
2.2.2 maple behavior . 7

3 Implementation in maple 9

3.1 Parsing the input . 9
3.2 Sum Triangle . 9
3.3 Sum Rectangle . 11
3.4 Decide Case . 11

3.4.1 A = 0 and C < 0 . 11
3.4.2 A > 0 and C = 0 . 13
3.4.3 A = 0 and C > 0 . 15
3.4.4 A < 0 and C = 0 . 15
3.4.5 A < 0 and C > 0 . 16
3.4.6 A = 0 and C = 0 . 16
3.4.7 A > 0 and C < 0 . 17
3.4.8 A > 0 and C > 0 . 18
3.4.9 A < 0 and C < 0 . 20

4 Simplifying Harmonic Summations 23

4.1 Example harmonic summations . 23
4.1.1

∑n
k=1 Hk . 23

4.1.2
∑2n

k=1(−1)kHk . 24
4.1.3

∑n

k=1 kHk . 25
4.1.4

∑n
k=1(−1)kkHk . 25

4.1.5
∑n

k=1 k2Hk . 26
4.1.6

∑n

k=1(−1)kk2Hk . 26
4.1.7

∑n
k=1

1
k
Hk . 27

4.1.8
∑n

k=1
Hk

k+1
. 27

1

5 Test Cases 28

5.1 Decide Case . 28
5.2 A < 0 and C = 0 . 28
5.3 A = 0 and C > 0 . 29
5.4 A < 0 and C > 0 . 29
5.5 A = 0 and C = 0 . 30
5.6 A > 0 and C < 0 . 31
5.7 A = 0 and C < 0 . 31
5.8 A > 0 and C = 0 . 32

6 Quicksort 33

6.1 The Quicksort Algorithm . 33
6.2 Expected Value of Quicksort . 33
6.3 Variance of Quicksort . 35

6.3.1 Summing over Hn−r+1 term of 6.6 36

7 Symbolic Summation in maple 39

7.1 Rational Functions . 39
7.1.1 Moenck’s algorithm . 40

8 Conclusion 42

bibliography 43

A maple Source Code 44

A.1 Parsing the input . 44
A.2 Decide Case . 47
A.3 Sum Rectangle . 57
A.4 Sum Triangle . 58
A.5 Test Cases . 61

2

Chapter 1

Introduction

This project aimed to analyze the methods of summation of expressions which arise
from the complexity analysis of algorithms, and to create tools to help perform complex
summations with maple. These summations often contain the harmonic numbers in
some form, and thus particular attention was paid to these functions. Moreover, since
maple often cannot solve simple summations involving these functions, the method of
interchanging the order of summation was analyzed. This process was automated on a
restricted domain. Using this new procedure, identities are developed which are later
used in the analysis of the Quicksort algorithm, which allow for the calculation of the
exact number of expected comparisons. It is shown that the manipulations needed for
calculating the expected value extend to more complicated summations, such as those
which appear in calculating the variance of Quicksort.

The primary interest of this project laid in automating the process of interchanging
the order of summation of simple summations. This process can easily be performed by
hand, but is not attempted in maple, since the general problem of switching the order
of summation is highly dependent upon the assumptions on the bounds of summation.
By assuming certain conditions on these bounds to those summations which are of the
form (1.1), we are able to automate this procedure. We then provide evidence of the new
capability of the summation package in maple, when augmented with this procedure. We
first formalize this problem, and then describe our solution. To demonstrate our solutions’
capabilities, we work through common summations from the Quicksort algorithm. Lastly,
we turn our attention to maple’s method to sum rational functions, and provide an
illustrative example of this method.

We are interested in interchanging the order of summation in summations which are
of the form (1.1).

outerF inal
∑

outerV ar=outerInitial

c·outerV ar+d
∑

innerV ar=a·outerV ar+b

funct(outerV ar, innerV ar) (1.1)

For brevity, we will use i to refer to outerVar and j to refer to innerVar. We denote the
initial value of a variable m by mo and the final value by mf . These will be used for i
and j.

We will also use f to refer to funct. We will refer in this paper to the line c · i + d as
the upper boundary line, and the line a · i + b as the lower boundary line. The area to

3

be summed over is between these two lines.

if
∑

i=io

c·i+d
∑

j=a·i+b

f(i, j) (1.2)

The following diagram illustrates summations of the form (1.2).

-

6

i

j

ci + d

ai + b

τ

δ

η
κ

In the diagram, the point marked by τ is referred to as finalUpper, which is the point
(if , c · if + d).
The point marked by δ is referred to as finalLower, which is the point (if , a · if + b).
The point marked by κ is referred to as initUpper, which is the point (io, c · io + d).
The point marked by η is referred to as initLower, which is the point (io, a · io + b).

We will use the convention of Cartesian coordinates with i referring to the X axis and
j referring to the Y axis. Hence, we will often refer to lines of the form y = m · i + β.

In switching the order of these summations, we are really only interested in the rela-
tionship between a and c as they determine the general shape of the area which we will
be summing over. We are interested in b and d to provide greater insight into the general
shape defined by the two boundary lines. We will make no assumptions on f other than
that it be defined over the range of the initial summation. We leave it to the user to
know if interchanging the order of summation will alter the value of the summation, but
note that for finite summations, the order does not matter.

1.1 Purpose

The primary purpose of my work was to automate the process of interchanging the order
of summation for a double summation in maple. This was motivated by the existence of
many simple summations which could be solved by a computer programing language such
as maple if the order of summation was interchanged. The idea was to use this software
as a subroutine to a procedure such as maple’s sum, which would find intermediate
results if the summation procedure did not return a closed form expression. Since many
of maple’s functions are proprietary, my procedure would need to be part of a larger
software placed on top of the existing summation function, that would call both my
procedure and the summation procedure as subroutines.

This work aimed to aid in the finding closed form expressions for summations which
arose out of the analysis of algorithms. These expressions heavily emphasized summations
involving the harmonic numbers, which are emphasized in later sections. As non primary
goals, I was to become familiar with and proficient at maple as a programming language,

4

to understand the way maple stores functions and other data structures, and to learn
some of the ways in which maple manipulates those structures. I looked at the different
algorithms maple uses to find closed form expressions for indefinite summations, which
I present in a later section. I studied in greater depth Moenck’s Method and a similar
algorithm due to Paule.

A test for my procedure was to work through finding the expected value and variance
of the Quicksort algorithm when given a paper which set up the appropriate summations
with the end result, but which lacked the intermediate steps. My procedure was to be
used in conjunction with manual manipulation and built in maple procedures to arrive
at the closed forms presented in this paper. Many of the identities used in the manual
manipulation involve harmonic numbers and are presented later. Most of their closed
form expressions are found by interchanging the order of summation.

5

Chapter 2

Limitations and Problems

We now discuss some of the initial problems encountered in developing this software.
The problems primarily involved early evaluation of expressions, and weakly typed vari-
ables. These caused additional checks on the type of variables to be performed prior
to their comparison. We also discuss the limitations on the procedure, and state the
reasoning for such design decisions. The name of the procedure which we implemented
is sumOrderChange. It is passed a double summation which is enclosed in single quotes.

2.1 Limitations on Input

2.1.1 Parameter as a double summation

To allow for easier parsing of the double summation whose order is to be interchanged,
a restriction is placed on the parameter which can be passed to sumOrderChange. If
the parameter entered is not a double summation surrounded by single quotes, the input
parameter will be returned. This was to stop maple from evaluating the input parameter.
The decision to use single quotes tells maple not to evaluate the expression as it is being
passed to the procedure. Using the Sum function, which is the inert for of the sum
function, would also accomplish the desired outcome. However, using the inert form
Sum would require the summation to be parsed and reassembled for my subroutine to be
called.

We now look at the restriction of only allowing a double summation to be given to the
procedure. We now explain why this decision was made. If there is only one summation
being entered, there is no need to change the order. If there are multiple summations, it
is unclear how to interchange the order of summation, since there can be different ways
to switch the order. It should also be stated that the double summation cannot be a sub
expression. This functionality can be added by parsing the input until the first double
summation is encountered, and returning the interchanged summation with the constant
values added. These ‘constant values’ can even be other functions of variables, as each
parsed input can be compared with the sum procedure name.

6

2.1.2 Linear bounds

The bounds on the inner summation must be either constant or linear, and cannot include
the floor function or the ceiling function. Linear bounds which have a, c ∈ ±1, 0 avoid
using these functions, which I found empirically to improve finding closed forms using
maple. Also, linear bounds are easily invertible and lead to countinuos ranges being
summed over when the order is interchanged. If this restriction is not placed on the
range, continuous ranges of summation may not always be the case.

For example, we considered the case of using a particular third degree polynomial
for the lower boundary line in a double summation. When interchanging the order of
summation for one such example, we found the following discountiuos range. When j was
equal to 10, i was equal to all elements in 1, 2, 3, 10, 11, ..., n− 1, n. However, it is clearly
seen that this set is not a continuous range, and thus this interchanged summation must
first sum the function for i from 1 to 3 and then from 10 to n.

2.2 Problems encountered

2.2.1 Summations being evaluated

An initial problem we faced with maple was having the summation either be evaluated,
or be partially evaluated when it was sent to the procedure. Therefore, the original
double summation sent to sumOrderChange, may be received in a evaluated form, and
may not even contain a solution. We discovered two possible solutions to fix this problem.
The first was to use the inert form of the sum command, Sum. This tells maple not to
evaluate the parameter, which in our case is the double summation. This solution was not
selected since if this procedure was to be used as a subroutine, the calling procedure would
need to replace both sum’s with their inert form. This requires parsing the summation
in a calling program.

The solution which was used was to have maple treat the double summation as a
symbol by enclosing it in single quotes. When the procedure received this symbol, it
would not be evaluated, regardless of whether sum or Sum was used in the summation.
We later extended this idea of using quotes to delay evaluation by putting single quotes
around each of the sum in certain return statements, which would return an unevaluated
expression while still simplifying the bounds on the summations. If the interchanged
summation was returned from my program while the whole expression was enclosed in
single quotes, the bounds on j and i would not be simplified. Placing quotes just around
sum gave the desired outcome.

2.2.2 maple behavior

A second problem which initially appeared was an unexpected and unexplained behavior
by maple when the bounds of a summation went from high to low. Specifically, we will
examine bounds which go from

(α + k)...α, k ≥ 0 (2.1)

7

with summations which take the form of these bounds.

α
∑

i=α+k

f(i)

If k = 0 then f(α) is returned. If k = 1 then 0 is returned regardless of the function f .
If k ≥ 2 then the following is returned.

−

α+k−1
∑

i=α+1

f(i)

This behavior was initially discovered through certain summations with A > 0 and C < 0.
It quickly became a desired behavior for handling certain types of summations. The
purpose of this behavior is to make the following formula hold for all m.

n
∑

i=1

=

m−1
∑

i=1

+

n
∑

i=m

(2.2)

8

Chapter 3

Implementation in maple

In this chapter, we will examine the implementation used to interchange the order of
summation in maple. We will briefly cover the procedure to parse the input and extract
the necessary elements. We will then examine the procedure corresponding to summing
a function over a triangular area, and then the procedure corresponding to summing
a function over a rectangular area. We will then discuss in detail the procedure called
DecideCase which describes how to determine which particular shape the summation area
is, and how to correctly interchange the order of summation using the sumTriangleB and
sumRectangle functions where appropriate.

3.1 Parsing the input

A necessary condition for interchanging the order of summation of a double summation
is knowing the bounds are of each of the summations. This requires parsing the input to
extract these fields. maple uses layered representations of expressions, meaning to get to
a particular field, such as the bound on the inner summation, many different structures
needed to be indexed.

3.2 Sum Triangle

-

6

6
6

6
6

-

-

-

-

6

Sum triangle is a procedure which is given information about a summation over a trian-
gular region. The restriction is that the base of the triangle, which may be at the top
or the bottom of the triangle, must be horizontal. The height of the triangle must be a
boundary line which is either to the right or to the left of the figure. In other words, the
triangle must have a right angle, a horizontal line of slope zero, and a vertical line with
infinite slope. These two lines along with a diagonal line define the triangle. The calling
of this procedure is done through
sumTriangleB (i, io, if , j, slope, offset, f, isHorUpper, isVertLeft)

9

The parameter isHorUpper corresponds to the base of the triangle. isHorUpper is
true when the horizontal boundary line is at the top of the triangle, and isHorUpper
is false if the horizontal boundary line is at the bottom (base) of the triangle.Similarly,
isV ertLeft is true if the vertical boundary line of the triangle is to the left, and isV ertLeft
is false if the vertical boundary line is to the right of the triangle. The decision to in-
clude both isHorUpper and isV ertLeft is to simplify the procedure and also since the
calling procedure should have additional information about the sum in question. We
note that it is possible to determine isV ertLeft given the slope of the diagonal line and
isHorUpper.This procedure switches the order of summation from the inner summation
being over j, to the inner summation being over i. We briefly examine how this is accom-
plished. Since the area to be summed over is a triangle, as i ranges from io to if , we have
that j will either range from slope · io + offset to slope · i + offset or from slope · i + offset
to slope · io + offset depending upon the orientation of the triangle.

After interchanging the order of summation the outer index of summation will be j.

Therefore, we will need i to range from either
j−offset
slope

to if for a triangle with a vertical

line at i = if , or from io to
j−offset
slope

when the vertical line is at i = io. We notice that

these ranges have integer bounds if slope is either 1 or −1, and therefore, we may need
to take either the floor function or the ceiling function of the bounds on these ranges.

Example

For example, we will take slope = 2 and offset = 0. The triangle will have a horizontal
line at the base and a vertical line at the right. Let the value of i range from 0 to 10.
Now let us look at the particular cases when j = 10 and j = 11. When j = 10, i = 5 and
we wish to sum over values of i from 5 to the boundary line on the right at i = 10. When
j = 11, i = 5.5 and we need to determine if we wish to sum over values of i from 5 to 10,
or from 6 to 10. An inspection reveals the point corresponding (5, 11) is not included in
the range of summation. Therefore, we wish to sum from 6 to 10 or more generally, from
⌈

j−offset
slope

⌉

to 10. We remark that a similar analysis is needed for the other three cases.

We let outerMin and outerMax correspond to the minimum and maximum values
possibly dependent upon j and possibly involving the ceiling and floor functions. We
also let innerMin and innerMax correspond to the minimum and maximum values
,respectively j can take. We then can return a concise statement to interchange the order
of summation. If f is the function we are summing over, then we return
sum(sum(f, i = outMin..outMax),j = inMin..inMax)

Non integer bounds of summation

The sumTriangleB function is capable of being passed non integer parameters for the
bounds of the outer variable of summation. If the denominator of the parameter divides
the slope of the triangle, then this behavior is predictable. There will not be uncertainty
if maple will take the floor or ceiling function on the bounds of the resulting summation.
This behavior can be seen by seeing that the innerMin and innerMax parameters of
sumTriangleB are multiplied by the slope a that is passed in. Therefore if, outerFinal = N

a

then a · outerFinal = N which is an integer. This behavior is taken advantage of in

10

certain cases in the procedure DecideCase, especially when i is solved for when one of
the boundary lines intersects a horizontal line.

3.3 Sum Rectangle

The procedure sumRectangle returns the the order of summation reversed when the area
to be summed is a rectangle. The procedure does not perform error checking to make
sure the summation is from α to α + k, k ≥ 0 to take advantage of maple’s behavior
concerning bounds on summations. The inputs to the procedure are the initial and final
values i achieves, as well as the initial and final values j achieves. Additionally the
function which is summed is also a parameter. The procedure returns
sum(sum(f, i = io..if), j = inLower..inUpper)

3.4 Decide Case

DecideCase is the procedure which takes in the parsed input and decides the general
shape of the area to be summed over. It then calls a combination of sumTriangleB and
sumRectangle with the appropriate parameters. This combination and parameters are
dependent upon the slopes a, c of the boundary lines. We now provide a detailed analysis
for each of the nine combinations of a and c.

3.4.1 A = 0 and C < 0

-

6

i

j

We look at the case in which a = 0 and c < 0. This case corresponds to a triangular
region with the horizontal line at the base and the vertical line at the left, with a rect-
angular region, possibly empty, below this triangle. Here we will add a bound onto this
triangle by the assumption that c · i + d ≥ a · i + b for all values of i in range.

Informally, the base of the triangle cannot exist below the lower boundary line, a·i+b =
b by the assumption that a = 0. Therefore, we will apply this limitation to the triangle and
hence also the rectangle. The purpose is to reduce the number of rectangle summations
which result with sum zero (bounds from α + 1 to α), or a summation which will
correspond to a range, α + m to α where m > 1. As mentioned before, maple will
subtract part of this summation from the total.

To see if the two lines could intersect, we compare the two boundary lines, a · i + b
with c · i + d. More specifically we examine their difference, as b or d are often variables.

11

theDiff

With the assumption that a = 0, we define

theDiff = (c · if + d) − b

We will now examine the possible values theDiff can take.

theDiff equal to zero

If theDiff = 0 then we have that c·if +d = b, which corresponds to the two boundary lines
meeting at the point b, when i = if . We therefore have just a triangle, with horizontal
lower base at the line y = b and vertical line on the left at the line x = io.

In the procedure terms, we return

sumTriangleB(i, io, if , j, c, d, f, false, true)

theDiff greater than zero

If theDiff > 0 then we have that c · if + d > b, which means there is a triangle with a
rectangle of non trivial bounds below it. More specifically, the triangle has horizontal
lower base at the line y = (c · if + d) and vertical line on the left at the line x = io. The
rectangle is surrounded by the four lines, x = io , x = if , y = b , y = (c · if + d) − 1.
The −1 is since bounded points of summation are given to triangles over rectangles, as
through my analysis, more closed forms arose out of this decision. The line y = b is
equivalent to the line y = initLower. We note that the above case, (theDiff = 0) can be
handled the same way as this current case, since the sumRectangle function will return
sum zero.

In the procedure terms, we return
sumTriangleB(i, io, if , j, c, d, f, false, true)+
sumRectangle(i, io, if , j, initLower, finalUpper - 1, f)

theDiff less than zero

If theDiff < 0 then we have that c · if + d < b, which strictly speaking would violate the
assumptions on the boundary lines. However, if the difference is one, maple returns sum
0. We will assume a smart user and will return the area where the assumption on the
two boundary lines hold. We must now define the point at which these two lines meet,
which will be considered the greater value that i attains on the interval. Define

outerMax = ⌊
b − d

c
⌋

which corresponds to the value of i in c · i+d = b. We then sum the triangle for all values
of i ≤ outerMax. The claim is that there will not be any points missed or extra points
included by outerMax being a dependent upon the floor function. We show this later
and return to the current case. In this case we return just the triangle with horizontal
lower base at line y = b and vertical line on the left at the line x = io. The value of the
area corresponding to i > outerMax will be assumed to be zero, which is justified by the
assumption of a smart user.

12

In the procedure terms, we return
sumTriangleB(i, io, outMax, j, c, d, f, false, true)

Proof points are not missed

We set m := (b−d)
c

. To make sure area is not missed, we examine two subcases. In the
first, m is an integer, and in the second, m is not an integer.
m is an integer

If m is an integer then it is immediate that no area will be missed as c < 0 and hence for
values of i greater than m, the upper boundary line will be below the lower boundary line.
In other words, if i increases by 1 and c < 0, then when cm+d = b, then c(m+1)+d < b.
m is not an integer

By the definition of outerMax, it is claimed there will be no area missed in which i >
outerMax. This is shown by c · outerMax + d > b, as the upper boundary line has a
negative slope. Also, c · (outerMax + 1) + d < b, since the upper boundary line is linear
and the intersection value m is such that outerMax < m < (outerMax + 1). Therefore,
outerMax is a proper stopping value for i.

3.4.2 A > 0 and C = 0

-

6

i

j

We examine the case in which a > 0 and c = 0. This case corresponds to a triangular
region with the horizontal line at the top and the vertical line at the left, with a rect-
angular region, possibly empty, above this triangle. Here we will add a bound onto this
triangle by the assumption that c · i + d ≥ a · i + b for all values of i in range.

Informally, the top of the triangle cannot exist above the upper boundary line, c·i+d =
d by the assumption that c = 0. Therefore, we will apply this limitation to the triangle and
hence also the rectangle. The purpose is to reduce the number of rectangle summations
which result with sum zero (bounds from α + 1 to α), or a summation which will
correspond to a range, α + m to α where m > 1. As mentioned before, maple will
subtract part of this summation from the total.

To see if the two lines could intersect, we compare a·i+b with c·i+d. More specifically
we examine their difference, as b or d are often variables.

theDiff

Define
theDiff = (a · if + b) − d

13

where initUpper = a · if + b and initUpper = c · io + d which is just d since c = 0. We will
now examine the possible values theDiff can take.

theDiff equal to zero

If theDiff = 0 then we have that a·if +b = d, which corresponds to the two boundary lines
meeting at the point d, when i = if . We therefore have just a triangle, with horizontal
upper base at the line y = d and vertical line on the left at the line x = io.

In the procedure terms, we return
sumTriangleB(i,io, if , j, a, b, f, true, true)

theDiff less than zero

If theDiff < 0 then we have that a · if + b < d, which means there is a triangle with a
rectangle of non trivial bounds above it. More specifically, the triangle has horizontal
upper base at the line y = (a · if + b) and vertical line on the left at the line x = io. The
rectangle is surrounded by the four lines, x = io, x = if , y = d, y = (a ·if +b)+1. The +1
is since bounded points of summation are given to triangles over rectangles, as through
my analysis, more closed forms arose out of this decision. The line y = d is equivalent to
the line y = initUpper.

In the procedure terms, we return
sumTriangleB(i, io, if , j, a, b, f, true, true) +
sumRectangle(i, io, if , j, initUpper, finalLower + 1, f)

theDiff greater than zero

If theDiff > 0 then we have that a · if + b > d, which strictly speaking would violate the
assumptions on the boundary lines. However, if the difference is one, maple returns sum
0. We must now define the point at which these two lines meet, which will be considered
the greater value that i attains on the interval.

Define
outerMax = ⌊(d − b)/a)⌋

which corresponds to the value of i in a · i + b = d. See the case A = 0 and C < 0 for a
proof of the correctness of outerMax.

Here we will return just the triangle with horizontal upper base at line y = d and
vertical line on the left at the line x = io. The value of the area corresponding to
i > outerMax will be assumed to be zero, which is justified on the condition of the
boundary lines.

In the procedure terms, we return
sumTriangleB(i, io, outerMax, j, a, b, f, true, true)

14

3.4.3 A = 0 and C > 0

-

6

i

j

We now examine the case in which a = 0 and c > 0. Here we have a lower rectangular
region and a triangular region with horizontal lower base and vertical line to the right. We
return the triangle region and the rectangle region, with the convention of giving the line
y = initUpper to the triangle. This will be reflected in the rectangle with the argument
initUpper − 1. The rectangle is bounded by the lines x = io, x = if , y = initLower,
y = initUpper − 1.

In procedural terms, we return
sumTriangleB(i, io, if , j, c, d, f, false, false) +
sumRectangle(i, io, if , j, initLower, initUpper - 1, f)

3.4.4 A < 0 and C = 0

-

6

i

j

The next case is when a < 0 and c = 0. By the assumptions on the boundary lines,
the two boundary lines cannot intersect. The area enclosed is an upper rectangle and a
triangle below it with horizontal upper base and vertical line at the right. The rectangle
is bounded by the lines x = io, x = if , y = initUpper, y = initLower + 1. Again the
initLower + 1 is due to giving a shared boundary line to the triangle.

In procedural terms, we return
sumTriangleB(i, io, if , j, a, b, f, true, false) +
sumRectangle(i,io, if , j, initLower + 1, initUpper)

15

3.4.5 A < 0 and C > 0

-

6

i

j

The next case is when a < 0 and c > 0. By the assumption on the boundary lines,
the boundary lines cannot intersect. The area enclosed is two triangles, with a rectangle
between the two triangles, with all three figures possibly sharing a common horizontal
line. The first triangle lies above the rectangle with a horizontal lower base at the line
y = initUpper and vertical line at the right The second triangle is below the rectangle
with a horizontal upper base at the line y = initLower and vertical line to the right. The
rectangle is bounded by the lines x = io, x = if , y = initLower + 1, y = initUpper − 1.
Again the 1 corresponds to the triangle receiving the overlapping area. We note that
if all three figures share a common horizontal line, the rectangle will subtract the area
which is double counted by the two triangles, due to a maple behavior on summations.
We return the upper triangle, the lower triangle and the rectangle.

In procedural terms, we return
sumTriangleB(i, io, if , j, c, d, f, false, false) +
sumTriangleB(i, io, if , j, a, b, f, true, false) +
sumRectangle(i, io, if , j, initLower + 1, initUpper - 1)

3.4.6 A = 0 and C = 0

-

6

i

j

The next case is when a = 0 and c = 0, which corresponds to a rectangular region.
This region is bounded by the lines x = io, x = if , y = b, y = d. We remark that
initLower = finalLower = b and initUpper = finalUpper = d. In this case we return this
rectangle.

In procedural terms, we return
sumRectangle(i, io, if , j, initLower , initUpper)

16

3.4.7 A > 0 and C < 0

-

6

i

j

The next case is when a > 0 and c < 0. This case corresponds to an upper triangle
with horizontal lower base at the line y = finalUpper and vertical line to the left, a
lower triangle with horizontal upper base at the line y = finalLower and vertical line to
the left, and a rectangle in between the two triangles. The potential overlap of the two
boundary lines would correspond to the two lines meeting at the point (if , f inalLower) =
(if , f inalUpper). In other words, the two triangles formed by the boundary lines may or
may not meet in a point.

Intersecting boundary lines

If it can be determined that the two triangles meet at a point, (a · if + b = c · if +d), then
the horizontal line y = finalUpper, which includes this point, represents an area which
will be computed by both triangles. As a result, we need to subtract the area of the
rectangle bounded by the lines x = io, x = if , y = finalLower, y = finalUpper. Here, we
note that finalLower = finalUpper.

In procedural terms, we return
sumTriangleB(i, io, if , j, c, d, f, false, true) +
sumTriangleB(i, io, if , j, a, b, f, true, true) -
sumRectangle(i, io, if , j, finalLower, finalUpper)

Possible non intersecting boundary lines

If we cannot determine if the two triangles meet at a point, then we cannot determine
the difference. Define

theDiff = finalUpper− finalLower

If theDiff were to equal 0, we would have the sub case defined above, where we
subtracted a rectangle. If theDiff, was greater than 0 then we would want to add the
area of the rectangle bounded by the horizontal lines, y = finalLower + 1 and y =
finalUpper − 1, (possibly zero area) to the summation. Since we have two different
results depending upon a difference which cannot be determined, we rely on the maple

behavior for summations.
The sum from α + k to α where k > 2 is the negative of the sum from α + 1 to

α + (k − 1) Therefore, in either case, we can simply return the two triangles and the
rectangle with appropriate bounds. In other words, if the two lines meet, the behavior
for the program is the same. If the two triangles share a boundary line, the rectangle

17

will subtract this area. If they do not, the rectangle will add the appropriate area. We
return the upper triangle, the lower triangle and the rectangle.

In procedural terms, we return
sumTriangleB(i, io, if , j, c, d, f, false, true) +
sumTriangleB(i, io, if , j, a, b, f, true, true) +
sumRectangle(i, io, if , j, finalLower + 1, finalUpper - 1)

3.4.8 A > 0 and C > 0

The next case is when a > 0 and c > 0. This case can correspond to different areas
depending upon if the lower boundary line, a·i+b intersects the horizontal line containing
the initial upper boundary line point, c · io + d. We will go through these two cases and
describe why additional information is needed on this possible intersection.

No intersection of lower boundary line with y = initialUpper

-

6

i

j

If the lower boundary line a · i + b is strictly less than or equal to any value (y-value)
the upper boundary line achieves, the area is simply a rectangle and two triangles. Specif-
ically, there is an upper triangle with horizontal lower base at the line y = initialUpper
and vertical line on the right. There is a lower triangle with horizontal upper base at the
line y = finalLower and vertical line on the left. There is also a rectangle of possibly
zero area (maple sum zero) bounded by the lines x = io, x = if , y = finalLower + 1,
y = initialUpper − 1. The area of the rectangle will not be subtracted by the assump-
tion that the largest value finalLower can achieve is initialUpper. The rectangle is not
guranteed to add area either.

In procedural terms, we return
sumTriangleB(i, io, if , j, c, d, f, false, false) +
sumTriangleB(i, io, if , j, a, b, f, true, true) +
sumRectangle(i, io, if , j, finalLower + 1, initialUpper - 1)

18

Intersection of y = a · i + b with y = initialUpper

-

6

i

j

σζ

If the lower boundary line a · i + b is strictly greater (for all values of i large enough)
than the line y = initUpper, the area enclosed can include a trapezoid. The point of
interesction between the horizontal line containing the initial upper boundary line point,
y = initialUpper and the lower boundary line needs to be determined in terms of i. In
other words, the value of i when initialUpper = a · i + b needs to be determined.

We represent this intersection point by σ in the above diagram and formally define
initIntersect.

initIntersect := (initialUpper − b)/a

If initIntersect < outerFinal then there is either a non right angle triangular area or a
trapezoidal area with a triangular area. The existence of these regions depend on if the
lower boundary line intersects the upper boundary line when i = if .

No intersection of boundary lines intersect in final y-values

If the lower boundary line does not intersect the upper boundary line at if (shown in
above diagram), then there is a difference between the points corresponding to c·if +d and
a·if +b, which corresponds to an upper triangular area with a right angle. More precisely,
there is an upper triangular region with lower horizontal base at the line y = finalLower,
and a vertical line on the right. The starting value of i for this triangle needs to be
determined. The starting value is equal to i when c · i + d = finalLower.

We show this point in the above diagram by ζ and now formally define triIntersect.

triIntersect :=
(finalLower − d)

c

There is also a trapezoidal area bounded by the lines y = initialUpper, y = finalLower,
y = c · i + d, y = a · i + b. We return the area of the upper triangle, the area of the
trapezoid, plus the area of the lower triangle.

In procedural terms, we return
sumTriangleB(i, triIntersect, if , j, c, d, f, false, false) +
’sum’(’sum’(f, i=⌈(j − d)/c⌉..⌊(j − b)/a⌋), j =initUpper+1..finalLower-1)+
sumTriangleB(i, io, initIntersect, j, a, b, f, true, true)

19

Intersection of boundary lines at final y-values

-

6

i

j

If the two lines intersect at this point (if , finalUpper) = (if , finalLower), then there is
a triangular area without a right angle (above y = initUpper). The boundary lines of
this triangle are y = initialUpper, y = c · i + d, y = a · i + b. For this area we return
a double sum, remembering not to double count the area of the lower triangle. We also
need to return the lower triangle, which we do by passing possible a non-integer value to
sumTriangleB. This is valid since the denominator of the value will be equal to the slope
of the triangle. Therefore we return the upper triangle and the lower triangle.

In procedural terms, we return
’sum’(’sum’(f, i =⌈(j − d)/c⌉..⌊(j − b)/a⌋), j=initUpper + 1..finalUpper) +
sumTriangleB(i, io, initIntersect, j, a, b, f, true, true)

3.4.9 A < 0 and C < 0

The next case is when a < 0 and c < 0. This case can correspond to different areas
depending upon if the upper boundary line, c·i+d intersects the horizontal line containing
the initial lower boundary line point, a · outerInitial + b. We will go through these two
cases and describe why additional information is needed on this possible intersection.

No intersection of upper boundary line with y = initLower

-

6

i

j

If the the upper boundary line c · i + d is strictly greater than or equal to the line
y = initLower, the area is simply rectangles and triangles. Specifically, there is an upper
triangle with horizontal lower base at the line y = c · if + d and vertical line on the
left. There is a lower triangle with horizontal upper base at the line y = a · io + b and
vertical line on the right. There is also a rectangle of possibly zero area (maple sum
zero) bounded by the lines x = io, x = if , y = initialLower + 1, y = finalUpper − 1. In

20

this case, the area of the rectangle will never be subtracted as its its summation variable
will be from low to high.

In procedural terms, we return
sumTriangleB(i, io, if , j, c, d, f, false, true) +
sumTriangleB(i, io, if , j, a, b, f, true, false) +
sumRectangle(i, io, if , j, initLower + 1, finalUpper - 1)

Intersection of upper boundary line with with y = initialLower

-

6

σζ
i

j

If the upper boundary line c · i + d is strictly less (for all values of i large enough)
than the value of the lower boundary line at i = io, defined as y = initialLower, the area
enclosed can include a trapezoid. The point of intersection between y = initialLower and
the upper boundary line needs to be determined in terms of i. In other words, the value
of i when initialLower = c · i+d needs to be determined. We show this intersection point
in the diagram above with σ and now formally define initIntersect.

initIntersect := (initialLower− d)/c

We now look at where this intersection takes place, in terms of i. If initIntersect <
if , then below the horizontal line, y = initialLower there is either a non right angle
triangular area or a trapezoidal area with a triangular area. The existence of these
regions depend on if the lower boundary line intersects the upper boundary line at i = if .

No intersection of boundary lines in final y-values

If the upper boundary line does not intersect the lower boundary line at i = if (shown in
above diagram), then there is a difference between the points (if , c·if +d) and (if , a·if +b).
This difference defines a lower triangular area with a right angle. More precisely, there is
an lower triangular region with upper horizontal base at the line y = finalUpper (shared
boundaries given to triangles), and a vertical line on the right. The starting value of i
for this triangle needs to be determined. The starting value is equal to i when a · i + b =
finalUpper. We show this intersection in the above diagram with ζ and now formally
define triIntersect.

triIntersect :=
(finalUpper − b)

a

There is also a trapezoidal area bounded by the lines y = initialLower − 1, y =
finalUpper + 1, y = c · i + d, y = a · i + b. We return the area of the triangle plus the

21

area of the trapezoid when triIntersect =
(finalUpper−b)

a
. In this case we return the upper

triangular area, the lower triangular area and the trapezoidal area.
In procedural terms, we return

sumTriangleB(i, io, initIntersect, j, c, d, f, false, true)+
sumTriangleB(i, triIntersect, if , j, a, b, f, true, false) +

’sum’(’sum’(f, i =⌈ (j−b)
a

⌉..⌊ (j−d)
c

⌋), j =initLower-1..finalUpper+1)

Intersection of boundary lines at final y-values

-

6

j

i

If the two boundary lines intersect at this point ((if , finalUpper) = (if , finalLower)),
there is a triangular area without a right angle. The boundary lines of this triangle are
y = initialLower-1, y = c · i + d, y = a ∗ i + b. For this area we return the area of the
original upper triangle and a double sum for this triangle area.

In procedural terms, we return
sumTriangleB(i, io, initIntersect, j, c, d, f, false, true) +

’sum’(’sum’(f, i =⌈ (j−b)
a

⌉..⌊ (j−d)
c

⌋), j =initialLower-1..finalLower)

22

Chapter 4

Simplifying Harmonic Summations

In this chapter we will use the procedure to aid in the finding of closed forms for particular
summations involving Harmonic numbers. The particular case will be to show the desired
sum and identify it as one of the nine cases. Then we will evaluate the sum using maple,
and then once again after interchanging the order of summation. In this section we will
often write the Harmonic numbers as an explicit sum

∑k

j=1
1
j

instead of Hk. We have that

Hn ≈ ln(n) + γ where γ = 0.57721 · · · is Euler’s constant which means asymptotically
the two functions are similar.

maple uses the Psi function instead of the harmonic numbers to represent the sum
of the reciprocals of the first n numbers. Therefore, this section will contain the Psi
function. If the maple procedure returned a result involving the Psi function, the result,
if possible, would be switched to the harmonic number representation using the identity
Hn = Ψ(n + 1) − γ.

4.1 Example harmonic summations

In this section, all bounds of the inner summation will be of the form a = 0, c = 1 unless
otherwise stated. This area corresponds in most cases to a triangle.

4.1.1
∑

n

k=1
Hk

Here we will sum the Harmonic numbers.

n
∑

k=1

Hk (4.1)

We first write this as the double summation,

n
∑

k=1

k
∑

j=1

1

j
(4.2)

maple gives the following closed form for this expression, when written as Hk. The
reason for this behavior could be an internal table which maple references the summation.

Hn+1(n + 1) − n − 1 (4.3)

23

maple gives the following closed form for this expression when Hk is written explicitly.
We change the Ψ function into the harmonic function when possible to simplify the
expressions.

((n + 1)2 − n − 4)Hn+1 + (5 − (n + 1)2 + 2n)Hn+2 − 3 (4.4)

The result of interchanging the order of summation is

n
∑

j=1

n
∑

k=j

1

j
= (n + 1)Hn − n (4.5)

We note that if we were to write this in terms of Hn+1 then the 1
n+1

term would be

multiplied by 1
n+1

and would equate to 1. Hence we would need to subtract 1 from the
sum and this equivalent form would be equation 4.3.

4.1.2
∑

2n

k=1
(−1)kHk

Here we will look at summing the alternating Harmonic numbers.

2n
∑

k=1

(−1)kHk (4.6)

We note that this series is telescoping. We write the above summation as

2n
∑

k=1

k
∑

j=1

(−1)k 1

j
(4.7)

maple does not give a closed form for this expression, when written as Hk. maple

simply returns equation 4.6 as labeled.
maple gives the following closed form for this expression when Hk is written out

explicitly.

−1

2
γ((−1)2n+1 + 1) +

2n
∑

k=1

(−1)kΨ(k + 1) (4.8)

We note that 4.8 is simply writing harmonic(k) as Ψ(k + 1) + γ and then extracting the
γ terms from the summation.

The result of interchanging the order of summation is

2n
∑

j=1

2n
∑

k=j

(−1)k

j
= −

1

2
(−1)2n+1H2n +

1

4
(Hn − Ψ(n +

1

2
)) −

1

2
ln(2) (4.9)

Summation 4.7 is actually a Telescoping series. maple does not seem to look for sim-
ple telescoping series although that is the method that it uses to sum rational functions.
We may write sum 4.7 as −H1+H2−...−H2n−1+H2n. The terms can be grouped together
and we may also rewrite this summation as (H2−H1)+(H4−H3)+ ...+(H2n−H2n−1) =
1
2
Hn

24

4.1.3
∑

n

k=1
kHk

Here we will look at summing k times each kth Harmonic number.

n
∑

k=1

kHk (4.10)

We write the above summation as
n
∑

k=1

k
∑

j=1

k
1

j
(4.11)

maple gives the following closed form expression, when written as Hk.

1

2
Hn+1(n + 1)2 −

1

4
(n + 1)2 +

3

4
(n + 1) −

1

2
(n + 1)(Hn+1 + 1) (4.12)

maple gives the following closed form for this expression when Hk is written out
explicitly.

(
1

4
(n + 1)2 +

1

2
n −

1

4
)(n + 1)Hn+1 +

1

4
(n + 1 − (n + 1)2(n + 2)Hn+2 (4.13)

The result of interchanging the order of summation is

n
∑

j=1

n
∑

k=j

k

j
= −

1

4
(n + 1)2 +

3

4
n +

1

4
+

1

2
n(n + 1)Hn (4.14)

We note that both equation 4.13 and 4.14 simplify to

1

2
nHn−1(n + 1) −

1

4
n2 +

3

4
n +

1

2
=

n(n + 1)

2
Hn −

n(n − 1)

4
(4.15)

4.1.4
∑

n

k=1
(−1)kkHk

Here we will look at summing the alternating series of k times each kth Harmonic number.
We write the above summation as

n
∑

k=1

k
∑

j=1

(−1)kk
1

j
(4.16)

maple returns equation 4.16 when written as Hk.
maple gives the following closed form for this expression when Hk is written out

explicitly.
The result of interchanging the order of summation is

−1
2
(−1)n+1Hn

(

n + 1
2
− 1

4
((−1)n+1 + 1

)

+1
8

(

2 ln(2) + (−1)n+1Ψ(1 + 1
2
n) + (−1)nΨ(1

2
(n + 1))

)

We note that again we are finding the half integer Ψ function. We note this is because
different results are to be returned if n is an odd integer or if n is an even integer.

25

4.1.5
∑

n

k=1
k2Hk

Here we will look at summing k2 times each kth Harmonic number.

n
∑

k=1

k2Hk (4.17)

We write the above summation as

n
∑

k=1

k
∑

j=1

k21

j
(4.18)

maple gives the following closed form expression, when written as Hk.

(n + 1)3
(1

3
Hn+1 −

1

9

)

+ (n + 1)2
(

−
1

2
Hn+1 +

1

12

)

+ (n + 1)
(1

6
Hn+1 +

1

36

)

(4.19)

maple gives the following closed form for this expression when Hk is written out
explicitly.

n3
(1

3
Hn−1 −

1

9

)

+ n2
(1

2
Hn−1 +

5

12

)

+ n
(1

6
Hn−1 +

19

36

)

+
1

6
(4.20)

The result of interchanging the order of summation is

−(n + 1)31

9
+ (n + 1)2 5

12
− n

17

36
−

11

36
+

1

6
n(2n2 + 3n + 1)Hn (4.21)

Equation 4.21 simplifies to equation 4.20.

4.1.6
∑

n

k=1
(−1)kk2Hk

Here we will look at summing the alternating series of k2 times each kthHarmonic number.

n
∑

k=1

(−1)kk2Hk (4.22)

We write the above summation as
n
∑

k=1

(−1)kk2Hk (4.23)

maple gives the following closed form expression, when written as Hk.

−1
8

1
(n+1)2

(

6(n + 1)2 − 3n − 4
)(

(−1)n+1(n + 1)2Hn+1

)

− 1
8

1
n+2

(

2n + 1
)(

(−1)n+2(n + 2)2Hn+2

)

+ 1
8

maple gives the following closed form for this expression when Hk is written out
explicitly.

1

2
(−1)nn2Hn−1 +

3

4
n(−1)n +

1

2
(−1)nHn−1 +

1

8
+

3

8
(−1)n (4.24)

The result of interchanging the order of summation is the same as equation 4.24 when
simplified.

26

4.1.7
∑

n

k=1

1

k
Hk

Here we will look at summing 1
k

times each kth Harmonic number.

n
∑

k=1

1

k
Hk (4.25)

We write the above summation as

n
∑

k=1

k
∑

j=1

1

k

1

j
(4.26)

maple does not simplify equation 4.25 when written as Hk, when written out ex-
plicitly or after interchanging the order of summation. After interchanging the order of
summation it is apparent that H2

n is in the solution. This is shown in the equation below.
The interchanged form is

n
∑

j=1

n
∑

k=j

1

k

1

j
=

n
∑

j=1

1

k

n
∑

k=j

1

j
=

n
∑

j=1

1

j
(Hn − Hj−1) (4.27)

The closed form is 1
2

(

H2
n + H

(2)
n

)

.

4.1.8
∑

n

k=1

Hk

k+1

Here we will look at summing 1
k+1

times each kth Harmonic number.

n
∑

k=1

Hk

k + 1
(4.28)

We write the above summation as

n
∑

k=1

k
∑

j=1

1

k + 1

1

j
(4.29)

maple gives the following closed form expression, when written as Hk.

1

2

(

H2
n+1 + Ψ(1, n + 2) −

π2

6
− (1 − γ)2 − 2γ + 1

)

(4.30)

maple does not give a closed form when Hk is written out explicitly or after in-
terchanging the order of summation. We note that equation 4.29 gives the closed form

1

2

(

H2
n+1 − H

(2)
n+1

)

(4.31)

27

Chapter 5

Test Cases

In this section we will test the procedures described previously. We will use simple
functions to allow for maple to find a closed form expression. We are only proving
the correctness of the procedures in this section, and are not attempting to show its
effectiveness.

5.1 Decide Case

The general format of this section will be to show a summation, maple’s evaluation of
that expression, which may have the simplify procedure applied to it. Then the same sum-
mation after the order has been interchanged will be shown. This will also be evaluated
for a closed form, and possibly simplified. Then, the difference of the two summations
(original and interchanged) will be displayed. If the result is not zero, as often occurs if
the new summation involves floor or ceiling functions, then numerical values for n will
be substituted and the resultant summations numerically evaluated, with the difference
being displayed.

5.2 A < 0 and C = 0

The maple display to the input ′’sum(sum(i + j, j = −i + 2..1), i = 1..n)′ is

n
∑

i=1

1
∑

j=−i+2..1

i + j (5.1)

We then evaluate the summation which gives us the left hand side and after simplification
gives us the right hand side of below.

1

2
(n + 1)2 −

2

3
n −

2

3
+

1

6
(n + 1)3 =

1

6
n3 + n2 +

5

6
n

After calling sumOrderChange (′’sum(sum(i + j, j = −i + 2..1), i = 1..n)′) we see that
this particular summation only involves a triangular area, which can be seen by inspecting
the bounds of the inner summation when i is at its minimum value, 1. We have that

28

−i + 2 = −(1) + 2 = 1 and hence the lower and upper boundary lines intersect at this
initial value of i. The result of this procedure call is

1
∑

j=−n+2

n
∑

i=−j+2

(i + j) (5.2)

When simplified this expression gives the same value as 5.1. The result of evaluation is

n2 +
4

3
+

5

6
n −

1

2
(−n + 2)n2 −

1

2
n(−n + 2)2 −

1

6
(−n + 2)3

5.3 A = 0 and C > 0

This example consists of a triangular region which sits above a rectangular region. The
triangular region is upper bounded by the line y = −1. Notice how this line is given to
the triangle function and not to the rectangle function in 5.4. The maple display to the
input ′’sum(sum(i2j, j = −i..1), i = 1..n)′ is

n
∑

i=1

1
∑

j=−i

i2j (5.3)

When evaluated this summation returns

5

12
(n + 1)3 −

5

8
(n + 1)2 +

11

60
(n + 1) −

1

10
(n + 1)5 +

1

8
(n + 1)4

After calling sumOrderChange (′’sum(sum(i2j, j = −i..1), i = 1..n)′), we are returned

−1
∑

j=−n

n
∑

i=−j

i2j +

1
∑

j=0

i2j (5.4)

This is evaluated into two results, which are

(

−
1

10
n5 −

3

8
n4 −

1

12
n3 +

3

8
n2 +

11

60
n
)

+
(1

3
(n + 1)3 −

1

2
(n + 1)2 +

1

6
(n + 1)

)

The evaluations of 5.3 and 5.1 agree when they simplified.

5.4 A < 0 and C > 0

We now present an example in which we have two triangle regions which are separated
by a rectangular region. The common boundary line between the rectangle and one of
the triangles will be given to the respective triangle which can be seen in5.6. The maple

display to the input ′’sum(sum(i + j, j = −i..i), i = 1..n)′ is

n
∑

i=1

i
∑

j=−i

i + j (5.5)

29

The simplified evaluation to 5.5 is

2

3
n3 +

3

2
n2 +

5

6
n

After calling sumOrderChange (′’sum(sum(i + j, j = −i..i), i = 1..n)′), we are returned

m
∑

j=1

n
∑

i=j

(i + j) +
−1
∑

j=−n

n
∑

i=−j

(i + j) +
∑

j = 00
n
∑

i=1

(i + j) (5.6)

This equation simplifies to the same result as 5.5.

5.5 A = 0 and C = 0

When both a and c are 0, we have just a rectangular region. This first example will be
a single line. The maple display to the input ′’sum(sum(i + j, j = 1..1), i = 1..n)′ is

n
∑

i=1

1
∑

j=1

i + j (5.7)

This equation evaluates to the left hand side and simplifies to the right hand side of

1

2
(n + 1)2 +

1

2
n −

1

2
=

1

2
n2 +

3

2
n

After interchanging the order of summation by calling
sumOrderChange (′’sum(sum(i + j, j = 1..1), i = 1..n)′), we are returned

1
∑

j=1

n
∑

i=1

i + j (5.8)

This evaluates to and simplifies to the exactly as 5.7 and hence the two summations are
equal.

We now present a slightly less trivial example in which a rectangle is summed over as
opposed to just a line. The maple display to the input ′’sum(sum(i + j, j = 1..k), i =
1..n)′ is

n
∑

i=1

k
∑

j=1

i + j (5.9)

This equation evaluates to the left hand side and simplifies to the right hand side of the
following.

1

2
(n + 1)k2 +

1

2
k(n + 1)2 −

1

2
(k2 + k) =

1

2
k2n +

1

2
kn2 + kn

After interchanging the order of summation by calling
sumOrderChange (′’sum(sum(i + j, j = 1..k), i = 1..n)′), we are returned

k
∑

j=1

n
∑

i=1

i + j (5.10)

This evaluates to the same as 5.9 with n and k interchanged, and simplifies to the same
as 5.9

30

5.6 A > 0 and C < 0

With the conditions on a and c we are looking at two triangles which may meet each
other or may share a common boundary line. The maple behavior on sums allows us to
give a single return expression when interchanging the order of summation. We will go
through three examples where the difference between the final two points is 0, 1 and 2.

In this first test, the difference between the final two boundary lines is 0 and hence
they intersect at their final values. The maple display to the input ′’sum(sum(i+ j, j =
i − 2 · n.. − i), i = 1..n)′ is

n
∑

i=1

−i
∑

j=i−2n

i + j (5.11)

This equation gives a long expression which simplifies to

1

2
(n)2 +

1

6
n −

2

3
n3

After interchanging the order of summation by calling
sumOrderChange (′’sum(sum(i + j, j = i − 2 · n.. − i), i = 1..n)′), we are returned two

triangles with the area of the common boundary line subtracted through a rectangular
area which is degenerated into just a line. The returned summation is

−1
∑

j=−n

−j
∑

i=1

(i + j) +

−n
∑

j=1−2n

j+2n
∑

i=1

(i + j) −

−n
∑

j=−n

n
∑

i=1

(i + j) (5.12)

This evaluates to an even longer expression than 5.11 and simplifies to the same as 5.11
and hence the two summations are equal.

5.7 A = 0 and C < 0

Here we will look at a triangle region with a possible empty rectangular region below it.
This case will not have the two boundary lines touching which is seen by looking at the
inner summation bounds, specifically n + 1− i = n + 1− n = 1 6= 0. The maple display
to the input ′’sum(sum(1

i+j
, j = 0..n + 1 − i), i = 1..n)′ is

n
∑

i=1

n+1−i
∑

j=0

i + j (5.13)

This equation returns an expression involving the Ψ function. The evaluation of 5.13 is
(

(n + 1)2 − n − 2)(Ψ(n + 2) − Ψ(n + 1)
)

+1

After interchanging the order of summation by calling
sumOrderChange (′’sum(sum(1

i+j
, j = 0..n+1−i), i = 1..n)′), we are returned a triangle

and a rectangle, with the shared boundary line at y = 1 given to the triangle. The
returned summation is

n
∑

j=1

−j+n+1
∑

i=1

1

i + j
+

0
∑

j=0

n
∑

i=1

1

i + j
(5.14)

31

This evaluates to
(

5 − (n + 1)2 + 2n
)(

Ψ(n + 2) − Ψ(n + 3)
)

− Ψ(n + 2) + 3 + Ψ(n + 1)

Both of these returned forms simplify to (n+2)n
n+1

and hence are equal.

5.8 A > 0 and C = 0

Here we look at a triangular region with a possible empty rectangular region above it. In
this first test, the two boundary lines do not touch at the final value. The maple display
to the input ′’sum(sum(i + j, j = i + 2..n + 4), i = 1..n)′ is

n
∑

i=1

n+4
∑

j=i+2

i + j (5.15)

This equation returns a polynomial expression which is

1

2
n3 + 4n(n + 1+

7

2
n − 1 +

1

2
n(n + 1)2 +

3

2
(n + 1)2 −

1

2
(n + 1)3

After interchanging the order of summation by calling
sumOrderChange (′’sum(sum(i + j, j = i + 2..n + 4), i = 1..n)′), we are returned a

triangle and a rectangle, with the shared boundary line at y = n+2 given to the triangle.
The returned summation is

n+2
∑

j=3

j−2
∑

i=1

(i + j) +

n+4
∑

j=n+3

n
∑

i=1

(i + j) (5.16)

This evaluates to
1

2
(n + 3)3 −

5

2
(n + 3)2 + 1 + (n + 1)2 + (n + 1)(n + 3) + (n + 1)(n + 4)

The difference of these two summations is 0 and hence they are equal.
The following test has the two boundary lines touch in the final value. The maple

display to the input ′’sum(sum(1
j(j+2)

, j = i..n), i = 1..n)′ is

n
∑

i=1

n
∑

j=i

1

j(j + 2)
(5.17)

This equation returns a polynomial which is a complicated expression involving a rational
function of n multiplied by the Ψ function. After interchanging the order of summation
by calling
sumOrderChange (′’sum(sum(1

j(j+2)
, j = i..n), i = 1..n)′), we are returned a triangle.

The returned summation is
n
∑

j=1

j
∑

i=1

1

j(j + 2)
(5.18)

This evaluates to

Ψ(n + 3) −
3

2
+ γ

This closed form agrees with maple simplification of 5.17 when values for n are inputted,
with n ≤ 1000.

32

Chapter 6

Quicksort

6.1 The Quicksort Algorithm

Quicksort is a recursive sorting algorithm which sorts a list of elements by selecting a
pivot element (uniformly at random) from the list of elements and then partitioning the
other elements into two sublists, those which are less than the pivot and those which
are greater than the pivot. The algorithm then recursively sorts the two sublists. When
there is only one element in each list, the lists are put back together to form a sorted list.

We let n be the number of elements which are to be sorted. The worst case running
time of this algorithm corresponds to selecting either the minimum or maximum element
in the list at each stage of the algorithm, requiring n − 1 pivots to be selected and
∑1

i=n−2 i =
∑n−2

i=1 i = (n−2)(n−1)
2

comparisons to be performed. However, this is far from
the expected running time or average case running time of Quicksort which is known to
be n log(n). In this chapter, we will analyze the expected number of comparisons of the
Quicksort algorithm (the average run time) as well as provide some insight into how to
calculate the variance of the algorithm. The methods used will give an exact solution,
which asymptotically agrees with the big O n log(n) running time.

We will use the terminology of referring to the elements by their position in the sorted

list, after the algorithm is done. We use position i to refer to the ith position of the sorted
array. We have that position i in the sorted will correspond to position i′ of the input
array with i′ not necessarily equal to i.

6.2 Expected Value of Quicksort

To compute the expected value of the total number of comparisons in the Quicksort
algorithm, we will use indicator random variables. We first let X be a random variable
which denotes the number of comparisons in the Quicksort algorithm. We let Xij be a
0, 1 indicator random variable which is 1 if position i is compared with position j, and 0
otherwise.

Probability two elements compared

Assuming unique elements of the input array, the probability that two positions i, j :
(j > i) will be compared is proportional to the distance between them.

33

We look at the following diagram to illustrate this point.

i jx1 x2 x3

Pr[i, j compared] = Pr[i]+Pr[j]
Pr[i]+Pr[x1]+Pr[x2]+Pr[x3]+Pr[j]

By assuming the algorithm does not bias in selecting which pivot element to use,
we have that the probability that position i will be compared to position j is just the
probability that i or j will be selected before any element which is between them in the
sorted array. Therefore we have

Pr[Xij = 1] =
2

j − i + 1
(6.1)

Expected number of comparisons

We now analyze the expected number of comparisons. Since Xij is an indicator random
variable, we have 6.2.

X =
∑

1≤i<j≤n

Xij =

n
∑

i=1

n
∑

j=i+1

Xij (6.2)

We now take the expected value of X.

E[X] =
n
∑

i=1

n
∑

j=i+1

Pr[Xij = 1] =
n
∑

i=1

n
∑

j=i+1

2

j − i + 1
(6.3)

maple does not give a closed form for 6.3. We therefore interchange the order of sum-
mation and are returned an equivalent summation.

sumOrderChange(′sum(sum(
2

j − i + 1
, j = i + 1..n), i = 1..n − 1)′);

n
∑

j=2

j−1
∑

i=1

2

j − i + 1
(6.4)

maple gives a closed form for 6.4 which when simplified is

2nΨ(n) − 4n + 2nγ + 2γ + 2 + 2Ψ(n) +
1

n

This is in fact equal to 2(n + 1)Hn − 4n. Therefore we have that the expected number of
comparisons of the Quicksort algorithm is 2(n + 1)Hn − 4n which is roughly 2n log(n),
which is quite fast.

34

6.3 Variance of Quicksort

In this section we will calculate part of the variance of the Quicksort algorithm. To find
the variance, we calculate the second moment E[X2].

E[X2] =

n
∑

i=1

n
∑

j=i+1

E[X2
ij] + 2

n
∑

i=1

n
∑

j=i+1

n
∑

r=1

n
∑

s=r+1

E[XijXrs] = E[X] + 2B

The four way sum B is broken into cases depending upon the ordering or i, j, r, s. We
will look at the case when (i < j < r < s). We will refer to this summation as B1a and
it is given in 6.5

Subcase B1a

B1a :=

n
∑

i=1

n
∑

j=i+1

2

j − i + 1

n
∑

r=j+1

n
∑

s=r+1

2

s − r + 1
(6.5)

We now look at the innermost summation and we use an change of variables. We take
the denominator s− r +1 and call it k. When s = r +1, we have k = (r +1)− r +1 = 2.
When s = n we have k = n − r + 1. We can now write the innermost summation as
Hn−r+1 − 1, with a coefficient of 2. We therefore have (pulling out the constants)

B1a := 4
n
∑

i=1

n
∑

j=i+1

1

j − i + 1

n
∑

r=j+1

(

Hn−r+1 − 1

)

(6.6)

Breaking on the minus sign of 6.6

We now break this summation on the minus sign and we first sum the latter term, the
−1. Of this new expression, the innermost summation is just the number of terms in the
summand and we can reduce this to 6.7

B1aS := −4
n
∑

i=1

n
∑

j=i+1

1

j − i + 1

n
∑

r=j+1

1 = −4
n
∑

i=1

n
∑

j=i+1

1

j − i + 1

(

n − j
)

(6.7)

Summing the n term of 6.7

Again we separate 6.7 and we now treat one the summation where the numerator does
not contain j. We pull out the n term and arrive at 6.8.

B1aS1 := −4n

n
∑

i=1

n
∑

j=i+1

1

j − i + 1
(6.8)

The innermost summation is the same procedure as before. We let k = j − i + 1, the
denominator. When j = i+1, k = (i+1)−i+1 = 2. When j = n, k = (n)−i+1 = n−i+1.
We then have

B1aS1 = −4n

n
∑

i=1

n−i+1
∑

k=2

1

k
= −4n

n
∑

i=1

n−i+1
∑

k=1

1

k
+ 4n

n
∑

i=1

1 (6.9)

35

The 1
k

term corresponds to Hn−i+1. The latter summation equates to the number of terms
being summed over, which is n + 1. In order to sum Hn−i+1 with respect to i, we write
this as the difference of two summations. Hn−i+1 = Hn−Hi. We therefore arrive at 6.10.

B1aS1 = −4n
n
∑

i=1

Hn − 4n
n
∑

i=1

Hi + 4n(n + 1) (6.10)

The first term is summing over Hn which does not depend on i and hence the actual
summation evaluates to (n + 1)Hn. The second summation is summing the harmonic
numbers which evaluate to (n + 1)(Hn+1 − 1). Therefore we have the following.

B1aS1 = 4n

(

n + 1 − (n + 1)Hn − (n + 1)(Hn+1 − 1)

)

(6.11)

Summing the j term of 6.7

We now treat the other part of the summation in 6.7.

B1aS2 := 4

n
∑

i=1

n
∑

j=i+1

j

j − i + 1
(6.12)

We set k to the denominator, and then j = k + i−1. The bounds of summation are from
2 to n − i + 1. We therefore write 6.12 as

B1aS2 = 4
n
∑

i=1

n−i+1
∑

k=2

k + i − 1

k
= 4

n
∑

i=1

(

(

(n−i+1)−1
)

+
(

n−i+1
∑

k=1

i − 1

k

)

−(i−1)

)

(6.13)

The last (i − 1) is since we start k at 1 in the innermost summation and so we need to
subtract this added value. This process results in a nicer form to the solution. The n− i
term is from the k

k
term of the fraction. We collect n− i and 1− i to get n− 2i + 1, and

then look at the double summation. We write the inner summation as (i − 1)Hn−i+1 =

(i − 1)
(

Hn − Hi

)

. Therefore 6.13 becomes

B1aS2 = 4

n
∑

i=1

(n − 2i + 1) + 4

n
∑

i=1

(i − 1)Hn − 4

n
∑

i=1

(i − 1)Hi

B1aS2 = 4

n
∑

i=1

(n − 2i + 1) + 4Hn

n
∑

i=1

(i − 1) − 4
(

n
∑

i=1

iHi −

n
∑

i=1

Hi

)

We have that
∑n

i=1 iHi = n(n+1)
2

Hn−
n(n−1)

4
. Therefore, this summation becomes straight

forward.

6.3.1 Summing over Hn−r+1 term of 6.6

We now return to equation 6.6 to sum over the Hn−r+1 term, which is invariably more
difficult. We recall this summation as 6.14.

B1aT := 4
n
∑

i=1

n
∑

j=i+1

1

j − i + 1

n
∑

r=j+1

Hn−r+1 (6.14)

36

In our usual tradition, we break the innermost summation and write it as the difference
of two harmonics, Hn − Hr. We note that we could have also have used a change of
variables for r which would sum Hk from k = 1 to k = n − j.

B1aT = 4

n
∑

i=1

n
∑

j=i+1

1

j − i + 1
(n − j)Hn − 4

n
∑

i=1

n
∑

j=i+1

1

j − i + 1

n
∑

r=j+1

Hr

The first summation is not of interest to us since this is the same as 6.8 multiplied by
Hn. We then look at the second summation which we can write as

B1aTs = 4
n
∑

i=1

n
∑

j=i+1

1

j − i + 1

n
∑

r=j+1

Hr

We have that

n
∑

r=j+1

Hr =
n
∑

k=1

Hk −

j
∑

k=1

Hk = (n + 1)(Hn+1 − 1) − (j + 1)(Hj+1 − 1)

We remark that we have done summations of this type except for the term corresponding
(j + 1)Hj+1. We will now look at 6.14 restricted to summing over this term. We will
even pull out the 4 from the summation and only care about the form of the answer.
Specifically we will be interested in 6.15.

B1aM :=

n
∑

i=1

n
∑

j=i+1

1

j − i + 1
(j + 1)Hj+1 (6.15)

Interchanging the order of summation

We now interchange the order of summation. We have that 6.15 is equivalent to the
following.

b1aMS =
n
∑

j=2

j−1
∑

i=1

1

j − i + 1
(j + 1)Hj+1

Since we are summing over i, we wish to make the denominator appear in terms of i−α.
This is to allow us to write the innermost summation as the difference of two Harmonics.
We let α = (j + 1).

b1aMS =
n
∑

j=2

j−1
∑

i=1

−1

i − (j + 1)
(j + 1)Hj+1

We now again change the index of summation and use a new variable k.

n
∑

j=2

j
∑

k=2

1

k
(j + 1)Hj+1 =

n
∑

j=2

(

Hj(j + 1)Hj+1 − (j + 1)Hj+1

)

(6.16)

We will first evaluate the (j + 1)Hj+1 term (the second term) and then manipulate the
first term and sum the form which was not done previously. The second term is of the

37

form kHk. We know that
∑n

k=1 kHk = n(n+1)
2

Hn−
n(n−1)

4
. Therefore we simply apply this

form when letting k = j + 1.

n
∑

j=2

(j + 1)Hj+1 =

n+1
∑

k=3

kHk =

n+1
∑

k=1

kHk −

2
∑

k=1

kHk

We now look at the first term of 6.16, Hj(j + 1)Hj+1, which we write as
Hj+1(j + 1)Hj+1 −Hj+1. Since we have already completed summations corresponding to
−Hj+1 we will only sum over the first term.

n
∑

j=2

(j + 1)H2
j+1 =

n−1
∑

k=1

kH2
k

Since
∑n

k=1 kH2
k = n(n−1)

2
H2

n + 1−n2+n
2

Hn + n(n−3)
4

, we simply replace n by n − 1 and we
are done.

Concluding Quicksort Remarks

Therefore we see that all parts of our original summation 6.5 can be solved for. The
above was to give a demonstration of the necessary manipulations needed to perform such
summations involving the harmonic numbers. The methods used for finding the closed
form expressions for summations involving the harmonic numbers are mostly solved using
an interchange of the order of summation. Although in the finding a closed form for 6.5
we only performed one such interchange, in the known closed form summations which we
used, the interchange was implicit.

38

Chapter 7

Symbolic Summation in maple

Following [1], for definite summations in which the bounds are known and are constant
in value, the maple function add is used, as maple does not need to find a closed form
expression for the summation. For finite sums, add is equivalent to sum

4
∑

i=1

i = add(i , i = 1 ..4);

The evaluation of both sides of the equality of the above expression will evaluate to 10.
Another type of summation is one in which the range is infinite. maple first represents

the summation in closed form (if possible) and then computes the value of the limit. The
following shows the results of maple calls for finding a closed form for

∑n
i=1

1
i2

and then
taking the limit as n goes to infinity. This is the same as if we set n = ∞ in the initial
maple call.

sum(
1

i2
, i = 1..n) = −Ψ(1, n + 1) +

1

6
π2

limit(−Ψ(1, n + 1) +
1

6
π2, n = infinity) =

1

6
π2

sum(
1

x2
, x = 1..∞) =

1

6
π2

The following is due to [1]. Given a summation involving ak, maple looks for an
expression sk not involving a summation sign such that ak = sk − sk−1. The following
methods are used to find sk. Summing polynomials, (the summation of ki over i) are done
using Bernoulli polynomials. If sk is a hypergeometric term, sk

sk−1

∈ Q(k), then Gosper’s

decision procedure is used. The extended Gosper algorithm is used if ak = sk−sk−m, m >
1

7.1 Rational Functions

We will now elaborate upon the method used to sum rational functions. A rational
function of x is the fraction of two polynomials with coefficients from F [x]. In formula,

f(x) ∈ F (x) is a rational function if f(x) := p(x)
q(x)

: p(x), q(x) ∈ F [x]. Moreover we add

39

the restriction that gcd(p(x), q(x)) = 1. We are now interested in summations such as
∑n

i=1 f(x). To sum rational function, maple attempts to compute rational functions
h(x) and r(x) such that f(x) = h(x+1)−h(x)+r(x). We remark that r(x) is attempted
to be kept to the smallest denominator degree possible, as shown in [3] We now turn our
attention to q(x) and its shift equivalent classes. We first factor q(x) and then group
factors in the same class if they are shift equivalent. Two factors qi(x), qj(x) are shift
equivalent if qi(x) = qj(x + m) : m ∈ Z. We call the multiplicity of qi(x) the number
of times qi(x) appears in q(x). The shift classes admit irreducible factors of multiplicity
greater than 1.

Example shift class

Consider f(x) := 1
x3+x2 . We have q(x) = x3 + x2. The irreducible factors of q(x) are

q1(x) := x which has multiplicity 2 and q2(x) := (x + 1) which has multiplicity 1. We
have that q1(x) and q2(x) are in the same shift class since in the above definition, with
m = 1.

Now, consider f(x) := 1
x2+ x

2

. We have q(x) = x2 + x
2
. The irreducible factors of q(x)

are q1(x) := x and q2(x) := (x + 1
2
). We have that q1(x) and q2(x) are not in the same

shift class since in the above definition, since m = 1
2

is not an integer.

Dispersion

Let the maximum m for a shift equivalent class be called the dispersion of that shift class.
Let the dispersion of f(x) be the maximum among all shift equivalent classes. From [3]
we have that if the sum has a rational closed form, it has non-zero dispersion. As a
direct consequence we have the Harmonic numbers which have dispersion 0 do not admit
a rational closed form. Although we can write them in terms of other harmonic functions
or the Psi function, we cannot write closed forms for summations involving harmonic
numbers which are the ratio of two polynomials. A slow way to calculate the dispersion
is to find the greatest integer d such that gcd(q(x), q(x + d)) 6= 1, i.e. they have a non
trivial common divisor.

7.1.1 Moenck’s algorithm

Moenck’s algorithm takes in f(x) and finds all shift equivalent classes. Within each
shift equivalent class, we first fill in all integers between the two factors which give the
maximal dispersion. For example if the shift equivalent class contained x of multiplicity
2 and (x + 3) of multiplicity 1, we would add the factors (x + 1) and (x + 2). We then
take each of these factors to the highest multiplicity of that class. The shift structure of
our example class would then be x2(x + 1)2(x + 2)2(x + 3)2.

We then use partial fraction decomposition on these ”filled in” shift classes. We
note that by construction all shift classes are relatively prime. As pointed out in [4] we
can find a closed form for f(x) by considering each one of these shift classes separately.
We iteratively repeat the procedure until we have remainder terms with dispersion 0 or
remainder terms that are 0. We then sum the pieces. As pointed out in [3], Moenck’s
method does not always work in maple because it does not make sure the shift classes
are relatively prime. An improved algorithm is due to Paule [2].

40

We will now provide a simple example of Moenck’s algorithm.

n
∑

x=1

1

x(x + 2)
(7.1)

We will now look at f(x) := 1
x(x+2)

. There is only one shift equivalent class and so we

write f(x) as
x + 1

x(x + 1)(x + 2)
:=

α(x)

β(x)
=

γ(x + 1)

δ(x + 1)
−

γ(x)

δ(x)
+

ǫ(x)

ν(x)

By [4], we set

δ(x) = gcd(β(x), β(x − 1)) = gcd
(

x(x + 1)(x + 2), (x − 1)(x)(x + 1)
)

= x(x + 1)

ν(x) =
β(x)

δ(x)
=

x(x + 1)(x + 2)

x(x + 1)
= x + 2

An S-form for a rational function has a saturated monic denominator and the gcd of
the numerator and denominator is 1. By Paule, if r, s ∈ K(x) both proper with S-forms
〈α, β〉 and 〈γ, δ〉, then we have that deg(γ) = deg(α)−deg(β)+deg(δ)+ 1 which implies
the degree of γ is 1 − 3 + 2 + 1 = 1. Although we do not meet the requirements for this
proposition, we use this estimate for the degree of γ. Therefore we can write γ as Ax+ b,
and we estimate ǫ(x) as x. Solving this system of linear equations, we find

γ(x) = −x −
1

2

Therefore f(x) = γ(x+1)
δ(x+1)

− γ(x)
δ(x)

where γ(x) and δ(x) are defined as before. For com-
pleteness, we repeat these assignments.

δ(x) = x(x + 1)

γ(x) = −x −
1

2

Returning to our summation, we can write

n
∑

k=1

1

x(x + 2)
=

n
∑

k=1

(γ(k + 1)

δ(k + 1)
−

γ(k)

δ(k)

)

=
γ(n + 1)

δ(n + 1)
−

γ(1)

δ(1)

Writing this as a closed form, we have equation 7.1 is equal to

3

4
−

n + 3
2

n2 + 3n + 2
(7.2)

We note that for n = 1 both the sum and the closed form evaluate to 1
3
. For n = 2, both

equate to 11
24

.
maple returns the same result as 7.2.

sum(
1

x · (x + 2)
, x = 1..n) = −

1

2

3 + 2n

(n + 2)(n + 1)
+

3

4

41

Chapter 8

Conclusion

Using a symbolic language such as maple to simplify and find closed form expressions
for summations which arise out of algorithms is beneficial, although not completely self
reliant. User manipulation is still needed to derive the desired form of the solution.
Examples have been shown where the maple procedure sum returned a closed form
involving the Psi function, although it returns a form involving the harmonic numbers
in other cases. The user must manipulate one expression into the other to arrive at a
consistent solution form.

Furthermore, not all summations can be calculated by maple, and a change of vari-
ables is often needed to arrive at the expected closed form. This method could be au-
tomated, although manipulations of this sort seem to be more application specific. A
common change of variables in the analysis of Quicksort was for the denominator of

1
j−i+1

. In a more general setting, a manipulation of this sort may not lead to simpler
expressions.

Overall, the programming language maple seems to be best at finding closed forms
for functions which are polynomials in i and j. maple only simplified basic summa-
tions involving the harmonic numbers or their equivalent forms, and the more involved
summations used user manipulations in conjunction with the simpler identities maple

proved.
Future work should either become domain specific and automate many of the ma-

nipulations shown in the analysis of the Quicksort algorithm, or it should become very
broad and look into other summation techniques. The interchanging of the order of sum-
mation seems to have limited potential. If either the lower or the upper boundary line
is not a constant, strictly increasing or strictly decreasing function, we do not expect
maple to find simple closed forms. This is since the area which is being summed over
will have to be broken into summations, with each one working over a restricted range of
the area. Moreover, if the boundary lines are not easily invertible, there is little chance
for maple to find a closed form. This was shown by maple not finding closed forms
for expressions which involved the floor and ceiling functions, although their equivalent
summations when the order of summation was interchanged gave closed forms. Overall,
we conclude that although there exists limitations in the use of interchanging the order
of summation, there are examples which prove it is a positive addition to a symbolic
programming language summation tools.

42

Bibliography

[1] A. Heck Introduction to Maple. Springer-Verlag, New York, 1993

[2] P. Paule Greatest Factorial Factorization and Symbolic Summation. J. Symbolic
Computation 11 (1995)

[3] R. Piratsu Algorithms for Indefinite Summation of Rational Functions in Maple.
The Maple Technical Newsletter 2 (1995)

43

Appendix A

maple Source Code

A.1 Parsing the input

sumOrderChange := proc (doubSum)

Matthew Dailey, February 2009, Worcester Polytechnic Institute

ASSUMPTIONS

the outer lower bound is a number

the outer upper bound will probably be n, but could be a number

a,b,c,d coefficients of the inner sum will be numbers or

variables

description "Interchange the order of summation for a double

summation with constant or linear bounds":

local input, output, innerSum, innerRange, outerRange, innerLow,

innerHigh, innerVar, outerLow,outerHigh, outerVar,

funct,linearParser,sumToReturn, a,b,c,d:

input := doubSum:

==

Parse the sum

if op(0,input) <> sum then

return "invalid arguments":

end if:

#the full sum(f(i,j),j=1..n)

innerSum := op(1,input):

if we have a double sum, then the first operand should be sum

if op(0,innerSum)<>sum then

return "invalid arguments":

end if:

#process this sum

funct := op(1, innerSum):

innerRange := op(2, innerSum):

44

#inner range here means j=1..10 parses to =, j, 1..10

innerVar := op(1,innerRange):

#innerRange is range(min,max)

innerLow := op(1, op(2,innerRange)):

innerHigh := op(2,op(2 ,innerRange)):

#parses into range, 1, 10

outerRange := op(2,input):

outerVar := op(1,outerRange):

#outerRange is range (min,max)

outerLow := op(1, op(2,outerRange)):

outerHigh := op(2,op(2 ,outerRange)):

#==

assume that a and c are integers

innerLow and innerHigh are the values that will give us a,b,c,d

a*var + b

c*var + d

if type(innerLow, linear(outerVar)) then

b:= subs(outerVar=0, innerLow):

a:= (innerLow-b)/(outerVar):

else

a:=0:

b:=innerLow:

end if:

if type(innerHigh, linear(outerVar)) then

d:= subs(outerVar=0, innerHigh):

c:= (innerHigh-d)/(outerVar):

else

c:=0:

d:=innerHigh:

end if:

if the case is forced then pass this information

if nargs > 2 then

return decideCase(innerVar, outerVar, outerLow, outerHigh, a, b,

c, d, funct, ops(3,args)):

else

return decideCase(innerVar, outerVar, outerLow, outerHigh, a, b,

c, d, funct):

45

end if:

end proc:

46

A.2 Decide Case

with(difforms): # for type const

copyright Matthew Dailey February 2009 Worcester Polytechnic

Institute

Procedure to input information regarding a double summation and

return the appropriate summation with the order of summation

interchanged

The outer variable is outerVar, and the inner variable is

innerVar.

The initial outerVar value is outerInitial.

The final outerVar value is outerFinal

innerVar ranges from a*outerVar+b (lower boundary line) to

c*outerVar+d (upper boundary line)

Assumption: the range is from low to high

funct is a function of outerVar and innerVar

decideCase:=proc(innerVar, outerVar, outerInitial, outerFinal, a,

b, c, d, funct)

description "Interchange the order of summation":

local initUpper, initLower, finalUpper, finalLower, theDiff,

outerMax, initialLineDiff, initIntersect,

triIntersect,theInitDiff:

initUpper is the initial y value of the upper boundary line

initLower is the initial y value of the initial boundary line

finalUpper is the final y value of the upper boundary line

finalLower is the final y value of the lower boundary line

theDiff is the difference between the boundary lines at

outerFinal

initialLineDiff is the difference between the boundary lines at

outerInitial

initIntersect is often used to correspond to outerVar when one

boundary line intersects the horizontal line y = init_X X =

initLower|initUpper

triIntersect is for the value of outerVar for a specific case

described when appropriate

initLower:= a*outerInitial+b:

finalLower:= a*outerFinal + b:

initUpper:= c*outerInitial + d:

finalUpper := c*outerFinal + d:

see if the two boundary lines start at the same point

if type(initLower, constant) and type(initUpper, constant) then

47

Check to see if the summation is possible

if initUpper < initLower and (initLower - initUpper) > 1 then

print("The assumption is the inner summation bounds go from

low to high");

Return the original expression

return ’sum’(’sum’(funct,innerVar =

a*outerVar+b..c*outerVar+d),

outerVar=outerInitial..outerFinal);

end if:

The two boundary lines start at the same point, results in

simpler cases

if initLower = initUpper then

if a = 0 and c = 0 then

just a line

return ’sum’(subs(innerVar=initLower, funct), outerVar =

outerMin..outerMax);

#return ’sum’(’sum’(funct, outerVar = outerMin..outerMax),

innerVar = initLower..initLower):

elif a = 0 then

we have a triangle with horizontal line at the bottom

(i.e. at b)

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct,false, false):

elif c = 0 then

we have a triangle with horizontal line at the top (i.e.

at d)

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, a, b, funct,true, false):

elif (c>0) and (a< 0) then

we have a sideways v, do both triangles minus the double

counted line

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct,false, false) +

sumTriangleB(outerVar, outerInitial, outerFinal, innerVar,

a, b, funct,true, false) -

’sum’(’sum’(funct, outerVar = outerMin..outerMax),

innerVar = initLower..initLower):

elif a>0 and c<0 then

This is a contradiction to our assumption unless it is an

empty sum

if (type(outerMax, constant) = false) or (outMin <>

outerMax) then

printf("Violation of assumptions on bounds of innerSum\n");

end if:

48

end if:

end if:

end if:

It cannot be determined if the two boundary lines start at the

same point.

We will have 9 cases depending on a and c

theInitDiff is the difference between the y values of the

starting points of the two boundary lines

theInitDiff := initUpper - initLower;

theDiff is the difference between the y values of the ending

points of the two boundary lines

theDiff := finalUpper - finalLower;

if (a = 0 and c < 0) then

if type(theDiff, constant) then # if it is a number

if theDiff = 0 then

The area is a triangle, the two boundary lines do not

intersect

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, true);

elif theDiff > 0 then

The area is a triangle on top of a rectangle

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, true) +

sumRectangle(outerVar, outerInitial, outerFinal,

innerVar, initLower, finalUpper - 1, funct);

elif theDiff < 0 then

This is a violation on the assumptions, however a sum will

attempted to be returned

The area will be a triangle, however it will not range

over all values of outerVar

outerMax := (b-d)/c :

if c <> 1 and c <> (-1) then

outerMax := floor(outerMax):

end if:

if theDiff < (-1) then

printf("Violation on assumption on boundary lines at final

y-values, attempted solution of where assumptions hold

returned\n");

return sumTriangleB(outerVar, outerInitial, outerMax,

49

innerVar, c, d, funct, false, true):

elif theDiff = -1 then

we simply exclude the values of OuterVar after the two

lines cross

return sumTriangleB(outerVar, outerInitial, outerMax,

innerVar, c, d, funct, false, true):

end if:

end if:

end if:

It cannot be determined if the two areas intersect

return a triangle and a rectangle area.

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, true) +

sumRectangle(outerVar, outerInitial, outerFinal, innerVar,

initLower, finalUpper - 1, funct);

elif a > 0 and c = 0 then

if type(theDiff, constant) then # if it is a number

if theDiff = 0 then

The area is a triangle, the two boundary lines do not

intersect

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, a, b, funct, true, true);

elif theDiff < 0 then

there is a triangle below a rectangle

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, a, b, funct, true, true) +

sumRectangle(outerVar, outerInitial, outerFinal,

innerVar, finalLower + 1, finalUpper, funct);

elif theDiff > 0 then

This is a violation on the assumptions, however a sum will

attempted to be returned

The area will be a triangle, however it will not range

over all values of outerVar

outerMax := (d-b) / a:

if a <> 1 and a <> -1 then

outerMax := floor(outerMax):

end if:

if theDiff < -1 then

printf("Violation on assumption on boundary lines at final

y-values, attempted solution of where assumptions hold

returned\n");

50

sumTriangleB(outerVar, outerInitial, outerMax, innerVar,

a, b, funct, true, true):

elif theDiff = -1 then

we simply exclude the values of OuterVar after the two

lines cross

sumTriangleB(outerVar, outerInitial, outerMax, innerVar,

a, b, funct, true, true):

end if:

end if:

end if:

It cannot be determined if the two areas intersect

return a triangle and a rectangle area.

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, a, b, funct, true, true) +

sumRectangle(outerVar, outerInitial, outerFinal, innerVar,

finalLower + 1, finalUpper, funct):

elif a = 0 and c > 0 then

if type(theInitDiff, constant) and theInitDiff = 0 then

only a triangle

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, false);

else

A triangle with a rectangle below it

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, false) +

sumRectangle(outerVar, outerInitial, outerFinal, innerVar,

initLower, initUpper - 1, funct):

end if:

elif a < 0 and c = 0 then

if type(theInitDiff, constant) and theInitDiff = 0 then

only a triangle

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, a, b, funct, true, false);

else

A triangle with a rectangle above it

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, a, b, funct, true, false) +

sumRectangle(outerVar, outerInitial, outerFinal, innerVar,

initLower + 1, initUpper, funct):

end if:

elif a < 0 and c > 0 then

two triangles with a rectangle between them

51

works the same if or if not there is a rectangle between the

triangles

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, false) +

sumTriangleB(outerVar, outerInitial, outerFinal, innerVar, a,

b, funct, true, false) +

sumRectangle(outerVar, outerInitial, outerFinal, innerVar,

initLower + 1, initUpper - 1, funct):

elif a = 0 and c = 0 then

A rectangular region

if the two boundary lines will return an empty summation

if type(theInitDiff, constant) and (initUpper - 1) = initLower

then

return 0:

end if:

return sumRectangle(outerVar, outerInitial, outerFinal,

innerVar, initLower, initUpper, funct):

elif a > 0 and c < 0 then

two triangles with a rectangle between them.

if the two boundary lines meet in a point, we can subtract the

area of the line computed by both triangles

if theDiff = 0 then

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, true) +

sumTriangleB(outerVar, outerInitial, outerFinal, innerVar,

a, b, funct, true, true) -

sumRectangle(outerVar, outerInitial, outerFinal, innerVar,

finalUpper, finalUpper, funct):

end if:

Maple will handle adding missing area or subtracting for a

repeated line (boundary of both triangles)

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, true) +

sumTriangleB(outerVar, outerInitial, outerFinal, innerVar,

a, b, funct, true, true) +

sumRectangle(outerVar, outerInitial, outerFinal, innerVar,

finalLower + 1, finalUpper - 1, funct):

elif a > 0 and c > 0 then

simplified greatly if two lines start in the same place

we do not include the integer height line between lower non

right triangle and upper right triangle

if type(theInitDiff, constant) and theInitDiff = 0 then

return sum(sum(funct, i=ceil((j-d)/c)..floor((j-b)/a)),

52

j=initLower..finalLower-1)+

sumRectangle(outerVar, (a*outerFinal+b-d)/c, outerFinal,

innerVar, c, d, funct, false, false);

end if:

This case heavily depends on if the lower boundary line

intersects the horizontal line y = initUpper

and also if the lower line surpasses the initial upper

horizontal line

moreover, we care if the final y values of the two boundary

lines are equivalent

initialLineDiff := initialUpper - finalLower:

if type(initialLineDiff, constant) then

if initialLineDiff >= 0 then

No intersection

if initialLineDiff = 1 then

do not have a rectangle between the two triangles

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, false) +

sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, a, b, funct, true, true):

end if:

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c, d, funct, false, false) +

sumTriangleB(outerVar, outerInitial, outerFinal, innerVar,

a, b, funct, true, true) +

sumRectangle(outerVar, outerInitial, outerFinall,

innerVar, finalLower + 1, initUpper - 1, funct):

end if:

There is an intersection

initIntersect := (initUpper - b) / a: # outerVar value at

which the intersection occurs

Need to determine if the two boundary points intersect at

final value

if type(theDiff, constant) then

if theDiff = 0 then

intersection at final value

return sumTriangle(outerVar, outerInitial, initIntersect,

innerVar, a, b, funct, true, true) +

sum(sum(funct, outerVar = ceil((innerVar - d)/c

)..floor((innerVar - b)/a)), innerVar = initUpper +

1..finalUpper):

elif theDiff > 0 then

The value of outerVar on the upperboundary line when it

53

achieves the value finalLower

this value marks the start of a triangluar region

triIntersect := (finalLower - d) / c:

return this upper triangle, the lower triangle, and a

double sum for area in between

return sumTriangleB(outerVar, triIntersect, outerFinal,

innerVar, c, d, funct, false, false) +

sumTriangle(outerVar, outerInitial, initIntersect,

innerVar, a, b, funct, true, true) +

’sum’(’sum’(funct, outerVar = ceil((innerVar - d)/c

)..floor((innerVar - b)/a)), innerVar = initUpper +

1..finalUpper - 1):

else

Violation the assumption on final y- values

printf("Violation on boundary lines for case a>0 and

c>0\n"):

return 0:

end if:

end if:

Need user input to determine if the final y values of the

two boundary lines are the same

if they are then we return the lower triangle + the double

sum for area above y = initUpper

else we need to return the lower triangle, an upper triangle

+ a double sum for the area between.

For now, the below will work but is messy

return sumTriangle(outerVar, outerInitial, initIntersect,

innerVar, a, b, funct, true, true) +

’sum’(’sum’(funct, outerVar = ceil((innerVar - d)/c

)..min(outerFinal, floor((innerVar - b)/a))), innerVar =

initUpper + 1..finalUpper):

end if:

it cannot be determined if the lower boundary line ever

achieves a y value of initUpper

We will need user input

printf("Need information on whether the lower boundary line

achives value %d, returning 0\n", initUpper):

elif a < 0 and c < 0 then

simplified greatly if two lines start in the same place

we do not include the integer height line between upper non

right triangle and lower right triangle

if type(theInitDiff, constant) and theInitDiff = 0 then

54

return ’sum’(’sum’(funct, i=ceil((j-b)/a)..floor((j-d)/c

)), j=initLower..finalUpper-1)+

sumTriangleB(outerVar, (c*outerFinal+d-b)/a, outerFinal,

innerVar, a, b, funct, true, false);

end if:

This case heavily depends on if the upper boundary line

intersects the horizontal line y = initLower

and also if the two boundary lines intersect in a point at

outerVar = outerFinal

#initLower,finalLower,initUpper,finalUpper

if type(finalUpper-initLower,constant) and finalUpper >=

initLower then

return sumTriangleB(outerVar, outerInitial, outerFinal,

innerVar, c,d,funct,false,true)+

sumTriangleB(outerVar, outerInitial, outerFinal, innerVar,

a,b,funct,true,false)+

sumRectangle(outerVar, outerInitial, outerFinal, innerVar,

initLower+1,finalUpper-1,funct);

else

define where the top boundary lines intersects initialLower

initIntersect := (initLower - d)/c;

theDiff := finalUpper - finalLower;

if type(theDiff, constant) then

if theDiff <> 0 then

triIntersect := (finalUpper-b)/a;

return sumTriangleB(outerVar, outerInitial, initIntersect,

innerVar, c,d,funct,false,true)+

sumTriangleB(outerVar, triIntersect, outerFinal,

innerVar, a,b,funct,true,false)+

’sum’(’sum’(funct, outerVar = ceil((innerVar-b)/a

)..floor((innerVar-d)/c),

innerVar=initLower-1..finalUpper+1));

else

return sumTriangleB(outerVar, outerInitial, initIntersect,

innerVar, c, d, funct, false,true)+

’sum’(’sum’(funct, outerVar = ceil((innerVar-b)/a

)..floor((innerVar-d)/c)),innerVar =

initialLower-1..finalLower);

end if:

end if:

end if:

end if:

we do not have enough information to interchange the order of

summation

55

return the original summation

return ’sum’(’sum’(funct,innerVar = a*outerVar+b..c*outerVar+d),

outerVar=outerInitial..outerFinal);

end proc:

56

A.3 Sum Rectangle

sumRectangle := proc(outerVar, outerInitial, outerFinal, innerVar,

innerLower, innerUpper, funct)

first check if this will be an empty sum, meaning the outer

summation goes from v to v-1.

if (innerLower - innerUpper) = 1 then

return 0:

end if:

returns a double summation of the rectangle with the order of

summation reversed

return ’sum’(’sum’(funct,outerVar =

outerInitial..outerFinal),innerVar = innerLower..innerUpper):

end proc:

57

A.4 Sum Triangle

sumTriangleB is a function which will tell the user how to

switch the order of summation if the user knows

what shape the triangle is in, meaning if the horizontal line is

at the bottom of the triangle

or at the top of the triangle.

The line a*outerVar+b must intersect the horizontal line of the

triangle at either outerInitial or outerFinal

hence we do not need to know the value of the horizontal line

sumTriangleB := proc(outerVar, outerInitial, outerFinal, innerVar,

a, b, funct, isHorUpper::boolean)

isHorUpper is true if the horizontal line of the triangle is

above the figure

isVertLeft is true if the vertical line of the triangle is to

the left of the figure

we want to change the order of summation in here.

the equation of the diagonal line is a*outerVar+b

local upper,left, innerMin, innerMax,outerMin,outerMax, isVertLeft:

upper :=isHorUpper:

if a = 0 then we just have a line

if a = 0 then

if type(outerInitial,’constant’) and type(outerFinal,’constant’)

then

ASSERT(outerInitial < outerFinal):

end if:

innerMin:=b:

innerMax:=b:

outerMin:=outerInitial:

outerMax:=outerFinal:

return ’sum’(’sum’(funct, outerVar =

outerMin..outerMax),innerVar = innerMin..innerMax):

end if:

nine args mean we know what kind of triangle it is

if nargs = 8 then

if (a>0 and upper) or (a<0 and (not upper)) then

left:=true:

else

left:=false:

58

end if:

elif nargs > 8 then

left := args[9]:

isVertLeft:=args[9]:

end if:

now a is not 0

if left then we want to take the floor of the original outer

Variable

if not left then we want to take the ceiling of the original

outer variable

if upper and left then

outerMin := outerInitial:

if abs(a) = 1 then

outerMax := (innerVar - b)/a:

else

outerMax := floor((innerVar - b)/a):

end if:

innerMin := a*outerInitial + b:

innerMax := a*outerFinal + b:

elif upper and (not left) then

if abs(a) = 1 then

outerMin := (innerVar - b)/a:

else

outerMin := ceil((innerVar - b) / a):

end if:

outerMax := outerFinal:

innerMin := a*outerFinal + b:

innerMax := a*outerInitial + b:

elif (not upper) and left then

outerMin := outerInitial:

if abs(a) = 1 then

outerMax := (innerVar -b)/a:

else

outerMax := floor((innerVar - b) / a):

end if:

innerMin := a*outerFinal + b:

innerMax := a*outerInitial + b:

elif (not upper) and (not left) then

if abs(a) = 1 then

outerMin := (innerVar - b) / a:

else

outerMin := ceil((innerVar - b) / a):

end if:

outerMax := outerFinal:

innerMin := a*outerInitial + b:

59

innerMax := a*outerFinal + b:

end if:

return ’sum’(’sum’(funct, outerVar = outerMin..outerMax),innerVar

= innerMin..innerMax):

end proc:

60

A.5 Test Cases

printf("A=0 and C<0\n");

’sum(sum(i+j,j=0..(n+1-i)), i=1..n)’;

resultA := %;

printf("Interchanging order of summation\n");

sumOrderChange(’sum(sum(i+j,j=0..(n+1-i)), i=1..n)’);

resultB := %;

printf("The difference is \n");

print(resultA-resultB);

’sum(sum(1/(i+j),j=0..(n+1-i)), i=1..n)’;

%;

resultA := simplify(%);

printf("Interchanging order of summation\n");

sumOrderChange(’sum(sum(1/(i+j),j=0..(n+1-i)), i=1..n)’);

%;

resultB := simplify(%);

printf("The difference is \n");

print(resultA-resultB);

printf("C is -2\n");

’sum(sum(i+j, j=0..(2*n+1-2*i)), i = 1..n)’ ;

%;

subs(n=10,%);

resultA := %;

printf("Interchanging order of summation\n");

sumOrderChange(’sum(sum(i+j, j=0..(2*n+1-2*i)), i = 1..n)’);

%;

subs(n=10,%);

resultB := %;

printf("The difference is %f\n", (resultA-resultB));

#

printf("A>0 and C=0\n");

’sum(sum(i+j, j=(i+2)..(n+4)), i=1..n)’;

resultA := %;

printf("Interchanging order of summation\n");

sumOrderChange(’sum(sum(i+j, j=(i+2)..(n+4)), i=1..n)’);

resultB := %;

printf("The difference is \n");

61

print(simplify(resultA)-simplify(resultB));

’sum(sum(1/(i+j), j=(i+2)..(n+4)), i=1..n)’;

%:

resultA := simplify(%):

printf("Interchanging order of summation\n");

sumOrderChange(’sum(sum(1/(i+j), j=(i+2)..(n+4)), i=1..n)’);

%:

resultB := simplify(%):

printf("The difference is \n");

printf("n=10 :: %f\nn=100 :: %f\n",

(evalf(subs(n=10,resultA))-evalf(subs(n=10,resultB))),

(evalf(subs(n=10,resultA))-evalf(subs(n=10,resultB))));

printf("C is 2\n");

’sum(sum(i+j, j=2*(i+2)..2*(n+4)), i=1..n)’;

%:

simplify(%);

subs(n=10,%):

resultA := evalf(%):

printf("Interchanging order of summation\n");

sumOrderChange(’sum(sum(i+j, j=2*(i+2)..2*(n+4)), i=1..n)’);

%:

simplify(%);

subs(n=10,%):

resultB := evalf(%):

printf("The difference is %f\n", (resultA-resultB));

printf("Touch in final value\n");

’sum(sum(1/(j*(j+2)) , j=i..n), i = 1..n)’;

%:

resultA := simplify(%);

printf("Interchanging order of summation\n");

sumOrderChange(’sum(sum(1/(j*(j+2)) , j=i..n), i = 1..n)’);

%:

resultB := simplify(%);

printf("The difference is :: ");

print(resultA - resultB);

evalf(subs(n=10,%));

evalf(subs(n=1000,%%));

#--

printf("A<0 and C=0");

’sum(sum(i+j, j = -i+2..1), i=1..n)’;

resultA := %;

simplify(resultA);

62

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = -i+2 .. 1), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

notice how the line j=10 is given to the triangle

printf("A=0 and C>0");

’sum(sum(i^2*j, j = -i+2..1), i=0..n)’;

resultA := %;

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i^2*j, j = -i+2 .. 1), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

They now touch at a point

printf("A=0 and C>0");

’sum(sum(i^2*j, j = -i..1), i=0..n)’;

resultA := %;

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i^2*j, j = -i..1), i=1..n)’);

resultB := %;

printf("Below is the second sum contribution\n");

sum(sum(i^2*j, i = 1 .. n), j = 0 .. 1);

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

’sum(sum(i+j, j = -2*i+2..1), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = -2*i+2 .. 1), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is , then at n=10, n=1, n=100\n");

print(simplify(resultA) - simplify(resultB));

evalf(subs(n = 10, resultA)-subs(n = 10, resultB));

evalf(subs(n = 1, resultA)-subs(n = 1, resultB));

evalf(subs(n = 100, resultA)-subs(n = 100, resultB));

63

#--

printf("A<0 and C>0");

touch at the initial point

’sum(sum(i+j, j = -i..i), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = -i..i), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

notice how the line j=10 is given to the triangle

printf("A=0 and C>0");

’sum(sum(i^2*j, j = -i..i+2), i=0..n)’;

resultA := %;

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i^2*j, j = -i..i+2), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

#--

printf("A=0 and C=0");

touch at the initial point

’sum(sum(i+j, j = 1..1), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = 1..1), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

printf("A=0 and C=0");

touch at the initial point

64

’sum(sum(i+j, j = 1..k), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = 1..k), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

#---

printf("A>0 and C<0");

difference of 0 at final point, then 1 then 2

’sum(sum(i+j, j = i-2*n..-i), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = i-2*n..-i), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

’sum(sum(i+j, j = i-2*n..-i+1), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = i-2*n..-i+1), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

’sum(sum(i+j, j = i-2*n..-i+2), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = i-2*n..-i+2), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

65

#--

printf("A>0 and C>0");

Four cases

lower boundary does not touch initial upper

lower boundary touches it at the end

lower boundary crosses it

two lines meet at final value

’sum(sum(i+j, j = i-2*n..i), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = i-2*n..i), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

’sum(sum(i+j, j = i-n..i-1), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = i-n..i-1), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

’sum(sum(i+j, j = i-4..i), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

sumOrderChange(’sum(sum(i+j, j = i-4..i), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

’sum(sum(i+j, j = 2*i-n..i), i=1..n)’;

resultA := %;

simplify(resultA);

printf("Interchanging the order of summation\n");

66

sumOrderChange(’sum(sum(i+j, j = 2*i-n..i), i=1..n)’);

resultB := %;

simplify(resultB);

printf("The difference is \n");

print(simplify(resultA) - simplify(resultB));

67

	Introduction
	Purpose

	Limitations and Problems
	Limitations on Input
	Parameter as a double summation
	Linear bounds

	Problems encountered
	Summations being evaluated
	maple behavior

	Implementation in maple
	Parsing the input
	Sum Triangle
	Sum Rectangle
	Decide Case
	A=0 and C<0
	A>0 and C=0
	A=0 and C>0
	A<0 and C=0
	A<0 and C>0
	A=0 and C=0
	A>0 and C<0
	A>0 and C>0
	A<0 and C<0

	Simplifying Harmonic Summations
	Example harmonic summations
	 k=1n Hk
	 k=12n (-1)kHk
	 k=1n k Hk
	 k=1n (-1)kk Hk
	 k=1n k2 Hk
	 k=1n (-1)kk2 Hk
	 k=1n 1k Hk
	 k=1n Hkk+1

	Test Cases
	Decide Case
	A < 0 and C = 0
	A=0 and C>0
	A<0 and C>0
	A=0 and C=0
	A>0 and C<0
	A=0 and C<0
	A>0 and C=0

	Quicksort
	The Quicksort Algorithm
	Expected Value of Quicksort
	Variance of Quicksort
	Summing over Hn-r+1 term of 6.6

	Symbolic Summation in maple
	Rational Functions
	Moenck's algorithm

	Conclusion
	bibliography
	maple Source Code
	Parsing the input
	Decide Case
	Sum Rectangle
	Sum Triangle
	Test Cases

