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Abstract

Atomtronics studies cold atom analogues of electronic circuits. An ultra-cold Bose gas cloud

trapped in a specially shaped trap can serve as a “battery” for such a circuit. We investigate the

behavior of this system at different loads. We first perform a bifurcation analysis with respect

to the adjustable out-coupling parameter and find a domain where stable solutions exist, as well

as a range of initial conditions that converge to stable equilibria. We also look at the relation

between the load current and chemical potential, which gives the I-V relation of the battery,

and find that the model resembles an electronic battery well at low loads, but shows negative

resistance at high loads. Finally we look at a few typical dynamic simulations of the system

when the out-coupling strength varies in time.
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1 Introduction

1.1 Atomtronics and Bose-Einstein condensate

Atomtronics is an emerging field of physics that studies analogues of electronic circuits and devices

with ultra-cold atoms instead of electrons as current carriers [Seaman et al., 2007]. In atomtronics,

we use bosonic atoms that are supercooled to form Bose-Einstein condensates as current carriers.

Bose-Einstein condensate is a state of matter that forms at extremely low temperatures.

Microscopic particles carry an intrinsic form a angular momentum called spin. In quantum

mechanics, angular momenta are quantized, meaning that they can only take discrete values, that

is, integer or half integer multiples of the reduced Planck constant ~ [Sakurai and Napolitano, 2014].

Unlike orbital angular momenta, which are analogous to the classical angular momenta carried by

bodies rotating about an axis and can only be integer multiples of ~, they are not caused by such

motions, and can be integer and half integer multiples of ~. Particles can be classified by their

spin. Those carrying half integer spin are called fermions, and those carrying integer spin are called

bosons. Fermions obey the Pauli exclusion principle, meaning that there cannot be two identical

fermions occupying the exact same state, while bosons are not subject to such limitations. This

results in their vastly different behavior when they congregate in large numbers [Pathria and Beale,

2011].

Since bosons can occupy the same quantum states, when the temperature is extremely low (often

much less than 1 K), a significant portion of an ensemble of bosons can gather in the lowest energy

state, forming Bose-Einstein condensate (BEC) [Pathria and Beale, 2011, pp. 191-199]. Thus

macroscopic quantum phenomena such as superfluidity and quantized vortices can be observed

[Pethick and Smith, 2002].

4



Using Bose-Einstein condensate as the current carrier has various benefits and applications.

First of all since atoms are electrically neutral, and the interaction between atoms and an external

electromagnetic field is much weaker than that between electrons and an external field, atomtronic

circuits are much less susceptible to interference. At the same time, we can exploit the magnetic

interaction to build atomtronic devices for high accuracy magnetic field sensing Zozulya and An-

derson [2013], Seaman et al. [2007]. Various devices that resemble electronic devices can be built

for atomtronic circuits, such as capacitors, diodes, and transistors [Lee et al., 2013, Seaman et al.,

2007, Pepino et al., 2009, Stickney et al., 2007].

In this project, we look at a system of ultra-cold atoms that imitates a battery, which serve

both as a source of atoms and a source of power in an atomtronic circuit.

1.2 Ultra-cooling

To form Bose-Einstein condensates, one must be able to achieve extremely cold temperature. As

a point of reference, the Nobel Prize winning experiment in which BEC was first observed saw the

formation of it starting at around 200 nK[Cornell and Wieman, 2002]. To obtain such a result, one

must use a combination of methods to cool down the system.

In the first stages, laser cooling methods are used. These methods exploit the interaction of

atoms with light. The most common method used is Doppler cooling [Pethick and Smith, 2002, pp.

60 - 61]. Atoms can absorb lights at specific frequencies, gaining energy from them, and be excited

to a higher energy level. Then the atom may spontaneously emit a photon, and drop down to the

original lower state. In this process, the atom also gains and then loses the momentum carried by

the photon. Doppler cooling exploits this interaction and the fact that the frequencies of light shift

when observed from a moving frame of reference. In the process, laser is applied in two opposite
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directions on the same collection of atoms. The frequency of the laser is adjusted to be slightly

lower than the required frequency to trigger a transition. Thus in the reference frame of the atoms

moving away from the trap, due to the Doppler effect the laser pointing opposite the direction of

motion has higher frequency than in the lab frame, becoming closer to the frequency needed to

excite the atoms. This increases the probability of exciting an atom moving away from the trap,

and when it is excited, it gains the momentum from the photon moving opposite it, thus slowing

it down. Afterwards the atom may emit a photon in a random direction, however overall the net

momentum of the system in the outwards direction is reduced.

Doppler cooling can cool atoms to much less than 1 K, but this is not enough for the formation

of Bose-Einstein condensate [Pethick and Smith, 2002, p. 81]. To cool it further, the technique

of evaporative cooling is used [Pethick and Smith, 2002, pp. 96 - 100]. It is done by gradually

lowering the potential barrier that traps the atoms, so that the atoms carrying highest energy are

allowed to escape. Then the remaining atoms collide and redistribute their energy, achieving an

overall colder equilibrium state. This can eventually get the atoms to cold enough temperature to

create BEC.

1.3 Formulation

A further cooling mechanism used in our battery model is introduced by Roos et al. [2003], which

involves continuously loading a trap with cold atoms. In this mechanism, particles are injected into

a cigar shaped potential well. The incoming atoms enter in the longitudinal direction (z direction)

where the trap is also much wider. The potential barrier is designed to be lower in the z direction

at Uz than in the other two directions (collectively denoted by the ⊥ subscript) at U⊥. We also

require the trap to be much higher in the opposite direction of where the incoming atoms enter, so

6



Hottest 
atoms escape

The remaining atoms 
redistribute

BEC forms

Macroscopic fraction 
of atoms occupy 

ground state

E
n

e
rg

y

Figure 1: Illustration of evaporative cooling.

the confinement frequency in z direction (fz) is much smaller than that in the transverse directions

(f⊥).

After the atoms in the potential well collide with each other, they may obtain enough energy

at certain probabilities to leave the trap. We can find that the probability of an atom leaving the

trap in the transverse directions after a collision is

p⊥ ≈ 2e−η⊥ ,

where η⊥ = U⊥
kT , with T being the temperature. The average excess energy carried away by these

atoms is κ⊥kT , where κ⊥ is around 2.0. Similarly the probability of leaving the trap after collision

in the z direction is

pz ≈ 0.14e−ηz
fz
γ
,

where ηz = Uz
kT , and γ is the average collision rate, which can be expressed as

γ = 32π2ζ(3/2)
m(askT )2

h3
.

Here m is the atomic mass of the atoms in the trap, as is the s-wave scattering length, which

7



Figure 2: Illustration of the atomtronic battery.

characterizes the strength of interaction between the atoms. Atoms leaving in the z direction will

carry away κzkT of energy from the trap on average, with κz ≈ 2.9.

The height of the potential barrier in the longitudinal and transverse direction can be adjusted

so that we have the maximum number of atoms inside the trap.

When the trap parameters are optimal, Bose-Einstein condensate will form in the trap. Under

such conditions, the flow rate of atoms condensing from the thermal cloud into the BEC can be

expressed as

Ic =
(8π)2m(askT )2

h3
µexµa
kT

Na ,

where µex and µa are the chemical potentials of the thermal atoms and BEC, respectively, and Na

is the number of atoms in the condensate. Under the Thomas-Fermi approximation, we can express

the chemical potential of the BEC as

µa =
152/5

2

(
Naas
a

)2/5

hf , (1)

where f = (f2⊥fz)
1/3 is the average confinement frequency, and a =

√
h

4π2mf
. The energy and the
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chemical potential of the atoms can also be expressed by

Eex = 3kT

(
kT

hf

)3 [
ζ(4) + 3

µex
kT

ζ(3)
]
,

and

µex =
kT

ζ(2)

[
Nex

(
hf

kT

)3

− ζ(3)

]
.

Here Nex is the number of atoms in the thermal cloud.

Now assuming atoms are injected into the potential well at a rate of Iin, and on average carry

(1 + ε)Uz energy, we can write down the conservation equations of the non-condensed atoms,

dNex

dt
= Iin − (p⊥ + pz)γNex − Ic (2)

dEex

dt
= Iin(1 + ε)Uz − pz(Uz + κzkT )γNex − µaIc (3)

In these equations, the first terms account for the number and energy of incoming atoms. The

second terms describe the number of atoms leaving the trap after gaining enough energy from a

collision, and the energy carried away by these atoms. The last terms result from the condensation

of thermal atoms into the BEC.

1.4 The atomtronic battery

With the cooling mechanism given above, we can out-couple the BEC forming in the trap into the

atomtronic circuit, thus making this system into a source of energy and BEC for an atomtronic

circuit. To fully describe the dynamics of the system we need an equation that accounts for the

outcoupling as well. Suppose the BEC is outcoupled at the rate

Il = γaNa ,

where γa is the out-coupling strength that we adjust, we can also write down the rate of change

of the atoms in the BEC. Assuming the outcoupling mechanism only interacts with the BEC but
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not the thermal atoms, (2) and (3) are still true. Thus we have the following set of conservation

equations,

dEex

dt
= Iin(1 + ε)Uz − pz(Uz + κzkT )γNex − µaIc ,

dNex

dt
= Iin − (p⊥ + pz)γNex − Ic ,

dNa

dt
= Ic − γaNa . (4)

We can reduce the system to only contain three dynamic variables, with a few experimental

parameters left for us to adjust. For our analysis of the dynamics, we shall use the temperature T ,

the thermal atom number Nex and BEC atom numbers Na as the state variables.

1.5 Parameters and normalization

In the calculation we are performing here, we use the following values for experimental setup,

ε = 0.7, fz = 100 Hz, f⊥ = 2000 Hz. The s-wave scattering length of rubidium is as = 100.4a0 =

5.313 nm, where a0 is the Bohr radius.

When the load on the battery is zero (γa = 0), we can solve for its steady state. Introducing
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the threshold flux,

Ith =

(
ζ(3)[p⊥ + pz]γ

(
kT

hf

)3
)

zero load

,

which is the influx of atoms when the BEC is just about to form, we can express the variables

representing flow of atoms, such as Iin and Il in the unit of Ith, reducing them to the dimensionless

form, i = Iin/Ith and l = Il/Ith. Zozulya and Anderson [2013] also introduced reference values for

temperature and atom numbers, which are their steady state values at zero load, and in the limit

U⊥ � Uz,

kT0 =
εUz
κz

, (5)

N0 =

(
Iin
pzγ

)
zero load

= 1.14
Iin
fz
eκz/ε . (6)

We can now normalize the dynamic variables, and use τ = T/T0, nex = Nex/N0, na = Na/N0 in our

calculation. Using this temperature, we can also reduce the variables with units of energy, so that

u⊥ = U⊥/kT0, uz = Uz/kT0, mex = µex/kT0, and ma = µa/kT0.

Finally, we normalize the time variable to units of 1 s, giving a dimensionless time variable

that has the same value as real time, which we still denote using t. Consequently, the original

out-coupling constant γa which has units of frequency now becomes dimensionless.

Now the only parameters left undetermined are γa, i, uz and u⊥. We treat γa as a free parameter,

and hold i fixed. In this report, a detailed analysis is performed at i = 1.1, but the qualitative

properties of the system is the same for higher values of i, as we shall see. By (5) we have uz = κz/ε,

and its absolute value is calculated from (6) by requiring that the threshold number of thermal

atoms at zero load be Nex = 106. For u⊥, we find the optimal value such that at zero load, the

steady state value of the temperature is minimal. The result is u⊥ = 6.5435.

It is worth noting that even when the optimization of transverse trap height u⊥ is done at a
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different influx, the optimal trap height and the corresponding values of t(0) and n(0) change very

little. According to Zozulya and Anderson [2013], the load also has little effect on the optimization.

Thus we use this value of u⊥ throughout the following computations.

2 Stability and bifurcation analysis

With all the parameters fixed, only allowing γa to be adjusted, we have an autonomous system of

ordinary differential equation that contains one free parameter. Noting that the factors pz and p⊥

have exponential dependence on the reciprocal temperature, we have a very stiff system.

Using AUTO, a powerful software package that performs stability and bifurcation analysis

[Doedel and Oldeman, 2012], we can calculate all the equilibrium states of the equation at different

values of the out-coupling parameter.

We can produce the following bifurcation diagrams for all three dynamic variables. Since we

are most concerned with the behavior of the BEC in the trap, we shall focus on the behavior of na.

From the figure we can see that when γa is between 0 and γfold = 0.1803, we have two equilibrium

solutions for the system at each γa, and the two branches solutions join at a fold. Part of the

solution curve is stable, represented by the solid line, and part is unstable, represented by the

dashed line. The transition from stable to unstable happens at γHopf = 0.1515, and is a subcritical

Hopf bifurcation. Thus limit cycles exist for γa < γHopf, and are unstable. The limit cycles are

plotted by the maximum value of the state variables in a period.

Looking further into the limit cycles, we can see that the period increases as we decrease γa

from the critical point. At γhom = 0.1481, the period goes to infinity, and the limit cycles join with

the unstable equilibrium, and becomes a homoclinic orbit.

Since the limit cycles are unstable, they effectively give the domain of attraction to the stable
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Figure 4: Bifurcation diagram of the state variables τ , nex, and na. Periodic solutions are plotted

by their maximum values.
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Figure 5: (Top) The period of limit cycles at different out coupling strength. (Bottom) A few

labeled solutions graphed in the na-nex phase space. At γhom = 0.1481 the limit cycle becomes a

homoclinic cycle (label 4), and is connected to the unstable equilibrium.

equilibria. Thus all initial conditions inside the limit cycle converge to the stable equilibrium, and

all outside result in depletion of the BEC. This in turn tells us about the voltage and current rating

of the battery.

Using the ode45s toolbox in MATLAB, we can simulate transient solutions with typical initial

conditions. Here we plot the na-nex phase space trajectories of these solutions. We can see that

when the out-coupling strength is too high, or when the initial condition is too far from equilibrium,
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Figure 6: (Left) A limit cycle (dotted line) and two dynamic solutions in na-nex phase space in the

subcritical region. Red line is a solution where the BEC is depleted, and the blue line is a solution

that converges to the stable equilibrium. (Right) A dynamic solution when out-coupling strength

is supercritical. Red line is a solution where the BEC is depleted. The dot marks the unstable

steady state.

the BEC is drained. The graph on the left shows the subcritical situation. The blue line shows

convergence onto the stable equilibrium, the red line shows draining of the BEC. The limit cycle

(dotted line) separates these two types of solutions.

If we choose a different value for the influx of atoms into the trap to let cold atoms be injected

at a higher rate, the number of atoms in the BEC will become much larger, while the thermal atom

number remains largely the same (Figure 8). As an example, we show the bifurcation diagrams for

i = 2.0 in Figure 7. The system exhibits essentially the same dynamic behavior. There are still two

branches of steady state solutions, and a transition from stable to unstable steady states happens

on one of the branches. The transition is still a subcritical Hopf bifurcation. A family of unstable

limit cycles have increasing period as outcoupling strength decreases from the critical value, and
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eventually become a homoclinic orbit.
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Figure 8: Increasing steady state value of na at zero load as influx i increases.

3 Battery

In electronics, to characterize a circuit component, we would measure the current-voltage char-

acteristic. For a power source or battery, it is done by attaching an adjustable load to it, and

measuring the current that flows through the load and the voltage across the load. Repeating these

measurements at different loads, we have the current-voltage characteristic, which can be used to

assess the internal structure of the battery. We do the same for our battery model, where the

chemical potential of the BEC is the voltage, and the output current of BEC is the current.

For each stable steady state, we can use the state variables to calculate the chemical potential

of the BEC and the out-going flux of the BEC, and then use these data to compute the output

power of the battery as well.

From Figure 9 we can see that at lower output, the battery has an approximately linear current-

voltage characteristic, which resembles a simple voltage source with inner resistance. This is in
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Figure 9: Current (l) voltage (ma) relation of the battery (blue line), and power output (P ) at

different load voltage (green line).

accordance with the model used by [Zozulya and Anderson, 2013]. However, as the load increases,

the ma-l curve becomes multi-valued. Thus at a given output current, the system can be in two

possible working states with different output voltage and output power. This peculiarity is due to

the relation between l and γa increases. As we can see from Figure 10, as we increase the out coupling

strength, the output current first increases then decreases. This behavior can be anticipated from

the structure of the Il term in (4). Since Il = γaNa, and Na decreases as γa increases, we can

expect their product to increase first then decrease as we increase γa. Moreover, according to (1)

ma has a power-law dependence on na, thus it decreases monotonously as γa grows. This means

that the l-ma relation must be non-monotone, which results in the current-voltage relation we see

in Figure 9.

If we increase the influx i to 2.0, the general properties of the battery remain the same, but

both output current and output voltage greatly increases. The battery remains linear when the

output current is relatively low, and the two-state region occurs much later in the admissible range
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Figure 10: Output current l versus out coupling strength γa at stable equilibria.

of output currents. (See Figure 11)

4 Improvements on previous analysis

Previously, the analysis done by Zozulya and Anderson [2013] has found steady state solutions for

low output. However, the behavior of the system in the critical region is still unknown, that is,

what kind of behavior the system exhibits in the region where there was no steady state for the

chemical potential µa but µex has not reached zero yet. More intuitively, we want to be able to

explain the reason why in Figure 12, the left branch of the dashed curve ends before the chemical

potential of the BEC reaches zero, which is what we would expect from the critical situation, when

BEC is about to be completely drained.

To answer this question, first we plot the µa-l curve, highlighting the new stable steady states

that are previously unknown. In Figure 13 we see that the critical point where the BEC is completely

drained does not occur at a maximal output current. In fact we can keep increasing out coupling,

19



0.000 0.005 0.010 0.015 0.020 0.025

l

0.0

0.1

0.2

0.3

m
a

0.0000

0.0005

0.0010

0.0015

0.0020

P

Figure 11: Current (l) voltage (ma) relation of the battery (blue line), and power output (P ) at

different load voltage (green line), with i = 2.0.

and see a consequent decrease of l, and finally the destabilization of the system. This also means

that there can be no physically achievable solution that produces a higher outcoupling current.

In addition, we have also been able to assess the stability of the steady states of the system,

which is unknown before. We have found that all the solutions that were found by Zozulya and

Anderson [2013] are stable, and there are in fact additional stable equilibria. Unstable equilibria

also exist, but for practical purposes, we shall not consider the output of the battery at those

solutions.

The reason why we are able to obtain these additional solutions is that we used γa instead of

l as the free parameter in the system. A physical justification of this choice is that γa is a more

directly physical quantity, adjustable through the out-coupling mechanism, and since the relation

between γa and Il can be non-monotone, for a given output current, there may be multiple possible

underlying state of the system, which is in fact the case, as we have seen from above calculations.

A computation reason why using γa is better can be illustrated by plotting the bifurcation
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Figure 12: Chemical potential of thermal atoms µex (solid line) and the condensate µa (dashed

line) versus load current [Zozulya and Anderson, 2013]

diagrams against l. From Figure 14, we can see that in the two branches of solutions almost

overlap in the τ and nex diagrams. This means that if we attempted to perform the bifurcation

analysis with respect to l, then the numerical methods would likely not have enough precision to

distinguish between the two branches of solutions, and report a singularity near the maximum of
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Figure 13: Previously found i-v characteristic (dashed line) and newly found i-v characteristic.
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l, which is what happened in previous analysis.

5 Conclusion

In this project we have analyzed the atomtronic battery model conceived by Zozulya and Anderson

[2013]. The model consists of cold atoms trapped in an asymmetric potential well, loaded contin-

uously while having Bose-Einstein condensate outcoupled from it. The trap can be characterized

by its frequencies and heights in each direction, with the longitudinal frequency fz being much

smaller than the transverse frequency f⊥. The trap heights Uz and U⊥ can be adjusted so that

atoms carrying a select range of energy are allowed to escape, which combined with the continuous

loading of cold atoms can effectively cool down the trap.

We calculated the steady states and bifurcations of this system, and analyzed the stability of

such steady states. Using these data, we have extended the analysis provided by Zozulya and

Anderson [2013], and provided a full account of the characteristics of this model as a battery. We

have solved the question raised about the behavior of the system in the critical region, and reassured

that the solutions are indeed stable and experimentally possible.
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Appendices

A Code used in computation

Fortran equation script used in AUTO:

!----------------------------------------------------------------------

!----------------------------------------------------------------------

! atb : The atomtronic battery

!----------------------------------------------------------------------

!----------------------------------------------------------------------

SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

! ---------- ----

IMPLICIT NONE

INTEGER, INTENT(IN) :: NDIM, ICP(*), IJAC

DOUBLE PRECISION, INTENT(IN) :: U(NDIM), PAR(*)

DOUBLE PRECISION, INTENT(OUT) :: F(NDIM)

DOUBLE PRECISION, INTENT(INOUT) :: DFDU(NDIM,NDIM), DFDP(NDIM,*)

DOUBLE PRECISION ga, x, y, z, temp, na, nex, exp1, exp2, exp3, &

tempsq, tempnafac, tna15, tna25, tna35, tna45, rhs1, rhs2, rhs3, &

dfdu11, dfdu12, dfdu13, dfdu21, dfdu22, dfdu23, dfdu31, dfdu32, dfdu33, &

a, b, dadx, dady

! Helper variables

ga=PAR(1)

x = U(1)

y = U(2)

z = U(3)

temp = 0.49931569561007d0+x

nex = 16.29956107597423d0+y

na = 0.18024048804064646d0+z

exp1 = exp(2.4006428571428566d0/temp)

exp2 = exp(6.5435d0/temp)

exp3 = exp(4.142857142857143d0/temp)

tempsq = temp*temp
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tempnafac = (1428.5714285714284d0*tempsq*na)/exp1

tna15 = (na+tempnafac)**0.2d0

tna25 = (na+tempnafac)**0.4d0

tna35 = (na+tempnafac)**0.6d0

tna45 = (na+tempnafac)**0.8d0

a = 6.576866724612946d0*nex - (454.0880804015761d0*temp*temp*temp)/ &

(1d0 + 0.1912677944123304d0*temp)

b = 6.576866724612946d0*temp

dadx = -3d0*454.0880804015761d0*tempsq/(1d0 + 0.1912677944123304d0*temp)+ &

(454.0880804015761d0*temp*temp*temp)/(1d0 + &

0.1912677944123304d0*temp)**2*0.1912677944123304d0

dady = 6.576866724612946d0

! Right hand sides of the dynamic equations

rhs1=9.836413718796749d0+((-236294.92486093647d0+ &

exp1*(-491.79884533385075d0-255.09732347149122d0*x)+ &

x*(-1.0091350398218739d6+(-1.198755626226754d6- &

251327.41228718346d0*x)*x))*nex)/ &

exp2+(0.15301182606334032d0*na* &

tna45*(-0.1462508606594111d0*nex+ &

tempsq*(17.408285516201083d0*temp+tna25)))/temp

rhs2=1.3966510351232706d0-(87.96459430051422d0*nex)/ &

exp3-(125663.70614359173d0*tempsq*nex)/ &

exp2+(na* &

tna25*(-0.5330928992224307d0*nex+ &

tempsq*(63.454213906715296d0*temp+3.645058202179727d0*tna25)))/ &

temp

rhs3=(na*(-ga*temp+ &

tna25*(0.5330928992224309d0*nex+ &

tempsq*(-63.45421390671528d0*temp- &

3.645058202179727d0*tna25))))/temp

F(1) = (rhs1 - b*rhs2)/a

F(2) = rhs2

F(3) = rhs3

! Jacobian of the equation

IF(IJAC.EQ.0)RETURN
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dfdu11=(-255.0973234714912d0*exp1* &

exp1*(8.236277106920209d0+5.141488534077284d0*x+x*x)*nex* &

tna15-753982.2368615504d0*exp1* &

tempsq*(9.563729708365564d0+5.360964724553473d0*x+x*x)*nex* &

tna15+exp1*exp2* &

na*na*(0.022378111252831633d0*nex+ &

tempsq*(5.3273471109318535d0*temp+0.15301182606334032d0*tna25))+ &

exp2*temp* &

na*na*(-19.181238216712824d0*(3.7001728384672123d0+x)*nex+ &

13698.892570967622d0* &

tempsq*(0.5156891990215973d0+1.5321075816963303d0*x+x*x+ &

0.07305660395295867d0*tna25+ &

0.05425258240195416d0*x*tna25)))/(exp1*exp2*tempsq*tna15)

dfdu21=(-364.4247478164161d0*exp1*exp2*nex*tna35- &

251327.41228718346d0*exp2*tempsq*(3.7710656956100705d0+x)*nex* &

tna35+exp2*exp2* &

na*na*(0.5330928992224309d0*nex+ &

tempsq*(126.90842781343058d0*temp+3.645058202179727d0*tna25))+ &

exp3*exp3*exp1*temp* &

na*na*(152.3122569206945d0*(-4.301970018675643d0+x)*nex+ &

253816.8556268612d0* &

tempsq*(0.4205559721862297d0+1.3415803708119767d0*x+x*x+ &

0.06603454699169665d0*tna25+ &

0.0533407742943583d0*x*tna25)))/(exp2*exp2*tempsq*tna35)

dfdu31=(na*na &

*(exp1*(-0.5330928992224309d0*nex+ &

tempsq*(-126.9084278134306d0*temp- &

3.6450582021797273d0*tna25))+ &

temp*(-152.3122569206945d0*(-4.301970018675645d0+x)*nex- &

253816.85562686116d0* &

tempsq*(0.4205559721862297d0+1.3415803708119767d0*x+ &

x*x+0.06603454699169668d0*tna25+ &

0.05334077429435831d0*x*tna25))))/(exp1*tempsq*tna35)

dfdu12=(-491.79884533385075d0-255.09732347149122d0*x)/ &

exp3-(251327.41228718346d0*tempsq*(3.7710656956100697d0+x))/ &

exp2-(0.022378111252831633d0*na*tna45)/temp

dfdu22=-87.96459430051422d0/exp3-(125663.70614359173d0*tempsq)/ &

exp2-(0.5330928992224307d0*na*tna25)/temp

dfdu32=(0.5330928992224309d0*na*tna25)/temp
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dfdu13=(na*(-57.543714650138476d0*tempsq*nex+ &

tempsq*tempsq*(6849.44628548381d0*temp+ &

480.8943104847838d0*tna25)+ &

exp1*(-0.040280600255096936d0*nex+ &

tempsq*(4.794612399838668d0*temp+ &

0.3366260173393487d0*tna25))))/(exp1*temp*tna15)

dfdu23=(na*(-1066.1857984448613d0*tempsq*nex+ &

tempsq*tempsq*(126908.4278134306d0*temp+ &

9373.006805605013d0*tna25)+ &

exp1*(-0.7463300589114031d0*nex+ &

tempsq*(88.83589946940141d0*temp+ &

6.561104763923509d0*tna25))))/(exp1*temp*tna35)

dfdu33=(tempsq* &

na*(1066.1857984448618d0*nex+ &

tempsq*(-126908.42781343055d0*temp-9373.006805605013d0*tna25))+ &

exp1*(0.7463300589114032d0*nex*na+ &

temp*(-ga*tna35+ &

temp*na*(-88.8358994694014d0*temp- &

6.5611047639235105d0*tna25))))/(exp1*temp*tna35)

DFDU(1,1) = (dfdu11-b*dfdu21-6.576866724612946d0*rhs2)/a-F(1)/a*dadx

DFDU(2,1) = dfdu21

DFDU(3,1) = dfdu31

DFDU(1,2) = (dfdu12-b*dfdu22)/a-F(1)/a*dady

DFDU(2,2) = dfdu22

DFDU(3,2) = dfdu32

DFDU(1,3) = (dfdu13-b*dfdu23)/a

DFDU(2,3) = dfdu23

DFDU(3,3) = dfdu33

IF(IJAC.EQ.1)RETURN
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DFDP(1,1) = 0.0d0

DFDP(2,1) = 0.0d0

DFDP(3,1) = - na

END SUBROUTINE FUNC

SUBROUTINE STPNT(NDIM,U,PAR,T)

! ---------- -----

IMPLICIT NONE

INTEGER, INTENT(IN) :: NDIM

DOUBLE PRECISION, INTENT(INOUT) :: U(NDIM),PAR(*)

DOUBLE PRECISION, INTENT(IN) :: T

PAR(1)=0.0d0

U(1)=0.0d0

U(2)=0.0d0

U(3)=0.0d0

END SUBROUTINE STPNT

SUBROUTINE BCND

END SUBROUTINE BCND

SUBROUTINE ICND

END SUBROUTINE ICND

SUBROUTINE FOPT

END SUBROUTINE FOPT

SUBROUTINE PVLS

END SUBROUTINE PVLS

Python script used to run the continuation in AUTO:

#==============

# AUTO run atb

#==============

print "\n***Compute a family of stationary solution"
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atb=run(’atb’,JAC=1,PAR={’ga’:0.0001},NMX=500,DSMAX=0.01)

save(’atb’)

print "\n***Compute the periodic solution family***"

run(atb(’HB1’), IPS=2, ICP=[’ga’,’PERIOD’],ILP=0,NMX=50,

NPR=2,DS=0.01,DSMIN=0.005,DSMAX=0.1,

UZSTOP={’ga’: [0.14,0.17], ’PERIOD’: [0, 1e4]})

save(’atbps’)

append(’atb’)

print "\n***Clean the directory***"

clean()
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