

Reusable Software Components for
Multi-Robot Foraging

Worcester Polytechnic Institute

A Major Qualifying Project
 submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements
for the Degree of Bachelor of Science

By:

Joseph Wilder

Tanuj Sane

Vanshaj Chowdhary

Abstract

Developments in swarm technologies is hindered by the lack of common libraries, which
can lead to large amounts of repeated code and cause additional bugs in the program. The goal
of this MQP is to provide such a framework for swarm developers to more easily create their
own swarm projects. This project focuses on common, widely used behaviors in swarm
research such as foraging, which seeks to mimic how groups of ants or bees find and retrieve
food in nature. The team will identify, program, and evaluate the core behaviors common to
foraging algorithms. Based on this research, a library of swarm behaviors will be developed that
allows future developers to perform foraging and other swarm-centric tasks easily. The finished
library will also provide a framework that can be extended upon by future teams and swarm
developers.

1

Acknowledgements

Our Faculty Advisors
Professor Carlo Pinciroli
Professor George Heineman

NEST Lab

Results in this paper were obtained in part using a high-performance computing system
acquired through NSF MRI grant DMS-1337943 to WPI.

2

Table of Contents

Acknowledgements 2

Table of Figures 5

Table of Tables 6

1. Introduction 7
1.1 Swarm Robotics 7

1.1.1 Definition 7
1.1.2 Design Considerations 7
1.1.3 The Foraging Problem 8

1.2 Project Motivation 8
1.3 Report Structure 9

2. Literature Review 10
2.1 Toolsets 10

2.1.1 The Buzz Programming Language 10
2.2 Applications of Swarm Technology 11
2.3 Foraging 11

2.3.1 Foraging Algorithm Parameters 12
2.3.2 Pathfinding in Foraging Swarms 12
2.3.3 Foraging with Virtual Pheromones 13
2.3.4 Foraging with Sweeper Algorithm 14
2.3.5 Foraging with Honeybee Algorithm 14

2.4 Graphical Representation Language 14

3. Design 16
3.1 Project Objectives 16

3.1.1 Utility 16
3.1.2 Modularity 16

3.2 Foraging Algorithm Design 17
3.2.1 Assumptions 17
3.2.2 Modeling Language 17
3.2.3 Puller Algorithm 18
3.2.4 Forager-Beacon Algorithm 19
3.2.5 Honeybee Algorithm 21

4. Methodology and Implementation 24
4.1 Modules 24

3

4.1.1 Gradient Module 24
4.1.2 Forces Module 25
4.1.3 Stimulus-Response Task Allocation Module 25
4.1.4 Recruitment Task Allocation Module 26
4.1.5 Obstacle Avoidance Module 26
4.1.6 Random Walking Module 27
4.1.7 Center Module 29
4.1.8 Miscellaneous Modules 29

4.2 Performance Testing Framework 30
4.2.1 ARGoS Environment Setup 30
4.2.2 Cluster 30

5. Results 31
5.1 Reusability and Modularity 31
5.2 Foraging Parameter Values 32
5.3 Puller Algorithm Performance 32

Analyzing Food Location Preferences 36
5.4 Forager-Beacon Algorithm Performance 38
5.5 Honeybee Algorithm Performance 42
The performance of the honeybee algorithm was measured using similar metrics to those
discussed above in Table 1. The data gathered was accumulated over several hundred
experiments on the cluster 42
5.6 Comparison of Foraging Algorithms 46

6. Conclusions and Recommendations for Future Work 48
6.1 Suggestions for Future Work 48

7 . References 50

4

Table of Figures

Figure 1:​ Swarm Modeling Language Representation of Puller Algorithm 18
Figure 2:​ Example of Nests in ARGoS 19
Figure 3: ​Swarm Modeling Language Representation of Forager Beacon Algorithm 20
Figure 4: ​Swarm Modeling Language Representation of Honeybee Algorithm 22
Figure 5: ​Representation of the Internal Task Structure used in the Task Allocation Modules 25
Figure 6: ​Illustration of Obstacle Avoidance 26
Figure 7: ​Illustration of Meander Behavior 27
Figure 8: ​Illustration of Circling Behavior between Two Robots 28
Figure 9: ​Breakdown of Modules Reused between Algorithms 31
Figure 10: ​Food Collected by the Puller Algorithm based on Maximum Pile Size 33
Figure 11: ​Food Collected by the Puller Algorithm in Most Occupied Environment based on 33

 Maximum Pile Size
Figure 12: ​Wilcoxon Rank Sum Test on Food Collected with Varying Max Pile Sizes 34
Figure 13: ​Overall Food Collected by Puller Algorithm in Uniform and Scale-Free Distributions

 35
Figure 14:​ Food Collected by Puller Algorithm in Most Occupied Environment based on

 Distribution 35
Figure 15: ​Random Uniform Distributions in ARGoS 36
Figure 16: ​Random Scale-Free Distributions in ARGoS 36
Figure 17: ​Heatmaps of Collected Food Positions with the Puller Algorithm 37
Figure 18: ​Overall Performance of Forager-Beacon Algorithm for Varying Pile Sizes 38
Figure 19: ​Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions over Time 39
Figure 20: ​Performance of Forager-Beacon Algorithm with Varying Food Topology 40
Figure 21: ​Positions of Food Collected by Forager-Beacon Algorithm within the Arena 41
Figure 22: ​Overall Performance of Honeybee Algorithm for Varying Pile Sizes 42
Figure 23: ​Performance of Honeybee Algorithm for Varying Pile Sizes in Most Occupied 43

 Environment
Figure 24:​ Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions over Time 43
Figure 25:​ Performance of Honeybee Algorithm with Varying Food Topology 44
Figure 26: ​Wilcoxon Rank Sum Test for Different Food Topologies 45
Figure 27: ​Positions of Food Collected by Honeybee Algorithm within the Arena 45

5

Table of Tables

Table 1:​ Breakdown of Foraging Parameter Values 32
Table 2:​ Average Wilcoxon Rank Sum Test with Varying Max Pile Size in Puller Algorithm 34
Table 3: ​Average Wilcoxon Rank Sum Test with Varying Max Pile Size in Forager-Beacon 39

 Algorithm
Table 4:​ Average Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions for 44

 Honeybee Algorithm

6

1. Introduction

The overriding motivation behind this project is to create modular software libraries that

enable future developers to use the Buzz programming language in novel ways. In order to
appreciate the benefits of this approach, it is necessary to first understand the basics of swarm
robotics and the Buzz language itself.

1.1 Swarm Robotics

1.1.1 Definition

Swarm robotics research is a growing field in which researchers seek to implement
collective behavior in a decentralized manner over a group of robots in an environment. Swarm
robotics is derived from swarm intelligence research, which seeks to develop algorithms inspired
by natural swarm behaviors for such team-based activities as foraging.

1.1.2 Design Considerations

Considerations such as complexity, scalability, and robustness are often important
aspects of robotic swarm design. Much like the swarms observed in nature-- bees, for example
-- the individual robots in a swarm are relatively simple and unable to accomplish much on their
own. To achieve most goals, these simple robots must cooperate with others in the swarm. By
leveraging the combined capabilities of all members of a swarm, these simple robots are able to
manifest a swarm intelligence that allows them to execute more complex behaviors.

As mentioned above, robustness is likewise a critical concern in the design of robot
swarms. Much like a school of fish or a colony of ants, a robot swarm must be able to withstand
the loss of some of its constituents. If a single robot experiences a failure, it should not
jeopardize the overall performance of the rest of the swarm. In practice, accomplishing the goal
of robustness in robot swarms often means employing a decentralized design methodology.
Under this model, the success of the swarm does not depend on a single, highly capable robot
to direct others in the swarm. Often, robots in a swarm all have the same capabilities and rely on
peer-to-peer communication to propagate information across the entire swarm. This approach
improves robustness by removing a single point of failure, thus making the swarm more
fault-tolerant.

A similarly important consideration in swarm design is scalability, which refers to the
ability of a swarm to maintain consistent performance regardless of how large the swarm itself
becomes. A swarm that accomplishes a task on a small scale with relatively few robots should
generally be able to achieve the same goal in a larger environment with more robots. A related
concept is a system’s flexibility, which captures how a swarm is able to cope with different or
changing environments. Ideally, a swarm that is flexible will be able to perform consistently in
environments with a myriad of different challenges, obstacles, and hazards.

These basic aspects of swarm performance are important to consider in the design of
any swarm robotics implementation, such as the one proposed in this project. They also form a
vocabulary that allows for the comparison of different strategies and implementations during the

7

design phase of this project, as well providing a convenient metric to use in the evaluation and
improvement of the finished system.

1.1.3 The Foraging Problem

The foraging problem describes a scenario where a swarm of robots forages for “food”
and returns it to a “nest”. This mimics behavior seen in swarms of actual organisms - for
instance, ants - that exhibit some degree of group intelligence. This behavior is not only a
common in swarm robotics, but is also essential for other swarm behaviors such as
construction.

As one of the most researched scenarios in swarm robotics, there is a wide array of
proposed foraging algorithms. Some of these are very environment-specific, requiring particular
sensing capabilities and allowing robots to manipulate the environment. Other assumptions are
sometimes made about the presence of obstacles and the location or distribution of the “food”.
Many scenarios contain a single, centrally-located nest, while others assume the use of multiple
nests.

Where possible, the algorithms proposed in this project attempt to minimize assumptions
about the hardware capabilities of the robot in the swarm or the exact parameters of the
environment. The precise terms of the foraging problem can change depending on the
environment and the capabilities of the involved robots, there are generalized approaches that
make for efficient foraging.

1.2 Project Motivation

As a relatively new field, swarm robotics research lacks the widely-used frameworks and
toolsets seen in other domains. As a result, developers often must build their own solutions
themselves. This is an impediment to progress because it compels researchers to solve
problems that may have been solved by others previously. Designing complex swarm scenarios
can become difficult due to the high overhead required for each project.

This project aims to address this problem for developers of the Buzz programming
language by creating a library of foraging behaviors. Despite the stated focus on foraging, the
idea is to develop a library that is useful in many different contexts beyond foraging as well.
Since foraging is among the most common swarm behaviors encountered in the literature, it
makes some sense to choose foraging algorithms as the basis for a hypothetical library.
However, many other common swarm scenarios share similarities with the foraging problem,
which gives a foraging-centric library additional utility.

A key component of this project is that it includes multiple foraging algorithms with
different approaches. Since these algorithms perform differently depending on the
circumstances (for example, high or low food density), users might want to use a specific
algorithm to suit the environment. Having multiple algorithms gives developers the ability to
choose or even combine several different approaches to foraging.

On a different level, individual sub-behaviors in the library can be combined to create
novel scenarios. The modular design proposed in this project allows developers to combine not
only different foraging algorithms, but also the individual behaviors that comprise those
algorithms. This empowers swarm researchers to use the library as a basis for their own

8

projects, and saves them the effort of having to replicate many simple behaviors to implement
their own ideas.

1.3 Report Structure

The report that follows this introduction contains several different chapters, each of
which details a specific aspect of this project. The next chapter reviews the relevant literature in
the field of swarm robotics. This includes a more comprehensive overview of current swarm
research and the many approaches to the foraging problem, as well as how these approaches
align with the stated goals of this project. The ideas presented in this chapter are intended to
review what has already been accomplished by experts in the field, and how this project aims to
contribute to these accomplishments.

The third chapter contains details about the overall design and approach taken in this
project. This includes a discussion about both the higher level aspects of the library’s
architecture, as well as the particulars of each foraging algorithm. The implementation of these
design decisions is detailed in the following chapter, which discusses how each of the modules
used in this library function. The final chapters explain the experimental results of each foraging
algorithm and evaluate their performance in the context of the broader goals of the project, as
well as exploring how future endeavors may expand upon the framework provided in this library.

9

2. Literature Review

As a nascent, emerging field, the current body of research in swarm robotics is

constantly evolving. There are a myriad of possible applications of swarm technology, and
research has taken the subject in many different directions. In order to properly define the scope
of this project, it is important to understand the current state-of-the-art in the field, how
individuals are using what currently exists, and what direction these technologies might gravitate
towards in the future. This information allows for an informed decision about what types of
behaviors and algorithms would be useful to include in a possible software library.

2.1 Toolsets

2.1.1 The Buzz Programming Language

The Buzz language is a high-level programming language developed specifically for
swarm applications​[1]​. In general, programming swarms takes place in either a top-down or
bottom-up fashion, where a top-down approach involves designing and implementing the
high-level behaviors of the swarm while a bottom-up approach focuses on designing the
behaviors of individual robots within the swarm. Each approach has disadvantages; a top-down
approach makes it difficult to tune and refine the behaviors of individual robots, while a
bottom-up approach makes it exceedingly difficult to coordinate behaviors at the swarm level.
Philosophically, the developers of Buzz acknowledge that both approaches are fundamentally
important to swarm development, and offer developers the ability to program swarms from both
top-down and bottom-up perspectives.

 The Buzz language accomplishes this goal by providing many abstractions that allow
swarm developers to simplify the design and implementation of robot swarms. For example,
Buzz abstracts away specific robot hardware through the use of the Buzz Virtual Machine
(BVM), which is installed on each robot in the swarm. The BVM then executes a Buzz script that
is loaded onto every robot, making it possible to program heterogenous swarms of robots
without the need to tailor the script to each individual robot according to their specific hardware.

Syntactically, Buzz resembles popular high-level scripting languages such as Python
and JavaScript. This provides a highly readable format and a more manageable learning curve
for developers who are already familiar with these more common languages. Beyond syntax, a
fundamental feature of the language is the inclusion of swarms as a data structure, allowing
groups of robots to be elegantly organized and controlled. Another basic advantage that Buzz
provides is set of swarm-specific primitives such as communication with neighboring robots.
This saves significant overhead on the end of the developer by preventing them from having to
facilitate communication by creating their own communication architecture. A related concept in
Buzz is the idea of a virtual stigmergy, which allows robots to propagate information across the
swarm in the form of key-value pairs. By including these capabilities as a basic feature of the
language, Buzz saves developers significant time and effort by providing all the vital
infrastructure needed to program robot swarms.

10

2.2 Applications of Swarm Technology

As swarm technology matures, it has the possibility to impact many different domains of
application. Many of the properties inherent in robot swarms make them useful in many
situations that are currently very difficult or impossible to automate. One obvious application of
such technology is any task where a region of space must be covered in some form. Swarm
robotics provides a distributed sensing framework that allows for more efficient detection and
response to stimuli compared to conventional approaches. For instance, consider the situation
presented by Brambilla et. al.​[2]​, where a group of robots must scour an area in search of
dangerous chemical leaks. In this situation, robot swarms provide a distinct advantage because
the robots can efficiently localize and determine the nature of any possible leak. Once a leak is
detected, these robots could then self-assemble in such a way that blocks the leakage.

Like many other branches of robots, swarms may also see heavy use in situations that
are simply too dangerous for human workers, such as clearing a minefield. What makes swarm
robots especially suited for these applications is the redundancy that robot swarms provide over
traditional robots. In hazardous areas such as a minefield or battlefield, any given robot has the
possibility of being rendered unoperational (for instance, by an enemy projectile or a detonating
mine). Given their decentralized nature, robot swarms are particularly equipped to handle the
loss of some constituent robots, making them a better fit than the sort of centrally coordinated
systems that can be realized currently.

The scalability property of robot swarms also makes them candidates for applications
which involve scaling up or down. Consider a situation where robots are foraging for resources;
as they discover more resources, it may become necessary to mobilize additional robots to cope
with the increasing demand. While these fluctuations in demand might be minor, they could also
be exponential and require an order of magnitude more (or less) robots. The ability of swarms to
scale well without performance degradation makes them a better fit for these sorts of
applications when compared to conventional approaches.

The concept of scalability in swarm robotics includes not only the number of robots
involved with a given task, but the size of the robots themselves. Any of the above scenarios
can be envisioned on a macro- or microscopic level. A swarm of robots could be scouring a
large field, but they could also be coursing through the human body. While the degree of
miniaturization required for the latter example is not yet possible, the technology may someday
come to exist. The same concepts that apply to swarms on a macroscopic level are still relevant
to these miniaturized applications as well.

2.3 Foraging

Just as swarm intelligence as a whole has a myriad of possible applications, foraging
behavior is the particular focus of this project because of how widely applicable it is to real world
situations. While the definition can be framed in a strict sense as a simple search-and-retrieval
behavior for “food” scattered throughout an environment, a more comprehensive look shows
that this simple definition can be reframed and generalized to a much wider range of “tasks such
as search and rescue, mining, agriculture, or exploration of unknown or hostile environments.”​[3]

11

Foraging behaviors are amongst the most common in swarm research, and as a result
there are many previous experiments and projects on the subject that precede this one. This
research spans a wide range of different approaches, each with different assumptions,
environments, and other parameters. Many forays into foraging behaviors involve the
development of a foraging algorithm, which prescribes a set course of action for each robot or
group of robots that results in the desired collective behavior over the whole swarm.

2.3.1 Foraging Algorithm Parameters

One important way in which foraging behaviors may differ is the concept of a central
place, or “nest”. In some scenarios, this central place simply doesn’t exist. This is analogous to
a hypothetical real-world scenario where the robots in the swarm use the resource as soon as
they acquire it. Others may assume the use of a single nest, while more still may consider the
possibility of multiple nests.

Food and food distribution are critical parameters for foraging that can vary the
performance of algorithms significantly​[4]​. Firstly, foraging depends on the number of food placed
in the environment, or more specifically the ​density of food​. The food can also be distributed in
several ways. For example, the food could be ​uniformly​ distributed, where each small area of
the environment has an equal probability of having food. Another possible distribution method
would be ​scale-free​. In scale-free distributions, there tend to be more small number of areas
with large amounts of food, and many areas with small amounts of food. This creates an
environment that is not only dense in some areas but also sparse in others, allowing to fully
evaluate and test the performance of foraging algorithms. In addition, at a given location, the
number of food can vary as well. These ‘piles’ are food stacked on top of each other and the
sizes of the piles may vary up to a ​maximum pile size​. Other parameters include changing the
surroundings such as ​field size​ and even the ​duration​ of the simulation. Additionally, obstacles
may be present in the environment. These obstacles may be static, such as walls, or they may
be dynamic objects such as other robots.

2.3.2 Pathfinding in Foraging Swarms

A related concern is the way in which robots are able to actually locate the resources
they are foraging for. One method employed by many researchers is the use of virtual
pheromones, which are intended to act in a way that is analogous to the actual pheromones
used by social organisms​[4]​. In the case of ant colonies, individual insects leave trails of
pheromone chemicals so that they can easily rediscover a food cache once they initially
discover it. More importantly, this pheromone trail also allows many other ants in the colony to
find the food as well, and thus many ants can be engaged in pathfinding to carry this food back
to the nest at once.

When it comes to simulating the function of this pheromone in the context of a swarm
foraging scenario, there are many possible implementations. The work of some researchers
makes use of actual physical markers which robots use to manipulate the environment. For
example, robots might be able to leave trails of a chemical, drop a path of tokens, or create
marks on the ground beneath them. While these approaches have the advantage of being
tangible, simply ways of mimicking the behavior of nature, they also require the robots in a

12

swarm to have some capabilities beyond simply moving and communicating with other robots
nearby.

To assuage this problem, some foraging algorithms use the robots themselves as the
pheromone. Since the robots are taking the place of a physical pheromone marker, no
additional capabilities are assumed of individuals beyond basic locomotion and communication.
The robots that are designated as pheromones simply use their communication capabilities to
advertise the location of food sources to other robots in the swarm. This achieves the same end
result, but has the drawback of requiring some proportion of the swarm to be allocated for
creating pheromone trails. This in turn means that less robots are available for the collection of
the food. Even within these two approaches, there is great diversity in pathfinding algorithms,
each with different assumptions and tradeoffs.

2.3.3 Foraging with Virtual Pheromones

The paper by Hoff, Sagoff et. al.​[5]​ provides an illustrative example of the different
approaches to pathfinding that use the robots themselves as path markers. One of the
algorithms they propose involves the use of virtual pheromone as a means of navigating
between food and the nest. In this method, the pheromone is not a physical marker or
substance, but rather a numerical value that is communicated between robots in the swarm. In
contrast to actual pheromone-laying behavior, this approach actually involves the use of two
separate pheromones: one to navigate towards food, and another to navigate towards the nest.
Robots may randomly stop their searching and become “beacons,” which are stationary markers
that can store these pheromones. The pheromone itself is simply represented as two floating
point numbers-- one for each the nest and food-- and the value decays steadily over time. Other
robots that are still searching for food can receive communications from these beacons to
decide where they should go, where higher pheromones value represents increasing proximity
to food or the nest, respectively. Another aspect of this algorithm is that it allows searching
robots to transmit back to these beacons as they travel near them, which increases their
pheromone value. This mimics the behavior of pheromone trails in real ants, where trails will
decay unless ants continue to follow the same path to maintain pheromone levels along the
path.

The other algorithm proposed in this paper is similar to the virtual pheromone algorithm
described above, in that it allows each robot to take on the role of either “walker” or “beacon” at
any given time. However, this algorithm differs in that beacons store the virtual pheromone as
an integer value instead of a floating point number. In this method, which the authors term the
cardinality algorithm, the pheromone instead represents the number of communication hops
away from the nest or food. For example, beacons directly adjacent to the nest would have a
nest cardinality of 1, robots adjacent to those robots would have a nest cardinality of 2, and so
on. The “walker” robots can then follow the gradients formed by these cardinalities to their
ultimate destinations. This discards the notion of pheromone decay in favor of a simpler method
for constructing paths and evaluating their cost.

13

2.3.4 Foraging with Sweeper Algorithm
The sweeper algorithm as discussed in the paper by Alcherio et. al.​ [6]​ presents a

strategy for collecting food in a systematic manner. The core methodology behind this algorithm
is virtual forces. Essentially, each robot exerts a force on its neighboring robots inversely
proportional to the distance between them. Initially, the robots are all exerting these forces onto
each other which spreads them out throughout the environment forming a line. In addition, two
robots are designated as pullers. These pullers experience an additional force. This force
moves the robot around the environment in a similar manner to that of the sweeping motion on
a clock. The pullers would exert a stronger force on other robots, making them follow the
sweeping motion. When the line of robots approaches a food, the entire line stops moving.
Gradients are calculated and the robot closest to the food picks up the food and gradient follows
back to the nest. After the food has been returned, the line continues its motion. This is then run
until all the food has been collected.

This method overall covers a large amount of area, but is slow due to the robots stopping each
time they encounter the food. However, the algorithm is able to perform well in environments
where the food is sparsely allocated due to the line of robots. By having the line of robots extend
out further in the environment, the robots may be able to encounter food that other algorithms
which prefer food closer to the nest would not be able to.

2.3.5 Foraging with Honeybee Algorithm

Brabazon et. al.​[7]​ present a foraging optimization algorithm based on the natural
foraging techniques of honeybee colonies. The algorithm, a variant of a standard genetic
algorithm, disperses a set of agents (bees) and uses them to search in the space for an optimal
solution​[7]​ . Dispersed agents search a local area for a candidate solution, and during the
evaluation phase agents with solutions found to have the highest fitness recruit neighboring
foragers for a more intensive local search around the candidate solution. This process continues
using the recruitment strategy until the best candidate solution is found.

2.4 Graphical Representation Language

For the purposes of explaining the often abstract concepts used in swarm system
design, it is useful to have a means of expressing ideas in a graphical format. This visual form of
expression can be codified into a more formal design language; Unified Modeling Language
(UML) is a widely-used example of such languages, and is often employed in the context of
explaining and developing software systems. However, developing swarm-based systems
differs considerably from traditional robotics and software design, because it involves ideas and
constructs that have no direct analogue in conventional approaches. As a result, the existing
tools for representing software graphically are inadequate for swarm applications, and a new
convention must be developed to suit the needs of this project.

It is possible, however, to borrow ideas from other graphical protocols in the
development of a new protocol. The use of finite state machines (FSM) is a common, simple,
way of expressing state changes; that is, how a system changes in response to a given input. In
an FSM, the machine can be in only one of a given number of states at any point, and can

14

transition to other states based off inputs to the system. In the context of swarm robotics, it
might be useful to use an FSM to demonstrate how a given robot or group of robots change
their behavior in response to interactions with each other and the environment. However, both
FSM diagrams and UML diagrams fail to capture many essential elements of swarm systems,
such as the concept of swarms themselves. Owing to their shortcomings, these conventions are
unsuitable for fully representing multi-robot systems by themselves.

An attempt to remedy these drawbacks was made by Pitonakova, Crowder, et al.​[9]​ in
their paper ​Behaviour-Data Relations Modelling Language For Multi-Robot Control Algorithms​,
which details an attempt to create a modeling language specifically for swarm applications. The
core properties of this language are that it creates graphical constructs-- which they term
primitives-- that represent both data and robot behavior, and it can represent interactions
between these constructs. For example, the language contains different primitives for internal
data in the robots’ memory and external data that exists in the environment. The interactions
between these behaviors and data, which are referred to as relations in the paper, are likewise
able to encapsulate a number of actions, including sending, receiving, transitioning, reading,
and writing. While diagrams in this language are meant to represent the actions of a single
robot, they also can be generalized and applied to swarms as a whole.

15

3. Design

3.1 Project Objectives
The stated goal of this project-- to present Buzz developers with a useful, foundational

tool upon which their own projects could be more easily created-- is the essential principle that
guided the design of this library. This motivation informed the design of this project at a
macroscopic level, but also impacted the smaller, more atomic aspects of the library’s
architecture as well. This idea was combined with basic swarm design principles such as
scalability and robustness to maximize the impact of this project on its targeted need. The
sections that follow detail how these ideas were incorporated into the design of the final library.

3.1.1 Utility

A central focus of this project was to maximize the utility of the finished library to the
average Buzz user. As was mentioned before, the foraging problem was chosen for this project
specifically due to its wide range of applicability. Not only is foraging itself a common behavior
for swarms, but many other scenarios can be reframed as a variation of the foraging problem.
However, on a more granular level, we acknowledge that there is a great diversity of foraging
algorithms that function optimally under widely different circumstances. For this project it was
important to choose multiple algorithms that cover as many different scenarios as possible. For
instance, it is useful to have one algorithm that performs well in food-dense environments and
one that performs well in food-sparse environments.

For the purposes of this project, it was also important that our design made as few
assumptions about the capabilities of robots within the swarm beyond basic communication and
sensing abilities. In practice, this meant generally avoiding approaches that required specific
hardware such as precise odometry and physical pheromone markers. Instead, these
capabilities were recreated by propagating information throughout the swarm and using this
data to make collective decisions. This approach benefits the end user by not requiring any
specific hardware to use the behaviors within the library.

3.1.2 Modularity

The other important guiding principle in the design of this project was the idea of
modularity. In the context of the behavior library, having a modular design meant building a
hierarchical system of components that were interchangeable, replaceable, and able to be used
by themselves. In a more concrete sense, this meant decomposing the larger foraging
algorithms into submodules that handled specific aspects of the overall behavior. These
sub-modules could then be further divided into simpler, more granular behaviors.

To the extent possible, these sub-modules were reused and shared between algorithms.
For example, several different foraging algorithms within the library might use the same
path-finding behavior. This path-finding behavior would be its own module that is re-used by
both algorithms, but could also be used by itself in a context other than foraging. Furthermore, a
truly modular behavior would allow developers to come up with a new implementation of a
path-finding behavior and use it interchangeably with the older implementation. This allows

16

developers to use only select parts of the library according to their needs, and also allows them
to easily extend or alter the basic behaviors with their own modules.

3.2 Foraging Algorithm Design

The sections that follow explain the theoretical basis for the several different foraging
behaviors included in the library. The three algorithms described below all borrow from existing
ideas in the literature to some extent, and all have specific advantages and disadvantages.
Each algorithm is described in terms of how it functions at a high level; the exact structure of
each sub-module is left for later sections.

3.2.1 Assumptions

There are many potential variables in the setup of these algorithms. However, evaluating
every possible parameter would require complex, multi-dimensional analysis beyond the
intended scope of this project. For this reason, each of the algorithms implemented share a core
set of assumptions. These assumptions were based on the literature review as well as practical
considerations.

For the purposes of experimentation, all robots are assumed to start near the nest, which
is located towards one end of the environment rather than in the center. The size and shape of
the experiment field remains constant across all tests, allowing for simpler comparisons
between algorithms. However, exact distribution and topology of resources is randomized
between trials. Furthermore, robots are equipped with sensors to detect food and nest, as well
as being able to pick up and drop off the food by themselves. Other sensors include proximity,
positioning, and range and bearing sensors. The Khepera IV was used in all of the experiments,
however any robot with the above mentioned sensors will be able to run the algorithms. For the
purposes of simplicity, all of the foraging algorithms discussed in this paper were run using the
ARGoS multi-robot simulator​[8]​, which enabled Buzz scripts to be run in a way that closely
simulates the performance of actual robots.

3.2.2 Modeling Language

The algorithms used in this project are described in terms of a created modeling
language to visually represent their function. This language is inspired by similar design
languages such as the one described by Pitonakova et. al​[9]​, as well as independent research
and thought. The essential property of each diagram is that any robot can be thought of as
belonging to only one state at any given time step. In this language, states are represented by
ovals. These states determine the behavior that the robot performs, which are represented by
rectangles in the diagrams. A robot can reach other states and behaviors through state
transitions, which are represented by arrows. Sometimes these state transitions are dependent
on a logical condition, which decides between one of many possible outcomes. These decision
points are represented by diamonds in the modeling language. Dotted arrows are distinct from
solid ones; they represent that a given state “uses” the behavior pointed to by the arrow, rather
than indicating a state transition.

17

3.2.3 Puller Algorithm

The Puller algorithm takes inspiration from the sweeping algorithm discussed in the
literature review. The sweeping algorithm proposed forming a line of robots and having that line
perform a sweeping motion to explore the environment. However in practice, the pullers were
not able to exert a force strong enough to move the rest of the robots. This made forming a line
challenging, and thus we pivoted to an alternative strategy that still shared common methods
such as forces. Like all the other foraging algorithms discussed in this paper, the Puller
algorithm can also be broken down into three main tasks: finding food, retrieving food, and task
allocation. An overview of the algorithm is shown in Figure 1 below.

Figure 1​: Swarm Modeling Language Representation of Puller Algorithm

For finding food under the Puller algorithm, robots predominantly use forces, specifically

dispersion. Dispersion allows the robots to spread far from each other to cover the maximum
amount of area while still being in communication range of other robots. This optimization
however does result in the robots eventually reaching a ‘stable’ state where the net force they
experience is zero. In this case, robots would be still and thus not find any food. In order to
break this stable condition, robots could also be ‘stretching’, an entirely different algorithm for
finding food. The stretching behavior is similar to that of the pullers described by Alcherio et.
al​[6]​. The difference is that the vector is not time dependent. Instead the robots will travel in the
direction opposite to the nest with some variance. The variance introduces randomness and
allows robots to explore areas that otherwise they would not, which is the entire reasoning
behind the stretching.

Retrieval of food is simple. If a robot is carrying food, then it will gradient follow back to
the source of the gradient, which is the nest. The nest in this case is a collection of robots which
is calculated at the beginning of the algorithm. The center module (as described in Section
4.1.7) is used to determine the robots representing the nests. The robots with the highest

18

resulting count after some time are determined to be the nest. An example of the nest is shown
in Figure 2. With the nest constantly broadcasting the gradient source, other robots maintain
their gradients and are then able to gradient follow back to the nest.

Figure 2​: Example of Nests in ARGoS

Lastly, in order for the Puller algorithm to work, task allocation is needed in order to

assign tasks to robots. The module used for task allocation is the stimulus model. With the
stimulus model, robots have a certain probability of performing different algorithms for finding
food. Since the stretching behavior is only needed when robots are close to the stability point
when performing dispersion, the stimulus response for the stretching behavior is smaller than
the stimulus response for the dispersion. The stimulus for retrieving food depends on whether
the robots are carrying food. Robots will retrieve food if and only if they are carrying food.

The drop probability is currently a constant based on the priority of a task. Ideally, this
probability would be a function of the priority and the time. As time goes on, the probability of a
robot dropping the task should increase as well. This increases the randomness in the
environment and helps break the stability conditions of the algorithms which are more likely to
be met later during the experiment.

3.2.4 Forager-Beacon Algorithm

This foraging algorithm borrows the idea described in the previously-referenced paper by
Hoff, Sagoff et al titled ​Two Foraging Algorithms for Robot Swarms Using Only Local
Communication​. ​The central concept of this algorithm is to divide the entire swarm of robots into
two main groups: “foragers” who search for and retrieve food, and “beacons” that act as
pheromones to guide other robots to food and the nest. Robots are assigned into one of these
states at random, and can switch between states.

 ​The makes use of virtual “pheromones” to mimic the way a swarm of ants or other
insects might find and retrieve food. The idea of these pheromones is used in many different
foraging methods, but how the pheromones are simulated can vary. In this algorithm, we borrow
an idea from others to use the robots themselves as pheromones. This has the advantage of

19

not requiring any additional capabilities from individual robots, such as being able to place
physical markers (pheromones) within the environment.

The beacons maintain two pieces of information that allow them to guide other robots--
we’ll borrow a term from the previously reference paper and refer to these as the nest cardinality
and the food cardinality. The food cardinality is a heuristic that incorporates how near a beacon
is to a food source and how much food exists at that location. The closer a beacon is to food
and the more food that exists, the higher this number will be. The nest cardinality simply
represents the estimated distance from a given beacon to the nest.

Without guidance from beacons, forager robots simply wander about randomly. If a
forager encounters food during this random walk, it instantly changes state to become a
beacon. It then initializes its food cardinality as a function of the amount of food present. It then
broadcasts this information to neighboring beacons. The neighboring beacons will then see this
food cost, and generate a food cost of their own. This newly-generated food cost is a function of
both the distance of that beacon from the food source, and the amount of food present at that
source. This process then continues to the neighbors of that robot, and so on. In doing so, a
gradient is constructed that approximates the relative amount of food near to any point in the
environment.

The other half of this process is to construct a second gradient that represents the
relative nest cost of each beacon. This process starts with beacons that are neighboring the
nest, which initialize their nest cost to be the estimated distance between the robot and the nest.
Neighbors of these beacons then set their nest cost to be the nest cost of the first beacon plus
the estimated distance between the two neighbors. In this way, paths are constructed outwards
from the nest to all reachable beacons. Foragers can then use this gradient to find their way
back to the nest once they’ve retrieved food.

20

Figure 3​: Swarm Modeling Language Representation of Forager Beacon Algorithm

The entire high-level operation of the Forager Beacon algorithm is described in the
diagram above. The diagram shows that any point, robots may fall into one of three roles:
foragers, beacons, or the nest. At least one robot must be designated as the nest so that
returning foragers have a means to find the food drop-off area. This robot has no other purpose
other than to remain in place and broadcast its position to the rest of the swarm. This is a
simplification to make experimentation easier, and more complex setups could replace this nest
robot with an some other construct that fills the same role. The declaration of the nest robot
happens at the beginning of the simulation and is static, as that robot remains the nest for the
rest of the simulation. In the diagram, this is evidenced by the fact that there are no state
transition arrows leading to or away from the nest.

Foragers and beacons may change roles however. This switching happens
probabilistically, as represented by the double-ended state transition marked ​p​ in the diagram.
The actual implementation of foragers and beacons is slightly more complex than indicated in
this diagram. The function of these roles is actually encapsulated in four separate tasks that are
handled by the task allocation module. The entire foraging behavior, for example, is comprised
of three tasks: finding food, returning food, and random walking. The random walking behavior
can be thought of as a default task, which foraging robots will perform if they do not have food to
bring to the nest and they cannot see a path to any food piles. If they can see a path to a food
pile, they switch to the “find food” task and navigate to the food by gradient following. Once
they’ve picked up a food item, they switch to the “return food” task and bring that food back to
the nest, at which point the cycle repeats. However, at any time step there is a chance that a
forager will be switched to being a beacon. Foragers will never be interrupted while they are
returning food, but they can be forced to switch at any point while meandering or finding food.

Once a robot is a beacon, its behavior is much simpler. There is only one task for the
robot to execute, which is to advertise its location relative to food to all other robots within range.
Though they all perform the same basic behavior, it is important to note that there are
fundamentally two different types of beacons. When a randomly walking robot happens upon a
pile of food, it is instantly forced to become a beacon so it can guide neighboring robots to the
location of that pile. Other robots become beacons randomly at positions where there is no food.
Their job is to simply relay the source of the food and nest gradients to their neighbors. This is
necessary because it maintains connectivity throughout the swarm. If stationary beacons were
not present, groups of foragers would become cut off from the nest gradient as they flocked
towards piles of food. The finding food task functions similar to a flocking behavior, where large
groups of robots converge on a single location. This leads to “islands” of many robots, but these
groups are often too far away from other robots to propagate gradient information and thus have
no path back to the nest. Having some robots remain beacons even when they are not on a pile
of food maintains this connectivity.

3.2.5 Honeybee Algorithm

The honeybee algorithm was developed with roots in the real-world foraging behavior of
honeybee colonies, with slight modifications inspired by Brabazon et. al.​[7]​. At its core, the

21

algorithm defines two behaviors - the “scout” behavior and the “worker” behavior. Scouts are
tasked with dispersing into the arena to find food locations, while workers know of a food
location and will travel back and forth between the nest and that location ferrying food back to
the nest. Robots will switch between these behaviors as conditions dictate, or at random with
some predefined probabilities. An overview of the algorithm in the Swarm Modeling Language is
shown in Figure 4.

Figure 4​:​ Swarm Modeling Language representation of the Honeybee Foraging

Algorithm

The heart of the honeybee algorithm is the idea of recruitment. In nature, honeybee

foraging relies on recruitment of teams by the scouts to fly out to the discovered location for
retrieval of nectar and pollen. Scouts will memorize locations during the scouting phase and
upon return to the hive will participate in a recruitment method known as the waggle dance,
which encodes the location as a series of motions. Given the various dances, idle worker bees
will decide to join a particular scout and travel out to that food location to retrieve the resources
found there. The honeybee algorithm implements a similar mechanism for recruitment, allowing
robots performing any given action to actively recruit direct neighbors to join them. This
mechanism is what drives the switching between the scout and worker behaviors.

The scout behavior attempts to disperse into the arena in a way that allows for maximum
coverage of the unexplored locations. For this reason, it makes uses of the recruitment
functionality to form a scouting team that travels together out into the arena. One robot is
considered the leader of a scouting team and heads away from the nest, and recruits other
robots to follow. At the beginning of a given experiment, this allows the swarm to disperse fairly
evenly across the environment and divides the search space. Scouts continue this behavior until
recruited away.

22

The key to the worker behavior is encoding the location of a discovered food pile and
broadcasting this location to potential recruits. Once robots have allocated to a worker task, they
travel between the food location and the nest ferrying food from the location back to the nest.
This behavior continues until a robot arrives at the location and sees no more food there; at this
point it deallocates and is available to respond to recruitment messages from other active tasks.

23

4. Methodology and Implementation

The foraging algorithms contained in this library are composed of granular
sub-behaviors, or modules, that are then combined to create more complex behaviors. This
section details the implementation of the overarching algorithms in terms of individual modules.
Understanding how these modular foraging behaviors work requires understanding how the
individual sub-behaviors function and how they help to accomplish the larger goals of the
algorithm. In addition to these components, this section also explains the experimental setup
used to test and evaluate the foraging behaviors as a whole.

4.1 Modules

4.1.1 Gradient Module

Gradients are one of the most common tools in swarm programming and can be used in
variety of ways. A gradient is a collection of robots that share a specific message type with each
other. Each robot in a gradient contains a hop count. Each gradient has a source which starts
with a hop count of 0. The hops of a robot is one more than the minimum hops of the
neighboring robots. In order to implement this in Buzz, we created a table for gradients:

Each robot holds a table for each gradient. The table contains whether the robot is the
source of the gradient, the id of the robot, the id of the parent robot, and the vector to the source
of the robot. These fields allow the robots to perform gradient following where any robot can go
to the source of the gradient. At each time step, the gradient for the robots need to be
recalculated. In order to do so, each robot sends its own gradient message to neighboring
robots. After comparing the current gradient table with the incoming one, the robots choose the
table with the smaller hop count. If the hop count is exactly the same, then the robot which is
closer to the source of the gradient is chosen. There were other more involved factors
concerning updating the gradient as well. For example, if a robot receives a gradient status from
its parent robot, then it will always update it’s own gradient. These edge cases were essential to
properly implement gradients and gradient following in our algorithms. Once every robot has
done this, the new gradient has been established. For gradient following, the goal of a robot is
to drive to another robot’s location, usually the source. This is done by utilizing the parent id
stored in the gradient message. The robots that are performing gradient following always go
towards their parent using the forces module (as described in the next section) until they have
reached the target.

Gradients can be used to determine the relative size of the area that has been covered
by the robots. Gradients can also be used to allow robots to move from one location to another.
Specifically in our applications, this involves robots going towards the nest and the food
locations. There is a seperate gradient table needed for the nest and for the food, and robots
are able to follow the gradients back to their source.

24

4.1.2 Forces Module
One of the key motion modules we implemented involved using forces. With this module,

robots can exert virtual forces onto other robots based on the distance between them. This force
can then either push robots away from each other or towards them.

Dispersion was a key implementation in the forces module. The dispersion functions
maintains the robot’s distance based on the given input. This is done by using the equation
described below.

(1)
where a and b are constants, R is the desired radius of separation, and d is the distance vector
between the robots.

With dispersion, developers can easily maintain distance between a swarm of robots to
avoid congestion. Eventually the robots performing dispersion will reach a stabilization point
where the net force they experience is zero. In this case, robots don’t move and simply wait until
the environment changes. In addition to dispersion, the forces module also offers other
functions such as moving towards a particular force vector, obtaining the net force vector on a
particular robot, and running away from and towards one robot. All of the functions in the force
module are easily extensible to any application requiring motion.

4.1.3 Stimulus-Response Task Allocation Module

Task allocation is an essential functionality for a robot swarm in order to determine the
tasks for each robot​[10]​. Rather than having individual robots decide by themselves on their
tasks, the task allocation module assigns tasks to swarms of robots. The task allocation
modules provided in this library define the notion of a task as a collection of functions and
parameters encapsulating the selection and execution of the task. A detailed representation of
the task structure is shown in Figure 5.

Parameter Description

stimulus() The function used to calculate the dynamic
stimulus

execute() The function that actually performs the task

priority A value between 1 and 5 indicating the
priority of the task

Figure 5:​ A Representation of the Internal Task Structure used in the Task Allocation

Modules

Task creation involves defining the behavior functions and registering the task with the
allocation module. Once registered, a task is available for activation by individual robots. A robot

25

that activates a task will start performing the task (as defined by the behavior) and make the
task available to the other robots based on the allocation strategy.

The stimulus-response allocation strategy operates on the assumption that every active
task and its state is available to each robot at decision time​[11]​. From the state of a task, each
robot calculates a dynamic stimulus value, which represents the “eagerness” of the robot to join
that task. A higher values of the stimulus thus results in a higher likelihood of the robot
allocating to the task providing that value.

The process for selection with the stimulus-response model consists of a calculation
phase and a weighted random selection phase. In calculation, the robot calculates a stimulus
value for every active task and generates the stimulus list. In the selection phase, the robot
employs a weighted random selection strategy, using the stimulus values as weights. Once the
robot has selected a stimulus, it joins the task that produced the maximized stimulus value. The
calculation follows Equation 2, where ​s​p​ ​is the stimulus of task ​T​p​ for all ​n​ active tasks.

election uniform([s T , T , ..., s T])s = 1 1 s2 2 n n (2)

4.1.4 Recruitment Task Allocation Module
The recruitment allocation strategy is an extension of the stimulus-response model.

Rather than having all active tasks available to all robots, tasks are instead broadcast by robots
currently performing them to direct neighbors.

The module uses the same task structure as the stimulus-model based module and the
selection process is similar. One important difference is that the selection process only occurs at
a specific frequency (once every ten timesteps) due to the volume of messages being broadcast
at any given timestep. However, the selection process still involves calculation of the dynamic
stimulus and the same weighted random selection process as before.

4.1.5 Obstacle Avoidance Module

Figure 6:​ Illustration of obstacle avoidance module

26

Collisions between robots can disrupt the performance of an entire swarm, so it is
important to have a method to avoid them efficiently. The obstacle avoidance borrows ideas
from McLurkin​[12]​ to create a module that provides this small but necessary functionality to all
algorithms in the library. The figure above illustrates how the avoidance module functions when
an obstacle-- such as a robot or an immobile structure in the environment-- is encountered.

The transparent circle represents the robot, while the red vector represents the current
direction the robot is headed towards. In this scenario, the robot will collide with the brown
object to its left if no corrective action is taken. At each time step, the obstacle avoidance
module reads each of the robot’s proximity sensors, which are distributed radially around the
robot. In this diagram, these sensors are represented by the dotted black lines.

If an obstacle is detected, the robot then calculates the distance vector to that object,
which is represented in the diagram as the dotted blue line from the robot to the obstacle. The
opposite of that vector is then calculated, as shown by the blue arrow vector. By adding the
original direction vector to the blue obstacle vector, a new vector can be calculated which
represents the direction the robot should travel to avoid the object, which is represented by the
purple arrow vector.

This approach works even if there is more than one obstacle, as the resultant heading
vector will still typically point away from any obstacles within range. The robot receives the
strongest pull away from an obstacle when the object is farther away, since the avoidance
vector is largest at this point. This is desirable because it gives the obstacle avoidance behavior
a “proactive” tendency, where robots move away from obstacles before they get too close.

Though this module is relatively small, its purpose is important and it is widely applicable
across many different circumstances. In addition to being used in each foraging algorithm,
obstacle avoidance is useful in many other swarm behaviors as well. This property makes it a
valuable addition to this library, as future users can easily incorporate this module into their own
projects even if the larger foraging behavior is ignored.

4.1.6 Random Walking Module

Figure 7:​ Illustration of meander behavior

This module contains a variety of movement behaviors that are useful for foraging,

exploration, and other swarm behaviors. The most fundamental behavior in this module is the
meander function, which provides a means for robots to wander aimlessly through the
environment. The meander behavior works by randomly changing the direction that the robot

27

moves in at each time step. However, randomly selecting from all possible directions on each
timestep causes the robot to barely move at all, as it does not have time to make progress in
any one direction. Instead, the random direction vector is constrained to be within some range
of the previous direction vector, as shown in the diagram above. The red arrow represents the
previous direction, and the new direction vector must be within about 45​˚​ of this direction to
either side. The possible range of this new vector can be adjusted, where narrower ranges lead
to straighter, smoother paths than wider ones. This behavior is useful for exploring the
environment in the absence of other information, in the context of foraging or otherwise. In this
project, it is used by the Forager-Beacon algorithm to forage for food when there is none
currently visible.

Figure 8:​ Illustration of circling behavior between two robots

A related behavior in this module is the circle function. Circling is a straightforward

behavior that allows for one robot to travel in a fixed radius around another, as represented in
the diagram above. This behavior is achieved by finding the vector between the two robots, and
then adding 90 degrees to the angle of that vector. This creates a new vector that is
perpendicular to the vector between the robots. The circling robot then travels along this vector
with a magnitude value, which can be adjusted to control the speed of the robot along its path.
Because this calculation is performed at each time step, the direction of the perpendicular
vector shifts slightly on each iteration, resulting in a circular path around the other robot.

This function is used in the Forager-Beacon algorithm to find food. When a forager
arrives at a beacon, it may not instantly detect food due to idiosyncrasies in the location of the
beacon relative to the food pile. Having the forager circle the beacon makes the algorithm more
reliable because it effectively forces the forager to search around the beacon if it does not pick
up food immediately.

A simple modification to the circle behavior results in two additional functions that allow
robots to travel in spiral patterns relative to each other. This is accomplished by adding or
subtracting a small angle from the perpendicular vector calculated in the circle function. Adding
a small angle to this vector will cause the robot to travel slightly outwards relative to the other
(spiralling outwards), while subtracting a small quantity will cause the robot to travel slightly
inwards (spiralling inwards). Spiralling inwards is useful for much the same reason as circling,

28

as it is simply a different way to search the area around a robot. It is in some respects superior
to the basic circling behavior, as it covers more area. Spiralling outwards is an effective way to
explore the environment. It is more methodical and consistent than meandering, and allows for
guaranteed exploration of a certain area. However, meandering has advantages where
guaranteed exploration is not a concern, as it can typically cover a wider total area in a shorter
amount of time.

4.1.7 Center Module

One of the most important aspects of foraging is for robots to always be able to travel
back to the nest. Often in swarm programming, robots aren’t assumed to have specific sensors
like smell that allow them to locate the nest. In order to solve this problem, a group of robots
remain at the nest and broadcast to all other robots their location. This way every robot is
always aware of the nest’s location. Choosing such robots can be a difficult problem however. If
there are too few robots representing the nest, there may be traffic jams and congestion when
other robots travel back to the nest. This can hinder performance significantly. On the other
hand, if there are too many robots representing the nest, then there may not be enough robots
out on the environment, and the algorithm would still perform worse. The center module
chooses such a group of robots in an efficient manner that remain at the nest. To calculate the
nest, robots initially send each other messages representing a count. Robots then accumulate
the count received from their neighbors and then send the resulting count with some decay
factor to their neighbors. After waiting some time steps, the robots with the highest accumulated
count are chosen as the nest. The count for each robot is also stored in a global stigmergy,
which then allows all the other robots to calculate the closest robot representing the nest. The
center module is utilized in all of our algorithms as a tool to efficiently choose robots to be the
nest so that the other robots can cover as much of the environment as possible.

4.1.8 Miscellaneous Modules

This library also contains a variety of functions that did not fit neatly into any other
module, but were nonetheless useful. Many of these functions were small, simple operations
that satisfy a use case that is not currently covered by any other standard function in Buzz.
These functions were included as part of the library because they are generally useful, even
apart from their applications in foraging. Their inclusion prevents future developers from having
to create their own functions that effectively perform the same task.

Many of these miscellaneous functions perform actions related to neighbor interactions
between robots. For instance, the there is a function that can be called on any robot with a
specific robot id as a parameter, and returns a value indicating whether the two robots are
neighbors. A similar function in this module returns a value representing the distance between
the two robots. Other included functions allow users to find the number of neighbors that a given
robot has, or retrieve the ID number of a random robot within neighbor range.

29

4.2 Performance Testing Framework

4.2.1 ARGoS Environment Setup
Our project creates the environment based on the following given information: density of

food, x and y length for the range of food displacement, the food distribution method, density of
robots, and two output files for data collection.

Two environment variables are used in ARGoS that are required to be declared in the
accompanying Buzz script: ​hasFood​ and ​foodCount​. These two variables are held by each
robot and represent whether the robot is carrying food, and if the robot is on a pile, how many
food are located on the pile. These are necessary in order for the simulation to notify the robots
they have reached a food or nest location.

4.2.2 Cluster

As one of the main goals of our project, we tested each of the algorithms performance by
performing thousands of simulations. To do so, we utilized the Turing Cluster at WPI. We
created two bash scripts for setting up and running the experiments. The purpose of the main
job was to iterate through the parameters of the simulation, and then launch the simulation job
with the chosen set of parameters. The simulation job then took these parameters and filled
them into a template argos file which was then run. One important consideration while we were
creating our framework was the maximum number of jobs that could be queued onto the cluster.
In order to avoid spamming the cluster with thousands of jobs each representing one simulation,
we grouped simulations with the same set of parameters excluding the random seed into one
job. This reduced the number of jobs, while also still allowed for parallelization to run multiple
simulations at the same time. The time taken for each simulation heavily depended on the
number of robots. The typical time ranged from 15 minutes to 25 minutes. We were able to
complete and collect data from over 2500 simulations in total.

In addition to the job scripts, we also developed programs for visualizing the data
retrieved from the simulations. We utilized Jupyter and python for reading and creating the
graphs from the data using libraries such as numpy, pandas, matplotlib, and scipy.

30

5. Results

5.1 Reusability and Modularity

Modules Times Used

Gradient Following 3

Obstacle Avoidance 3

Find Center 2

Stimulus Model 2

Forces 2

Random Walk 2

Transforms 2

Neighbor Based Recruiting 1

Figure 9​: Breakdown of Modules Reused between Algorithms

A major goal of this project is to demonstrate a high degree of reusability across all the

software modules contained in the library. The degree to which this goal is met can be
measured in many different ways, such as by quantifying the amount of shared code between
algorithms. The diagram above shows how modules are shared and reused between the three
algorithms included in this library. There is a considerable degree of overlap, with some
modules being used by all three algorithms and several others by at least two.

Another major design objective of this project is to ensure a high degree of modularity
among the software components included in the library. For instance, the Forager-Beacon
algorithm uses the meander behavior to explore the environment, whereas the Puller algorithm
makes use of the pulling behavior. However, these components are modular in the sense that
the meander behavior could be swapped for the pulling behavior, yet the overall performance of
the algorithm would remain the same. Many other components of the library share this
interoperability, and future developers could easily extend the current options with their own,
improved behaviors. This is useful because it allows users to potentially tailor the sub-behaviors
of the larger foraging algorithm to a specific environment.

Creating self-contained software modules also simplifies and shortens the necessary
code for foraging algorithms. During the development process, both the pulling and
forager-beacon algorithms were partially created before they were re-made using the task
allocation module. The process of porting to a task allocation-based module shortened the
overall code body of each algorithm by several hundred lines, and also improved subjective
characteristics such as readability. This example is illustrative of how this library might benefit
future users by providing ready made swarm development tools. By providing much of the

31

overhead, this library can prevent developers from having to do unnecessary base work to
create their own projects.

5.2 Foraging Parameter Values

Table 1​: Breakdown of Foraging Parameter Values

Parameters Values

Topology Uniform, Scale-Free

Robot Density 0.3, 0.5

Food Density 0.2, 0.5, 0.8

Maximum Pile Size 1, 5, 10

Table 1 shows the different parameters that were considered during the experiments, and the
values associated with the parameters. These values were chosen so that there was a wide
range of different arena setups so that we could properly measure the performance of the
algorithms.

5.3 Puller Algorithm Performance

The performance of the Puller algorithm was evaluated based on over 500 simulations with
varying parameters as shown in Table 1. In order to effectively evaluate the performance, we
considered the effects of each of the parameters on the algorithm, including the maximum pile
size, and the topology. Furthermore, a more in-depth analysis was performed for locating areas
of the environment the algorithm performed better in. Overall, these measures combined yielded
in the strengths and weaknesses of the Puller algorithm.

32

Figure 10​: Food Collected by the Puller Algorithm based on Maximum Pile Size

Figure 10 above shows the performance of the Puller algorithm based on the maximum pile
size. The huge variance in the performance is likely due to the other parameters affecting the
results of the algorithm. Therefore, we looked once again at the performance in most occupied
environment.

Figure 11:​ Food Collected by the Puller Algorithm in Most Occupied Environment based on

Maximum Pile Size

After narrowing the food density and robot densities to their highest tested values, the result
shown in Figure 11 is much clearer than in Figure 10. The performance with the maximum pile
size at one clearly outperformed the performance with maximum pile size ten, and outperformed
maximum pile size five during the start and then reached roughly the same towards the end. It is

33

also important to note that both performances for max pile sizes five and ten were still steadily
increasing at the end of the experiment, while the performance at pile size one remained
stagnant. This is likely due to the robots not having enough time in collecting all the food. In
order to prove that the performance is correlated to the maximum pile size, we also conducted
the Wilcoxon Rank Sum test to measure the likelihood of the distributions being the same.

Figure 12​: Wilcoxon Rank Sum Test on Food Collected with Varying Max Pile Sizes

Table 2:​ Average Wilcoxon Rank Sum Test on Food Collected with Varying Max Pile Size

 1 and 5 1 and 10 5 and 10

Probability 0.192 0.0001 0.0001

Figure 12 compares the distributions in Figure 11 using the Wilcoxon Rank Sum Test. This test
allow us to check the probability that two distributions are equal, and from the results it is clear
to see that the performance on max pile size one differed significantly from max pile size ten
and on max pile size five and max pile size ten. Overall for both of these comparisons, the
probability of the two distributions being equal was nearly 0.01% as displayed in Table 2. For
the comparison between max pile size one and five, the average probability was roughly 19.2%.
However, as shown in the figure, the probability during the start of the experiment was low, and
increased up to over 80% during the final step. Therefore, the performance on max pile sizes
one and five could be similar especially towards the end. Overall, the results show that the
Puller algorithm performs better when the maximum pile size is lower.

34

Figure 13​: Overall Food Collected by Puller Algorithm in Uniform and Scale-Free Distributions

Figure 13 shows the performance of the Puller algorithm on uniform and scale-free distributions.
The robot density, food density, and maximum pile size all ranged with the values specified in
Table 1. The massive range presented in Figure 13 for the boxplots is most likely due to the
performance of the algorithm being tied heavily to the other parameters such as robot and food
densities. In order to better analyze the performance of the algorithm, we took a look at fixed
robot densities and food densities, as well as maximum pile size of one which was determined
to be the ideal case.

Figure 14:​ Food Collected by Puller Algorithm in Most Occupied Environment based on

Distribution

The figure above shows the performance of the Puller algorithm in the most occupied
environment. As we can see, the two series are very similar to each other. The performance

35

with the uniform distribution had a higher mean consistently over the scale-free distribution.
However, the performance for scale-free also yielded a better maximum percentage of food
collected compared to the uniform distribution. Overall, the two distributions at first glance look
fairly similar.

To analyze the distributions further, we applied the wilcoxon rank sum test for the two
distributions as well. The wilcoxon rank sum test yields with an average probability of 23.5% for
the two distributions being the same. This is a fairly high probability compared to previous
probabilities, though the topology of the food seems to have an effect on the Puller algorithm
slightly. Overall, the performance boost is so small, that the Puller algorithm performs essentially
independently of the topology.

Analyzing Food Location Preferences

In addition to comparing the food collected based on the food distribution and maximum
pile size, we also analyzed locations of the environment the algorithm tends to perform better or
worse at. In order to do so, we looked at the heatmaps for the positions of the food collected in
hundreds of runs.

Figure 15​:​ Random Uniform Distributions in ARGoS

Figure 16​:​ Random Scale-Free Distributions in ARGoS

Figure 15 and Figure 16 show different runs of uniform and scale-free distributions. As is
evident from the figures, scale-free distributions tend to differ a lot more from each other
compared to the uniform distributions. This was an important finding as it meant our simulations
involving scale-free distributions must have a large enough sample size to accurately depict the
performance.

36

Figure 17:​ ​Heatmaps of Collected Food Positions with the Puller Algorithm

Figure 17 shows the positions of the food collected by the Puller algorithm in a total of a

five hundred runs for each distribution. The food densities and robot densities were set to the
maximum tested values in order to see the effect of the algorithm in the most cluttered
environment. In addition, the maximum pile size of the environments was set to one due to the
Puller algorithm’s preference as mentioned earlier.

As we can see in Figure 17 above, the Puller algorithm prefers food to be located near
the central area of the arena and tends to not find food on the far corners of the area in both the
scale-free and uniform distributions. This is most likely due to the stretching behavior as even
with the variation in angle the robots aren’t consistently going to the far corners. However, food
in the center of the arena is collected consistently regardless of distance from the nest.
Furthermore, the algorithm performs fairly well at the near corners of the arena, though not
nearly as well as if the food was closer to the center of the field.

The performance at the far right corners could potentially be improved by distributing
more robots to the opposite ends of the arena. In this case, there will be multiple robots
designated as the nest rather than one central nest. By having this, robots will no longer crowd
toward the center of the field as much and rather spend more time exploring on their respective
sides. Another potential fix would be to increase the variance in the angle, however this may
cause worse performance on other areas of the environment.

37

5.4 Forager-Beacon Algorithm Performance
The performance of the Forager-Beacon algorithm was assessed on the results of

several hundred experimental runs. The diagrams that follow demonstrate the outcomes of
these experiments in terms of several different parameters, such as the amount and location of
food collected. Many of these metrics are contextualized against several other variables as well,
including the maximum pile size of food and other environmental factors. Together, these
measures help to form an accurate overall impression of the Forager-Beacon algorithm’s
performance.

Figure 18:​ ​Overall Performance of Forager-Beacon Algorithm for Varying Pile Sizes

The graph in Figure 18 shows the overall performance of the Forager-Beacon algorithm

in the form of box plots. The distributions are grouped by maximum pile size, where each of the
three options accounted for 160 runs out of a total of 480. This graph indicates that the rate of
food collection appears to taper off as the simulation time increases. This can be explained by
the notion that the swarm collects the food that is close to the nest (and thus easier to retrieve)
earlier in the simulation, leaving only the more inaccessible food as time runs on. The maximum
percentage of food collected was achieved in an experimental run with a maximum pile size of
1, where around 38% of the available total was retrieved.

38

Figure 19:​ Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions over Time

 1 and 5 1 and 10 5 and 10

Probability 4.09e-07 4.49e-08 0.0022

Table 3:​ Average Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions

By merely looking at the figure, it appears that the maximum pile size has an effect on

the total percentage of food collected. The distributions of each type of run appear to be distinct,
with pile size 1 runs generally collecting the most runs and pile size 10 runs gathering the least.
However, given that these results were drawn only from a small sampling, it is hard to draw
definitive conclusions about the true nature of these distributions only by using this figure. As
before, a Wilcoxon Rank Sum test is useful for determining the probability that any of these
distributions are in fact the same. The outcome of these tests are shown in Figure 19 and Table
3 above.

These results suggest that there is an exceedingly low probability of the distributions
being the same. The average values in Table 3 show that the that the runs with pile sizes of 1
and 5 have a near-zero probability of having the same distribution. The probability of the pile
size 1 and pile size 10 runs is similarly low. This data corroborates the informal picture
presented by the graph in Figure 19, where there is very little overlap between these pairs of
distributions. This suggests, at least informally, that these distributions are indeed different.

The only variation in this observation comes when comparing the distribution of pile size
10 runs against those with pile size 5. In this comparison, the probability of the two distributions
being the same is 0.0022. Though this is a much larger value than the other two Wilcoxon tests,
it is still a comparatively low value that suggests these distributions can be treated as distinct.
Much as before, this observation is reflected in Figure 19, which appears to show that the

39

distributions of pile size 5 and pile size 10 have only slightly more overlap than in the other
comparisons.

The fact that the percentage of food collected improves with decreasing pile sizes is
expected. These performance graphs only track the percentage of food collected, rather than
absolute amounts. When the food is distributed in the environment, only the total number of
piles is considered. Thus an environment where every pile has ten food items can be expected
to have ten times the total amount of food compared to an environment where the maximum pile
size is one.

Figure 20​:​ Performance of Forager-Beacon Algorithm with Varying Food Topology

The graph in Figure 20 shows that the performance of the Forager-Beacon algorithm

also varied depending on whether the food was distributed in the environment uniformly or in a
scale-free topology. Exactly half of the 480 total experiments were used for each topology, and
runs using each topology were in turn distributed equally among each of the three pile size
options. The two distributions depicted in the graph appear to show that the Forager-Beacon
algorithm performs much better in environments where the food is distributed uniformly. This
observation is largely confirmed by a Rank Sum test comparing the two data sets, which shows
that there is only a 0.0000000​6​ probability that the two distributions are the same. The cause of
this discrepancy is not immediately clear from this data, but the heatmap diagrams shown in
Figure 22 help to explain how this algorithm performs differently depending on the food
topology.

40

Figure 21:​ Positions of Food Collected by Forager-Beacon Algorithm within the Arena

These show the relative position of food collected by the Forager-Beacon algorithm

within the environment. Areas where food was more regularly collected are indicated by warmer
hues, while regions where food was seldom collected are visualised as colder hues. The data
used to generate each of the diagrams was collected over 480 experiments, and the results are
illustrative of the general behavior of the Forager-Beacon algorithm.

Both diagrams show that regardless of which food topology is used, the algorithm
collects much more food in areas near the nest, which is directly below the x-axis in this
visualization. This observation can be explained partially by the fact that all of the robots start
near this nest area. The meandering behavior used to disperse robots in the swarm is of limited
effectiveness in this setup, as the robots do not distribute themselves across the environment
quickly. Though the algorithm appears to be quite efficient at gathering food that is placed near
the nest, the swarm never covers enough area to find the food in the more distant reaches of
the environment. A major reason for this is the fact that the meander behavior tends to cause
the robots to spread out radially from their starting point, while in this environment all the robots
are positioned towards one end of the field. If the nest was instead located in the center of the
environment, it is likely that this algorithm would be able to gather more food.

These diagrams also clearly show that the Forager-Beacon algorithm collects more total
food when resources are distributed uniformly. Though both topologies contain the same total
number of food items, scale free distributions can often be skewed towards one side of the map.
Since this algorithm tends to only collect food close to the nest, some scale-free experiments
will collect very little food. Uniformly distributed food tends to create more consistent
performance, which results in more food collected overall.

41

5.5 Honeybee Algorithm Performance
The performance of the honeybee algorithm was measured using similar metrics

to those discussed above in Table 1. The data gathered was accumulated over several
hundred experiments on the cluster

Figure 22: ​Overall Performance of Honeybee Algorithm for Varying Pile Sizes

The overall performance of the honeybee algorithm displayed above for various pile

sizes demonstrates the shape of the collection as a function of time, indicating that as time
passes the value levels off at a certain percentage of the food. This fits with the performance of
the other algorithms and can be explained by looking at the derivative of the line of best fit with
the medians of the box plots. The derivative gets smaller as time increases, indicating that the
rate of food collection decays as time increases. This aligns with the observation that for the
honeybee algorithm, food collection at first is relatively fast due to the recruitment behavior, as
multiple robots flock to one food location and can very quickly bring an entire pile back to the
nest. As time passes, robots run out of food at a pile and must then search for more, which
causes a dropoff in the collection rate.

42

Figure 23​: ​Performance of Honeybee Algorithm for Varying Pile Sizes in Most Occupied

Environment

Figure 23 shows the results of running the honeybee algorithm with the environment

parameters set to maximize the food density. At peak performance, the algorithm was able to
collect just above 60% of the food in the arena.

Figure 24:​ Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions over Time

43

 1 and 5 1 and 10 5 and 10

Probability 0.0001574 1.647e-07 5.467e-06

Table 4:​ Average Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions for

Honeybee Algorithm

Using the rank sum test as with the other algorithms, it can be seen that the distributions

of each pile size have negligible correlation; that is to say that each set of runs is statistically
different and thus the conclusion can be drawn that the pile size has a major effect on the
performance of the honeybee algorithm. As with the other algorithms, the difference in collected
percentages between pile sizes can be explained by recognizing that the data is a percentage
and that for larger pile sizes, there is more total food and thus foraging the same amount of food
will yield a lower percentage. However, there is more to the performance than just that trivial
factor, as the rank sum test shows.

Figure 25:​ Performance of Honeybee Algorithm with Varying Food Topology

Figure 25 shows the resultant box-plots of running the honeybee algorithm with different

topologies. As can be seen in the image, the algorithm performs roughly the same regardless of
the topology of the food, collecting roughly the same amount in both cases after running for the
same amount of time. This suggests that the strength of the algorithm lies in its decoupling from
the environment, leading it to be a more general-purpose algorithm for foraging.

44

Figure 26: ​Wilcoxon Rank Sum Test for Different Food Topologies

The rank sum test shown in Figure 26 corroborates this observation, showing that the

distributions of uniform and scale-free topologies is very similar for this algorithm. It is clear to
see in Figure 25 that the medians and the ranges for both the distributions are consistently
similar. Figure 26 further proves the point with the average probability of the two distributions
being 65.3%. This high chance confirms that the honeybee algorithm’s performance is
independent of the topology of the food.

Figure 27: ​Positions of Food Collected by Honeybee Algorithm within the Arena

Figure 27 shows a heatmap of the positions of the collected food by the honeybee algorithm in
all 500 runs. Based on the figure, the algorithm mostly focuses near the nest and towards the
center of the arena, and isn’t able to reach the the far corners of the arena. Both the heatmaps
for the uniform and scale free distributions have a similar shape, which tells u that regardless of
the topology, the effective path of the algorithm and the positions of the food collected remain
the same. This was the same result that we found when comparing the performance of the
actual distributions in Figure 25. However, for uniform distributions, the honeybee algorithm
performed better toward the left corner of the field. This is likely due to the dispersion pattern of

45

the scouts at the beginning of each experiment, which seemed to favor a distribution of scouts
skewed toward the left side of the field. This would in turn lead to more food on the left hand
side being discovered and subsequently foraged.

5.6 Comparison of Foraging Algorithms

The performance of each foraging algorithm helps to illustrate their respective
advantages and disadvantages. For example, the performance of the Forager-Beacon algorithm
appears to be somewhat inferior to the Puller and Honeybee algorithms based on the total
percentage of food collected. The median percentage collected is significantly lower compared
to the these algorithms for all three maximum pile sizes, and even the most favorable runs peak
between 35% and 40% of the total food available. While this result is understandable in
situations where the maximum pile size is one, it is somewhat counterintuitive for scenarios
where piles contain multiple food items. The Forager-Beacon algorithm actively recruits nearby
robots to the locations of piles with many food items, while the Puller algorithm treats all piles
equally. As such, one could reasonably expect the Forager-Beacon algorithm to perform better
in situations where piles contain multiple food items. However, the results obtained from
experimentation seem to contradict this reasoning.

 Part of this discrepancy can be attributed to the fact that the setup of the environment is
unfavorable to the behavior of the Forager-Beacon algorithm. Foragers tend to spread out
radially, and thus optimal performance would require a nest in the center of the environment
instead of towards one end of the field. The meander behavior used in the Forager-Beacon
algorithm is also partially responsible for this performance gap. This particular random walking
method does a poor job of scattering robots in the swarm across the environment. This is
especially true in contrast to the dispersion behavior used in the Puller algorithm. Where the
meander behavior only spreads robots apart from each other passively, the dispersion behavior
actively forces them apart. The net effect on overall performance is that robots executing the
Forager-Beacon algorithm never extend deep enough into the environment to collect food. This
explains the relatively small field of exploration shown in the heat map diagrams of the
Forager-Beacon algorithm when compared to the two other options.

For the topology of the food, some algorithms preferred a certain distribution over the
other. The Forager-Beacon algorithm performed better in uniform distributions, while the Puller
and Honeybee algorithms performances were independent of the distribution. This result has a
large effect on the higher level switching algorithm as if the robots find food evenly distributed,
then they may execute the Forager-Beacon. On the other hand, if robots find clusters of food
near each other, the Puller or Honeybee algorithm would be more optimal.

Another trend that emerges from these results is the notion that different algorithms
seem to perform better under different conditions. Looking at the heatmaps for each of the three
foraging behaviors, it appears that the Forager-Beacon algorithm excels at collecting food in
close proximity to the nest, the Honeybee algorithm is the most effective at farther away food,
and the Puller algorithm seems to be most successful in intermediate ranges. An algorithm that
could combine these qualities would be much more successful at gathering food across the
entire environment.

46

Another important consideration is the rate at which the algorithms were collecting food.
While the Puller algorithm may have collected a larger percentage of the food overall compared
to Forager-Beacon and Honeybee, the performance for the algorithm started plateauing towards
the end of the experiment. On the other hand, both the Forager-Beacon and the Honeybee
algorithms were still finding more food towards the end of the experiment. This can be explained
by the dispersion module present in the Puller algorithm. After enough time steps, the robots will
have dispersed far enough from each other that the net force they experience is zero. In this
case, the robots would not be able to explore further areas. While the stretching behavior does
break this condition, it may not be happening consistently and thus the Puller algorithm slows
down rapidly. A higher level algorithm that decides which of these to use may then decide to
execute the Puller algorithm for a shorter duration than the other two algorithms. This would
allow for quick retrieval of food, while also maintaining a steady rate of food collection.

47

6. Conclusions and Recommendations for Future Work

In general, the foraging algorithms that comprise the finalized library largely meet the
initial goals set for this project. At a basic level, each of the algorithms works as intended, and
completes the same basic task in a different way. Many of the smaller sub-behaviors are shared
and reused between algorithms, and many of these self-contained, interoperable modules that
can be used on their own. These design choices allow future users considerable freedom in
how they use this library. Not only is it possible to use the foraging algorithms as they are
described in this paper, but future developers could easily construct their own novel behaviors
by reusing the myriad of modules and components included in this library. It is also possible to
create new modules that improve upon the ones created in this project, and then simply replace
them into the foraging algorithms to create a better result.

6.1 Suggestions for Future Work

While the library in its current form provides modular, reusable base upon which users
can build their own projects, there are certainly areas that could be improved or extended. For
example, further testing can be done on the algorithms under different environment conditions.
Our environments were static and always assumed a single nest in the same layout as shown in
Figure 2, where the food area is north of the nest area. It would be useful to adapt these
foraging algorithms to other experimental setups for the purposes of making them more robust.
Robot could be distributed in other methods than the current one of distributing them in a line,
which could provide a different perspective on the performance of each of the algorithms.
Further testing in environments with multiple nests would provide a deeper evaluation for the
performance of each of the algorithms. Creating and testing environments where the nest is
centrally positioned-- as opposed to near the edge of the environment-- would be likewise useful
in characterizing the overall performance of foraging algorithms.

The contents of this library could also be easily extended to other behaviors beyond
foraging as well. Although foraging is a common, generic swarm behavior with many
applications, it is far from the only important problem in the literature. The construction problem,
where robots gather resources that they then assemble into structures and other arrangements,
is a natural extension of the foraging problem. A construction-related extension would thus be a
sensible next step for future extensions to the library.

Conducting a more rigorous reusability evaluation would also help to strengthen the
overall utility of this project. The results of this project included a limited analysis of the degree
to which modules were reused between algorithms, but it would also be a useful exercise to
construct an entirely new algorithm or behavior from the modules that already exist. This would
be a much more emphatic demonstration that the components in this library are, in fact,
reusable.

At a higher level, it would also be interesting to create a higher level algorithm that
switches between foraging behaviors according to environmental conditions. The results of the
three algorithms included in this library suggest that each algorithm seems to perform better
relative to other algorithms depending on the distance of food from the nest. It is also possible,

48

for example, that one algorithm performs better in food-sparse environments while another
excels in food-dense ones. Creating a higher-level switching algorithm would allow for the
creation of an even more effective foraging behavior that can dynamically adjust to its
environment. This would in turn provide more utility and flexibility to future users of the library.

It is worth noting that all of the results gathered in this project came from simulations
rather than experiments on physical robots. As future users might seek to perform foraging
within a physical environment, it would be very useful to demonstrate these foraging algorithms
on actual robots as a proof-of-concept. All of the Buzz code that runs on the simulated robots
should theoretically perform the same on actual robots, but non-trivial work is required to
recreate the simulated food and environment in reality.

49

7 . References

[1] C. Pinciroli and G. Beltrame, “Buzz: A Programming Language for Robot Swarms,” IEEE
Software, vol. 33, no. 4, pp. 97–100, Jul. 2016.

[2] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a review from
the swarm engineering perspective,” Swarm Intell, vol. 7, no. 1, pp. 1–41, Mar. 2013.

[3] A. Campo et al., “Artificial pheromone for path selection by a foraging swarm of robots,”
Biological Cybernetics, vol. 103, no. 5, pp. 339–352, 2010.

[4] Q. Lu, J. P. Hecker, and M. E. Moses, “The MPFA: A multiple-place foraging algorithm
for biologically-inspired robot swarms,” 2016, pp. 3815–3821.

[5] N. Hoff, A. Sagoff, R. Wood, and R. Nagpal, “Two Foraging Algorithms for Robot
Swarms Using Only Local Communication.” .

[6] M. Alcherio et al., “Distributed Colony-Level Algorithm Switching for Robot Swarm
Foraging,” in Distributed Autonomous Robotic Systems, pp. 426–429.

[7] A. Brabazon, M. O’Neill, and S. McGarraghy, “Other Foraging Algorithms,” in Natural
Computing Algorithms, Springer, Berlin, Heidelberg, 2015, pp. 171–186.

[8] C. Pinciroli et al., “ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems,” Swarm Intell, vol. 6, no. 4, pp. 271–295, Dec. 2012.

[9] L. Pitonakova, R. Crowder, and S. Bullock, “Behaviour-Data Relations Modelling
Language For Multi-Robot Control Algorithms,” 2017.

[10] E. Bonabeau, A. Sobkowski, G. Theraulaz, J.-L. Deneubourg, and others, “Adaptive
Task Allocation Inspired by a Model of Division of Labor in Social Insects.,” in BCEC, 1997, pp.
36–45.

[11] G. Pini, A. Brutschy, M. Frison, A. Roli, M. Dorigo, and M. Birattari, “Task partitioning in
swarms of robots: an adaptive method for strategy selection,” Swarm Intelligence, vol. 5, no.
3–4, pp. 283–304, 2011.

[12] James D. McLurkin, “Stupid Robot Tricks: A Behavior-Based Distributed Algorithm
Library for Programming Swarms of Robots,” Massachusetts Institute of Technology, 2004.

50

[13] A. Reina, G. Valentini, C. Fernández-Oto, M. Dorigo, and V. Trianni, “A Design Pattern
for Decentralised Decision Making,” PLOS ONE, vol. 10, no. 10, p. e0140950, Oct. 2015.

[14] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari, “AutoMoDe: A
novel approach to the automatic design of control software for robot swarms,” Swarm Intell, vol.
8, no. 2, pp. 89–112, Jun. 2014.

[15] “Distributed Exploration with a Robot Swarm « ASCENS Project Blog.” [Online].
Available:
http://blog.ascens-ist.eu/2015/01/distributed-exploration-with-a-robot-swarm/index.html​.
[Accessed: 28-Sep-2017].

[16] Q. Lu, M. E. Moses, and J. P. Hecker, “A Scalable and Adaptable Multiple-Place
Foraging Algorithm for Ant-Inspired Robot Swarms,” arXiv:1612.00480 [cs], Dec. 2016.

[17] E. Şahin, “Swarm Robotics: From Sources of Inspiration to Domains of Application,” in
Swarm Robotics, 2004, pp. 10–20.

[18] G. Beni, “From Swarm Intelligence to Swarm Robotics,” in Swarm Robotics, 2004, pp.
1–9.

51

http://blog.ascens-ist.eu/2015/01/distributed-exploration-with-a-robot-swarm/index.html

