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Abstract 
 

Developments in swarm technologies is hindered by the lack of common libraries, which 
can lead to large amounts of repeated code and cause additional bugs in the program. The goal 
of this MQP is to provide such a framework for swarm developers to more easily create their 
own swarm projects. This project focuses on common, widely used behaviors in swarm 
research such as foraging, which seeks to mimic how groups of ants or bees find and retrieve 
food in nature. The team will identify, program, and evaluate the core behaviors common to 
foraging algorithms. Based on this research, a library of swarm behaviors will be developed that 
allows future developers to perform foraging and other swarm-centric tasks easily. The finished 
library will also provide a framework that can be extended upon by future teams and swarm 
developers. 
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1. Introduction 
 
The overriding motivation behind this project is to create modular software libraries that 

enable future developers to use the Buzz programming language in novel ways. In order to 
appreciate the benefits of this approach, it is necessary to first understand the basics of swarm 
robotics and the Buzz language itself.  

 
1.1 Swarm Robotics 

 
1.1.1 Definition 

Swarm robotics research is a growing field in which researchers seek to implement 
collective behavior in a decentralized manner over a group of robots in an environment. Swarm 
robotics is derived from swarm intelligence research, which seeks to develop algorithms inspired 
by natural swarm behaviors for such team-based activities as foraging.  

 
1.1.2 Design Considerations 

Considerations such as complexity, scalability, and robustness are often important 
aspects of robotic swarm design. Much like the swarms observed in nature-- bees, for example 
-- the individual robots in a swarm are relatively simple and unable to accomplish much on their 
own. To achieve most goals, these simple robots must cooperate with others in the swarm. By 
leveraging the combined capabilities of all members of a swarm, these simple robots are able to 
manifest a swarm intelligence that allows them to execute more complex behaviors.  

As mentioned above, robustness is likewise a critical concern in the design of robot 
swarms. Much like a school of fish or a colony of ants, a robot swarm must be able to withstand 
the loss of some of its constituents. If a single robot experiences a failure, it should not 
jeopardize the overall performance of the rest of the swarm. In practice, accomplishing the goal 
of robustness in robot swarms often means employing a decentralized design methodology. 
Under this model, the success of the swarm does not depend on a single, highly capable robot 
to direct others in the swarm. Often, robots in a swarm all have the same capabilities and rely on 
peer-to-peer communication to propagate information across the entire swarm. This approach 
improves robustness by removing a single point of failure, thus making the swarm more 
fault-tolerant.  

A similarly important consideration in swarm design is scalability, which refers to the 
ability of a swarm to maintain consistent performance regardless of how large the swarm itself 
becomes. A swarm that accomplishes a task on a small scale with relatively few robots should 
generally be able to achieve the same goal in a larger environment with more robots. A related 
concept is a system’s flexibility, which captures how a swarm is able to cope with different or 
changing environments. Ideally, a swarm that is flexible will be able to perform consistently in 
environments with a myriad of different challenges, obstacles, and hazards. 

These basic aspects of swarm performance are important to consider in the design of 
any swarm robotics implementation, such as the one proposed in this project. They also form a 
vocabulary that allows for the comparison of different strategies and implementations during the 
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design phase of this project,  as well providing a convenient metric to use in the evaluation and 
improvement of the finished system. 

 
1.1.3 The Foraging Problem 

The foraging problem describes a scenario where a swarm of robots forages for “food” 
and returns it to a “nest”. This mimics behavior seen in swarms of actual organisms - for 
instance, ants - that exhibit some degree of group intelligence. This behavior is not only a 
common in swarm robotics, but is also essential for other swarm behaviors such as 
construction. 

As one of the most researched scenarios in swarm robotics, there is a wide array of 
proposed foraging algorithms. Some of these are very environment-specific, requiring particular 
sensing capabilities and allowing robots to manipulate the environment. Other assumptions are 
sometimes made about the presence of obstacles and the location or distribution of the “food”. 
Many scenarios contain a single, centrally-located nest, while others assume the use of multiple 
nests.  

Where possible, the algorithms proposed in this project attempt to minimize assumptions 
about the hardware capabilities of the robot in the swarm or the exact parameters of the 
environment. The precise terms of the foraging problem can change depending on the 
environment and the capabilities of the involved robots, there are generalized approaches that 
make for efficient foraging.  
 
1.2 Project Motivation 

As a relatively new field, swarm robotics research lacks the widely-used frameworks and 
toolsets seen in other domains. As a result, developers often must build their own solutions 
themselves. This is an impediment to progress because it compels researchers to solve 
problems that may have been solved by others previously. Designing complex swarm scenarios 
can become difficult due to the high overhead required for each project. 

This project aims to address this problem for developers of the Buzz programming 
language by creating a library of foraging behaviors. Despite the stated focus on foraging, the 
idea is to develop a library that is useful in many different contexts beyond foraging as well. 
Since foraging is among the most common swarm behaviors encountered in the literature, it 
makes some sense to choose foraging algorithms as the basis for a hypothetical library. 
However, many other common swarm scenarios share similarities with the foraging problem, 
which gives a foraging-centric library additional utility. 

A key component of this project is that it includes multiple foraging algorithms with 
different approaches. Since these algorithms perform differently depending on the 
circumstances (for example, high or low food density), users might want to use a specific 
algorithm to suit the environment. Having multiple algorithms gives developers the ability to 
choose or even combine several different approaches to foraging. 

On a different level,  individual sub-behaviors in the library can be combined to create 
novel scenarios. The modular design proposed in this project allows developers to combine not 
only different foraging algorithms, but also the individual behaviors that comprise those 
algorithms. This empowers swarm researchers to use the library as a basis for their own 
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projects, and saves them the effort of having to replicate many simple behaviors to implement 
their own ideas.  

 
1.3 Report Structure 

The report that follows this introduction contains several different chapters, each of 
which details a specific aspect of this project. The next chapter reviews the relevant literature in 
the field of swarm robotics. This includes a more comprehensive overview of current swarm 
research and the many approaches to the foraging problem, as well as how these approaches 
align with the stated goals of this project. The ideas presented in this chapter are intended to 
review what has already been accomplished by experts in the field, and how this project aims to 
contribute to these accomplishments.  

The third chapter contains details about the overall design and approach taken in this 
project. This includes a discussion about both the higher level aspects of the library’s 
architecture, as well as the particulars of each foraging algorithm. The implementation of these 
design decisions is detailed in the following chapter, which discusses how each of the modules 
used in this library function. The final chapters explain the experimental results of each foraging 
algorithm and evaluate their performance in the context of the broader goals of the project, as 
well as exploring how future endeavors may expand upon the framework provided in this library. 
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2. Literature Review 
 
As a nascent, emerging field, the current body of research in swarm robotics is 

constantly evolving. There are a myriad of possible applications of swarm technology, and 
research has taken the subject in many different directions. In order to properly define the scope 
of this project, it is important to understand the current state-of-the-art in the field, how 
individuals are using what currently exists, and what direction these technologies might gravitate 
towards in the future. This information allows for an informed decision about what types of 
behaviors and algorithms would be useful to include in a possible software library.  
 
2.1 Toolsets 

 
2.1.1 The Buzz Programming Language 

The Buzz language is a high-level programming language developed specifically for 
swarm applications​[1]​. In general, programming swarms takes place in either a top-down or 
bottom-up fashion, where a top-down approach involves designing and implementing the 
high-level behaviors of the swarm while a bottom-up approach focuses on designing the 
behaviors of individual robots within the swarm. Each approach has disadvantages; a top-down 
approach makes it difficult to tune and refine the behaviors of individual robots, while a 
bottom-up approach makes it exceedingly difficult to coordinate behaviors at the swarm level. 
Philosophically, the developers of Buzz acknowledge that both approaches are fundamentally 
important to swarm development, and offer developers the ability to program swarms from both 
top-down and bottom-up perspectives. 

 The Buzz language accomplishes this goal by providing many abstractions that allow 
swarm developers to simplify the design and implementation of robot swarms. For example, 
Buzz abstracts away specific robot hardware through the use of the Buzz Virtual Machine 
(BVM), which is installed on each robot in the swarm. The BVM then executes a Buzz script that 
is loaded onto every robot, making it possible to program heterogenous swarms of robots 
without the need to tailor the script to each individual robot according to their specific hardware.  

Syntactically, Buzz resembles popular high-level scripting languages such as Python 
and JavaScript. This provides a highly readable format and a more manageable learning curve 
for developers who are already familiar with these more common languages. Beyond syntax, a 
fundamental feature of the language is the inclusion of swarms as a data structure, allowing 
groups of robots to be elegantly organized and controlled. Another basic advantage that Buzz 
provides is set of swarm-specific primitives such as communication with neighboring robots. 
This saves significant overhead on the end of the developer by preventing them from having to 
facilitate communication by creating their own communication architecture. A related concept in 
Buzz is the idea of a virtual stigmergy, which allows robots to propagate information across the 
swarm in the form of key-value pairs. By including these capabilities as a basic feature of the 
language, Buzz saves developers significant time and effort by providing all the vital 
infrastructure needed to program robot swarms. 
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2.2 Applications of Swarm Technology 

As swarm technology matures, it has the possibility to impact many different domains of 
application. Many of the properties inherent in robot swarms make them useful in many 
situations that are currently very difficult or impossible to automate. One obvious application of 
such technology is any task where a region of space must be covered in some form. Swarm 
robotics provides a distributed sensing framework that allows for more efficient detection and 
response to stimuli compared to conventional approaches. For instance, consider the situation 
presented by Brambilla et. al.​[2]​, where a group of robots must scour an area in search of 
dangerous chemical leaks. In this situation, robot swarms provide a distinct advantage because 
the robots can efficiently localize and determine the nature of any possible leak. Once a leak is 
detected, these robots could then self-assemble in such a way that blocks the leakage. 

Like many other branches of robots, swarms may also see heavy use in situations that 
are simply too dangerous for human workers, such as clearing a minefield. What makes swarm 
robots especially suited for these applications is the redundancy that robot swarms provide over 
traditional robots. In hazardous areas such as a minefield or battlefield, any given robot has the 
possibility of being rendered unoperational (for instance, by an enemy projectile or a detonating 
mine). Given their decentralized nature, robot swarms are particularly equipped to handle the 
loss of some constituent robots, making them a better fit than the sort of centrally coordinated 
systems that can be realized currently. 

The scalability property of robot swarms also makes them candidates for applications 
which involve scaling up or down. Consider a situation where robots are foraging for resources; 
as they discover more resources, it may become necessary to mobilize additional robots to cope 
with the increasing demand. While these fluctuations in demand might be minor, they could also 
be exponential and require an order of magnitude more (or less) robots. The ability of swarms to 
scale well without performance degradation makes them a better fit for these sorts of 
applications when compared to conventional approaches. 

The concept of scalability in swarm robotics includes not only the number of robots 
involved with a given task, but the size of the robots themselves. Any of the above scenarios 
can be envisioned on a macro- or microscopic level. A swarm of robots could be scouring a 
large field, but they could also be coursing through the human body. While the degree of 
miniaturization required for the latter example is not yet possible, the technology may someday 
come to exist. The same concepts that apply to swarms on a macroscopic level are still relevant 
to these miniaturized applications as well.  

 
2.3 Foraging 

Just as swarm intelligence as a whole has a myriad of possible applications, foraging 
behavior is the particular focus of this project because of how widely applicable it is to real world 
situations. While the definition can be framed in a strict sense as a simple search-and-retrieval 
behavior for “food” scattered throughout an environment, a more comprehensive look shows 
that this simple definition can be reframed and generalized to a much wider range of “tasks such 
as search and rescue, mining, agriculture, or exploration of unknown or hostile environments.”​[3]  
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Foraging behaviors are amongst the most common in swarm research, and as a result 
there are many previous experiments and projects on the subject that precede this one. This 
research spans a wide range of different approaches, each with different assumptions, 
environments, and other parameters. Many forays into foraging behaviors involve the 
development of a foraging algorithm, which prescribes a set course of action for each robot or 
group of robots that results in the desired collective behavior over the whole swarm. 

 
2.3.1 Foraging Algorithm Parameters 

One important way in which foraging behaviors may differ is the concept of a central 
place, or “nest”. In some scenarios, this central place simply doesn’t exist. This is analogous to 
a hypothetical real-world scenario where the robots in the swarm use the resource as soon as 
they acquire it. Others may assume the use of a single nest, while more still may consider the 
possibility of multiple nests.  

Food and food distribution are critical parameters for foraging that can vary the 
performance of algorithms significantly​[4]​. Firstly, foraging depends on the number of food placed 
in the environment, or more specifically the ​density of food​. The food can also be distributed in 
several ways. For example, the food could be ​uniformly​ distributed, where each small area of 
the environment has an equal probability of having food. Another possible distribution method 
would be ​scale-free​. In scale-free distributions, there tend to be more small number of areas 
with large amounts of food, and many areas with small amounts of food. This creates an 
environment that is not only dense in some areas but also sparse in others, allowing to fully 
evaluate and test the performance of foraging algorithms. In addition, at a given location, the 
number of food can vary as well. These ‘piles’ are food stacked on top of each other and the 
sizes of the piles may vary up to a ​maximum pile size​. Other parameters include changing the 
surroundings such as ​field size​ and even the ​duration​ of the simulation. Additionally, obstacles 
may be present in the environment. These obstacles may be static, such as walls, or they may 
be dynamic objects such as other robots. 
 
2.3.2 Pathfinding in Foraging Swarms 

A related concern is the way in which robots are able to actually locate the resources 
they are foraging for. One method employed by many researchers is the use of virtual 
pheromones, which are intended to act in a way that is analogous to the actual pheromones 
used by social organisms​[4]​. In the case of ant colonies, individual insects leave trails of 
pheromone chemicals so that they can easily rediscover a food cache once they initially 
discover it. More importantly, this pheromone trail also allows many other ants in the colony to 
find the food as well, and thus many ants can be engaged in pathfinding to carry this food back 
to the nest at once.  

When it comes to simulating the function of this pheromone in the context of a swarm 
foraging scenario, there are many possible implementations. The work of some researchers 
makes use of actual physical markers which robots use to manipulate the environment. For 
example, robots might be able to leave trails of a chemical, drop a path of tokens, or create 
marks on the ground beneath them. While these approaches have the advantage of being 
tangible, simply ways of mimicking the behavior of nature, they also require the robots in a 
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swarm to have some capabilities beyond simply moving and communicating with other robots 
nearby. 

To assuage this problem, some foraging algorithms use the robots themselves as the 
pheromone. Since the robots are taking the place of a physical pheromone marker, no 
additional capabilities are assumed of individuals beyond basic locomotion and communication. 
The robots that are designated as pheromones simply use their communication capabilities to 
advertise the location of food sources to other robots in the swarm. This achieves the same end 
result, but has the drawback of requiring some proportion of the swarm to be allocated for 
creating pheromone trails. This in turn means that less robots are available for the collection of 
the food. Even within these two approaches, there is great diversity in pathfinding algorithms, 
each with different assumptions and tradeoffs. 
 
2.3.3 Foraging with Virtual Pheromones 

The paper by Hoff, Sagoff et. al.​[5]​ provides an illustrative example of the different 
approaches to pathfinding that use the robots themselves as path markers. One of the 
algorithms they propose involves the use of virtual pheromone as a means of navigating 
between food and the nest. In this method, the pheromone is not a physical marker or 
substance, but rather a numerical value that is communicated between robots in the swarm. In 
contrast to actual pheromone-laying behavior, this approach actually involves the use of two 
separate pheromones: one to navigate towards food, and another to navigate towards the nest. 
Robots may randomly stop their searching and become “beacons,” which are stationary markers 
that can store these pheromones. The pheromone itself is simply represented as two floating 
point numbers-- one for each the nest and food-- and the value decays steadily over time. Other 
robots that are still searching for food can receive communications from these beacons to 
decide where they should go, where higher pheromones value represents increasing proximity 
to food or the nest, respectively. Another aspect of this algorithm is that it allows searching 
robots to transmit back to these beacons as they travel near them, which increases their 
pheromone value. This mimics the behavior of pheromone trails in real ants, where trails will 
decay unless ants continue to follow the same path to maintain pheromone levels along the 
path. 

The other algorithm proposed in this paper is similar to the virtual pheromone algorithm 
described above, in that it allows each robot to take on the role of either “walker” or “beacon” at 
any given time. However, this algorithm differs in that beacons store the virtual pheromone as 
an integer value instead of a floating point number. In this method, which the authors term the 
cardinality algorithm, the pheromone instead represents the number of communication hops 
away from the nest or food. For example, beacons directly adjacent to the nest would have a 
nest cardinality of 1, robots adjacent to those robots would have a nest cardinality of 2, and so 
on. The “walker” robots can then follow the gradients formed by these cardinalities to their 
ultimate destinations. This discards the notion of pheromone decay in favor of a simpler method 
for constructing paths and evaluating their cost. 
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2.3.4 Foraging with Sweeper Algorithm 
The sweeper algorithm as discussed in the paper by Alcherio et. al.​ [6]​ presents a 

strategy for collecting food in a systematic manner. The core methodology behind this algorithm 
is virtual forces. Essentially, each robot exerts a force on its neighboring robots inversely 
proportional to the distance between them. Initially, the robots are all exerting these forces onto 
each other which spreads them out throughout the environment forming a line. In addition, two 
robots are designated as pullers. These pullers experience an additional force. This force 
moves the robot around the environment in a similar manner to that of the sweeping motion on 
a clock. The pullers would exert a stronger force on other robots, making them follow the 
sweeping motion. When the line of robots approaches a food, the entire line stops moving. 
Gradients are calculated and the robot closest to the food picks up the food and gradient follows 
back to the nest. After the food has been returned, the line continues its motion. This is then run 
until all the food has been collected.  
 
This method overall covers a large amount of area, but is slow due to the robots stopping each 
time they encounter the food. However, the algorithm is able to perform well in environments 
where the food is sparsely allocated due to the line of robots. By having the line of robots extend 
out further in the environment, the robots may be able to encounter food that other algorithms 
which prefer food closer to the nest would not be able to.  

 
2.3.5 Foraging with Honeybee Algorithm 

Brabazon et. al.​[7]​  present a foraging optimization algorithm based on the natural 
foraging techniques of honeybee colonies. The algorithm, a variant of a standard genetic 
algorithm, disperses a set of agents (bees) and uses them to search in the space for an optimal 
solution​[7]​ . Dispersed agents search a local area for a candidate solution, and during the 
evaluation phase agents with solutions found to have the highest fitness recruit neighboring 
foragers for a more intensive local search around the candidate solution. This process continues 
using the recruitment strategy until the best candidate solution is found. 

 
2.4 Graphical Representation Language 

For the purposes of explaining the often abstract concepts used in swarm system 
design, it is useful to have a means of expressing ideas in a graphical format. This visual form of 
expression can be codified into a more formal design language; Unified Modeling Language 
(UML) is a widely-used example of such languages, and is often employed in the context of 
explaining and developing software systems. However, developing swarm-based systems 
differs considerably from traditional robotics and software design, because it involves ideas and 
constructs that have no direct analogue in conventional approaches. As a result, the existing 
tools for representing software graphically are inadequate for swarm applications, and a new 
convention must be developed to suit the needs of this project.  

It is possible, however, to borrow ideas from other graphical protocols in the 
development of a new protocol. The use of finite state machines (FSM) is a common, simple, 
way of expressing state changes; that is, how a system changes in response to a given input. In 
an FSM, the machine can be in only one of a given number of states at any point, and can 
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transition to other states based off inputs to the system. In the context of swarm robotics, it 
might be useful to use an FSM to demonstrate how a given robot or group of robots change 
their behavior in response to interactions with each other and the environment. However, both 
FSM diagrams and UML diagrams fail to capture many essential elements of swarm systems, 
such as the concept of swarms themselves. Owing to their shortcomings, these conventions are 
unsuitable for fully representing multi-robot systems by themselves. 

An attempt to remedy these drawbacks was made by Pitonakova, Crowder, et al.​[9]​ in 
their paper ​Behaviour-Data Relations Modelling Language For Multi-Robot Control Algorithms​, 
which details an attempt to create a modeling language specifically for swarm applications. The 
core properties of this language are that it creates graphical constructs-- which they term 
primitives-- that represent both data and robot behavior, and it can represent interactions 
between these constructs. For example, the language contains different primitives for internal 
data in the robots’ memory and external data that exists in the environment. The interactions 
between these behaviors and data, which are referred to as relations in the paper, are likewise 
able to encapsulate a number of actions, including sending, receiving, transitioning, reading, 
and writing. While diagrams in this language are meant to represent the actions of a single 
robot, they also can be generalized and applied to swarms as a whole.  
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3. Design 
 

3.1 Project Objectives 
The stated goal of this project-- to present Buzz developers with a useful, foundational 

tool upon which their own projects could be more easily created-- is the essential principle that 
guided the design of this library. This motivation informed the design of this project at a 
macroscopic level, but also impacted the smaller, more atomic aspects of the library’s 
architecture as well. This idea was combined with basic swarm design principles such as 
scalability and robustness to maximize the impact of this project on its targeted need. The 
sections that follow detail how these ideas were incorporated into the design of the final library.  

 
3.1.1 Utility 

A central focus of this project was to maximize the utility of the finished library to the 
average Buzz user. As was mentioned before, the foraging problem was chosen for this project 
specifically due to its wide range of applicability. Not only is foraging itself a common behavior 
for swarms, but many other scenarios can be reframed as a variation of the foraging problem. 
However, on a more granular level, we acknowledge that there is a great diversity of foraging 
algorithms that function optimally under widely different circumstances. For this project it was 
important to choose multiple algorithms that cover as many different scenarios as possible. For 
instance, it is useful to have one algorithm that performs well in food-dense environments and 
one that performs well in food-sparse environments.  

For the purposes of this project, it was also important that our design made as few 
assumptions about the capabilities of robots within the swarm beyond basic communication and 
sensing abilities. In practice, this meant generally avoiding approaches that required specific 
hardware such as precise odometry and physical pheromone markers. Instead, these 
capabilities were recreated by propagating information throughout the swarm and using this 
data to make collective decisions. This approach benefits the end user by not requiring any 
specific hardware to use the behaviors within the library. 

 
3.1.2 Modularity 

The other important guiding principle in the design of this project was the idea of 
modularity. In the context of the behavior library, having a modular design meant building a 
hierarchical system of components that were interchangeable, replaceable, and able to be used 
by themselves. In a more concrete sense, this meant decomposing the larger foraging 
algorithms into submodules that handled specific aspects of the overall behavior. These 
sub-modules could then be further divided into simpler, more granular behaviors.  

To the extent possible, these sub-modules were reused and shared between algorithms. 
For example, several different foraging algorithms within the library might use the same 
path-finding behavior. This path-finding behavior would be its own module that is re-used by 
both algorithms, but could also be used by itself in a context other than foraging. Furthermore, a 
truly modular behavior would allow developers to come up with a new implementation of a 
path-finding behavior and use it interchangeably with the older implementation. This allows 
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developers to use only select parts of the library according to their needs, and also allows them 
to easily extend or alter the basic behaviors with their own modules. 
 
3.2 Foraging Algorithm Design 

The sections that follow explain the theoretical basis for the several different foraging 
behaviors included in the library. The three algorithms described below all borrow from existing 
ideas in the literature to some extent, and all have specific advantages and disadvantages. 
Each algorithm is described in terms of how it functions at a high level; the exact structure of 
each sub-module is left for later sections.  
 
3.2.1 Assumptions 

There are many potential variables in the setup of these algorithms. However, evaluating 
every possible parameter would require complex, multi-dimensional analysis beyond the 
intended scope of this project. For this reason, each of the algorithms implemented share a core 
set of assumptions. These assumptions were based on the literature review as well as practical 
considerations.  

For the purposes of experimentation, all robots are assumed to start near the nest, which 
is located towards one end of the environment rather than in the center. The size and shape of 
the experiment field remains constant across all tests, allowing for simpler comparisons 
between algorithms. However, exact distribution and topology of resources is randomized 
between trials. Furthermore, robots are equipped with sensors to detect food and nest, as well 
as being able to pick up and drop off the food by themselves. Other sensors include proximity, 
positioning, and range and bearing sensors. The Khepera IV was used in all of the experiments, 
however any robot with the above mentioned sensors will be able to run the algorithms. For the 
purposes of simplicity, all of the foraging algorithms discussed in this paper were run using the 
ARGoS multi-robot simulator​[8]​, which enabled Buzz scripts to be run in a way that closely 
simulates the performance of actual robots. 
 
3.2.2 Modeling Language 

The algorithms used in this project are described in terms of a created modeling 
language to visually represent their function. This language is inspired by similar design 
languages such as the one described by Pitonakova et. al​[9]​, as well as independent research 
and thought. The essential property of each diagram is that any robot can be thought of as 
belonging to only one state at any given time step. In this language, states are represented by 
ovals. These states determine the behavior that the robot performs, which are represented by 
rectangles in the diagrams. A robot can reach other states and behaviors through state 
transitions, which are represented by arrows. Sometimes these state transitions are dependent 
on a logical condition, which decides between one of many possible outcomes. These decision 
points are represented by diamonds in the modeling language. Dotted arrows are distinct from 
solid ones; they represent that a given state “uses” the behavior pointed to by the arrow, rather 
than indicating a state transition. 
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3.2.3 Puller Algorithm 

The Puller algorithm takes inspiration from the sweeping algorithm discussed in the 
literature review. The sweeping algorithm proposed forming a line of robots and having that line 
perform a sweeping motion to explore the environment. However in practice, the pullers were 
not able to exert a force strong enough to move the rest of the robots. This made forming a line 
challenging, and thus we pivoted to an alternative strategy that still shared common methods 
such as forces. Like all the other foraging algorithms discussed in this paper, the Puller 
algorithm can also be broken down into three main tasks: finding food, retrieving food, and task 
allocation. An overview of the algorithm is shown in Figure 1 below. 

 
Figure 1​: Swarm Modeling Language Representation of Puller Algorithm 

 
For finding food under the Puller algorithm, robots predominantly use forces, specifically 

dispersion. Dispersion allows the robots to spread far from each other to cover the maximum 
amount of area while still being in communication range of other robots. This optimization 
however does result in the robots eventually reaching a ‘stable’ state where the net force they 
experience is zero. In this case, robots would be still and thus not find any food. In order to 
break this stable condition, robots could also be ‘stretching’, an entirely different algorithm for 
finding food. The stretching behavior is similar to that of the pullers described by Alcherio et. 
al​[6]​. The difference is that the vector is not time dependent. Instead the robots will travel in the 
direction opposite to the nest with some variance. The variance introduces randomness and 
allows robots to explore areas that otherwise they would not, which is the entire reasoning 
behind the stretching.  

Retrieval of food is simple. If a robot is carrying food, then it will gradient follow back to 
the source of the gradient, which is the nest. The nest in this case is a collection of robots which 
is calculated at the beginning of the algorithm. The center module (as described in Section 
4.1.7) is used to determine the robots representing the nests. The robots with the highest 
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resulting count after some time are determined to be the nest. An example of the nest is shown 
in Figure 2. With the nest constantly broadcasting the gradient source, other robots maintain 
their gradients and are then able to gradient follow back to the nest. 

 
Figure 2​: Example of Nests in ARGoS 

 
Lastly, in order for the Puller algorithm to work, task allocation is needed in order to 

assign tasks to robots. The module used for task allocation is the stimulus model. With the 
stimulus model, robots have a certain probability of performing different algorithms for finding 
food. Since the stretching behavior is only needed when robots are close to the stability point 
when performing dispersion, the stimulus response for the stretching behavior is smaller than 
the stimulus response for the dispersion. The stimulus for retrieving food depends on whether 
the robots are carrying food. Robots will retrieve food if and only if they are carrying food. 

The drop probability is currently a constant based on the priority of a task. Ideally, this 
probability would be a function of the priority and the time. As time goes on, the probability of a 
robot dropping the task should increase as well. This increases the randomness in the 
environment and helps break the stability conditions of the algorithms which are more likely to 
be met later during the experiment.  

 
3.2.4 Forager-Beacon Algorithm 

This foraging algorithm borrows the idea described in the previously-referenced paper by 
Hoff, Sagoff et al titled ​Two Foraging Algorithms for Robot Swarms Using Only Local 
Communication​. ​The central concept of this algorithm is to divide the entire swarm of robots into 
two main groups: “foragers” who search for and retrieve food, and “beacons” that act as 
pheromones to guide other robots to food and the nest. Robots are assigned into one of these 
states at random, and can switch between states.  

 ​The makes use of virtual “pheromones” to mimic the way a swarm of ants or other 
insects might find and retrieve food. The idea of these pheromones is used in many different 
foraging methods, but how the pheromones are simulated can vary. In this algorithm, we borrow 
an idea from others to use the robots themselves as pheromones. This has the advantage of 
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not requiring any additional capabilities from individual robots, such as being able to place 
physical markers (pheromones) within the environment.  

The beacons maintain two pieces of information that allow them to guide other robots-- 
we’ll borrow a term from the previously reference paper and refer to these as the nest cardinality 
and the food cardinality. The food cardinality is a heuristic that incorporates how near a beacon 
is to a food source and how much food exists at that location. The closer a beacon is to food 
and the more food that exists, the higher this number will be. The nest cardinality simply 
represents the estimated distance from a given beacon to the nest.  

Without guidance from beacons, forager robots simply wander about randomly. If a 
forager encounters food during this random walk, it instantly changes state to become a 
beacon. It then initializes its food cardinality as a function of the amount of food present. It then 
broadcasts this information to neighboring beacons. The neighboring beacons will then see this 
food cost, and generate a food cost of their own. This newly-generated food cost is a function of 
both the distance of that beacon from the food source, and the amount of food present at that 
source. This process then continues to the neighbors of that robot, and so on. In doing so, a 
gradient is constructed that approximates the relative amount of food near to any point in the 
environment.  

The other half of this process is to construct a second gradient that represents the 
relative nest cost of each beacon. This process starts with beacons that are neighboring the 
nest, which initialize their nest cost to be the estimated distance between the robot and the nest. 
Neighbors of these beacons then set their nest cost to be the nest cost of the first beacon plus 
the estimated distance between the two neighbors. In this way, paths are constructed outwards 
from the nest to all reachable beacons. Foragers can then use this gradient to find their way 
back to the nest once they’ve retrieved food.  
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Figure 3​: Swarm Modeling Language Representation of Forager Beacon Algorithm 
 

The entire high-level operation of the Forager Beacon algorithm is described in the 
diagram above. The diagram shows that any point, robots may fall into one of three roles: 
foragers, beacons, or the nest. At least one robot must be designated as the nest so that 
returning foragers have a means to find the food drop-off area. This robot has no other purpose 
other than to remain in place and broadcast its position to the rest of the swarm. This is a 
simplification to make experimentation easier, and more complex setups could replace this nest 
robot with an some other construct that fills the same role. The declaration of the nest robot 
happens at the beginning of the simulation and is static, as that robot remains the nest for the 
rest of the simulation. In the diagram, this is evidenced by the fact that there are no state 
transition arrows leading to or away from the nest. 

Foragers and beacons may change roles however. This switching happens 
probabilistically, as represented by the double-ended state transition marked ​p​ in the diagram. 
The actual implementation of foragers and beacons is slightly more complex than indicated in 
this diagram. The function of these roles is actually encapsulated in four separate tasks that are 
handled by the task allocation module. The entire foraging behavior, for example, is comprised 
of three tasks: finding food, returning food, and random walking. The random walking behavior 
can be thought of as a default task, which foraging robots will perform if they do not have food to 
bring to the nest and they cannot see a path to any food piles. If they can see a path to a food 
pile,  they switch to the “find food” task and navigate to the food by gradient following. Once 
they’ve picked up a food item, they switch to the “return food” task and bring that food back to 
the nest, at which point the cycle repeats. However, at any time step there is a chance that a 
forager will be switched to being a beacon. Foragers will never be interrupted while they are 
returning food, but they can be forced to switch at any point while meandering or finding food. 

Once a robot is a beacon, its behavior is much simpler. There is only one task for the 
robot to execute, which is to advertise its location relative to food to all other robots within range. 
Though they all perform the same basic behavior,  it is important to note that there are 
fundamentally two different types of beacons. When a randomly walking robot  happens upon a 
pile of food, it is instantly forced to become a beacon so it can guide neighboring robots to the 
location of that pile. Other robots become beacons randomly at positions where there is no food. 
Their job is to simply relay the source of the food and nest gradients to their neighbors. This is 
necessary because it maintains connectivity throughout the swarm. If stationary beacons were 
not present, groups of foragers would become cut off from the nest gradient as they flocked 
towards piles of food. The finding food task functions similar to a flocking behavior, where large 
groups of robots converge on a single location. This leads to “islands” of many robots, but these 
groups are often too far away from other robots to propagate gradient information and thus have 
no path back to the nest. Having some robots remain beacons even when they are not on a pile 
of food maintains this connectivity. 
 
3.2.5 Honeybee Algorithm 

The honeybee algorithm was developed with roots in the real-world foraging behavior of 
honeybee colonies, with slight modifications inspired by Brabazon et. al.​[7]​. At its core, the 
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algorithm defines two behaviors - the “scout” behavior and the “worker” behavior. Scouts are 
tasked with dispersing into the arena to find food locations, while workers know of a food 
location and will travel back and forth between the nest and that location ferrying food back to 
the nest. Robots will switch between these behaviors as conditions dictate, or at random with 
some predefined probabilities. An overview of the algorithm in the Swarm Modeling Language is 
shown in Figure 4. 
 

 
Figure 4​:​ Swarm Modeling Language representation of the Honeybee Foraging 

Algorithm 
 
The heart of the honeybee algorithm is the idea of recruitment. In nature, honeybee 

foraging relies on recruitment of teams by the scouts to fly out to the discovered location for 
retrieval of nectar and pollen. Scouts will memorize locations during the scouting phase and 
upon return to the hive will participate in a recruitment method known as the waggle dance, 
which encodes the location as a series of motions. Given the various dances, idle worker bees 
will decide to join a particular scout and travel out to that food location to retrieve the resources 
found there. The honeybee algorithm implements a similar mechanism for recruitment, allowing 
robots performing any given action to actively recruit direct neighbors to join them. This 
mechanism is what drives the switching between the scout and worker behaviors. 

The scout behavior attempts to disperse into the arena in a way that allows for maximum 
coverage of the unexplored locations. For this reason, it makes uses of the recruitment 
functionality to form a scouting team that travels together out into the arena. One robot is 
considered the leader of a scouting team and heads away from the nest, and recruits other 
robots to follow. At the beginning of a given experiment, this allows the swarm to disperse fairly 
evenly across the environment and divides the search space. Scouts continue this behavior until 
recruited away.  
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The key to the worker behavior is encoding the location of a discovered food pile and 
broadcasting this location to potential recruits. Once robots have allocated to a worker task, they 
travel between the food location and the nest ferrying food from the location back to the nest. 
This behavior continues until a robot arrives at the location and sees no more food there; at this 
point it deallocates and is available to respond to recruitment messages from other active tasks.  
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4. Methodology and Implementation 
 

The foraging algorithms contained in this library are composed of granular 
sub-behaviors, or modules, that are then combined to create more complex behaviors. This 
section details the implementation of the overarching algorithms in terms of individual modules. 
Understanding how these modular foraging behaviors work requires understanding how the 
individual sub-behaviors function and how they help to accomplish the larger goals of the 
algorithm. In addition to these components, this section also explains the experimental setup 
used to test and evaluate the foraging behaviors as a whole. 
 
4.1 Modules 

 
4.1.1 Gradient Module 

Gradients are one of the most common tools in swarm programming and can be used in 
variety of ways. A gradient is a collection of robots that share a specific message type with each 
other. Each robot in a gradient contains a hop count. Each gradient has a source which starts 
with a hop count of 0. The hops of a robot is one more than the minimum hops of the 
neighboring robots. In order to implement this in Buzz, we created a table for gradients: 

Each robot holds a table for each gradient. The table contains whether the robot is the 
source of the gradient, the id of the robot, the id of the parent robot, and the vector to the source 
of the robot. These fields allow the robots to perform gradient following where any robot can go 
to the source of the gradient. At each time step, the gradient for the robots need to be 
recalculated. In order to do so, each robot sends its own gradient message to neighboring 
robots. After comparing the current gradient table with the incoming one, the robots choose the 
table with the smaller hop count. If the hop count is exactly the same, then the robot which is 
closer to the source of the gradient is chosen. There were other more involved factors 
concerning updating the gradient as well. For example, if a robot receives a gradient status from 
its parent robot, then it will always update it’s own gradient. These edge cases were essential to 
properly implement gradients and gradient following in our algorithms. Once every robot has 
done this, the new gradient has been established. For gradient following, the goal of a robot is 
to drive to another robot’s location, usually the source. This is done by utilizing the parent id 
stored in the gradient message. The robots that are performing gradient following always go 
towards their parent using the forces module (as described in the next section) until they have 
reached the target.  

Gradients can be used to determine the relative size of the area that has been covered 
by the robots. Gradients can also be used to allow robots to move from one location to another. 
Specifically in our applications, this involves robots going towards the nest and the food 
locations. There is a seperate gradient table needed for the nest and for the food, and robots 
are able to follow the gradients back to their source.  
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4.1.2 Forces Module 
One of the key motion modules we implemented involved using forces. With this module, 

robots can exert virtual forces onto other robots based on the distance between them. This force 
can then either push robots away from each other or towards them.  

Dispersion was a key implementation in the forces module. The dispersion functions 
maintains the robot’s distance based on the given input. This is done by using the equation 
described below. 

(1) 
where a and b are constants, R is the desired radius of separation, and d is the distance vector 
between the robots. 

With dispersion, developers can easily maintain distance between a swarm of robots to 
avoid congestion. Eventually the robots performing dispersion will reach a stabilization point 
where the net force they experience is zero. In this case, robots don’t move and simply wait until 
the environment changes. In addition to dispersion, the forces module also offers other 
functions such as moving towards a particular force vector, obtaining the net force vector on a 
particular robot, and running away from and towards one robot. All of the functions in the force 
module are easily extensible to any application requiring motion.  

 
4.1.3 Stimulus-Response Task Allocation Module 

Task allocation is an essential functionality for a robot swarm in order to determine the 
tasks for each robot​[10]​. Rather than having individual robots decide by themselves on their 
tasks, the task allocation module assigns tasks to swarms of robots. The task allocation 
modules provided in this library define the notion of a task as a collection of functions and 
parameters encapsulating the selection and execution of the task. A detailed representation of 
the task structure is shown in Figure 5. 
 

 

Parameter Description 

stimulus() The function used to calculate the dynamic 
stimulus 

execute() The function that actually performs the task 

priority A value between 1 and 5 indicating the 
priority of the task 

 
Figure 5:​ A Representation of the Internal Task Structure used in the Task Allocation 

Modules  
 
Task creation involves defining the behavior functions and registering the task with the 
allocation module. Once registered, a task is available for activation by individual robots. A robot 
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that activates a task will start performing the task (as defined by the behavior) and make the 
task available to the other robots based on the allocation strategy.  

The stimulus-response allocation strategy operates on the assumption that every active 
task and its state is available to each robot at decision time​[11]​. From the state of a task, each 
robot calculates a dynamic stimulus value, which represents the “eagerness” of the robot to join 
that task. A higher values of the stimulus thus results in a higher likelihood of the robot 
allocating to the task providing that value.  

The process for selection with the stimulus-response model consists of a calculation 
phase and a weighted random selection phase. In calculation, the robot calculates a stimulus 
value for every active task and generates the stimulus list. In the selection phase, the robot 
employs a weighted random selection strategy, using the stimulus values as weights. Once the 
robot has selected a stimulus, it joins the task that produced the maximized stimulus value. The 
calculation follows Equation 2, where ​s​p​ ​is the stimulus of task ​T​p​ for all ​n​ active tasks. 
  

election uniform([s T , T , ..., s T  ])s =  1 1 s2 2   n n (2) 
 

4.1.4 Recruitment Task Allocation Module 
The recruitment allocation strategy is an extension of the stimulus-response model. 

Rather than having all active tasks available to all robots, tasks are instead broadcast by robots 
currently performing them to direct neighbors.  

The module uses the same task structure as the stimulus-model based module and the 
selection process is similar. One important difference is that the selection process only occurs at 
a specific frequency (once every ten timesteps) due to the volume of messages being broadcast 
at any given timestep. However, the selection process still involves calculation of the dynamic 
stimulus and the same weighted random selection process as before. 

 
 

4.1.5 Obstacle Avoidance Module 

 
Figure 6:​ Illustration of obstacle avoidance module  
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Collisions between robots can disrupt the performance of an entire swarm, so it is 
important to have a method to avoid them efficiently. The obstacle avoidance borrows ideas 
from McLurkin​[12]​ to create a module that provides this small but necessary functionality to all 
algorithms in the library. The figure above illustrates how the avoidance module functions when 
an obstacle-- such as a robot or an immobile structure in the environment-- is encountered.  

The transparent circle represents the robot, while the red vector represents the current 
direction the robot is headed towards. In this scenario, the robot will collide with the brown 
object to its left if no corrective action is taken. At each time step, the obstacle avoidance 
module reads each of the robot’s proximity sensors, which are distributed radially around the 
robot. In this diagram, these sensors are represented by the dotted black lines.  

If an obstacle is detected, the robot then calculates the distance vector to that object, 
which is represented in the diagram as the dotted blue line from the robot to the obstacle. The 
opposite of that vector is then calculated, as shown by the blue arrow vector. By adding the 
original direction vector to the blue obstacle vector, a new vector can be calculated which 
represents the direction the robot should travel to avoid the object, which is represented by the 
purple arrow vector. 

This approach works even if there is more than one obstacle, as the resultant heading 
vector will still typically point away from any obstacles within range. The robot receives the 
strongest pull away from an obstacle when the object is farther away, since the avoidance 
vector is largest at this point. This is desirable because it gives the obstacle avoidance behavior 
a “proactive” tendency,  where robots move away from obstacles before they get too close. 

Though this module is relatively small, its purpose is important and it is widely applicable 
across many different circumstances. In addition to being used in each foraging algorithm, 
obstacle avoidance is useful in many other swarm behaviors as well. This property makes it a 
valuable addition to this library, as future users can easily incorporate this module into their own 
projects even if the larger foraging behavior is ignored. 

 
4.1.6 Random Walking Module 
 

 
Figure 7:​ Illustration of meander behavior 

 
This module contains a variety of movement behaviors that are useful for foraging, 

exploration, and other swarm behaviors. The most fundamental behavior in this module is the 
meander function, which provides a means for robots to wander aimlessly through the 
environment. The meander behavior works by randomly changing the direction that the robot 
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moves in at each time step. However, randomly selecting from all possible directions on each 
timestep causes the robot to barely move at all, as it does not have time to make progress in 
any one direction. Instead, the random direction vector is constrained to be within some range 
of the previous direction vector, as shown in the diagram above. The red arrow represents the 
previous direction, and the new direction vector must be within about 45​˚​ of this direction to 
either side. The possible range of this new vector can be adjusted, where narrower ranges lead 
to straighter, smoother paths than wider ones. This behavior is useful for exploring the 
environment in the absence of other information, in the context of foraging or otherwise. In this 
project, it is used by the Forager-Beacon algorithm to forage for food when there is none 
currently visible. 

 
Figure 8:​ Illustration of circling behavior between two robots 

 
A related behavior in this module is the circle function. Circling is a straightforward 

behavior that allows for one robot to travel in a fixed radius around another, as represented in 
the diagram above. This behavior is achieved by finding the vector between the two robots, and 
then adding 90 degrees to the angle of that vector. This creates a new vector that is 
perpendicular to the vector between the robots. The circling robot then travels along this vector 
with a magnitude value, which can be adjusted to control the speed of the robot along its path. 
Because this calculation is performed at each time step, the direction of the perpendicular 
vector shifts slightly on each iteration, resulting in a circular path around the other robot.  

This function is used in the Forager-Beacon algorithm to find food. When a forager 
arrives at a beacon, it may not instantly detect food due to idiosyncrasies in the location of the 
beacon relative to the food pile. Having the forager circle the beacon makes the algorithm more 
reliable because it effectively forces the forager to search around the beacon if it does not pick 
up food immediately.  

A simple modification to the circle behavior results in two additional functions that allow 
robots to travel in spiral patterns relative to each other. This is accomplished by adding or 
subtracting a small angle from the perpendicular vector calculated in the circle function. Adding 
a small angle to this vector will cause the robot to travel slightly outwards relative to the other 
(spiralling outwards), while subtracting a small quantity will cause the robot to travel slightly 
inwards (spiralling inwards). Spiralling inwards is useful for much the same reason as circling, 
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as it is simply a different way to search the area around a robot. It is in some respects superior 
to the basic circling behavior, as it covers more area. Spiralling outwards is an effective way to 
explore the environment. It is more methodical and consistent than meandering, and allows for 
guaranteed exploration of a certain area. However, meandering has advantages where 
guaranteed exploration is not a concern, as it can typically cover a wider total area in a shorter 
amount of time. 
 
4.1.7 Center Module 

One of the most important aspects of foraging is for robots to always be able to travel 
back to the nest. Often in swarm programming, robots aren’t assumed to have specific sensors 
like smell that allow them to locate the nest. In order to solve this problem, a group of robots 
remain at the nest and broadcast to all other robots their location. This way every robot is 
always aware of the nest’s location. Choosing such robots can be a difficult problem however. If 
there are too few robots representing the nest, there may be traffic jams and congestion when 
other robots travel back to the nest. This can hinder performance significantly. On the other 
hand, if there are too many robots representing the nest, then there may not be enough robots 
out on the environment, and the algorithm would still perform worse. The center module 
chooses such a group of robots in an efficient manner that remain at the nest. To calculate the 
nest, robots initially send each other messages representing a count. Robots then accumulate 
the count received from their neighbors and then send the resulting count with some decay 
factor to their neighbors. After waiting some time steps, the robots with the highest accumulated 
count are chosen as the nest. The count for each robot is also stored in a global stigmergy, 
which then allows all the other robots to calculate the closest robot representing the nest. The 
center module is utilized in all of our algorithms as a tool to efficiently choose robots to be the 
nest so that the other robots can cover as much of the environment as possible. 

 
4.1.8 Miscellaneous Modules 

This library also contains a variety of functions that did not fit neatly into any other 
module, but were nonetheless useful. Many of these functions were small, simple operations 
that satisfy a use case that is not currently covered by any other standard function in Buzz. 
These functions were included as part of the library because they are generally useful, even 
apart from their applications in foraging. Their inclusion prevents future developers from having 
to create their own functions that effectively perform the same task. 

Many of these miscellaneous functions perform actions related to neighbor interactions 
between robots. For instance, the there is a function that can be called on any robot with a 
specific robot id as a parameter, and returns a value indicating whether the two robots are 
neighbors. A similar function in this module returns a value representing the distance between 
the two robots. Other included functions allow users to find the number of neighbors that a given 
robot has, or retrieve the ID number of a random robot within neighbor range. 

 
 
 

29 



 

4.2 Performance Testing Framework 
 

4.2.1 ARGoS Environment Setup 
Our project creates the environment based on the following given information: density of 

food, x and y length for the range of food displacement, the food distribution method, density of 
robots, and two output files for data collection.  

Two environment variables are used in ARGoS that are required to be declared in the 
accompanying Buzz script: ​hasFood​ and ​foodCount​. These two variables are held by each 
robot and represent whether the robot is carrying food, and if the robot is on a pile, how many 
food are located on the pile. These are necessary in order for the simulation to notify the robots 
they have reached a food or nest location. 

 
4.2.2 Cluster 

As one of the main goals of our project, we tested each of the algorithms performance by 
performing thousands of simulations. To do so, we utilized the Turing Cluster at WPI. We 
created two bash scripts for setting up and running the experiments. The purpose of the main 
job was to iterate through the parameters of the simulation, and then launch the simulation job 
with the chosen set of parameters. The simulation job then took these parameters and filled 
them into a template argos file which was then run. One important consideration while we were 
creating our framework was the maximum number of jobs that could be queued onto the cluster. 
In order to avoid spamming the cluster with thousands of jobs each representing one simulation, 
we grouped simulations with the same set of parameters excluding the random seed into one 
job. This reduced the number of jobs, while also still allowed for parallelization to run multiple 
simulations at the same time. The time taken for each simulation heavily depended on the 
number of robots. The typical time ranged from 15 minutes to 25 minutes. We were able to 
complete and collect data from over 2500 simulations in total. 

In addition to the job scripts, we also developed programs for visualizing the data 
retrieved from the simulations. We utilized Jupyter and python for reading and creating the 
graphs from the data using libraries such as numpy, pandas, matplotlib, and scipy.  
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5. Results 
 
5.1 Reusability and Modularity 
 

Modules Times Used 

Gradient Following 3 

Obstacle Avoidance 3 

Find Center 2 

Stimulus Model 2 

Forces 2 

Random Walk 2 

Transforms 2 

Neighbor Based Recruiting 1 

 
Figure 9​: Breakdown of Modules Reused between Algorithms 

 
A major goal of this project is to demonstrate a high degree of reusability across all the 

software modules contained in the library. The degree to which this goal is met can be 
measured in many different ways,  such as by quantifying the amount of shared code between 
algorithms. The diagram above shows how modules are shared and reused between the three 
algorithms included in this library. There is a considerable degree of overlap, with some 
modules being used by all three algorithms and several others by at least two.  

Another major design objective of this project is to ensure a high degree of modularity 
among the software components included in the library. For instance, the Forager-Beacon 
algorithm uses the meander behavior to explore the environment, whereas the Puller algorithm 
makes use of the pulling behavior. However, these components are modular in the sense that 
the meander behavior could be swapped for the pulling behavior, yet the overall performance of 
the algorithm would remain the same. Many other components of the library share this 
interoperability, and future developers could easily extend the current options with their own, 
improved behaviors. This is useful because it allows users to potentially tailor the sub-behaviors 
of the larger foraging algorithm to a specific environment.  

Creating self-contained software modules also simplifies and shortens the necessary 
code for foraging algorithms. During the development process, both the pulling and 
forager-beacon algorithms were partially created before they were re-made using the task 
allocation module. The process of porting to a task allocation-based module shortened the 
overall code body of each algorithm by several hundred lines, and also improved subjective 
characteristics such as readability. This example is illustrative of how this library might benefit 
future users by providing ready made swarm development tools. By providing much of the 
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overhead, this library can prevent developers from having to do unnecessary base work to 
create their own projects. 
 
5.2 Foraging Parameter Values 

 
 

Table 1​: Breakdown of Foraging Parameter Values 

Parameters Values 

Topology Uniform, Scale-Free 

Robot Density 0.3, 0.5 

Food Density 0.2, 0.5, 0.8 

Maximum Pile Size 1, 5, 10 

 
 
 

Table 1 shows the different parameters that were considered during the experiments, and the 
values associated with the parameters. These values were chosen so that there was a wide 
range of different arena setups so that we could properly measure the performance of the 
algorithms. 

 
 
5.3 Puller Algorithm Performance 

 
The performance of the Puller algorithm was evaluated based on over 500 simulations with 
varying parameters as shown in Table 1. In order to effectively evaluate the performance, we 
considered the effects of each of the parameters on the algorithm, including the maximum pile 
size, and the topology. Furthermore, a more in-depth analysis was performed for locating areas 
of the environment the algorithm performed better in. Overall, these measures combined yielded 
in the strengths and weaknesses of the Puller algorithm. 
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Figure 10​: Food Collected by the Puller Algorithm based on Maximum Pile Size 

 
Figure 10 above shows the performance of the Puller algorithm based on the maximum pile 
size. The huge variance in the performance is likely due to the other parameters affecting the 
results of the algorithm. Therefore, we looked once again at the performance in most occupied 
environment.  

 

 
Figure 11:​ Food Collected by the Puller Algorithm in Most Occupied Environment based on 

Maximum Pile Size 
 

After narrowing the food density and robot densities to their highest tested values, the result 
shown in Figure 11 is much clearer than in Figure 10. The performance with the maximum pile 
size at one clearly outperformed the performance with maximum pile size ten, and outperformed 
maximum pile size five during the start and then reached roughly the same towards the end. It is 
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also important to note that both performances for max pile sizes five and ten were still steadily 
increasing at the end of the experiment, while the performance at pile size one remained 
stagnant. This is likely due to the robots not having enough time in collecting all the food. In 
order to prove that the performance is correlated to the maximum pile size, we also conducted 
the Wilcoxon Rank Sum test to measure the likelihood of the distributions being the same. 
 

 
Figure 12​: Wilcoxon Rank Sum Test on Food Collected with Varying Max Pile Sizes 

 
 
Table 2:​ Average Wilcoxon Rank Sum Test on Food Collected with Varying Max Pile Size 

 1 and 5 1 and 10 5 and 10 

Probability 0.192 0.0001 0.0001 

 
Figure 12 compares the distributions in Figure 11 using the Wilcoxon Rank Sum Test. This test 
allow us to check the probability that two distributions are equal, and from the results it is clear 
to see that the performance on max pile size one differed significantly from max pile size ten 
and on max pile size five and max pile size ten. Overall for both of these comparisons, the 
probability of the two distributions being equal was nearly 0.01% as displayed in Table 2. For 
the comparison between max pile size one and five, the average probability was roughly 19.2%. 
However, as shown in the figure, the probability during the start of the experiment was low, and 
increased up to over 80% during the final step. Therefore, the performance on max pile sizes 
one and five could be similar especially towards the end. Overall, the results show that the 
Puller algorithm performs better when the maximum pile size is lower. 
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Figure 13​: Overall Food Collected by Puller Algorithm in Uniform and Scale-Free Distributions 

 
Figure 13 shows the performance of the Puller algorithm on uniform and scale-free distributions. 
The robot density, food density, and maximum pile size all ranged with the values specified in 
Table 1. The massive range presented in Figure 13 for the boxplots is most likely due to the 
performance of the algorithm being tied heavily to the other parameters such as robot and food 
densities. In order to better analyze the performance of the algorithm, we took a look at fixed 
robot densities and food densities, as well as maximum pile size of one which was determined 
to be the ideal case. 

 
Figure 14:​ Food Collected by Puller Algorithm in Most Occupied Environment based on 

Distribution 
 

The figure above shows the performance of the Puller algorithm in the most occupied 
environment. As we can see, the two series are very similar to each other. The performance 
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with the uniform distribution had a higher mean consistently over the scale-free distribution. 
However, the performance for scale-free also yielded a better maximum percentage of food 
collected compared to the uniform distribution. Overall, the two distributions at first glance look 
fairly similar.  

To analyze the distributions further, we applied the wilcoxon rank sum test for the two 
distributions as well. The wilcoxon rank sum test yields with an average probability of 23.5% for 
the two distributions being the same. This is a fairly high probability compared to previous 
probabilities, though the topology of the food seems to have an effect on the Puller algorithm 
slightly. Overall, the performance boost is so small, that the Puller algorithm performs essentially 
independently of the topology. 
 
Analyzing Food Location Preferences 

In addition to comparing the food collected based on the food distribution and maximum 
pile size, we also analyzed locations of the environment the algorithm tends to perform better or 
worse at. In order to do so, we looked at the heatmaps for the positions of the food collected in 
hundreds of runs. 
 
 

     
 

Figure 15​:​ Random Uniform Distributions in ARGoS 
 
 

     
 

Figure 16​:​ Random Scale-Free Distributions in ARGoS 
 
Figure 15 and Figure 16 show different runs of uniform and scale-free distributions. As is 
evident from the figures, scale-free distributions tend to differ a lot more from each other 
compared to the uniform distributions. This was an important finding as it meant our simulations 
involving scale-free distributions must have a large enough sample size to accurately depict the 
performance. 
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Figure 17:​ ​Heatmaps of Collected Food Positions with the Puller Algorithm 

 
Figure 17 shows the positions of the food collected by the Puller algorithm in a total of a 

five hundred runs for each distribution. The food densities and robot densities were set to the 
maximum tested values in order to see the effect of the algorithm in the most cluttered 
environment. In addition, the maximum pile size of the environments was set to one due to the 
Puller algorithm’s preference as mentioned earlier. 

As we can see in Figure 17 above, the Puller algorithm prefers food to be located near 
the central area of the arena and tends to not find food on the far corners of the area in both the 
scale-free and uniform distributions. This is most likely due to the stretching behavior as even 
with the variation in angle the robots aren’t consistently going to the far corners. However, food 
in the center of the arena is collected consistently regardless of distance from the nest. 
Furthermore, the algorithm performs fairly well at the near corners of the arena, though not 
nearly as well as if the food was closer to the center of the field.  

The performance at the far right corners could potentially be improved by distributing 
more robots to the opposite ends of the arena. In this case, there will be multiple robots 
designated as the nest rather than one central nest. By having this, robots will no longer crowd 
toward the center of the field as much and rather spend more time exploring on their respective 
sides. Another potential fix would be to increase the variance in the angle, however this may 
cause worse performance on other areas of the environment.  
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5.4 Forager-Beacon Algorithm Performance 
The performance of the Forager-Beacon algorithm was assessed on the results of 

several hundred experimental runs. The diagrams that follow demonstrate the outcomes of 
these experiments in terms of several different parameters, such as the amount and location of 
food collected. Many of these metrics are contextualized against several other variables as well, 
including the maximum pile size of food and other environmental factors. Together, these 
measures help to form an accurate overall impression of the Forager-Beacon algorithm’s 
performance.  
 

 
Figure 18:​ ​Overall Performance of Forager-Beacon Algorithm for Varying Pile Sizes 

 
The graph in Figure 18 shows the overall performance of the Forager-Beacon algorithm 

in the form of box plots. The distributions are grouped by maximum pile size, where each of the 
three options accounted for 160 runs out of a total of 480. This graph indicates that the rate of 
food collection appears to taper off as the simulation time increases. This can be explained by 
the notion that the swarm collects the food that is close to the nest (and thus easier to retrieve) 
earlier in the simulation, leaving only the more inaccessible food as time runs on. The maximum 
percentage of food collected was achieved in an experimental run with a maximum pile size of 
1, where around 38% of the available total was retrieved. 
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Figure 19:​ Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions over Time 

 
 

 1 and 5 1 and 10 5 and 10 

Probability 4.09e-07  4.49e-08  0.0022 

 
Table 3:​ Average Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions 

 
By merely looking at the figure, it appears that the maximum pile size has an effect on 

the total percentage of food collected. The distributions of each type of run appear to be distinct, 
with pile size 1 runs generally collecting the most runs and pile size 10 runs gathering the least. 
However, given that these results were drawn only from a small sampling, it is hard to draw 
definitive conclusions about the true nature of these distributions only by using this figure. As 
before, a Wilcoxon Rank Sum test is useful for determining the probability that any of these 
distributions are in fact the same. The outcome of these tests are shown in Figure 19 and Table 
3 above.  

These results suggest that there is an exceedingly low probability of the distributions 
being the same. The average values in Table 3 show that the that the runs with pile sizes of 1 
and 5 have a near-zero probability of having the same distribution. The probability of the pile 
size 1 and pile size 10 runs is similarly low. This data corroborates the informal picture 
presented by the graph in Figure 19, where there is very little overlap between these pairs of 
distributions. This suggests, at least informally, that these distributions are indeed different.  

The only variation in this observation comes when comparing the distribution of pile size 
10 runs against those with pile size 5. In this comparison, the probability of the two distributions 
being the same is 0.0022. Though this is a much larger value than the other two Wilcoxon tests, 
it is still a comparatively low value that suggests these distributions can be treated as distinct. 
Much as before, this observation is reflected in Figure 19, which appears to show that the 
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distributions of pile size 5 and pile size 10 have only slightly more overlap than in the other 
comparisons.  

The fact that the percentage of food collected improves with decreasing pile sizes is 
expected. These performance graphs only track the percentage of food collected, rather than 
absolute amounts. When the food is distributed in the environment, only the total number of 
piles is considered. Thus an environment where every pile has ten food items can be expected 
to have ten times the total amount of food compared to an environment where the maximum pile 
size is one. 
 

 
Figure 20​:​ Performance of Forager-Beacon Algorithm with Varying Food Topology 

 
The graph in Figure 20 shows that the performance of the Forager-Beacon algorithm 

also varied depending on whether the food was distributed in the environment uniformly or in a 
scale-free topology. Exactly half of the 480 total experiments were used for each topology, and 
runs using each topology were in turn distributed equally among each of the three pile size 
options. The two distributions depicted in the graph appear to show that the Forager-Beacon 
algorithm performs much better in environments where the food is distributed uniformly. This 
observation is largely confirmed by a Rank Sum test comparing the two data sets, which shows 
that there is only a 0.0000000​6​ probability that the two distributions are the same. The cause of 
this discrepancy is not immediately clear from this data, but the heatmap diagrams shown in 
Figure 22 help to explain how this algorithm performs differently depending on the food 
topology. 
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Figure 21:​ Positions of Food Collected by Forager-Beacon Algorithm within the Arena  
 
These show the relative position of food collected by the Forager-Beacon algorithm 

within the environment. Areas where food was more regularly collected are indicated by warmer 
hues, while regions where food was seldom collected are visualised as colder hues. The data 
used to generate each of the diagrams was collected over 480 experiments, and the results are 
illustrative of the general behavior of the Forager-Beacon algorithm.  

Both diagrams show that regardless of which food topology is used, the algorithm 
collects much more food in areas near the nest, which is directly below the x-axis in this 
visualization. This observation can be explained partially by the fact that all of the robots start 
near this nest area. The meandering behavior used to disperse robots in the swarm is of limited 
effectiveness in this setup, as the robots do not distribute themselves across the environment 
quickly. Though the algorithm appears to be quite efficient at gathering food that is placed near 
the nest, the swarm never covers enough area to find the food in the more distant reaches of 
the environment. A major reason for this is the fact that the meander behavior tends to cause 
the robots to spread out radially from their starting point, while in this environment all the robots 
are positioned towards one end of the field. If the nest was instead located in the center of the 
environment, it is likely that this algorithm would be able to gather more food.  

These diagrams also clearly show that the Forager-Beacon algorithm collects more total 
food when resources are distributed uniformly. Though both topologies contain the same total 
number of food items, scale free distributions can often be skewed towards one side of the map. 
Since this algorithm tends to only collect food close to the nest, some scale-free experiments 
will collect very little food. Uniformly distributed food tends to create more consistent 
performance, which results in more food collected overall. 
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5.5 Honeybee Algorithm Performance 
The performance of the honeybee algorithm was measured using similar metrics 

to those discussed above in Table 1. The data gathered was accumulated over several 
hundred experiments on the cluster 

 
Figure 22: ​Overall Performance of Honeybee Algorithm for Varying Pile Sizes 

 
The overall performance of the honeybee algorithm displayed above for various pile 

sizes demonstrates the shape of the collection as a function of time, indicating that as time 
passes the value levels off at a certain percentage of the food. This fits with the performance of 
the other algorithms and can be explained by looking at the derivative of the line of best fit with 
the medians of the box plots. The derivative gets smaller as time increases, indicating that the 
rate of food collection decays as time increases. This aligns with the observation that for the 
honeybee algorithm, food collection at first is relatively fast due to the recruitment behavior, as 
multiple robots flock to one food location and can very quickly bring an entire pile back to the 
nest. As time passes, robots run out of food at a pile and must then search for more, which 
causes a dropoff in the collection rate.  
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Figure 23​: ​Performance of Honeybee Algorithm for Varying Pile Sizes in Most Occupied 

Environment 
 
Figure 23 shows the results of running the honeybee algorithm with the environment 

parameters set to maximize the food density. At peak performance, the algorithm was able to 
collect just above 60% of the food in the arena.  

 

 
Figure 24:​ Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions over Time 
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 1 and 5 1 and 10 5 and 10 

Probability 0.0001574 1.647e-07  5.467e-06 

 
Table 4:​ Average Results of Wilcoxon Rank Sum Test on Different Pile Size Distributions for 

Honeybee Algorithm 
 
Using the rank sum test as with the other algorithms, it can be seen that the distributions 

of each pile size have negligible correlation; that is to say that each set of runs is statistically 
different and thus the conclusion can be drawn that the pile size has a major effect on the 
performance of the honeybee algorithm. As with the other algorithms, the difference in collected 
percentages between pile sizes can be explained by recognizing that the data is a percentage 
and that for larger pile sizes, there is more total food and thus foraging the same amount of food 
will yield a lower percentage. However, there is more to the performance than just that trivial 
factor, as the rank sum test shows.  

 

 
Figure 25:​ Performance of Honeybee Algorithm with Varying Food Topology 

 
Figure 25 shows the resultant box-plots of running the honeybee algorithm with different 

topologies. As can be seen in the image, the algorithm performs roughly the same regardless of 
the topology of the food, collecting roughly the same amount in both cases after running for the 
same amount of time. This suggests that the strength of the algorithm lies in its decoupling from 
the environment, leading it to be a more general-purpose algorithm for foraging. 
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Figure 26: ​Wilcoxon Rank Sum Test for Different Food Topologies 

 
The rank sum test shown in Figure 26 corroborates this observation, showing that the 

distributions of uniform and scale-free topologies is very similar for this algorithm. It is clear to 
see in Figure 25 that the medians and the ranges for both the distributions are consistently 
similar. Figure 26 further proves the point with the average probability of the two distributions 
being 65.3%. This high chance confirms that the honeybee algorithm’s performance is 
independent of the topology of the food. 

 

 
Figure 27: ​Positions of Food Collected by Honeybee Algorithm within the Arena 
 

Figure 27 shows a heatmap of the positions of the collected food by the honeybee algorithm in 
all 500 runs. Based on the figure, the algorithm mostly focuses near the nest and towards the 
center of the arena, and isn’t able to reach the the far corners of the arena. Both the heatmaps 
for the uniform and scale free distributions have a similar shape, which tells u that regardless of 
the topology, the effective path of the algorithm and the positions of the food collected remain 
the same. This was the same result that we found when comparing the performance of the 
actual distributions in Figure 25. However, for uniform distributions, the honeybee algorithm 
performed better toward the left corner of the field. This is likely due to the dispersion pattern of 
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the scouts at the beginning of each experiment, which seemed to favor a distribution of scouts 
skewed toward the left side of the field. This would in turn lead to more food on the left hand 
side being discovered and subsequently foraged.  

 
5.6 Comparison of Foraging Algorithms 

The performance of each foraging algorithm helps to illustrate their respective 
advantages and disadvantages. For example, the performance of the Forager-Beacon algorithm 
appears to be somewhat inferior to the Puller and Honeybee algorithms based on the total 
percentage of food collected. The median percentage collected is significantly lower compared 
to the these algorithms for all three maximum pile sizes, and even the most favorable runs peak 
between 35% and 40% of the total food available. While this result is understandable in 
situations where the maximum pile size is one, it is somewhat counterintuitive for scenarios 
where piles contain multiple food items. The Forager-Beacon algorithm actively recruits nearby 
robots to the locations of piles with many food items, while the Puller algorithm treats all piles 
equally. As such, one could reasonably expect the Forager-Beacon algorithm to perform better 
in situations where piles contain multiple food items. However, the results obtained from 
experimentation seem to contradict this reasoning. 

 Part of this discrepancy can be attributed to the fact that the setup of the environment is 
unfavorable to the behavior of the Forager-Beacon algorithm. Foragers tend to spread out 
radially, and thus optimal performance would require a nest in the center of the environment 
instead of towards one end of the field. The meander behavior used in the Forager-Beacon 
algorithm is also partially responsible for this performance gap. This particular random walking 
method does a poor job of scattering robots in the swarm across the environment. This is 
especially true in contrast to the dispersion behavior used in the Puller algorithm. Where the 
meander behavior only spreads robots apart from each other passively, the dispersion behavior 
actively forces them apart. The net effect on overall performance is that robots executing the 
Forager-Beacon algorithm never extend deep enough into the environment to collect food. This 
explains the relatively small field of exploration shown in the heat map diagrams of the 
Forager-Beacon algorithm when compared to the two other options.  

For the topology of the food, some algorithms preferred a certain distribution over the 
other. The Forager-Beacon algorithm performed better in uniform distributions, while the Puller 
and Honeybee algorithms performances were independent of the distribution. This result has a 
large effect on the higher level switching algorithm as if the robots find food evenly distributed, 
then they may execute the Forager-Beacon. On the other hand, if robots find clusters of food 
near each other, the Puller or Honeybee algorithm would be more optimal. 

Another trend that emerges from these results is the notion that different algorithms 
seem to perform better under different conditions. Looking at the heatmaps for each of the three 
foraging behaviors, it appears that the Forager-Beacon algorithm excels at collecting food in 
close proximity to the nest, the Honeybee algorithm is the most effective at farther away food, 
and the Puller algorithm seems to be most successful in intermediate ranges. An algorithm that 
could combine these qualities would be much more successful at gathering food across the 
entire environment. 
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Another important consideration is the rate at which the algorithms were collecting food. 
While the Puller algorithm may have collected a larger percentage of the food overall compared 
to Forager-Beacon and Honeybee, the performance for the algorithm started plateauing towards 
the end of the experiment. On the other hand, both the Forager-Beacon and the Honeybee 
algorithms were still finding more food towards the end of the experiment. This can be explained 
by the dispersion module present in the Puller algorithm. After enough time steps, the robots will 
have dispersed far enough from each other that the net force they experience is zero. In this 
case, the robots would not be able to explore further areas. While the stretching behavior does 
break this condition, it may not be happening consistently and thus the Puller algorithm slows 
down rapidly. A higher level algorithm that decides which of these to use may then decide to 
execute the Puller algorithm for a shorter duration than the other two algorithms. This would 
allow for quick retrieval of food, while also maintaining a steady rate of food collection. 
  

47 



 

6. Conclusions and Recommendations for Future Work 
 

In general, the foraging algorithms that comprise the finalized library largely meet the 
initial goals set for this project. At a basic level, each of the algorithms works as intended, and 
completes the same basic task in a different way. Many of the smaller sub-behaviors are shared 
and reused between algorithms, and many of these self-contained, interoperable modules that 
can be used on their own. These design choices allow future users considerable freedom in 
how they use this library. Not only is it possible to use the foraging algorithms as they are 
described in this paper, but future developers could easily construct their own novel behaviors 
by reusing the myriad of modules and components included in this library. It is also possible to 
create new modules that improve upon the ones created in this project, and then simply replace 
them into the foraging algorithms to create a better result.  
 
6.1 Suggestions for Future Work  

While the library in its current form provides modular, reusable base upon which users 
can build their own projects, there are certainly areas that could be improved or extended. For 
example, further testing can be done on the algorithms under different environment conditions. 
Our environments were static and always assumed a single nest in the same layout as shown in 
Figure 2, where the food area is north of the nest area. It would be useful to adapt these 
foraging algorithms to other experimental setups for the purposes of making them more robust. 
Robot could be distributed in other methods than the current one of distributing them in a line, 
which could provide a different perspective on the performance of each of the algorithms. 
Further testing in environments with multiple nests would provide a deeper evaluation for the 
performance of each of the algorithms. Creating and testing environments where the nest is 
centrally positioned-- as opposed to near the edge of the environment-- would be likewise useful 
in characterizing the overall performance of foraging algorithms.  

The contents of this library could also be easily extended to other behaviors beyond 
foraging as well. Although foraging is a common, generic swarm behavior with many 
applications, it is far from the only important problem in the literature. The construction problem, 
where robots gather resources that they then assemble into structures and other arrangements, 
is a natural extension of the foraging problem. A construction-related extension would thus be a 
sensible next step for future extensions to the library. 

Conducting a more rigorous reusability evaluation would also help to strengthen the 
overall utility of this project. The results of this project included a limited analysis of the degree 
to which modules were reused between algorithms, but it would also be a useful exercise to 
construct an entirely new algorithm or behavior from the modules that already exist. This would 
be a much more emphatic demonstration that the components in this library are, in fact, 
reusable. 

At a higher level, it would also be interesting to create a higher level algorithm that 
switches between foraging behaviors according to environmental conditions. The results of the 
three algorithms included in this library suggest that each algorithm seems to perform better 
relative to other algorithms depending on the distance of food from the nest. It is also possible, 
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for example, that one algorithm performs better in food-sparse environments while another 
excels in food-dense ones. Creating a higher-level switching algorithm would allow for the 
creation of an even more effective foraging behavior that can dynamically adjust to its 
environment. This would in turn provide more utility and flexibility to future users of the library. 

It is worth noting that all of the results gathered in this project came from simulations 
rather than experiments on physical robots. As future users might seek to perform foraging 
within a physical environment,  it would be very useful to demonstrate these foraging algorithms 
on actual robots as a proof-of-concept. All of the Buzz code that runs on the simulated robots 
should theoretically perform the same on actual robots, but non-trivial work is required to 
recreate the simulated food and environment in reality.  
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