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Abstract

This thesis addresses important challenges in the areagafrsng and spatio-temporal data-
bases. It focuses on continuous querying of spatio-terhpak@ronments characterized by (1) a
large number of moving and stationary objects and quer®@sided for near real-time results; (3)
limited memory and cpu resources; and (4) different acguraguirements.

The first part of the thesis studies the problem of perforrearec accuracy tradeoff using
different location modelling techniques when processmgicuous spatio-temporal range queries
on moving objects. Two models for modeling the movement, elgmcontinuous and discrete
models are described. This thesis introduces an accuragyarison model to estimate the quality
of the answers returned by each of the models. Experimevasiaions show the effectiveness
of each model given certain characteristics of spatio-taalpgenvironment (e.g., varying speed,
location update frequency).

The second part of the thesis introduces SCUBAca&ble Quster Based Agorithm for eval-
uating a large set of continuous queries over spatio-teatjgiata streams. Unlike the commonly
used static grid indices, the key idea of SCUBA is to group imgpwbjects and queries based on
commondynamicproperties (e.g., speed, destination, and road netwosgkito® at run-time into
moving clusters. This results in improvement in perforneawbich facilitate scalability. SCUBA
exploits shared cluster-based execution consisting optvases. In phase I, the evaluation of a set
of spatio-temporal queries is abstracted as a spatial gtiwden moving clusters for cluster-based
filtering of true negatives. There after, in phase I, a fin@iged join process is executed for all
pairs identified as potentially joinable by a positive chrgbin match in phase I. If the clusters
don’t satisfy the join predicate, the objects and querias Itlelong to those clusters can be savely
discarded as being guaranteed to not join individuallyegitiThis provides processing cost sav-
ings.Another advantage of SCUBA is that moving clustevetiiload shedding is facilitated. A
moving cluster (or its subset, calleuicleu3 approximates the locations of its members. As a
consequence relatively accurate answers can be produicedsadely the abstracted cluster loca-

tion information in place of precise object-by-object ntegs, resulting in savings in memory and



improvement in processing time. A theoretical analysis@UBA is presented with respect to the
memory requirements, number of join comparisons and I/@scdsxperimental evaluations on
real datasets demonstrate that SCUBA achieves a subsiarmg@vement when executing con-
tinuous queries on highly dense moving objects. The expmgrisnare conducted in a real data
streaming system (CAPE) developed at WPI on real dataseerafed by the Network-Based

Moving Objects Generator.
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Chapter 1

Part I:

Introduction

1.1 Motivation

Every day we are witnessing continued improvements in es®tommunication and geo-positioning.
With the help of Global Positioning Systems (GPS), peoplteasepid congested freeways and find
more efficient routes to their destinations, saving milliai dollars in gasoline and tons of air
pollution. Travel aboard ships and aircraft is becomingsaf all weather conditions. Businesses
with large amounts of transportation costs are able to naamlagjr resources more efficiently,
reducing consumer costs.

These developments spawned research in the recent yehesfieltl of spatio-temporal data-
bases and real-time streaming databases [17]. Many neveatihs utilizing the spatio-temporal
aspects of data items begin to emerge. For example medwkiiés can track staff and monitor
patients for emergency response, and coordinate logistoase of an emergency (e.g., navigate to
the closest hospital or the nearest emergency departmeintl{gt has available capacity). Utilities
and commercial service providers can track their serviggneers and direct the closest service

crew to solve a problem. Emergency response centers capé&afbe navigate and evacuate faster



in case of disasters such as floods, earthquakes, tornadtersavist attacks. Benefits and uses
of location data are potentially boundless. For instandensific and educational applications can
be built based on spatio-temporal data. A geologist, formgxte, driving through a terrain can use
a hand-held device to view the area she sees with the naketh@ywith additional information
superimposed, which may include seismographic chartsgesiaf the terrain taken at another
season, notes made by other geologists about each landmtaekviewable terrain [82].

Combining the functionality of locator technologies, gibpositioning systems (GPSs), wire-
less and cellular telephone technologies, and informaéohnologies enables new environments
where virtually all objects of interest can determine thedations. These technologies have the
potential to improve the quality of life by adding locatiamareness to virtually all objects of
interest such as humans, cars, laptops, eyeglasses, daskgps, pets, wild animals, bicycles,
and buildings. Figure 1.1 gives some real-world examplespafio-temporal applications. These
include location-aware services, traffic monitoring, asseking, personal safety, etc.

Unlike traditional databases, spatio-temporal databtgesally deal with large number of
objects that change their positions in space with time. T&sa@ption is that eventually every
object or a person would have a capability (technology-waise business-wise) of reporting its
location to some central server, and applications can Wd btiiizing this data.

Another distinguishing characteristics for such envirents is that queries themselves can
move. Thus the system needs to consider both the positiotiteeainoving objects as well as
queries [62]. This calls for new real-time spatio-tempayaéry processing algorithms that deal
with large numbers of moving objects and large numbers ofigoous spatio-temporal queries

where near-real time response is a necessity.

A key point in spatio-temporal query processing is that ashayl of the query response may
result in an obsolete answer. For example, consider a gnatrasks about the moving objects that
lie in a certain region. If the query answer is delayed, th@nam may be outdated where objects
are continuously changing their locations.

Secondly, spatio-temporal databases need to support avarigey of continuous spatio-temporal
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Figure 1.1: Spatio-temporal applications

gueries. For example, a continuous spatio-temporal rangeyagnay have various forms depend-
ing on the mutability of objects and queries (i.e., statigrgueries on moving objects, moving
gueries on stationary objects and moving queries on mowgrts). In addition, a query may ask

about the past, present, or the future.

1.2 Accuracy and Performance Tradeoff

In location-aware environments real-time or near reaktimsponse is crucial, as delaying the
guery results may make them obsolete and thus useless bynnthe system sends the response.
However, producing fast results may come at a price of acgurslore accuracy requires more
processing power, more computation and more memory reseutlith an extremely large num-
ber of location updates arriving from objects and queriasiata streams and with typically limited
system resources (e.g., memory) producing real-time aisgpvesents a problem of an accuracy-
performance tradeoff.

Applications have very diverse requirements on locatiasddl services. For some a fast re-



sponse time is essential even at the cost of some loss ofeaggcwhile others require the highest
accuracy even if the delivery of such accurate results cant loss of real-time response.

An example, where lower accuracy is acceptable is celldarganies continuously retrieving
all cellular users entering and leaving the regions sedigetheir towers. If the density of cellular
users at any particular area significantly increases, theyactomatically increase the bandwidth
and thus provide a better service. In this case the accusaayt iof such a big concern. Even if the
count of the number of users is approximate, it would notcaffiee overall utility of the results.

Other applications demand the highest accuracy possikle with limited system resources.
In an emergency case scenario, such as, a gas spill, for éxaome may want to know which
people (and for how long) have been inside the allegedlyacoimated area. Police, fire-fighters,
and paramedics, the so-called first responders, would tgtontaminate victims and treat them
with antidotes. They would establish a hot zone where coimiaion is highest. In the case of
fast-acting nerve agents, antidotes need to be given wathiaf hour of the attack to be effective,
so accuracy plays a key role. Knowing the locations and tinegiof when and for how long
people were inside the affected region would be criticatovigling early detection and appropriate
treatment because of their exposure to toxic chemicals ddm be very critical as many would be
at risk of developing leukemia, immune dysfunction, aneamibung cancer - the diseases that can
take years to diagnose, but once discovered at a later shtageedatal.

The examples above illustrate that some applications esigdhgetting the results as quickly
as possible even with some loss in accuracy, while othefgempaecuracy at the cost of the per-
formance. This performance-accuracy tradeoff questidis é@ the evaluation of the common
approaches in location modelling in spatio-temporal atgors and determine which model would
be more appropriate than the other for any spatio-tempaoeygsystem under certain conditions.

A number of works have been proposed for efficient evaluaifazontinuous spatio-temporal
gueries. Most of them focus on ways to reduce time and menmmrgwmnption, improve perfor-
mance and increase scalability, by studying, for examplgexing techniques [35, 66, 65, 77],

shared execution paradigm [62, 57, 56, 84], variationsgdrhms [71, 70, 74, 60]. These exist-



ing solutions, however, tend to forego the choice of locatimdelling, seemingly randomly make
a choice, often without justifying its affect on accuracygerformance when evaluating spatio-
temporal queries. This thesis addresses this shortconyirsguiolying the performance-accuracy
tradeoff question using the common approaches for locatiodeling in spatio-temporal algo-

rithms. In this thesis, | investigate how the key factorgshsas location update probability (or
in other words, frequency of updates) and speed of objectgjaaries affect performance, accu-
racy or both when using one model or the other. | use theserfat characterize the tradeoff
between performance and accuracy. This then serves asdiomdo guide the selection when
one model would be more appropriate than the other for thige$future spatio-temporal query

system. This could even be utilized for dynamically adapamong different choices of location
modelling behavior inside a spatio-temporal query engiAesystem could dynamically switch

between the two models to maximize the accuracy and minithizeost of execution.

1.3 Algorithms for Processing Continuous Queries on Moving
Objects

Many recent research works try to address this problem aiefii evaluation of continuous spatio-
temporal queries. Some focus on indexing techniques [35/ H6other on shared execution par-
adigms [62, 57, 84], or variations of algorithms [71, 60]. Ajor shortcoming of these existing
solutions, however, is that most of them still process antenadize every location update indi-
vidually. Even in [57, 84] where authors explshared executioparadigm, when performing a
join, each moving object and moving query location updateraxessed individually. With an
extremely large number of objects and queries, many cosgasimust be made, consequently
increasing the processing time tremendeously. In thismplgm®pose to exploit motion clustering
as means to compress data and thus improve performancetibufza, | explore the idea of orga-
nizing data in such a way as to minimize memory requiremerttsowt any or only very little loss

of information. Moreover, the execution is orchestrateduoh a way as to reduce the number of



unnecessary spatial join executions between objects agribgu

In many applications moving objects are naturally in groupsther words in clusters, includ-
ing traffic jams, animal and bird migrations, groups of cteldon a trip or people evacuating from
danger zones (e.g., fire, hurricanes). These moving olpéieis have some common properties,
that makes clustering suitable. Clustering analysis, Wigioups similar data to reveal overall
distribution patterns and interesting correlations iredats, is useful in a number of applications,
including data compression, image processing, and pateagnition [58, 89].

In [89] Zhang et. al. exploitedhicro-clusteringi.e., grouping data that are so close to each
other that they can be treated as one unit. In [54] Li et. akereded the concept tmoving micro-
clusters groups of objects that are not only close to each other atramiutime, but also likely to
move together for a while. In this thesis, | utilize the cqptaaf moving micro-clustefsas a way to
abstract the data and optimize the execution of spatio-@eahgueries. This serves as the means
to improve the performance and achieve scalability whercukeg continuous spatio-temporal

gueries.

1.4 Clustering Algorithm for Moving Objects

| propose thé&calable Guster-Based Agorithm (SCUBA) for evaluating continuous spatio-temporal
gueries on moving objects. SCUBA exploitshared cluster-based executiparadigm, where
moving objects and queries are grouped together into ckubsed on common spatio-temporal
attributes. Then execution of queries is abstractedjaméetweerclusters angoin-within clus-
ters. Injoin-betweentwo clusters are tested for overlap (i.e., if they intetseith each other).

In join-within, objects and queries inside clusters are joined with eaoéroBy using clusters,
we achieve data compression (i.e., organizing data in swedyaas to reduce the total amount of
data) and thus savings in memory consumption. This makesvéilaation of continuous queries

more efficient. The individual positions of cluster membames represented in one of the following

1| use the ternmoving clustersn this paper



ways: (1) The positions of all cluster members are mainthretative to the centroid. This can be
described atosslesslata compression; (2) Individual positions are ignoredl, e cluster itself

is used to approximate locations of cluster members; (JtRelpositions are maintained for only
a subset (e.g., the furthest from the centroid) of the ctustembers. The rest of the members
are abstracted into a nested (inside the moving clustentsire callechucleus and their relative
positions are not preserved. Both moving clusters and nsefee as data compression structures,
which approximate positions of their members in a compathfo

SCUBA introduces a general framework for processing latgalrers of simultaneous spatio-
temporal queries. Similar to [57, 84], SCUBA is applicabdeall mutability combinations of
objects and queries: (1) Stationary queries issued on rgahiects. (2) Moving queries issued
on stationary objects. (3) Moving queries issued on movingas. When moving clusters are
formed, they can be treated just as regular moving objectsus The existing algorithms and
indexing techniques can be easily reused by extending thenoving clusters.

SCUBA employs a shared-cluster based execution where mahrsters (containing mov-
ing objects and queries) are periodically (evérytime units) joined with each other. Since the
processing is first done at an abstract level (at the levelafing clusters), if the clusters don't
satisfy a join condition (i.e., don’t overlap), the objeetsd queries belonging to these clusters
don’t need to be joined individually. Of course, maintagiclusters, which includes forming,
dissolving, and expanding, comes with a cost. But our erpamtal evaluations demonstrate it
is much cheaper than keeping the complete information abdiidual locations of objects and
gueries and processing them individually.

For simplicity, | present SCUBA in the context of continu@patio-temporal range queries.
However, SCUBA is applicable to other types of spatio-terapqueries, includindginn queries,

trajectory and aggregate queries.



1.5 Contributions

This thesis contributes to the advancement of spatio-teahpaery processing in streaming data-

bases in the following ways:

e | use the concept of moving clusters to abstract moving e&jaad queries’ based on com-

mon spatio-temporal attributes.

e | propose SCUBA - a scalable cluster based algorithm foruatalg a large set of continuous

gueries over spatio-temporal data streams.

e | utilize the shared cluster-based execution as means ievachcalability for continuous

spatio-temporal queries on moving objects.

e | present an analytical evaluation of SCUBA in terms of menrequirements, number of

join comparisons and I/O cost.

e | implement SCUBA, discrete and continuous location madgllalgorithms within the

stream processing system CAPE [64].

e | provide experimental evidence that SCUBA improves thdguerance when evaluating
spatio-temporal queries on real data generated by Net®aged Moving Objects Generator

[10] in the city of Worcester, USA.

¢ | provide a tradeoff analysis of discrete and continuousiion modelling algorithms in
terms of their overall performance and accuracy. This tleeves as foundation to guide the
selection when one model would be more appropriate thantties tor any spatio-temporal

query system.

e | present an accuracy model for comparing discrete andraomtis location modelling query
results, which makes it possible to compute accuracy fogretise very different types of

query answers.



¢ | have conducted a comprehensive set of experiments asgéissiperformance vs. accuracy
tradeoff of the two alternate location modelling strategagain based on real data generated

by Network-Based Moving Objects Generator in the city of @éster, USA.

1.6 Organization of the Thesis

This thesis is divided into four parts, which are compriseskven chapters as well as an appendix.

Part | :
e Chapter 1contains this introduction.

e Chapter 2contains an overview of past achievements and related woskatio-temporal

guery processing, as well as clustering analysis.

Part Il :

e Chapter 3provides general scalable architecture of the spatio-teahpperator inside CAPE
exploiting shared, grid-based execution and implemerttiegwo alternate location mod-
elling techniques, discrete and continuous. It also castaidiscussion of the pros and cons
of the discrete and continuous models and describes thplementation inside CAPE in

detail.

e Chapter 4describes our method for measuring accuracy between thietisand continuous

models. In addition, several scenarios are presented tiidhestrate the model in use.

e Chapter 5contains our experimental evaluations and tradeoff arsabfsdiscrete and con-

tinuous algorithms in terms of their overall performancd ancuracy.

Part Il :

e Chapter 6discusses the clustering algorithms, and my preferreccehaing set of criteria

supported by literature.



e Chapter 7introduces a scalable cluster-based algorithm SCUBA amthots theoretical

analysis of SCUBA in terms of memory requirements, join @t I/O cost.

e Chapter 8rovides experimental evaluations of SCUBA and the commhssabout efficiency

of the algorithm.

Part IV :

e Chapter 9concludes and describes possible extensions of this ciseark.

e Appendix Acontains a UML diagram portraying the classes that the implgation consists

of. It also contains lists of the functions that these clagsmtain.
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Chapter 2

Related Work

In this chapter | will briefly discuss some areas of relateaknio streaming databases, spatio-
temporal databases and moving objects databases. Thedrelark serves as a starting point for

creating our own framework for evaluating continuous sp&imporal queries on moving objects.

2.1 Data Stream Management Systems

First, | am going to discuss the related work in streamingloates, since the continuous spatio-
temporal query processing is a part of the streaming dataepsing paradigm. The key difference
between a classical Database Management System (DBMS)Bath&tream Management Sys-
tem (DSMS) is thaedata stream modelinstead of processing a query over a persistent set of data
that is stored in advance on disk, queries are performed MESover a data stream. In a data
stream, data elements arrive on-line and stay only for aduaniime period in memory. Conse-
guently, the DSMS has to handle the data elements beforastaout of memory. The order in
which the data elements arrive cannot be controlled by teery. Once a data element has been
processed it cannot be retrieved again without storing plieily. The size of data streams is
potentially unbounded. In DSMSspntinuous querieare evaluated over continuously arriving
data elements. Since continuous streams may not end, edéta results of continuous queries

are often generated over a predefined window and then ettbrexds updated, or used to generate
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a new data stream of intermediate results [3]. Window tegines are especially important for ag-
gregation and join queries. Examples for DSMSs include SARRE3], GigaScope [19], Aurora
[1], NiagaraCQ [16], CAPE [64], Nile [37] and TelegraphCQ]1

d 0 &

) )
\ | | /
AR v v

——————— Spatio-Temporal
————— Query Engine

City Sensors

———

v oo

= — = Input Data Streams
— Output Data Streams

Figure 2.1: Spatio-temporal query engine

2.2 Continuous Spatio-Temporal Queries

The growing importance of moving object environments isectéld in the recent body of work
addressing issues such as indexing, uncertainty managesnemodels for spatio-temporal data.
Different indexing techniques have been proposed for ngpghjects in the literature e.qg., [7, 49]
index the histories, or trajectories, of the positions of/img objects, while [66] indexes the current
and anticipated future positions of moving objects. In [48}jectories are mapped to points in
a higher-dimensional space that are then indexed. In [@fgcts are indexed with the index
structure parameterized with velocity vectors so that tigiex can be used at future times. This is
achieved by assuming that an object will remain at the samedsand in the same direction until
an update is received from the object. A similar assumptimuathe moving objects’ updates is
made in this thesis.

Uncertainty in the positions of the objects is dealt with byirolling the update frequency [61,

81], where objects report their positions and velocity gectvhen their actual positions deviate
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from what they have previously reported by some threshadgel et. al. [77] use quadtrees for
indexing moving objects. Kollios et. al. [48] map moving etis and their velocities into points
and store the points in KD-tree. Pfoser et. al. [61] indexghst trajectories of moving objects that
are presented as connected line segments. The problemvedramg a range query for a collection
of moving objects is addressed in [2] through the use of imdpgchemes using external range
trees. [80, 82] consider the management of collections afimggpoints in the plane by describing
the current and expected positions of each point in the éutihey address how often to update
the locations of the points to balance the costs of updataastgmprecision in the point positions.
Spatio-temporal database models to support moving obuasio-temporal types and supporting

operations have been developed in [24, 32].

2.2.1 Indexing Moving Objects/Queries

Many of the existing spatio-temporal index structures [@2h to modify the traditional R-tree
[33] to support the highly dynamic environments of locatemare servers. In particular, two
main approaches are investigated: (1) Indexing the futajedtories such that the existing tree
would last longer before an update is needed. Examples ®tctiegory are the TPR-tree [66],
REXP -tree [65], and the TPR*- tree [73]). (2) Modifying thelétion and insertion algorithms for
the original R-tree to support frequent updates. Examglds®category include the Lazy update
R-tree [50] and the Frequently-updated Rtree [53]. Howexaan with the proposed modifications
of the R-tree structures, highly dynamic environments aegithe performance of the R-tree and
result in a bad performance. In our system, we thus avoidyuRiree-like structures. Instead, |
opt to make use of a grid-like index structure [57] that is@erto update and retrieve. Moreover,
fixed grids are space-dependent, thus there is no need towously change the index structure
with the continuous insertion and deletion. Several spatioporal systems [62, 57, 65] utilize

grid index for indexing moving objects.
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2.2.2 Scalability

Most of spatio-temporal queries are continuous in natuderaquire continuous evaluation as the
guery result becomes invalid with the change of informafi&8]. One way to handle continuous
queries is to abstract them into a series of snapshot queteesited at regular time intervals, i.e.,
periodically. Existing algorithms for continuous spat@wnporal queries aim to optimize the time
interval between the periodic executions. Three diffesgproaches are investigated: (1) The
validity of the results [88, 90]. With each query answer, sieever returns a valid time [90] or a
valid region [88] of the answer. Once the valid time is exgice the client goes out of the valid
region, the client re-submits the continuous query forvaheation. (2) Caching the results. The
main idea is to cache the previous result either on the ctiele [68] or in the server side [52].
Previously cached results are used to optimize the searthdmew results of k-nearest-neighbor
gueries [68] and range queries [52]. (3) Pre-computingdbalt [52, 72]. If the trajectory of query
movement is known in advance, then by using computatiorahgéry for stationary objects [72]
or velocity information for moving objects [52], we can idéy which objects will be nearest-

neighbors [72] to or within a range [52] from the trajectofitiee query.

2.2.3 Variety of Queries

Most of the existing query processing techniques focus dwirgpspecial cases of one type or
category of spatio-temporal queries. For example, [68,882,90] are valid only for moving
gueries on stationary objects. Whereas, [11, 26, 34, 63}alr@ only for stationary range queries
on moving objects. Other works focus on aggregate querte6B 70] or k-NN queries [44, 68].
Trying to support a wide variety of continuous spatio-temapqueries in a location-aware server
presents a challenge as it forces implementation of a yaofespecific algorithms with different
access structures. We try to avoid this by designing a geaed flexible structure of a spatio-
temporal operator that allows for easy extension and iategr of different query types. Even
though this thesis is presented in the context of spatigzteal range queries, the existing work

was designed to be as generic as possible for easy intagadti@rious query types.
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2.2.4 Large Number of Queries

Many of the existing spatio-temporal algorithms focus oaleating only one spatio-temporal
guery. In a typical location-aware server, there is a hugelrar of concurrently executing contin-
uous spatio-temporal queries. Handling each query as avidaodl entity dramatically degrades
the performance of the location-aware server and in somatgn can become prohibitive. There
is a lot of research in sharing the execution of continuous gueeries (e.g., see [16]) and continu-
ous streaming queries (e.g., see [13, 14, 36]).

Optimization techniques for evaluating a set of continuspetio-temporal queries are recently
addressed for centralized [62] and distributed envirortsgr, 26]. The main idea of [11, 26] is
to ship part of the query processing down to the moving objeghile the server mainly acts as
a mediator among moving objects. In centralized envirorimehe Q-index [62] is presented as
an R-tree-like [33] index structure to index the queriesaad of objects. However, the Q-index is
limited as it is applicable only for stationary queries. NMayqueries would spoil the Q-index and
hence dramatically degrade its performance.

Another popular method for supporting large number of qgeetihat has been exploited is the
idea ofshared executianThe shared execution has been used in NiagaraCQ [16] fogueties,
in PSoup [14] for streaming queries, in SINA [57] for contiug spatio-temporal range queries,
and in SEA-CNN [84] for continuous spatio-temporal KNN dasr

One major shortcoming of these existing solutions, howesdnat many of them still process
and materialize every location update individually. Whenfgrming a join, each moving object
and moving query location update is processed individudMith an extremely large number of
objects and queries, many comparisons must be made, camigacreasing the processing time

tremendously.

2.2.5 Clustering Analysis

Clustering is a well-studied area in mathematics and coen@aience. It is related to many differ-

ent areas including classification, databases, data-gjispatial range-searching, etc. As such, it
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has received a lot of attention. Some of the works include32147, 63, 20, 86]. For an elaborate
survey on clustering, readers are referred to [46]. Modtefirevious work focuses on using clus-
tering to analyze static or dynamic data and find interestinggs about it. Instead, | now propose
to utilize clustering idea as a means to abstract data (tblemduster-based load shedding) and
achieve scalable processing (minimize processing timedofinuous queries on moving objects.
To the best of our knowledge, this is the first work to use elusg for internal optimization of

continuous query processing on streaming spatio-tempatal

Clustering Data Streams

The commonly used clustering algorithm for offline (or noeremental) clusterind-meansis
described in [21, 63] and introduced in more detail in ChapteThe objective of the algorithm
is to minimize the average distance from data points to ttiegest cluster centers. An alternative
interpretation of K-median clustering is that we would ltkecover the points bk balls, where
the radius of the largest ball is minimized [38].

Given a sequence of points, the objective of [28] Guha eis&h maintain a consistently good
clustering of the sequence observed so far, using a small@inod memory and time. They give
constant-factor approximation algorithms for the K-mediaoblem in the data stream model in a
single pass. They study the performance ai\ade-and-conquealgorithm, calledSmall-Space
that divides data into pieces, and then again clusters thierseobtained (where each center is
weighted by the number of points closer to it than to any otleetter). The authors also pro-
pose another algorithnB(aller-Spacethat is similar to the piece-meal approach except that in-
stead of re-clustering only once, it repeatedly re-clgstegighted centers [28]. The advantage of
Small(er)-Space is that we sacrifice somewhat the qualityeotlustering approximation to obtain
an algorithm that uses less memory. Their model and and siedigve similarities to incremen-
tal clustering and online models. However, the approachlitiebit different. They maintain a
“forest” of assignments. They complete thisktrees, and all the nodes in a tree are assigned to

the median denoted by the root of the tree. The disadvanfapealgorithm is similar to that of
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K-means, namely the number of clusters must be known in advéthe number of clusters is the
input parameter to the K-means algorithm).

Competitive Learning Clusterirgnd the basiteader-Follower Clusteringre two algorithms
for online (i.e., incremental) clustering presented in][2Ibhn A. Hartigan had already proposed
the latter in an early publication on clustering algorithj88]. One of the disadvantages of the
Leader-Follower Clustering algorithm is that it lacks thH@lity to keep the number of clusters
constant, so a large number of clusters might be create@r(pally as many as there are data
points). But this disadvantage of the Leader-Follower algm could actually be easily addressed
by merging the clusters, if appropriate. Competitive LaagrClustering can be transformed in
a single-scan algorithm to save the clustering time. In asidform, however, it depends on a
convergence criterion that makes several iterations dweidata necessary. Other sources also
describe these two algorithms, but name them differentty[5I] they are named aSrowing
K-means ClusteringndSequential Leader Clusterifhg

In [43], the author uses a clustering algorithm that prezpsses data points that arrive each
second. Based on the clustering model, a Markov Model imézhand finally used for a prediction
task. They used the k-means algorithm to pre-process datafidal result is an algorithm that is
capable of clustering streaming data and learn a Markov Maitle one scan over the data set. It
is called theExtended Leader-Followaalgorithm ELF algorithm). Again, because the K-means
algorithm requires the number of clusters to be known in adeaand with each data point update
the clustering might change, this approach doesn’t work feelvery dynamic data points that
represent the location updates of moving objects and cierie

A list of considerations and criterions when dealing witbremental data stream algorithms
is given in [20, 86, 6]. Incremental algorithms should ongewa small and constant amount of
memory. Consequently, a compact representation of themumodel is accessible at all time.
The running time and hence the computational complexitykhioe such that new incoming data

points can be processed at their arrival. The algorithmIshzeicapable of distinguishing between

n this thesis, | refer to these algorithms@smpetitive Learninglustering and_eader-Followerclustering.
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outliers, emerging patterns and noise.

Barbara in [6] presents an overview of the clustering athors BIRCH [89], COBWEB[23],
STREAM28, 59], andrractal Clustering5], which all could be used for an incremental clustering
of data streams. He describes the advantages and shorgzafithese algorithms with respect to
compactness, functionality and outliers.

BIRCH clusters data points using a CF-tree - a height-baldmice (analogous to a B-Tree).
One of the drawbacks of the BIRCH method is that after some tirdraws into secondary mem-
ory. And even though it tries to minimize the number of 1/Os ¢tustering a new point, it still
takes a considerable amount of time to do so [6]. The praogssibetter done in batches to try to
amortize the overall cost.

COBWEB [23] implements hierarchical clustering via a cidsation tree. The classification
tree is not height-balanced which often causes the spaddi(ag) complexity to degrade dramat-
ically. This makes COBWEB an unattractive choice for dateasns clustering.

STREAM [28, 59] aims to provide guaranteed performance byimmzing the sum of the
square of the distances of points to the centroids (simdaK4means). STREAM processes
data streams in batches of points by first clustering thetpamneach batch and then keeping the
weighted cluster centers (i.e., the centroids weightechbynumber of points attracted to them).
Then STREAM clusters the weighted centers to get the ovetadtering model. If the batches are
of equal size, the first clustering iteration has a consteostgssing time. But for the second itera-
tion of clustering the time can increase without bounds agerbatches of data arrive. Moreover,
it is recognized by its authors [59] that it takes longer tKameans to find a bounded solution.

Fractal Clustering (FC) [5] groups points that show setfikrity, by placing them in the
cluster in which they have the minimal fractal impact. FC kgwith several layers of grids (the
cardinality of each dimension is increased 4 times with ezt layer), and even though only
occupied cells are kept in memory, the method suffers fragh memory usage [8].

Gaber et. al. in [25] have proposed algorithms for incremlecitistering, a simple so-called

one-lookclustering algorithm that takes into account the availabs®urces of a machine. In [15]
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Chaudhuri presents various considerations for clusteaiggrithms, such as which actions are

possible or necessary when new data points are added tostimgxnodel.

Clustering Motion

The difficulty in maintaining and computing clusters on nmaybbjects is the underlying kinetic
nature of the environment [29]. Once the clusters are coeapat a certain time, and the time
progresses, the clustering may change and deterioratenTaim a “high quality” clustering (i.e.,
the cluster sizes are small compared to the size of the olptiostering) one needs to maintain the
clustering by either reclustering the points every oncevilnée, or alternatively, move points from
one cluster to another. The number of such “maintenanceiteveay dominate the overall running
time of the algorithm, and the number of such events can rereely large, thus hampering the
processing time.

In [89] Zhang et. al. describewhicro-clusteringi.e., grouping data that are so close to each
other that they can be treated as one unit. In [54] Li et. dkereded the concept tmoving micro-
clusters groups of objects that are not only close to each other atramiutime, but also likely to
move together for a while.

In [38], authors analytically study motion clustering. Vtaefine the clustering motion prob-
lem as following: LetP[t] be a set of moving points iR?, with a degree of motiom; namely
for a pointp[t] € P[t], we havep(t)=(p:(t),...pa(t)), Wwherep;(t) is a polynomial of degreg, and
t is the time parameter, fgr = 1, ..., d. The authors in [38] demonstrate that if one is willing to
compromise on the number of clusters used, then clusteaogrbes considerably easier (compu-
tationally) and it can be done quickly. Furthermore, we cade off between the quality of the
clustering and the number of clusters used. Hence, one capute quickly a clustering with a
large number of clusters, and cluster those clusters in@nsestage, so to get a more reasonable
k-clustering. The authors also propose an algorithm fokipgca “small” subset of the moving
points by computing a fine clustering, and picking a reprega@ from each cluster. The size of

the subset, known asreset is independent oh (number of data points), and it represents the
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k-clustering of the moving points at any time. Namely, iast@f clustering the points, only the
representative points get clustered. This implies thataareconstruct a data structure that can

report the approximate clustering at any time.
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Chapter 3

Part Il
Accuracy vs. Performance Tradeoff in

Location-Based Services

3.1 Spatio-Temporal Operator

Query plans in database systems are composed of operakach, perform the actual processing,
such as my spatio-temporal operator. In this chapter, ludsthe design of my spatio-temporal
operator inside the CAPE data streaming system. The opertdipes a grid index and implements
discrete and continuous location modelling techniqueggirpbby first introducing the continuous
and discrete location models, and then proceed with theatqrastesign that implements these two

models.

3.2 Modelling Motion

People move through space. Different types of movementrpsaah as the movement of a person

who walks, runs, or rides a bus, a taxi that travels throutyhar an oil spill spreading on the water.
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Although these movements occur continuously in realitgpbe conceptualize certain movements
as being discrete, while others are conceptualized as loeimtinuous [85, 42]. Each model has

its own advantages and disadvantages as | am going to disexiss

3.2.1 Discrete Model

Many existing location-based services [57, 84] model tluation as a discrete position in time.
For each moving object, a position point of the fonmy, z, t) is generated periodically, indicating
that the object is at locatior, y, z at timet. This point-location management [79] has several
advantages. The computations involving points are redtisimple and thus fast. This allows for
a speedy processing of a extremely large number of locapdates. This facilitates scalability in
terms of the number of concurrent continuous spatio-teaipreries and the number of moving
objects sending their updates to the query system. Sinegidocupdates are processed as they
come and retained in the system for a relatively short pesidtme, on average the point-based
systems require less time than for example the trajectasgth systems. So for applications that
require very fast results, a discrete model suits pretty. wel

However, at the same time the discrete model has seveiabtniteaknesses. First, the method
does not enable interpolation or extrapolation. For exangdsume that a gas company dispatcher
needs to knowWhich service crew was within ten miles from the location bbase gas leakage
that occurred at 8PNl This information can only be retrieved for moving objetiat happened
to send a location update at 8PM. If the system didn’t recaipesition with an 8PM timestamp,
then the whereabouts of the object at that time are unknowius The discrete system cannot
answer such a query. The problem is even more severe if &figtcation is requested (e.§\Vhich
ambulance will be the closest to the scene of the disastdramext 30 minut&y This query
cannot be answered by the discrete location method.

Another problem with the discrete point-location modehiagttit has a higher likelihood of giv-
ing incorrect results. Consider a server periodically exeg queries on a set of discrete location

updates [57]. If a moving object location upda€ ( pos, t;) is received first and immediately
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after it a moving query location updat®, pos, t;), it might calculate that an object is inside
the query and return a positive result. Potentially thishihlge an incorrect result, if at tinte the
object, in fact, has moved outside of the boundaries of tleey@,, but we have not yet received
its new location update.

The third problem that might arise when utilizing the disermethod is that it can lead to a
precision/resource trade-off. An accurate picture of tleeige location of moving objects would
require frequent location updates. This consumes precesgirces such as bandwidth, process-
ing power and memory resources [67], since more frequerdtepdvould need to be processed to
get an accurate picture of the movement. Moreover, the sexwald have to send the results more
frequently. With an extremely large number of objects aners, this may create a performance
bottleneck.

Lastly, a point-based discrete model is incapable in arisgeueries related to time intervals,
such as Give me all airplanes that entered the turbulent region & Bacific and have been inside
it for more than 30 minutés

In general, discrete systems focus on distinct positiorsbggcts at a time instance, and thus
are limited in answering queries related to time duratiofgpically, they process data without
extracting any additional information (e.g., speed, dicgt; acceleration, distance travelled, etc.).
This additional information often might be helpful in preseng dynamic location data more effi-
ciently and in maximizing accuracy which is what continuousdels of location tracking attempt

to exploit.

3.2.2 Continuous Model

A trajectory model is a more sophisticated model, which eslseveral of the problems that arise
in discrete location modelling. Beyond that it offers sondeifional benefits that | am going to
mention in this section. For simplicity, | assume lineajdctories. However, other trajectory
models can be used, such as curve-based [87], spline il&go[55], and motion functions [27].

We define a trajectory as a sequence of straight-line segnfent,, t;), ... ,X., Y,, t,) in a
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3-dimensional space. A linear trajectory means that whemhtject starts at a location having co-
ordinates Xy, y;) at timet,, it will move on a straight line at constant speed and wilcrebbcation
(%2, y2) at timety, and so on. This type of trajectory is an approximation ofe¢kpected motion
of the object in space and time. The object may not move ing$trdines at a constant speed.
However, given enough location points, the approximatiam loe accurate up to an arbitrary pre-
cision. This brings us to the accuracy-performance trddpmstion. The number of line segments
in the trajectory has an important implication on the parfance of the system. Specifically, the
performance increases and the accuracy decreases as therrafriine segments decreases.

Using trajectories we can compute the expected locatioheofrtoving object at a time This
technique enables both location interpolation and extedjom. We can compute the expected
location of the moving object at any point in time withouteadng an explicit update. In addition,
unlike the discrete approach, using trajectories we cawemngueries related to time intervals, and
compare the trajectories of moving objects and queries.

Another advantage is that one can associate an arbitragrtamtty threshold with the trajec-
tory and if arriving location updates are within that threlshfrom the trajectory, it can be assumed
that the trajectory is a good approximation. This agreen(at trajectory plus the uncertainty
threshold) between the moving object and the server soheeprioblem of the tradeoff between
resource/bandwidth consumption and accuracy [83]. Inrdjedtory model, if the moving object
does not deviate from its prescribed trajectory by more tharuncertainty threshold, we can dis-
card the incoming position updates. Thus we save on memagucoption and, to some degree,
in computation of the join. An additional bonus of the contas model is that the answers are
also represented as 3-D trajectories (i.e., indicating loogy an object satisfied a particular query).

This may limit the amount of data that needs to be sent andseatevork bandwidth.
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3.3 Preliminary

As a preliminary, | first describe the assumptions and i&giris in the system and the format of

location updates that we expect arriving via data streams.

3.3.1 Spatio-Temporal Data Streams

We assume that moving objects and moving queries send tiaitibn updates periodically to the
CAPE system. A location update from the client (moving ot)jexthe server has the format(D,
Pos {attry, attr,. . .attr,, }), whereOID is the object identifielosis the latest location of the object,
and{attr,. . .attr,,} are additional attributes describing the object (e.gicpatar, fire-fighter, deer,
etc.).

Once an object stops moving (e.g., an object reaches itdtsh or the device gets turned
off) it sends a disappear message to the server which irdithaat the object is no longer moving,

and will no longer send any location updates.

3.3.2 Assumptions and Restrictions

Below is the list of current assumptions and limitations:

e Both objects’ and queries’ location updates arrive via dét@ams.

All location updates (trajectories) fit in memory.

Objects and queries move in straight lines and at a congterts

All location updates always arrive in a strict sequentidieni(i.e., time stamps of the updates

are increasing).

Queries are answered based on the up-to-date knowledge.

We assume both objects and queries move continuously adéasksappear messages when

they get turned off.
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Figure 3.1: Architecture of spatio-temporal operator

e For the continuous model, the operator maintains the lastlbwation updates for each
object and query afteh evaluation interval expiration. This is used to predictri@vement

of the object/query for the next time interval, even if no ltpupdate is received.

e Grid cell sizes and count of the grid index are fixed and prterd@ined in advance.

3.4 Shared Execution Architecture Overview

Next | describe the main components of the motion operatbring shared execution similar
to [26, 35, 62, 57, 84], where spatio-temporal queries apggged together and the execution is

abstracted as a spatial join between moving objects andeguer
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3.4.1 General Design

The spatio-temporal operator has three componéddasa Collector Join ProcessgrandOutput
Preparer(Figure 3.1).

Data Collector (DC). The data sources are stream®Bd S transmitting location updates for
objects and queries respectively. The incoming tuples afferded up in the corresponding queues
0, and g. The Data Collector (Algorithm 1) periodically reads frohetqueues. It processes the
location updates and based on the entity type materialimss into Objects and Queries tables

correspondingly.

Algorithm 1 DataCollector()
1: loop
2:  Dequeue tuples from queue ¢V oving objects stream,)
while there are unprocessed objects’ tuples
for every object location update tupbado
Find object entry irDbjects TablaisingOID.
Increment count for number of location updatesdor
Update location information for objeot
end for
end while
10:  Dequeue tuples from queug GM oving queries stream)
... l[/Similar processing as moving objects
11: end loop

eoNIO AW

Join Processor (JP) OnceA time interval expires, the Join Processor (Algorithm 2)vatées
its submodule TableFlushe(TF). TF iterates over th@bjects Tableand grabs all objects’ updates
and flushes them into the shared grid index structure. Siypihe queries are flushed based on
their location updates fro@ueries Tablanto the grid. Then the Join Processor initiates a join
algorithm which iterates over each grid cell, performingia jwith all objects against all queries
that had been indexed into that particular grid cell. If tiregrsect, the join algorithm reports the
output to theResults Table

Output Preparer (OP). The Output Preparer (Algorithm 3) iterates over the Regaltle and
hashes each result pair by query id and objec@QiD, OID), to organize all answers related to one
pair into an output result structure. If desired, the oufpeparer can further sort the results by the

output timestamps to guarantee order. Finally, the outpagarer places the output tuples into the
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Algorithm 2 JoinProcessor()
1: Activate TableFlusher
2: TableFlusher Insert moving objects and moving queries locations intd gr
3:fori=0t0o MAX X _DIM do

4: for j=0to MAX_Y _DIM do
5: fort=0to MAX _T_DIM do
6: for every queryy in grid cell G, ; ; do
7: for every objecb in grid cell G ; ; do
8: R =DoJoin(g,0,G; j ¢) /ljoin moving queries with moving objects
9: Insert resultsk into Results Table
10: end for
11: end for
12: end for
13: end for
14: end for

15: Call OuputPreparef) //Initiate OutputPreparer component

output queue gof the operator.

Algorithm 3 OutputPreparer()
1: for every result entryR in Results Tablelo
2:  Hash each result pair by D,01D)

3: end for
4: for every result pair@1D,01D) do
5:  Sort results
6: if continuous location modellinthen
7: Interpolate results (construct continuous segments adisofete points)
8: Merge results (merge the segments by the common time stamps)
9: endif
10: Putresults into output queug q
11: end for

3.5 Data Structures

During the course of the execution, the operator maintdi@gdllowing data structures:

e Objects table Objects are organized within the in-memory table. The dt®atry has the
form of (OID, Pos {attry, attr, . . . attr,, }), whereOID is the object identifielPosis the latest
location of the object, an¢iattr, ... attr,} are additional attributes describing the object.

e Queries table Queries similar to objects are organized within the in-ragntable. The
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query entry has the form o€)ID, Pos Boundy, Boundy ,{attr;, attr. . . attr,, }). QID is the

guery identifier. If we assume rectangular regions, fhesis the latest location of the query
focal point. Bound; is the vertical distance anBlound;, the horizontal distance from the
focal point of the query to the edge of the quefwttr; ... attr, } are additional attributes

describing the query.

e Results table Results are temporarily stored in the in-memory Resulifeten the form of
(QID, OID, Intersec}. Intersectis an attribute describing the intersection between theabbj

and the query.

e In-memory grid. The memory-based NxMXT grid is divided into NxMXT grid ce{ivhere
N and M are spatial dimensions, and T is a temporal dimendidheogrid). Objects and
gueries are hashed based on their locations and the timedategto the grid cells. For
each grid cell the in-memory grid maintains a list@fDs andQIDs of objects and queries
respectively whose location updates were hashed into #iat Eor queries we create an

entry in each of the cells its region (for discrete) or volufioe continuous) overlaps with.

Objects Table Queries Table

\‘ /%9-{“_ /. :::::::IZ_‘::::::_;:—- .

Grid Index

Figure 3.2: Data structures used by regular motion operator

Choosing an appropriate index for continuously moving disjand moving queries was criti-

cal for evaluating queries on moving objects with near teaé response requirement. Traditional
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spatial index structures such as R-trees [33] are not apptedor indexing moving objects be-
cause the location changes of objects may cause splittingeaging of the nodes constantly or
even rebuilding the entire tree from time to time. The indexcure must provide optimal updat-
ing performance.

| chose an in-memory grid index, since in the highly dynammegi®nment, maintaining a
spatial index such as R-tree [33] on moving objects is nattpral (as mentioned in the Related
Work chapter). We expect the objects and the queries to érttyuupdate their positions. This
suggests that only memory based structures are suitabllefanoving objects and queries table.
We use grid cells to group moving objects because the grigttstre is relatively inexpensive to
maintain due to its static flat organization.

Observe also that the Objects and Queries tables keepdonagidates only for the duration of
the time intervalA. Once theA expires, all location updates received are flushed from thjec®s
and Queries tables respectively to the in-memory grid. rAfie results to queries are computed,
the operator can either store the last known trajectorigb@nObjects and Queries tables (to be
utilized in the next time interval) or clear out all the dataxercise both choices; the former in

continuous model of objects and queries, and the lattersicrelie point-based model.

3.6 Discrete and Continuous Modes of Execution

| now introduce algorithms for processing continuous sptgmporal queries by modelling ob-
jects and queries in discrete or continuous fashions,d@liscrete Scalable Point-Based Algo-
rithm (DSA andContinuous Scalable Trajectory-Based Algorit{f@EA respectively. The spatio-
temporal operator can use either of the two algorithms fadetilmg moving entities.

Both DSA and CSA exploit the shared execution paradigm,lamto [57, 84] and abstract
gueries’ execution by utilizing a grid-based spatial jogtvieeen moving objects and queries. DSA
describes moving objects and their locations as discreit@gcand the queries as rectangular

regions. CSA is more precise by describing the movement gctd via trajectories, and the
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movement of queries via trajectory volumes. In the case oADBe predicate for join is the
containment of a location point inside a rectangular regioncase of CSA it is an intersection
between a trajectory and a trajectory volume. We re-evaltieg queries everi time units by
computing the join between objects and queries. For DSA waras that we don’t know where
objects and queries are unless we get an explicit locatialatep For both DSA and CSA we
assume that location updates arrive in an ordered (by tieskidn. Therefore, we only join the
location updates for objects and queries that arrived dutie time intervalA. Also for DSA,

in order for an object to join the query, the timestamps fahdwave to match (i.e., if the object
was inside a rectangular moving region at a certain locatioe timestamps of both object and
guery have to be identical). For CSA, trajectories and ¢tajg volumes are constructed from
the location updates that arrived befakeexpired. Trajectories (and trajectory volumes) allow
us to abstract each moving entity location as a functionrogfi(t). Using trajectories we can
compute the location of the moving entity at any time durihg time interval. For CSA we
assume continuous movement. Even if no explicit locatiodatg has arrived, we assume the
object is moving according to its latest trajectory.

In CSA, the answer is not just whether a particular object g of the result set for a
particular query, but also the time of when it has occurred (Bor how long). The results in
CSA are polylines (functions of time) where the beginningha polyline is the entering event
(object entered query region) and the end is the leavingtfolrject left query region). This
allows us to improve the accuracy of the query results, sive&now not just that an object was
inside the query, but also the spatial location and the tihvehen it entered it, and left it. One of
the advantages of such an approach is that we can answeesjggnilar to Retrieve all objects

that entered region R and stayed there for at least 3 miriutes

3.6.1 Execution of DSA and CSA

The execution of DSA and CSA can be broken down into phasesA IS three phases: (1)

discrete position update, (2) joining, and (3) timelineg#w CSA has five phases: (1) the initial-
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ization, (2) trajectory update, (3) joining, (4) mergingdad) timeline phases. The initialization
phase is the first phase in CSA and has no corresponding éentiva DSA. It initializes the ex-
pected positions of all the objects and queries in the sysatdite beginning of each time interval
based on their last known trajectory. This is based on owmagson that all objects and queries
move continuously in time. The trajectory update phase iA Gfdates trajectories and trajectory
volumes for moving objects and queries. The equivalentitotihe DSA is the discrete position
update phase.

Both DSA and CSA have a joining phase, triggered euv&ryime units. First, the objects
and the queries are flushed into the in-memory grid indexnEhin is performed between the
points and the rectangular regions (in case of DSA) anddi@jg lines and the trajectory volumes
(in case of CSA). The result of the joining phase in DSA is adghoints with the following
format QID, OID, loc, ti.., tunswer), WhereQID and OID are the ids of the query and object,
respectively.loc, t,., t..swer describe the intersection between the object and the glecyis
a discrete location update of the objetgt, is the time of the location update, angl ... is the
time of query evaluation (since it might be delayed afterltdoation update arrival at timg,.).
The joining phase in CSA results in a set of mini-clipped hssuThe mini-clipped results are
segments of the original trajectory lines, indicating tlaetp of the trajectories intersecting with
a query trajectory volume. The sizes of the mini-clippediitssare constrained by the size of a
guery volume and the size of a grid cell.

After joining phase in CSA, the merging phase is triggeretie mini-clipped results from
the joining phase are merged BYD andQID and starting and end positions of the mini-clipped
results. There is no equivalent phase in the DSA for thisaliinafter merging is complete, the
timeline phase orders the merged results by the startingstamp to imitate the order of events
in time. The same idea is behind the timeline phase in the D&®re the results are ordered by
t,. timestamp. Ordered results are sent to the output streaif Hrere are no other operators to
process these tuples, then they are sent to the users expéairesults of the continuous queries.

Looking at the number and the functionality of the execusteges in algorithms, DSA re-
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quires less processing time than CSA.

3.7 Analytical Observations

Below | analyze requirements needed for evaluating coatiswjueries utilizing either discrete or

continuous models. | use parameters listed in Table 3.le@tfalysis.

Variable | Description

A Time interval between periodic query execution

Nop; Total number of objects in the system

Ngry Total number of queries in the system

= Size of object entry iDbjects table

Eqry Size of query entry iQueries table

Egrid Size of object/query entry i6'ridIndex

Car Average number of grid cells that a query overlaps with

Fobj Rate of arrival for moving objects’ updates

lyry Rate of arrival for moving queries’ updates

Tovjects | Average number of mini-segments for object trajectory myitime intervalA
Tqueries | Average number of mini-segments for query trajectory vauaring time intervalA
X; Position in the x-dimension

\ Position in the y-dimension

Table 3.1: Parameters used in analysis of regular gridebstsared execution of discrete and con-
tinuous location modelling techniques

| maintain three memory structures for both DSA and CSA, rgntee Objects table, the
Queries table, and the NXMxT in-memory grid. In additiore thcoming tuples from the data
streams are buffered up into Objects and Queries buffemdaf time interval expires. During

any time interval\, the memory size consumed by these structures is:

M = ObjectsQueue + QueriesQueue+ (3.1)
ObjectsTable + QueriesTable + GridIndex

For discrete model (DSA), memory requirements can be desttias following:
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Mpsa = A% 1oy ¥ Eopj + A % 1gpy ¥ Fgpyt
+ Nobs % Eopj 4+ Nyry % Egry+ (3.2)
+Nypy * Car * Egria
whereA *r,,;* Eqy,; andA *r,,, * E,,., are the objects’ and queries’ buffers respectivaly,* £,
andN,,,* £, denote memory consumption by Objects and Queries tabldsyan*Car * Eyriq
is the memory consumed by the grid indéx,; represents an average number of grid cells that a
rectangular range query overlaps with. For the continuoodat) the memory requirements could

be characterized as following:

Mesa = A x1ropj x Egpj + A * 14y x Fgpyy+

+Novj * Loy + Nery * Egry~+ (3.3)

+2 % Fypig * Nopj * Topjects + 2 % Egria ¥ Nery * Tyueries;
The objects’ and queries’ buffers memory requirements @ttintinuous model are similar to the
ones of the discrete. Similarly, Objects and Queries tatd@sume the same amount of memory
as the discrete model. The difference is in the memory reqents for the grid index. The reason
is that we are dealing with trajectories instead of discpeti@ts. We clip continuous trajectories
with all the grid cells that they overlap with. The longer thegectory the more clippings need to
be done, and more grid entries to be mafg;...s andT;,....s represent average number of mini-
segments for trajectories (for objects) and trajectorynas (for queries) during time interval,
and "2” stands for 2 entries (points) needed to represemtea [The formulas describinf,;;cc.s

andT,.,..s parameters are below:

2+A*r0bj
YV @ir1—2) 2+ (yir1—vi)?
T.. _ i=1 .
objects Cuwidth )
2+A*rqry (34)
\/(xH»l_xi)2+(yi+1_yi)2*Ha1/e*Wa1/e
T i — 1=1 .
queries C’width*C}Leight*clength !

We approximate the average length of a trajectory usinguhed distances between 2 points. The
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points represent location updates that arrive during tmerval A. The total length of trajectory
is then divided by the size of the grid cell to approximaternbenber of grid cells that it overlaps
with. For queries, we are dealing with volumes, hence weddithe volume of the query during
time intervalA by the volume of the grid-cell.

If M is the total amount of memory available, we can approximaddtal number of objects
and queries that can be supported by discrete and contirsystems (i.e., approximate the scal-
ability of each system). The total number of queries thatlmsupported by the discrete system

is:

N — M — (A (rov; * Eovj + Tgry * Egry) + Nobj * Eopj) |
m Eqry + CAR * Egm'd ’

(3.5)

Similarly, the total number of objects that can be suppdbietihe discrete system can be expressed

as following:
N, — M — (A (Top; * Eopj + Tgry * Egry) + Nory * (Egry + Car * Egriq)) (3.6)
obj Eobj ) .
Continuous model can support the following number of qerie
N _ M — (A * (Tobj * Eobj + Tary * Eqry) + Nobj * (Eobj + 2% Egrid * Tobjects)) . (3 7)
R Eqry + 2% Egrid * Tqueries ’ .
and objects:
N, — M — (A (Top; * Eopj + Tgry * Egry) + Novy * (Egry + 2 % Egria * Tyueries)) (3.8)
ooy — 9 .

Eobj + 2% Egm'd * Tobjects

In conclusion, we can see that the memory requirements tordiscrete and continuous mod-
els are the same for all data structures except for the gdexitbecause of different modelling

approaches for motion and different representations eéntid grid. Once the environment para-
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meters €5, L4, andE,,;) are fixed, the number of objects and queries supported bgreif
the systems depends on the length of time intefvahnd rate of arrival of location updates from
objects and queries. For discrete model, it also dependseoavierage size of the queries and the
size of the grid cells (i.e., how many grid cells queries ervith). For continuous model, the
length of the trajectories and the size of the grid cells hegggnificant affect on performance.
The longer the trajectories, the more grid cells they arelapping with, hence more entries need
to be made. The lengths of the trajectories can be affectatidojollowing: (1) the speed, (2)
the frequency of location updates. If the objects/queriesaerast, they cover large distances be-
tween the updates. Similarly, if infrequent updates ar¢, $ke objects/queries might cover large
distances between the updates as well. In summary, theetbistiodel has a better performance,
hence facilitates scalability (in terms of the number offguped objects and queries) better than

the continuous model, but as we will show in the next chagteésscomes at the price of accuracy.
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Chapter 4

Accuracy

Here | describe my method for estimating accuracy. | usetieghod in evaluating the quality of

results output by discrete model with respect to the cootisumodel.

4.1 Measuring Accuracy

Since the result formats differ for the discrete and comtiraumodels (the former outputs a discrete
point, and the latter outputs a continuous segment), we tosdefine a method to bridge these two
types of results to a common format in order to compare thesrepproximate accuracy using a

numeric value.

We claim that continuous results give a better accuracy thserete results, and thus better
represent the reality. Moreover, continuous answers awantain the discrete answers (i.e., the
latter is a subset of the former). We thus compare resulthefliscrete model to those of the
continuous one (i.e., form continuous segments out of therelie answers and compare them to
the equivalent continuous results).

In measuring the accuracy of the results | propose the fatigwpproach:

1. For each continuous resultin CSA, we determine a lengtitecdnswer, where.I; and T,
are the ending and beginning timestamps of the result tajed/Ne denote it asontinuous

result extenbr CRE
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Scenario 1 Q1

Discrete: 9 O:
3 answers: 100 ) 0.0
(Q1,01,Ty) Q
(Q1,01,T2) t t t >
(Q1,04,T3) T T2 Ts
/@\1
Continuous: / O1 ==
1 answer: 81 Or®
(Q1,04,(T1-T3)) 2 1
t 1 1 >
T, T2 T3

| - intersection point
= - answer trajectory

Figure 4.1: Object location update received every timedailgatered, stayed, and left the query

2. We group the discrete results in DSA QID and OID. For each group, we interpolate
through discrete results. The key assumption for produtiogtinuous” results out of dis-
crete answers is not to allow any “gaps”. For example, if wedjscrete answers with the
following timestamps: T, T, T3, Ts, T7, Tg, Ty, T1o We calculate only 3 timespans (without
any gaps) - [T-T3], [Ts], [T7-T10]. We denote interpolated points discrete result extent

or DRE Notice [Ts] in the example above is called a “lonely” DRE.

3. We compar®REs with CREs:

(&) We compare th®REs to the correspondin@REs, meaning the timestamps of the

discrete results must be within the continuous results.

(b) For the lonelyDREs we introduce a variablg, that describes a small time interval
before and after the discrete resukt.will be calculated for a lonel\DRE, and will
depend on the length of the correspond@@E and the number of location updates

received during that time interval.

(c) We compare lengths and counti@REs to correspondinG@REs to determine accuracy.

Let C = {CRE} be the set of continuous result extents (i.e., trajectognans). Then for each
CRE € C, we find a set of corresponding DRE such that their time intervals overla(CRE)
= {DRE,; | DRE; N CRE}. We compare the sum of lengths of tB®Es to the length of corre-
spondingCRE
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Scenario 2 00,

o Q1

Discrete: Qu °
1 answer: Q1
(Q1,01,T2) ol(? . . o

L L) T »

Ty T T3

(0]
, Q1 .
Continuous: Q. o
1 answetr: o
(Q1,01,(T1+ d1) — (T3- d2))
Oy
t t t >
T T T3

B - intersection point
= - answer trajectory

Figure 4.2: Object location received only once when objexd mside the query

n CRE;.tenq length(DRE)
A _ J=CRE;.tstart J
ceuracy =y length(CRE;)

=0

(4.1)

Scenarios that illustrate my approach in measuring and adngpaccuracy of the two models
are:

Scenario 1 Object sent location updates when it entered the query, nsde the query, and
left the query In this scenario, location updates for both objects andigsi@re known for every
time unit when the object was inside the query. Figure 4ukithtes this case. This is the best case
for DSA. Every time unit we know the positions all objects afidjueries. Thus we can accurately

determine if an object is inside a query at every time uniinglsny accuracy model, we find that

and
|engtr(DRE1) = [Tg — Tl] =3—-1=2.

Then using equation (4.1).

Accuracy= length DRE,)/lengti CRT}) = 2/2 = 1(~ 100 accuracy)

By my model, results returned by the DSA are as accurate ass$hés returned by CSA. This
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scenario is highly unlikely in the real life situation whelen a large number of queries, due to
the fact that it is hard to guarantee that location updateg\ery time unit object was inside a
guery are received. During the execution, the data stream$ecome bursty, and some tuples
might have to be dropped. Due to network congestions somatepanight arrive late. Devices
can be configured differently to send their location updaié®refore, in most cases, it is hard to
have a setup guaranteeing the best case accuracy for theteiswdel.

Scenario 2 Object sent one location update when it was inside the quéhys is a slightly
worse example for the discrete system. Figure 4.2 illussrétis case. We got explicit location
updates at Jfor both an object and a query. So we have one discrete andooi@@ous answer.

To compare the accuracy using the approach above, we dalthéafollowing:

lengt(CRT) = ((T3 — dy) — (T + da))

where d and @ are distance measurements from the discrete time unitditcaite that the intersec-
tions occurred not exactly at Bind T;. For this example, we assume they are something arbitrarily
small, but in real experiments we can calculate these vax@stly. DRE = [T] (i.e., it's alonely
DRE, so we need to determine a continuous interval for it)s@ican appropriate value, we divide

thelengthCRT) by the (number of location updates received - 1) tolgetiverage length of a line

segment (Se—iengtn)-

Save—tength = 1€NGtHC'RT") /(#updates — 1)

So in this case, Sc_iengtn = 2/(3-1) = 1. Then DRE = [1] = 1*A jiscrete » Where Ayerere 1S the
number of discrete answers. Then Accuracy = (1)/((3-0(@2B.01)) = (1)/(1.97) = 0.507~( 50%
accurate). This value is an approximation of accuracyesime picked arbitrary values for @nd
ds.

Scenario 3 No location update was received while object was inside theryg This is the

worst-case scenario example for the discrete system. Thersdidn’t receive a single location
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Scenario 3 o °

Discrete: Q Q:

0 answers: Ol<_3 _ ! 00, _
T Osz Ts

Continuous: Q:

2 answers: Q.

(Q1,04, (T1+d1) — (T2-d2) ) 5

(Qu.01, (To+ds) — (T3-ds)) € ; ©0. .
T: T2 Ts

m - intersection point
= - answer trajectory

Figure 4.3: No location update received at any point in tinmemobject was inside the query
update from the object while it was inside the query. Usirgdiscrete model, we would not get
an answer that the object was inside the query. Figure 4igi#tes this case. Using my measuring
approach, we can determine tiatcuracy= 0 %, due to 0 answers returned by the discrete model.
So thelength(DRE) = 0, and the discrete model is 0% accurate.

| tested my model on a number of experiments to support mialnittuition with respect to

accuracy of the two models.

4.1.1 Analysis of Accuracy

Below | analyze accuracy using an example of one moving ¢lajed one query. | consider the

parameters listed in Table 4.1 for this analysis.

Variable Description
A Time interval between periodic query execution
Ayeita Average distance travelled between execution$
dupdate Average distance travelled between updates
d;join Average distance object is inside the query
dweigne | Average weight of each update in the overall ansyver
v Average velocity of a moving entity
u Average number of location updates ger
Ujoin Updates contributing totersectionw/ query
Agiscrete Number of discrete results

Table 4.1: Parameters for accuracy comparison

An average distance travelled by a moving object betweerithes when joining with the
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guery can be expressed as
ddelta =Axv (42)

An average distance travelled between location updates is

A xv
d = — 4.
update w1 ( 3)
An average length (trajectory) when moving object is insgfdequery is
djoin = ddelta * @ (44)

wherey is an intersection factor (between 0 and 1). This factor riless the probability of an ob-
ject and query to bminable(i.e., producing an answer). It is affected by the type oftttwrement
of the object and the query, their velocities, network caasts, and the type of the query. Note,
we assume that the greater the velocity, the greater ig b factor. Wheny = 1, it means that
an object is inside the query (i.e., produces an answer &etiire duration of time interval).

By dividing d;,;, by the number of updates that contributed to the continuossveru;;,,
we get an average continuous interval segment. In othersyorel approximate an average mini-

segment of the continuous answer per each point that catedtio the overall continuous answer.

d join
dweight = = (45)

Ujoin

The discrete result extedDRE) can then be determined as
DRE = dweight * Adiscrete (46)

Combining (4.2), (4.4) and (4.5RREcan be expressed as

A
DRE - M * Udiscrete (47)

Ujoin
We compare accuracy of a discrete model by dividing the eisagesult extent by a continuous
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result extent, which can be expressed as

Axv¥p '
ACCU’I“CLCy = DRE __ _UYjoin Gdiscrete o Qdiscrete (4 8)
CRE Axvx ¥ Ujoin )

Equation (4.8) confirms my intuition that becomes evidenbulgh the experimental studies.
The accuracy of the discrete model would be the ratio of teerdte answers (which correspond
to the explicit location updates) to the number of the digcugpdates out of which the continuous
model was able toalculatethe answers.

If the discrete model doesn't receive the location updatemthe object is inside a query (e.g.,
range query) discrete model would not be able to return sn@nawer. This becomes a problem
when objects move extremely fast or location updates areiisieaquently, or not every location

update is received (e.g., network delay, packet loss, lbadding, etc).
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Chapter 5

Experimental Results: Accuracy vs.

Performance Tradeoff

Here | assess the performance and accuracy of DSA and CSAainagwg a set of continuous

spatio-temporal range queries.

5.1 Experimental Settings

| have built motion operators implementing DSA and CSA alpons within our stream processing
system CAPE [64] to evaluate their performance and acculaying objects and moving queries
generated by thBletwork-Based Generator of Moving Obje[18] are used as data. The input to
the generator is the road map of Worcester, USA (where WancBslytechnic Institute is located).
All the experiments were performed on Red Hat Linux (3.243:&ith Intel(R) XEON(TM)
CPU 2.40GHz and 2GB RAM. The set of objects consists of 5,@)€cts and the set of queries
consists of 5,000 continuous spatio-temporal range ggieTie@ get the most accurate comparison
between the two models, the number of objects and queriekepagonstant (i.e., no new objects
or queries enter the system, and no existing objects andegudisappear). Each moving object
or query reports its new information every time unit, unlegplicitly specified otherwise. Our

periodic execution was set to 2 time units. Thus 2 locatictfeies were received per object or per
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Figure 5.1: Road network map of Worcester, MA

qguery during each evaluation interval.

| ran experiments varying the speed and the update protiebibif objects and queries observ-

ing their effect on the performance and the accuracy of tleehodels.

5.2 Varying Speed

Here, | vary the speed of objects and queries. The speed aghtiveng objects and queries is
defined by themax.speed divparameter specified to the data generator. The larger thie,va
the slower the moving objects. The parameter was varied frquery fast) to 250 (very slow).
Figure 5.2 gives the effect of increasing the speed of objaatl queries on the join tirheWhen
objects move slowly and regularly sent their location updaboth models exhibit similar perfor-
mance (Figure 5.2). The join time for the discrete modelstalatively constant, where as for the
continuous mode, it goes up as the speed increases (e.gd sfestor very fas}. The reason is
that objects cover large distances between their locapoates, for which the continuous model
constructs trajectories and then clips those to grid c@llese mini-segments of trajectories (for

moving objects) and trajectory volumes (for queries) migVerlap with a large number of grid

Time is measured using wall clock time.
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Figure 5.2: Performance of discrete and continuous modigtsvarying speed of moving objects
and queries

cells causing a lot of comparisons between objects andegieFhe speed of moving objects and
gueries has no effect on the discrete model performancet Wéppened in between updates (i.e.,
the distance covered by objects and queries) is of no conadhe discrete model.

Figure 5.3 shows the average accuracy for both models wieespied of objects and queries
is varied. Accuracy has been measured for the results obgptite discrete model with respect
to continuous model results using our accuracy model ini@e8&t1. When the speed is slow, the
accuracy of the discrete model is close to the continuouseim@dg.,very slow~ 97.08% and
slow~ 90.62% ). The reason for that is that when objects and quere® slowly, they cover
small distances between their location updates. Thusg ikesnly a rather small chance that an
intersection between object and a query occurs and no tocapdate is sent. On the opposite,
when objects move very fast, and objects and queries corger tistances between the updates,
discrete model would not output the query-objects intdrgies that might have occurred between
the updates.

Figure 5.4 illustrates the tradeoff between the two modetglims of join time and accuracy.
For slower moving objects, discrete model has a pretty hgglur@acy with a much better perfor-

mance than the continuous model. But as the speed of botlktstgad queries increases, the
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Figure 5.3: Accuracy of discrete vs. continuous models wéttying speed of moving objects and
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accuracy of the discrete model drops significantly (downgpraximately 6.43%) when objects

move extremely fast. The high accuracy of the continuousahoaimes at a price of a much more

expensive join time, approximately 7 times slower.
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Figure 5.4: Performance vs. accuracy when varying the speed
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5.3 Update Probability

In this experiment, | evaluate the accuracy of the discnetcantinuous models under various up-
date probabilitiesof objects and queries. This experiment is designed to hetp see how much
missing information (or load shedding) can be afforded authany or very little loss in accuracy.

| ran experiments on the continuous model, varying the wgpiatbability of both moving objects

2Defines the probability of reporting a moving object. 100Gamethat a moving object is reported at every time
stamp during its move. 500, e.g., means that an object istexpwith a probability of 50%.
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Figure 5.6: Performance of continuous model with varyindatp probabilities

and queries, keeping the speed parameter constant at amsoaed (speed parameter = 50). The
probability of reporting a moving object and query was vaifiom 100% to 25 %.

Figure 5.6 shows the join times for the continuous model wlifferent update rates. The
smaller the update rate, the fewer location updates need fwdressed per evaluation interval
also the fewer computations need to be made making the ja@apsgr. Figure 5.7 shows the ac-
curacy of the continuous model with varying update ratese fsults output by the continuous

model with varied update probabilities were compared taelalts of the continuous model when
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100% of the location updates were received. | included discmodel (performance and accu-
racy) for comparison to see how the discrete model with 1008cation updates compares with
the continuous model with smaller update probabilitiesthWi5% of updates from both objects
and queries at a medium speed, continuous model gives arlagberacy £ 68.5 %) than the
discrete model# 62.1 %) and better performance 635 ms for continuous vs. 3913 ms for
discrete). Figure 5.8 graphically depicts the tradeofiMeetn the performance and accuracy when
update probabilities of moving objects and queries varyufé 5.5 portrays a tradeoff between the
performance and accuracy in a different fashion. Here ttvanenested axis. The outer axis (with
the origin in the lower left corner) has x-axis representinguracy in terms of a percentage value,
and y-axis representing execution (join processing) tifitee nested axis (with the origin in the
lower right corner) has x-axis (going from right to left) repenting the discrete model and y-axis
(going from bottom to top) representing the continuous rhadeen varying the speed of the ob-
jects and queries. At the origin, the objects are movingeewély slow, and the further the values
are from the origin of the nested axis the faster the speeths.thick line represents a tradeoff
line between the performance and the speed for both disaneteontinuous models. Above the
tradeoff line, the weight is put more on the accuracy, heneebntinuous model would be a better
choice. Below the tradeoff line, the emphasis is on the perémce, thus the discrete model would

suffice.

5.4 Analysis of Affecting Factors

Velocity and update probability affect performance anduaacy of the discrete and continuous
models. The continuous model is more preferred when: (Badbjmove fast; (2) not all location

updates are received (e.g., load shedding occurs); (idocapdates arrive out-of-sync due to
network delay (in this case, we assume the system would ledithis data, as it is outside of the
current window of execution). Continuous model can apprnatée where objects and queries are

even if no explicit location update is received. Continuougdel can give a higher accuracy with
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better performance with only 75% of location updates.

Discrete model suffers when objects move fast and rarelg saeir location updates. The
distance they cover between the updates could be large andigbrete model has no way to
approximate where objects are in-between the updates. eiidiscrete model is preferred when

objects move slow, or when very frequent location updatesitoc
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Chapter 6

Part Ill:

Scalable Cluster-Based Execution

In this part of the thesis, | propose clustering spatio-terapdata streams based on common at-
tributes in order to improve performance when evaluatirggisgemporal queries. In addition, |
propose moving cluster-based load shedding to reducensysterload while preserving a rela-

tively good quality answers for spatio-temporal queries.

6.1 Choosing a Clustering Algorithm

Before | proceed with the details of the proposed clustsetiaexecution (Chapter 7), | describe
my choice of clustering algorithm and support it by analgzamd comparing it to other clustering

algorithms in terms of memory, performance and robustness.

6.2 Clustering Basics
There are many definitions of cluster analysis in the liteatThe following is from [40]:

The goal of cluster analysis is to partition the observasiomio groups (clusters) so
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that the pair wise dissimilarities between those assigondteé same cluster tend to be

smaller than those in different clusters.

It is important to understand the difference between cltugjgunsupervised classificatipn
and discriminant analysispervised classificatigrf47]. In supervised classification, we are
provided with a collection ofabeled (pre-classified) patterns; the problem is to label, a newly
encountered, yet unlabeled, data. An example of superelassdification could be, for example, a
grid index, where moving objects are hashed based on tregtitms to pre-defined buckets (pre-
determined by the grid cells’ size and count). In the casdudtering, the problem is to group a
given collection of unlabeled data points into meaningfusters. In a sense, clusters are unknown

a priori and thus are solely data-driven.

6.2.1 K-Means Clustering Algorithm

K-means is one of the most common clustering algorithmss #n iterative clustering method
that takes quantitative data as input and measures theagijmimong the various data points by
calculating a distance measure, typically the squareddeaar distance (Equation (6.1)):

n

la—bl = | > (@i —b)® = (a1 — b1)* + ... + (@ — by)” (6.1)

i=1

wherea andb are points in the Euclidean spa. Although there are many ways to calculate
the similarity between data points, | use the squared Eemfiddistance measure in this work.
K-means is a static clustering method. It is done once a#l daailable at a specific point in time.
K-means consists of two phases: First, all data points aigraed to the closest cluster. Sec-
ond, the algorithm determines the cluster means. K-megeate these two steps until it con-
verges. Because the similarity between data points is me@dsising Euclidean distance, the
K-means algorithm is sensitive to outliers and tends togee spherical patterns [31]. The cri-
terion function usually keeps track of the total sum of afitdhces between a data point and its

closest cluster. If changes in this function are considaragyinal, K-means terminates and is said
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to have converged [63]. Although K-means converges (t.stpps after a finite number of steps),
the number of steps is not known in advance.

In [21], the complexity for K-means is described@m*d*k*iter), whered is the number of
featuresijter the necessary iterations, which are usually much less trenumber of data points,

nis the number of data points akds the number of clusters.

6.3 Approaches To Incremental Clustering

When picking a clustering algorithm, | considered seveniggiga. Table 6.1 shows a list of criteria
from the literature for incremental clustering algorithrirs particular, | was concerned whether it
would be more advantageous in terms of performance andawcto keep the number of clusters

or the threshold parameter constant.

6.3.1 Criteria for Scalable Clustering

According to the suggestions found in the literature, amemental algorithm should meet the
following criteria listed in Table 6.1.

For SCUBA, | considered clustering algorithms based on ttlewing four criteria: Perfor-
mance Memory On-line Clustering CapabilitieandRobustnessMy requirements for clustering

algorithms are listed in Table 6.2.

6.3.2 Determination of Parameters

The number of clusters has a direct effect on the performancdememory requirements of a
clustering algorithm. The total number of clusters of a md&leither determined bl (hnumber of
clusters), by (threshold) or by, (learning rate). | am going to discuss in this thesis dognd
©. O is a threshold that triggers the creation of a new clusteovAthreshold makes the creation
of a new cluster more likely than a high value ®fand © can be used to limit the number of

clusters [21, 15]. Because an algorithm, such as Leadéw @i, creates a new cluster for every
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Source

Requirement

Criteria

Domingos et. all Must require small constant time per record, otherwiselitfali | Performance
[20] behind the data.
Must use only a fixed amount of main memory, irrespective efjtiiemory
total number of records it has seen.
Must be able to build a model using at most one scan of the dada-Line
since it may not have time to revisit old records, and the datg | Clustering
not even all be available in secondary storage at a futur poii Capabilities
time.
Must make a usable clustering model available at any point@m-Line
time, as opposed to only when it is done processing the dat& s Clustering
it may never be done processing. Capabilities
Should produce a model that is equivalent (or nearly idahticOn-Line
to the one that would be obtained by the corresponding arglin&lustering
algorithm, operating without the constraints found in a&tnéng | Capabilities
environments.
When data is changing over time, the model at any time shp@a-Line
be up-to-date, and also include all information from thet plaast | Clustering
has not become outdated. Capabilities
Ye et. al [86] Classification precision On-Line
Clustering
Capabilities
Scalability of learning and classification on large data set Performance
Robustness to noise Robustness
Ability for incremental learning On-Line
Clustering
Capabilities
Barbara et. al [6] | Compactness of representation Memory
Fast, incremental processing of new data points Performance
Clear and fast identification of outliers Robustness
Gupta et. al [30] Given n data points, algorithms should have O(n) time coriple Performance

and O(1) space complexity.

Table 6.1: Requirements for incremental data stream asaigorithms [43].

data point, if the distance to the closest cluster excégdssmall® makes it more likely that the

online clustering algorithm creates a new cluster and dvtbanumber of clusters gets very large.

6.4 Leader-Follower Clustering Algorithm

The Leader-Follower(LF) clustering algorithm is a simple incremental clustgralgorithm. It

allows the number of clusters to grow until the boundary echeed. The maximum number of
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Requirement Criteria
Only the cluster centers need to be stored, data points cdis-bg Memory
carded after clustering. On-Line
Clustering
Capabilities
Runs in constant time. Performance
Number of clusters can be controlled or varied. Memory
Parameters can be easily determined. Ease of use
Number of parameters is small. Ease of use
Robust for highly dynamic spatio-temporal data sets. Robustness

Table 6.2: My criteria for online clustering algorithms

clusters ik = n. The threshol® determines the number of clusters. A large threshold médeats t
clusters will contain objects that have a larger dissirtiaa small threshold, on the other hand,
will increase the probability that the LF algorithm createsew cluster. The similarity between
data points is measured using the Euclidean distance.

The pseudo-code for the Leader-Follower Clustering Atomniis shown below (Algorithm 4).

Algorithm 4 Leader-Follower()
1: initialize n, ©
2. m<«— 1
3: repeat
accept new
J «— arg mjin |z — m;|| /ffind nearest cluster

create new clusten «— z
else
m;=(1-n)m; +nz
10: endif
11: until no more data points
12: returnmsq, mq,...,my

4
5
6: if ||z —m;| > © then
7
8
9

How does LF come up with an acceptable solution regardingladity of the clustering? LF
optimizes a criterion function, namely the average squdigtdnce from data points to the closest
cluster, by always choosing the closest cluster for a newtpdihis is also the case in the first
phase of the K-means algorithm [63]. In addition to that, Kams also computes the means of

all clusters based on the associated data points. By doisgehatively, it finally ends up with a
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minimized criterion function. Although LF does not iterateer the data set over and over again,
it does minimize the error function in that choosing any ottlaster than the closest for a given
data point would result in a higher distance.

The quality of K-means is superior to the quality of LF butanees with more computational
effort. K-means iteratively minimizes the total sum of distes between all data points and their
associated closest cluster. This explains that K-meansresghigher computational efforts (Table
6.1). LF, on the other hand, minimizes the total sum of altastises by always confining a new
data point to the closest cluster. One can expect that LFdhmeimuch faster for a large number of
clusters and not much faster for smaller number of clusteesmpared to K-means. The reason
is because K-means requires less iterations to convekge gmall.

The number of clusters has a linear influence on both algositdue to the calculations of
the distances between all the clusters and a new data pdiathigh variance of K-means results
from the random initialization of the cluster means. Thigum has an impact on whether the
algorithm converges early. Because the number of scanoealata set of the LF is always one,
the complexity is at leagd(n*k).

So when choosing between K-means and LF, one is faced witlde-off between performance
and quality. In this thesis, | chose the LF algorithm. As ekpents will later show, the quality of
clusters that LF algorithm produces is relatively good veitnuch better performance comparing

to the K-means algorithm.

6.4.1 Analysis of the Leader-Follower Algorithm

Below | analyze the LF algorithm based on the criteria in @R in Section 6.3.1.

Criterion 1: On-line Clustering Capabilities . The LF algorithm in its basic form incrementally

clusters data.

Criterion 2: Memory . The memory requirements a@¥k). The dimensions of the data and the

number of clusters define the space requirements. High myeraquirements result from
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the increasing number of clusters, each of which needs aabfspace to store the cluster

centers.

Criterion 3: Performance . The complexity of the LF algorithm i®(k*n), wherek is the number
of clusters anah is the number of data points. The reason for such complexipecause it
performs only one scan over data points that have to be edesd the number of clusters

has an impact on calculations to determine the closestetlashter of a data point.

Criterion 4: Robustness . If not handled explicitly, outliers are likely to lead to aw cluster.
This in turn may lead to a lot of single-member clusters. $nbidsic form, the algorithm
does not provide any tools to handle outliers and thus cap@aionsidered robust in that

sense.

6.5 Competitive Learning Clustering Algorithm

Another clustering algorithm candidate | considered waimpetitive LearningCL) algorithm.
Contrary to the LF, CL algorithm controls the number of ctust The parametdris hard-coded
in the design of the algorithm.

The number of clusters is constant and is a part of the desgisidn. The basic concept of
CL is that changes affecting the present clustering aremedtio exactly one cluster (i.e., one that
is closest to a new data point). This is contrary to K-mearg&re adding a data point could lead
to changes to the overall cluster structure, because clostans are iteratively re-assigned until
the algorithm converges. The Competitive Learning al@armioriginated from neural networks
research [9, 41]. The pseudo code of CL is shown below (Allgors).

The whole data set is presented to the algorithm severaktiom@il convergence is reached.
The data set is shuffled each time before it is processed.again

Because of calculating the scalar product of cluster weightl data point, only their respective
angle is relevant to determine the closest cluster to datd.pthe absolute size of a cluster cannot

dominate over other clusters of the cluster structure. Heurtonly a cluster affected by adding a
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Algorithm 5 CompetitiveLearning()
1: initialize n, ©, iter, wy, ...wy,
2: repeat
3 x; « {1}, i=1,...,n/laugment all patterns
x; < x; ||z, 1=1,...,n/inormalize all patterns
j < arg max Hw;p, xH /Iclassify x

4
5
6: w; « w; + nz /[lweight update

7. wj —w; ! ||w,|], j=1,....k//lnormalize weights
8: until no significant change i in iter attempts
9: returnw;...wy,

data point is altered. Similar to K-means, CL converges aea-defined level, optimizing some
squared-error function.

Because this algorithm runs continuously until convergasaeached (or a maximal number
of iter iterations) and no guarantee exists that this conditiorbeareached, a decay rate that affects
the learning rate has to be specified to prevent the algofithmalternating weights forever. Such
a decay rate can also have a negative impact. It might becorsmall that new data points will
not be learned. More details about this algorithm can bedann21], and information about

competitive learning in general is available in [41].

6.6 Analysis of the Competitive Learning Algorithm
Below | analyze the Competitive Learning Algorithm basedtmcriteria in Table 6.2.

Criterion 1: On-line Clustering Capabilities . Although this algorithm needs several scans over
the data, it can be implemented as a single-scan algoritemdiata can be clustered with
one scan. Doing so makes it more or ledseader-Followeralgorithm with a fixed number
of clusters. The initial cluster centers would be initielizin a way as to set their values to
an initially calculated cluster structure. Depending oa time that is available to process
the new data set, allowing for some iterations to adapt tméveclusters could improve the

accuracy of a clustering.
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Criterion 2: Memory . A compact representation of the cluster structure is ptssbecause
only the cluster weights are kept in memory, if the CL alduonritis implemented as a single-
scan algorithm. If the algorithm is implemented in a way vehgeeveral scans over the data
are allowed, memory requirements will depend on the sizé®fdata set and the number
of clusters that will be stored in memory. The memory requiats of the single-scan
algorithm areO(k), for more than one scan it @(k+n), wheren denotes the number of data

points andk the number of clusters.

Criterion 3: Performance . As a single-scan algorithm, the computational compleisit®(n).
Otherwise, it become®(n*iter), wheren denotes in both cases the number of data points

anditer the number of iterations until convergence is reached.

Criterion 4: Robustness . Like the K-means, CL is sensitive to outliers and offers rethmod to
prevent the algorithm from incorporating such data points the cluster structure. In the
case of the single-scan implementation, the outcome iscéxg@é¢o be worse than K-means,

because it only partly maximizes a criterion function.

6.7 Comparing Competitive Learning, Leader-Follower and K-
Means Algorithms

The following table summarizes the comparison of the K-rsgarader-Follower, and Competi-

tive Learning Clustering algorithms.

6.7.1 Clustering Algorithms Comparison Summary and My Chote

The K-means, Leader-Follower and Competitive Learningtlgms solve the online clustering
problem from different perspectives: either with a constarmber of cluster& or the threshold
distance®. While CL is not an online clustering algorithm, it can be nfied such that it allows

clustering data sets with one single scan over the data $et.fact that the number of clusters
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Criterion

K-means

LF

CL

On-line
Clustering
Capabilities

Some windowed version
of K-means exist, which
allow processing dat;
points incrementally. We
note that if K-means ig
made an incrementg
clustering algorithm, it
becomes very similar tg
LF.

s Generic model for an in
cremental clustering algqg
arithm. Can be extende
> according to several sug
gestions and ideas in th
| literature [43, 39]. The
number of clusters is con
b trolled by paramete®.

diterating. Static with re-

Can be achieved if the al
- gorithm is prevented from

-spect to the number @
eclusters, but the quality of
the clusters might be poo

Memory

K-means stores dat
points and cluster center

aOnly the cluster mean
5.are stored in memory.

50nly the cluster mean
are stored in memory. If
the algorithm is to iterate
over the data points, ad
ditional memory has to bg
allocated.

")

1%

Performance

O(n*k*d*iter) = Because
the initialization of the
clusters is random, th
algorithm has an unpre
dictable, nondeterministi
run time. To limit the
number of iterations tg
prevent the algorithm
from running until con-
vergence is reachedter
must be set accordingly.

O(n*k) Runs in pre-
dictable time. Outper;
e forms K-means especiall
- for a highk.

~
"

O(n*Kk) for one scan over
the data. Fast algo
y rithm as it performs only
inexpensive computation
such as calculating th
distance between cluste
by means of thecos(x)
function.

DO O

[S

Robustness

Cannot handle outliers.

As outliers may lead
to new clusters,
significant clusters can b
deleted from the mode

according to a predefine

nong

Cannot handle outliers.

[}

o

threshold.

Table 6.3: Qualitative comparison of the K-means, Leaddieiver and Competitive Learning

algorithms

must be defined in advance is considered a major disadvardage makes this algorithm too

static compared to Leader-Follower. Thus my preferredaha theLeader-Followerclustering

algorithm.

LF is a generic algorithm for online clustering problemsisitonsidered superior to CL. Its
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performance, which i©(n*k), is less expensive computationally than K-means. In amfditit

handles outliers better than either the K-means or Conngetiearning algorithms.
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Chapter 7

Scalable Cluster-Based Algorithm for
Evaluating Continuous Spatio-Temporal

Queries on Moving Objects (SCUBA)

In this chapter, | describe, SCUBA, @&able Quster Based Agorithm for evaluating a large set
of continuous queries over spatio-temporal data streaims kéy idea of SCUBA is to group mov-
ing objects and queries based on common dynamic propeetigs épeed, destination, and road
network location) at run-time into moving clusters to reelalata size, improve performance and
facilitate scalability. SCUBA exploits shared clustesed execution by abstracting the evaluation
of a set of spatio-temporal queries as a spatial join fiestveermoving clusters and themwithin
moving clusters. If the clusters don’t satisfy the join poadke (i.e., don’t overlap), the objects and
gueries that belong to those clusters can be discarded bes@nteed to not join individually
either. This provides cost savings and speeds up the pingessiescribe the details of SCUBA

algorithm in the sections below.
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7.1  Why Current Solutions Might Not Be Adequate

As it was mentioned in the introduction, scalability is aical concern, when faced with an ex-
tremely large number of concurrent queries. In particula,goal is to reduce memory require-
ments and to speed up processing. So far we used a sharedi@ex@aradigm, where we group

moving objects into Objects Table and queries into Queradsel and then perform a grid-based
join between moving objects and the queries based on ttegtitms. There are still several prob-

lems with this model:

e When performing a join, we process each moving object andimgoguery individually.
With an extremely large number of objects and queries Idtsomparisons must be made.

This can create a bottleneck in performance.

e We store all location updates for objects and queries iddaily, which potentially can

cause the system to run out of memory.

e Given limited memory resources, we might not be able to suppoeally large number of

objects and queries (i.e., can't store all location updfteall moving entities).

There are several possible solutions to the problems ledbeste. We can perform load shed-
ding to minimize memory usage and speed up the processinfprtunately, this is an extreme
solution and should be the last resort when the system c@nooéss the data and is threatened to
run out of memory or crush.

An alternative solution could be to set a limit on how manyeat§ and queries a system can
support, and reject all new objects and queries once théiBmeached. This solution is also not
adequate. Limiting the system to a certain number of objestsrs), we ignore all potential users
that would like to use our system due to system capabilitneisdtions. In a real world this could
mean a loss of clients, and business. Such small scale@ohatght not satisfy many applications.

A third solution could be to use distribution. But distrilmit has its own disadvantages as

well. In particular, network delays can lead to obsoletadand return either incorrect out of date
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Figure 7.1: Motivating examples for moving clustering

results or no results at all. Distribution adds more comipfesompared to a centralized system.
This increases manageability - more effort is required ystesm management in addition to real-
time processing. Because multiple machines are involveddésponses can be unpredictable,
depending on system organization and network load. Ladibgributed systems can be more
expensive than centralized systems.

| propose an alternative method, tBealable Guster-Based_Agorithm (SCUBA, for short)
for evaluating continuous spatio-temporal queries on mgwbjects. SCUBA exploits th&hared
cluster-based executigmaradigm to optimize the execution. By utilizing the shackdstering,
moving objects and queries are grouped together into ckibsed on common spatio-temporal
attributes and then the execution of queries is abstrastegban-betweerclusters angoin-within
clusters. By using clusters, we also achieve data compressaving in memory and making the
evaluation of continuous queries more efficient.

Unlike most of the previous works on shared execution as sy&aachieve scalability, where
objects and queries are grouped separately; SCUBA focusssamed execution for heterogeneous

entities. Namely, both moving objects and queries groupsaldlusters based on similar spatio-
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Figure 7.2: Representation of a cluster

temporal attributes. These moving clusters serve as meamgtove the performance and achieve
scalability. For simplicity, | present SCUBA in the contetcontinuous spatio-temporal range
gueries. However, SCUBA is applicable to a broad class ofigpamporal queries (e.gknn
gueries, trajectory and aggregate queries).

SCUBA introduces a general technique for processing a langgber of simultaneous spatio-
temporal queries. Similar to SINA [57] and SEA-CNN [84], SBAJis applicable to all mutability
combinations of objects and queries: (1) Stationary geessued on moving objects. (2) Moving
gueries issued on stationary objects. (3) Moving quergseid on moving objects.

When an object or a query belongs to a cluster, the indivithedtion updates for this ob-
ject/query no longer need to be processed individually.s finovides a great amount of mem-
ory/storage savings and improvement in processing timeegsrbcessing is first done at the higher
level of abstraction(level of moving clusters). If the dkrs don't satisfy a join condition, there is
no need to join individually objects and queries that beltmnpat particular cluster. Once clusters
are formed, they can be treated just as regular moving abjétius all of the existing algorithms
and indexing techniques can be easily extended to movirggecki Although, | don’t explore this

in this thesis, | believe, it can be done without any signiftqgaroblems.
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Figure 7.3: Clustering Cars on the Road Network

7.2 Moving Clusters

| employ a similar motion model as in [71, 54], where movingeals are assumed to move in
a piecewise linear manner in a road network (Figure 7.4).irThevements are constrained by
roads, which are connected hgtwork nodesalso known agonnection nodes

Moving clusters can be represented by their centroid or bst @fsdistant points in a cluster
[46]. Figure 7.2 depicts these two ideas. | use a centroidogmh to represent the moving clusters
in SCUBA. It works well when the clusters are comgact

| define centroid, radius and diameter for a cluster usingtididean distance as stated below.

Given N d-dimensional data points in a clus{é¥;} where i = 1,...N, theentroid X0, theradius

For simplicity, | assume circular clusters, but the logio e easily extended to other shapes (e.qg., ellipses).
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Figure 7.4: Road Network

R anddiameter D of the cluster are defined as:

7t ZNzlil
== 7.1
0-== (7.1)
SERURE
i=1 1
R= 7.2
~ (7.2)
9 1
A AT
D _ i=1 7=1 ( J) (73)

N(N—1)

R is the average distance from member points to the centraidis the average pairwise

distance within a cluster. They are two alternative measafé¢he tightness of the cluster around

the centroid.
| assume moving objects’ location updates of the followiagnf (0.0OID, 0.Log, 0.t, 0.Speed

0.CNLogG o.Attrs), wheren.OID s the id of the moving object.Log is the position of the moving

object,o.tis the time of the update, Speeds the current speed. | assume the speed doesn’t change

between two reported location updates. Bh@NLocis the position of the connection node in the

road network that will be passed by the moving object (itsenirdestination). | assume that the
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Figure 7.5: Moving Cluster in SCUBA

CNLocof the object doesn’t change before the object reachesdhisaction nodeo.Attrsis a set
of attributes describing the object (e.g., child, red ctr,)e

Similarly, the moving queries’ location updates arrive g&ta stream, and have the following
format @.QID, g.Log, g.t, g.Speedq.CNLog q.Attry, whereq.QID is the id of the moving query,
g.Log is the position of the query.t is the time of the updatey.Speeds the current speed,
g.CNLocis the position of the next node in the road network that wallgassed by the moving
qguery and thej.Attrsis a set of query-specific attributes (e.g., for range quemjight be the size
of the query, folknnquery, the number of the nearest neighbors, etc.)

A moving cluster can contain both moving objects and moviogrggs (Figure 7.5). Mov-
ing objects and queries that don't satisfy conditions of atier existing clusters form their own
clusterssingle-member moving clusters objects and queries can enter or leave a moving clus-
ter at any time, the properties of the cluster are adjustedrdimngly. | consider the following
attributes when grouping moving objects and queries intstels: (1) Network constraint (e.g.,
road segment); (2) Speed; (3) Direction of the movement,(e@nnection node); (4) Relative
spatial distance from each other.

A moving clusterm at timet is represented in the forrm(CID, m.Log, m.n m.OIDs m.QIDs
m.AveSpeedn.CNLo¢ m.R m.ExpTimg wherem.CID is the moving cluster idm.Log is the
location of the centroid of the cluster at tihem.nis the number of moving objects and queries
that belong to this clustem.OIDsandm.QIDsare the collections of id’s and relative positions

of the moving objects and queries respectively that belorthis moving clustenn.AveSpeets
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the average speed of the clusterCNLocis the cluster destinatiom.Ris the size of the radius,
andm.ExpTimas the "expiration” time of the cluster (i.e., the time whémetcluster reaches the
m.CNLoctravelling atm.AveSpegd

Being composed of objects and queries with similar propgrta moving cluster serves as
a summary of its cluster members. Furthermore, we can tread\ang cluster just as another
moving object that changes its location with time. The ativge of this is that all of the existing
algorithms and indexing techniques proposed for movingaibjcan be easily extended to moving
clusters.

The difficulty in maintaining and computing moving clusterthat once the clusters are formed
at a certain time, with time clustering changes and detstesr[38]. To keep a competitive and
high qualityclustering (i.e., clusters with compact sizes), | set thievang thresholds to limit the
sizes and deterioration of the clusters as the time progse¢s$)distance thresholdo ), and (2)
speed threshol@©s). Distance threshold makes sure that the clustered enétie close to each
other at the time of clustering. The speed threshold gueeanthat the entities will stay close to
each other for some time in the future.

Clusters araissolvedonce they reach their destination points (road connectaites). So
if the distance between the location where the cluster has f@med is short, the clustering
approach might be quite expensive and not as worthwhile. SEmee reasoning applies if the
average speed of the cluster is very fast, and it reachesstsdtion point very quickly, forming a
cluster might not give very little, if any, advantages. Irypital real-life scenario though, moving
objects can reach relatively high speeds on the distansr@ad., highways), where connection
nodes would be far apart from each other. On the smaller rdlaelspeed limits and the proximity
of other cars would constrain the maximum speed the objactslevelop, thus extending the time
it takes for objects to reach the connection nodes. Thesenadigons support my intuition that
clustering can be applicable to different speed scenamiosibving objects in every day life.

Individual position$ of moving objects and queries inside a cluster are repredént relative

2In my implementation | store the coordinates of the clustentbers in memory, but this can easily be changed to
a secondary storage and accessed only dywingwithin operation.
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Figure 7.7: Handling cluster members

form using polar coordinates with the pole at the centroidhef cluster (Figure 7.6). For any
location update point P, its polar coordinates ared), where r is the radial distance from the
centroid, and is the the counterclockwise angle from the x-axis. As timegpesses, the center
of the cluster might shift, thus making it necessary to timms all the relative coordinates of the
cluster members. | maintain a transformation vector foheduaster that records the changes in
position of the centroid between the periodic executionsefriain from constantly updating the
relative positions of the cluster members, as it is not resmgsunless it is gin-within (Section
7.5.2). Before thgin-within begins, the relative coordinates of the cluster membeas &ife being

joined within a cluster) are translated from relative to élhsolute positions.

70



LT ~ 0O,(r,,07)
<

O4(ry,04

04(r5,05)

Q4(rs04)

-~

Qs(rs,05)

Velocity Vector

Figure 7.8: No load shedding

7.3 Moving Cluster-Driven Load Shedding

In this section | describe a technique to load-shed datadb@senoving clusters. As mentioned
above, location-based services are characterized by @ famnber of objects and queries con-
stantly sending their location updates. The arrival ras loe high and unpredictable. With
limited resources, the system can potentially become oaddd. It may not be feasible to do a
run-time distribution or add more resources. So the altemmaould be to shed some data. A load
shedding procedure should identify and discard the lessitapt data (i.e., the data that would
cause the minimal loss in accuracy of the answer).

Load shedding has been explored in networking [45], muliiilm¢18], and streaming data-
bases [76, 75, 4]. In spatio-temporal databases, reductitre amount of data is dealt with by
controlling the update frequency [61, 81], where objectretheir positions and velocity vec-
tors only when their actual positions deviate from what thaye previously reported by some
threshold.

In this thesis, instead | explore a moving cluster-driveadkshedding technique. Specifically,
| consider the datansidethe moving clusters (i.e., the relative positions of thestdu members
with respect to their centroids). As was described in Sactfi@, the individual positions of the
cluster members are represented using polar coordindétisedo the centroid of the cluster.

Depending on the system load and the accuracy requiren®0t$BA can alternate between
methods for handling internal members of the clusters (igu7). Namely, all cluster members’

relative positions are maintained (Figure 7.8), none ofittividual positions are maintained
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(Figure 7.9), or a subset of relative positions of the clustembers (furthest from the centroid)
are maintained (Figure 7.10). The rest of the members areaabed into a structure inside a
cluster callednucleus a circular region that approximates the positions of thester members
near the centroid of the cluster. The size of the nucleusterhéned by the parametéry which

is a fraction of the maximum size of the cluster determine®by The size of the nucleus can
be expressed &3y = é * Op. The larger the value af the smaller the nucleus, hence the more
relative positions of the cluster members need to be maiethiHence | load shed data based on
common spatio-temporal attributes, maintained in the foofrmoving clusters.

If the system is about to run out of memory, first, SCUBA foregimaintenance for a subset of
objects and queries’ inside a cluster, and usesceudo approximate the positions of the tightly-
coupled around the centroid objects. If memory requiresare still high, then SCUBA can stop
maintaining the relative positions of all cluster membeétsgether. In this case the cluster is the
sole representative of the movement of the objects andegitrat belong to it.

Such internal cluster representation trades off betweeunracy and scalability. The accuracy
highly depends on how compact the clusters are. The largesite of the clusters, the more
false positives we might get for answers when performingdhebetween. If none of the relative
positions are maintained, then when two clusters intefgegin-betweei, we must assume that
the objects from the clusters satisfy the queries from bhisters. Making the size of the clusters
compact will give more accurate answers, but also will inseethe overall number of clusters, and

thus the join time. Increasing the size of clusters would entdlle processing faster, but with less

Cluster Members:
(01,042,053, Q4.Qx)

Velocity Vector

Figure 7.9: Full load shedding
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Figure 7.10: Partial load shedding

accurate results. In Section 8.1.5 | evaluate all three oustifior handling the individual positions

of the cluster members in terms of performance and accuracy.

7.4 Clustering Moving Objects

| use an incremental clustering algorithm based ornL#sder-Followerclustering algorithm [39,
21] to create and maintain moving clusters in SCUBA. The majlvantage of incremental clus-
tering algorithms is that we don’t have to store all the l@raupdates (i.e., points) to form the
clusters. So the space requirements are small. In adddmmre A expires, SCUBA can imme-
diately proceed with the join, without spending any time erclustering the entire data set. The
disadvantage is that clustering is location update arav@ér sensitive. | experimentally evaluate
the tradeoff between the performance and clustering qualien clustering updates incrementally
vs. non-incrementally, when the entire data set is avalébéction 8.1.4).

When a location update from the moving objedrrives, | follow the following three steps to
determine the moving cluster m it belongs to:
Step 1. Use moving object’s position to probe the cluster grid tgldection 7.5.1) to find the
moving clusters in the proximity of the current location bé&tobject (i.e., clusters that the object
can potentially join). If there are no clusters in the gritl,daéen the object forms its own cluster,
with the centroid at the current location update of the abgead radius = 0;
Step 2: If there are clusters that the object can potentially joie,iterate through the list of the

clusters, and check the following properties:
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Figure 7.11: Shared execution

1. Isthe moving object moving in the same direction as thstelum ¢0.C'N Loc ==m.C' N Loc)?

2. Is the distance between the centroid of the cluster andottetion update less than the
distance threshol. Loc, — m.Loc;| < ©p?

3. Is the speed of the moving object less than the speed tiddshSpeed — m. AveSpeed| <
Os7?

Step 3:If the moving object satisfies all three conditions in Stefh&n the moving clustexbsorbs
the moving object, and adjusts its (i.e., cluster) propsrtithe centroid, the average speed, the

radius, and the count of the cluster members.

7.5 Shared Cluster-Based Processing

In this section, | present &calable Cluster-Based Algorith(BCUBA) for evaluating continuous
spatio-temporal queries on moving objects. SCUBA utiliaeshared cluster-based execution
paradigmto reduce memory requirements and optimize the performafie main idea behind
shared cluster-based execution is to group similar obgctsell as queries into moving clusters,
and then the evaluation of a set of spatio-temporal quesiabstracted as a spatial jdetween

the moving clusters andithin the moving clusters.
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Figure 7.12: Join between moving objects and queries

To illustrate the idea, Figure 7.11 graphically depictsdifierence between the traditional way
to execute queries, the shared execution, and the sharsi@dbased execution models. Tradition-
ally a separate query plan is generated for each individuedyg(Figure 7.11(a)). Each query scans
all the moving objects, filtering out only the ones that $gtike predicate of the query. Figure
7.11(b) illustrates thehared executioparadigm where queries are grouped into a common query
table, and then the problem of evaluating numerous spatigoral queries is abstracted as a spa-
tial join between the set of moving objects and queries [Béing a shared plan allows only one
scan over the moving objects. But we note that this methddatis queries and objects individ-
ually. With large numbers of objects and queries, this miiycseate a bottleneck in performance
and potentially run out of memory. Withared cluster-based executigfigure 7.11(c)), we form
moving clusters, by grouping both moving objects and qgent heterogeneous moving clusters
based on their common spatio-temporal attributes. Themi@asoin is performed on all moving
clusters. Only if two clusters overlap, we have to go to thgeciiquery level of processing, or
given load shedding automatically assume that objects ardeas within those clusters produce
join results.

Figure 7.12 illustrates a motivating example for SCUBA. élare assume that we maintain
relative positions of all cluster members. With shared akea paradigm (Figure 7.12(a)) objects

and queries would be joined as follows:

75



cell[0,0]: 2 queries< 12 moving objects=- 24 ind. joins
cell[1,0]: 1 queryX 1 moving objects 1 ind. join

cell[1,1]: 3 queries<d 11 moving objects= 33 ind. joins

Total: 58 individual joins

With SCUBA (Figure 7.12(b)), we cluster objects and queri&ge form 5 clusters: M5
objects, 0 queries), M6 objects, 2 queries), M4 objects, 1 query), M3 objects, 1 query), and
M5(5 objects, 1 query). So the execution would be as the foligwi

cell[0,0]: 2 clusters (M,M,):

2 Betweerjoins and

2 Withinjoins where:
Join-WithinM,) = 0 ind. joins
Join-WithinM,) = 12 ind. joins

cell[1,1]: 3 clusters (M,M5,Mg)

3 Betweerjoins and

4 Withinjoins where:
Join-WithinM3) = 3 ind. joins
Join-WithinM,) = 5 ind. joins
Join-WithinM5;) = 5 ind. joins
Join-WithiNMs,M,) = 7 ind. joins

Total: 37 individual joins
The join between moving clusters;Mind M, is done only once. Therefore these clusters are
not joined in the cell[1,0]. So clearly, from the example aldewer joins need to be made when

utilizing SCUBA algorithm, thus minimizing the overall jptime, and improving the performance.

7.5.1 Data Structures

In the course of execution, SCUBA maintains five in-memortadaructures (Figure 7.14): (1)

ObjectsTablg(2) QueriesTablé3) ClusterHome(4) ClusterStorageand (5)ClusterGrid
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ObjectsTablestores the information about objects and their attribufgs.object entry in the
ObjectsTablénas the form@.OID, o.Attrg, whereo.OID is the object id, and.Attrsis the list of
attributes that describe the object. Similarly, the entryhie QueriesTablehas the form ¢.QID,
g.Attrg whereq.QID is the query id, and thq.Attrsis the list of query attributesClusterHome
is a hash table that keeps track of the current relationstepseen clusters and their members.
A moving object/query can belong to only one cluster at a timan entry in theClusterHome
table is of the following formID, type CID), wherelD is the id of a moving entitytypeindicates
whether it’'s an object or a query, af@dD is the id of the cluster that this moving entity belongs to.
ClusterStorages a table storing the information about all moving clusmreently present in the
system (e.g., centroid, radius, member count, e@iysterGridis an in memory N x N grid table.
The data space is divided into N x N grid cells. For each grltj GdusterGridmaintains a list of

CIDs (cluster ids) of moving clusters whose circular regionariap with this cell.

7.5.2 The SCUBA Algorithm

In this section, | provide the overview and the details of SI@JBA algorithm.

The execution of SCUBA can be broken down into three phadg<Cl(ster Pre-Join Mainte-
nance, (2) Cluster-Based Joining, and (3) Cluster PostMaintenance phases (Figure 7.17).

In the cluster pre-join maintenance phase, the followirggthe tasks that take place: (1) for-
mation of new clusters, (2) dissolving empty clusters, @)dkpansion of existing clusters.

In the cluster-based joining phase, we join clusters anal jihi@ objects and queries inside the

overlapping clusters.

Join-Between

= overlap

Figure 7.13.Join-Betweertlusters
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Figure 7.15:Join-Withinfor a singular cluster

In the cluster post-join maintenance phase, we dissolvé&irgpclusters and relocate non-
expiring clusters based on a velocity-vector back into tte. g

Algorithm 6 gives the pseudo code for SCUBA.

For each execution interval, SCUBA first initializes theemval start time (Step 2). Befou&
time interval expires, SCUBA receives the incoming locatipdates from the moving objects and
gueries and incrementally updates existing moving clasteicreates new ones (Step 5). Alg. 7
gives the pseudo code for for the clustering procedure inEBCWwill use an example of a moving

object when describing the clustering. Similar processrdpne for queries. The algorithm starts

Join-Within

=
N — O(%) > 1 = query results

ignored —

oS

Figure 7.16:Join-Withinfor two clusters
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by checking theClusterHometable to see if there is a cluster that the object belongsready
from the previous location updates (Algorithm 2, Step 2).

If there are none (this is a new object in the system), a newy &tade in the Objects table
(Step 5). Location update is hashed to a grid cell, and a sebwing clusters is retrieved (currently
overlapping with that grid cell). SCUBA checks each clustesee if the current object can join
that cluster (Steps 17-18). If yes, the objecadoptedby the cluster (Step 19). Otherwise, the
object forms its own cluster (Step 25).

If the object already belongs to a cluster due to previoustion updates (Step 30), then
SCUBA checks to see if the object is still related to this ®ugi.e., has similar attributes with
the cluster) (Step 32). Ifitis still related, then it chedkthe cluster expiration time (time when it
reaches its destination) is greater than or equal to thedirttee current location update (Step 35).
The reason for this check is that we don’t want to cluster thjeai to the cluster that expires before
the timestamp of the current location update. If all teséspssed, SCUBA adjusts the object’s
relative position to the centroid based on the current lonatpdate (Step 37). If the dissimilarity
between the object and the cluster has grown beyond thsfdiscussed in Section 7.4), other
clusters are probed to see if the object can join them. lietlaee none, then the object forms its

own cluster (Algoritithm 2, Steps 40-45).
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Algorithm 6 SCUBA()

1: loop
2. Tgart = current time
3 while (current time - Tq¢) < A doO
4 if new location update arrivettien
5: Call MovingEntityClusteringsource object o/query)q
6: end if
7:  end while
Il A expires
// begin query execution
8: forc=0to MAX GRID CELLdo
9: for every moving clustem € G, do
10: for every moving clustemp € G do
11: //if the same cluster, do only join-within
12: if (mr, ==mg) then
13: Call DoWithinClusterJoiGn, ,mg)
14: else
15: //do between-join only if 2 clusters contain members oéuiifit types
16: if ((mr.OIDs> 0) && (mp.QIDs > 0)) ||
((mr.QIDs > 0) && (mp.OIDs > 0)) then
17: if DoBetweenClusterJofm ,,mg) == true then
18: Call DoWithinClusterJoiGn, ,mg)
19: end if
20: end if
21: end if
22: end for
23: end for
24:  end for
25:  Send new query answers to users
26:  Call ClustersMaintenandg //do some cluster maintenance
27: end loop

When A time interval expires (location updating is done), SCUB&Arts the query execution

by performingjoin-betweerclusters (Algorithm 1, Step 11) aroin-within clusters (Algorithm 1,

Step 15). If two clusters are of the same type (all objectdl guaries), they are not considered for

thejoin-between Similarly, if all of the members of a cluster are of the sagpet ngjoin-withinis

performed for that one cluster. Th@n-betweerchecks if the circular regions of the two clusters

overlap (Figure 7.13), anjdin-within performs a spatial join between the objects and queriedensi

each cluster, i.e., a self-cluster within join (Figure 3.2&d inside any two overlapping clusters

(Figure 7.16). Ifoin-betweerdoes not result in an intersection, them-within can be skipped.
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Algorithm 7 MovingEntityClustering(moving entity (object or query) e

1. mpy = A moving cluster from probin@lusterHoméor e.ID
2: if (mg ==null) then
. llentity doesn’t belong to any cluster
4:  if e.type== objectthen
5. Make new entry€.1D, null) in ObjectsTable
6: elseife.type== querythen
7.
8
9

Make new entry€.1D, null) in QueriesTable
end if
. Sg = Set of moving clusters from probir@lusterGridfor e. Loct
10: if (Sg ==null) then

11: /lthere are no other clusters in proximity of
Ilcurrent location update of entity e

12: Call CreateNewClustée)

13: return

14: else

15: /lthere are clusters that potentially this entity can join

16: bool isClusterMember false

17: for every moving clusterng € Sg do

18: if (IsClusterCandidaten, €) == true) then

19: Call AdoptNewClusterMembgrn., €)

20: isClusterMember true

21: break

22: end if

23: end for

24 if (isClusterMember= false then

25: Call CreateNewClustée)

26: return

27: end if

28: endif

29: else

30:  /ithere is a cluster that moving entity already belongs to
//(from previous update)

31: boolisClusterMember false

32: if (IsStillClusterRelate@in 7 , €) == false) then

33: Call RemoveClusterMemben z;, e.ID)
34:  else
35: if (mz.ExpTime> e.f) then
36: isClusterMember true
/ladjust relative position of cluster member relative totreid
37: Call AdjustCurrentClusterMembéfi g7, €)
38: end if
39: endif
40: if isClusterMember= falsethen
41 Illcheck to see if there are other clusters the entity can join

//(similar to steps 17-24 above)

//still not a cluster member

42: if isClusterMember= falsethen
43: Call CreateNewClustée)

44: end if

45:  endif

46: endif

47: return

7.6 Analysis of SCUBA

Here | analyze the performance of SCUBA in terms of memoryireqnents, number of join
comparisons, and I/O cost. | use parameters listed in Tablagmy analysis.

Memory Requirements: We maintain five in-memory data structuré#ijectsT able, QueriesT able,
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Variable Description

A Time interval between periodic query execution
Nop; Total number of objects

Ngry Total number of queries

Nerwst Total number of clusters

Aosj Average number of objects in a cluster| Noy; /Nyt |
Agry Average number of queries in a cluster{ Ny, /Nyt |
Aust Average number of clusters in a grid cell| Noyys¢/Neeirs |
N b Number of unique destinations on the road network
Eobj Size of object entry ibjects table

Egry Size of query entry ifQueries table

Eca Size of cluster entry il lusterGrid

Ecsp,.. Size of cluster base entry (i.e., cid, centroid, radius)

in ClusterStorage table
EcScaremser | Size Of cluster's member entry (i.e., id, relative posi}ion
in ClusterStorage table

Ech Size of cluster entry il luster Home table

Coverlap Average number of grid cells that overlap with a cluster
S Page size (measured in bytes)

Neeiis Number of grid cells

©p Distance threshold

Og Speed threshold

laBy Average percent of clusters intersecting with other chgste
@ Nucleus factor (from formul® = é * Op)

© Inverse load shedding factor

Raar Average area of intersection when two clusters are inteedec
Racs Average cluster size (area)

C, Length of a grid cell in x dimension

Cy Length of a grid cell in y dimension

Table 7.1: Parameters used in SCUBA analysis

ClusterGrid, Cluster Storage, andCluster Home. The memory consumed by these structures

can be described as followSbjectsTable memory consumption is

ObjectsTable = Ny * Eop; (7.4)

Similarly, QueriesT able:

QueriesTable = Ny * Egpy (7.5)

ClusterGrid memory requirements are
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ClusterGrid = Nepust * Coveriap * Eoc (7.6)

where ..., describes the number of cells that a cluster overlaps withcan be estimated as

Sc us
Coverlap = ’V Sl ”t-‘ (77)

where S, IS the largest possible cluster size afig; is a grid cell size. The size of a circular
cluster is determined by the furthest away from the centchidter member. It can grow up to the
distance threshold®p. S..; represents the area of a rectangular cell, and can be dedas...;

= C,* Cy, whereC, andC), are the lengths of a grid cell in X and y dimensions. Hence we ca

rewrite (Equation 7.7) as

(7.8)

9 2
Coverlap - ’Vﬂ-* D —‘

Oy x C,
Equation (7.8) implies that’,, ..., depends on the size of the clusters and the size of the gt cel
Cluster Storage memory requirements are:
ClusterStorage = Noyst * Ecsy,..+

(7.9)
_'_(p(NOb] * ECSC]\lembe'r + quy * ECSC]VIember)

wherey is an inverse load shedding factor{0, < 1). Wheny = 0, none of the relative location
updates of cluster members are maintained. Thus, a mowisteclserves as a sole representation
of the movements of objects and queries that belong to it. Whe 1, all relative positions of
the cluster members are preserved. In other words, no dated When 6< ¢ < 1, partial load
shedding is performed, that ig ¢ 100)% of positions of the cluster members are maintained. S
the lower thep, the fewer positions are preserved (the greater the loatistwirs), and vice versa,
the higher thep, the more of the positions of the objects and queries insidester are saved.

Memory consumed by'luster Home table is:

ClusterHome = Ny * Ecyp + Nyry * Ecp (7.10)

Combining equations (7.4)-(7.10) and rearranging the $ethe total memory size consumed by
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these structures is:

Mscupa = Nopj * (Eopj + Ecu)+

+Nyry * (Egry + Ech) (7.11)

+ Neust * ([gji’éﬂ * Ece + Ecsp,,. )+

+0(Noj + Nary) * EcSensemver
Equation (7.11) suggests that once the environment paeasn@t,,;, £,,,, Ecu, Ecs, andEcq)
are fixed, the total amount of memory consumed by SCUBA dependhe number of objects
and queries, the number of clusters, the number of grid tredisthe clusters overlap with and the
load shedding factor. The number of clusters in SCUBA depamdthe number of objects and
queries, the two threshold3, and©¢, and the number of unique destinations that the clusters
are moving towardsNy p). Coueriap depends on the size of the grid cells and the size of clusters.
Assuming that size of the grid cells is fixed, then the sizéhefdlusters has a direct effect on the
memory consumption. Following the above observationsgliigering criteria, the distanc@®y,)
and speed threshold®{) must be chosen carefully according to the applicationirequents and
system configurations.

Faced with limited resources (e.g., memory, CPU) and resdrtime response obligation when

processing really bursty data streams, a call for load shgdwn be justified. Yet load shedding

comes at a price of losing accuracy. The accuraty-(;54) can be expressed as following:

Ascupa = max(

(Nclust * % * (Aov; + Agry)), (7.12)

@(Nobj + quy))/(Nobj + quy)
| measure accuracy as the ratio of the number of relativdiposiof the cluster members main-
tained to the total number of objects and queries. The higjfganumber of positions preserved, the
higher the accuracy of the results we expect. # 1, the relative positions of all cluster members
are preserved and accuracy = 100%. jAdecreases (i.e., load shedding increases) the accuracy
decreases. Ip =0 (i.e., all relative positions are load shed), the acguvatue is estimated by the

ratio between the average intersection area and the te@loda cluster multiplied by the sum of
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the average number of cluster members. Both equations {iequ&all) for memory and (Equa-
tion 7.12) for accuracy imply that as the inverse load sheglfiactor decreases, the memory
requirements and accuracy decrease, and vice versa. Pneseats a tradeoff problem between
the memory requirements and accuracy.

Join Performance: | analyze join performance in terms of the number of join cangons. The
number of joins is affected by the number of cluster memhmysitions maintained inside clusters
(i.e., all, none, or some). If relative positions for all eler members are maintained, the number

of joins in SCUBA can be estimated as:

Aclust_l .
JscuBay, = Neeiis * 21 i)+
+ (Netust * Aopj * Agry)+ (7.13)

+(Laps * Netust) * Aopj * Agry

Aclust_l . .. . .
where »_ i is the average number bktweerclusterjoinsin a grid cell, Nejse * Aoy * Agry

=1
is the number of individual joins done when performingvighin join for a singular cluster (i.e.,
joining objects and queries that belong to the same clysian (45 * Nepust) * Aovj * Agry 1S
the number of individual joins performed for overlappingsters (i.e.join-within for overlapping

clusters). If the cluster member positions are not maieththe number of joins is

Aclust_l .
JscUBANone = Neells * ; i (7.14)
This equals to the count ¢ghin-betweefs only. Finally, if only some relative positions for cluste
members are maintained and the rest of the cluster memlgeapproximated byucleusthe total

number of joins is

Aclust—l .
JScUBApy 10 = Neells * Z:l A
(N L 7328 ¢ 2+ (7.15)
+<IABJ * Nclust) * 1 % % * %)

where "1” stands for one nucleus per cluster.

So the total number of join executions directly depends emtimber of individual positions of
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cluster members preserved, in other words the load shedatitgy. If all of the relative positions
of cluster members are shed, the number of joins dependseaawvtrage number of clusters per
grid cell. This in its own turn depends on the total numberlo$ters, their size and the size of the
grid cells. If some relative positions are maintained, tbenber of joins depends on the average
number of clusters per cell, average number of objects ardapuper cluster and the size of the
nucleus (which is affected by the, as well as the percent of clusters intersecting with edslro
If all relative positions are kept, the number of joins deggean the average number of clusters per
grid cell, average number of objects and queries per clasigthe percent of intersecting clusters.
I/0 Cost: We execute SCUBA in-memory, but with an extremely large nendb objects, queries
and clusters and no load shedding allowed, another alteenabduld be spilling data to the disk. In
particular, | focus on thé€'lusterGrid table, as moving clusters frequently change their location
and thus the grid would have to be frequently updated. Thebeumf pages in each disk-based
grid cell in theClusterGrid table is:
]
Pgoen = I@w (7.16)
Ecc

So the total number of pages can be determined as:

Po = Pacen * Neelis (7.17)

The I/O cost depends on the number of times SCUBA has to access the disktHgmid. This
would happen in 3 cases:(1) when a new cluster is formed, (@nvwa new cluster member in-
creases the size of the cluster, and SCUBA has to check iflt/e#ec might overlap with any
surrounding grid cells, and (3) when doing a spatial joimigetn moving clusters in a grid cell.

The cost of I/O when inserting a new cluster can be calculased

IOInsert - Tr + Tw*
(7.18)

miﬂ(ch, Nclust * Cintersect * PGCell)

whereC;,:rseet 1S the number of cells that intersect with a cluster inseiriealthe grid.7,. andT,

3We measure the cost of I/O in terms of time.
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denote the time to "read” and "write” to a grid cell respeetiv
When the radius of the cluster increases, we need to updakeadew grid cells that now the

cluster might overlap with. So the I/O cost for expansionhef tluster can be approximated as:

IOciustzp = T + T

min(Poa, Cnewoveriap * Pacen)+ (7.19)

+T5 % Ty % p 5 A s (Top; + Tgry)
whereCyecwoveriap 1S the number of new cells that the cluster overlaps with, eesalt of cluster
expansion. Since the expansion of the clusters is affegtatebarrival of location updates from
objects and queries, this introduces the fgafl,,* p* A*(rq; + ) in the Equation 7.19p is
the percent of objects and queries causing the expansidreaaster. If the update falls within
the current cluster without causing the increase in sizegaoess to the grid is necessary. If the
update causes the expansion of the cluster, we have to loteugrid for the current position of
the centroid of the cluster, and record the expansion ofltrster in the grid.

When doing the join between moving clusters, each grid celild/be read only once. So the

I/O cost for the join is:
]Ojoin = Tr * min(PCG7 Coverlap * Nclust * PGC’ell) (720)

So the overall cost of the I/O in SCUBA is the sum of of the I/@tsdrom the insertion of clusters
into the grid, expansion of clusters in the grid, and joiningving clusters in the grid.
IO0scupa =T, * Typ*
min(Pea, Newust * Cinterseet * Pacen)+
+T, + T, * min(Peq, (CNewovertap * Pacen))+ (7.21)
+T5 % Toy 5 p o A s (Topj + Tgry)+

+Tr * min(PCG7 (Coverlap * Nclust * PGCell))

| assume that’,, > T, thenT, can be ignored. So the upper bound of the total I/O cost is

10scupa = 4+ Ty, x Pog+ (7.22)

+2 % Ty 5 p* Ak (Tops + Tgry)

87



This means that the total number of 1/0Os for SCUBA depends(bnthe time to write to a grid
cell, (2) the total number of pages in th8usterGrid, (3) the length of the time interval, (4)
the arrival rate of objects and queries, and (5) the perdetiteomoving objects and queries that
cause the expansion of the clusters they belong to. We rexelaty depends on the thresholds

we specify for clusteringd, and©s) and size of the grid cells.
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Chapter 8

Experimental Results: SCUBA Evaluation

In this chapter | describe experimental results evaluatiegperformance of SCUBA compared to

regular (non-clustered) grid-based evaluation of sp&toporal queries.

8.1 Experimental Evaluations

In this section, | describe my experimental evaluations GfJBA. | compare SCUBA with a
grid-based spatio-temporal range algorithmhere objects and queries are hashed based on their
locations into different grid cells. Then a cell-by-celijdetween moving objects and queries is
performed. Grid-based execution approach is a common elioicspatio-temporal query execu-
tion. Many works in the literature exploit it in one way or tother (e.g., [57, 84, 62, 22, 60]). In
all of the experiments queries are evaluated periodicaihgify A time units).

To be fair in comparison, | implemented incremental haslfinghe regular execution model,
where objects and queries are immediately inserted intgrideupon their arrival.

Section 8.1.1 describes my experimental settings. Se&ib2 compares the performance
of SCUBA with the regular execution model when varying grall sizes. In Section 8.1.3, |
study the performance of SCUBA with varying cluster skewfagfors. Section 8.1.4 studies the

performance of SCUBA when performing incremental vs. nmreémental clustering. Finally,

IFor simplicity, | will refer to it asregular executioror regular operator
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Section 8.1.5 studies the performance and accuracy of SCulieh performing load shedding on

arriving location updates.

8.1.1 Experimental Settings

| have implemented SCUBA inside our stream processing sy&I&PE [64]. Moving objects and
moving queries generated by thietwork-Based Generator of Moving Objefif] are used as
data. The input to the generator is the road map of Worcedt@f. All the experiments were
performed on Red Hat Linux (3.2.3-24) with Intel(R) XEON(}KPU 2.40GHz and 2GB RAM.
Unless mentioned otherwise, the following parameters aesl un the experiments. The set of
objects consists of 10,000 objects and 10,000 spatio-teahpmnge queries. Each evaluation in-
terval, 100% of objects and queries send their location tigsdeRelative positions of all cluster
members are maintained inside clusters (i.e., no load sgddor theClusterGridtable | chose
100x100 grid size A is set to 2 time units. The distance threshéld equals 100 spatial units.

The speed thresholé is set to 10 (spatial units/time units).

8.1.2 Varying Grid Cell Size
In this section, | compare the performance and memory copsamof SCUBA and the regular
grid-based algorithm when varying the grid cell size. Feg8rl gives the effect of increasing
the granularity of the grid in regular and SCUBA operatomc®i the coverage area (the city of
Worcester) is constant, by increasing/decreasing thecoalit in each dimension (x- and y-), we
can control the sizes of the grid cells. So in 50x50 grid tlze sif a grid cell is larger than in
150x150 grid. So the larger the count of the grid cells, thalEmthey are in size and vice versa.
From Figure 8.1a, the join time decreases for the regulaadgesignificantly when decreasing
the grid cell size. The reason for that is that smaller caligain fewer objects and queries. Hence,
fewer comparisons (joins) need to be made. But the fine gaaitybf the grid comes at a price of
higher memory consumption. This is due to the fact that aelargmber of grid cells are created,
each containing individual location updates of objects gquneties.

The join time for SCUBA slightly goes up as the grid cell sibesome smaller. But the change
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Figure 8.1: Varying grid size

is insignificant, because the cluster sizes are compact\wem as the granularity of the cells is
increasing, the size of grid cells is still larger than theesof clusters. So unless many clusters
are on the borderline of the grid cells (overlapping with entitan one cell), the performance of
SCUBA is not "hurt” by the finer granularity of the grid. Moreer, only one entry per cluster
(which aggregates several objects and queries) needs tocatdle m a grid cell vs. having an
individual entry for each object and query. This provideganenemory savings when processing

extremely large numbers of densely moving objects and gsieri

8.1.3 Varying Skewness

In this section, | compare the performance of SCUBA with taeggrid-based method when skew-
ing the spatio-temporal attributes of moving objects andrigis. | vary the attributes causing
objects and queries to be very dissimilar (ho common ate#uor very much alike (i.e., cluster-

able). Several data sets were generated varying clusteatiibutes of moving objects and queries
(e.g., speed, destination, road network) to vary the nurabelusters and the number of cluster
members per cluster.

Figure 8.3 illustrates the effect of skewing the data frormerery dissimilar to very alike
in movement. When data is dissimilar, many single membestets or clusters with few cluster
members are formed. When data has many similarities, festerisiare formed containing a large
number of cluster members. Thieew factorepresents the average number of moving entities that
have similar spatio-temporal properties, and thus coulgrbaped into one cluster. For instance,

when skew factor = 1, each object and query moves in a distiagt Hence each forms its own
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Figure 8.2: Shapshots of execution intervals with varyikepsng factor

cluster. When the skew factor = 100, every 100 objects/qaesending their updates move in a
similar way. Thus they typically may form a cluster. | kept tlelationship between objects/queries
and clusters they belong to unchangeable until the clustsrdjssolved (i.e., once an object/query
belongs to a cluster, it doesn’t leave it).

In Figure 8.3, when objects and queries are non-clusterti#eSCUBA performance suffers
due to the overhead of many single-member clusters wherg jpanbetween clusters are per-
formed. If many single member clusters spatially overl&p, jpin-within is performed as well.
This increases the overall join time. In real life this sagm& highly unlikely as with large num-
ber of moving objects there often may be at least some thaldd@ve common motion attributes
for some duration of time. As the skew factor increases (Q@:land more objects and queries

are clusterable, the join time for SCUBA significantly dexges. The overall join time is roughly
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Figure 8.4: Incremental vs. Non-Incremental Clustering

3.5 times faster compared to a regular grid-based approheh the skew factor equals 100, i.e.,

approximately 100 moving entities per cluster.

8.1.4 Incremental vs. Non-incremental Clustering

In this section | study the tradeoff between the improvedlityuaf the clusters which can be
achieved when clustering is done non-incrementally (wHedata points are available) and the
performance of SCUBA. As proposed, SCUBA clusters locatipdates incrementally upon their
arrival. The quality of the clusters is affected by the ordewhich the updates arrive. | wanted to

investigate if clustering done offline (i.e., non-increraly, when all the data points are available)
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producing better quality cluster groups and facilitatinéaster join-between the clusters could
outweigh the cost of non-incremental clustering. In pat#c | focus on the join processing time,
and how much improvement in join processing could be acdievieh better quality clusters vs.

when clusters are of slightly poorer quality when formed@neentally.

| implemented aK-meansextension to SCUBA for non-incremental clustering. Onehsf t
disadvantages of the K-means algorithm is that the numbgusfers must be decided in advance.
| used a tracking counter for the number of unique destinataf objects and queries for a rough
estimate of the number of clusters needed. Another disaéalgans that K-means needs several
iterations over the dataset before it converges. With eehtion, the quality of clustering im-
proves, but the clustering time takes significantly londeraried the number of iterations from
1 to 10 in this experiment to observe the impact on qualitylo$ters by increased number of
iterations.

Figure 8.4 presents the join times for SCUBA when clusteisndone incrementally vs non-
incrementally. The bars represent a combined cost of ¢logt¢éime and join time. The time
to perform incremental clustering is omitted as the joingessing starts immediately whex
expires. In the offline clustering scenario, the clustehag to be done first before proceeding to
the join. With the increased number of iterations, the duali clusters is better. This aids in faster
join execution compared to the incremental case. The costiing for the offline algorithm to
finish the clustering outweighs the advantage of the fastar \When the number of iterations is
3 or greater, the clustering time takes longer than the bjcteprocessing. The larger the dataset
the more expensive each iteration becomes. Offline clugtésinot suitable for clustering large
amounts of moving objects when there are constraints oruéredime and memory space. Even
with a reduced number of scans through the data set and imghijoin time, the advantage of
having better quality clusters is not amortized due to thewamof time spent on offline clustering

and larger memory requirements.
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8.1.5 SCUBA and Load Shedding

Here | evaluate the effect of moving cluster-based load dingdon performance and accuracy in
SCUBA.

Figure 8.6 represents the join processing time and accunaasurements for SCUBA when
load shedding positions of the cluster members. The x-&qsesents the percent of the size of
the nucleus(i.e., circular region in the cluster containing clustermfiers whose positions are
discarded) with respect to the maximum size of the cluster. simplicity, | will refer to it as
n. Whenn = 0%, no data is discarded. On the opposite, when100%, all cluster members’
positions are discarded, and the cluster solely approeisntite positions of its members. The
fewer relative positions are maintained, the fewer indraidjoins need to be performed when
executing a join-within for overlapping clusters.

Our experiments illustrate that this load shedding comes jtice of less accurate results
(Figure 8.6b). To measure accuracy, | compared the resuimitied by SCUBA whem = 0%

(no load shedding) to the ones output when 0%, calculating the number of false-negative and

120

7
% 87« SCUBA Join Time <100 | ——Accuracy
g5 < 80
@ R
£ S 60
o 3 S 40
g 2 o
£ a
=1 20

0 0

0% 25% 50% 75% 100% 0% 25% 50%  75% 100%
Relative Positions Maintained Relative Positions Maintained
(a) Join time when load shedding (b) Accuracy when load shedding

Figure 8.6: Cluster-Based Load Shedding
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false-positive results (Figure 8.5). The size of the nugleas a significant impact on the accuracy
of the results when performing load shedding. Hence it mastdrefully considered. When
= 50%, the accuracy: 79%. So relatively good results can be produced with cldsdsed load
shedding.

Spatio-temporal applications are often more sensitivehinges in data characteristics than
regular streaming applications. For instance, a randorp dfdocation updates when objects

move especially fast may totally change the results.

8.1.6 Cluster Maintenance Cost

In this section, | compare the cluster maintenance cost re#pect to join time in SCUBA and
regular grid-based join time. Figure 8.7 gives the clustaimtenance time when the number of
clusters is varied. By cluster maintenance cost we mearnrtieeit takes to pre- and post-process
the clusters before and after the join is complete (i.emfoew clusters, expand existing clusters,
calculate the future position of the cluster using its agerspeed, dissolve expired clusters, and
re-insert clusters into the grid for the next evaluatioeial).

For this experiment, | varied the skew factor to affect therage number of the clusters.

The x-axis represents the average number of clusters inygters. Figure 8.7 shows that the
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cluster maintenance (which is an overhead for SCUBA) idixelly cheap. If we combine cluster
maintenance with SCUBA join time to represent the overatl jmst for SCUBA, it is still faster

than the regular grid-based execution. Hence, even thoagttaming clusters comes with a cost,
it is still cheaper than keeping the complete informatioawbndividual locations of objects and

gueries and processing them individually.
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Chapter 9

Part IV:

Conclusions and Future Work

9.1 Conclusions

This thesis focuses on the understanding of the tradeoféifopmance and accuracy when de-
ciding on a location modelling technique for spatio-tengbaueries on moving objects. Two
types, namely discrete and continuous location managemedels have been studied. An accu-
racy comparison technique for the discrete and continuesigts was developed. This allowed to
compare otherwise very different types of results for the models. Experiments and accuracy
measurements of the output results have shown that wheatsbp@ve slowly, the discrete model
doesn’t “miss” on many results (i.e., intersections betweljects and queries), hence the results
stay relatively accurate compared to the continuous m@&ielas the speed increases, the discrete
model begins to “miss out” on many results that the contisunodel doesn’t. Hence the accuracy
of the discrete location model decreases as the speed ofiagrobjects increases. On the other
hand, the continuous model can produce more accurateggsuttat a high cost of join execution.
This is due to large distances travelled between the latafolates, which have to be “clipped”

(i.e., intersected with) the grid cells of the index, cagsimany overlaps, and thus increasing join
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time. So in the fast moving environments, higher accuracybmachieved with the continuous
model, but at the cost of higher join time. Another conclasilmm the experiments is that if a
server cannot catch up with the data and a load sheddingferped, the continuous model can
still produce relatively high accuracy results. In otherds) if the application requirements are
the highest possible accuracy, then the continuous modeldglhe used. If the application needs
the best possible performance at the cost of accuracy, teerete model should be used. The grey
area is when both high performance and best possible agcaracequested. In this case, it's a
choice between the discrete model with 100% of location tggdand the continuous model with
some load shedding (e.g., load shedding tate20%, which means 20% of data will be dropped,
and only 80% processed). This value of 80% corresponds tatagmtobability parameter (in our
experiments). Calculating the accuracy value and modifyire load shedding rate at run-time
would allow to tune the system to the best possible accyradgrmance ratio. This dynamic
behavior is one of the future tasks for implementation.

Also in this thesis, | proposed, SCUBA,Salable Quster Based_Agorithm for evaluating
a large set of spatio-temporal queries continuously. SCWB#bines clustering analysis with
shared execution paradigm and moving cluster-based loadidgiy to achieve improvement in
performance when evaluating moving queries on moving ébjeBiven a set of moving objects
and queries, SCUBA groups them into moving clusters basedoommon spatio-temporal at-
tributes. The clusters serve as abstractions of data, anidecased to optimize the join processing.
SCUBA performs a spatial join between the moving clustes @mly if the two join (i.e., inter-
sect), the join-within clusters is executed. Hence onlyib tlusters intersect, the execution has
to go to the individual level of processing (i.e., joining@dts with queries).

Clusters can serve as approximations for the locationssahgmbers. As a consequence, a
more “intelligent” load shedding can be performed using mg\clusters in case the system has
to drop some of its workload. The contribution of this thasithe utilization of moving clustering
techniques as means to optimize internal execution of woatis queries in data streaming sys-

tems. Experimental results show that SCUBA is efficientatpssing large numbers of concurrent
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range queries on a large number of moving objects. It shows superior than the alternative of
individual processing of each query when large numbers afingobjects move in similar fashion

(i.e., on the same network, at relatively similar speedd,iarthe same direction).

9.2 Future Work

For future work, we plan to extend our study in the followinigedtions.

First, | assume only circular clusters. A natural extensiuld be to allow non-circular
clusters.

Currently, the parameters for the maximum sizes of the ngpelasters and the sizes of the
nuclei are fixed. The next step would be to dynamically adjustsizes of the clusters and nuclei
(which indirectly determine the amount of data to be loadd}ldgnamically at run-time respond-
ing to the system status (i.e., statistics). For examptagisystem is not catching up with the data
and a larger amount of data needs to be load shed, SCUBA camilyaily adjust the nuclei sized
for all (or ideally for some - least affected) moving clustéws speed up the processing while still
maintaining the highest possible accuracy.

Another possible extension, would be to utilize other indgxechniques with SCUBA. In this
thesis, a grid index was utilized with SCUBA, but possiblgartindex variations can result in even
more efficient processing when combined with SCUBA.

Currently the centroids of the moving clusters are comptitechigh-density regions (i.e.,
many moving objects are attempted to be clustered togathtbeisame cluster, and a centroid is
recomputed every time a new point is added). This may becaneexpensive as the number of
data points joining the cluster increases. It might be bédteluster by using low-density regions
(i.e., regions that don’t contain any objects), to defineltbendaries between the clusters, rather
than using high-density areas to define the centers of tisterki

We will also plan to extend SCUBA algorithm for the procegsof other types of spatio-

temporal queries (e.g., knn, aggregate, etc.). Since rgmlusters group objects by similar prop-
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erties, they may naturally facilitate a faster executiandifferent types of queries. For example,
finding a nearest moving neighbor for each moving object,ratifig similarly moving groups of
objects for data analysis, etc.

Another area of further optimization of the algorithm woblelto allow merging and breaking
clusters and supporting hierarchical clustering to furtsiggimize the processing. In addition, we
plan to test SCUBA on moving objects and queries using reaiphl location-monitoring sensors.

Also as part of our future work, we plan to experimentally leaée dynamically adaptive
spatio-temporal operator behavior, utilizing the accyffaerformance tradeoff model. The spatio-
temporal operator would dynamically switch between the taadels depending on the current
data arrival rates and the average velocities of the obggadsqueries, to maximize the accuracy

and minimize the cost of execution.
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+getY() :_mt }%\ IMotionResultinterface
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Enums MotionGenericResult
#querylD : int
EntityType -queryType : QueryType
+Object : int
+Query : int
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eryType —— - -
QueryTyp #value : MotionDiscreteResult |  [#value : MotionContinuousState
+Range : int
+Cluster : int
+Knn : int 1
+Position : int *
MotionDiscreteResultsCollection MotionContinuousResultsCollection
#items[] : MotionDiscreteResult #items[] : MotionContinuousResultsCollection
ClassType
+Person : int
+Car : int
+Truck : int
+PoliceCar : int
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OperatorStatelm :
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UpdateType
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+DissappearPoint : int
GenericGrid P eShatialGrdcel
#xDimensionSize : int enericSpatialGridCe
#yDimensionSize : int #cellindex : GridCellindex3D
#xDimensionCellCount : int #xMin :int
#yDimensionCellCount : int #yMin @ int
#xDimensionScalingFactor : int #xMax : int
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GenericSpatioTemporalGridCell
#cellindex : GridCellindex3D 4
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1 il
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x !nt -movingObjects|] : MotionContinuousResult -movingObjects[] : MovingObjectState #x : int
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Figure A.1: UML diagram of classes used by regular grid-damsetion operator in CAPE
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«interface»

MotionGenericState IFunctioninterface
#id : int +Calculate() : PositionSpt2D
#entityType : EntityType +Calculate() : Time

JAN

MotionDiscreteState MotionContinuousState
#startPosition : MotionDiscreteState
#endPosition : MotionDiscreteState
#continuity Type : FunctionType

MotionDiscretePositionUpdate
#locationUpdateType : UpdateType

MovingQueryState MovingObjectContinuousState MovingQueryContinuousState

MovingObjectState .
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MovingQueriesintervalStatesCollection
-items[] : MovingQueryState

MovingObjectsintervalStatesCollection
-items[] : MovingObjectState

OperatorStatelmp

MovingObjectsStatesCollection MovingQueriesStatesCollection
-items[] : MovingObjectsintervalStatesCollection | H-items[] : MovingQueriesintervalStatesCollection

Figure A.2: UML diagram of classes used by regular grid-dasetion operator in CAPE
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Motion Operators

XATMultiQueueWindowStreamOperatorim :
Q P P Hierarchy
MotionGenericOperator
#executionlterationCount : int
#delta : int
MotionRangeQueryOperator MotionGenericClusterOperator
#objectsTable : MovingObjectsStatesCollection #objectsTable : MovingObjectsStatesCollection
#queriesTable : MovingQueriesStatesCollection
MotionDiscreteRangeQueryOperator MotionContinuousRangeQueryOperator MotionContinuousClusterQueryOperator

#results : MotionDiscreteResultsCollection | [#results : MotionContinuousResultsCollection
#grid : FixedDiscrete2DGrid #grid : FixedContinuous3DGrid

MotionContinuousClusterOverlapQueryOperator

MotionContinuousClusterAreaQueryOperator

MotionContinuousClusterCenterQueryOperator

Figure A.3: UML diagram of classes used by regular grid-dasetion operator in CAPE
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