WPI

Simulator for Teacher-Student Classroom
Interactions

A Major Qualifying Project submitted to the faculty of Worcester
Polytechnic Institute in partial fulfillment of the requirements for the Degree
of Bachelor of Science in Computer Science.

Project Team:

Mary Braen (mebraen@wpi.edu)
Gabriel Camacho (gtcamacho@wpi.edu)
Emily Lin (elin@wpi.edu)

Ryan Luu (rmluu@wpi.edu)

Aidan Mulcahey (ammulcahey@wpi.edu)

Jonathan Palmieri (jdpalmieri@wpi.edu)

Project Advisor:

Professor Jacob Whitehill

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion
of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review.
For more information about the projects program atWPI, please see

http://www.wpi.edu/academics/ugradstudies/project-learning.html

mailto:mabraen@wpi.edu
mailto:camacho@wpi.edu
mailto:elin@wpi.edu
mailto:rmluu@wpi.edu
mailto:ammulcahey@wpi.edu
mailto:jppalmieri@wpi.edu
http://www.wpi.edu/academics/ugradstudies/project-learning.html

Abstract

We developed a two dimensional graphical classroom simulator to help train teachers to
perceive teacher and student interactions. Each simulation lasts up to 20 minutes and contains
one teacher and multiple students. The storylines are generated randomly and employ 32 unique
events and emotions, such that events are arranged in a logical sequence. Using this simulator as
a training and a data collection model, our project advisor sought out to help the next generation

of teachers better prepare themselves for the real world.

Table of Contents

Chapter 1: Introduction

Chapter 2: Background

Chapter 3: Specifications

Chapter 4: Software Tools Choices
Chapter 5: Implementation

Chapter 6: Conclusion

References

Appendix

15
23
33
36
37

https://docs.google.com/document/d/1MN5NOV05Tm_2ylPTWiFLcqzk6CFkAC2qKQ5z0v2dNgE/edit#heading=h.cnz3c2x3tios
https://docs.google.com/document/d/1MN5NOV05Tm_2ylPTWiFLcqzk6CFkAC2qKQ5z0v2dNgE/edit#heading=h.89ocdo7klyd3

Chapter 1: Introduction

Teaching as a profession has many challenges and requires constant attention to multiple
tasks simultaneously, including planning lessons, managing student behavior, and monitoring
student progress. However, one of the most significant challenges that teachers face is the need
to divide their attention among all their students, especially with younger age groups. Research
suggests that teachers tend to focus their attention on specific students or groups, which can lead
to unequal opportunities for learning and achievement (Flook, 2016). Additionally, teachers may
struggle to monitor all their students effectively, particularly those who are disengaged or
disruptive, leading to potential learning gaps and behavior problems (Skinner et al., 2021).
Therefore, teachers must develop strategies to manage their attention effectively and ensure that
all students receive equal attention and support.

The Classroom Simulator for Teacher-Student Interactions project is a collaborative effort
to better prepare teachers for the classroom environment for preschoolers and kindergarteners.
Brought together by the vigors of the WPI program, a team of computer science students worked
for a collective ten months on developing this simulator for our advisor, Professor Jacob
Whitehill. Our sponsor met with the team of students every week to provide feedback to guide
the development of the simulator. The team was able to conceive a professional application using
the latest technology, one which will be used for years to come for the betterment of our
children’s future. Ultimately, our simulator will be used to analyze the relationships and
interactions between the teacher and student, enabling the user to learn crucial techniques and
gain real world experience to the pathway of becoming a fully qualified teacher.

These interactions were programmed to be organic in nature, to capture a ‘real life’ event

occurring on the screen in a random fashion each time the simulation is loaded. The simulator

supports various actions, such as a child running around, the teacher reading to the class,
everyone taking a break for snacks, etc. Including a variety of emotions the teachers and students
can express, the simulation is continuous and showcases aspects of a typical day in a
kindergarten classroom. This is all done automatically by the computer, and cannot be controlled
by the user. In short, an extensive amount of information can be learned through this interactive
project, and how a teacher should balance giving their attention to not only a handful of students,
but the entire classroom.

In this report, the team will describe the initial idea and background of the classroom
simulator, an in-depth specification of its key features, the software choices made, and showcase
the final implementation of the project. Each section detailed in this report was vital to the team’s
success and showcases not only our successes of the classroom simulator, but also the greatest
challenges the team had to overcome.

The roles of the team were divided up to bring out the best to all of the team’s individual
strengths. These included but were not limited to software development, learning fluid animation
using a game engine, and the brainstorming of the project structure. The team came together to
bring this project to life, and without our own previous experience and help from our advisor, the
project could have looked very different. Each week a member of the team would be the leader,
assigning roles to the other members, discussing future goals and deadlines, as well as leading

the meeting with our sponsor.

* Student Cries! .

Figure #1: First Iteration of Classroom, October 2022

The first iteration in the image above was the team’s effort to create a visual
representation of the simulator. Having the avatars’ emotions above their heads to display the
childrens’ feelings as they move around the tilemap was one of the main ideas from the very
beginning. The team’s next steps were to figure out the best way to animate the sprites and
eventually be able to communicate to the user the direction the sprites are facing. It was the
team’s worry that if the sprites did not turn in the right direction during a said event, it would
look awkward and take the user out of the experience.

In the following chapter, the team will dive into the background of this project, and

explore other previous simulations our original simulator was inspired by.

Chapter 2: Background

To give more background on this project, the idea originated from our MQP advisor,
Professor Jacob Whitehill, in an effort to help teachers be more equipped to handle certain
situations that occur in a children’s (preschool through 5th grade) classroom. This involved
making the simulation unlike those found in traditional video games and apps today, but one that
could be used as a learning tool. This tool, our simulator, meant to be continuous and be different
each time it is loaded, provided great insight on the day to day life one could expect of a teacher.
Arguably, one of the toughest jobs in the world, a teacher observing a simulated classroom and
how the teacher reacts to a variety of escalating situations can better prepare themselves for the
real world was crucial to implement in the design.

While researching the best way to implement the idea, it was necessary to seek out other
instances of simulators already developed to see the advantages and disadvantages it could
provide. Simulators and two-dimensional video games were observed as the team came up with
the best way to build our project. Some of the design examples of other simulators, such as the
University of Virginia classroom simulator, and two-dimensional games like Pokemon and
Legend of Zelda were particularly interesting. The Virginia simulation (Breen 2016) was three
dimensional and had easy to interpret designs for the characters and emotions. It was apparent
from the simulator one could tell the emotions of the children, and see their fluid movement as
well as their attention span. Other similar simulators had different goals such as platforming,
emphasis on dialogue options, and a focus on movement from input by the user. This process

took several weeks and finally settling on one software was crucial in the development phase.

—~ 10} A3 —

B. 206, 00— Vivaviv)

Figure #2: Example of Tilemap from Zelda’s 2D Display,

https.://www.gamedesigngazette.com/2019/09/how-market-conditions-influenced-2d-zelda.html?m=0

e
G

« - v

-

ENCYRNENE n‘l‘
ANy BuL oeCs
1
lwwwwwoww»wwv\-

LA Al A da s)
OREY I LN RN

W

v 1 3o

Figure #3: University of Virginia’s 3-D Simulator Capturing Student Response

://[news.virginia. nruly-digi

https://www.gamedesigngazette.com/2019/09/how-market-conditions-influenced-2d-zelda.html?m=0
https://news.virginia.edu/content/unruly-digital-kids-test-classroom-management-skills-teachers-training

The team also considered several different designs before ultimately picking the final
iteration. It was important for us to focus on the best display that would capture the teacher’s
attention in regards to the students. Looking at a variety of simulations, the team found several
designs that were quite too complex for the goal set out for us. The team also had to consider
feasibility and the timeframe of the project, which was an important factor in the final decision.
Regardless, the elements that were present in most of the simulations the team observed were
implemented in our project. These included structure for pathfinding, tilemap generation, and the
ability to restart the simulation from scratch. The team also found many of the simulations were
continuous, and the movement was preloaded before it initially started.

During the first weeks of the MQP, our advisor provided the team with a book to give a
better idea of the classroom as a whole. An important book that laid the foundation for this
project was the Classroom Assessment Scoring System Manual Notes (Pianta, 2008). Provided
by our advisor at the beginning of this project, the team all individually read through and saw the
different styles of teaching based on a scoring system. During a fifteen minute classroom session,
teachers were evaluated on the overall climate based on student interactions. Through this
information, the team realized certain areas of learning were graded higher based on the attention
the teacher gave to each student. The main goal of the book focused on training teachers to be
more precise, and better prepare their observation skills.

In the next chapter, the team will explore the specifications of the simulator and go

in-depth on the finer tune details of the project.

Chapter 3: Specifications

The specifications of the project were built to be reliable for a web browser and easily be
usable for preschool to kindergarten teachers. To help them focus more of their attention on
certain areas of the classroom, our two-dimensional simulator was built with the goal to make a
randomized simulation of events and see how the teacher as well as students react in a standard
classroom. On top of this, it will be used to develop various simulations to analyze the attention
span and to train teachers to handle these situations appropriately. The job of teaching children,
especially children at a very young age, is a big responsibility, and ensuring teachers are aware
and trained is fundamental to an adolescent's development. For the project, teachers are able to
play through a variety of storylines, watch the behaviors of students as they express their
emotions to certain events in the classroom, and collectively observe how the teacher responds.
The project was made with the purpose of being simplistic in design, but overall be visually
captivating and meaningful for our users. Throughout this chapter, the team will explore the
ideas for the specifications used, the possible frameworks the team discussed, and ultimately the
technology the team used for the final product.

In our simulator, it is important to showcase a variety of events that can take place in the
classroom. To do this, our team created many scenarios that reflect a typical classroom
environment and showcase various movements of two dimensional figures with an emotion or
action attached. Each scenario plays out as the students can be seen reacting to something or
someone, usually involving the teacher. Examples implemented in our simulation included
students running around, students making a mess, and the teacher reading a book.

The team aimed to design the simulator to best capture similarities to a typical preschool

classroom with layouts that were visually pleasing to interact with. It was important nonetheless

10

our classrooms looked professional, while also not taking away from the core simulation feature
of movement and algorithmically simulated events. The objective for these events was to be
determined randomly, so each simulation when generated is unique with their own sequence.
Initially, the design process consisted of many user interface mockups, which helped us as a team
to further envision what the simulator should look like. In a preschool classroom, there are
specific elements almost always present and were made sure to be included in the final product.
These elements include but are not limited to at least one carpet, a bookshelf, and tables or desks
for students to sit at. Although the layout was lackluster during the beginning phase of the
project, the specifications for this design are fundamental in capturing the key interactions
between the teacher and their respective students.

The functionality for reading in JSON objects and having it generated within the game
engine was a whole phase of the project itself. The team made great progress towards generating
storylines, improving movement of sprites, and even made each simulated story unique. By
designing the algorithm to take in any randomly generated event, the resulting actions that came
from these random choices became its own distinct classroom simulation. The team saved a lot
of time by avoiding to hard code each individual story, and in doing so gave many options for the
user of this software to use at their discretion. The team ultimately settled for the software to
retrieve a randomly generated script associated to a seed number from an Express server, and
have the Godot Engine intake and render the information from the TypeScript and JSON object
file. The specifications the team had finalized for the software met the qualifications for it to be
feasible and simplistic to understand amongst anyone.

In order to create procedural generated classrooms, it was decided to take a model view

approach. This approach involved separating our code into two separate portions: the model

11

portion and the view portion. The model is responsible for generating any rules and parameters
that need to be known before a classroom is rendered in the simulator. Some examples include
the layout of a classroom, general path vectors of a given student from event to event, and the

sequence of events that occur in an instance of a simulation.

Here is an example of what our model will generate for a 10 by 10 room:

Render of Room:

E EEEEE £ g g
E X X X X X X X X O
- A - B A - S o - -
= X X X X X X x x E
=E X Xttt X X X E
=E X Xttt X X X =
- A O B - - -
= X X X X X X x x E
= X X X X X X xX xX E
EEEZE £ £ £ £ £ £

Figure #4: Output of Rendered Classroom

The output of a room is currently represented as a 2D array of characters as can be seen
above. These characters each represent a different type of tile that is rendered in Godot a.k.a our
view. In the view portion of the program, the team has implemented a file parser that can
interpret this 2D array of characters. The view has a key that will convert each character to a
given tile. For instance for ‘W’ it would be a wall/room border, for ‘D’ it would be a door, a ‘T’

for a table, a ‘C’ for a chair, and ‘X’ as an empty background tile/floor tile.

Using this key, the view, or rendering engine, can use the index of a given character in the

2D array and match it with the 2D array used for rendering the tile map. The engine or view can

12

then reference the key and set the given tile in the tile map to the corresponding tile texture from

the provided sprite sheets.

3.1.1 Student Path-Finding:

One key aspect of our simulator is the movement of students and teachers between
events. In order to accomplish this, the team has developed a pathing algorithm as a part of our
model to determine a student’s path. The current iteration of this algorithm on the model side
works by taking a set of starting coordinates and end coordinates as inputs. Using this it will
determine a possible path that can be taken to get from point A to point B without standing on
tiles like walls and or tables in an area that can’t be occupied by a person in the real world. Here
is a small example of a student, highlighted and represented by the char s, moving from

coordinates (3, 3) to (3,1) on this 10 X 10 model of a sample classroom.

Example of a student moving from point (3,3) to (3,1):

Room, Frame: 1 Render of Room, Frame: 2
w W dw w w

O
=

EEEEE=EEEE E E
E X X X X X X X X
=X X X X X X 0 X
E X X X X X X 0 X =
E X Xttt X X X =
=E X X rtrtrtx X X =
E X Xttt X X X
=X X X X X X X X =
E X X X X X X X X =
EE=EE=EE=EE E E E

W
W
W
W
W
W
W
W
W
W

=X X X X X X X X
= X X X xX X X 0 X
= X X X X X X X =
= X Xttt X X X =
=E X Xttt X X X =
=E X Xttt X X X
=X X X X X X X X =
=X X X X X X X X =
EEEEEEE £ E E

Figure #5: Frame 1 Figure #6: Frame 2

13

)
D
3
O
1))
5
(o]
—+

Room, Frame: 3
W

j=
=
=

W
W
W
W
W
W
W
W
W
W

=X X X X X X X X
= X X X X X X 0 X
= X X X X X X X wn =
= X Xttt X X X =
= X Xttt X X X =
= X Xtttk X X X
= X X X X X X X X =
=X X X X X X X X =
EEEsE = E £

Figure #7: Frame 3

3.1.2 Frame Data:

To build the animation for the simulator, it was important for each frame to implement
the specific concepts of Frame Data. In traditional video games or movies there will be a set or
targeted amount of FPS or Frames Per Second when it is playing out in real time. A Frame is a
single image a combination of multiple frames rendered per second gives the illusion of a
moving image or video. For our use case a Frame as referred to in our model is simply a
snapshot of the state of a classroom. Combining multiple frames will allow us to visually
represent students moving from point a to point b smoothly. Now in the example given above
there are only three frames. Three frames per second is extremely slow and does not look very
good when played in real time. To solve this problem these three frames will be referred to as
data frames. Data Frames directly update the position of an object in the model. Instead of only
rendering these 3 data frames and only having an FPS of three, the team has to interpolate the
remaining frames between each Data Frame.

For example, let's say there’s a one second long event and there are three data frames
directly updating the position of something in our classroom. To make the event smooth it is

important to use a standard frame rate, typically 60 FPS. Since it's going to render 60 frames

14

over the span of 1 second the next step is to divide our FPS by the number of Data Frames. 60
Frames Per Second / 3 Data Frames = 20 Frames. So using this math a data frame for this
example will be updated every twenty frames. So for the first twenty frames our student will
move from (3,3) to (3,2).

In the next chapter, the team gives an overview of the important decisions made

regarding the software and the tools ultimately used for the final implementation.

15

Chapter 4: Software Choices

For this chapter, more details are provided on the software tools used to implement the
simulator. Initially during the brainstorming period of this project the team strived to look at this
simulator from the aspect of a software product. It was important to not only our advisor, but our
team that the software could be easily accessible and even accessed as a web application. This
meant our code needed to be compiled and compatible in Javascript, HTML, and CSS. At first,
this was a minor setback because most of our team had very little experience or were
uncomfortable using these languages. In order to save time, the team took advantage of existing
frameworks, libraries, or engines to speed up the process of coding and learning.

It was decided earlier on to implement an object-oriented software design approach
because this is what was most comfortable for most of the team, but also suitable for the goal of
the application. Another important aspect was the extent of documentation and ease of use for
future implementations and iterations. Most importantly, the implementations needed to be able
to be exported to the web, and work seamlessly in a web environment.

There are two main parts to our app’s design. First, it was important to create a model of
the simulation. The goal of this model is to create an output that represents and stores important
data such as, room size and layout, number of students, and a list of events that pertain to a given
simulation. This output created by the model can then be passed into and interpreted by the view
for rendering. This model would most likely be done in an Object-Oriented programming
language such as Java or Javascript. Next, the team would need a way to serve this model to be
rendered on screen. For this it was important to have a view program capable of rendering the
output from the model. Ultimately the decision was made to use a game engine that has been

built in libraries that will aid in tile maps and image sprite placement. It is crucial the rendering

16

engine is able to process our model and display it in a fluid and believable manner that
accurately portrays the events of a classroom.

4.1 Model

4.1.1 Java

During the first phase of the project, Java seemed to be an obvious choice for a language
to build our model in. All team members had experience with it and Java being a strongly typed
language with great built in libraries for string manipulation made it an ideal choice. The original
idea for the Java model was to create a data structure that represented a given frame, room, and
simulation.

Some key components that were developed for the Java model also did not make the final
build due to a combination of time constraints or better methods being implemented via
typescript model. However, it is important to highlight these components as the team put time
into developing them, and they helped us find a better path forward for our final deliverable.
CSV File Reading and Writing:

On both the Java and Godot side components were written to read, write, and parse csv
files. On the Java side a CSV file would be formatted by overlaying the initial 2D character array
that represented a room into a CSV file. Then any events that would alter that initial room would
be saved as frame updates in a column similar to that of a chess piece moving on a chess board.
This would allow for a rough version of a full simulation to be stored in a CSV file that could be
completely generated by the Java model without Godot. This rough version then would be
loaded into Godot and data between frames in the rough version would be interpolated. The
result was Godot would produce a smooth version of the simulation that makes events such as

student movement look more fluid and less blocky. This CSV file that produces the rough

17

version could also be used as a reference point to rewind to any given frame in the simulation,
and continue rendering from that point. Unfortunately due to time constraints the implementation
of play pause was put at a lower priority for the project, and this functionality was never fully

utilized in the final deliverable.

4.1.2 Vanilla Javascript

Looking at Javascript, it proved to be a challenge for those who had not written in the
language. Unlike Java, team members struggled with the lack of type definitions and looser rules
regarding type safety, strict object oriented code, and using a text editor instead of an IDE, which
isn’t as structured. While writing in Javascript would have meant writing in one language which
naturally was accepted by browsers, it would have taken too long for team members to get

accustomed to writing in this language.

4.1.3 Typescript

The model was ultimately written in Typescript. Typescript is a “strict” version of
Javascript with declarative type definitions and a more rigid set of rules. Typescript is also built
off Javascript, and is built to compile to Javascript and be used on web applications. The type
definitions allowed us to build an object-oriented model. It also sped up the design and

debugging process because of its extra features compared to Javascript.

4.1.4 Node & Express

Once the team decided to use a non-native engine to render the animated scenes, it
became apparent these scenes needed a server to communicate between the model and view. At

first, the team thought of ways to edit the compiled Javascript from the rendering engine, but the

18

compiled code was not readable and there was logic that could not be changed without breaking
the application. Instead, it was necessary to implement an API to communicate the scripts
generated by the model with our front-end rendering framework.

NodeJS is a Javascript runtime used for many applications including running servers built
with Javascript. Features such as the Node Package Manager (NPM) allow us to easily
implement javascript libraries. One library from NPM is Express, which is used to quickly build
backend servers. Its extensive use and documentation made it easy to quickly implement an
Express API to communicate.

Other advantages of Node and Express are Typescript support, which allowed us to
integrate our model directly into the Express application.

4.2 Rendering Engine
4.2.1 Javascript Libraries
Animation libraries included PixiJS, MelonJS and GIMP for the design of sprites and

other textures in the simulator.

4.2.2 Unity

Unity proved to be too much overhead, had adequate documentation for certain
functionality, and was not the best option initially. It was able to compile to HTML though, and

proved to be an alternative.

4.2.3 Godot

Godot’s lightweight structure, thorough documentation, and the ability to seamlessly

compile to HTML made it top choice for the Classroom Simulator. The usage of Godot had

https://docs.godotengine.org/en/stable/index.html

19

propelled us to finish our project with all the intended features that the team proposed for in our

initial plans.

+ @ E Edit GoTo Debug (2 online Docs

O Classroom @ X Node2D
e % Classroom.gd 2 ass_name Classroom
£ sprite.gd E

("Classroom ready")

Audio Animation

Figure #8: This is the Godot IDE which is currently displaying the script view variables and methods are

defined.

Furthermore, Godot's thorough documentation played a vital role in the development of
our simulator. The documentation provided clear and concise instructions on how to use the
various features of Godot, making it easy for our team to learn and implement the necessary
functionalities. In addition, the Godot community provided valuable support through forums and
tutorials, allowing us to troubleshoot any issues encountered during the development process.

With its lightweight structure, the team was able to design the layout of our simulator
through a framework that is very unique to our project. Godot was the main receptor of
information that was being sent from the backend which included information of sprites, tile
maps and a script of events that were displayed in the simulator when rendered. Godot’s features

hosted our team-designed assets that played their role in the rendering.

20

When using Godot, the team wanted to use the rendering engine in a similar way to
making a platform game. The reason for this choice was to follow the guidelines of a platform
game for simplicity, due to the intricacy of implementing and designing our own 3D assets.
Through this route it was possible to use the dimensions of a 2D grid array where it set locations
of sprites and tiles, or randomized every render. Having the option to design our own 8-bit
designs helped us with efficiency in terms of time, where the team can focus more on the actual
logic of generation with the backend.

The process of having our scripts be generated from server side code to a visual
simulation, the team had to associate our assets to a Godot feature known as nodes. With our
sprites, it was important to take each one that was designed through Paint Sai or Vanilla Paint
and add them to a Node2D (which essentially is a container where other nodes reside that can be
2D transformed via their position, scale, and rotation of their child nodes.)

Within our simulator, sprites are considered as two types, kinematic or static, based on
their movement behavior in relation to the physics simulation.

A kinematic sprite is a type of sprite that has a fixed position and can move by changing
its velocity. It is not affected by physics forces such as gravity or collisions with other objects,
but can collide with other objects and trigger collision events. Kinematic Sprites are often used
for player-controlled characters or objects that need to move in a controlled manner.

On the other hand, a Static Sprite is a type of sprite that is fixed in place and does not
move or interact with the physics simulation in any way. It is typically used for background
elements or scenery that do not need to move or respond to user input or other game events.

By defining sprites as kinematic or static, it is possible to control how they behave within

the physics simulation and create a more realistic and interactive game environment.

21

One of the unique features of Godot is its ability to support multiple programming
languages, including node.js and TypeScript. Node.js is a popular server-side JavaScript runtime
environment that allows developers to create fast and scalable network applications, while
TypeScript is a superset of JavaScript that provides static typing and other advanced features to
improve code quality.

In Godot, developers can use node.js and TypeScript code to render out 2D simulations
by leveraging the engine's built-in scripting language, GDScript. GDScript is a Python-inspired
language that provides an easy-to-learn syntax and powerful features such as garbage collection,
built-in signals, and coroutines.

To use Node.js and TypeScript code in Godot, developers need to use the engine's built-in
GDNative system, which allows developers to create C++ modules that can be loaded and
executed by Godot's scripting language. The GDNative system provides a flexible and efficient
way to integrate third-party libraries and existing codebases into Godot games. One of the ways
the team used this to our advantage was taking the developed code and being able to export the
entire project to HTMLS, so it may display through a web-based application view.

Developers can also take advantage of Godot's powerful visual scripting system, which
allows them to create game logic and behaviors without writing any code. Visual scripting in
Godot uses a node-based interface similar to popular game engines like Unreal Engine and

Unity, making it easy for non-programmers to create complex game mechanics and interactions.

4.3 Source Control

Our main way to track all commits from a team of six members was through Github. The

team decided this was the best plan of action to keep each other on track. In the following

22

chapter, the team will explore the details of our main implementation for the simulator, and focus

on how it was ultimately manufactured.

23

Chapter 5: Implementation

The implementation of the classroom simulator can be split into two parts. The model
was written in Typescript and generates scripts which are sent through an express server. These
scripts are in JSON format and can be read and rendered in our Godot Engine software. The team
used Godot to render the simulation for the reasons explained in the previous chapter. The Godot

code compiles to html and can be served to a user through any normal server.

5.1 Creating a Story Script

The story script is the output of the classroom simulation and holds all the data and events of the
given simulation. Each time the simulator is run, an instance of the Simulator class is created. This class
handles generating each event and writing the outcome to the JSON script. It also holds an instance of a
Classroom, which is an object that retains the current state of the simulation.

The Classroom consists of a room which is created upon initialization based on the configuration
parameters passed through. It also holds a list of Sprites, (students and teachers). Sprites retain
information about their current position (relative to the room in x and y coordinates), as well as their
current mood and action. At any point, the Simulator can take a “snapshot” of the current state of the
Classroom and write it to the JSON file.

A story script includes the room configuration and a list of events that occur in the story.

This script is generated by our typescript model based on configuration parameters.

Table #1: Simulation Configuration Parameters

Parameter Name Description

Seed A number used in the custom rng elements of the simulation, such as
generating events and a room. This allows users to generate the
same random simulation using the same seed. If no seed is provided,
this will default to a random seed.

24

roomSizeX Number of tiles in the room that will be in the X direction. Defaults to a
random number 9-16.

roomSizeY Number of tiles in the room that will be in the Y direction. Defaults to a
random number 9-16.

numStudents Number of students in the simulation. Defaults to a random number
4-6.

numTeachers Number of teachers present in the simulation. Defaults to 1.

numChairs The number of chairs found in the room. Defaults to the number of

students + 1.

numTables The number of tables found in the room. Defaults to a random
number 1-3

numRugs The number of rugs found in the room. Defaults to a random number
1-2.

numBookshelves The number of bookshelves found in the room. Defaults to a random
number 0-1.

Note that all these parameters are optional and the simulation will use a small range of
default parameters in the case that a configuration is not supplied. In practice, it is unlikely that
most of these parameters will be used since rooms and scenarios will be generated randomly, but
are useful for testing and in the need of a more specific classroom layout.

This script structure was originally designed in Java, but implemented similarly in
Typescript when the team changed code bases. Included in the script is a layout of the room, the
config, and a list of frames. The state of the room is stored in the form of a 2D character array, as

can be seen in Figure #5.

25

rame: 1
w

A
)
=
&
)
L
o
-+

Room,
W

O
=

F
w
X
X
X
X
X
X
X
X
w

E EEZE = £ £ E
= X x oM X X X X X
= X X X X X X 0 X
E X X X X X W ox x =
= X X bttt X X E
=E X Xttt X X X =
= X Xttt X X X
E X X X X X o x o x ox®x E
E EEZ £ £ £ £ £

Figure #5: Initial Display of Room using Letters

This idea was fundamental and would allow for a character to be represented as well as
stored in a frame. Each frame would be a snapshot of the classroom simulation at a certain time
period. A list of frames would then make up an event, and a list of events would be a simulation.
This abstraction would allow for data about a given event, such as a student moving, to be stored
as updates to a two dimensional grid. A given simulation could then be logged to a file in an easy
to understand format without ever having to open Godot or run a simulation all the way through.
This meant the team could use this file as a reference point to aid in play, pause, and rewind of a
given simulation in Godot. Unfortunately, it was decided not to include this feature during the six
months of development.

Each frame involves updating the data for sprites (students or teachers) at different points
through the simulation. A list of frames is stored by the simulation, creating a timeline of all the
events that occur. Upon sending the data from the server, this list of frames is converted into a
JSON structure and added as part of the JSON story script.

Events themselves are based on observations of preschool classrooms from public

youtube videos. Through taking note of common classroom behaviors the team created a list of

26

potential actions a student or teacher could take. While this isn’t a complete list, the actions created
cover many basic scenarios which could occur. Unless a certain event or chain of events is specified, the
simulation will generate these events semi-randomly. The team used the term semi-random because some
events are more likely to occur if a previous event has just ended. For example, a child who has just fallen
asleep will not be able to then run around. A complete list of the events and corresponding rendering
behavior can be found in the appendix.

The simulation writes the story script by generating a specified number of events (either
randomly or specifically depending on the configuration). After generating each event, The classroom is
updated with each Student and Teacher’s new data. Then, the “snapshot” is taken of the classroom and
converted into a readable JSON object. This object is added to a list of “snapshots” which can be sent as
part of the script to be rendered when the simulation finishes. The script is served through an ExpressJS

API which was written in typescript. The REST API was created and includes multiple endpoints to

suit our needs.

Table #2: APl Endpoints

Method Endpoint Description Return Type

GET

n/random/:numEwv:

After much experimentation on the optimal ways to communicate through the API, the
team decided GET requests were perfect for our needs in terms of communication. Dynamic
routes allow us to send information such as the number of events and a seed to the server by
passing parameters through the url. These dynamic parameters are indicated by the “:” in some
endpoints. The most common endpoint used in practice was
“/classroom-simulation/random/:numEvents”, which generates a specified number of random
events. There is no limit to the number of events rendered, and it can be changed simply by
changing a parameter. Other endpoints allow us to test specific events or set seeds to replay the

same storylines. Using this API allowed us to have maximum control of the simulation while

maintaining simplicity and scalability.

27

28

5.2 Rendering the Script

Using the game engine Godot, the team was able to design and implement a plan to
simulate the classroom itself. The reason for this decision was the team’s interest in a variety of
game engines while also not being afraid to learn something new. The team had previous
experience with Javascript, HTML, and CSS, but for the scope of the project the final decision
came to Godot, a more reliable alternative. To give a brief background, the game engine provides
learnable techniques to use for movement and animations that is easily accessible to the user. The
flexibility of the 2D model and resources made available led the team to choosing Godot. After
overcoming the brief learning curve and brainstorming the best possible way to reach our goal,
the team decided on how to best approach the various obstacles associated with the simulator.

Starting from the ground up, the team needed to come up with typical events that would
take place in an elementary school classroom. After some consideration, the team came up with
over a hundred events involving the teachers and students interacting with one another. To reach
the objectives of the simulator, randomness was a key factor in the final product.
Algorithmically, a random storyline is animated and played, with the user having the ability to
pause, replay, or even select a specific training. The behind the scenes of this process involved
turning this list of events into an animation, which relied heavily on the Godot gaming engine.
By assigning certain numbers to specific events and effectively randomizing them, the order in
which the events play out are different each time. The mindset was to showcase essentially, an

unlimited amount of stories each unique in their sequence of actions.

29

5.3 Path Finding

In order to ensure that students did not overlap with solid objects in our Java model the
team had to implement a form of two dimensional path finding. It was important to explore a
variety of open source third party path finding libraries to aid us in solving this problem. After
some time and discussion, the team decided to use the popular A* algorithm to generate the best
path for each specific event. Within the confines of the project, A* proved to be the fastest and
most reliable after a week of testing. Other algorithms such as Dijikstra’s and Breadth First
Search (BFS) were considered, but the team’s past experience with A* proved to be the optimal
implementation moving forward for pathfinding.

Even with the aid of a third party path finding algorithm the team ran into some issues.
Certain simulation two students would each be given a path that led down a 1x1 area and get
stuck. This would lead to an infinite loop and eventually cause the simulator to crash. The team
developed a few solutions to this issue including expanding the edge of the room so that a two
unit wide perimeter of open tiles was present in every simulation. Through some testing of an
avatar facing a blocked path, the team learned it was possible to generate a new path that it could
take after an extensive session of debugging. However, even with these changes there were cases
where two students would box another student in permanently, or would get stuck. That on top of
the increased complexity being generated by these changes made this solution less than ideal for
our project. As a result this path finding algorithm did not make it to the final build, as instead
the team used godot built in pathfinding and collision detection to solve this issue without having
to alter the parameters of the simulation.

To go further, one of the main challenges for the project was the idea of how to take our

Java logic and use it in a web application without creating a complex web server. There were two

30

paths the group could have taken to solve this issue. The first was to continue using Java and use
a local temporary file to store the data on the machine locally. This would have allowed the Java
model to write to a CSV file or a text file, and then Godot would read and parse this file to obtain
information about a given simulation. The second option was to convert our Java model to
typescript and use a middleware such as express to send the data via a web server to godot. The
team spent around a month writing in Java, with the idea that the temporary file method would
provide a good foundation for the implementation of the potential play pause feature down the
line. This is why the decision to switch to Typescript was not made sooner as the team did not
have a clear idea of how this feature would be implemented without use of the Java model. The
main components and foundations of the model were started in Java, and everyone involved
learned a lot during this process. However, the team eventually made the decision to refactor and
rewrite our model code in Javascript, as it was easier to convert the model output to godot via a

web server than it was to create local temporary files.

5.4 Creating the Art

The next step was designing the classroom and the makeup of the individual avatars as

well as their movements. Sprites were made using the Paint Tool Sai software.

5.4.1 Handling Physics

Collisions were important to take into account involving the sprites so the story appeared
seamless and continuous. If students were walking through tables and chairs, it would distract
from the overall experience of the simulator. Godot made collisions much easier to deal with,
and by programming the sprites to go to a specific location based on a certain event taking place,

these problems were avoided. Rendering the sprites and animation was undoubtedly the hardest

31

part of the project. This step involved several specific scripts that are triggered by certain events
in the json file the team created by using the 2D Area feature in Godot. This allowed the team to
trigger a complete storyline based on the location of the sprites in the simulator and have them
move continuously to the next event. Involving emotions and rotations of the figures themselves,
the simulator was able to use the gaming engine to fade in, transition, and progress through each
event seamlessly. Ultimately, our team figured out how to ensure continuity and create the
simulator to play out a five minute story. Consisting of a rather complex algorithm, the details

are explored in the implementation chapter.

Figure #9: Prototype of Simulator (as of December 2022)

There were many different elements that needed to be taken into consideration when
developing this simulator. One of the first major decisions that our team came across was

deciding what software to use to create and code the project. Several Javascript libraries were

32

considered, as well as game engines such as Unity and Godot. Although there were benefits to
each, th team ended up deciding to use Godot for our simulator.

Key functionality of the simulator was built by each member of the team using the
available tools provided. It was crucial everyone was in constant communication throughout this
process, and Github was used as a central hub for coding documentation. For both Java and
Godot, IDE’s such as IntelliJ IDEA and Visual Studio Code were used to optimize the project.
Regular meetings took place to ensure errors were kept to a minimum, and merge conflicts from
the integration of code could be resolved. At times, it was difficult to combine all of our unique
code into one working model, but the team learned the important lesson of documentation and
pushing code in small chunks.

Implementation decisions came down to a group vote throughout each phase of the
project. Key factors involved thorough research before the final decision was made. Each
decision was equally important as the team received feedback from our advisor to further
improve the simulator.

Below is the final implementation of the simulation. The final room featured a doorway, a
bookshelf, a couple windows, and a visual representation of a rug. The animation can host six

avatars, all with a randomized order of events and emotions.

Running frame: studentHappy...

' 1@

Figure #10: Final Iteration of 2D Simulator

33

34

Chapter 6: Conclusion

The final product for the classroom simulator can be used by Prof. Whitehill’s research
group for experiments on classroom observation and teacher training. The goal of this project
was to provide a simple tool to help teachers learn more about their classroom interactions with
students. The next generation of students will need the right care and attention from their
respective educators for the betterment of our future. The classroom simulator the team built
aimed to take a modest step toward achieving this ambitious goal. The team believes with
enough time and attention, anything is achievable.

To best display fluid movement of animated sprites and events occurring pathfinding was
key to bring the simulator to life. The integration of Godot and code written in the language of
Java was difficult but manageable. Features of the pathfining also had to keep in mind other
aspects of the project such as the fast-forward/pause feature. Designing the procedure after the
world-renowned algorithm of Breadth First Search(BFS), it made the teacher movement
algorithmically process the best path to take for the generated events in the simulator. Collisions
were avoidable but by using a set timer, the team was able to capture where the teacher directed
her focus for each of the students and events transpiring in an orderly, continuous fashion that

made sense.

--

Running frame: twoStudentsFight...

35

Creating a visually pleasing tilemap was crucial to create a warm environment for the
simulation and user. The color scheme was designed in mind to not be visually distracting but
appealing and was modeled similarly to traditional American classrooms. Displaying a random
layout of the classroom each time that made sense was complex in nature with the placement of
sprites and objects for example like windows or tables. In the beginning, collision conflicts arose
as sprites were stuck on certain objects and collided with other sprites. Programming the realism
and fluidity for animations was additionally a conflict the team had to overcome but was avoided

with the various features Godot had to offer.

6.1 Lessons Learned

Going more into detail about some of the lessons learned, for the specifications
especially, the team encountered a number of challenges to arrive at our final build. Those
included but were not limited to the overall timeline of the project, the learning curve associated
with the resources at the team’s disposal, and ultimately addressing the client feedback during
the workflow to call this project a success. Throughout this project, the team learned the
importance of collaboration and working together towards a common goal. Client feedback was
equally important and vital to the final specifications for the classroom simulator.

Using the technical components of Java and the powerful game engine of Godot it
brought to life the final iteration of the classroom simulator. These tools were crucial in
development and testing, while providing meaningful ways to implement our project. If given
more time, the team may have gone in different directions in certain aspects of the project. There
were many moving components and time of course was a factor in the final product. It was
apparent from the first phase of the project, it would be difficult to algorithmically program these

moving parts to flow in tandem with the sprites and other objects in the classroom.

36

To conclude, the team is excited to share the simulator with those who will use it to its
fullest potential, the next generation of hardworking teachers. It was our goal the work done over
the last year will benefit WPI and the community as a whole. The team learned so much through
building this simulator from the ground up, and the knowledge gained from working together
will be used in our careers moving forward. The bonds and friendships that came from working
towards a working model for this MQP won’t be forgotten.

The team is proud of the work they were able to accomplish in the eight months
dedicated to this project. Our advisor specifically, Professor Whitehill, was crucial for the
success of the project. Coming together as a team to tackle this problem was a great honor, and
the team hopes our work is improved on in the future. Thank you to those who made all the

resources and software to make this project successful.

37

References

1.

10.

11.

Breen. Audrey. "Classroom Simulator." University of Virginia School of Education and Human
Development. 2016
htttps://news.virginia.edu/content/unruly-digital-kids-test-classroom-management-skills-t
eachers-training
Accessed 21 Mar. 2023.

"Java SE Documentation." Oracle, docs.oracle.com/en/java/. Accessed 21 Mar. 2023.

"Godot Engine - Documentation." Godot Engine, docs.godotengine.org/en/stable/index.html.

Flook, L. (2016). Examining the effects of mindfulness on working memory capacity and

attention: A randomized controlled trial. Journal of School Psychology, 52, 19-30.

Brackeys. "2D Movement in Unity (Tutorial)." YouTube, 19 Feb. 2017,
www.youtube.com/watch?v=rycsXRO6rpl. Accessed 21 Mar. 2023.

Pianta, Robert C. Classroom Assessment Scoring System. Manual. K-3.

"Aonuma Says A 2D Zelda Game on the Nintendo Switch Is Definitely a Possibility." My
Nintendo News, 14 Feb. 2017,
mynintendonews.com/2017/02/14/aonuma-says-a-2d-zelda-game-on-the-nintendo-switch
-is-definitely-a-possibility/. Accessed 21 Mar. 2023.

"IntelliJ IDEA: The Capable & Ergonomic Java IDE by JetBrains." JetBrains,

www.jetbrains.com/idea/download/. Accessed 21 Mar. 2023.

"Download." Godot Engine, godotengine.org/download/windows. Accessed 21 Mar. 2023.
Skinner, E. A., Furrer, C. J., Marchand, G. C., & Kindermann, T. A. (2021). Engagement
and disaffection in the classroom: Part of a larger motivational dynamic? Journal of
Educational Psychology, 93(1), 73-85.

"PaintTool SAL" Softonic, painttool-sai.en.softonic.com/. Accessed 21 Mar. 2023.

http://www.youtube.com/watch?v=rycsXRO6rpI
http://www.youtube.com/watch?v=rycsXRO6rpI
http://www.jetbrains.com/idea/download/
http://www.jetbrains.com/idea/download/

12. "GIMP - Downloads." GIMP, www.gimp.org/downloads/. Accessed 21 Mar. 2023.

38

http://www.gimp.org/downloads/

Appendix

Table for Event Description(s):

39

Action: Abbreviations:
Breaks toy SBT
Draws on object SV
Student spills food SS
Fights F
Tumbles T
Argues A
Bored
@,
Nothing to do
e @,
Tired SLP
Sick
@ sic
Need nurse FA
Snack time H
Student hungry H
Long day
@ g
Happy camper
Student happy
Happy
Student learning SL
Focused SL
Locked in SL

Student sad

40

Student crying @
Student upset @
Student yells LD
Loud student LD

Student fire drill FD
Student needs bathroom BR

Student needs a drink of water

Student wants water

Student drinks water

Student digests water

Student practices writing

Student writes an essay

Student studies

Student looks at material

Teacher timeout T/O
Break teacher LUN
Student mad @ @ @

Student laughing xD

Student has a book

Student reads

Teacher reads

41

Teacher upset

Student being disruptive LD
Teacher losing control of classroom LCC
Teacher loves job PW

Teacher happy

(B

Teacher teaching

Student raises hand

Student has question

Student wants to learn more

Student confused

w | @& E 8

Teacher confused

=

Teacher needs more information

=

Teacher does not know the answer

Teacher drinks

&F | -2

42

Event #1: Student Makes a Mess
A student is stationary while being present in the classroom in a random location. The small letter ‘SV* appears
above the person’s head as it moves to the next random event. In the real world for example, a student may spill a
drink, or make a mess after eating. This event highlights such activities that typically occur routinely in a classroom,

and the events that follow illustrate the consequences of it.

Event #2: Two Students Fight
Two randomly chosen students move while being present in the classroom in a random location. A prompt appears
above both involved students with a ‘F’. Usually if there is disagreement or bullying taking place, a fight will break
out between two students in the real world. Following the fighting, the teacher will be involved to resolve the
conflict, and the students will carry on with their scheduled education.

Running frame: twoStudentsFight...

F % i
93

43

Event #3: Two Students Hide
In this event, two students move to a random location within the classroom. A prompt appears above both avatars
involved with a ‘H,’ indicating they are hiding. This could be potentially a game of hide and seek or a student

practicing an evacuation.

--

Running frame: twoStudentsHide...

Event #4: Student Sleepy
A student is stationary while present in the classroom in a random location. A prompt appears above the person’s
head with ‘ZZZ’s’ indicating a sleepy student. Pictured below one can distinguish a sleepy student from a normal
student.

--

Running frame: studentSieepy...

44

Event #5: Student Sick
A student is stationary while being present in the classroom in a random location. A prompt appears above the
person’s head with a green emoji. This event indicates that the student is not feeling their best, and may need a trip

to a nurse's office.

--

Running frame: studentSick...

BK@® xEm .
S

Event #6: Student Bored
A student is stationary while being present in the classroom in a random location. A prompt appears above the
person’s head with a neutral face and ‘B,’ indicating they are bored. In a typical classroom, it is normal for students
to daydream and lose interest in the taught material, and this event focuses on that aspect of teaching.

..

Running frame: studentBared...

45

Event #7: Teacher Gets Tired
After several hours of dealing with children with unlimited energy, it is understandable a teacher will become
fatigued. In this event, the teacher is stationary while being present in the classroom in a random location. A prompt
appears above the teacher’s head with a ‘SP’, indicating the teacher has become exhausted.

--

Running frame: teacherGetsTired...

SPE T e

.E". > F‘ﬁ.‘ v ilrd
e
P

Event #8: Student Eats a Snack
Ultimately, snacks are crucial in learning, and are a welcome break to the important lessons taught
throughout the school day. For the eighth event, the student is stationary while being present in the classroom in a
random location. A prompt appears above the person’s head indicating the student is eating. This event is usually

triggered after the teacher becomes tired.

Running frame: studentEatsSnack...

®
)

Hae
ﬂﬁr .:)‘\

46

Event #9: Student Happy
For this event, the student is stationary while being present in the classroom in a random location. A smiling emoji

appears above the student’s head during this event. Whether it be a classmate making a joke, or a student enjoying

themselves after a snack, this event is for the user to see the student is currently happy.

--

Running frame: studentHappy...

Event #10: Student Focused
For the tenth event, the letters ‘SL‘ and a neutral face are the traits used to display when a student is focused. This
event is for potentially a student getting ready for an upcoming exam, or an important lesson being conducted by the
teacher. Regardless, the user should be aware the student is not easily distracted and has the teacher’s undivided

attention.

--

Running frame: studentFocused...

47

Event #11: Student Cries
A crying emoji appears above the students head for when a student is sad and not feeling themselves. This event is

triggered following other events that could potentially lead a student to cry during school.

Running frame: studentCries...

F@Em .
o s
1@ 2 el

Event #12: Student Yells
For this event, the letters ‘LD ° appear above the student’s head indicating they are screaming and/or yelling.
Usually in the younger grade levels, it is common a student may become upset or erratic if they don’t get their way.
This event highlights how the classroom can become out of control if the teacher does not respond to the loud
student.

--

Running frame: studentYells...

48

Event #13: Student Goes to Leave
In the thirteenth event in this list, the letter ‘FD “ appears above the person’s head indicating they are ready to leave

the classroom as they move towards the exit. For this event, the students involved don’t move initially, but the

teacher sees the student may need to potentially use the bathroom, or their parent is ready to pick them up.

-.

Running frame: studentGoesTolLeave...

Event #14: Student Reads
In a typical school day it is common for the class to practice reading and writing. For this event, a book emoji

appears above the student’s head (pictured below), indicating the student is reading a book.

Running frame: studentReads...

ESXD® -

49

Event #15: Teacher Reads
In this event, a book emoji appears above the teacher’s head as they read to the class. It is standard throughout the
kindergarten curriculum that a teacher reads a story to the class as a whole after a long day of math and science.

--

Running frame: teacherReads...

BK) BK@ xC&
o o o

Event #16: Teacher Happy
For this event, a smiling emoji appears above the teacher’s head, indicating they are happy. Usually following a
good lesson, or by the students being focused throughout the school day, this event is for the teachers who find their
profession rewarding and take pride in their work.

— —

Running frame: teacherHappy...

50

Event #17: Student Raises Hand
In a typical classroom, from kindergarten to college, students always have questions for the teacher. For this event, a

hand emoji appears above the student’s head during this event for such a situation.

Running frame: studentRaisesHand

HE, II
"

Event #18: Student Laughs
For this event, a laughing emoji appears above the student’s head and can be triggered after most previous events. It
is not far-fetched that during the school day for students to keep things fun, a classmate will make a joke or a fool

out of themselves. Hence prompting a reaction such as laughing seen by the ‘xD’ letters.

- -
o

A
Running frame: studentLaughs...

SPE
5

51

Event #19: Student Confused
After a long day of school work it is common a student may not absorb all the material taught initially. For this
event, a question mark ‘?” appears above the student’s head, indicating they are confused and potentially may have a

question for the teacher.

SP®

=

Event #20: Teacher Confused
For this event, a question mark ‘?° appears above the teacher’s head indicating they are confused. This event triggers
when a student asks a question they may not know the answer to, or by the teacher reacting to the student’s erratic

behavior.

52

Event #21: Teacher Drinks Water
It is very common for a teacher after a long day of talking and teaching for them to need a drink of water. For this
event, a water bottle emoji appears above the teacher’s head indicating they are keeping hydrated during the school

day.

Event #22: Student Needs Water
For this event, a water bottle emoji appears above the person’s head, indicating they need water. This event usually

leads to the twenty third event, Student Drinks Water.

Running frame: studentNeedsWatel

E®

=

53

Event #23: Student Drinks Water
For this event, a water bottle emoji appears above the student’s head as they drink water for a few seconds. Very
similar to the previous event, both indicate the importance of students remaining hydrated throughout the day to

avoid dehydration.

Running frame: studentNeeds\Watelj

) H X -
& 5] :ﬁ{

cI
FDG‘EKq
@S

Event #24: Student Writes
During a typical school day, a student will practice writing to improve their penmanship. For this event, the letter
‘W’, and sometimes a pencil emoji, appears above the student’s head, indicating they are writing something down or

practicing cursive.

54

Event #25: Student Studies

For this event, the student is stationary while being present in the classroom in a random location. A book emoji

appears above the person’s head, indicating they are hard at work and studying for a potential exam.

--

Running frame: studentStudies...

Event #26: Student Timeout
The student moves to a new location in the classroom after a previous event. The letter ‘T’ that appears above the
student’s head indicates that they are in timeout.

--

Running frame: studentTimeout...

55

Event #27: Teacher Timeout
The teacher moves to a new location in the classroom in this event. A prompt appears above the teacher’s head as
they need a break. Displayed with the letters ‘TO,’ the teacher moves and becomes still for a few seconds before

returning to the students.

--

Running frame: teacherTimeout...

E®

Event #28: Student Angry
The student is stationary while being present in the classroom in a random location. A prompt appears above the
person’s head with an angry emoji. This event usually follows a previous event that could potentially anger a
student.

--

Running frame: studentAngry...

56

Event #29: Two Students Laugh
This specific event involves two students laughing with each other and enjoying the moment. Both students have a

smiling emoji displayed above their heads, indicating that they’re laughing at something said or the teacher.

--

Running frame: twoStudentsLaugh. |

XEEBK |«

¢ vl
? x@@

S ®
= poiE
s

BK =3

Event #30: Teacher Moves to Student
The teacher is initially stationary, and then moves to a new location near a student. A prompt appears above both the

teacher and student as they talk in this event.

:-.-“
Ty

57

Event #31: Idle
All characters involved are stationary. Although the events are random each time the simulation is run, the team
decided that the sprites start out in an idle state so there is a starting point. Pictured below is the default layout of the

classroom with a standard number of avatars present.

i | i |

Running frame: idle...

Event #32: Teacher Angry
For this event, an angry emoji appears above the teacher’s head, indicating they are displeased with the current
climate of the classroom. Usually if a student is chatty or a teacher loses control of the classroom, an angry teacher

can be showcased in this animation.

--

Running frame: teacherAngry...

-] XE®BK) -~
o =

m l.‘- "lll
w ? xg@
BKa, 1

AT=pat-l i
Py L)

58

Pixel art:

Statuses: the emotions and actions a sprite is feeling or doing at a given time.

Obijects: Every object that can appear in the classroom(top row from left to right: bookshelf, rug — changed

to red in final product, window, table, chair, big table; bottom row: big carpet)

Wall designs: designs for the walls and its corners

59

(= U= U2
(e (O O
E=E> G
GEE G G
= (58 (52
U= 0= O

; OrOeO2 -
e Or
: CECRCy
¢ GrGRGR
. O Qs
[OIS0

(33 (L2 (353

Sprites: every sprite that can

%
e
e
¥
¢
?

v
®
%

® BTLTRELY QFNPQ0N0 29802
“
i

? HELEGGLL RENRQ000 22222
® GELAEGLL QTOQQQ9 25902
$
%
g

T 0079000 i
¢ Q50290090
2 QF07Q000

