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Abstract

This thesis addresses important challenges in the areas of streaming and spatio-temporal data-

bases. It focuses on continuous querying of spatio-temporal environments characterized by (1) a

large number of moving and stationary objects and queries; (2) need for near real-time results; (3)

limited memory and cpu resources; and (4) different accuracy requirements.

The first part of the thesis studies the problem of performance vs. accuracy tradeoff using

different location modelling techniques when processing continuous spatio-temporal range queries

on moving objects. Two models for modeling the movement, namely: continuous and discrete

models are described. This thesis introduces an accuracy comparison model to estimate the quality

of the answers returned by each of the models. Experimental evaluations show the effectiveness

of each model given certain characteristics of spatio-temporal environment (e.g., varying speed,

location update frequency).

The second part of the thesis introduces SCUBA, a Scalable Cluster Based Algorithm for eval-

uating a large set of continuous queries over spatio-temporal data streams. Unlike the commonly

used static grid indices, the key idea of SCUBA is to group moving objects and queries based on

commondynamicproperties (e.g., speed, destination, and road network location) at run-time into

moving clusters. This results in improvement in performance which facilitate scalability. SCUBA

exploits shared cluster-based execution consisting of twophases. In phase I, the evaluation of a set

of spatio-temporal queries is abstracted as a spatial join between moving clusters for cluster-based

filtering of true negatives. There after, in phase II, a fine-grained join process is executed for all

pairs identified as potentially joinable by a positive cluster-join match in phase I. If the clusters

don’t satisfy the join predicate, the objects and queries that belong to those clusters can be savely

discarded as being guaranteed to not join individually either. This provides processing cost sav-

ings.Another advantage of SCUBA is that moving cluster-driven load shedding is facilitated. A

moving cluster (or its subset, callednucleus) approximates the locations of its members. As a

consequence relatively accurate answers can be produced using solely the abstracted cluster loca-

tion information in place of precise object-by-object matches, resulting in savings in memory and
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improvement in processing time. A theoretical analysis of SCUBA is presented with respect to the

memory requirements, number of join comparisons and I/O costs. Experimental evaluations on

real datasets demonstrate that SCUBA achieves a substantial improvement when executing con-

tinuous queries on highly dense moving objects. The experiments are conducted in a real data

streaming system (CAPE) developed at WPI on real datasets generated by the Network-Based

Moving Objects Generator.
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Chapter 1

Part I:

Introduction

1.1 Motivation

Every day we are witnessing continued improvements in wireless communication and geo-positioning.

With the help of Global Positioning Systems (GPS), people can avoid congested freeways and find

more efficient routes to their destinations, saving millions of dollars in gasoline and tons of air

pollution. Travel aboard ships and aircraft is becoming safer in all weather conditions. Businesses

with large amounts of transportation costs are able to manage their resources more efficiently,

reducing consumer costs.

These developments spawned research in the recent years in the field of spatio-temporal data-

bases and real-time streaming databases [17]. Many new applications utilizing the spatio-temporal

aspects of data items begin to emerge. For example medical facilities can track staff and monitor

patients for emergency response, and coordinate logisticsin case of an emergency (e.g., navigate to

the closest hospital or the nearest emergency department (ED) that has available capacity). Utilities

and commercial service providers can track their service engineers and direct the closest service

crew to solve a problem. Emergency response centers can helppeople navigate and evacuate faster

1



in case of disasters such as floods, earthquakes, tornadoes or terrorist attacks. Benefits and uses

of location data are potentially boundless. For instance, scientific and educational applications can

be built based on spatio-temporal data. A geologist, for example, driving through a terrain can use

a hand-held device to view the area she sees with the naked eye, but with additional information

superimposed, which may include seismographic charts, images of the terrain taken at another

season, notes made by other geologists about each landmark in the viewable terrain [82].

Combining the functionality of locator technologies, global positioning systems (GPSs), wire-

less and cellular telephone technologies, and informationtechnologies enables new environments

where virtually all objects of interest can determine theirlocations. These technologies have the

potential to improve the quality of life by adding location-awareness to virtually all objects of

interest such as humans, cars, laptops, eyeglasses, canes,desktops, pets, wild animals, bicycles,

and buildings. Figure 1.1 gives some real-world examples ofspatio-temporal applications. These

include location-aware services, traffic monitoring, asset tracking, personal safety, etc.

Unlike traditional databases, spatio-temporal databasestypically deal with large number of

objects that change their positions in space with time. The assumption is that eventually every

object or a person would have a capability (technology-wiseand business-wise) of reporting its

location to some central server, and applications can be build utilizing this data.

Another distinguishing characteristics for such environments is that queries themselves can

move. Thus the system needs to consider both the positions ofthe moving objects as well as

queries [62]. This calls for new real-time spatio-temporalquery processing algorithms that deal

with large numbers of moving objects and large numbers of continuous spatio-temporal queries

where near-real time response is a necessity.

A key point in spatio-temporal query processing is that any delay of the query response may

result in an obsolete answer. For example, consider a query that asks about the moving objects that

lie in a certain region. If the query answer is delayed, the answer may be outdated where objects

are continuously changing their locations.

Secondly, spatio-temporal databases need to support a widevariety of continuous spatio-temporal
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Driving and Walking
Directions

Coupons
Advertising
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Scientific 
Explorations

Figure 1.1: Spatio-temporal applications

queries. For example, a continuous spatio-temporal range query may have various forms depend-

ing on the mutability of objects and queries (i.e., stationary queries on moving objects, moving

queries on stationary objects and moving queries on moving objects). In addition, a query may ask

about the past, present, or the future.

1.2 Accuracy and Performance Tradeoff

In location-aware environments real-time or near real-time response is crucial, as delaying the

query results may make them obsolete and thus useless by the time the system sends the response.

However, producing fast results may come at a price of accuracy. More accuracy requires more

processing power, more computation and more memory resources. With an extremely large num-

ber of location updates arriving from objects and queries via data streams and with typically limited

system resources (e.g., memory) producing real-time answers presents a problem of an accuracy-

performance tradeoff.

Applications have very diverse requirements on location-based services. For some a fast re-
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sponse time is essential even at the cost of some loss of accuracy, while others require the highest

accuracy even if the delivery of such accurate results comesat the loss of real-time response.

An example, where lower accuracy is acceptable is cellular companies continuously retrieving

all cellular users entering and leaving the regions serviced by their towers. If the density of cellular

users at any particular area significantly increases, they can automatically increase the bandwidth

and thus provide a better service. In this case the accuracy is not of such a big concern. Even if the

count of the number of users is approximate, it would not affect the overall utility of the results.

Other applications demand the highest accuracy possible even with limited system resources.

In an emergency case scenario, such as, a gas spill, for example, one may want to know which

people (and for how long) have been inside the allegedly contaminated area. Police, fire-fighters,

and paramedics, the so-called first responders, would try todecontaminate victims and treat them

with antidotes. They would establish a hot zone where contamination is highest. In the case of

fast-acting nerve agents, antidotes need to be given withina half hour of the attack to be effective,

so accuracy plays a key role. Knowing the locations and the times of when and for how long

people were inside the affected region would be critical in providing early detection and appropriate

treatment because of their exposure to toxic chemicals. This can be very critical as many would be

at risk of developing leukemia, immune dysfunction, anemiaor lung cancer - the diseases that can

take years to diagnose, but once discovered at a later stage can be fatal.

The examples above illustrate that some applications emphasize getting the results as quickly

as possible even with some loss in accuracy, while others prefer accuracy at the cost of the per-

formance. This performance-accuracy tradeoff question calls for the evaluation of the common

approaches in location modelling in spatio-temporal algorithms and determine which model would

be more appropriate than the other for any spatio-temporal query system under certain conditions.

A number of works have been proposed for efficient evaluationof continuous spatio-temporal

queries. Most of them focus on ways to reduce time and memory consumption, improve perfor-

mance and increase scalability, by studying, for example, indexing techniques [35, 66, 65, 77],

shared execution paradigm [62, 57, 56, 84], variations of algorithms [71, 70, 74, 60]. These exist-

4



ing solutions, however, tend to forego the choice of location modelling, seemingly randomly make

a choice, often without justifying its affect on accuracy and performance when evaluating spatio-

temporal queries. This thesis addresses this shortcoming by studying the performance-accuracy

tradeoff question using the common approaches for locationmodeling in spatio-temporal algo-

rithms. In this thesis, I investigate how the key factors, such as location update probability (or

in other words, frequency of updates) and speed of objects and queries affect performance, accu-

racy or both when using one model or the other. I use these factors to characterize the tradeoff

between performance and accuracy. This then serves as foundation to guide the selection when

one model would be more appropriate than the other for the design of future spatio-temporal query

system. This could even be utilized for dynamically adapting among different choices of location

modelling behavior inside a spatio-temporal query engine.A system could dynamically switch

between the two models to maximize the accuracy and minimizethe cost of execution.

1.3 Algorithms for Processing Continuous Queries on Moving

Objects

Many recent research works try to address this problem of efficient evaluation of continuous spatio-

temporal queries. Some focus on indexing techniques [35, 66, 77], other on shared execution par-

adigms [62, 57, 84], or variations of algorithms [71, 60]. A major shortcoming of these existing

solutions, however, is that most of them still process and materialize every location update indi-

vidually. Even in [57, 84] where authors exploitshared executionparadigm, when performing a

join, each moving object and moving query location update isprocessed individually. With an

extremely large number of objects and queries, many comparisons must be made, consequently

increasing the processing time tremendeously. In this paper I propose to exploit motion clustering

as means to compress data and thus improve performance. In particular, I explore the idea of orga-

nizing data in such a way as to minimize memory requirements without any or only very little loss

of information. Moreover, the execution is orchestrated insuch a way as to reduce the number of
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unnecessary spatial join executions between objects and queries.

In many applications moving objects are naturally in groups, in other words in clusters, includ-

ing traffic jams, animal and bird migrations, groups of children on a trip or people evacuating from

danger zones (e.g., fire, hurricanes). These moving objectsoften have some common properties,

that makes clustering suitable. Clustering analysis, which groups similar data to reveal overall

distribution patterns and interesting correlations in datasets, is useful in a number of applications,

including data compression, image processing, and patternrecognition [58, 89].

In [89] Zhang et. al. exploitedmicro-clusteringi.e., grouping data that are so close to each

other that they can be treated as one unit. In [54] Li et. al. extended the concept tomoving micro-

clusters, groups of objects that are not only close to each other at a current time, but also likely to

move together for a while. In this thesis, I utilize the concept of moving micro-clusters1 as a way to

abstract the data and optimize the execution of spatio-temporal queries. This serves as the means

to improve the performance and achieve scalability when executing continuous spatio-temporal

queries.

1.4 Clustering Algorithm for Moving Objects

I propose theScalable Cluster-Based Algorithm(SCUBA) for evaluating continuous spatio-temporal

queries on moving objects. SCUBA exploits ashared cluster-based executionparadigm, where

moving objects and queries are grouped together into clusters based on common spatio-temporal

attributes. Then execution of queries is abstracted as ajoin-betweenclusters andjoin-within clus-

ters. In join-between, two clusters are tested for overlap (i.e., if they intersect with each other).

In join-within, objects and queries inside clusters are joined with each other. By using clusters,

we achieve data compression (i.e., organizing data in such away as to reduce the total amount of

data) and thus savings in memory consumption. This makes theevaluation of continuous queries

more efficient. The individual positions of cluster membersare represented in one of the following

1I use the termmoving clustersin this paper
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ways: (1) The positions of all cluster members are maintained relative to the centroid. This can be

described aslosslessdata compression; (2) Individual positions are ignored, and the cluster itself

is used to approximate locations of cluster members; (3) Relative positions are maintained for only

a subset (e.g., the furthest from the centroid) of the cluster members. The rest of the members

are abstracted into a nested (inside the moving cluster) structure callednucleus, and their relative

positions are not preserved. Both moving clusters and nuclei serve as data compression structures,

which approximate positions of their members in a compact form.

SCUBA introduces a general framework for processing large numbers of simultaneous spatio-

temporal queries. Similar to [57, 84], SCUBA is applicable to all mutability combinations of

objects and queries: (1) Stationary queries issued on moving objects. (2) Moving queries issued

on stationary objects. (3) Moving queries issued on moving objects. When moving clusters are

formed, they can be treated just as regular moving objects. Thus the existing algorithms and

indexing techniques can be easily reused by extending them to moving clusters.

SCUBA employs a shared-cluster based execution where moving clusters (containing mov-

ing objects and queries) are periodically (every∆ time units) joined with each other. Since the

processing is first done at an abstract level (at the level of moving clusters), if the clusters don’t

satisfy a join condition (i.e., don’t overlap), the objectsand queries belonging to these clusters

don’t need to be joined individually. Of course, maintaining clusters, which includes forming,

dissolving, and expanding, comes with a cost. But our experimental evaluations demonstrate it

is much cheaper than keeping the complete information aboutindividual locations of objects and

queries and processing them individually.

For simplicity, I present SCUBA in the context of continuousspatio-temporal range queries.

However, SCUBA is applicable to other types of spatio-temporal queries, includingknnqueries,

trajectory and aggregate queries.
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1.5 Contributions

This thesis contributes to the advancement of spatio-temporal query processing in streaming data-

bases in the following ways:

• I use the concept of moving clusters to abstract moving objects’ and queries’ based on com-

mon spatio-temporal attributes.

• I propose SCUBA - a scalable cluster based algorithm for evaluating a large set of continuous

queries over spatio-temporal data streams.

• I utilize the shared cluster-based execution as means to achieve scalability for continuous

spatio-temporal queries on moving objects.

• I present an analytical evaluation of SCUBA in terms of memory requirements, number of

join comparisons and I/O cost.

• I implement SCUBA, discrete and continuous location modelling algorithms within the

stream processing system CAPE [64].

• I provide experimental evidence that SCUBA improves the performance when evaluating

spatio-temporal queries on real data generated by Network-Based Moving Objects Generator

[10] in the city of Worcester, USA.

• I provide a tradeoff analysis of discrete and continuous location modelling algorithms in

terms of their overall performance and accuracy. This then serves as foundation to guide the

selection when one model would be more appropriate than the other for any spatio-temporal

query system.

• I present an accuracy model for comparing discrete and continuous location modelling query

results, which makes it possible to compute accuracy for otherwise very different types of

query answers.
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• I have conducted a comprehensive set of experiments assessing the performance vs. accuracy

tradeoff of the two alternate location modelling strategies, again based on real data generated

by Network-Based Moving Objects Generator in the city of Worcester, USA.

1.6 Organization of the Thesis

This thesis is divided into four parts, which are comprised of seven chapters as well as an appendix.

Part I :

• Chapter 1contains this introduction.

• Chapter 2contains an overview of past achievements and related work in spatio-temporal

query processing, as well as clustering analysis.

Part II :

• Chapter 3provides general scalable architecture of the spatio-temporal operator inside CAPE

exploiting shared, grid-based execution and implementingthe two alternate location mod-

elling techniques, discrete and continuous. It also contains a discussion of the pros and cons

of the discrete and continuous models and describes their implementation inside CAPE in

detail.

• Chapter 4describes our method for measuring accuracy between the discrete and continuous

models. In addition, several scenarios are presented here to illustrate the model in use.

• Chapter 5contains our experimental evaluations and tradeoff analysis of discrete and con-

tinuous algorithms in terms of their overall performance and accuracy.

Part III :

• Chapter 6discusses the clustering algorithms, and my preferred choice using set of criteria

supported by literature.
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• Chapter 7 introduces a scalable cluster-based algorithm SCUBA and contains theoretical

analysis of SCUBA in terms of memory requirements, join costand I/O cost.

• Chapter 8provides experimental evaluations of SCUBA and the conclusions about efficiency

of the algorithm.

Part IV :

• Chapter 9concludes and describes possible extensions of this research work.

• Appendix Acontains a UML diagram portraying the classes that the implementation consists

of. It also contains lists of the functions that these classes contain.
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Chapter 2

Related Work

In this chapter I will briefly discuss some areas of related work in streaming databases, spatio-

temporal databases and moving objects databases. This related work serves as a starting point for

creating our own framework for evaluating continuous spatio-temporal queries on moving objects.

2.1 Data Stream Management Systems

First, I am going to discuss the related work in streaming databases, since the continuous spatio-

temporal query processing is a part of the streaming data processing paradigm. The key difference

between a classical Database Management System (DBMS) and aData Stream Management Sys-

tem (DSMS) is thedata stream model. Instead of processing a query over a persistent set of data

that is stored in advance on disk, queries are performed in DSMSs over a data stream. In a data

stream, data elements arrive on-line and stay only for a limited time period in memory. Conse-

quently, the DSMS has to handle the data elements before it runs out of memory. The order in

which the data elements arrive cannot be controlled by the system. Once a data element has been

processed it cannot be retrieved again without storing it explicitly. The size of data streams is

potentially unbounded. In DSMSs,continuous queriesare evaluated over continuously arriving

data elements. Since continuous streams may not end, intermediate results of continuous queries

are often generated over a predefined window and then either stored, updated, or used to generate
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a new data stream of intermediate results [3]. Window techniques are especially important for ag-

gregation and join queries. Examples for DSMSs include STREAM [3], GigaScope [19], Aurora

[1], NiagaraCQ [16], CAPE [64], Nile [37] and TelegraphCQ [12].

`

`

`

`

Spatio-Temporal 
Query Engine

City Sensors

Input Data Streams

Output Data Streams

Figure 2.1: Spatio-temporal query engine

2.2 Continuous Spatio-Temporal Queries

The growing importance of moving object environments is reflected in the recent body of work

addressing issues such as indexing, uncertainty management, and models for spatio-temporal data.

Different indexing techniques have been proposed for moving objects in the literature e.g., [7, 49]

index the histories, or trajectories, of the positions of moving objects, while [66] indexes the current

and anticipated future positions of moving objects. In [48], trajectories are mapped to points in

a higher-dimensional space that are then indexed. In [66], objects are indexed with the index

structure parameterized with velocity vectors so that the index can be used at future times. This is

achieved by assuming that an object will remain at the same speed and in the same direction until

an update is received from the object. A similar assumption about the moving objects’ updates is

made in this thesis.

Uncertainty in the positions of the objects is dealt with by controlling the update frequency [61,

81], where objects report their positions and velocity vectors when their actual positions deviate
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from what they have previously reported by some threshold. Tayeb et. al. [77] use quadtrees for

indexing moving objects. Kollios et. al. [48] map moving objects and their velocities into points

and store the points in KD-tree. Pfoser et. al. [61] index thepast trajectories of moving objects that

are presented as connected line segments. The problem of answering a range query for a collection

of moving objects is addressed in [2] through the use of indexing schemes using external range

trees. [80, 82] consider the management of collections of moving points in the plane by describing

the current and expected positions of each point in the future. They address how often to update

the locations of the points to balance the costs of updates against imprecision in the point positions.

Spatio-temporal database models to support moving objects, spatio-temporal types and supporting

operations have been developed in [24, 32].

2.2.1 Indexing Moving Objects/Queries

Many of the existing spatio-temporal index structures [22]aim to modify the traditional R-tree

[33] to support the highly dynamic environments of location-aware servers. In particular, two

main approaches are investigated: (1) Indexing the future trajectories such that the existing tree

would last longer before an update is needed. Examples of this category are the TPR-tree [66],

REXP -tree [65], and the TPR*- tree [73]). (2) Modifying the deletion and insertion algorithms for

the original R-tree to support frequent updates. Examples of this category include the Lazy update

R-tree [50] and the Frequently-updated Rtree [53]. However, even with the proposed modifications

of the R-tree structures, highly dynamic environments degrade the performance of the R-tree and

result in a bad performance. In our system, we thus avoid using R-tree-like structures. Instead, I

opt to make use of a grid-like index structure [57] that is simple to update and retrieve. Moreover,

fixed grids are space-dependent, thus there is no need to continuously change the index structure

with the continuous insertion and deletion. Several spatio-temporal systems [62, 57, 65] utilize

grid index for indexing moving objects.
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2.2.2 Scalability

Most of spatio-temporal queries are continuous in nature and require continuous evaluation as the

query result becomes invalid with the change of information[78]. One way to handle continuous

queries is to abstract them into a series of snapshot queriesexecuted at regular time intervals, i.e.,

periodically. Existing algorithms for continuous spatio-temporal queries aim to optimize the time

interval between the periodic executions. Three differentapproaches are investigated: (1) The

validity of the results [88, 90]. With each query answer, theserver returns a valid time [90] or a

valid region [88] of the answer. Once the valid time is expired or the client goes out of the valid

region, the client re-submits the continuous query for re-evaluation. (2) Caching the results. The

main idea is to cache the previous result either on the clientside [68] or in the server side [52].

Previously cached results are used to optimize the search for the new results of k-nearest-neighbor

queries [68] and range queries [52]. (3) Pre-computing the result [52, 72]. If the trajectory of query

movement is known in advance, then by using computational geometry for stationary objects [72]

or velocity information for moving objects [52], we can identify which objects will be nearest-

neighbors [72] to or within a range [52] from the trajectory of the query.

2.2.3 Variety of Queries

Most of the existing query processing techniques focus on solving special cases of one type or

category of spatio-temporal queries. For example, [68, 72,88, 90] are valid only for moving

queries on stationary objects. Whereas, [11, 26, 34, 62] arevalid only for stationary range queries

on moving objects. Other works focus on aggregate queries [34, 69, 70] or k-NN queries [44, 68].

Trying to support a wide variety of continuous spatio-temporal queries in a location-aware server

presents a challenge as it forces implementation of a variety of specific algorithms with different

access structures. We try to avoid this by designing a generic and flexible structure of a spatio-

temporal operator that allows for easy extension and integration of different query types. Even

though this thesis is presented in the context of spatio-temporal range queries, the existing work

was designed to be as generic as possible for easy integration of various query types.
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2.2.4 Large Number of Queries

Many of the existing spatio-temporal algorithms focus on evaluating only one spatio-temporal

query. In a typical location-aware server, there is a huge number of concurrently executing contin-

uous spatio-temporal queries. Handling each query as an individual entity dramatically degrades

the performance of the location-aware server and in some situation can become prohibitive. There

is a lot of research in sharing the execution of continuous web queries (e.g., see [16]) and continu-

ous streaming queries (e.g., see [13, 14, 36]).

Optimization techniques for evaluating a set of continuousspatio-temporal queries are recently

addressed for centralized [62] and distributed environments [11, 26]. The main idea of [11, 26] is

to ship part of the query processing down to the moving objects, while the server mainly acts as

a mediator among moving objects. In centralized environments, the Q-index [62] is presented as

an R-tree-like [33] index structure to index the queries instead of objects. However, the Q-index is

limited as it is applicable only for stationary queries. Moving queries would spoil the Q-index and

hence dramatically degrade its performance.

Another popular method for supporting large number of queries that has been exploited is the

idea ofshared execution. The shared execution has been used in NiagaraCQ [16] for webqueries,

in PSoup [14] for streaming queries, in SINA [57] for continuous spatio-temporal range queries,

and in SEA-CNN [84] for continuous spatio-temporal kNN queries.

One major shortcoming of these existing solutions, however, is that many of them still process

and materialize every location update individually. When performing a join, each moving object

and moving query location update is processed individually. With an extremely large number of

objects and queries, many comparisons must be made, consequently increasing the processing time

tremendously.

2.2.5 Clustering Analysis

Clustering is a well-studied area in mathematics and computer science. It is related to many differ-

ent areas including classification, databases, data-mining, spatial range-searching, etc. As such, it
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has received a lot of attention. Some of the works include [21, 31, 47, 63, 20, 86]. For an elaborate

survey on clustering, readers are referred to [46]. Most of the previous work focuses on using clus-

tering to analyze static or dynamic data and find interestingthings about it. Instead, I now propose

to utilize clustering idea as a means to abstract data (to enable cluster-based load shedding) and

achieve scalable processing (minimize processing time) ofcontinuous queries on moving objects.

To the best of our knowledge, this is the first work to use clustering for internal optimization of

continuous query processing on streaming spatio-temporaldata.

Clustering Data Streams

The commonly used clustering algorithm for offline (or non-incremental) clustering,K-means, is

described in [21, 63] and introduced in more detail in Chapter 7. The objective of the algorithm

is to minimize the average distance from data points to theirclosest cluster centers. An alternative

interpretation of K-median clustering is that we would liketo cover the points byk balls, where

the radius of the largest ball is minimized [38].

Given a sequence of points, the objective of [28] Guha et. al.is to maintain a consistently good

clustering of the sequence observed so far, using a small amount of memory and time. They give

constant-factor approximation algorithms for the K-median problem in the data stream model in a

single pass. They study the performance of adivide-and-conqueralgorithm, calledSmall-Space,

that divides data into pieces, and then again clusters the centers obtained (where each center is

weighted by the number of points closer to it than to any othercenter). The authors also pro-

pose another algorithm (Smaller-Space) that is similar to the piece-meal approach except that in-

stead of re-clustering only once, it repeatedly re-clusters weighted centers [28]. The advantage of

Small(er)-Space is that we sacrifice somewhat the quality ofthe clustering approximation to obtain

an algorithm that uses less memory. Their model and and analysis have similarities to incremen-

tal clustering and online models. However, the approach is alittle bit different. They maintain a

“forest” of assignments. They complete this tok trees, and all the nodes in a tree are assigned to

the median denoted by the root of the tree. The disadvantage of this algorithm is similar to that of
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K-means, namely the number of clusters must be known in advance (the number of clusters is the

input parameter to the K-means algorithm).

Competitive Learning Clusteringand the basicLeader-Follower Clusteringare two algorithms

for online (i.e., incremental) clustering presented in [21]. John A. Hartigan had already proposed

the latter in an early publication on clustering algorithms[39]. One of the disadvantages of the

Leader-Follower Clustering algorithm is that it lacks the ability to keep the number of clusters

constant, so a large number of clusters might be created (potentially as many as there are data

points). But this disadvantage of the Leader-Follower algorithm could actually be easily addressed

by merging the clusters, if appropriate. Competitive Learning Clustering can be transformed in

a single-scan algorithm to save the clustering time. In its basic form, however, it depends on a

convergence criterion that makes several iterations over the data necessary. Other sources also

describe these two algorithms, but name them differently. In [51] they are named asGrowing

K-means ClusteringandSequential Leader Clustering1.

In [43], the author uses a clustering algorithm that pre-processes data points that arrive each

second. Based on the clustering model, a Markov Model is learned and finally used for a prediction

task. They used the k-means algorithm to pre-process data. The final result is an algorithm that is

capable of clustering streaming data and learn a Markov Model with one scan over the data set. It

is called theExtended Leader-Followeralgorithm (ELF algorithm). Again, because the K-means

algorithm requires the number of clusters to be known in advance, and with each data point update

the clustering might change, this approach doesn’t work well for very dynamic data points that

represent the location updates of moving objects and queries.

A list of considerations and criterions when dealing with incremental data stream algorithms

is given in [20, 86, 6]. Incremental algorithms should only use a small and constant amount of

memory. Consequently, a compact representation of the current model is accessible at all time.

The running time and hence the computational complexity should be such that new incoming data

points can be processed at their arrival. The algorithm should be capable of distinguishing between

1In this thesis, I refer to these algorithms asCompetitive Learningclustering andLeader-Followerclustering.
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outliers, emerging patterns and noise.

Barbara in [6] presents an overview of the clustering algorithmsBIRCH [89], COBWEB[23],

STREAM[28, 59], andFractal Clustering[5], which all could be used for an incremental clustering

of data streams. He describes the advantages and shortcomings of these algorithms with respect to

compactness, functionality and outliers.

BIRCH clusters data points using a CF-tree - a height-balanced tree (analogous to a B-Tree).

One of the drawbacks of the BIRCH method is that after some time it draws into secondary mem-

ory. And even though it tries to minimize the number of I/Os for clustering a new point, it still

takes a considerable amount of time to do so [6]. The processing is better done in batches to try to

amortize the overall cost.

COBWEB [23] implements hierarchical clustering via a classification tree. The classification

tree is not height-balanced which often causes the space (and time) complexity to degrade dramat-

ically. This makes COBWEB an unattractive choice for data streams clustering.

STREAM [28, 59] aims to provide guaranteed performance by minimizing the sum of the

square of the distances of points to the centroids (similar to K-means). STREAM processes

data streams in batches of points by first clustering the points in each batch and then keeping the

weighted cluster centers (i.e., the centroids weighted by the number of points attracted to them).

Then STREAM clusters the weighted centers to get the overallclustering model. If the batches are

of equal size, the first clustering iteration has a constant processing time. But for the second itera-

tion of clustering the time can increase without bounds as more batches of data arrive. Moreover,

it is recognized by its authors [59] that it takes longer thanK-means to find a bounded solution.

Fractal Clustering (FC) [5] groups points that show self-similarity, by placing them in the

cluster in which they have the minimal fractal impact. FC works with several layers of grids (the

cardinality of each dimension is increased 4 times with eachnext layer), and even though only

occupied cells are kept in memory, the method suffers from high memory usage [8].

Gaber et. al. in [25] have proposed algorithms for incremental clustering, a simple so-called

one-lookclustering algorithm that takes into account the availableresources of a machine. In [15]
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Chaudhuri presents various considerations for clusteringalgorithms, such as which actions are

possible or necessary when new data points are added to an existing model.

Clustering Motion

The difficulty in maintaining and computing clusters on moving objects is the underlying kinetic

nature of the environment [29]. Once the clusters are computed at a certain time, and the time

progresses, the clustering may change and deteriorate. To remain a “high quality” clustering (i.e.,

the cluster sizes are small compared to the size of the optimal clustering) one needs to maintain the

clustering by either reclustering the points every once in awhile, or alternatively, move points from

one cluster to another. The number of such “maintenance” events may dominate the overall running

time of the algorithm, and the number of such events can be extremely large, thus hampering the

processing time.

In [89] Zhang et. al. describedmicro-clusteringi.e., grouping data that are so close to each

other that they can be treated as one unit. In [54] Li et. al. extended the concept tomoving micro-

clusters, groups of objects that are not only close to each other at a current time, but also likely to

move together for a while.

In [38], authors analytically study motion clustering. They define the clustering motion prob-

lem as following: LetP [t] be a set of moving points in<d, with a degree of motionµ; namely

for a pointp[t] ∈ P [t], we havep(t)=(p1(t),...pd(t)), wherepj(t) is a polynomial of degreeµ, and

t is the time parameter, forj = 1, ..., d. The authors in [38] demonstrate that if one is willing to

compromise on the number of clusters used, then clustering becomes considerably easier (compu-

tationally) and it can be done quickly. Furthermore, we can trade off between the quality of the

clustering and the number of clusters used. Hence, one can compute quickly a clustering with a

large number of clusters, and cluster those clusters in a second stage, so to get a more reasonable

k-clustering. The authors also propose an algorithm for picking a “small” subset of the moving

points by computing a fine clustering, and picking a representative from each cluster. The size of

the subset, known ascoreset, is independent ofn (number of data points), and it represents the
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k-clustering of the moving points at any time. Namely, instead of clustering the points, only the

representative points get clustered. This implies that onecan construct a data structure that can

report the approximate clustering at any time.
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Chapter 3

Part II:

Accuracy vs. Performance Tradeoff in

Location-Based Services

3.1 Spatio-Temporal Operator

Query plans in database systems are composed of operators, which perform the actual processing,

such as my spatio-temporal operator. In this chapter, I discuss the design of my spatio-temporal

operator inside the CAPE data streaming system. The operator utilizes a grid index and implements

discrete and continuous location modelling techniques. I begin by first introducing the continuous

and discrete location models, and then proceed with the operator design that implements these two

models.

3.2 Modelling Motion

People move through space. Different types of movement occur, such as the movement of a person

who walks, runs, or rides a bus, a taxi that travels through city, or an oil spill spreading on the water.
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Although these movements occur continuously in reality, people conceptualize certain movements

as being discrete, while others are conceptualized as beingcontinuous [85, 42]. Each model has

its own advantages and disadvantages as I am going to discussnext.

3.2.1 Discrete Model

Many existing location-based services [57, 84] model the location as a discrete position in time.

For each moving object, a position point of the form (x, y, z, t) is generated periodically, indicating

that the object is at locationx, y, z at time t. This point-location management [79] has several

advantages. The computations involving points are relatively simple and thus fast. This allows for

a speedy processing of a extremely large number of location updates. This facilitates scalability in

terms of the number of concurrent continuous spatio-temporal queries and the number of moving

objects sending their updates to the query system. Since location updates are processed as they

come and retained in the system for a relatively short periodof time, on average the point-based

systems require less time than for example the trajectory-based systems. So for applications that

require very fast results, a discrete model suits pretty well.

However, at the same time the discrete model has several critical weaknesses. First, the method

does not enable interpolation or extrapolation. For example, assume that a gas company dispatcher

needs to know ”Which service crew was within ten miles from the location of ahouse gas leakage

that occurred at 8PM”. This information can only be retrieved for moving objectsthat happened

to send a location update at 8PM. If the system didn’t receivea position with an 8PM timestamp,

then the whereabouts of the object at that time are unknown. Thus the discrete system cannot

answer such a query. The problem is even more severe if a future location is requested (e.g.,Which

ambulance will be the closest to the scene of the disaster in the next 30 minutes?) This query

cannot be answered by the discrete location method.

Another problem with the discrete point-location model is that it has a higher likelihood of giv-

ing incorrect results. Consider a server periodically executing queries on a set of discrete location

updates [57]. If a moving object location update (O1, pos1, t1) is received first and immediately
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after it a moving query location update (Q1, pos1, t2), it might calculate that an object is inside

the query and return a positive result. Potentially this might be an incorrect result, if at timet2 the

object, in fact, has moved outside of the boundaries of the query Q1, but we have not yet received

its new location update.

The third problem that might arise when utilizing the discrete method is that it can lead to a

precision/resource trade-off. An accurate picture of the precise location of moving objects would

require frequent location updates. This consumes preciousresources such as bandwidth, process-

ing power and memory resources [67], since more frequent updates would need to be processed to

get an accurate picture of the movement. Moreover, the server would have to send the results more

frequently. With an extremely large number of objects and queries, this may create a performance

bottleneck.

Lastly, a point-based discrete model is incapable in answering queries related to time intervals,

such as ”Give me all airplanes that entered the turbulent region in the Pacific and have been inside

it for more than 30 minutes”.

In general, discrete systems focus on distinct positions ofobjects at a time instance, and thus

are limited in answering queries related to time durations.Typically, they process data without

extracting any additional information (e.g., speed, direction, acceleration, distance travelled, etc.).

This additional information often might be helpful in processing dynamic location data more effi-

ciently and in maximizing accuracy which is what continuousmodels of location tracking attempt

to exploit.

3.2.2 Continuous Model

A trajectory model is a more sophisticated model, which solves several of the problems that arise

in discrete location modelling. Beyond that it offers some additional benefits that I am going to

mention in this section. For simplicity, I assume linear trajectories. However, other trajectory

models can be used, such as curve-based [87], spline interpolation [55], and motion functions [27].

We define a trajectory as a sequence of straight-line segments (x1, y1, t1), ... ,(xn, yn, tn) in a
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3-dimensional space. A linear trajectory means that when the object starts at a location having co-

ordinates (x1, y1) at timet1, it will move on a straight line at constant speed and will reach location

(x2, y2) at timet2, and so on. This type of trajectory is an approximation of theexpected motion

of the object in space and time. The object may not move in straight lines at a constant speed.

However, given enough location points, the approximation can be accurate up to an arbitrary pre-

cision. This brings us to the accuracy-performance tradeoff question. The number of line segments

in the trajectory has an important implication on the performance of the system. Specifically, the

performance increases and the accuracy decreases as the number of line segments decreases.

Using trajectories we can compute the expected location of the moving object at a timet. This

technique enables both location interpolation and extrapolation. We can compute the expected

location of the moving object at any point in time without receiving an explicit update. In addition,

unlike the discrete approach, using trajectories we can answer queries related to time intervals, and

compare the trajectories of moving objects and queries.

Another advantage is that one can associate an arbitrary uncertainty threshold with the trajec-

tory and if arriving location updates are within that threshold from the trajectory, it can be assumed

that the trajectory is a good approximation. This agreement(the trajectory plus the uncertainty

threshold) between the moving object and the server solves the problem of the tradeoff between

resource/bandwidth consumption and accuracy [83]. In the trajectory model, if the moving object

does not deviate from its prescribed trajectory by more thanthe uncertainty threshold, we can dis-

card the incoming position updates. Thus we save on memory consumption and, to some degree,

in computation of the join. An additional bonus of the continuous model is that the answers are

also represented as 3-D trajectories (i.e., indicating howlong an object satisfied a particular query).

This may limit the amount of data that needs to be sent and saves network bandwidth.
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3.3 Preliminary

As a preliminary, I first describe the assumptions and restrictions in the system and the format of

location updates that we expect arriving via data streams.

3.3.1 Spatio-Temporal Data Streams

We assume that moving objects and moving queries send their location updates periodically to the

CAPE system. A location update from the client (moving object) to the server has the format(OID,

Pos, {attr1, attr2. . .attrn}), whereOID is the object identifier,Posis the latest location of the object,

and{attr1. . .attrn} are additional attributes describing the object (e.g., police car, fire-fighter, deer,

etc.).

Once an object stops moving (e.g., an object reaches its destination or the device gets turned

off) it sends a disappear message to the server which indicates that the object is no longer moving,

and will no longer send any location updates.

3.3.2 Assumptions and Restrictions

Below is the list of current assumptions and limitations:

• Both objects’ and queries’ location updates arrive via datastreams.

• All location updates (trajectories) fit in memory.

• Objects and queries move in straight lines and at a constant speed.

• All location updates always arrive in a strict sequential order (i.e., time stamps of the updates

are increasing).

• Queries are answered based on the up-to-date knowledge.

• We assume both objects and queries move continuously and send a disappear messages when

they get turned off.
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Figure 3.1: Architecture of spatio-temporal operator

• For the continuous model, the operator maintains the last two location updates for each

object and query after∆ evaluation interval expiration. This is used to predict themovement

of the object/query for the next time interval, even if no explicit update is received.

• Grid cell sizes and count of the grid index are fixed and pre-determined in advance.

3.4 Shared Execution Architecture Overview

Next I describe the main components of the motion operator utilizing shared execution similar

to [26, 35, 62, 57, 84], where spatio-temporal queries are grouped together and the execution is

abstracted as a spatial join between moving objects and queries.
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3.4.1 General Design

The spatio-temporal operator has three components:Data Collector, Join Processor, andOutput

Preparer(Figure 3.1).

Data Collector (DC). The data sources are streams S1 and S2 transmitting location updates for

objects and queries respectively. The incoming tuples are buffered up in the corresponding queues

q1 and q2. The Data Collector (Algorithm 1) periodically reads from the queues. It processes the

location updates and based on the entity type materializes them into Objects and Queries tables

correspondingly.

Algorithm 1 DataCollector()
1: loop
2: Dequeue tuples from queue q1 (Moving objects stream)
3: while there are unprocessed objects’ tuplesdo
4: for every object location update tupleo do
5: Find object entry inObjects TableusingOID.
6: Increment count for number of location updates foro.
7: Update location information for objecto.
8: end for
9: end while

10: Dequeue tuples from queue q2 (Moving queries stream)
... //Similar processing as moving objects

11: end loop

Join Processor (JP). Once∆ time interval expires, the Join Processor (Algorithm 2) activates

its submodule -TableFlusher(TF). TF iterates over theObjects Tableand grabs all objects’ updates

and flushes them into the shared grid index structure. Similarly the queries are flushed based on

their location updates fromQueries Tableinto the grid. Then the Join Processor initiates a join

algorithm which iterates over each grid cell, performing a join with all objects against all queries

that had been indexed into that particular grid cell. If theyintersect, the join algorithm reports the

output to theResults Table.

Output Preparer (OP). The Output Preparer (Algorithm 3) iterates over the Results table and

hashes each result pair by query id and object id (QID, OID), to organize all answers related to one

pair into an output result structure. If desired, the outputpreparer can further sort the results by the

output timestamps to guarantee order. Finally, the output preparer places the output tuples into the
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Algorithm 2 JoinProcessor()
1: ActivateTableFlusher
2: TableFlusher: Insert moving objects and moving queries locations into grid
3: for i = 0 to MAX X DIM do
4: for j = 0 to MAX Y DIM do
5: for t = 0 to MAX T DIM do
6: for every queryq in grid cell Gi,j,t do
7: for every objecto in grid cell Gi,j,t do
8: R = DoJoin(q,o,Gi,j,t) //join moving queries with moving objects
9: Insert resultsR into Results Table

10: end for
11: end for
12: end for
13: end for
14: end for
15: Call OuputPreparer() //Initiate OutputPreparer component

output queue q3 of the operator.

Algorithm 3 OutputPreparer()
1: for every result entryR in Results Tabledo
2: Hash each result pair by (QID,OID)
3: end for
4: for every result pair (QID,OID) do
5: Sort results
6: if continuous location modellingthen
7: Interpolate results (construct continuous segments out ofdiscrete points)
8: Merge results (merge the segments by the common time stamps)
9: end if

10: Put results into output queue q3

11: end for

3.5 Data Structures

During the course of the execution, the operator maintains the following data structures:

• Objects table. Objects are organized within the in-memory table. The object entry has the

form of (OID, Pos, {attr1, attr2 . . . attrn}), whereOID is the object identifier,Posis the latest

location of the object, and{attr1 . . . attrn} are additional attributes describing the object.

• Queries table. Queries similar to objects are organized within the in-memory table. The
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query entry has the form of (QID, Pos, BoundH, BoundW ,{attr1, attr2. . . attrn}). QID is the

query identifier. If we assume rectangular regions, thenPosis the latest location of the query

focal point. BoundH is the vertical distance andBoundW the horizontal distance from the

focal point of the query to the edge of the query.{attr1 . . . attrn} are additional attributes

describing the query.

• Results table. Results are temporarily stored in the in-memory Results table in the form of

(QID, OID, Intersect). Intersectis an attribute describing the intersection between the object

and the query.

• In-memory grid . The memory-based NxMxT grid is divided into NxMxT grid cells (where

N and M are spatial dimensions, and T is a temporal dimension of the grid). Objects and

queries are hashed based on their locations and the time of updates to the grid cells. For

each grid cell the in-memory grid maintains a list ofOIDs andQIDs of objects and queries

respectively whose location updates were hashed into that cell. For queries we create an

entry in each of the cells its region (for discrete) or volume(for continuous) overlaps with.

 

Objects Table Queries Table

Grid Index

Figure 3.2: Data structures used by regular motion operator

Choosing an appropriate index for continuously moving objects and moving queries was criti-

cal for evaluating queries on moving objects with near real-time response requirement. Traditional
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spatial index structures such as R-trees [33] are not appropriate for indexing moving objects be-

cause the location changes of objects may cause splitting ormerging of the nodes constantly or

even rebuilding the entire tree from time to time. The index structure must provide optimal updat-

ing performance.

I chose an in-memory grid index, since in the highly dynamic environment, maintaining a

spatial index such as R-tree [33] on moving objects is not practical (as mentioned in the Related

Work chapter). We expect the objects and the queries to frequently update their positions. This

suggests that only memory based structures are suitable forthe moving objects and queries table.

We use grid cells to group moving objects because the grid structure is relatively inexpensive to

maintain due to its static flat organization.

Observe also that the Objects and Queries tables keep location updates only for the duration of

the time interval∆. Once the∆ expires, all location updates received are flushed from the Objects

and Queries tables respectively to the in-memory grid. After the results to queries are computed,

the operator can either store the last known trajectories inthe Objects and Queries tables (to be

utilized in the next time interval) or clear out all the data.I exercise both choices; the former in

continuous model of objects and queries, and the latter in discrete point-based model.

3.6 Discrete and Continuous Modes of Execution

I now introduce algorithms for processing continuous spatio-temporal queries by modelling ob-

jects and queries in discrete or continuous fashions, called Discrete Scalable Point-Based Algo-

rithm (DSA) andContinuous Scalable Trajectory-Based Algorithm(CSA) respectively. The spatio-

temporal operator can use either of the two algorithms for modelling moving entities.

Both DSA and CSA exploit the shared execution paradigm, similar to [57, 84] and abstract

queries’ execution by utilizing a grid-based spatial join between moving objects and queries. DSA

describes moving objects and their locations as discrete points, and the queries as rectangular

regions. CSA is more precise by describing the movement of objects via trajectories, and the
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movement of queries via trajectory volumes. In the case of DSA, the predicate for join is the

containment of a location point inside a rectangular region. In case of CSA it is an intersection

between a trajectory and a trajectory volume. We re-evaluate the queries every∆ time units by

computing the join between objects and queries. For DSA we assume that we don’t know where

objects and queries are unless we get an explicit location update. For both DSA and CSA we

assume that location updates arrive in an ordered (by time) fashion. Therefore, we only join the

location updates for objects and queries that arrived during the time interval∆. Also for DSA,

in order for an object to join the query, the timestamps for both have to match (i.e., if the object

was inside a rectangular moving region at a certain location, the timestamps of both object and

query have to be identical). For CSA, trajectories and trajectory volumes are constructed from

the location updates that arrived before∆ expired. Trajectories (and trajectory volumes) allow

us to abstract each moving entity location as a function of time f (t). Using trajectories we can

compute the location of the moving entity at any time during the time interval. For CSA we

assume continuous movement. Even if no explicit location update has arrived, we assume the

object is moving according to its latest trajectory.

In CSA, the answer is not just whether a particular object is apart of the result set for a

particular query, but also the time of when it has occurred (and for how long). The results in

CSA are polylines (functions of time) where the beginning ofthe polyline is the entering event

(object entered query region) and the end is the leaving point (object left query region). This

allows us to improve the accuracy of the query results, sincewe know not just that an object was

inside the query, but also the spatial location and the time of when it entered it, and left it. One of

the advantages of such an approach is that we can answer queries similar to ”Retrieve all objects

that entered region R and stayed there for at least 3 minutes”.

3.6.1 Execution of DSA and CSA

The execution of DSA and CSA can be broken down into phases. DSA has three phases: (1)

discrete position update, (2) joining, and (3) timeline phases. CSA has five phases: (1) the initial-

31



ization, (2) trajectory update, (3) joining, (4) merging and (5) timeline phases. The initialization

phase is the first phase in CSA and has no corresponding equivalent in DSA. It initializes the ex-

pected positions of all the objects and queries in the systemat the beginning of each time interval

based on their last known trajectory. This is based on our assumption that all objects and queries

move continuously in time. The trajectory update phase in CSA updates trajectories and trajectory

volumes for moving objects and queries. The equivalent to itin the DSA is the discrete position

update phase.

Both DSA and CSA have a joining phase, triggered every∆ time units. First, the objects

and the queries are flushed into the in-memory grid index. Then a join is performed between the

points and the rectangular regions (in case of DSA) and trajectory lines and the trajectory volumes

(in case of CSA). The result of the joining phase in DSA is a setof points with the following

format (QID, OID, loc, tloc, tanswer), whereQID and OID are the ids of the query and object,

respectively. loc, tloc, tanswer describe the intersection between the object and the query.loc is

a discrete location update of the object,tloc is the time of the location update, and tanswer is the

time of query evaluation (since it might be delayed after thelocation update arrival at timetloc).

The joining phase in CSA results in a set of mini-clipped results. The mini-clipped results are

segments of the original trajectory lines, indicating the parts of the trajectories intersecting with

a query trajectory volume. The sizes of the mini-clipped results are constrained by the size of a

query volume and the size of a grid cell.

After joining phase in CSA, the merging phase is triggered. The mini-clipped results from

the joining phase are merged byOID andQID and starting and end positions of the mini-clipped

results. There is no equivalent phase in the DSA for this. Finally, after merging is complete, the

timeline phase orders the merged results by the starting timestamp to imitate the order of events

in time. The same idea is behind the timeline phase in the DSA,where the results are ordered by

tloc timestamp. Ordered results are sent to the output stream, and if there are no other operators to

process these tuples, then they are sent to the users expecting the results of the continuous queries.

Looking at the number and the functionality of the executionstages in algorithms, DSA re-
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quires less processing time than CSA.

3.7 Analytical Observations

Below I analyze requirements needed for evaluating continuous queries utilizing either discrete or

continuous models. I use parameters listed in Table 3.1 in the analysis.

Variable Description
∆ Time interval between periodic query execution
Nobj Total number of objects in the system
Nqry Total number of queries in the system
Eobj Size of object entry inObjects table
Eqry Size of query entry inQueries table
Egrid Size of object/query entry inGridIndex

CAR Average number of grid cells that a query overlaps with
robj Rate of arrival for moving objects’ updates
rqry Rate of arrival for moving queries’ updates
Tobjects Average number of mini-segments for object trajectory during time interval∆
Tqueries Average number of mini-segments for query trajectory volume during time interval∆
xi Position in the x-dimension
yi Position in the y-dimension

Table 3.1: Parameters used in analysis of regular grid-based shared execution of discrete and con-
tinuous location modelling techniques

I maintain three memory structures for both DSA and CSA, namely, the Objects table, the

Queries table, and the NxMxT in-memory grid. In addition, the incoming tuples from the data

streams are buffered up into Objects and Queries buffers before∆ time interval expires. During

any time interval∆, the memory size consumed by these structures is:

M = ObjectsQueue + QueriesQueue+

ObjectsTable + QueriesTable + GridIndex
(3.1)

For discrete model (DSA), memory requirements can be described as following:
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MDSA = ∆ ∗ robj ∗ Eobj + ∆ ∗ rqry ∗ Eqry+

+Nobj ∗ Eobj + Nqry ∗ Eqry+

+Nqry ∗ CAR ∗ Egrid

(3.2)

where∆ *robj*Eobj and∆ *rqry*Eqry are the objects’ and queries’ buffers respectively.Nobj*Eobj

andNqry*Eqry denote memory consumption by Objects and Queries tables, and Nqry *CAR *Egrid

is the memory consumed by the grid index.CAR represents an average number of grid cells that a

rectangular range query overlaps with. For the continuous model, the memory requirements could

be characterized as following:

MCSA = ∆ ∗ robj ∗ Eobj + ∆ ∗ rqry ∗ Eqry+

+Nobj ∗ Eobj + Nqry ∗ Eqry+

+2 ∗ Egrid ∗Nobj ∗ Tobjects + 2 ∗ Egrid ∗Nqry ∗ Tqueries;

(3.3)

The objects’ and queries’ buffers memory requirements of the continuous model are similar to the

ones of the discrete. Similarly, Objects and Queries tablesconsume the same amount of memory

as the discrete model. The difference is in the memory requirements for the grid index. The reason

is that we are dealing with trajectories instead of discretepoints. We clip continuous trajectories

with all the grid cells that they overlap with. The longer thetrajectory the more clippings need to

be done, and more grid entries to be made.Tobjects andTqueries represent average number of mini-

segments for trajectories (for objects) and trajectory volumes (for queries) during time interval∆,

and ”2” stands for 2 entries (points) needed to represent a line. The formulas describingTobjects

andTqueries parameters are below:

Tobjects =











2+∆∗robj
∑

i=1

√
(xi+1−xi)2+(yi+1−yi)2

Cwidth











;

Tqueries =









2+∆∗rqry
∑

i=1

√
(xi+1−xi)2+(yi+1−yi)2∗Have∗Wave

Cwidth∗Cheight∗Clength









;

(3.4)

We approximate the average length of a trajectory using the sum of distances between 2 points. The
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points represent location updates that arrive during time interval∆. The total length of trajectory

is then divided by the size of the grid cell to approximate thenumber of grid cells that it overlaps

with. For queries, we are dealing with volumes, hence we divide the volume of the query during

time interval∆ by the volume of the grid-cell.

If M is the total amount of memory available, we can approximate the total number of objects

and queries that can be supported by discrete and continuoussystems (i.e., approximate the scal-

ability of each system). The total number of queries that canbe supported by the discrete system

is:

Nqry =
M − (∆ ∗ (robj ∗ Eobj + rqry ∗Eqry) + Nobj ∗ Eobj)

Eqry + CAR ∗ Egrid

; (3.5)

Similarly, the total number of objects that can be supportedby the discrete system can be expressed

as following:

Nobj =
M − (∆ ∗ (robj ∗ Eobj + rqry ∗ Eqry) + Nqry ∗ (Eqry + CAR ∗ Egrid))

Eobj

; (3.6)

Continuous model can support the following number of queries:

Nqry =
M − (∆ ∗ (robj ∗ Eobj + rqry ∗ Eqry) + Nobj ∗ (Eobj + 2 ∗ Egrid ∗ Tobjects))

Eqry + 2 ∗ Egrid ∗ Tqueries

; (3.7)

and objects:

Nobj =
M − (∆ ∗ (robj ∗ Eobj + rqry ∗ Eqry) + Nqry ∗ (Eqry + 2 ∗ Egrid ∗ Tqueries))

Eobj + 2 ∗ Egrid ∗ Tobjects

; (3.8)

In conclusion, we can see that the memory requirements for both discrete and continuous mod-

els are the same for all data structures except for the grid index because of different modelling

approaches for motion and different representations inside the grid. Once the environment para-
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meters (Eobj ,Eqry, andEgrid) are fixed, the number of objects and queries supported by either of

the systems depends on the length of time interval∆, and rate of arrival of location updates from

objects and queries. For discrete model, it also depends on the average size of the queries and the

size of the grid cells (i.e., how many grid cells queries overlap with). For continuous model, the

length of the trajectories and the size of the grid cells havea significant affect on performance.

The longer the trajectories, the more grid cells they are overlapping with, hence more entries need

to be made. The lengths of the trajectories can be affected bythe following: (1) the speed, (2)

the frequency of location updates. If the objects/queries move fast, they cover large distances be-

tween the updates. Similarly, if infrequent updates are sent, the objects/queries might cover large

distances between the updates as well. In summary, the discrete model has a better performance,

hence facilitates scalability (in terms of the number of supported objects and queries) better than

the continuous model, but as we will show in the next chaptersthis comes at the price of accuracy.
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Chapter 4

Accuracy

Here I describe my method for estimating accuracy. I use thismethod in evaluating the quality of

results output by discrete model with respect to the continuous model.

4.1 Measuring Accuracy

Since the result formats differ for the discrete and continuous models (the former outputs a discrete

point, and the latter outputs a continuous segment), we needto define a method to bridge these two

types of results to a common format in order to compare them and approximate accuracy using a

numeric value.

We claim that continuous results give a better accuracy thandiscrete results, and thus better

represent the reality. Moreover, continuous answers always contain the discrete answers (i.e., the

latter is a subset of the former). We thus compare results of the discrete model to those of the

continuous one (i.e., form continuous segments out of the discrete answers and compare them to

the equivalent continuous results).

In measuring the accuracy of the results I propose the following approach:

1. For each continuous result in CSA, we determine a length ofthe answer, where Tend and Tbeg

are the ending and beginning timestamps of the result trajectory. We denote it ascontinuous

result extentor CRE.
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Continuous:
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Discrete:
3 answers:

(Q1,O1,T1)
(Q1,O1,T2)

(Q1,O1,T3)

- intersection point
- answer trajectory

Figure 4.1: Object location update received every time object entered, stayed, and left the query

2. We group the discrete results in DSA byQID and OID. For each group, we interpolate

through discrete results. The key assumption for producing“continuous” results out of dis-

crete answers is not to allow any “gaps”. For example, if we got discrete answers with the

following timestamps: T1, T2, T3, T5, T7, T8, T9, T10 we calculate only 3 timespans (without

any gaps) - [T1-T3], [T5], [T7-T10]. We denote interpolated points asdiscrete result extent

or DRE. Notice [T5] in the example above is called a “lonely” DRE.

3. We compareDREs withCREs:

(a) We compare theDREs to the correspondingCREs, meaning the timestamps of the

discrete results must be within the continuous results.

(b) For the lonelyDREs we introduce a variableλ, that describes a small time interval

before and after the discrete result.λ will be calculated for a lonelyDRE, and will

depend on the length of the correspondingCRE and the number of location updates

received during that time interval.

(c) We compare lengths and count ofDREs to correspondingCREs to determine accuracy.

Let C = {CRE} be the set of continuous result extents (i.e., trajectory answers). Then for each

CREi ∈ C, we find a set of corresponding DREjs, such that their time intervals overlap.F(CREi)

= {DREj | DREj ∩ CREi}. We compare the sum of lengths of theDREs to the length of corre-

spondingCRE.

38



Scenario 2
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Continuous:
1 answer:
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- intersection point
- answer trajectory

Figure 4.2: Object location received only once when object was inside the query

Accuracy =
n
∑

i=0

∑CREi.tend

j=CREi.tstart
length(DREj)

length(CREi)
(4.1)

Scenarios that illustrate my approach in measuring and comparing accuracy of the two models

are:

Scenario 1: Object sent location updates when it entered the query, was inside the query, and

left the query. In this scenario, location updates for both objects and queries are known for every

time unit when the object was inside the query. Figure 4.1 illustrates this case. This is the best case

for DSA. Every time unit we know the positions all objects andall queries. Thus we can accurately

determine if an object is inside a query at every time unit. Using my accuracy model, we find that

length(CRT1) = (T3 − T1) = (3− 1) = 2;

and

length(DRE1) = [T3 − T1] = 3− 1 = 2.

Then using equation (4.1).

Accuracy= length(DRE1)/length(CRT1) = 2/2 = 1(∼ 100 accuracy)

By my model, results returned by the DSA are as accurate as theresults returned by CSA. This
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scenario is highly unlikely in the real life situation when given a large number of queries, due to

the fact that it is hard to guarantee that location updates for every time unit object was inside a

query are received. During the execution, the data streams can become bursty, and some tuples

might have to be dropped. Due to network congestions some updates might arrive late. Devices

can be configured differently to send their location updates. Therefore, in most cases, it is hard to

have a setup guaranteeing the best case accuracy for the discrete model.

Scenario 2: Object sent one location update when it was inside the query. This is a slightly

worse example for the discrete system. Figure 4.2 illustrates this case. We got explicit location

updates at T2 for both an object and a query. So we have one discrete and one continuous answer.

To compare the accuracy using the approach above, we calculate the following:

length(CRT ) = ((T3 − d1)− (T1 + d2))

where d1 and d2 are distance measurements from the discrete time units to indicate that the intersec-

tions occurred not exactly at T1 and T3. For this example, we assume they are something arbitrarily

small, but in real experiments we can calculate these valuesexactly. DRE = [T2] (i.e., it’s a lonely

DRE, so we need to determine a continuous interval for it). Toset an appropriate value, we divide

thelength(CRT) by the (number of location updates received - 1) to get the average length of a line

segment (Save−length).

Save−length = length(CRT )/(#updates− 1)

So in this case, Save−length = 2/(3-1) = 1. Then DRE = [T2] = 1*A discrete , where Adiscrete is the

number of discrete answers. Then Accuracy = (1)/((3-0.02)-(1+0.01)) = (1)/(1.97) = 0.507 (∼ 50%

accurate). This value is an approximation of accuracy, since we picked arbitrary values for d1 and

d2.

Scenario 3: No location update was received while object was inside the query. This is the

worst-case scenario example for the discrete system. The server didn’t receive a single location

40



Scenario 3

Discrete:
0 answers:

Continuous: Q1
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- answer trajectory
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(Q1,O1, (T1+d1) – (T2-d2) )
(Q1,O1, (T2+d3) – (T3-d4) )

Figure 4.3: No location update received at any point in time when object was inside the query

update from the object while it was inside the query. Using the discrete model, we would not get

an answer that the object was inside the query. Figure 4.3 illustrates this case. Using my measuring

approach, we can determine thatAccuracy= 0 %, due to 0 answers returned by the discrete model.

So thelength(DRE) = 0, and the discrete model is 0% accurate.

I tested my model on a number of experiments to support my initial intuition with respect to

accuracy of the two models.

4.1.1 Analysis of Accuracy

Below I analyze accuracy using an example of one moving object and one query. I consider the

parameters listed in Table 4.1 for this analysis.

Variable Description
∆ Time interval between periodic query execution

ddelta Average distance travelled between executions
dupdate Average distance travelled between updates
djoin Average distance object is inside the query

dweight Average weight of each update in the overall answer
v Average velocity of a moving entity
u Average number of location updates per∆

ujoin Updates contributing tointersectionw/ query
adiscrete Number of discrete results

Table 4.1: Parameters for accuracy comparison

An average distance travelled by a moving object between thetimes when joining with the
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query can be expressed as

ddelta = ∆ ∗ v (4.2)

An average distance travelled between location updates is

dupdate =
∆ ∗ v

u + 1
(4.3)

An average length (trajectory) when moving object is insidethe query is

djoin = ddelta ∗ ϕ (4.4)

whereϕ is an intersection factor (between 0 and 1). This factor describes the probability of an ob-

ject and query to bejoinable(i.e., producing an answer). It is affected by the type of themovement

of the object and the query, their velocities, network constraints, and the type of the query. Note,

we assume that the greater the velocity, the greater is theϕ join factor. Whenϕ = 1, it means that

an object is inside the query (i.e., produces an answer for the entire duration of time interval∆).

By dividing djoin by the number of updates that contributed to the continuous answerujoin,

we get an average continuous interval segment. In other words, we approximate an average mini-

segment of the continuous answer per each point that contributed to the overall continuous answer.

dweight =
djoin

ujoin

(4.5)

The discrete result extent (DRE) can then be determined as

DRE = dweight ∗ adiscrete (4.6)

Combining (4.2), (4.4) and (4.5),DREcan be expressed as

DRE =
∆ ∗ v ∗ ϕ

ujoin

∗ adiscrete (4.7)

We compare accuracy of a discrete model by dividing the discrete result extent by a continuous

42



result extent, which can be expressed as

Accuracy =
DRE

CRE
=

∆∗v∗ϕ
ujoin

∗ adiscrete

∆ ∗ v ∗ ϕ
=

adiscrete

ujoin

(4.8)

Equation (4.8) confirms my intuition that becomes evident through the experimental studies.

The accuracy of the discrete model would be the ratio of the discrete answers (which correspond

to the explicit location updates) to the number of the discrete updates out of which the continuous

model was able tocalculatethe answers.

If the discrete model doesn’t receive the location update when the object is inside a query (e.g.,

range query) discrete model would not be able to return such an answer. This becomes a problem

when objects move extremely fast or location updates are sent infrequently, or not every location

update is received (e.g., network delay, packet loss, load shedding, etc).
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Chapter 5

Experimental Results: Accuracy vs.

Performance Tradeoff

Here I assess the performance and accuracy of DSA and CSA in evaluating a set of continuous

spatio-temporal range queries.

5.1 Experimental Settings

I have built motion operators implementing DSA and CSA algorithms within our stream processing

system CAPE [64] to evaluate their performance and accuracy. Moving objects and moving queries

generated by theNetwork-Based Generator of Moving Objects[10] are used as data. The input to

the generator is the road map of Worcester, USA (where Worcester Polytechnic Institute is located).

All the experiments were performed on Red Hat Linux (3.2.3-24) with Intel(R) XEON(TM)

CPU 2.40GHz and 2GB RAM. The set of objects consists of 5,000 objects and the set of queries

consists of 5,000 continuous spatio-temporal range queries. To get the most accurate comparison

between the two models, the number of objects and queries waskept constant (i.e., no new objects

or queries enter the system, and no existing objects and queries disappear). Each moving object

or query reports its new information every time unit, unlessexplicitly specified otherwise. Our

periodic execution was set to 2 time units. Thus 2 location updates were received per object or per
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Figure 5.1: Road network map of Worcester, MA

query during each evaluation interval.

I ran experiments varying the speed and the update probabilities of objects and queries observ-

ing their effect on the performance and the accuracy of the two models.

5.2 Varying Speed

Here, I vary the speed of objects and queries. The speed of themoving objects and queries is

defined by themax.speed div.parameter specified to the data generator. The larger this value,

the slower the moving objects. The parameter was varied from1 (very fast) to 250 (very slow).

Figure 5.2 gives the effect of increasing the speed of objects and queries on the join time1. When

objects move slowly and regularly sent their location updates, both models exhibit similar perfor-

mance (Figure 5.2). The join time for the discrete model stays relatively constant, where as for the

continuous mode, it goes up as the speed increases (e.g., speed = fastor very fast). The reason is

that objects cover large distances between their location updates, for which the continuous model

constructs trajectories and then clips those to grid cells.These mini-segments of trajectories (for

moving objects) and trajectory volumes (for queries) mightoverlap with a large number of grid

1Time is measured using wall clock time.
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Figure 5.2: Performance of discrete and continuous models with varying speed of moving objects
and queries

cells causing a lot of comparisons between objects and queries. The speed of moving objects and

queries has no effect on the discrete model performance. What happened in between updates (i.e.,

the distance covered by objects and queries) is of no concernto the discrete model.

Figure 5.3 shows the average accuracy for both models when the speed of objects and queries

is varied. Accuracy has been measured for the results outputby the discrete model with respect

to continuous model results using our accuracy model in Section 5.1. When the speed is slow, the

accuracy of the discrete model is close to the continuous model (e.g.,very slow≈ 97.08% and

slow≈ 90.62% ). The reason for that is that when objects and queriesmove slowly, they cover

small distances between their location updates. Thus, there is only a rather small chance that an

intersection between object and a query occurs and no location update is sent. On the opposite,

when objects move very fast, and objects and queries cover large distances between the updates,

discrete model would not output the query-objects intersections that might have occurred between

the updates.

Figure 5.4 illustrates the tradeoff between the two models in terms of join time and accuracy.

For slower moving objects, discrete model has a pretty high accuracy with a much better perfor-

mance than the continuous model. But as the speed of both objects and queries increases, the
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Figure 5.3: Accuracy of discrete vs. continuous models withvarying speed of moving objects and
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accuracy of the discrete model drops significantly (down to approximately 6.43%) when objects

move extremely fast. The high accuracy of the continuous model comes at a price of a much more

expensive join time, approximately 7 times slower.
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Figure 5.4: Performance vs. accuracy when varying the speed

5.3 Update Probability

In this experiment, I evaluate the accuracy of the discrete and continuous models under various up-

date probabilities2 of objects and queries. This experiment is designed to help us to see how much

missing information (or load shedding) can be afforded without any or very little loss in accuracy.

I ran experiments on the continuous model, varying the update probability of both moving objects

2Defines the probability of reporting a moving object. 1000 means that a moving object is reported at every time
stamp during its move. 500, e.g., means that an object is reported with a probability of 50%.
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Figure 5.6: Performance of continuous model with varying update probabilities

and queries, keeping the speed parameter constant at a medium speed (speed parameter = 50). The

probability of reporting a moving object and query was varied from 100% to 25 %.

Figure 5.6 shows the join times for the continuous model withdifferent update rates. The

smaller the update rate, the fewer location updates need to be processed per evaluation interval

also the fewer computations need to be made making the join cheaper. Figure 5.7 shows the ac-

curacy of the continuous model with varying update rates. The results output by the continuous

model with varied update probabilities were compared to theresults of the continuous model when
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100% of the location updates were received. I included discrete model (performance and accu-

racy) for comparison to see how the discrete model with 100% of location updates compares with

the continuous model with smaller update probabilities. With 75% of updates from both objects

and queries at a medium speed, continuous model gives a higher accuracy (≈ 68.5 %) than the

discrete model (≈ 62.1 %) and better performance (≈ 2635 ms for continuous vs. 3913 ms for

discrete). Figure 5.8 graphically depicts the tradeoff between the performance and accuracy when

update probabilities of moving objects and queries vary. Figure 5.5 portrays a tradeoff between the

performance and accuracy in a different fashion. Here theretwo nested axis. The outer axis (with

the origin in the lower left corner) has x-axis representingaccuracy in terms of a percentage value,

and y-axis representing execution (join processing) time.The nested axis (with the origin in the

lower right corner) has x-axis (going from right to left) representing the discrete model and y-axis

(going from bottom to top) representing the continuous model when varying the speed of the ob-

jects and queries. At the origin, the objects are moving extremely slow, and the further the values

are from the origin of the nested axis the faster the speed is.The thick line represents a tradeoff

line between the performance and the speed for both discreteand continuous models. Above the

tradeoff line, the weight is put more on the accuracy, hence the continuous model would be a better

choice. Below the tradeoff line, the emphasis is on the performance, thus the discrete model would

suffice.

5.4 Analysis of Affecting Factors

Velocity and update probability affect performance and accuracy of the discrete and continuous

models. The continuous model is more preferred when: (1) objects move fast; (2) not all location

updates are received (e.g., load shedding occurs); (3) location updates arrive out-of-sync due to

network delay (in this case, we assume the system would load shed this data, as it is outside of the

current window of execution). Continuous model can approximate where objects and queries are

even if no explicit location update is received. Continuousmodel can give a higher accuracy with
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Figure 5.7: Accuracy of continuous model with varying update probabilities vs. discrete model
with 100% update probability
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Figure 5.8: Tradeoff between performance and accuracy whenvarying the update probability

better performance with only 75% of location updates.

Discrete model suffers when objects move fast and rarely send their location updates. The

distance they cover between the updates could be large and the discrete model has no way to

approximate where objects are in-between the updates. Hence, discrete model is preferred when

objects move slow, or when very frequent location updates occur.
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Chapter 6

Part III:

Scalable Cluster-Based Execution

In this part of the thesis, I propose clustering spatio-temporal data streams based on common at-

tributes in order to improve performance when evaluating spatio-temporal queries. In addition, I

propose moving cluster-based load shedding to reduce system overload while preserving a rela-

tively good quality answers for spatio-temporal queries.

6.1 Choosing a Clustering Algorithm

Before I proceed with the details of the proposed cluster-based execution (Chapter 7), I describe

my choice of clustering algorithm and support it by analyzing and comparing it to other clustering

algorithms in terms of memory, performance and robustness.

6.2 Clustering Basics

There are many definitions of cluster analysis in the literature. The following is from [40]:

The goal of cluster analysis is to partition the observations into groups (clusters) so
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that the pair wise dissimilarities between those assigned to the same cluster tend to be

smaller than those in different clusters.

It is important to understand the difference between clustering (unsupervised classification)

and discriminant analysis (supervised classification) [47]. In supervised classification, we are

provided with a collection oflabeled (pre-classified) patterns; the problem is to label, a newly

encountered, yet unlabeled, data. An example of supervisedclassification could be, for example, a

grid index, where moving objects are hashed based on their locations to pre-defined buckets (pre-

determined by the grid cells’ size and count). In the case of clustering, the problem is to group a

given collection of unlabeled data points into meaningful clusters. In a sense, clusters are unknown

a priori and thus are solely data-driven.

6.2.1 K-Means Clustering Algorithm

K-means is one of the most common clustering algorithms. It is an iterative clustering method

that takes quantitative data as input and measures the similarity among the various data points by

calculating a distance measure, typically the squared Euclidean distance (Equation (6.1)):

|a− b| =
√

√

√

√

n
∑

i=1

(ai − bi)
2 =

√

(a1 − b1)
2 + ... + (an − bn)2 (6.1)

wherea andb are points in the Euclidean space<n. Although there are many ways to calculate

the similarity between data points, I use the squared Euclidean distance measure in this work.

K-means is a static clustering method. It is done once all data available at a specific point in time.

K-means consists of two phases: First, all data points are assigned to the closest cluster. Sec-

ond, the algorithm determines the cluster means. K-means repeats these two steps until it con-

verges. Because the similarity between data points is measured using Euclidean distance, the

K-means algorithm is sensitive to outliers and tends to recognize spherical patterns [31]. The cri-

terion function usually keeps track of the total sum of all distances between a data point and its

closest cluster. If changes in this function are consideredmarginal, K-means terminates and is said
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to have converged [63]. Although K-means converges (i.e., it stops after a finite number of steps),

the number of steps is not known in advance.

In [21], the complexity for K-means is described asO(n*d*k*iter) , whered is the number of

features,iter the necessary iterations, which are usually much less than the number of data points,

n is the number of data points andk is the number of clusters.

6.3 Approaches To Incremental Clustering

When picking a clustering algorithm, I considered several criteria. Table 6.1 shows a list of criteria

from the literature for incremental clustering algorithms. In particular, I was concerned whether it

would be more advantageous in terms of performance and accuracy to keep the number of clusters

or the threshold parameter constant.

6.3.1 Criteria for Scalable Clustering

According to the suggestions found in the literature, an incremental algorithm should meet the

following criteria listed in Table 6.1.

For SCUBA, I considered clustering algorithms based on the following four criteria: Perfor-

mance, Memory, On-line Clustering CapabilitiesandRobustness. My requirements for clustering

algorithms are listed in Table 6.2.

6.3.2 Determination of Parameters

The number of clusters has a direct effect on the performanceand memory requirements of a

clustering algorithm. The total number of clusters of a model is either determined byk (number of

clusters), byΘ (threshold) or byη (learning rate). I am going to discuss in this thesis onlyk and

Θ. Θ is a threshold that triggers the creation of a new cluster. A low threshold makes the creation

of a new cluster more likely than a high value ofΘ andΘ can be used to limit the number of

clusters [21, 15]. Because an algorithm, such as Leader-Follower, creates a new cluster for every
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Source Requirement Criteria
Domingos et. al
[20]

Must require small constant time per record, otherwise it will fall
behind the data.

Performance

Must use only a fixed amount of main memory, irrespective of the
total number of records it has seen.

Memory

Must be able to build a model using at most one scan of the data,
since it may not have time to revisit old records, and the datamay
not even all be available in secondary storage at a future point in
time.

On-Line
Clustering
Capabilities

Must make a usable clustering model available at any point in
time, as opposed to only when it is done processing the data, since
it may never be done processing.

On-Line
Clustering
Capabilities

Should produce a model that is equivalent (or nearly identical)
to the one that would be obtained by the corresponding ordinary
algorithm, operating without the constraints found in streaming
environments.

On-Line
Clustering
Capabilities

When data is changing over time, the model at any time should
be up-to-date, and also include all information from the past that
has not become outdated.

On-Line
Clustering
Capabilities

Ye et. al [86] Classification precision On-Line
Clustering
Capabilities

Scalability of learning and classification on large data sets Performance
Robustness to noise Robustness
Ability for incremental learning On-Line

Clustering
Capabilities

Barbara et. al [6] Compactness of representation Memory
Fast, incremental processing of new data points Performance
Clear and fast identification of outliers Robustness

Gupta et. al [30] Given n data points, algorithms should have O(n) time complexity
and O(1) space complexity.

Performance

Table 6.1: Requirements for incremental data stream analysis algorithms [43].

data point, if the distance to the closest cluster exceedsΘ, a smallΘ makes it more likely that the

online clustering algorithm creates a new cluster and overall the number of clusters gets very large.

6.4 Leader-Follower Clustering Algorithm

The Leader-Follower(LF) clustering algorithm is a simple incremental clustering algorithm. It

allows the number of clusters to grow until the boundary is reached. The maximum number of
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Requirement Criteria
Only the cluster centers need to be stored, data points can bedis-
carded after clustering.

Memory,
On-Line
Clustering
Capabilities

Runs in constant time. Performance
Number of clusters can be controlled or varied. Memory
Parameters can be easily determined. Ease of use
Number of parameters is small. Ease of use
Robust for highly dynamic spatio-temporal data sets. Robustness

Table 6.2: My criteria for online clustering algorithms

clusters isk = n. The thresholdΘ determines the number of clusters. A large threshold means that

clusters will contain objects that have a larger dissimilarity, a small threshold, on the other hand,

will increase the probability that the LF algorithm createsa new cluster. The similarity between

data points is measured using the Euclidean distance.

The pseudo-code for the Leader-Follower Clustering Algorithm is shown below (Algorithm 4).

Algorithm 4 Leader-Follower()
1: initialize η, Θ
2: m← x1

3: repeat
4: accept newx
5: j ← arg min

j
‖x−mj‖ //find nearest cluster

6: if ‖x−mj‖ > Θ then
7: create new clusterm← x
8: else
9: mj = (1 - η )mj + η x

10: end if
11: until no more data points
12: returnm1, m1,...,mk

How does LF come up with an acceptable solution regarding thequality of the clustering? LF

optimizes a criterion function, namely the average squareddistance from data points to the closest

cluster, by always choosing the closest cluster for a new point. This is also the case in the first

phase of the K-means algorithm [63]. In addition to that, K-means also computes the means of

all clusters based on the associated data points. By doing this iteratively, it finally ends up with a
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minimized criterion function. Although LF does not iterateover the data set over and over again,

it does minimize the error function in that choosing any other cluster than the closest for a given

data point would result in a higher distance.

The quality of K-means is superior to the quality of LF but it comes with more computational

effort. K-means iteratively minimizes the total sum of distances between all data points and their

associated closest cluster. This explains that K-means requires higher computational efforts (Table

6.1). LF, on the other hand, minimizes the total sum of all distances by always confining a new

data point to the closest cluster. One can expect that LF would be much faster for a large number of

clusters and not much faster for smaller number of clusters,if compared to K-means. The reason

is because K-means requires less iterations to converge ifk is small.

The number of clusters has a linear influence on both algorithms, due to the calculations of

the distances between all the clusters and a new data point. The high variance of K-means results

from the random initialization of the cluster means. This inturn has an impact on whether the

algorithm converges early. Because the number of scans overone data set of the LF is always one,

the complexity is at leastO(n*k).

So when choosing between K-means and LF, one is faced with a trade-off between performance

and quality. In this thesis, I chose the LF algorithm. As experiments will later show, the quality of

clusters that LF algorithm produces is relatively good witha much better performance comparing

to the K-means algorithm.

6.4.1 Analysis of the Leader-Follower Algorithm

Below I analyze the LF algorithm based on the criteria in Table 6.2 in Section 6.3.1.

Criterion 1: On-line Clustering Capabilities . The LF algorithm in its basic form incrementally

clusters data.

Criterion 2: Memory . The memory requirements areO(k). The dimensions of the data and the

number of clusters define the space requirements. High memory requirements result from
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the increasing number of clusters, each of which needs a chunk of space to store the cluster

centers.

Criterion 3: Performance . The complexity of the LF algorithm isO(k*n), wherek is the number

of clusters andn is the number of data points. The reason for such complexity is because it

performs only one scan over data points that have to be processed and the number of clusters

has an impact on calculations to determine the closest cluster center of a data point.

Criterion 4: Robustness . If not handled explicitly, outliers are likely to lead to a new cluster.

This in turn may lead to a lot of single-member clusters. In its basic form, the algorithm

does not provide any tools to handle outliers and thus cannotbe considered robust in that

sense.

6.5 Competitive Learning Clustering Algorithm

Another clustering algorithm candidate I considered was theCompetitive Learning(CL) algorithm.

Contrary to the LF, CL algorithm controls the number of clusters. The parameterk is hard-coded

in the design of the algorithm.

The number of clusters is constant and is a part of the design decision. The basic concept of

CL is that changes affecting the present clustering are confined to exactly one cluster (i.e., one that

is closest to a new data point). This is contrary to K-means, where adding a data point could lead

to changes to the overall cluster structure, because cluster means are iteratively re-assigned until

the algorithm converges. The Competitive Learning algorithm originated from neural networks

research [9, 41]. The pseudo code of CL is shown below (Algorithm 5).

The whole data set is presented to the algorithm several times, until convergence is reached.

The data set is shuffled each time before it is processed again.

Because of calculating the scalar product of cluster weights and data point, only their respective

angle is relevant to determine the closest cluster to data point. The absolute size of a cluster cannot

dominate over other clusters of the cluster structure. Further, only a cluster affected by adding a
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Algorithm 5 CompetitiveLearning()
1: initialize η, Θ, iter, w1, ...wk

2: repeat
3: xi ← {1,xi}, i=1,...,n//augment all patterns
4: xi ← xi / ‖xi‖, i=1,...,n//normalize all patterns
5: j ← arg max

j

∥

∥

∥wT
j , x

∥

∥

∥ //classify x

6: wj ← wj + ηx //weight update
7: wj ← wj / ‖wj‖, j=1,...,k//normalize weights
8: until no significant change inw in iter attempts
9: returnw1...wk

data point is altered. Similar to K-means, CL converges at a user-defined level, optimizing some

squared-error function.

Because this algorithm runs continuously until convergence is reached (or a maximal number

of iter iterations) and no guarantee exists that this condition canbe reached, a decay rate that affects

the learning rate has to be specified to prevent the algorithmfrom alternating weights forever. Such

a decay rate can also have a negative impact. It might become so small that new data points will

not be learned. More details about this algorithm can be found in [21], and information about

competitive learning in general is available in [41].

6.6 Analysis of the Competitive Learning Algorithm

Below I analyze the Competitive Learning Algorithm based onthe criteria in Table 6.2.

Criterion 1: On-line Clustering Capabilities . Although this algorithm needs several scans over

the data, it can be implemented as a single-scan algorithm, i.e., data can be clustered with

one scan. Doing so makes it more or less aLeader-Followeralgorithm with a fixed number

of clusters. The initial cluster centers would be initialized in a way as to set their values to

an initially calculated cluster structure. Depending on the time that is available to process

the new data set, allowing for some iterations to adapt to thenew clusters could improve the

accuracy of a clustering.
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Criterion 2: Memory . A compact representation of the cluster structure is possible, because

only the cluster weights are kept in memory, if the CL algorithm is implemented as a single-

scan algorithm. If the algorithm is implemented in a way where several scans over the data

are allowed, memory requirements will depend on the size of the data set and the number

of clusters that will be stored in memory. The memory requirements of the single-scan

algorithm areO(k), for more than one scan it isO(k+n), wheren denotes the number of data

points andk the number of clusters.

Criterion 3: Performance . As a single-scan algorithm, the computational complexityis O(n).

Otherwise, it becomesO(n*iter), wheren denotes in both cases the number of data points

anditer the number of iterations until convergence is reached.

Criterion 4: Robustness . Like the K-means, CL is sensitive to outliers and offers no method to

prevent the algorithm from incorporating such data points into the cluster structure. In the

case of the single-scan implementation, the outcome is expected to be worse than K-means,

because it only partly maximizes a criterion function.

6.7 Comparing Competitive Learning, Leader-Follower and K-

Means Algorithms

The following table summarizes the comparison of the K-means, Leader-Follower, and Competi-

tive Learning Clustering algorithms.

6.7.1 Clustering Algorithms Comparison Summary and My Choice

The K-means, Leader-Follower and Competitive Learning algorithms solve the online clustering

problem from different perspectives: either with a constant number of clustersk or the threshold

distanceΘ. While CL is not an online clustering algorithm, it can be modified such that it allows

clustering data sets with one single scan over the data set. The fact that the number of clusters
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Criterion K-means LF CL
On-line
Clustering
Capabilities

Some windowed versions
of K-means exist, which
allow processing data
points incrementally. We
note that if K-means is
made an incremental
clustering algorithm, it
becomes very similar to
LF.

Generic model for an in-
cremental clustering algo-
rithm. Can be extended
according to several sug-
gestions and ideas in the
literature [43, 39]. The
number of clusters is con-
trolled by parameterΘ.

Can be achieved if the al-
gorithm is prevented from
iterating. Static with re-
spect to the number of
clusters, but the quality of
the clusters might be poor.

Memory K-means stores data
points and cluster centers.

Only the cluster means
are stored in memory.

Only the cluster means
are stored in memory. If
the algorithm is to iterate
over the data points, ad-
ditional memory has to be
allocated.

Performance O(n*k*d*iter) Because
the initialization of the
clusters is random, the
algorithm has an unpre-
dictable, nondeterministic
run time. To limit the
number of iterations to
prevent the algorithm
from running until con-
vergence is reached,iter
must be set accordingly.

O(n*k) Runs in pre-
dictable time. Outper-
forms K-means especially
for a highk.

O(n*k) for one scan over
the data. Fast algo-
rithm as it performs only
inexpensive computations
such as calculating the
distance between clusters
by means of thecos(x)
function.

Robustness Cannot handle outliers. As outliers may lead
to new clusters, non-
significant clusters can be
deleted from the model
according to a predefined
threshold.

Cannot handle outliers.

Table 6.3: Qualitative comparison of the K-means, Leader-Follower and Competitive Learning
algorithms

must be defined in advance is considered a major disadvantage, as it makes this algorithm too

static compared to Leader-Follower. Thus my preferred choice is theLeader-Followerclustering

algorithm.

LF is a generic algorithm for online clustering problems. Itis considered superior to CL. Its
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performance, which isO(n*k), is less expensive computationally than K-means. In addition, it

handles outliers better than either the K-means or Competitive Learning algorithms.
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Chapter 7

Scalable Cluster-Based Algorithm for

Evaluating Continuous Spatio-Temporal

Queries on Moving Objects (SCUBA)

In this chapter, I describe, SCUBA, a Scalable Cluster Based Algorithm for evaluating a large set

of continuous queries over spatio-temporal data streams. The key idea of SCUBA is to group mov-

ing objects and queries based on common dynamic properties (e.g., speed, destination, and road

network location) at run-time into moving clusters to reduce data size, improve performance and

facilitate scalability. SCUBA exploits shared cluster-based execution by abstracting the evaluation

of a set of spatio-temporal queries as a spatial join firstbetweenmoving clusters and thenwithin

moving clusters. If the clusters don’t satisfy the join predicate (i.e., don’t overlap), the objects and

queries that belong to those clusters can be discarded beingguaranteed to not join individually

either. This provides cost savings and speeds up the processing. I describe the details of SCUBA

algorithm in the sections below.
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7.1 Why Current Solutions Might Not Be Adequate

As it was mentioned in the introduction, scalability is a critical concern, when faced with an ex-

tremely large number of concurrent queries. In particular,the goal is to reduce memory require-

ments and to speed up processing. So far we used a shared execution paradigm, where we group

moving objects into Objects Table and queries into Queries Table, and then perform a grid-based

join between moving objects and the queries based on their locations. There are still several prob-

lems with this model:

• When performing a join, we process each moving object and moving query individually.

With an extremely large number of objects and queries lot’s of comparisons must be made.

This can create a bottleneck in performance.

• We store all location updates for objects and queries individually, which potentially can

cause the system to run out of memory.

• Given limited memory resources, we might not be able to support a really large number of

objects and queries (i.e., can’t store all location updatesfor all moving entities).

There are several possible solutions to the problems listedabove. We can perform load shed-

ding to minimize memory usage and speed up the processing. Unfortunately, this is an extreme

solution and should be the last resort when the system cannotprocess the data and is threatened to

run out of memory or crush.

An alternative solution could be to set a limit on how many objects and queries a system can

support, and reject all new objects and queries once the limit is reached. This solution is also not

adequate. Limiting the system to a certain number of objects(users), we ignore all potential users

that would like to use our system due to system capabilities limitations. In a real world this could

mean a loss of clients, and business. Such small scale solution might not satisfy many applications.

A third solution could be to use distribution. But distribution has its own disadvantages as

well. In particular, network delays can lead to obsolete data, and return either incorrect out of date
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Figure 7.1: Motivating examples for moving clustering

results or no results at all. Distribution adds more complexity compared to a centralized system.

This increases manageability - more effort is required for system management in addition to real-

time processing. Because multiple machines are involved the responses can be unpredictable,

depending on system organization and network load. Lastly,distributed systems can be more

expensive than centralized systems.

I propose an alternative method, theScalable Cluster-Based Algorithm (SCUBA, for short)

for evaluating continuous spatio-temporal queries on moving objects. SCUBA exploits theshared

cluster-based executionparadigm to optimize the execution. By utilizing the sharedclustering,

moving objects and queries are grouped together into clusters based on common spatio-temporal

attributes and then the execution of queries is abstracted as ajoin-betweenclusters andjoin-within

clusters. By using clusters, we also achieve data compression, saving in memory and making the

evaluation of continuous queries more efficient.

Unlike most of the previous works on shared execution as means to achieve scalability, where

objects and queries are grouped separately; SCUBA focuses on shared execution for heterogeneous

entities. Namely, both moving objects and queries grouped into clusters based on similar spatio-
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Figure 7.2: Representation of a cluster

temporal attributes. These moving clusters serve as means to improve the performance and achieve

scalability. For simplicity, I present SCUBA in the contextof continuous spatio-temporal range

queries. However, SCUBA is applicable to a broad class of spatio-temporal queries (e.g.,knn

queries, trajectory and aggregate queries).

SCUBA introduces a general technique for processing a largenumber of simultaneous spatio-

temporal queries. Similar to SINA [57] and SEA-CNN [84], SCUBA is applicable to all mutability

combinations of objects and queries: (1) Stationary queries issued on moving objects. (2) Moving

queries issued on stationary objects. (3) Moving queries issued on moving objects.

When an object or a query belongs to a cluster, the individuallocation updates for this ob-

ject/query no longer need to be processed individually. This provides a great amount of mem-

ory/storage savings and improvement in processing time as the processing is first done at the higher

level of abstraction(level of moving clusters). If the clusters don’t satisfy a join condition, there is

no need to join individually objects and queries that belongto that particular cluster. Once clusters

are formed, they can be treated just as regular moving objects. Thus all of the existing algorithms

and indexing techniques can be easily extended to moving clusters. Although, I don’t explore this

in this thesis, I believe, it can be done without any significant problems.
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Figure 7.3: Clustering Cars on the Road Network

7.2 Moving Clusters

I employ a similar motion model as in [71, 54], where moving objects are assumed to move in

a piecewise linear manner in a road network (Figure 7.4). Their movements are constrained by

roads, which are connected bynetwork nodes, also known asconnection nodes.

Moving clusters can be represented by their centroid or by a set of distant points in a cluster

[46]. Figure 7.2 depicts these two ideas. I use a centroid approach to represent the moving clusters

in SCUBA. It works well when the clusters are compact1.

I define centroid, radius and diameter for a cluster using theEuclidean distance as stated below.

Given N d-dimensional data points in a cluster{ ~Xi} where i = 1,...N, thecentroid ~X0, theradius

1For simplicity, I assume circular clusters, but the logic can be easily extended to other shapes (e.g., ellipses).
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R anddiameter D of the cluster are defined as:

~X0 =

∑N
i=1

~Xi

N
(7.1)
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1
2

(7.3)

R is the average distance from member points to the centroid.D is the average pairwise

distance within a cluster. They are two alternative measures of the tightness of the cluster around

the centroid.

I assume moving objects’ location updates of the following form (o.OID, o.Loct, o.t, o.Speed,

o.CNLoc, o.Attrs), whereo.OID is the id of the moving object,o.Loct is the position of the moving

object,o.t is the time of the update,o.Speedis the current speed. I assume the speed doesn’t change

between two reported location updates. Theo.CNLocis the position of the connection node in the

road network that will be passed by the moving object (its current destination). I assume that the
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Figure 7.5: Moving Cluster in SCUBA

CNLocof the object doesn’t change before the object reaches this connection node.o.Attrsis a set

of attributes describing the object (e.g., child, red car, etc.)

Similarly, the moving queries’ location updates arrive viadata stream, and have the following

format (q.QID, q.Loct, q.t, q.Speed, q.CNLoc, q.Attrs), whereq.QID is the id of the moving query,

q.Loct is the position of the query,q.t is the time of the update,q.Speedis the current speed,

q.CNLocis the position of the next node in the road network that will be passed by the moving

query and theq.Attrsis a set of query-specific attributes (e.g., for range query it might be the size

of the query, forknnquery, the number of the nearest neighbors, etc.)

A moving cluster can contain both moving objects and moving queries (Figure 7.5). Mov-

ing objects and queries that don’t satisfy conditions of anyother existing clusters form their own

clusters,single-member moving clusters. As objects and queries can enter or leave a moving clus-

ter at any time, the properties of the cluster are adjusted accordingly. I consider the following

attributes when grouping moving objects and queries into clusters: (1) Network constraint (e.g.,

road segment); (2) Speed; (3) Direction of the movement (e.g., connection node); (4) Relative

spatial distance from each other.

A moving clustermat timet is represented in the form (m.CID, m.Loct, m.n, m.OIDs, m.QIDs,

m.AveSpeed, m.CNLoc, m.R, m.ExpTime), wherem.CID is the moving cluster id,m.Loct is the

location of the centroid of the cluster at timet, m.n is the number of moving objects and queries

that belong to this cluster,m.OIDsandm.QIDsare the collections of id’s and relative positions

of the moving objects and queries respectively that belong to this moving cluster,m.AveSpeedis
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the average speed of the cluster,m.CNLocis the cluster destination,m.Ris the size of the radius,

andm.ExpTimeis the ”expiration” time of the cluster (i.e., the time when the cluster reaches the

m.CNLoctravelling atm.AveSpeed).

Being composed of objects and queries with similar properties, a moving cluster serves as

a summary of its cluster members. Furthermore, we can treat amoving cluster just as another

moving object that changes its location with time. The advantage of this is that all of the existing

algorithms and indexing techniques proposed for moving objects can be easily extended to moving

clusters.

The difficulty in maintaining and computing moving clustersis that once the clusters are formed

at a certain time, with time clustering changes and deteriorates [38]. To keep a competitive and

high qualityclustering (i.e., clusters with compact sizes), I set the following thresholds to limit the

sizes and deterioration of the clusters as the time progresses: (1)distance threshold(ΘD), and (2)

speed threshold(ΘS). Distance threshold makes sure that the clustered entities are close to each

other at the time of clustering. The speed threshold guarantees that the entities will stay close to

each other for some time in the future.

Clusters aredissolvedonce they reach their destination points (road connection nodes). So

if the distance between the location where the cluster has been formed is short, the clustering

approach might be quite expensive and not as worthwhile. Thesame reasoning applies if the

average speed of the cluster is very fast, and it reaches its destination point very quickly, forming a

cluster might not give very little, if any, advantages. In a typical real-life scenario though, moving

objects can reach relatively high speeds on the distant roads (e.g., highways), where connection

nodes would be far apart from each other. On the smaller roads, the speed limits and the proximity

of other cars would constrain the maximum speed the objects can develop, thus extending the time

it takes for objects to reach the connection nodes. These observations support my intuition that

clustering can be applicable to different speed scenarios for moving objects in every day life.

Individual positions2 of moving objects and queries inside a cluster are represented in a relative

2In my implementation I store the coordinates of the cluster members in memory, but this can easily be changed to
a secondary storage and accessed only duringjoin-within operation.
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Figure 7.7: Handling cluster members

form using polar coordinates with the pole at the centroid ofthe cluster (Figure 7.6). For any

location update point P, its polar coordinates are (r, θ), where r is the radial distance from the

centroid, andθ is the the counterclockwise angle from the x-axis. As time progresses, the center

of the cluster might shift, thus making it necessary to transform all the relative coordinates of the

cluster members. I maintain a transformation vector for each cluster that records the changes in

position of the centroid between the periodic executions. Irefrain from constantly updating the

relative positions of the cluster members, as it is not necessary, unless it is ajoin-within (Section

7.5.2). Before thejoin-withinbegins, the relative coordinates of the cluster members (that are being

joined within a cluster) are translated from relative to theabsolute positions.
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Figure 7.8: No load shedding

7.3 Moving Cluster-Driven Load Shedding

In this section I describe a technique to load-shed data based on moving clusters. As mentioned

above, location-based services are characterized by a large number of objects and queries con-

stantly sending their location updates. The arrival rates can be high and unpredictable. With

limited resources, the system can potentially become overloaded. It may not be feasible to do a

run-time distribution or add more resources. So the alternative would be to shed some data. A load

shedding procedure should identify and discard the less important data (i.e., the data that would

cause the minimal loss in accuracy of the answer).

Load shedding has been explored in networking [45], multimedia [18], and streaming data-

bases [76, 75, 4]. In spatio-temporal databases, reductionof the amount of data is dealt with by

controlling the update frequency [61, 81], where objects report their positions and velocity vec-

tors only when their actual positions deviate from what theyhave previously reported by some

threshold.

In this thesis, instead I explore a moving cluster-driven load-shedding technique. Specifically,

I consider the datainside the moving clusters (i.e., the relative positions of the cluster members

with respect to their centroids). As was described in Section 7.2, the individual positions of the

cluster members are represented using polar coordinates relative to the centroid of the cluster.

Depending on the system load and the accuracy requirements,SCUBA can alternate between

methods for handling internal members of the clusters (Figure 7.7). Namely, all cluster members’

relative positions are maintained (Figure 7.8), none of theindividual positions are maintained
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(Figure 7.9), or a subset of relative positions of the cluster members (furthest from the centroid)

are maintained (Figure 7.10). The rest of the members are abstracted into a structure inside a

cluster callednucleus, a circular region that approximates the positions of the cluster members

near the centroid of the cluster. The size of the nucleus is determined by the parameterΘN which

is a fraction of the maximum size of the cluster determined byΘD. The size of the nucleus can

be expressed asΘN = 1
α

* ΘD. The larger the value ofα the smaller the nucleus, hence the more

relative positions of the cluster members need to be maintained. Hence I load shed data based on

common spatio-temporal attributes, maintained in the forms of moving clusters.

If the system is about to run out of memory, first, SCUBA foregoes maintenance for a subset of

objects and queries’ inside a cluster, and uses anucleusto approximate the positions of the tightly-

coupled around the centroid objects. If memory requirements are still high, then SCUBA can stop

maintaining the relative positions of all cluster members altogether. In this case the cluster is the

sole representative of the movement of the objects and queries that belong to it.

Such internal cluster representation trades off between accuracy and scalability. The accuracy

highly depends on how compact the clusters are. The larger the size of the clusters, the more

false positives we might get for answers when performing thejoin-between. If none of the relative

positions are maintained, then when two clusters intersect(in join-between), we must assume that

the objects from the clusters satisfy the queries from both clusters. Making the size of the clusters

compact will give more accurate answers, but also will increase the overall number of clusters, and

thus the join time. Increasing the size of clusters would make the processing faster, but with less

ΘD

Velocity Vector

Cluster Members:
(O1,O2,O3, Q4,Q5)

Figure 7.9: Full load shedding
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Figure 7.10: Partial load shedding

accurate results. In Section 8.1.5 I evaluate all three methods for handling the individual positions

of the cluster members in terms of performance and accuracy.

7.4 Clustering Moving Objects

I use an incremental clustering algorithm based on theLeader-Followerclustering algorithm [39,

21] to create and maintain moving clusters in SCUBA. The major advantage of incremental clus-

tering algorithms is that we don’t have to store all the location updates (i.e., points) to form the

clusters. So the space requirements are small. In addition,once∆ expires, SCUBA can imme-

diately proceed with the join, without spending any time on re-clustering the entire data set. The

disadvantage is that clustering is location update arrivalorder sensitive. I experimentally evaluate

the tradeoff between the performance and clustering quality when clustering updates incrementally

vs. non-incrementally, when the entire data set is available (Section 8.1.4).

When a location update from the moving objecto arrives, I follow the following three steps to

determine the moving cluster m it belongs to:

Step 1: Use moving object’s position to probe the cluster grid table(Section 7.5.1) to find the

moving clusters in the proximity of the current location of the object (i.e., clusters that the object

can potentially join). If there are no clusters in the grid cell, then the object forms its own cluster,

with the centroid at the current location update of the object, and radius = 0;

Step 2: If there are clusters that the object can potentially join, we iterate through the list of the

clusters, and check the following properties:
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Figure 7.11: Shared execution

1. Is the moving object moving in the same direction as the cluster m (o.CNLoc ==m.CNLoc)?

2. Is the distance between the centroid of the cluster and thelocation update less than the

distance threshold|o.Loct −m.Loct| ≤ ΘD?

3. Is the speed of the moving object less than the speed threshold |o.Speed−m.AveSpeed| ≤

ΘS?

Step 3: If the moving object satisfies all three conditions in Step 2,then the moving clusterabsorbs

the moving object, and adjusts its (i.e., cluster) properties: the centroid, the average speed, the

radius, and the count of the cluster members.

7.5 Shared Cluster-Based Processing

In this section, I present aScalable Cluster-Based Algorithm(SCUBA) for evaluating continuous

spatio-temporal queries on moving objects. SCUBA utilizesa shared cluster-based execution

paradigmto reduce memory requirements and optimize the performance. The main idea behind

shared cluster-based execution is to group similar objectsas well as queries into moving clusters,

and then the evaluation of a set of spatio-temporal queries is abstracted as a spatial joinbetween

the moving clusters andwithin the moving clusters.
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Figure 7.12: Join between moving objects and queries

To illustrate the idea, Figure 7.11 graphically depicts thedifference between the traditional way

to execute queries, the shared execution, and the shared-cluster based execution models. Tradition-

ally a separate query plan is generated for each individual query (Figure 7.11(a)). Each query scans

all the moving objects, filtering out only the ones that satisfy the predicate of the query. Figure

7.11(b) illustrates theshared executionparadigm where queries are grouped into a common query

table, and then the problem of evaluating numerous spatio-temporal queries is abstracted as a spa-

tial join between the set of moving objects and queries [84].Having a shared plan allows only one

scan over the moving objects. But we note that this method still joins queries and objects individ-

ually. With large numbers of objects and queries, this may still create a bottleneck in performance

and potentially run out of memory. Withshared cluster-based execution(Figure 7.11(c)), we form

moving clusters, by grouping both moving objects and queries into heterogeneous moving clusters

based on their common spatio-temporal attributes. Then a spatial join is performed on all moving

clusters. Only if two clusters overlap, we have to go to the object/query level of processing, or

given load shedding automatically assume that objects and queries within those clusters produce

join results.

Figure 7.12 illustrates a motivating example for SCUBA. Here we assume that we maintain

relative positions of all cluster members. With shared execution paradigm (Figure 7.12(a)) objects

and queries would be joined as follows:
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cell[0,0]: 2 queries1 12 moving objects⇒ 24 ind. joins

cell[1,0]: 1 query1 1 moving object⇒ 1 ind. join

cell[1,1]: 3 queries1 11 moving objects⇒ 33 ind. joins

Total: 58 individual joins

With SCUBA (Figure 7.12(b)), we cluster objects and queries. We form 5 clusters: M1(5

objects, 0 queries), M2(6 objects, 2 queries), M3(4 objects, 1 query), M4(3 objects, 1 query), and

M5(5 objects, 1 query). So the execution would be as the following:

cell[0,0]: 2 clusters (M1,M2):

2 Betweenjoins and

2 Within joins where:

Join-Within(M1) = 0 ind. joins

Join-Within(M2) = 12 ind. joins

cell[1,1]: 3 clusters (M4,M5,M6)

3 Betweenjoins and

4 Within joins where:

Join-Within(M3) = 3 ind. joins

Join-Within(M4) = 5 ind. joins

Join-Within(M5) = 5 ind. joins

Join-Within(M3,M4) = 7 ind. joins

Total: 37 individual joins

The join between moving clusters M3 and M4 is done only once. Therefore these clusters are

not joined in the cell[1,0]. So clearly, from the example above, fewer joins need to be made when

utilizing SCUBA algorithm, thus minimizing the overall join time, and improving the performance.

7.5.1 Data Structures

In the course of execution, SCUBA maintains five in-memory data structures (Figure 7.14): (1)

ObjectsTable, (2) QueriesTable(3) ClusterHome, (4) ClusterStorage, and (5)ClusterGrid.
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ObjectsTablestores the information about objects and their attributes.An object entry in the

ObjectsTablehas the form (o.OID, o.Attrs), whereo.OID is the object id, ando.Attrs is the list of

attributes that describe the object. Similarly, the entry in theQueriesTablehas the form (q.QID,

q.Attrs) whereq.QID is the query id, and theq.Attrs is the list of query attributes.ClusterHome

is a hash table that keeps track of the current relationshipsbetween clusters and their members.

A moving object/query can belong to only one cluster at a timet. An entry in theClusterHome

table is of the following form (ID, type, CID), whereID is the id of a moving entity,typeindicates

whether it’s an object or a query, andCID is the id of the cluster that this moving entity belongs to.

ClusterStorageis a table storing the information about all moving clusterscurrently present in the

system (e.g., centroid, radius, member count, etc.).ClusterGridis an in memory N x N grid table.

The data space is divided into N x N grid cells. For each grid cell, ClusterGridmaintains a list of

CIDs (cluster ids) of moving clusters whose circular regions overlap with this cell.

7.5.2 The SCUBA Algorithm

In this section, I provide the overview and the details of theSCUBA algorithm.

The execution of SCUBA can be broken down into three phases: (1) Cluster Pre-Join Mainte-

nance, (2) Cluster-Based Joining, and (3) Cluster Post-Join Maintenance phases (Figure 7.17).

In the cluster pre-join maintenance phase, the following are the tasks that take place: (1) for-

mation of new clusters, (2) dissolving empty clusters, and (3) expansion of existing clusters.

In the cluster-based joining phase, we join clusters and then join objects and queries inside the

overlapping clusters.

Join-Between

= overlap

Join-Between

= overlap

Figure 7.13:Join-Betweenclusters
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Figure 7.14: Data Structures used in SCUBA

Join-WithinJoin-Within

Figure 7.15:Join-Withinfor a singular cluster

In the cluster post-join maintenance phase, we dissolve expiring clusters and relocate non-

expiring clusters based on a velocity-vector back into the grid.

Algorithm 6 gives the pseudo code for SCUBA.

For each execution interval, SCUBA first initializes the interval start time (Step 2). Before∆

time interval expires, SCUBA receives the incoming location updates from the moving objects and

queries and incrementally updates existing moving clusters or creates new ones (Step 5). Alg. 7

gives the pseudo code for for the clustering procedure in SCUBA. I will use an example of a moving

object when describing the clustering. Similar processingis done for queries. The algorithm starts

ignored

=  query results

Join-Within

ignored

=  query results

Join-Within

Figure 7.16:Join-Withinfor two clusters
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Figure 7.17: SCUBA state diagram

by checking theClusterHometable to see if there is a cluster that the object belongs to already

from the previous location updates (Algorithm 2, Step 2).

If there are none (this is a new object in the system), a new entry is made in the Objects table

(Step 5). Location update is hashed to a grid cell, and a set ofmoving clusters is retrieved (currently

overlapping with that grid cell). SCUBA checks each clusterto see if the current object can join

that cluster (Steps 17-18). If yes, the object isadoptedby the cluster (Step 19). Otherwise, the

object forms its own cluster (Step 25).

If the object already belongs to a cluster due to previous location updates (Step 30), then

SCUBA checks to see if the object is still related to this cluster (i.e., has similar attributes with

the cluster) (Step 32). If it is still related, then it checksif the cluster expiration time (time when it

reaches its destination) is greater than or equal to the timeof the current location update (Step 35).

The reason for this check is that we don’t want to cluster the object to the cluster that expires before

the timestamp of the current location update. If all tests are passed, SCUBA adjusts the object’s

relative position to the centroid based on the current location update (Step 37). If the dissimilarity

between the object and the cluster has grown beyond thresholds (discussed in Section 7.4), other

clusters are probed to see if the object can join them. If there are none, then the object forms its

own cluster (Algoritithm 2, Steps 40-45).
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Algorithm 6 SCUBA()
1: loop
2: Tstart = current time
3: while (current time - Tstart) < ∆ do
4: if new location update arrivedthen
5: Call MovingEntityClustering(source object o/query q)
6: end if
7: end while

// ∆ expires
// begin query execution

8: for c = 0 to MAX GRID CELL do
9: for every moving clustermL ∈ Gc do

10: for every moving clustermR ∈ Gc do
11: //if the same cluster, do only join-within
12: if (mL == mR) then
13: Call DoWithinClusterJoin(mL ,mR)
14: else
15: //do between-join only if 2 clusters contain members of different types
16: if ((mL.OIDs> 0) && (mR.QIDs> 0)) ||

((mL.QIDs> 0) && (mR.OIDs> 0)) then
17: if DoBetweenClusterJoin(mL ,mR) == true then
18: Call DoWithinClusterJoin(mL ,mR)
19: end if
20: end if
21: end if
22: end for
23: end for
24: end for
25: Send new query answers to users
26: Call ClustersMaintenance() //do some cluster maintenance
27: end loop

When∆ time interval expires (location updating is done), SCUBA starts the query execution

by performingjoin-betweenclusters (Algorithm 1, Step 11) andjoin-within clusters (Algorithm 1,

Step 15). If two clusters are of the same type (all objects or all queries), they are not considered for

thejoin-between. Similarly, if all of the members of a cluster are of the same type, nojoin-within is

performed for that one cluster. Thejoin-betweenchecks if the circular regions of the two clusters

overlap (Figure 7.13), andjoin-withinperforms a spatial join between the objects and queries inside

each cluster, i.e., a self-cluster within join (Figure 7.15) and inside any two overlapping clusters

(Figure 7.16). Ifjoin-betweendoes not result in an intersection, thenjoin-within can be skipped.
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Algorithm 7 MovingEntityClustering(moving entity (object or query) e)
1: mH = A moving cluster from probingClusterHomefor e.ID
2: if (mH == null) then
3: //entity doesn’t belong to any cluster
4: if e.type== objectthen
5: Make new entry (e.ID, null) in ObjectsTable
6: else ife.type== querythen
7: Make new entry (e.ID, null) in QueriesTable
8: end if
9: SG = Set of moving clusters from probingClusterGrid for e.Loct

10: if (SG == null) then
11: //there are no other clusters in proximity of

//current location update of entity e
12: Call CreateNewCluster(e)
13: return
14: else
15: //there are clusters that potentially this entity can join
16: bool isClusterMember= false
17: for every moving clustermG ∈ SG do
18: if (IsClusterCandidate(mG , e) == true) then
19: Call AdoptNewClusterMember(mG , e)
20: isClusterMember= true
21: break
22: end if
23: end for
24: if (isClusterMember== false) then
25: Call CreateNewCluster(e)
26: return
27: end if
28: end if
29: else
30: //there is a cluster that moving entity already belongs to

//(from previous update)
31: bool isClusterMember= false
32: if (IsStillClusterRelated(mH , e) == false) then
33: Call RemoveClusterMember(mH , e.ID)
34: else
35: if (mH .ExpTime≥ e.t) then
36: isClusterMember= true

//adjust relative position of cluster member relative to centroid
37: Call AdjustCurrentClusterMember(mH , e)
38: end if
39: end if
40: if isClusterMember== falsethen
41: //check to see if there are other clusters the entity can join

//(similar to steps 17-24 above)
...
//still not a cluster member

42: if isClusterMember== falsethen
43: Call CreateNewCluster(e)
44: end if
45: end if
46: end if
47: return

7.6 Analysis of SCUBA

Here I analyze the performance of SCUBA in terms of memory requirements, number of join

comparisons, and I/O cost. I use parameters listed in Table 7.1 in my analysis.

Memory Requirements: We maintain five in-memory data structures:ObjectsTable, QueriesTable,
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Variable Description
∆ Time interval between periodic query execution
Nobj Total number of objects
Nqry Total number of queries
Nclust Total number of clusters
Aobj Average number of objects in a cluster≈ dNobj/Ncluste
Aqry Average number of queries in a cluster≈ dNqry/Ncluste
Aclust Average number of clusters in a grid cell≈ dNclust/Ncellse
NUD Number of unique destinations on the road network
Eobj Size of object entry inObjects table
Eqry Size of query entry inQueries table
ECG Size of cluster entry inClusterGrid

ECSBase
Size of cluster base entry (i.e., cid, centroid, radius)
in ClusterStorage table

ECSCMember
Size of cluster’s member entry (i.e., id, relative position)
in ClusterStorage table

ECH Size of cluster entry inClusterHome table
Coverlap Average number of grid cells that overlap with a cluster
S Page size (measured in bytes)
Ncells Number of grid cells
ΘD Distance threshold
ΘS Speed threshold
IABJ Average percent of clusters intersecting with other clusters
α Nucleus factor (from formulaΘN = 1

α
* ΘD)

ϕ Inverse load shedding factor
RAAI Average area of intersection when two clusters are intersected
RACS Average cluster size (area)
Cx Length of a grid cell in x dimension
Cy Length of a grid cell in y dimension

Table 7.1: Parameters used in SCUBA analysis

ClusterGrid, ClusterStorage, andClusterHome. The memory consumed by these structures

can be described as follows.ObjectsTable memory consumption is

ObjectsTable = Nobj ∗ Eobj (7.4)

Similarly,QueriesTable:

QueriesTable = Nqry ∗ Eqry (7.5)

ClusterGrid memory requirements are
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ClusterGrid = Nclust ∗ Coverlap ∗ ECG (7.6)

where Coverlap describes the number of cells that a cluster overlaps with and can be estimated as

Coverlap =
⌈

Sclust

Scell

⌉

(7.7)

whereSclust is the largest possible cluster size andScell is a grid cell size. The size of a circular

cluster is determined by the furthest away from the centroidcluster member. It can grow up to the

distance threshold -ΘD. Scell represents the area of a rectangular cell, and can be described asScell

= Cx* Cy, whereCx andCy are the lengths of a grid cell in x and y dimensions. Hence we can

rewrite (Equation 7.7) as

Coverlap =

⌈

π ∗ θD
2

Cx ∗ Cy

⌉

(7.8)

Equation (7.8) implies thatCoverlap depends on the size of the clusters and the size of the grid cells.

ClusterStorage memory requirements are:

ClusterStorage = Nclust ∗ ECSBase
+

+ϕ(Nobj ∗ ECSCMember
+ Nqry ∗ ECSCMember

)
(7.9)

whereϕ is an inverse load shedding factor (0≤ ϕ ≤ 1). Whenϕ = 0, none of the relative location

updates of cluster members are maintained. Thus, a moving cluster serves as a sole representation

of the movements of objects and queries that belong to it. When ϕ = 1, all relative positions of

the cluster members are preserved. In other words, no data isshed. When 0< ϕ < 1, partial load

shedding is performed, that is (ϕ * 100)% of positions of the cluster members are maintained. So

the lower theϕ, the fewer positions are preserved (the greater the load shed occurs), and vice versa,

the higher theϕ, the more of the positions of the objects and queries inside acluster are saved.

Memory consumed byClusterHome table is:

ClusterHome = Nobj ∗ ECH + Nqry ∗ ECH (7.10)

Combining equations (7.4)-(7.10) and rearranging the terms, the total memory size consumed by
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these structures is:

MSCUBA = Nobj ∗ (Eobj + ECH)+

+Nqry ∗ (Eqry + ECH)

+Nclust ∗ (
⌈

π∗θD
2

Cx∗Cy

⌉

∗ ECG + ECSBase
)+

+ϕ(Nobj + Nqry) ∗ ECSCMember

(7.11)

Equation (7.11) suggests that once the environment parameters (Eobj , Eqry, ECH , ECS, andECG)

are fixed, the total amount of memory consumed by SCUBA depends on the number of objects

and queries, the number of clusters, the number of grid cellsthat the clusters overlap with and the

load shedding factor. The number of clusters in SCUBA depends on the number of objects and

queries, the two thresholdsΘD andΘS, and the number of unique destinations that the clusters

are moving towards (NUD). Coverlap depends on the size of the grid cells and the size of clusters.

Assuming that size of the grid cells is fixed, then the size of the clusters has a direct effect on the

memory consumption. Following the above observations, theclustering criteria, the distance (ΘD)

and speed thresholds (ΘS) must be chosen carefully according to the application requirements and

system configurations.

Faced with limited resources (e.g., memory, CPU) and near-real time response obligation when

processing really bursty data streams, a call for load shedding can be justified. Yet load shedding

comes at a price of losing accuracy. The accuracy (ASCUBA) can be expressed as following:

ASCUBA = max(

(Nclust ∗ RAAI

RACS
∗ (Aobj + Aqry)),

ϕ(Nobj + Nqry))/(Nobj + Nqry)

(7.12)

I measure accuracy as the ratio of the number of relative positions of the cluster members main-

tained to the total number of objects and queries. The higherthe number of positions preserved, the

higher the accuracy of the results we expect. Ifϕ = 1, the relative positions of all cluster members

are preserved and accuracy = 100%. Asϕ decreases (i.e., load shedding increases) the accuracy

decreases. Ifϕ = 0 (i.e., all relative positions are load shed), the accuracy value is estimated by the

ratio between the average intersection area and the total area of a cluster multiplied by the sum of
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the average number of cluster members. Both equations (Equation 7.11) for memory and (Equa-

tion 7.12) for accuracy imply that as the inverse load shedding factorϕ decreases, the memory

requirements and accuracy decrease, and vice versa. This represents a tradeoff problem between

the memory requirements and accuracy.

Join Performance: I analyze join performance in terms of the number of join comparisons. The

number of joins is affected by the number of cluster members’positions maintained inside clusters

(i.e., all, none, or some). If relative positions for all cluster members are maintained, the number

of joins in SCUBA can be estimated as:

JSCUBAAll
= Ncells ∗

(

Aclust−1
∑

i=1
i

)

+

+(Nclust ∗ Aobj ∗ Aqry)+

+(IABJ ∗Nclust) ∗ Aobj ∗ Aqry

(7.13)

where
Aclust−1
∑

i=1
i is the average number ofbetweenclusterjoins in a grid cell,Nclust *Aobj *Aqry

is the number of individual joins done when performing awithin join for a singular cluster (i.e.,

joining objects and queries that belong to the same cluster), and (IABJ *Nclust) * Aobj * Aqry is

the number of individual joins performed for overlapping clusters (i.e.,join-within for overlapping

clusters). If the cluster member positions are not maintained the number of joins is

JSCUBANone
= Ncells ∗

(

Aclust−1
∑

i=1
i

)

(7.14)

This equals to the count ofjoin-between’s only. Finally, if only some relative positions for cluster

members are maintained and the rest of the cluster members are approximated bynucleus, the total

number of joins is

JSCUBAPartial
= Ncells ∗

(

Aclust−1
∑

i=1
i

)

+

+(Nclust ∗ 1 ∗ Aobj

α
∗ Aqry

α
)+

+(IABJ ∗Nclust) ∗ 1 ∗ Aobj

α
∗ Aqry

α
)

(7.15)

where ”1” stands for one nucleus per cluster.

So the total number of join executions directly depends on the number of individual positions of
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cluster members preserved, in other words the load sheddingfactor. If all of the relative positions

of cluster members are shed, the number of joins depends on the average number of clusters per

grid cell. This in its own turn depends on the total number of clusters, their size and the size of the

grid cells. If some relative positions are maintained, the number of joins depends on the average

number of clusters per cell, average number of objects and queries per cluster and the size of the

nucleus (which is affected by theα), as well as the percent of clusters intersecting with each other.

If all relative positions are kept, the number of joins depends on the average number of clusters per

grid cell, average number of objects and queries per clusterand the percent of intersecting clusters.

I/O Cost: We execute SCUBA in-memory, but with an extremely large number of objects, queries

and clusters and no load shedding allowed, another alternative would be spilling data to the disk. In

particular, I focus on theClusterGrid table, as moving clusters frequently change their locations,

and thus the grid would have to be frequently updated. The number of pages in each disk-based

grid cell in theClusterGrid table is:

PGCell =









⌈

Nclust

Ncells

⌉

⌊

S
ECG

⌋









(7.16)

So the total number of pages can be determined as:

PCG = PGCell ∗Ncells (7.17)

The I/O cost3 depends on the number of times SCUBA has to access the disk-based grid. This

would happen in 3 cases:(1) when a new cluster is formed, (2) when a new cluster member in-

creases the size of the cluster, and SCUBA has to check if the cluster might overlap with any

surrounding grid cells, and (3) when doing a spatial join between moving clusters in a grid cell.

The cost of I/O when inserting a new cluster can be calculatedas:

IOInsert = Tr + Tw∗

min(PCG, Nclust ∗ Cintersect ∗ PGCell)
(7.18)

whereCintersect is the number of cells that intersect with a cluster insertedinto the grid.Tr andTw

3We measure the cost of I/O in terms of time.
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denote the time to ”read” and ”write” to a grid cell respectively.

When the radius of the cluster increases, we need to update all the new grid cells that now the

cluster might overlap with. So the I/O cost for expansion of the cluster can be approximated as:

IOClustExp = Tr + Tw∗

min(P CG, CNewOverlap ∗ PGCell)+

+Tr ∗ Tw ∗ ρ ∗∆ ∗ (robj + rqry)

(7.19)

whereCNewOverlap is the number of new cells that the cluster overlaps with, as aresult of cluster

expansion. Since the expansion of the clusters is affected by the arrival of location updates from

objects and queries, this introduces the partTr*Tw*ρ*∆*(robj + rqry) in the Equation 7.19.ρ is

the percent of objects and queries causing the expansion of the cluster. If the update falls within

the current cluster without causing the increase in size, noaccess to the grid is necessary. If the

update causes the expansion of the cluster, we have to look upthe grid for the current position of

the centroid of the cluster, and record the expansion of the cluster in the grid.

When doing the join between moving clusters, each grid cell would be read only once. So the

I/O cost for the join is:

IOjoin = Tr ∗min(P CG, Coverlap ∗Nclust ∗ PGCell) (7.20)

So the overall cost of the I/O in SCUBA is the sum of of the I/O costs from the insertion of clusters

into the grid, expansion of clusters in the grid, and joiningmoving clusters in the grid.

IOSCUBA = Tr ∗ Tw∗

min(PCG, Nclust ∗ Cintersect ∗ PGCell)+

+Tr ∗ Tw ∗min(P CG, (CNewOverlap ∗ PGCell))+

+Tr ∗ Tw ∗ ρ ∗∆ ∗ (robj + rqry)+

+Tr ∗min(P CG, (Coverlap ∗Nclust ∗ PGCell))

(7.21)

I assume thatTw > Tr, thenTr can be ignored. So the upper bound of the total I/O cost is

IOSCUBA = 4 ∗ Tw ∗ PCG+

+2 ∗ Tw ∗ ρ ∗∆ ∗ (robj + rqry)
(7.22)

87



This means that the total number of I/Os for SCUBA depends on:(1) the time to write to a grid

cell, (2) the total number of pages in theClusterGrid, (3) the length of the time interval∆, (4)

the arrival rate of objects and queries, and (5) the percent of the moving objects and queries that

cause the expansion of the clusters they belong to. We note also thatρ depends on the thresholds

we specify for clustering (ΘD andΘS) and size of the grid cells.
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Chapter 8

Experimental Results: SCUBA Evaluation

In this chapter I describe experimental results evaluatingthe performance of SCUBA compared to

regular (non-clustered) grid-based evaluation of spatio-temporal queries.

8.1 Experimental Evaluations

In this section, I describe my experimental evaluations of SCUBA. I compare SCUBA with a

grid-based spatio-temporal range algorithm1, where objects and queries are hashed based on their

locations into different grid cells. Then a cell-by-cell join between moving objects and queries is

performed. Grid-based execution approach is a common choice for spatio-temporal query execu-

tion. Many works in the literature exploit it in one way or theother (e.g., [57, 84, 62, 22, 60]). In

all of the experiments queries are evaluated periodically (every∆ time units).

To be fair in comparison, I implemented incremental hashingfor the regular execution model,

where objects and queries are immediately inserted into thegrid upon their arrival.

Section 8.1.1 describes my experimental settings. Section8.1.2 compares the performance

of SCUBA with the regular execution model when varying grid cell sizes. In Section 8.1.3, I

study the performance of SCUBA with varying cluster skewingfactors. Section 8.1.4 studies the

performance of SCUBA when performing incremental vs. non-incremental clustering. Finally,

1For simplicity, I will refer to it asregular executionor regular operator.
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Section 8.1.5 studies the performance and accuracy of SCUBAwhen performing load shedding on

arriving location updates.

8.1.1 Experimental Settings

I have implemented SCUBA inside our stream processing system CAPE [64]. Moving objects and

moving queries generated by theNetwork-Based Generator of Moving Objects[10] are used as

data. The input to the generator is the road map of Worcester,USA. All the experiments were

performed on Red Hat Linux (3.2.3-24) with Intel(R) XEON(TM) CPU 2.40GHz and 2GB RAM.

Unless mentioned otherwise, the following parameters are used in the experiments. The set of

objects consists of 10,000 objects and 10,000 spatio-temporal range queries. Each evaluation in-

terval, 100% of objects and queries send their location updates. Relative positions of all cluster

members are maintained inside clusters (i.e., no load shedding). For theClusterGridtable I chose

100x100 grid size.∆ is set to 2 time units. The distance thresholdΘD equals 100 spatial units.

The speed thresholdΘS is set to 10 (spatial units/time units).

8.1.2 Varying Grid Cell Size

In this section, I compare the performance and memory consumption of SCUBA and the regular

grid-based algorithm when varying the grid cell size. Figure 8.1 gives the effect of increasing

the granularity of the grid in regular and SCUBA operator. Since the coverage area (the city of

Worcester) is constant, by increasing/decreasing the cellcount in each dimension (x- and y-), we

can control the sizes of the grid cells. So in 50x50 grid the size of a grid cell is larger than in

150x150 grid. So the larger the count of the grid cells, the smaller they are in size and vice versa.

From Figure 8.1a, the join time decreases for the regular operator significantly when decreasing

the grid cell size. The reason for that is that smaller cells contain fewer objects and queries. Hence,

fewer comparisons (joins) need to be made. But the fine granularity of the grid comes at a price of

higher memory consumption. This is due to the fact that a large number of grid cells are created,

each containing individual location updates of objects andqueries.

The join time for SCUBA slightly goes up as the grid cell sizesbecome smaller. But the change
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Figure 8.1: Varying grid size

is insignificant, because the cluster sizes are compact and even as the granularity of the cells is

increasing, the size of grid cells is still larger than the size of clusters. So unless many clusters

are on the borderline of the grid cells (overlapping with more than one cell), the performance of

SCUBA is not ”hurt” by the finer granularity of the grid. Moreover, only one entry per cluster

(which aggregates several objects and queries) needs to be made in a grid cell vs. having an

individual entry for each object and query. This provides major memory savings when processing

extremely large numbers of densely moving objects and queries.

8.1.3 Varying Skewness

In this section, I compare the performance of SCUBA with regular grid-based method when skew-

ing the spatio-temporal attributes of moving objects and queries. I vary the attributes causing

objects and queries to be very dissimilar (no common attributes) or very much alike (i.e., cluster-

able). Several data sets were generated varying clusterable attributes of moving objects and queries

(e.g., speed, destination, road network) to vary the numberof clusters and the number of cluster

members per cluster.

Figure 8.3 illustrates the effect of skewing the data from being very dissimilar to very alike

in movement. When data is dissimilar, many single member clusters or clusters with few cluster

members are formed. When data has many similarities, few clusters are formed containing a large

number of cluster members. Theskew factorrepresents the average number of moving entities that

have similar spatio-temporal properties, and thus could begrouped into one cluster. For instance,

when skew factor = 1, each object and query moves in a distinctway. Hence each forms its own
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Figure 8.2: Shapshots of execution intervals with varying skewing factor

cluster. When the skew factor = 100, every 100 objects/queries sending their updates move in a

similar way. Thus they typically may form a cluster. I kept the relationship between objects/queries

and clusters they belong to unchangeable until the cluster gets dissolved (i.e., once an object/query

belongs to a cluster, it doesn’t leave it).

In Figure 8.3, when objects and queries are non-clusterable, the SCUBA performance suffers

due to the overhead of many single-member clusters where many join-between clusters are per-

formed. If many single member clusters spatially overlap, the join-within is performed as well.

This increases the overall join time. In real life this scenario is highly unlikely as with large num-

ber of moving objects there often may be at least some that would have common motion attributes

for some duration of time. As the skew factor increases (10-100), and more objects and queries

are clusterable, the join time for SCUBA significantly decreases. The overall join time is roughly
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Figure 8.3: Join time with skewing factor
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Figure 8.4: Incremental vs. Non-Incremental Clustering

3.5 times faster compared to a regular grid-based approach when the skew factor equals 100, i.e.,

approximately 100 moving entities per cluster.

8.1.4 Incremental vs. Non-incremental Clustering

In this section I study the tradeoff between the improved quality of the clusters which can be

achieved when clustering is done non-incrementally (when all data points are available) and the

performance of SCUBA. As proposed, SCUBA clusters locationupdates incrementally upon their

arrival. The quality of the clusters is affected by the orderin which the updates arrive. I wanted to

investigate if clustering done offline (i.e., non-incrementally, when all the data points are available)
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producing better quality cluster groups and facilitating afaster join-between the clusters could

outweigh the cost of non-incremental clustering. In particular, I focus on the join processing time,

and how much improvement in join processing could be achieved with better quality clusters vs.

when clusters are of slightly poorer quality when formed incrementally.

I implemented aK-meansextension to SCUBA for non-incremental clustering. One of the

disadvantages of the K-means algorithm is that the number ofclusters must be decided in advance.

I used a tracking counter for the number of unique destinations of objects and queries for a rough

estimate of the number of clusters needed. Another disadvantage is that K-means needs several

iterations over the dataset before it converges. With each iteration, the quality of clustering im-

proves, but the clustering time takes significantly longer.I varied the number of iterations from

1 to 10 in this experiment to observe the impact on quality of clusters by increased number of

iterations.

Figure 8.4 presents the join times for SCUBA when clusteringis done incrementally vs non-

incrementally. The bars represent a combined cost of clustering time and join time. The time

to perform incremental clustering is omitted as the join processing starts immediately when∆

expires. In the offline clustering scenario, the clusteringhas to be done first before proceeding to

the join. With the increased number of iterations, the quality of clusters is better. This aids in faster

join execution compared to the incremental case. The cost ofwaiting for the offline algorithm to

finish the clustering outweighs the advantage of the faster join. When the number of iterations is

3 or greater, the clustering time takes longer than the actual join processing. The larger the dataset

the more expensive each iteration becomes. Offline clustering is not suitable for clustering large

amounts of moving objects when there are constraints on execution time and memory space. Even

with a reduced number of scans through the data set and improved join time, the advantage of

having better quality clusters is not amortized due to the amount of time spent on offline clustering

and larger memory requirements.
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Figure 8.5: Measuring accuracy when performing load shedding

8.1.5 SCUBA and Load Shedding

Here I evaluate the effect of moving cluster-based load shedding on performance and accuracy in

SCUBA.

Figure 8.6 represents the join processing time and accuracymeasurements for SCUBA when

load shedding positions of the cluster members. The x-axis represents the percent of the size of

the nucleus(i.e., circular region in the cluster containing cluster members whose positions are

discarded) with respect to the maximum size of the cluster. For simplicity, I will refer to it as

η. Whenη = 0%, no data is discarded. On the opposite, whenη = 100%, all cluster members’

positions are discarded, and the cluster solely approximates the positions of its members. The

fewer relative positions are maintained, the fewer individual joins need to be performed when

executing a join-within for overlapping clusters.

Our experiments illustrate that this load shedding comes ata price of less accurate results

(Figure 8.6b). To measure accuracy, I compared the results outputted by SCUBA whenη = 0%

(no load shedding) to the ones output whenη > 0%, calculating the number of false-negative and
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false-positive results (Figure 8.5). The size of the nucleus has a significant impact on the accuracy

of the results when performing load shedding. Hence it must be carefully considered. Whenη

= 50%, the accuracy≈ 79%. So relatively good results can be produced with cluster-based load

shedding.

Spatio-temporal applications are often more sensitive to changes in data characteristics than

regular streaming applications. For instance, a random drop of location updates when objects

move especially fast may totally change the results.

8.1.6 Cluster Maintenance Cost

In this section, I compare the cluster maintenance cost withrespect to join time in SCUBA and

regular grid-based join time. Figure 8.7 gives the cluster maintenance time when the number of

clusters is varied. By cluster maintenance cost we mean the time it takes to pre- and post-process

the clusters before and after the join is complete (i.e., form new clusters, expand existing clusters,

calculate the future position of the cluster using its average speed, dissolve expired clusters, and

re-insert clusters into the grid for the next evaluation interval).

For this experiment, I varied the skew factor to affect the average number of the clusters.

The x-axis represents the average number of clusters in the system. Figure 8.7 shows that the
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cluster maintenance (which is an overhead for SCUBA) is relatively cheap. If we combine cluster

maintenance with SCUBA join time to represent the overall join cost for SCUBA, it is still faster

than the regular grid-based execution. Hence, even though maintaining clusters comes with a cost,

it is still cheaper than keeping the complete information about individual locations of objects and

queries and processing them individually.
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Chapter 9

Part IV:

Conclusions and Future Work

9.1 Conclusions

This thesis focuses on the understanding of the tradeoff in performance and accuracy when de-

ciding on a location modelling technique for spatio-temporal queries on moving objects. Two

types, namely discrete and continuous location managementmodels have been studied. An accu-

racy comparison technique for the discrete and continuous results was developed. This allowed to

compare otherwise very different types of results for the two models. Experiments and accuracy

measurements of the output results have shown that when objects move slowly, the discrete model

doesn’t “miss” on many results (i.e., intersections between objects and queries), hence the results

stay relatively accurate compared to the continuous model.But as the speed increases, the discrete

model begins to “miss out” on many results that the continuous model doesn’t. Hence the accuracy

of the discrete location model decreases as the speed of the moving objects increases. On the other

hand, the continuous model can produce more accurate results, but at a high cost of join execution.

This is due to large distances travelled between the location updates, which have to be “clipped”

(i.e., intersected with) the grid cells of the index, causing many overlaps, and thus increasing join
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time. So in the fast moving environments, higher accuracy can be achieved with the continuous

model, but at the cost of higher join time. Another conclusion from the experiments is that if a

server cannot catch up with the data and a load shedding is performed, the continuous model can

still produce relatively high accuracy results. In other words, if the application requirements are

the highest possible accuracy, then the continuous model should be used. If the application needs

the best possible performance at the cost of accuracy, then discrete model should be used. The grey

area is when both high performance and best possible accuracy are requested. In this case, it’s a

choice between the discrete model with 100% of location updates and the continuous model with

some load shedding (e.g., load shedding rateα = 20%, which means 20% of data will be dropped,

and only 80% processed). This value of 80% corresponds to update probability parameter (in our

experiments). Calculating the accuracy value and modifying the load shedding rate at run-time

would allow to tune the system to the best possible accuracy/performance ratio. This dynamic

behavior is one of the future tasks for implementation.

Also in this thesis, I proposed, SCUBA, aScalable Cluster Based Algorithm for evaluating

a large set of spatio-temporal queries continuously. SCUBAcombines clustering analysis with

shared execution paradigm and moving cluster-based load shedding to achieve improvement in

performance when evaluating moving queries on moving objects. Given a set of moving objects

and queries, SCUBA groups them into moving clusters based oncommon spatio-temporal at-

tributes. The clusters serve as abstractions of data, and can be used to optimize the join processing.

SCUBA performs a spatial join between the moving clusters and only if the two join (i.e., inter-

sect), the join-within clusters is executed. Hence only if two clusters intersect, the execution has

to go to the individual level of processing (i.e., joining objects with queries).

Clusters can serve as approximations for the locations of its members. As a consequence, a

more “intelligent” load shedding can be performed using moving clusters in case the system has

to drop some of its workload. The contribution of this thesisis the utilization of moving clustering

techniques as means to optimize internal execution of continuous queries in data streaming sys-

tems. Experimental results show that SCUBA is efficient at processing large numbers of concurrent
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range queries on a large number of moving objects. It shows tobe superior than the alternative of

individual processing of each query when large numbers of moving objects move in similar fashion

(i.e., on the same network, at relatively similar speeds, and in the same direction).

9.2 Future Work

For future work, we plan to extend our study in the following directions.

First, I assume only circular clusters. A natural extensionwould be to allow non-circular

clusters.

Currently, the parameters for the maximum sizes of the moving clusters and the sizes of the

nuclei are fixed. The next step would be to dynamically adjustthe sizes of the clusters and nuclei

(which indirectly determine the amount of data to be load shed) dynamically at run-time respond-

ing to the system status (i.e., statistics). For example, ifthe system is not catching up with the data

and a larger amount of data needs to be load shed, SCUBA can dynamically adjust the nuclei sized

for all (or ideally for some - least affected) moving clusters to speed up the processing while still

maintaining the highest possible accuracy.

Another possible extension, would be to utilize other indexing techniques with SCUBA. In this

thesis, a grid index was utilized with SCUBA, but possibly other index variations can result in even

more efficient processing when combined with SCUBA.

Currently the centroids of the moving clusters are computedfor high-density regions (i.e.,

many moving objects are attempted to be clustered together in the same cluster, and a centroid is

recomputed every time a new point is added). This may become very expensive as the number of

data points joining the cluster increases. It might be better to cluster by using low-density regions

(i.e., regions that don’t contain any objects), to define theboundaries between the clusters, rather

than using high-density areas to define the centers of the clusters.

We will also plan to extend SCUBA algorithm for the processing of other types of spatio-

temporal queries (e.g., knn, aggregate, etc.). Since moving clusters group objects by similar prop-
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erties, they may naturally facilitate a faster execution for different types of queries. For example,

finding a nearest moving neighbor for each moving object, or finding similarly moving groups of

objects for data analysis, etc.

Another area of further optimization of the algorithm wouldbe to allow merging and breaking

clusters and supporting hierarchical clustering to further optimize the processing. In addition, we

plan to test SCUBA on moving objects and queries using real physical location-monitoring sensors.

Also as part of our future work, we plan to experimentally evaluate dynamically adaptive

spatio-temporal operator behavior, utilizing the accuracy/performance tradeoff model. The spatio-

temporal operator would dynamically switch between the twomodels depending on the current

data arrival rates and the average velocities of the objectsand queries, to maximize the accuracy

and minimize the cost of execution.
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Figure A.1: UML diagram of classes used by regular grid-based motion operator in CAPE
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MovingObjectsIntervalStatesCollection
-items[] : MovingQueryState

MovingQueriesIntervalStatesCollection

#id : int
#intervalReportNumber : int
#intervalStartTime : int
#intervalEndTime : int

MotionGenericIntervalState

+getIntervalStartPosition() : PositionSpt2D
+getIntervalEndPosition() : PositionSpt2D
+setIntervalStartPosition()
+setIntervalEndPosition()

«interface»
IIntervalStateInterface

IIntervalStateInterface

OperatorStateImp

1

*

1

*

Figure A.2: UML diagram of classes used by regular grid-based motion operator in CAPE
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#executionIterationCount : int
#delta : int

MotionGenericOperator

#results : MotionDiscreteResultsCollection
#grid : FixedDiscrete2DGrid

MotionDiscreteRangeQueryOperator

#objectsTable : MovingObjectsStatesCollection
#queriesTable : MovingQueriesStatesCollection

MotionRangeQueryOperator

#objectsTable : MovingObjectsStatesCollection

MotionGenericClusterOperator

#results : MotionContinuousResultsCollection
#grid : FixedContinuous3DGrid

MotionContinuousRangeQueryOperator MotionContinuousClusterQueryOperator

MotionContinuousClusterOverlapQueryOperator

MotionContinuousClusterAreaQueryOperator

MotionContinuousClusterCenterQueryOperator

Motion Operators 
HierarchyXATMultiQueueWindowStreamOperatorImp

Figure A.3: UML diagram of classes used by regular grid-based motion operator in CAPE

114


