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Abstract 
Directed evolution is a powerful tool that has been honed to create new and improved proteins. 

One form of directed evolution, Phage-Assisted Continuous Evolution (PACE), developed by 

Dr. David Liu, elegantly links favorable mutations in an arbitrary gene of interest to a 

bacteriophage’s ability to transfect a host. Inspired by PACE, this paper explores the creation and 

viability of a Bacterial Non-Continuous Evolution model (BaNCE) that aims to conserve the 

mutagenic and selective properties of PACE while eliminating some of its complexities. BaNCE 

employs the use of three plasmids within E. coli. The first contains an error-prone polymerase 

that will make mutations to a second plasmid that encodes for a gene of interest. The final 

plasmid provides BaNCE’s selective pressure via an auxotrophic selection model where 

prototrophy is restored by generation of favorable mutations in the gene of interest. Through 

preliminary research, we assembled the components of BaNCE and began to test this model’s 

viability. In designing BaNCE, we hope to introduce a simplified version of PACE to increase 

directed evolution accessibility to academic labs. 
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Introduction  
While it has not always been an in-lab technique, people have participated in directed evolution 

for centuries. About 11,000 years ago, Middle Eastern settlers began to farm their own crops to 

avoid relying on gathering. Their farming techniques present one of the first instances of directed 

evolution. For example, as they noticed that certain crops of wheat were more favorable than 

others, they began to save the seeds of these crops to sew better wheat, thus undertaking their 

own “artificial selection”. Over time, farmers began to modify wheat traits to make more 

favorable crops, in ways such as selecting seeds that did not fall off the crop when they were ripe 

and ones that were more easily separable from the plant. Similar evolutionary processes have 

been used to transform other crops (The National Academies of Sciences, Engineering, and 

Medicine, 2008) and the idea of directed evolution has persisted since.  

Laboratory directed evolution of proteins did not appear until 1993, when Chen and Arnold 

evolved the protein subtilisin E in vitro. To do this, they used error prone PCR to introduce 

random mutations into the subtilisin E gene. After mutation, proteins were expressed and 

screened for increased catalytic activity. Genes exhibiting favorable mutations were then 

subjected to further mutagenesis and screening. After three sequential rounds of mutagenesis and 

screening, they observed a 256 fold increase in the protein’s catalytic efficiency. This experiment 

was the first to demonstrate the advantages of using a sequential mutagenesis-selection model to 

evolve proteins (Cobb et al., 2013; Chen & Arnold, 1993).  

One year after Chen and Arnold demonstrated the ability of error-prone mutagenesis to evolve 

proteins, Willem Stemmer demonstrated the evolutionary power of recombination. Stemmers’ 

method involved creation of a library of analogous genes, which was then digested into smaller 

fragments. These fragments were then ligated together to recombine them into new genes. 

Favorable mutations were selected for by cloning the recombined genes into plasmids and 

expressing them to assess favorability. Stemmer used this method to evolve β-lactamase to 

confer a 320,000 fold increase in resistance to the antibiotic cefotaxime. The work done by Chen 

and Arnold and by Stemmer laid the framework for random mutation driven directed evolution. 

Despite the promise exhibited by this type of directed evolution, the large amount of time 

required to generate successive cycles of mutation and screening have impeded the usefulness of 

these methods. This issue would not be addressed for decades until researchers began devising 

ways of coupling mutagenesis and selection using in vivo systems (Cobb et al., 2013; Stemmer, 

1994). 

In 2011, Dr. David Liu and colleagues conducted research on continuous evolution through their 

own method called PACE (Phage-Assisted Continuous Evolution), which involves “evolving 

genes transferred from host cell to host cell through a modified bacteriophage life cycle in a 

manner that is dependent on the activity of interest” (Carlson et. al., 2011). The PACE model 

involves the use of two DNA plasmids and a phage genome. The first plasmid, called the 

mutagenesis plasmid (MP), encodes for an error-prone polymerase that will generate random 

mutations in the system. The phage genome, called the selection phage (SP), contains the 

system’s gene of interest (GOI). To create the SP, the pIII gene was excised from the phage 

genome and the GOI was inserted in its place (Carlson et. al., 2011)  



6 
 

Without pIII, phage infection rate drops by nine orders of magnitude. Consequently, pIII 

function must be restored for the phage to propagate and infect a greater number of host cells. 

Thus, to restore function, favorable mutations of the gene of interest must be linked to restoration 

of pIII expression, which is done by the system’s second DNA plasmid. This plasmid, called the 

accessory plasmid (AP), encodes for a constitutively repressed pIII that provides the system’s 

selective pressure. Expression of pIII is inhibited until favorable mutations in the GOI produce 

some change in the system that restores pIII expression to the AP. This has been done in various 

ways and largely depends on the type of GOI. In the first example of PACE, the GOI was a T7 

polymerase which was evolved to recognize a novel promoter. This promoter was placed 

upstream of pIII in the AP, allowing pIII expression only to be restored if T7 could evolve to 

recognize the novel promoter (Carlson et. al., 2011). 

In order to combine the MP, SP, and AP into one system, Liu and colleagues devised a “lagoon” 

(a fixed volume vessel) system. E. coli host cells are continuously pumped through the “lagoon” 

that contains replicating phages. The added E. coli cells contain the MP and AP. In order to 

regain infectiousness, pIII production must be restored to the phage faster than the lagoon can 

wash away the phages. To accomplish this, the phage will infect the E. coli host cells, which will 

then carry the MP, AP, and SP. Thus, the goal is for the error-prone polymerase from the MP to 

make random mutations to the GOI in the SP. Through selective pressure provided by the AP, a 

GOI with a gain of function mutation will be selected to continue to replicate, as the system can 

only survive with a mutation that increases the GOI’s function enough so that it can restore pIII 

production in the AP (Carlson et. al., 2011). 

The beauty of PACE is its ability to evolve any gene that can be linked to pIII production in E. 

coli (Carlson et. al., 2011) and it has shown promising results across a large number of 

publications. In an even more recent paper (Roth et. al., 2019), Dr. David Liu and co-workers 

demonstrated PACE’s ability to evolve the Bacillus methanolicus methanol dehydrogenase 

protein, Mdh2, to improve its catalytic rate. Liu et al. demonstrated that their modified Mdh2 

was faster than any other modified Mdh2 previously described. Liu’s goal in improving Mdh2 

catalytic activity had implications for developing methylotrophic E. coli to convert methane into 

metabolites for metabolism integration. Thus, his research could have implications for 

greenhouse gas reduction. 

Due to greenhouse gases, such as methane, the Earth’s temperature is rising as the greenhouse 

effect is worsening (Climate Action Reserve, 2019). Average surface temperature of the Earth 

has risen 0.9 degrees Celsius since the late 19th century (NASA, 2019). It is predicted that, 

without interference, global temperatures could increase by 10 degrees Fahrenheit by 2100, 

causing irreversible changes to Earth’s climate (Climate Action Reserve, 2019). Methane has a 

particularly detrimental effect on the atmosphere as its greenhouse effects are 34 times that of 

carbon dioxide. Fossil fuels and livestock are two major sources of atmospheric methane 

(UNFCCC, 2019), which, in 2017, accounted for 10% of the United States’ greenhouse gas 

emissions (EPA, 2019). Currently, there is no easy way to rid the atmosphere of methane other 

than prevention or combustion. However, as shown by Dr. Liu, directed evolution is a possible 

solution to reduce methane emissions. 
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While PACE is a powerful method, the complexity of the system may deter other labs with fewer 

resources from investigating PACE on their own. Specifically, we found that the use of phages 

and a complex pump system would be too time consuming to establish this model in our own 

lab. To address this, we designed our own method of continuous directed evolution with 

simplicity and ease of use in mind, called the BaNCE (Bacterial Non-Continuous Evolution) 

method. In order to assess the viability of BaNCE, results from the Mdh2 PACE experiments 

were attempted to be replicated. To assess the viability of this proposed system relative to PACE, 

we aimed to compare the catalytic efficiency of a BaNCE evolved Mdh2 to PACE’s Mdh2. 

The main aspect of PACE we wanted to eliminate was the use of viruses. PACE uses the M13 

filamentous bacteriophage to link favorable mutations to the propagation of progeny. The crux of 

PACE hinges on connecting these favorable mutations of the gene of interest to expression of 

pIII. In Liu’s Mdh2 PACE experiments, this was done by using a formaldehyde sensitive 

transcription factor (FrmR) to repress pIII expression. Since Mdh2 converts methanol to 

formaldehyde, increased enzymatic activity correlates to an increase in formaldehyde 

concentration. In Liu’s model, Mdh2 improvement caused an increase in formaldehyde 

concentration, causing decreased FrmR repression of pIII and thus phage reproduction (Carlson 

et al., 2011; Rother et al., 2019).  

Overall, the hypothesized BaNCE system is composed of three plasmids and is performed within 

E. coli. The first plasmid, called pEP, encodes for the Error Prone (EP) DNA polymerase 

involved in making mutations. It will mutate a second plasmid, called pMdh2, which encodes for 

methanol dehydrogenase (Mdh2), BaNCE’s gene of interest. The goal is for the EP DNA 

polymerase to introduce a gain of function mutation into Mdh2 that will improve the rate at 

which Mdh2 can convert methanol into formaldehyde. Sensing an increase in formaldehyde 

formation will be done through BaNCE’s third plasmid, pMetA. This plasmid contains MetA, 

which is a gene essential for methionine biosynthesis. The system will be performed in E. coli 

cells with MetA knocked out, inhibiting the methionine biosynthetic pathway. Regaining of MetA 

is essential for the E. coli cells to survive in a methionine deficient environment. In pMetA, 

MetA is regulated under the same formaldehyde (Frm) promoter/operator as used in PACE, 

which is bound by the formaldehyde repressor (FrmR). Only a large enough increase in 

formaldehyde will result in binding of formaldehyde to FrmR, thus releasing it from the operator 

and allowing transcription of MetA and subsequent E. coli growth restoration. As this system 

eliminates the use of phages, the hope is that it will make a form of directed evolution more 

accessible to other research labs, thus combating the complexity of a phage-centric system. 
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Materials and Methods 

MetA- Competent Cell Preparation 
100 mL of LB broth with a kanamycin (Kan) concentration of 25 μg/mL was inoculated with 5 

μL of liquid MetA- cell culture. Cells, along with 500 mL of LB broth, were placed in a 37°C 

incubator overnight. The following day, 400μL of 50μg/mL Kan was added to the LB broth. 

Target OD600 of the cell culture is between 0.400 and 0.600, so the OD600 of the current culture 

was measured and a portion of the culture was added to the 500mL LB+Kan broth to achieve an 

OD600 of 0.100. Cells were then incubated and measured every 20 minutes until the OD600 

measured close to the target. Cells were then incubated on ice for 10 minutes and 2, 50 mL 

aliquots were placed into tubes and spun down at 3500x g at 4°C for 15 minutes. The supernatant 

was decanted and cells were resuspended with 2.5 mL of 50 mM MgCl2 and vortexed. The total 

volume of the tube was then raised to 25 mL with 50 mM MgCl2. Cells were centrifuged for 15 

more minutes at 3500x g at 4°C. The supernatant was again decanted and cells were resuspended 

again with 2.5 mL of 50 mM MgCl2 and vortexed to mix. The total volume was then raised to 

12.5 mL with MgCl2. Cells were incubated on ice for 25 minutes and then pelleted at 3500x g 

for 10 minutes at 4°C. 80% of the supernatant was decanted and cells were resuspended in the 

remaining liquid. The culture was then transferred to clean tubes and pelleted at 3500x g for 15 

minutes at 4°C. The supernatant was aspirated and the cells were resuspended in 2.5 mL of 50 

mM CaCl2. Glycerol was added to make a 15% stock solution and tubes were snap-freezed in 

liquid nitrogen and stored at -80°C. 

Dropout Media 
Since E. coli cells lacking MetA were used, a dropout media lacking methionine was needed. To 

make the dropout media, the following components were mixed: 200 uL 5x M9 Salts (to make 

M9 salts, in 500 mL of DI water, combine and mix 32g Na2HPO4⦁(H2O)7, 7.5g KH2PO4, 2.5g 

NH4Cl, and 1.25g NaCl), 200 uL 1M MgSO4, and 10 uL 1M CaCl2, 0.192g dropout mix (amino 

acids minus methionine). DI water was added to bring the total volume up to 98 mL. 2 mL of 

20% glucose was then added to the solution to bring the final volume to 100 mL. When needed, 

for control experiments, 8.2 mL of 78.5 mM methionine was added to the media, prior to the 

addition of DI water.  

Transformations 
Approximately 100 μL of appropriate cells for transformations were thawed on ice. 15 ng of 

target DNA was added to the cells, gently mixed, and incubated for 30 minutes on ice. Cells 

were then heat shocked at 42°C for 20 seconds and placed back on ice for 5 minutes. 450 μL of 

LB broth was added to the cells, which were then incubated for 1 hour at 220 rpm and 37°C. 

Following incubation, between 75 and 150 μL of cells were spread onto an appropriate plate and 

incubated overnight at 37°C. 
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Table of Transformations 

Plasmid Cell Line(s) Antibiotic(s) 

pMdh2 JM109, BL21 Streptomycin 

pEP JM109, BL21 MetA- Chloramphenicol 

pBAD MetA WT MetA- Kanamycin 

pStart-T2 MetA- Tetracycline 

pMetA MetA- Tetracycline 

None MetA- Kanamycin (natural 

resistance) 

 

DNA Mini Preps 
To extract and purify plasmids throughout this project, Promega miniprep kits were used. 3mL of 

c3mL of cells with target DNA were grown overnight. The next day, 600 μL of culture were 

added to a 1.5 mL tube. To the tube, 100 μL of cell lysis buffer was added and inverted six times 

to mix. After mixing, 350 μL of cold neutralization buffer was added and mixed until cloudy and 

yellow. The mixture was centrifuged at 20,000 rcf for 3 minutes. Following centrifugation, the 

supernatant was transferred to a minicolumn with a collection tube and was again centrifuged at 

20,000 rcf for 20 seconds. Flowthrough was discarded and 200 μL of Endotoxin removal wash 

was added to the tube, which was then centrifuged again at 20,000 rcf for 20 seconds. 400 μL of 

Column wash was then added and centrifuged at 20,000 rcf for a 30 second interval. The column 

was transferred to a clean tube and 30 μL of Elution buffer was added and allowed to sit at room 

temperature for 1 minute. Following incubation, the tube was centrifuged for 20 seconds at 

20,000 rcf to elute the DNA. 

Mutagenesis Test 
An experiment was performed to test for EP DNA Pol I’s mutagenesis. 3mL of LB broth, 2.2 μL 

of Cm (Chloramphenicol, 34 g/L), and 30 μL of Strep (Streptomycin, 10 g/L) were added to a 

culture tube. Colonies pre-picked from an overnight culture of double transformant cells with 

pMdh2 and pEP DNA pol I were inoculated into the tubes. Tubes were grown overnight at 220 

rpm and 37°C. In addition, single transformants of pMdh2 and pEP were inoculated into 

LB+Strep and LB+Amp culture tubes respectively as a control and also grown overnight. 

Following overnight growth, cells were passed and again grown overnight. The next day, cells 

were passed, induced with IPTG and arabinose for induction, and scaled up into 40 mL of liquid 

culture to prepare for protein extraction and DNA purification.  

Agarose Gel Electrophoresis 
50 mL of a 0.9% agarose solution in 1x TAE was prepared and microwaved for 1 minute. Once 

the solution was cool enough to touch, 1μL of Ethidium Bromide was added and swirled to mix. 

The agarose solution was poured into a gel mold and allowed to harden. 10 μL of DNA ladder 

was added to the first lane with DNA samples added to subsequent ones. It was then run at 90V 

for 1 hour and products were viewed on a UV transilluminator. 
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Restriction Cloning 
Restriction cloning was used to insert MetA into the pStart-T2 plasmid. First, a ~200 ng load of 

DNA (6.3 uL of 30.1 ng/uL pStart-T2 or 38.3 ng/uL MetA insert) was digested by incubating it 

with 2 uL 10x CutSmart buffer, 2 uL ApaI (NEB), 2 uL XhoI (Promega), and 7.7 uL ddH2O at 

37°C for 1 hour. Each reaction mixture was then heat inactivated by incubating at 65°C for 20 

minutes. Next, the restricted DNA was recovered using a Promega Wizard PCR Cleanup Kit 

using the supplied protocol. To ligate MetA into pStart-T2, 6.6 uL of restricted pStart-T2 (15.7 

ng/uL), 1.3 uL of restricted insert (12.8 ng/uL), 1 uL Ligase 10x buffer (Promega), and 1 uL T4 

Ligase (Promega) were incubated overnight at 4°C. To test ligation efficiency, 2 uL of ligation 

mixture and 2 uL of pStart-T2 (30 ng/uL) were each transformed into competent MetA- E. coli 

and growth levels compared. 

Protein Quantification Assay 
A protein quantification assay was used to normalize protein concentration for SDS-PAGE. First, 

a standard curve was prepared by performing a 5x dilution of 10 mg/mL bovine serum albumin 

(BSA), and then five 2x serial dilutions. Likewise, each protein extract sample was diluted using 

three 2x serial dilutions. Then, 50 uL of each sample was loaded into a 96-well plate and mixed 

with 250 uL PierceTM 660nm Protein Assay Reagent (Thermo Scientific). A blank was prepared 

by mixing 50 uL water with 250 uL reagent. The samples were incubated at room temperature 

for 20 minutes and optical density was observed at 595 nm wavelength.  

Protein SDS-PAGE 
12% Polyacrylamide gels were cast using the following protocol. The resolving gel was cast by 

mixing 4 mL of 30% acrylamide/1% bis-acrylamide, 2.5 mL resolving buffer (1.5 M Tris-HCl, 

pH 8.8), 3.4 mL ddH2O, 0.1 mL 10% SDS, 550 uL 20% ammonium persulfate, and 7 uL 

TEMED. For the stacking gel, 0.65 mL 30% acrylamide/1% bis-acrylamide were mixed with 

1.25 mL stacking buffer (0.5 M Tris-HCl, pH 6.8), 3 mL ddH2O, 50 uL 10% SDS, 25 uL 20% 

ammonium persulfate, and 5 uL TEMED. In addition to in-house gels, 16% BioRad Mini-

PROTEAN precast gels were also used. Samples were diluted five-fold in the loading buffer 

(0.1% bromophenol blue, 0.1 M EDTA pH 8.0, 30% glycerol) to a final volume of 40 uL and 

heated at 95 °C for 5 minutes. Handcast gels were run at 25 mA until the dye ran off the gel and 

precast gels were run 30 mA. Following, gels were stained with a blue staining solution (0.1% 

Coomassie Brilliant Blue R-250, 50% methanol, 10% acetic acid). Gels were gently mixed in the 

solution for approximately 30 minutes. Following staining, gels were destained overnight in 

destaining solution (50% methanol, 10% acetic acid). Gels were then imaged on a BioRad gel 

imager.  
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Results 

Plasmid Design 
From research done in Dr. David Liu’s lab, phage-assisted continuous evolution (PACE) has 

emerged as a powerful tool to evolve proteins. This system hinges upon the rapid replication rate 

of the M13 bacteriophage and its inability to replicate without the pIII gene. In PACE, pIII is 

replaced with a gene of interest that can restore pIII function if it evolves favorably. In one 

application of PACE, methanol dehydrogenase II (Mdh2) was evolved for better catalytic 

efficiency by linking formaldehyde production to regaining of pIII expression via a 

formaldehyde sensitive transcription factor. To ensure a constant supply of host bacteria for the 

phage to replicate in, PACE employs a complex pump system called a lagoon. Due to the 

complex nature due to the use of phages and a lagoon pump system, we wanted to simplify this 

model through designing a bacterial non-continuous evolution method which we called BaNCE. 

Instead of the phage-bacteria combination used by PACE, we decided to only use E. coli. 

Despite the two-fold reduction in reproduction time, its ease of use and extensive library of 

research makes E. coli a prime candidate for the BaNCE model. To create a directed evolution 

scheme for E. coli, a way to link favorable mutations in Mdh2 to cell survival was devised. To 

do this, an amino acid dropout model was designed. In order to survive, E. coli requires access to 

all 20 amino acids. In this model, a non-essential amino acid was pursued so, through the 

BaNCE model, its biosynthesis could be impeded and subsequently restored within the cell. By 

knocking out a protein in the biosynthetic pathway for an amino acid, E. coli cells will only have 

access to 19 of the 20 required amino acids, thus causing cell death. To regain the function of the 

amino acid dropout, favorable mutations in Mdh2 will need to be linked to production of a 

specific amino acid to ensure cell survival. 

To identify the best knockout candidate, a literature review was conducted to research past 

experiments that identified auxotrophic E. coli available from the Coli Genetic Stock Center 

(CGSC). Eleven auxotrophic E. coli were examined to identify single gene knockouts that 

produced bacteria incapable of growing on media lacking a specific amino acid. Nine of the 

eleven mutants tested were incapable of survival without their amino acid of interest 

supplemented in growth media. Of those nine, MetA (from the methionine biosynthetic pathway) 

and PheA (from the phenylalanine biosynthetic pathway) had the highest range of growth 

linearity with respect to amino-acid-of-interest concentration. Of those two candidates, the MetA 

knockout was chosen for its smaller gene size compared to PheA (Bertels et al., 2012).  

The next piece of the design process was to find a method of in vivo mutagenesis. PACE uses a 

specialized, low-fidelity DNA polymerase to make mutations in phage DNA. This polymerase is 

nonspecific and will reproduce any and all DNA it can access. This is not an issue in PACE since 

the phages replicate faster than the bacteria, meaning that any mutations to bacterial genomic 

DNA will not matter because the phage will reproduce before the bacteria, and any mutated 

bacteria will be washed out and replaced by the lagoon. However, since the BaNCE method 

requires that the bacteria can reproduce continuously, mutations to genomic DNA are not 

tolerable. To fit this restriction, a DNA polymerase that is origin specific was required. A highly 

error prone DNA polymerase I (EP-DNAP I) that exhibits preference for ColE1 origins of 
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replication was chosen as the best candidate. This polymerase produces mutations at a rate of 8.1 

x 10-4 mutations per base pair, an 80,000 fold increase relative to wild type DNA polymerase I 

(Camps et al., 2003).  

Figure 1 shows the hypothesized BaNCE system. The first plasmid involved is called pEP (the 

error-prone polymerase plasmid). This plasmid encodes the Error Prone DNA Polymerase I 

protein, which will introduce random mutations into the DNA of the second plasmid, called 

pMdh2 , which encodes methanol dehydrogenase. Once EP DNA Pol I is transcribed from pEP, 

shown by the purple protein, it will recognize the ColE1 origin of the pMdh2 plasmid and bind to 

it. The EP DNA Pol I will then initiate pMdh2 replication and introduce random mutations into 

the growing pMdh2, shown by the wavy red circle. The introduced mutations within Mdh2  are 

designated by a red star. Overall, the goal of introducing mutations is to create a gain of function 

mutation that will improve the rate at which Mdh2 can convert methanol to formaldehyde. 

Selection of a favorable mutation is based upon sensing an increase in formaldehyde production. 

This is done via this system’s third and final plasmid, pMetA, which contains MetA and has been 

knocked out of the MetA- E. coli (Strain JW3973-1 from the Coli Genetic Stock Center) used in 

this system. Regaining of MetA is essential for these auxotrophic cells to survive. MetA is 

regulated under the formaldehyde (Frm) promoter/operator which is bound by the formaldehyde 

sensitive transcription factor FrmR. A favorable mutation in Mdh2 resulting in a significant 

increase in formaldehyde concentration causes FrmR to be irreversibly bound to formaldehyde, 

thus releasing it from the operator and allowing transcription. Once MetA is transcribed, 

methionine biosynthesis is restored to the bacterium.  

When fully assembled, the BaNCE model consists of one E. coli strain with three transformed 

plasmids described in Figure 2. The pEP plasmid, responsible for generating mutations in the 

gene of interest, contains EP DNA Pol I under the IPTG inducible lac promoter. The lac 

promoter was chosen for its low expression as high levels of mutagenic polymerase could 

extensively mutate the E. coli genome and could risk cell survival. The pMdh2 plasmid, which 

contains the gene of interest, encodes Mdh2 under a ColE1 origin of replication and is the only 

plasmid in the system regulated by ColE1. Lastly, pMetA, responsible for linking evolutionary 

pressure to favorable mutagenesis, contains MetA with a FrmR promoter.  

In principle, EP-DNA Pol I will mutate Mdh2, which will produce varying levels of 

formaldehyde depending on whether the mutation is favorable or not. If the mutations result in 

an increase in formaldehyde concentration, MetA will be transcribed via release of the FrmR 

repressor. Increased MetA expression will result in increased cell survival, creating a cycle where 

only favorable mutations are propagated. 

Replicon Selection 
Plasmid incompatibility poses a potential problem to a three plasmid system. Competition for the 

same replication machinery occurs between plasmids within the same incompatibility group, 

meaning that two plasmids from the same group cannot coexist. Furthermore, small RNA 

produced by a plasmid to regulate copy number can interfere and prevent the coexpression of 

two plasmids with the same origin in a single bacterium. To avoid this, we identified three 

unique replicons from different incompatibility groups: ColE1, a high copy number origin to be 
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used for pMdh2, pSC101, a low copy number origin to be used for pEP, and p15A, a medium 

copy number origin to be used for pMetA (Rosano & Ceccarelli, 2014).  

The agarose gel shown in Figure 3 pictures replicon compatibility of pEP, which contains a 

pSC101 origin, and pMdh2, which contains a ColE1 origin. Plasmids that are too closely related 

will be incompatible, so this gel was run to ensure that the two plasmids were able to coexist in 

the same cell line without replicon competition. Both plasmids were co-transformed into MetA- 

E. coli cells. The top band shown in lane 2 appears at around 6kb, while the bottom band is seen 

at about 5kb. These are the expected lengths of both pEP (6.2 kb) and pMdh2 (4.7 kb). Thus, as 

both plasmids were apparent on the gel, it proves that both the pEP plasmid and pMdh2 plasmid 

can be co-expressed in the MetA- cell line. 

Methionine Auxotrophy E. coli Selection 
To ensure that the auxotrophic E. coli could not grow in the absence of methionine, MetA- cells 

were grown on custom dropout media lacking methionine or dropout media with methionine 

supplemented back in. No MetA- cells grew on the dropout media, however, growth was robust 

on the dropout media with methionine. Interestingly, MetA- cells that grew on dropout media 

were cloudy and less defined than MetA- cells grown on LB agar plates. 

pMetA Construction 
A pBAD MetA WT plasmid was received from Scripps College, care of the Dr. Peter Schultz 

lab, to excise the MetA gene for construction of the pMetA plasmid. The MetA gene needed to 

be cloned out of the pBAD vector and into a p15A replicon plasmid. pStart-T2 was chosen 

because it contains the p15A origin and an antibiotic selection (tetracycline) which was 

compatible with pMdh2 and pEP (streptomycin and chloramphenicol, respectively). The insert 

needed to include restriction sites for insertions, the Frm promoter and operator, and the MetA 

gene. In order to successfully clone this from the pBAD vector, an overhang PCR was 

conducted. A set of forward and reverse primers, shown in Figure 3, were designed for the PCR 

reaction and for successful cloning. Primers included the Frm promoter region, restriction sites, 

and overhangs for enzymes to sit atop. 

Following PCR, an agarose gel, shown in Figure 3, was run to ensure primer amplification. In 

lane 2, a band was observed near 100 bp, which is the expected size of the MetA insert, showing 

that PCR and primer amplification were successful. 

A DpnI restriction digest was run on the remaining PCR product to ensure that any remaining 

genomic DNA was removed. Following the digest, the MetA insert underwent restriction cloning 

into the pStart-T2 plasmid to create pMetA and to excise the ccdB gene, which encodes for the 

CcdB protein that causes cell death, from the pStart-T2 plasmid. After ligation, MetA- cells were 

transformed with the ligation reaction mixture and grown overnight in parallel with MetA- cells 

transformed with pStart-T2 as a negative control. Three colonies grew on the pMetA plate, while 

no growth was seen on the pStart-T2 plate. Since cells grew, this tentatively shows that the 

restriction/ligation was a success.  
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Mutagenesis Experiments 
To test the efficiency of EP DNA Pol I, mutagenesis experiments were run to check if it could 

not only mutate pMdh2, but that it was possible for E. coli to express both plasmids. Chemically 

competent MetA- cells were transformed with varying plasmids plated on LB+Agar plates with 

associated antibiotics. Sample 1 contained pEP with chloramphenicol resistance, sample 2 with 

pMdh2 and streptomycin resistance, and Sample 3 with both pEP and pMdh2 with 

chloramphenicol and streptomycin. 

Following transformations, transformed pEP cultures were plated on LB+Cm plates, pMdh2 on 

LB+Strep plates, and pEP+pMdh2 on LB+Cm+Strep plates to prepare for mutagenesis 

experimentation. Colonies were grown overnight and growth, with consistent phenotype, was 

seen on all three plates. On day zero, a single colony from each plate was picked and grown 

overnight in 3mL of LB broth with associated antibiotics. The following day, day one, cells were 

passed and grown again overnight to give pEP the chance to further mutate pMdh2. On the 

second day of growth, cells were passed, induced with IPTG and arabinose for induction, and 

scaled up into 40 mL of liquid culture and again grown overnight to prepare for a protein 

extraction and DNA purification. 

Following mutagenesis and prior to protein extraction, an aliquot of each sample was taken for 

DNA purification. Following purification, the selected colonies were sent to be sequenced to 

determine if the pEP and pMdh2 plasmids were present in E. coli in samples 1 and 2 and if pEP 

was able to successfully mutate pMdh2 in sample 3. The plasmids were sequenced using primers 

flanking the Mdh2 gene, which is 1,158 bp. All sequencing results showed an exact match 

between the sequenced plasmid and the Mdh2 gene, meaning that we did not observe any 

mutations in the Mdh2 coding region resulting from cotransformation with pEP.  

A PAGE gel was then run using the 3 samples to test whether proteins were expressed and if co-

expression was possible. Figure 7 shows the results of this PAGE gel. Lane 1 contains a protein 

ladder with weights labeled. Lane 2 contains Sample 2 with EP DNA Pol I, where a band would 

be expected at about 109 kDa. A dark band can be seen at around 15 kDa. Lane 3 contains 

Sample 3 with Mdh2, with a band seen at the expected 40.7 kDa. Lane 4 contains both EP DNA 

Pol I and Mdh2, with a band seen at the appropriate weight for Mdh2, but no band seen for EP 

DNA Pol I.  

This gel shows that it is possible for Mdh2 to be expressed in MetA- E. coli cells, but since EP 

DNA Pol I is not seen at the expected weight, a new set of protein extracts, along with a control, 

were prepared. In addition, prior to a PAGE gel, a Pierce Assay was run to measure protein 

concentration in the case that the extracts were either too concentrated or not concentrated 

enough for EP DNA Pol I to appear clearly on a PAGE gel. 

Figure 8 shows the results of this Pierce Assay. For this assay, the standard was first diluted 

fivefold, and followed by five 2x serial dilutions. The samples were tested at their original 

undiluted concentration as well as after they underwent three 2x serial dilutions. Sample 1, which 

is a negative control of protein extract from MetA- cells with no transformed plasmids, had a 

concentration of 1.8 mg/mL. Sample 2, cells transformed with pEP, had a concentration of 3.0 
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mg/mL. Sample 3, cells with pMdh2, had a concentration of 8.9 mg/mL. Sample 4, cells with 

both pEP and pMdh2, had a concentration of 14.0 mg/mL. Table 3 shows OD values corrected 

for the blank measurement. From this data, to create a uniform protein concentration, Sample 1 

was left undiluted, Sample 2 was diluted to a 2-fold, Sample 3 was diluted 4.5-fold, and Sample 

4 was diluted seven-fold.  

The resulting PAGE gel from the protein extract dilutions can be found in Figure 9. Lane 1 of the 

gel contains a protein ladder. Lane 2 contains Sample 1, the MetA- cell extract negative control. 

Lane 3 contains Sample 2, lane 4 contains Sample 3, and lane 5 contains Sample 4. In both lanes 

3 and 4, the pMdh2 plasmid can be seen with a band at the expected 40.7 kDa. While no band 

can be seen for pEP at the expected 109 kDa, a band can be in boths lanes 3 and 5 at around 20 

kDa. In lanes 2 and 3 of Figure 7, this band can also be seen at around 20 kDa. Since this band 

does not appear in lane 2 of Figure 9, the control extract, it is likely that this band correlates to 

the presence of pEP. Further experimental evidence needs to be collected to make this 

conclusion. 
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Discussion 
Directed evolution has proven itself as a powerful tool for creating new and improved proteins. 

In this report, we outline a novel system for non-continuous directed evolution which aims to 

conserve the elegance of the PACE model while simplifying some of its more complex features. 

In addition to the design of a Bacterial Non-Continuous Evolution (BaNCE) system, we report 

preliminary findings which test the feasibility of this model. We demonstrated that the JW3973-1 

strain of E. coli (referred to as MetA- in this paper) is capable of being transformed with two 

plasmids using a ColE1 and pSC101 replicon. Additionally, we have shown that these cells are 

incapable of growing on our custom dropout media which lacks methionine, but that growth can 

be restored by supplementing methionine back into the media. We also present data that suggests 

the successful construction of BaNCE’s third and final plasmid, pMetA, which includes a p15A 

replicon and the MetA gene regulated under the Frm promoter/operator. Lastly, we present data 

which assesses the ability of MetA- cells to coexpress multiple proteins from separate plasmids 

and the ability of EP DNA Pol I to generate mutations in vivo under low expression conditions. 

These data inform us on the potential of the new BaNCE model, possible modifications to the 

system, and future experiments to further appraise the feasibility of BaNCE. 

Unfortunately, due to the COVID-19 pandemic, we were unable to complete the research we had 

hoped to finish since WPI’s campus was put on lockdown and students were asked to return 

home and take classes remotely for the remainder of the academic year. For this reason, the 

results of this project ended more abruptly than expected, leaving unfinished work due to the 

sudden closure of the lab. As a result, the discussion section will place a heavy focus on 

speculations and possible conclusions of the completed research, next steps that had been 

planned to be completed, as well as possible future directions for this project. 

Through methionine auxotrophy selection experiments, shown in Figure 4, we were able to 

prove that MetA- cells cannot grow without a methionine supplement in pre-made growth media. 

This shows that, if the pMetA plasmid were to express MetA, thus restoring methionine 

biosynthesis to the MetA- cells, they should grow on dropout media. Regardless, further 

experimentation of MetA- cells should be run as a phenotype change in the cells can be seen in 

Figure 4 when they are grown on dropout media with a methionine supplement (4B) versus LB 

broth (4C) to ensure that this change does not affect BaNCE experimental results. Once all three 

BaNCE plasmids are transformed into the cell line, a growth test on dropout media will be 

needed to show that the system works as predicted.  

Prior to halting of experimentation, the final plasmid in the BaNCE system, pMetA, was 

constructed. The data shown in Figure 6, whose gel proves that primer design and cloning were 

successful. In addition, growth testing following ligation showed that MetA- cells transformed 

with pMetA were able to grow, while those in the unrestricted pStart-T2 plasmid did not, 

proving that the ccdB gene was excised. While construction of pMetA should be confirmed 

through sequencing, this promising data suggests that all three BaNCE plasmids have been 

constructed, and the system can be tested to completion. 
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Since all three plasmids are available for BaNCE system experimentation, a triple transformation 

into MetA- cells needs to be performed to confirm replicon compatibility. Figure 3 shows an 

agarose gel that proves that not only can both pEP and pMdh2 be transformed into MetA- cells, 

but the two distinct bands in lane two prove replicon compatibility. Through a triple 

transformation of the three BaNCE plasmids, three distinct bands on a gel would prove that all 

three replicons are compatible. Replicon compatibility is needed for overall success of the 

BaNCE model as, if the plasmids were competing for the same replicon, transformation and 

plasmid perpetuity would not be possible. 

Despite attempting several mutagenesis experiments, we were unable to observe the generation 

of any mutations in ColE1 plasmids. In these experiments, MetA- E. coli were cotransformed 

with pEP and a ColE1 target plasmid, for which we used pMdh2. Although sequencing showed 

no mutations in the Mdh2 coding region, this does not disprove the introduction of mutations 

elsewhere in the plasmid. Furthermore, because the mutations generated by EP DNA Pol I are 

random, the average sequence of a collection of plasmids may appear unchanged, even though 

the plasmids may individually have each accumulated a small number of mutations. For 

sequencing of a population of plasmids to be a useful tool to determine the mutagenicity of EP 

DNA Pol I, it may be necessary to concentrate plasmids with the same mutations so that these 

may be observed using sequencing. The use of a ColE1 plasmid encoding GFP could help 

identify when mutations are generated by a change in the bacteria’s phenotype. If colonies 

transformed with both pEP and a GFP/ColE1 plasmid change from glowing to dark, this could be 

indicative of a mutation in the coding region of GFP. However, it is important to note that a 

change in phenotype could also result from mutations in the promoter/operator of GFP, which 

could hinder transcription, or from mutations in the replicon, which would hinder plasmid 

replication. The latter would also require the cells to gain resistance to associated antibiotic 

selection. Regardless of the method, proving EP DNA Pol I’s ability to generate targeted 

mutations in vivo is essential to establishing BaNCE’s potential as a system for directed 

evolution. 

Likewise, the ability for MetA- cells to express the key proteins encoded in each of BaNCE’s 

plasmids is critical to the model’s success. Figure 7 shows the results of a SDS-PAGE gel using 

protein extracts of MetA- cells transformed with either pEP, pMdh2, or both plasmids. In lane 3, 

labeled Mdh2, there is a large band located around 40 kDa. Given the size of the band and its 

location, this was determined to be Mdh2, which has a molecular weight of 40.7 kDa. A fainter 

band can be seen at the same location in lane 4, labeled EP DNA Pol I and Mdh2, suggesting that 

Mdh2 is successfully expressed in both pMdh2 and pEP/pMdh2 transformed cells. However, 

because the bands in lanes 3 and 4 differ greatly in intensity, it was concluded that protein 

concentrations between samples differed greatly. In contrast to Mdh2, EP DNA Pol I, which has 

a weight of 109 kDa, is not apparent in lane 2, labeled EP DNA Pol I, nor in lane 4. There are 

heavy bands around 15 kDa and 5 kDa that do not appear in the Mdh2 only lane, however, the 

nonuniform concentrations make it difficult to determine whether these are a product of pEP’s 

presence or a result of different concentrations of host cell proteins. Although EP DNA Pol I’s 

absence on this gel is alarming, it was expected to have lower expression levels than Mdh2 given 

the differences in copy number and induction between pEP and pMdh2. pEP employs the low 
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copy number pSC101 origin and regulates EP DNA Pol I expression under the lac system, which 

has a history of temperamental induction. pMdh2 uses the high copy number ColE1 replicon and 

arabinose induction. These distinctions help explain the differences between Mdh2 and EP DNA 

Pol I concentrations on the gel, but they do not explain the complete absence of EP DNA Pol I. 

To further investigate this, the experiment was reattempted with the addition of a Pierce 660 

assay to normalize protein concentrations between samples as well as a negative control to help 

visualize differences in protein concentrations. 

Figure 9 shows the results after protein concentration normalization. Once again, Mdh2 has a 

clear presence in both the lanes containing pMdh2, however, now band intensities are 

comparable between the two samples. Nevertheless, there is once again an absence of any 

significant bands around 110 kDa where EP DNA Pol I is expected to be found. Interestingly, 

there is a significant band present at 20 kDa, which is noticeably darker in both samples 

containing pEP (lanes 3 and 5), than it is in the control. This band seems to correlate to the 

presence of pEP, but we cannot conclude that it signifies the expression of EP DNA Pol I. 

Although these results do not confirm expression of EP DNA Pol I, they do not disprove it 

either. The previously described conditions causing low EP DNA Pol I expression may make this 

experiment non-ideal for identifying expression of EP DNA Pol I since it may not be present in 

concentrations high enough to distinguish itself from other proteins in the extract. Introducing a 

protein tag to EP DNA Pol I and subsequent purification may be required to determine 

conclusively whether or not the current plasmid system allows for expression of the polymerase.  

Through the use of the BaNCE system, we hoped to create an easier, more user-friendly model 

for directed evolution that could be performed in academic labs without the complexity of 

phages. Seeing as the PACE method poses implications for methane pathways, we hope that the 

simplified BaNCE method could have potential to create pathways that could convert methane 

into energy sources for bacteria.  
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Figures and Tables 

 

Figure 1. BaNCE experimental design. Beginning with the pEP plasmid, the error prone (EP)  

DNA Polymerase I will be transcribed. This polymerase will then recognize the ColE1 ORI of 

the pMdh2 plasmid and bind to it. The EP DNA Pol I will then replicate the pMdh2 plasmid and 

introduce random mutations, thus creating a mutated pMdh2, delineated by the wavy red circle. 

The introduced mutations within the Mdh2 gene are shown by a red star. The goal is to create a 

gain of function mutation that will allow Mdh2 to convert methanol to formaldehyde at an 

improved rate. As a result, the mutated gain of function Mdh2 will be selected for continued 

replication and transcribed. Thus, the formaldehyde from Mdh2 converted methanol will bind to 

the formaldehyde (Frm) repressor on pMetA, shown by the orange molecule. Once formaldehyde 

binds to the Frm repressor, it will be released from pMetA, thus allowing for the transcription of 

the MetA gene. As a result, methionine biosynthesis will be restored and the MetA- E. coli cells 

will be able to grow and propagate. 
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Figure 2. Simplified Plasmid Maps of plasmids used. The pEP plasmid that will make random 

mutations to the pMdh2 plasmid through the use of Error Prone Polymerase I. The pMdh2 

plasmid contains the gene of interest, Mdh2 (methanol dehydrogenase), that will convert 

methanol to formaldehyde. pMdh2 mutations from the pEP plasmid will produce varying levels 

of formaldehyde depending on a favorable mutation. The pMetA (Methionine) plasmid links 

evolutionary pressure to the favorable mutagenesis of the pMdh2 plasmid. 
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Figure 3. Agarose gel of replicon compatibility. Lane 1 pictures a 2-log DNA ladder with 

associated lengths labeled. Lane 2 shows a co-transformation of pEP and pMdh2 done in MetA- 

E. coli cells. Bands can be seen at 6kb, which is near the expected length of pEP (expected 6.2 

kb), and just shy of 5kb, which is near the expected length of pMdh2 (expected 4.7 kb). These 

two distinct bands prove replicon compatibility of these two plasmids. 
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Figure 4. MetA- knockout cell test. To ensure that the auxotrophic E. coli did not grow without 

methionine, the MetA- cells were grown on plates with dropout media that either contained 19 

amino acids (excluding methionine) supplemented back into the media or all 20. Figures 3A-3C 

show the agar plates from this growth test. Figure 3A shows cells grown on dropout media 

without methionine where, as expected, there was no cell growth. The small circles seen on the 

plates are air bubbles within the agar. Figure 3B shows cells grown on dropout media with all 20 

amino acids, where, as expected, there was cell growth. 3C shows the MetA- cells grown on an 

LB agar plate for colony phenotype comparison between medias. 

 

 

Forward Primer: 

5’-

GAGGTGGGCCCTTGACATATAGAATACCCCCCTATAGTATATTGCATGCAGATGATG

AGGTGCGAAATGCCGATTCGTGTGCCGGAC -3’ 

Apa1 Restriction Site 

Reverse Primer: 

5’-ATTCGCTCGAGTTAATCCAGCGTTGGATTCAT-3’ 

Xho1 Restriction Site 

Figure 5. MetA gene primer design. Both a forward and reverse primer were designed to clone 

the MetA gene out of the pBAD MetA WT host plasmid. On the forward primer, text highlighted 

in blue is a part of the frm promoter region. Underlined text in the forward primer is where frmR 

(the formaldehyde repressor) will bind. In both the forward and reverse primers, text highlighted 

in red are each primer’s corresponding restriction site (Apa1 and Xho1, respectively). Black text 

on both primers indicate overhangs for the restriction enzymes to sit on top of. 
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Figure 6. Agarose gel of MetA PCR insert. Through using the designed primers the MetA gene 

of interest from the pBAD MetA WT host plasmid was amplified through PCR. Lane 1 contains 

a DNA ladder while Lane 2 contains the MetA insert. The insert band appears at around 1000 bp, 

as expected, showing the PCR was successful and MetA was successfully cloned. 
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Figure 7. PAGE gel for co-expression tests. Lane 1 contains a protein buffer. Lane 2 contains a 

sample of protein extract with cells that have been transformed with pEP. A band can be seen in 

this lane at 15 kDa. Lane 3 contains a sample of protein extract from cells transformed with 

pMdh2. A band in this lane is seen at 40 kDa. Lane 4 contains a sample with proteins purified 

from MetA- E. coli cells transformed with pMdh2 and pEP. Bands in this lane can be seen at 40 

kDa, 15 kDa, and 5 kDa. 
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Figure 8. Pierce 660-Assay standard curve. 

 

 

 
 

1 2 3 4 5 6 7 

Standard 
 
 

1.633 0.871 0.719 0.334 0.158 0.078 0.047 

Control 1.329 0.721 0.454 0.156 0.183  
 

 
 

pEP 1.612 1.161 0.705 0.376 0.368  
 

 
 

pMdh2 2.381 1.903 1.512 0.994 1.036  
 

 
 

pEP & 

pMdh2 
2.092 1.897 1.806 1.521 1.591  

 
 
 

Table 1. Pierce 660-Assay OD values corrected for blank measurement.  
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Figure 9. PAGE gels for co-expression tests with normalized protein concentrations. Lane 1 

contains a protein ladder. Lane 2 shows a control of only MetA- cell protein extract with no 

transformed plasmids. Lane 3 contains protein extract of MetA- cells transformed with pEP. 

ALane 4 contains protein extract of MetA- cells transformed with pMdh2. Lane 5 contains 

protein extract of MetA- cells transformed pEP and pMdh2. Expected size of Mdh2 and EP DNA 

Pol on are 40.7 kDa and 109 kDa, respectively. Mdh2 appears at the expected length in both 

lanes 4 and 5, while EP DNA Pol I appears near 20 kDa. 
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