
Worcester Polytechnic Institute

Pre-Silicon Verification of
Tegra Image Signal Processor

Major Qualifying Project

Naumaan Ansari | Stephen Lee | Zhongjie Wu

Submitted To

Tony Cheng
Yunqing Chen

Gurdeepak Grewal
Rupesh Shah

Advisor

Andrew Klein

3/8/2012
[Some materials have been removed due to confidentiality]

 i

AUTHORSHIP

Section Author

Abstract Zhongjie Wu

Executive Summary Naumaan Ansari

1.0 Introduction Stephen Lee

2.0 Background

2.1 NVIDIA Corporation All

2.2 ASIC Design Zhongjie Wu

2.3 Tegra ISP Architecture Naumaan Ansari

2.4 CSI Stephen Lee

2.5 Video Input Zhongjie Wu

2.6 Image Signal Processor Zhongjie Wu

3.0 Power Verification Naumaan Ansari

4.0 CSI Code Coverage Testing Stephen Lee

5.0 Register Initial Value Test Zhongjie Wu

6.0 Random Test for FX Subunit Zhongjie Wu

 ii

TABLE OF CONTENTS

Authorship .. i
List of Figures .. iv

List of Tables .. iv

Abstract ... v

Executive summary ... vi
Nomenclature ... viii
1.0 Introduction ... 1

2.0 Background .. 3

2.1 NVIDIA Corporation and Tegra .. 3

2.2 ASIC Design and Verification Basics ... 5

2.3 Tegra ISP Architecture Overview .. 8

2.4 Camera Serial Interface ... 8

2.5 Video Input .. 10

2.6 Image Signal Processor .. 10

2.6.1 Overview ... 10

2.6.2 The FX Subunit .. 13

3.0 Power Verification .. 13

3.1 Introduction .. 13

3.2 Important Concepts ... 14

3.2.1 RTL (Register-Transfer Level) .. 14

3.2.2 RTAPI (RunTest Application Programming Interface) ... 14

3.2.3 Clock Gating ... 14

3.2.4 Power Verification ... 14

3.3 Methodology ... 16

3.3.1 Introduction ... 16

3.3.2 ISP/CSI/VI Power Verification ... 16

3.3.3 Test Cases ... 16

3.3.4 Power Flow .. 17

3.4 Results ... 19

3.4.1 Power Test Code .. 19

3.4.2 Power Report .. 21

3.5 Summary .. 22

4.0 CSI Code Coverage Testing .. 23

4.1 Introduction .. 23

4.2 Important Concepts ... 23

4.2.1 Verdi .. 23

4.2.2 Code Coverage ... 23

4.2.3 VCS Pragmas .. 25

4.3 Methodology ... 25

4.3.1 Code Coverage ... 25

4.3.2 VCS Pragmas .. 27

4.4 Results ... 28

4.5 Summary .. 29

 iii

5.0 Register Initial Value Tests ... 30

5.1 Introduction .. 30

5.2 Important Concepts ... 30

5.2.1 Register Read and Write Test ... 30

5.2.2 Specification Files .. 30

5.2.3 The Host1xClassGen.pl Script and related files .. 30

5.3 Methodology ... 31

5.4 Results ... 33

5.4.1 Modification of Perl Script .. 33

5.4.2 Generated Tests .. 34

5.5 Summary ... Error! Bookmark not defined.
6.0 Random Test for FX Subunit ... 34

6.1 Introduction .. 35

6.2 Important Concepts ... 35

6.2.1 The FX Subunit .. 35

6.2.2 Testbench .. 36

6.2.3 Random Constraints ... 37

6.3 Methodology ... 37

6.4 Result ... 40

6.5 Summary .. 41

7.0 Conclusion ... 42

Appendix A parse_spec_file Function .. 43

Appendix B Register Initial Value Test Result .. 47

Appendix C Power_Basic test .. 49

Bibliography ... 51

 iv

LIST OF FIGURES

Figure 2.1 NVIDIA's semiconductor development cycle ... 6

Figure 2.2 The Verification Model .. 7

Figure 2.3 CSI/VI/ISP .. 8

Figure 2.4 CSI high level block diagram. [11]... 9

Figure 2.5 ISP physical top-level block diagram [12] .. 12

Figure 3.1 RTAPI and C model Comparison... 15

Figure 3.2 Power Verification Test Cases ... 17

Figure 3.3 Power Flow [14] ... 18

Figure 3.4 Block Diagram Showing Signal Path [11] .. 20

Figure 4.1 Code coverage report for selected signals .. 28

Figure 4.2 CSI coverage summary ... 29

Figure 5.1 Relationship between files .. 31

Figure 6.1 Functional Diagram of FX subunit ... 35

Figure 6.2 FX random test and related files ... 36

Figure 3 Improved coverage .. 41

LIST OF TABLES

Table 2.1 Projected Revenue Split for Q1 and Q2 2012 [2] .. 3

Table 2.2 CSI Camera Use Case Summary [2] ... 10

Table 2.3 ISP Features .. 11

Table 6.1 FX Subunit Register Specification [12] .. 36

 v

ABSTRACT

To aid in the development of NVIDIA’s new Tegra processor, we carried out multiple

tasks in the verification phase of the design process as a part of the Image Signal Processor

development team. We developed power verification tests and analyzed the results to meet

specifications. We modified the Camera Serial Interface source code to improve overall

coverage. In addition, we added initial value test features to the register tests. Finally, we

assisted in verifying the Special Effect unit by developing a corresponding random test.

 vi

EXECUTIVE SUMMARY

NVIDIA’s Tegra platform is a recently introduced chip family designed for use in

modern phones and tablets. Tegra 3 is the most recent release, with several more versions

slated for production in the future. This project focuses on the verification process of the

Tegra 5 and 6 processors. Verification is a broad topic encompassing many different

aspects of the chip design. More specifically, the goal of this project involves four separate

verification tasks that include power verification, Camera Serial Interface (CSI) code

coverage testing, register initial value testing, and random testing for the special effects

subunit in the Image Signal Processor (ISP). These verification tasks are highly related;

both the CSI and ISP are internal modules of Tegra’s ISP architecture, while power flow

involves both modules. While these four tasks do not constitute the entirety of the ISP

verification, the work done by our project team will help facilitate the overall ISP

verification process.

The first task in this report is power verification of the Tegra processor. In the

electronics industry, power verification is an important process to ensure that products

work at an acceptable power consumption rate. Every year, transistors are getting

significantly smaller. The smaller size is optimal for making smaller devices, but as a result,

engineers encounter power issues. As transistor size decreases, the nominal power

consumption does not decrease proportionally. Since these transistors have become so

small, designers have the ability to package more of them into a product. This results in not

only higher performance, but also higher power consumption. When transistors were

larger, it resulted in a lesser amount of transistors in the same amount of chip area.

The goal of the power verification project is to design and implement a test that

utilizes the Tegra’s ISP device. This is done by writing a test using the C++ programming

language that encompasses the hardware code written for the ISP. This test is then run

through a simulation system designed by NVIDIA. The results from this test are then

analyzed to ensure that the test is designed properly and that desired results are achieved.

 vii

The second task deals with CSI code coverage testing. The Camera Serial Interface is

one of the major components of Tegra’s ISP architecture. The purpose of the CSI is to take

pixel data from the camera sensors and transfer them to the Video Input, the adjacent

processor in the architecture. CSI verification plays a major role in Tegra’s overall ISP

verification process because it is one of the integral ISP modules.

Verification of the CSI module involved source code editing and coverage testing.

The CSI source code was modified according to the changes proposed in the CSI testplan.

The goal of performing these modifications was to increase the overall coverage percentage

for the CSI module. In other words, making these changes showed that a larger percentage

of the CSI module had been verified as properly working.

The third task described in this report is the Register Initial Value Test, which

involved adding a feature in a script that generates register read and write tests. The

modified script was able to parse specification files and capture register initial value

definitions. It could then generate testing code that verifies the initial value of registers

according to the specification files. The generated code was able to be compiled and

executed without error. The tests indicated 24 register value mismatches and the results

were reported to the ISP group.

For the final task, the group worked with ASIC designers to verify the FX subunit by

developing necessary random tests and refining the randomness. The group assisted the

designers to fix all bugs and added the formal random test to the testplan. This subunit has

successfully passed stress tests and has been passing daily regression tests. After the

verification, the hardware model was ready for future emulation and production.

 viii

NOMENCLATURE

ASIC Application-specific Integrated Circuit
CSI Camera Serial Interface
FX Special Effect
ISP Image Signal Processor
RTAPI RunTest Application Programming Interface
RTL Register Transfer Level
VCS Verilog Compiler Simulator
VI Video Input

 1

1.0 INTRODUCTION

Even with the recent introduction of the Tegra 3 in 2011, NVIDIA already has

several future Tegra iterations in various stages of development. These future designs,

comprised of cutting edge and next generation technologies, require extensive testing and

verification before they can be brought to the market. A considerable amount of time is

necessary to complete these tasks, and NVIDIA must ensure that every step in the process

adheres to a tight schedule. This is to make certain that the company is able to introduce

updated versions of Tegra to the mobile market in a timely manner. As additional

technologies are added to the Tegra architecture, the verification process becomes

increasingly complex. The Tegra 5 and 6 architectures in particular will be utilizing

entirely new image signal processor (ISP) architectures. Currently, NVIDIA has several

teams working on the testing and verification of this architecture; the new architecture

makes this process much more complicated than before. Due to the increased workload,

NVIDIA’s verification teams are hard pressed to remain on schedule. It will be the job of

our project team to aid in the verification process of the new ISP architecture.

 The ISP is one of the important functionalities of Tegra’s architecture. The ISP itself

contains its own important modules, including the camera serial interface (CSI), video

input (VI), and the ISP module. The ISP verification for the Tegra 5 is currently ongoing

and involves the verification of the CSI, VI, and ISP modules. In addition, power flow

verification must be conducted on the ISP architecture as a whole, which ensures that

power consumption is within expectations. Some of the key remaining issues to be

addressed include CSI verification, ISP verification, and power flow verification.

 NVIDIA’s verification teams have already begun the verification process for the

three tasks listed above. Their priorities are currently focused on the large scale task goals

and milestones, with other essential goals and sub-tasks being pushed back due to time

constraints. Although there are several engineers working on the most important

verification tasks, none are able to dedicate time towards completing the various other

essential items. Over time, these unaddressed tasks gradually slow and delay the entire

 2

verification process as a whole. These delays must be addressed in a timely manner to stay

in line with the overall Tegra verification plan.

The focus of our project work will be to aid in the verification of the Tegra ISP

architecture. CSI code coverage, register testing, random testing, and power flow

verification are currently four of the more important tasks remaining under the ISP

verification process. These tasks will involve performing power simulation tests, code

coverage tests, random tests, and will also require our team to create totally new

verification tests. By working on these essential tasks, NVIDIA’s engineers will be able to

dedicate more of their time towards completing the largest and most important verification

tasks. This will allow the ISP verification process to proceed more quickly, ultimately

resulting in a faster verification process for the next generation Tegra architecture.

 3

2.0 BACKGROUND

2.1 NVIDIA Corporation and Tegra

NVIDIA is an American global technology company founded in 1993 by Jen-Hsun

Huang, Chris Malachowsky, and Curtis Priem. Their products have primarily consisted of

graphics processing units and chipsets. Many of NVIDIA’s achievements are notable; the

company invented the first mainstream multimedia processor (1995), the first high

performance, 128 bit, Direct3D processor (1997), and the first graphics processing unit

(1999), to name a few. Over the past few years, NVIDIA has been increasing its foothold in

the mobile computing market, where the company has been using the Tegra family to

power phones and tablets.

Although NVIDIA’s main source of revenue comes from GPUs, there is a growing

trend towards the mobile computing market. As indicated by Table 2.1 Projected Revenue

Split for Q1 and Q2 2012, NVIDIA plans to generate more revenue from consumer products,

which includes the Tegra, a multi-processor solution. As evidenced by Corporate Milestones

on the NVIDIA website, they have taken several actions in the mobile computing market.

For example, they have supplied their mobile GPU Tegra to several cell phones and tablet

vendors. They have also recently acquired Icera, a leading innovator of top-performing

baseband processors for modern cellular phones and tablets [1].

(in millions) Q2FY2012 Q1FY2012 Q/Q%

GPU $638.5 $637.6 +0.1%
Professional Solutions $210.3 $201.8 +4.2%
Consumer Products $167.7 $122.6 +36.8%
Total $1,016.5 $962.0 +5.7%

Table 2.1 Projected Revenue Split for Q1 and Q2 2012 [2]

NVIDIA’s Tegra family has been constantly updated since its first release in 2008.

The Tegra 3, introduced in November 2011, set new standards of mobile computing

performance and energy efficiency, and according to Michael Rayfield, NVIDIA’s Mobile

Business Unit General Manager, there are four additional series of the Tegra family

currently in development [3]. The developmental process for the Tegra family includes a

 4

considerable amount of testing and verification, and this project with NVIDIA will help

facilitate this process.

In 2008, NVIDIA launched Tegra, a family of highly integrated computers on a chip,

or system on a chip (SoC) [1]. The Tegra chip has been utilized on mobile devices such as

netbooks, tablets, and smartphones [4]. As stated in the introduction, NVIDIA has been

shifting towards the mobile computing market in an attempt to garner a foothold over

competitors such as Qualcomm and Texas Instruments. Up until 2008, NVIDIA’s priority

has always been towards the GPU market, in which they have always enjoyed a healthy

share of. Although the benefits of being one of the largest GPU manufacturers in the world

are great, Jen-Hsun Huang, CEO of NVIDIA, believes in venturing into new territory with

Tegra. Huang estimates that the mobile-chip industry will grow to $20 billion by 2015,

around 10 times what it’s currently at. According to him, “If you don’t have a mobile

strategy, you’re in deep turd. If you’re not in mobile processors now, you’re seven years too

late.” [5]

NVIDIA’s goal in creating Tegra has always been to offer an ultra-low-power chip,

with high performance [6]. Tegra’s SoC design is comprised of a CPU, GPU, and a video and

sound processor. The chip currently has the ability to run on multiple operating systems,

with Android, Linux, and Windows being the most common [7].

 The first line of Tegra chips released in 2008 was the Tegra APX Series.

Specifications of this chip include an ARM11 MPCore 600MHz CPU, 246 MB memory, 12 MP

camera support, and the ULP (Ultra Low Power) NVIDIA GPU [4]. The original line of Tegra

APX chips were designed specifically for smartphones [4]. Although NVIDIA was

enthusiastic about the release of their new chip families, there were ultimately not many

product integrations, as the chip made its way into only one smartphone and one mp3

player [4]. This setback did not stop Huang, as he states “Creating Tegra was a massive

challenge. Our vision was to create a platform that will enable the 2nd personal computer

revolution – which will be mobile centric, with devices that last days on a single charge, and

yet has the web, high definition media, and computing experiences we’ve come to expect

from our PC.” [8]

 5

 After the booming success of the iPad, NVIDIA took notice and decided to switch

gears. Although they still maintained chip production for smartphones, the chip designed

for Android tablets became more popular [9]. This chip was known as the Tegra 2. This

chip boasted a dual-core ARM Cortex A9 1 GHZ CPU and 1GB of memory [9]. The Tegra 250

T20 (designed specifically for tablets), is used in around 20 different tablets currently on

the market [9]. The Tegra 2 boasts superior performance and lower power consumption

than the previous generation of Tegra chips.

 The next line of chips, the Tegra 3, is double the performance of the Tegra 2. The

Tegra 3 boasts the first quad-core processor found in a tablet currently on the market. The

chip itself is %61 more efficient with battery consumption than the Tegra 2. There are also

a few other differences with these two chips that is further discussed in the next section of

the paper.

2.2 ASIC Design and Verification Basics

In the semiconductor industry, people nowadays use hardware description

languages such as VHDL and Verilog to define the design of a silicon chip. Each

semiconductor company has its own way of developing semiconductor solutions. At

NVIDIA, engineers separate the tasks into several roles, as shown in Figure 2.1. Anything

from the top to the synthesis process is called the front end, while anything starting from

floorplanning is the backend. This project focuses on the verification process and also

involves interacting with designers.

 6

Figure 2.1 NVIDIA's semiconductor development cycle

In the verification process, NVIDIA follows the philosophy that if something is not

verified, it is not working. Therefore, each unit must be verified by running tests. The

hardware verification involves two models, the V model and the C model. The V model

refers to the code system written in Verilog or its extensions and can be used for simulation

of real logic gate behavior. The simulation logic is based on clocks, just like hardware. In

contrary, the C model is written in the C programming language. Though both models aim

Architecture

Micro Architecture

Design

Verification

Design Synthesis

Floorplanning

P & R

Timing

DRC/LVDS check

Tapeout

 7

to implement the same functionalities, they are very different in the real implementation.

In particular, the C model is simpler and less likely to produce bugs.

Figure 2.2 The Verification Model

Traditionally in the software industry, engineers write tests with finite amounts of

inputs to cover different cases. Ideally the tests should cover each possible input, which is

impossible within the common constraints. In the semiconductor industry, the potential

failing cost of a chip is very high. The industry invented a testing mechanism called random

tests to balance between test coverage and cost.

In random tests, the test environment instantiates both the V and C models. It then

configures them with randomized register values and also feeds them with randomized but

identical data, called the stimulus. Then, the testbench compares the results from the two

models and indicates a test pass if they match completely. The randomized values are not

completely random, but follow a list of constraints defined by verification engineers

according to the architecture document. In this practice, as more random tests are run,

more scenarios are covered.

In the random tests, a user can define the constraints so that only one possible set of

values can be produced. These special cases are referred to as directed tests, which are

Match?

Stimulus

 8

usually used to cover the most basic situations and are included in Level 0 test plans (the

most basic tests).

2.3 Tegra ISP Architecture Overview

The architecture of the Tegra Image Signal Processor (ISP) is show below in Figure

2.3. The individual modules of the ISP will be explained in further detail in the following

sections. The image first goes through the Camera Serial Interface (CSI) and Video Input

(VI) components of the device and then goes to the ISP, which then delivers it to the

memory interface. The dotted line shows an alternative path the image can take. The job of

the VI is to decide whether or not to send an image to the ISP. If the image is already at a

small enough resolution, the VI can send it directly into memory without going through ISP

filtering. From there, the memory will either keep it or send it back into the ISP for further

modification. This architecture is necessary to keep in mind when approaching all four

tasks.

Figure 2.3 CSI/VI/ISP

2.4 Camera Serial Interface

 The Camera Serial Interface is one of the major components of the Tegra’s ISP

architecture. The CSI takes pixel data from the camera sensor (up to two sensors are

supported) and transfers it to the application processor using the MIPI protocol. This

protocol was created by the MIPI Alliance with the goal of defining and promoting open

specifications for mobile interfaces. Currently, NVIDIA uses the CSI2 interface in their

Removed due to confidentiality

 9

Tegra chips (see below for a block diagram). “CSI2 provides the mobile industry with a

standard, robust, scalable, low-power, high-speed, cost-effective interface that supports a

wide range of imaging solutions for mobile devices” [10].

Figure 2.4 CSI high level block diagram. [11]

 NVIDIA’s CSI2 has a vast array of functionality. “The use cases supported by the CSI

include basic single camera, multiple cameras, embedded data, and virtual channel. The still

and video capture sequences involve different single camera and multi-camera configuration

options” [11]. See the table below for a summary of NVIDIA’s CSI2 use cases.

Confidential Material Confidential Material

Removed due to confidentiality

 10

Table 2.2 CSI Camera Use Case Summary [2]

2.5 Video Input

The Video Input is a unit that controls the flow of image data from the camera.

Located between the CSI and ISP, it directs data either to the ISP for instant processing or

to the memory for post processing.

2.6 Image Signal Processor

2.6.1 Overview

The Image Signal Processor is part of the NVIDIA Tegra microprocessor. It is

responsible for converting raw signals from the camera sensor to other acceptable formats.

The ISP can also perform other digital image processing such as de-noising. This project

involves the second generation ISP, called ISP2. Table 2.3 shows the ISP2 functionalities.

Confidential Material Confidential Material

 11

Table 2.3 ISP Features

Compared to the original ISP, ISP2 utilizes a completely new architecture offering

large flexibilities to the customers. Shown in Figure 2.5 is the internal function block

diagram of the ISP2. This architecture incorporates the crossbar design (XA and XB in the

diagram) in substitution of the original fixed pipeline design. This new crossbar design is

highly configurable; instead of a fixed order of ISP components, the customer can include,

exclude or reorder sub-components as they see fit for their own applications.

 12

Figure 2.5 ISP physical top-level block diagram [12]

Removed due to confidentiality

 13

2.6.2 The FX Subunit

As a part of the ISP verification process, we worked with the designer to verify the

Special Effect (FX) subunit. The FX subunit is used to add special polarization, solarization,

negatives, and emboss to the pixels. The first three functions are implemented inside the

same block, since they can be computed with one generic algorithm with minor logic

differences. However, the emboss function is implemented in its own block.

3.0 POWER VERIFICATION

3.1 Introduction

The following task conducted at NVIDIA is the company’s version of power

verification. The company performs this verification process with all of their products, and

this task will involve the power verification of the Tegra ISP. As a result, they have designed

a roadmap to follow in order to successfully accomplish power verification for a product.

This chapter will begin by discussing how power verification is interpreted by NVIDIA, and

then go on to discuss the steps taken to generate a power verification report. This task

involves writing a test using the C++ programming language to run through NVIDIA’s

simulation system. This test incorporates all of the ISP subunits’ hardware code. The goal of

the task was to increase the power efficiency of the ISP device by analyzing the power

report that is produced at the end of running the simulation. Analyzing the report led to

increasing the power efficiency of the ISP’s various subunits. The results of this task are the

overall increase in efficiency of the ISP device. These results are achieved by altering the

subunit RTL code and then re-running the original test to generate a new power report.

Once the efficiency is increased to a certain level, the subunit power values generated by

the report are compared against an ideal C model. Before discussing the steps involved in

this process, there are a few important concepts that need to be established.

 14

3.2 Important Concepts

3.2.1 RTL (Register-Transfer Level)

RTL, or Register-Transfer Level, is the circuit designed for a specific piece of

architecture. For example, RTL for the ISP device encompasses all of the logic gates and

various connections involved within the circuit. This RTL is written with System Verilog.

Table 2.3 shows the various subunits involved within the ISP architecture. Each of these

subunits has registers written into RTL. The RTL can be called upon using the C++

programming language. The code written to use RTL is simulated within the RTAPI, which

will be explained in the next section.

3.2.2 RTAPI (RunTest Application Programming Interface)

The RTAPI is a hardware simulation test bench. According to the NVIDIA RTAPI

internal Wikipedia page, “The RunTest API (RTAPI) provides a mechanism to define robust

C++ tests which run equally well in C simulation, mixed C/RTL simulation, top RTL

simulation, emulation, and silicon.” [13] Essentially, the tests written for the RTAPI are a

script of C++ code. The code is then executed in a simulated processor within the RTAPI

environment. The RTAPI can simulate the processor because it contains the RTL of the

architecture involved in the Tegra ISP.

3.2.3 Clock Gating

Clock gating is a process used to decrease power dissipation within a piece of

hardware. The process occurs when a signal is traveling through various forms of logic.

When clock gating is turned on, the signal will be streamlined to its destination in order to

avoid various flip-flops within the logic. Flip-flops involve the switching between two

states, and this very process of switching consumes extra power. If clock gating is disabled,

the flip-flops will not be avoided and overall power consumption will be higher.

3.2.4 Power Verification

The purpose of power verification is to ensure that the power being consumed by a

specific component accurately compares to the C model standard, which assumes ideal

values in an ideal environment. These values are generated after the test shown in Figure

3.1 runs through the RTAPI. In general, the values in the power report will not have the

 15

exact values as the C model, but should be within an acceptable margin of error. This error

is determined by NVIDIA’s power verification team, and not by the Tegra ISP team. Figure

3.1 shows how the simple flow of power verification works. If the compared values match,

the RTL will go through further verification. If they do not match, the power verification

report and test code have to be analyzed. This process is further explained in a later

section.

Although observing how the RTAPI and C model are related, observing their

comparisons is not the overall goal of this task. The goal, as stated in section 3.1, is simply

to create the test involved in this comparison and increase the power efficiency of the ISP

subunits. Once the test is optimized for efficiency, the results of the power report are sent

to the power verification team at NVIDIA. The job done by our project group is shown in

the dotted box in Figure 3.1.

Figure 3.1 RTAPI and C model Comparison

Test

 16

3.3 Methodology

3.3.1 Introduction

The following methodology will explain the process shown in Figure 3.1. First, the

method in which the power verification is approached in relation to the architecture is

explained. There are two types of test cases that were created and each of them is

explained in the following section. Finally, the method in which these test cases are run

through the RTAPI simulation to generate a power verification report is described.

3.3.2 ISP/CSI/VI Power Verification

The first step in power verification was to investigate the ISP. Figure 2.3 shows how

the ISP/CSI/VI pathways are set up. These three pathways can be split up into two separate

units for the purpose of power verification. The ISP was approached first as a separate unit,

since it was assumed that an image would be inputted directly into the ISP and transferred

to the memory from there. The second unit is the CSI/VI subunit; here, it was assumed that

the image would go through both CSI and VI, and then directly inputted into memory

(bypassing the ISP).

3.3.3 Test Cases

Within the ISP, there are various subunits that were mentioned in the background

(e.g. special effects, de-noising). Enabling these various functions makes the ISP consume

more power. To be as thorough as possible, the test cases had to include an IDLE test and a

stress test. The IDLE test simply tests power flow of the ISP device with all of the various

functions disabled, while the stress test is performed with every function enabled. The

stress test is written differently than the IDLE test because every register must be turned

on, and some registers have sub-registers that also need to be enabled. The IDLE and stress

tests were written by utilizing previously written code from other NVIDIA engineers.

The graphic shown in Figure 3.2 shows a simple breakdown of the two tests

involved. As shown, the IDLE test can also be broken down into two more tests. Section

3.2.3 explained how clock gating is used to bypass various flip-flops in logic circuits. The

IDLE test is written with clock gating enabled, as well as with clock gating disabled. The

 17

method in which this is accomplished is further explained in section 3.4. Due to time

constraints, our project group only worked on code related to the IDLE test.

Figure 3.2 Power Verification Test Cases

3.3.4 Power Flow

Our project group wrote part of the test for the IDLE test with clock gating enabled.

Figure 3.3 is the process followed to generate the power verification report after this IDLE

test was written. The important power flow steps are shown in the middle of the diagram.

These commands are all put into the command line when running the test, but they each

serve a different purpose. The “build_tree” command simply populates the current tree

with the subunit RTL code. The “run_synthesis” command generates a netlist of all of the

logic gates within the subunit RTL code. For this task, “run_stand_sim” was used to run

tests on RTL by generating fsdb files. Fsdb files are used to look at waveforms through a

program called Verdi (see section 4.2.1). These waveforms are only necessary to look at

once the final goal of increased power efficiency is reached. The “run_power_analysis”

simply runs the power analysis through a process called PrimePower (PTPX). This program

gathers various statistics about the various subunits such as clock gate coverage, which is

necessary for the final goal of increased power efficiency. Finally, the power analysis is then

performed, and from this analysis a report is generated in the form of an Excel file.

 18

Figure 3.3 Power Flow [14]

A sample command line [14] is shown below. The entire process to generate the

power report takes about eight hours.

nvrun run_stim_regression --cfg stim_units/kepler_<unit>.yml --build_dir <BUILD>

 --results_dir STIM_<BUILD> --project <PROJECT> --build_tree --run_stand_sim --run_synthesis

 --run_power_analysis --run_power_report |& tee stim.<BUILD>.log

The power verification report is where the main portion of power analysis begins.

The report shows all the functions within the ISP being stressed and indicates their various

power levels. The report also shows the flip-flops and clock gating sections involved. If any

values (i.e. power dissipation, gate coverage) are at an unacceptable level, it is the

designer’s responsibility to go back and modify the original test. For example, if one

subunit (From Table 2.3) is utilizing too many flip-flops, it is the subunit designer’s

responsibility to modify the test to enable clock gating for that specific subunit.

Run stand_stim to generate

fsdb for power tests

--run_stand_sim

Build RTL/stand_sim
--build_tree

Run Synthesis to generate netlist
--run_synthesis

Run PTPX to analyze power
--run_power_analysis

Generate Power Reports
--run_power_report

Upload Results to
database/archive

--store_db

Setup

Power Tests

Analyze Reports; Improve
the Design Power Efficiency

 19

3.4 Results

3.4.1 Power Test Code

A power report was generated from the code shown in Appendix C (IDLE test). This

code is not wholly original. Most of the code is taken from other tests written by various

NVIDIA engineers. The code from Appendix C was written in collaboration with an NVIDIA

engineer named Yunqing Chen. Our project group worked on the code shown below. This is

the configure_crossbar function. This function’s purpose can be shown using Figure 3.4.

The figure shown shows various connections between the subunits within the ISP device.

When coding a test to utilize these subunits, as shown in Figure 3.4, it is necessary to follow

the circular nodes along the black lines, as they are representative of the signal path. For

example, the signal always starts at MR0 (read) and ends at MW0 (write). The signal can go

through any of the subunits in order, as long as they all begin and end with MR0 and MW0

respectively. A snippet of Appendix C shows this below. The code below is from an IDLE

test, which means that all subunits are disabled. As indicated, the signal path simply goes

directly from MR0 to MW0. It is necessary to always go through AP (Area Processor). The

AP subunit is responsible for taking the inputted pixels and converting it into the final

format shown on the smartphone or tablet screen.

configure_crossbar(NV_ISP2_CROSSBAR_A, "MR0 AP");

configure_crossbar(NV_ISP2_CROSSBAR_B, "AP MW0");

 20

Figure 3.4 Block Diagram Showing Signal Path [11]

Removed due to confidentiality

 21

3.4.2 Power Report

Once the code from Appendix C was run through the RTAPI, a power report was

generated. This report is necessary for the purposes of increasing the power efficiency of

the subunits. It is required to analyze the report to ensure all of the various logic gates are

being utilized. In this power verification task, increasing the efficiency of the un-gated flip-

flops was the main goal. The un-gated flip-flops are a list of all the gates within the subunits

that were not being clock gated. As a result, our project group went into the root code to

check which registers were not clock gated, and inform the original subunit designer of this

error. For example, the following code is a snippet of a subunit register that is not being

clock gated. As shown, the pxl_in_ready register (which belongs to the AP subunit), is flip-

flopping between two states regardless of any incoming signals coming in. This type of

register is reported to the designer as a bug. Once the bugs are all fixed by the original

subunit designers, the original IDLE test can be re-run. The goal of this specific sub-task is

to achieve less than 3% un-gated flip-flops. Whether this goal has been achieved has not yet

been determined until all of the bug fixes are made.

if (!isprstn) begin

 pxl_in_ready <= 1'b1;

 pxl_in_ready_int <= 1'b1;

 end else begin

 pxl_in_ready <= pxl_ready_from_local_pipe;

 pxl_in_ready_int <= pxl_ready_from_local_pipe;

After the un-gated flip-flops were successfully analyzed, there is further analysis of

the power report required by NVIDIA. Due to time constraints, this could not be done by

our project group. For example, the original IDLE test written in C++ can be modified to

increase power efficiency by modifying the subunit signal path.

 22

3.5 Summary

The goal of this task was to increase the efficiency of NVIDIA’s Tegra ISP. The power

test was written in collaboration with Yunqing Chen. Our project group generated a power

report after running the test through the RTAPI. This power report was then analyzed to

increase the clock gating of the un-gated flip-flops. This goal will be met once all of the

subunit designers have submitted their bug fixes. NVIDIA will continue to analyze this

report and increase the power efficiency of the original test. Once this is complete, they will

pass along their results to the power verification team.

 23

4.0 CSI CODE COVERAGE TESTING

4.1 Introduction

In the Tegra architecture, the CSI takes pixel data from the camera sensor and

transfers it to the Video Input module for further modifications. Code coverage testing

involves running coverage tests on the CSI source code to ensure all sections of the code

are tested and working properly. This chapter discusses the important concepts,

methodology, and results of code coverage testing. The goal of this task was to increase the

overall coverage for the CSI module, although a set coverage percentage was not given.

Important concepts provides essential background information to help understand this

task, methodology discusses how the task was completed, and results shows the end result

of following the steps outlined in the methodology.

4.2 Important Concepts

4.2.1 Verdi

Verdi Automated Debug System is a software program developed by SpringSoft for

debugging digital designs. The core features of this program include a full waveform

viewer, waveform comparison engine, source code browser, logic schematics and block

diagrams, and finite state machine bubble diagrams. Verdi supports several languages,

including Verlog, VHDL, and System Verilog; in addition, there is support for several

different testbench environments.

4.2.2 Code Coverage

Code coverage describes the percentage of a test’s source code that has been tested.

In general, 100% code coverage is impractical. “Empirical studies of real projects found

that increasing code coverage above 70-80% is time consuming and therefore leads to a

relatively slow bug detection rate” [15]. Several factors should be considered when

deciding on an acceptable code coverage threshold, including cost of failure, available

resources, testable design, and development cycle status. For example, code coverage is

generally higher for products in the medical or transportation industries due to numerous

safety-critical systems and the potential high failure costs.

 24

Code coverage can be further subdivided into individual coverage metrics. “A

number of different metrics are used determine how well exercised the code is ….. Most of

the metrics have slight variations and synonyms which can make things a little more

confusing than they need to be” [16]. Some of the more common metrics include

functional, statement, decision, and conditional coverage. A version of functional coverage

was used in performing this coverage testing task.

Functional coverage checks to determine whether or not a function or subroutine in

the program has been called or executed. If a certain function has been called at least once

in the program, then the functional coverage for that function is satisfied. Conversely, if it

is known that certain functions or sections of code are not being utilized, coverage can be

disabled for those sections.

Statement coverage checks are a very rudimentary form of code coverage; basically,

a statement is covered if it is executed. Statement coverage is also commonly referred to as

line, block, or segment coverage. This type of coverage has both its advantages and

disadvantages. “This type of coverage is relatively weak in that even with 100% statement

coverage there may still be serious problems in a program which could be discovered

through the use of other metrics. Even so, the first time that statement coverage is used in

any reasonably sized development effort it is very likely to show up some bugs” [16].

Decision coverage tracks whether or not every edge in a program has been

executed. For example, this type of coverage will track whether or not each branch in an IF

statement has been met as well as not met. Decision coverage can also be referred to as

branch, edge, or arc coverage.

Conditional coverage checks whether or not each Boolean expression has been

evaluated to both true and false. Since Boolean expressions can get increasingly complex,

the following solution offers the best way around the problem: “Condition coverage gets

complicated, and difficult to achieve, as the expression gets complicated. For this reason

there are a number of different ways of reporting condition coverage which try to ensure

that the most important combinations are covered without worrying about less important

combinations” [16].

 25

4.2.3 VCS Pragmas

Pragmas serve the purpose of disabling coverage for specific segments of code.

NVIDIA uses the Verilog Compiler Simulator (VCS) software, which has its own specific

pragma syntax. The VCS pragma syntax is shown below; comments need to be added

before and after the code segment for coverage to be disabled. Disabling coverage for

select portions of the code is necessary for a few reasons. Error messages, for example,

require these pragmas. Since the code coverage report is supposed to be generated from

an error-free test, the code snippets in charge of error handling will never be toggled. In

other words, the overall coverage would never be able to reach 100% if pragmas were not

added to the error message code.

// VCS coverage off

(code with disabled coverage)

// VCS coverage on

Pragmas are also useful for disabling code coverage of certain signals in the test (i.e.

SPARE or DEBUG pins). These signals are not used by the test and are usually hardcoded to

a logic low. Like the error handling code, these SPARE and DEBUG signals would never be

toggled in an error-free test and therefore, pragmas are needed to ensure that the coverage

report displays a more accurate overall coverage percentage.

4.3 Methodology

4.3.1 Code Coverage

This section describes the approach used to complete the CSI coverage test. Ideally,

a coverage test will ensure that all sections of the software are executed and verified

(covered) by the code. The CSI testplan outlines the intermediate steps needed in order to

achieve 100% coverage. The following paragraphs list the steps required to perform a

coverage test as well as view the associated coverage report.

The first step in this process was to set a directory to compile the unit coverage

results (i.e. provide a destination directory where the test waveforms can all be dumped).

The “tree.make” file needed to be edited with the desired destination directory (see code

 26

below). The first line enables NV_BUILD_COVERAGE, while the second line specifies the

destination directory (there are two directories in this case).

COVERAGE SETUP

export NV_BUILD_COVERAGE := 1

export NV_BUILD_COVERAGE_FULL_MODULES := vmod/vicluster/csi2 stand_sim/csi2/testbench

The next step was to actually run the test on my own VNC server. To run the test,

the correct command needed to be provided, specifying the test name and if necessary,

other test-specific arguments and options (these arguments and other syntax details are

contained in the test description file). After entering the command and executing the test,

the words “PASS” or “FAIL” appeared in the command line interface, indicating the test

result. See below for the specific command line argument used for this particular test.

`depth`/tools/RunScript/CsiRun.pl -P t124 -dir yuv420CamAVc0SngLnCamBVc0MulFrmTest -rtlarg

"+sensor_rtl=1 +goldFileCheck=1 +viClkFreq=166" -waves yuv420CamAVc0SngLnCamBVc0MulFrmTest -v

csi2

Once the test successfully passed, it was possible to use Verdi to view the signal

waveforms and the corresponding code. One of the main advantages of using Verdi was

that it simplified the debugging and troubleshooting process. For newer or unfamiliar

users, Verdi also made it easy to analyze and follow the code. The correct command must

be issued from the appropriate test directory in order to run Verdi (details on how to do

this are found in the test description file). Any signal within the test code (or multiple

signals, if necessary) can be displayed in the main Verdi waveform window, making it easy

to track how the signal was toggled throughout the test. See the code below for the specific

Verdi command.

qsub run_verdi_csi2

The next task was to run a regression on that test with coverage enabled using the

existing run_regression script. Regression testing is used to ensure that any new changes

made do not create new bugs in other parts of the system. Since this project involved code

editing and tree rebuilding, regression tests were necessary to ensure the system

continued to function without errors. The command to execute the regression test is

shown below. “mailme” ensured that the tester would be mailed the results of the

regression test, “csi_standsim 0” meant to run a level 0 regression test, “coverage” specified

the module, and “coverage_dir” specified the coverage directory.

 27

bin/run_regression --mailme csi_standsim 0 --coverage=csi2 --

coverage_dir=coverage_report/run_02132012

Following the regression test was the code coverage report generation (see the command

below). Both the coverage directory and the simv.cm.vdb directory needed to be specified

and some options were added to ensure the code coverage report contained all the types of

coverage.

urg -dir /home/scratch.stelee_t148/stelee_project1_tree1/ap_isp2/coverage_report/run_02132012.vdb

-dir

/home/scratch.stelee_t148/stelee_project1_tree1/ap_isp2/stand_sim/csi2/testbench/t124/simv.cm.vdb

-metric tgl+line+cond -lca

The report generation command would then create a new destination directory for

the code coverage report files and would display the path in the command line interface.

The directory path could then be copied and pasted into an Internet browsing window to

view the coverage report online. Shown below are the code coverage report directory path

and the web address to view the online version of the report.

/home/scratch.stelee_t148/stelee_project1_tree1/ap_isp2/urgReport/dashboard

https://nvtegra/home/scratch.stelee_t148/stelee_project1_tree1/ap_isp2/urgReport/dashboard

4.3.2 VCS Pragmas

This section describes the process of adding pragmas to the existing test code. The

first step was to actually run the coverage test and generate the coverage report before

performing any pragma edits to the code (see the above steps). The coverage report served

as an invaluable resource when deciding where to add pragmas, since it provided detailed

analysis on which signals were adequately covered or not. Verdi’s convenient search

functionality was also useful in relating the signals of the coverage report to their locations

in the actual code, making it easier to figure out where exactly to add in the pragmas. For

this specific project, the main priority was adhering to the CSI testplan, meaning that many

sections of the uncovered code could be ignored if it did not specifically appear in the

testplan (i.e. out of scope at this point in time).

Adding in the pragmas involved editing the System Verilog source files. Once the

changes were made, the test directory needed to be rebuilt using the command shown

below. Once the directories were rebuilt, the new coverage report needed to be generated.

 28

The remaining steps involved following the code coverage report generation process as

described in the above paragraphs.

bin/t_make –build t124_standsim_csi2_testbench t124_vmod_vicluster_csi2

4.4 Results

The VCS pragmas were added to the CSI source files and the tree was successfully

synced and rebuilt without errors. Three different source files were modified for the

purposes of this project, including NV_csi.vx, NV_CSI_con.vx, and NV_CSI_status.vx. See

below for a pragma usage example from the NV_CSI_status.vx source file. This code snippet

hardcodes several unused signals and therefore, does not need coverage enabled.

// VCS coverage off

assign csi_ro_spare3 = 1'b0;

assign csi_ro_spare4 = 1'b0;

assign csi_ro_spare5 = 1'b0;

assign csi_ro_spare6 = 1'b0;

assign csi_ro_spare7 = 1'b0;

// VCS coverage on

The code coverage report was successfully generated by following the steps

outlined in the Methodology. The figure below, taken directly from the coverage report

webpage detailing the NV_CSI_status subtree, shows that coverage was successfully

disabled for the selected portions of code. An “unreachable” status signifies that although

the test recognized the existence of the signals, it was unable to verify coverage. This result

is as expected, since coverage had been disabled for those selected signals.

Figure 4.1 Code coverage report for selected signals

This was just one of many examples of pragma additions to the CSI source files. At

the end of this project, overall coverage for the CSI module stood at 30.56%, a roughly 5%

increase from the project’s beginning. The figure below is taken from the main webpage of

 29

the CSI coverage report, showing total (score) coverage, as well as line, conditional, and

toggle coverage.

Figure 4.2 CSI coverage summary

4.5 Summary

By adding VCS pragmas to three different CSI source code files, overall CSI code

coverage increased to 31%. This seemingly low coverage percentage is due to a number of

factors. Although three different source files were edited for this task, the CSI module itself

contains dozens of source files. The pragmas themselves are also limited in scope; they

only serve to disable coverage for code segments that are known to not be toggled during

the test. In other words, these pragmas do nothing for those code segments having other

unrelated coverage issues. With each source file containing several thousand lines of code,

there exists a considerable amount of coverage issues that cannot be solved with these

pragmas. The next paragraph describes future coverage work that will be required to

remedy these issues. These issues are largely out of scope for this pragma task; thus, they

are not mentioned in great detail.

There are many tasks that remain to be completed with respect to CSI code coverage.

The addition of pragmas is one of the more straightforward tasks in the process of raising

code coverage. Solving the other coverage issues will require a considerably larger amount

of time and effort. For example, direct tests will need to be written for the more complex

sections of code to ensure proper functionality. Many more tests will also need to be

written for those code segments charged with error handling. It’s important to note that

although coverage was disabled for this code in the coverage test, the code still needs to be

actually tested and verified. The entire list of remaining coverage tasks is detailed in the

CSI testplan document, which will serve as an invaluable resource for completing future

coverage tasks.

 30

5.0 REGISTER INITIAL VALUE TESTS

5.1 Introduction

This chapter involves adding a new function to an original register read and write

test. This chapter introduces the original test, explains the goal of the task, details the

solution approach, and finally shows the result. The goal of this task was to revise a Perl

script to allow it to generate additional test code, which verifies registers’ initial values

according to specification files and reports mismatches where needed.

5.2 Important Concepts

5.2.1 Register Read and Write Test

Among the many tests in the ISP testbench is a test called NvRegTest. The purpose

of this test is to verify if ISP registers are able to hold values correctly. The testbench first

writes some value to each register and then reads the register to verify that it holds the

value. Since all tests for these registers follow the same pattern, the code of these tests in

System Verilog is repetitive. Engineers at NVIDIA wrote a Perl script that parses

specification files and generate the test files automatically.

5.2.2 Specification Files

The specification files are manually written files containing structured data about

registers such as name, fields, initial values, etc. The code below is a sample segment of a

specification file. Note that the init=0 defines the initial value of the POL_ENABLE field

inside the POL_CTRL register as 0.

reg POL_CTRL ISP_INCR

 0:0 rws POL_ENABLE init=0 // Solarization function enable

 // 0 : Disabled

 // 1 : Enabled

 1:1 rws THRESH_POL // Threshold polarity. Controls the sense of the

threshold

 // 0 : Effect active above threshold

 // 1 : Effect active belwo threshold

 15:8 rws THRESHOLD // Threshold value use to determine when the bit

polarity control takes effect.

;

5.2.3 The Host1xClassGen.pl Script and related files

Shown in Figure 5.1 is a block diagram of how the related files work in this context.

All the files shown in the diagram are located in the testbench directory, while the

 31

“/def/arisp_*.spec” files are located at the Top of Tree (root of version controlled code

base).

Figure 5.1 Relationship between files

A make program is required to initiate the whole process. The Makefile file will first

execute the NvHost1xClassGen.pl. This Perl script will parse all the arisp_*.spec file in the

defs folder and then generate the NvHost1xRegTest.vh and ispRegTest.svx files. An in-house

building program called VIVA will include the NvHost1xRegTest.vh file in the ispRegTest.svx

to produce the t124/ispRegTest.sv. Finally the make program will initiate the System

Verilog compiler to compile and link ispRegTest.sv and other files to a binary that testers

can run. Since the makefile is also responsible for initiating the tests, the location of the

binary file is not a concern in this context.

5.3 Methodology

The NvHost1xClassGen.pl Perl script file should be modified to achieve the initial

value check functionality. To add additional tests, the following steps are required:

1. Add testing statement samples manually to../stim/directed/ispRegTest.svx file

2. Try compiling the .sv files and running the binary

3. Add initial value parsing functionality to Perl script

Makefile

NvHost1xClassGen.pl

VIVA

SystemVerilog Compiler

/defs/arisp_*.spec

t124/NvHost1xRegTest.vh

../stim/directed/ispRegTest.svx

t124/ispRegTest.sv

Binary

 32

4. Add statements in the Perl script to include additional testing statement when

generating the tests

5. Build and run the whole test

Below is an example of how register tests appear in the generated NvIspRegTest.vh

file. This specific file could be successfully compiled and executed. The highlighted lines

are newly added tests to check the initial values of the registers against the specification.

The init_data and init_mask are used together to define both the location and value of bits

that require initial status check inside a 32-bit word.

// ISP_OP_FX_POL_CTRL_0

`vmm_note (env.log, "\nTesting ISP_OP_FX_POL_CTRL_0\n");

wr_data = '0;

env.ispHostBfm.readOpRegister (ISP_OP_FX_POL_CTRL_0, exp_data);

init_data = 32'h0;

init_mask = 32'h1;

if((init_data & init_mask) != (exp_data & init_mask)) begin

 `vmm_note (env.log, $psprintf ("Reg initial value mismatch (act=0x%x, exp=0x%x,

mask=0x%x)",exp_data,init_data,init_mask));

end

exp_data[15:8] = wr_data[15:8];

exp_data[1:1] = wr_data[1:1];

exp_data[0:0] = wr_data[0:0];

env.ispHostBfm.writeRegister (ISP_OP_FX_POL_CTRL_0, wr_data, 4'hF);

// Send update bundle and loadv

env.ispHostBfm.sendUpdate ();

env.sendLoadV ();

env.ispHostBfm.readOpRegisterExp (ISP_OP_FX_POL_CTRL_0, data, exp_data);

In order to build the test, it was necessary to run the following commands in the

testbench folder:

make

After the test could be built, the next step was to modify the Perl script to make it

parse the spec files to identify the init_data value and init_mask value specification. To

acquire initial data information, we utilized the following regular expression to capture the

init definition.

/init=([\d]+)\b/ # to capture init definition in decimal format

/init=0x([\d]+)\b/s # to capture init definition in hex format

The mask variable shown in the highlighted sample above can be computed from

the locations of the bits that have defined initial values. The actual written code, as well as

the rest of the script modification, is included in the results section below.

 33

5.4 Results

5.4.1 Modification of Perl Script

Among the many functions of the Perl scripts, two features are of our concern. First

is the spec file parse that convert the spec file into a hash structure. As shown in the

highlighted code snippet below, the added code enables the script to capture initial value

definitions in the spec files and store init_data and init_mask in the hash structure. Much of

the original code has been omitted to emphasize the changes. The full version of this

parse_spec_file function is located in Appendix A.

sub parse_spec_file {

 # code here omitted

 # found a range [max:min]

 if ($line =~ /\s*(.*):(\d+|.*)([\t]+)(\S+)([\t]+)(\S+)/) {

 next if ($1 eq "");

 if ($debug) {

 print "$1, $2, $4, $6\n";

 }

 $max = $1;

 $min = $2;

 $rws = $4;

 $fld = $6;

 if($line =~ /init=([\d]+)\b/) {

 $init = $1;

 }

 elsif ($line =~ /init=0x([\d]+)\b/s){

 $init = hex($1);

 }

 else {

 $init = undef;

 }

 # just single bit instead of range

 } elsif ($line =~ /[\t]+(\S+)[\t]+(\S+)([\t]+)(\S+)/) {

 next if ($1 eq "");

 if ($debug) {

 print "$1, $2, $4\n";

 }

 $max = $1;

 $min = $1;

 $rws = $2;

 $fld = $4;

 if($line =~ /init=([\d]+)\b/) {

 $init = $1;

 }

 elsif ($line =~ /init=0x([\d]+)\b/s){

 $init = hex($1);

 }

 else {

 $init = undef;

 }

 } else {

 next;

 }

 # more code omitted here

 if(defined($init)) {

 my $mask = 0;

 foreach my $bit (int($min)..int($max)) {

 34

 $mask |= (1 << $bit);

 }

 if(!exists($class->{$reg_name}->{INIT_MASK})) {

 $class->{$reg_name}->{INIT_MASK} = 0; # bits in reg that has initial value in HEX

 }

 if(!exists($class->{$reg_name}->{INIT_DATA})) {

 $class->{$reg_name}->{INIT_DATA} = 0; # initial value of bits in register in HEX

 }

 $class->{$reg_name}->{INIT_MASK} |= $mask;

 $class->{$reg_name}->{INIT_DATA} |= ($init & $mask) << $min;

 }

 # code omitted here

}

The second feature is the test code generation part that outputs the codes. The

modifications are shown below with much of the original code omitted. This is wrapped

inside a condition to make sure the tests only appear when necessary.

if($test eq "All 0's" && $class_spec->{$register}->{INIT_MASK} gt 0) {

 my $init_data = sprintf("%x",$class_spec->{$register}->{INIT_DATA});

 my $init_mask = sprintf("%x",$class_spec->{$register}->{INIT_MASK});

 print FILE " init_data = 32'h${init_data};

 init_mask = 32'h${init_mask};

 if((init_data & init_mask) != (exp_data & init_mask)) begin

 `vmm_note (env.log, \$psprintf (\"Reg initial value mismatch (act=0x%x, exp=0x%x,

mask=0x%x)\",exp_data,init_data,init_mask));

 end\n";

}

5.4.2 Generated Tests

The Perl script could now generate the tests without error. For each of the registers

that have initial value defined, there is now a test for it. This satisfies the goal of this task.

Since each of the tests is similar to the manually added one in the methodology, and the

whole test file itself is very large, the generated test file is not shown here.

The generated tests were compiled without error and executed smoothly. It

reported a list of 24 mismatches shown in Appendix B and we reported this list to the ISP

team.

6.0 SPECIAL EFFECT SUBUNIT VERIFICATION

This part of the project involved adding register initial value test functionality for

the register read and write test. This test enables NVIDIA engineers to identify problems

with registers and makes sure the values in these registers after reset conform to the

specification. NVIDIA engineers will fix issues found in the test run and can run these tests

in future regressions to verify the register values.Random Test for FX Subunit

 35

6.1 Introduction

Inside TEGRA’s ISP unit, there are several subunits, including the Special Effect

subunit. This section includes the methodology and results of verifying the functionality

this subunit by running simulation tests. Also discussed are some code and function

coverage test results to measure test comprehensiveness.

6.2 Important Concepts

6.2.1 The FX Subunit

The Special Effect subunit is responsible for generating effects such as polarity and

emboss. The structure of the FX subunit can be described as a pipeline containing the

polarity processing block and emboss processing block, as illustrated in Figure 6.1. The

Host1x Bus is a control bus responsible for multiple control tasks, including writing to and

reading from registers. The pixel bus is used to transfer image data for processing. The grey

dashed box outlining the figure is considered as the boundary for the FX subunit, with the

buses acting as the interface to this unit.

Figure 6.1 Functional Diagram of FX subunit

The actual behavior of this subunit is controlled by the registers. Table 6.1 shows

the controlling registers of this unit. Registers beginning with FX_POL are polarity function

related registers, and those beginning with FX_EMB are emboss function related registers.

Confidential Material

Polarity

Block

Emboss

Block

 Host1x Bus (control)

Pixel Bus Output

 36

Table 6.1 FX Subunit Register Specification [12]

6.2.2 Testbench

The testing infrastructure built by NVIDIA employees, known as the test bench, has

a considerable amount of functionality. It is a collection of scripts and executables that

carry out simulation tests and other jobs. The test bench is a large structure and it is

necessary only to focus on specific portions of it, shown in Figure 6.2.

Figure 6.2 FX random test and related files

The files with an ‘x’ in the extension will be processed by the in-house VIVA program

before actually being compiled. Similar to the previous section, this structure is sufficient to

reveal the file relationship for a developer.

On the left side in the above figure, the class in fxRandom.svx inherits the

NvIspMasterRandom class, which acts as a framework to run the random tests. The

fxRandom.svx is responsible for filling this framework by selecting information, such as

Inherited
By

Instantiated
By

Included
By Included

By

Included
By

NvIspRegDist.svix *

NvIspMasterRandom.svx *

NvIspCustomConstraints.svix

NvHost1xIspOpRegs.svix

../stim/random/fxRandom.svx +

NvHost1xIspOpFxRegs.svx

 37

configurations from files such as NvIspRegDist.svix and NvHost1xIspOpRegs.svix. The

fxRandom.svx effectively instantiated an NvHost1xIspOpFxRegs class that represents

registers of the FX subunit.

6.2.3 Random Constraints

Though this report discussed random tests in the background section, it is necessary

to know further details about constraints in the random tests to understand the content

below.

The random test and constraint features are supported by the System Verilog

program, a language extended from Verilog. During the test, a “constraint solver” will

compute for a set of random values that comply with a list of constraints defined in the

code. The constraints contain many features, including range and value distribution. A

range defines the possible values of a variable, while distribution defines the probability of

how different values are produced. Each random test has a seed number. Given the same

seed, a random test will produce the same random values. This provides some control on

the randomness and enables developers to reproduce a failure.

Below is a code snippet from the result, which defines how the polarity enable field

in the ISP_OP_FX_POL_CTRL_0 register is distributed. 99% of the time, the value is 1, so the

polarity block is enabled. 1% of the time, the value is 0 so the polarity block is disabled.

Meanwhile the emboss enable field are forced to be 0 at all time.

ISP_OP_FX_POL_CTRL_0_reg[ISP_OP_FX_POL_CTRL_0_POL_ENABLE_FIELD] dist{

 1'b1 := 99,

 1'b0 := 1

};

ISP_OP_FX_POL_CTRL_0_reg[ISP_OP_FX_POL_CTRL_0_POL_ENABLE_FIELD] == 0;

6.3 Methodology

The goal of this task is to define both directed and random tests to verify the

functionalities of the FX subunit and to help designers fix any bugs. Since any bug can easily

fail a random test, it is necessary to use the divide-and-conquer technique to facilitate the

whole process. Below is a list of steps according to the best practice:

1. Disable both the polarity and emboss blocks and run the tests

 38

2. Enable only the polarity block with simple register values

3. Report failure to the designer and wait for a fix

4. Repeat 2 and 3 with more complex values until most tests pass

5. Do step 2-4 on the emboss block

6. Formalize random constraints and create basic test

7. Add random tests to the daily regression test list

8. Run coverage report and refine constraints to improve coverage if possible

To do step 2 or step 6, files need to be modified or added. The files that required

modifications are denoted with an asterisk in Figure 6.2, while the newly added files are

denoted with a plus sign. Therefore, step 2 or step 6 can be broken down into several sub

procedures.

1. Create fxRandoms class in fxRandoms.svx file that inherits the

NvIspMasterRandom class.

2. Modify the NvIspMasterRandom.svx file to support the configuration specified in

fxRandoms.

3. Modify the NvIspRegDist.svx file to specify the constraints used by the fxRandoms

class.

In order to create a class called fxRandoms, we added the fxRandoms.svx file to the

.../stim/random folder. Since most of the test logic was inherited from the class in the

NvIspMasterRandom.svx file, it is quite simple (shown below). This piece of code tests the

FX unit with one small 50px by 50px frame. This file utilized several macros, such as

`isp_unitrandom_begin(test_name) but the details are beyond the scope of this project.

`isp_unitrandom_begin(fxRandoms)

 xBarCfg = "fx";

 regDistCfg = "fx";

minHeight = 50;

maxHeight = 50;

minWidth = 50;

maxWidth = 50;

frCnt = 1;

frGroup = 1;

`isp_unitrandom_end

 39

The purpose of modifying the NvIspMasterRandom.svx is to support the

configuration above that assigns ‘fx’ to xBarCfg and regDistCfg. Thus the class above can

affect the simulation environment. The first piece excludes most other units except ISP FX,

while the second piece responds to the randomness constraints configuration as defined in

NvIspRegDist.svx file.

if(xBarCfg.compare("fx") == 0) begin

 env.ispCfg.crossBarSources[1] = NvIspCfg::FX;

 env.ispCfg.crossBarSources[2] = NvIspCfg::XAB;

 env.ispCfg.crossBarSources[3] = NvIspCfg::VI;

end

if(regDistCfg.compare("fx") == 0) begin

 NvHost1xIspOpFxRegs::override_with_new ("@%*", NvIspMasterRandomFxRegs::this_type, log);

end

Below is modified code to the NvIspRegDist.svx file. The added constraint is used to

control the randomness required by the FX random. This specific sample disables both

blocks, and the pixel data will bypass the FX unit. Tests that are used for regression is

shown in the next section.

class NvIspMasterRandomFxRegs extends NvHost1xIspOpFxRegs;

 `vmm_typename (NvIspMasterRandomFxRegs);

 // Predefined macros for defining vmm_data functions

 `vmm_data_member_begin (NvIspMasterRandomFxRegs);

 `vmm_data_member_end (NvIspMasterRandomFxRegs);

 constraint custom_regs {

 // Disable the POL and Emboss

 ISP_OP_FX_POL_CTRL_0_reg[ISP_OP_FX_POL_CTRL_0_POL_ENABLE_FIELD] == 0;

 ISP_OP_FX_EMB_CTRL_0_reg[ISP_OP_FX_EMB_CTRL_0_EB_ENABLE_FIELD] == 0;

 }

 // Enable factory pattern for this object

 `vmm_class_factory (NvIspMasterRandomFxRegs);

endclass : NvIspMasterRandomFxRegs

To run a test, we first built the test bench by running the ‘make’ command in the

folder. Then, we ran the following command. The SEED is the seed for the random test.

SEED=235467894

/home/utils/make-3.82/bin/make local_run TEST_ARGS="+vmm_test=fxRandoms \

+coverage_name=fxRandoms$SEED +vmm_log_nowarn_at_200 +vmm_log_nofatal_at_1000 \

+ntb_random_seed=$SEED +ENABLE_CMODEL +quiet +vmm_out_dir=fxRandoms_$SEED +fsdb=1 \

+debugFrGroup=0 +debussy+file=fxRandoms_$SEED/fxRandoms +debugLevel=0x80000001 \

+vmm_log_default=DEBUG"

The whole process involved changing the constraints according to the specification

and initiating the tests. If any bug appeared, we would report the bug to the bug track

system and wait for the designer to provide a fix.

 40

6.4 Result

After multiple interactions with the designer, we have successfully verified the FX

unit. Here is a formalized register distribution class in the NvIspRegDist.svix file. It enables

both blocks most of the time and maintains the correct relationships between the minimum

and maximum level values in the emboss block.

class NvIspMasterRandomFxRegs extends NvHost1xIspOpFxRegs;

 `vmm_typename (NvIspMasterRandomFxRegs);

 // Predefined macros for defining vmm_data functions

 `vmm_data_member_begin (NvIspMasterRandomFxRegs);

 `vmm_data_member_end (NvIspMasterRandomFxRegs);

 constraint custom_regs {

 // Enable the POL and Emboss

 ISP_OP_FX_POL_CTRL_0_reg[ISP_OP_FX_POL_CTRL_0_POL_ENABLE_FIELD] dist{

 1'b1 := 99,

 1'b0 := 1

 };

 ISP_OP_FX_EMB_CTRL_0_reg[ISP_OP_FX_EMB_CTRL_0_EB_ENABLE_FIELD] dist{

 1'b1 := 99,

 1'b0 := 1

 };

 // BG/MIN/MAX level

 ISP_OP_FX_EMB_MIN_LEVEL_0_reg[ISP_OP_FX_EMB_MIN_LEVEL_0_FIELD] dist {

 [13'h0000:13'h00FF] := 3,

 [13'h0100:13'h0FFF] := 3,

 [13'h1000:13'h1FFF] := 1

 };

 ISP_OP_FX_EMB_MAX_LEVEL_0_reg[ISP_OP_FX_EMB_MAX_LEVEL_0_FIELD] dist {

 [ISP_OP_FX_EMB_MIN_LEVEL_0_reg[ISP_OP_FX_EMB_MIN_LEVEL_0_FIELD]:13'h1FFF] := 1

 };

 ISP_OP_FX_EMB_BG_LEVEL_0_reg[ISP_OP_FX_EMB_BG_LEVEL_0_FIELD] dist {

 [0:ISP_OP_FX_EMB_MAX_LEVEL_0_reg[ISP_OP_FX_EMB_MAX_LEVEL_0_FIELD]] := 1

 };

 solve ISP_OP_FX_EMB_MIN_LEVEL_0_reg before ISP_OP_FX_EMB_MAX_LEVEL_0_reg;

 solve ISP_OP_FX_EMB_MAX_LEVEL_0_reg before ISP_OP_FX_EMB_BG_LEVEL_0_reg;

 }

 // Enable factory pattern for this object

 `vmm_class_factory (NvIspMasterRandomFxRegs);

endclass : NvIspMasterRandomFxRegs

The NvIspMasterRandom file remains the same after the modification in the

methodology.

The fxRandoms.svx results in the following, which are run in daily regression tests.

`isp_unitrandom_begin(fxRandoms)

 xBarCfg = "fx";

 regDistCfg = "fx";

 moderatePixelVolume();

`isp_unitrandom_end

Throughout the whole process, we worked with the designer to fix all bugs detected.

This unit has so far passed over 1200 regression tests. The first coverage score was 83.

After working with other engineers from the group to make necessary changes, we were

 41

able to improve the score to 96.56. Further improvement are possible but requires much

more time.

Figure 3 Improved coverage

More specifically, there are certain coverage points that are not hit. For example, the

background level is required to be its maximum possible value 0x1FFF. However, within a

finite amount of tests with typical count of several hundred, the possibility of hitting this

extreme value is very low in the current configuration. It requires the engineers to add

additional statements to the constraint file. Due to the time limit of our project and lack of

expertise in SystemVerilog, our group decided not to fulfill this need. The other reason for

not getting 100 in coverage is due to the pixel format not being covered. This problem

could not be solved by our group and was under investigation by other senior engineers as

we wrote this report.

This coverage score cannot be accurately compared to the previously discussed CSI

coverage score. The CSI coverage score refers to the coverage for the entire CSI unit, while

this coverage score only refers to a single subunit. In addition, the FX subunit is rather

simple in comparison to the other subunits, which means achieving this high coverage is

not difficult.

6.5 Summary

In this section we worked with the ASIC design engineers to verify the Special Effect

subunit in the ISP. The unit has been passing over 1200 random tests in daily regression

plan and the coverage score is 95.56. This unit is almost ready for the next stages of

verification including emulation.

 42

7.0 CONCLUSION

Our team completed several Tegra ISP verification tasks while working at NVIDIA,

including CSI verification, ISP verification, and power flow verification. All three

verification tasks are integral parts of the ISP architecture. The CSI and ISP are two very

significant and important modules, while power flow concerns the ISP architecture in its

entirety. The verification work that we have performed has aided NVIDIA’s engineers,

allowing the overall ISP verification process to be that much simpler for them. In

completing these tasks, our project team has accomplished the overall goal of this project,

which is to aid in the verification process of Tegra’s next generation ISP.

 43

APPENDIX A PARSE_SPEC_FILE FUNCTION

sub parse_spec_file {

 my $class_name = shift;

 my $spec_filename = shift;

 my $base_address = shift;

 my $defs = shift;

 my @paths = @_;

 my $addr = hex ($base_address);

 my @spec_filecontents = resolve_macros ($defs, get_spec_file_contents ($spec_filename,

@paths));

 my $abs_filename = get_path ($spec_filename, @paths);

 my $expected_regs = `grep -c "reg " $abs_filename`;

 chop $expected_regs;

 my $base = 0;

 my $class = {};

 my $reg_name = "";

 my $last_reg;

 my $last_addr;

 my $num_instances = 1;

 my $enum = 0;

 my $packet = 0;

 my $def = "";

 my $val = "";

 my $ignore = 0;

 my $ifdef_cnt = 0;

 my $multi_line = 0;

 # Setup the default

 $class->{INSTANCES} = 1;

 # parse spec file contents

 foreach my $line (@spec_filecontents) {

 # clean up line

 next if ($line =~ /^([\t]+)\/\//);

 next if ($line eq "");

 $line =~ s/\/\/.*//;

 next if ($line =~ /^([\t]+)$/);

 # add some spaces to parse easier

 $line =~ s/\(/ (/g;

 $line =~ s/\)/) /g;

 $line =~ s/\-/ - /g;

 $line =~ s/\+/ + /g;

 $line =~ s/*/ * /g;

 # ifdef processing

 if ($line =~ /\#if/) {

 my $check_def;

 my $orig_def;

 $ifdef_cnt = $ifdef_cnt + 1;

 if ($line =~ /ifdef (\S+)/) {

 $orig_def = $1;

 $check_def = get_def ($1, $defs);

 if ($check_def eq $orig_def && $ignore == 0) {

 $ignore = $ifdef_cnt;

 }

 } elsif ($line =~ /(\S+)[\t]==[\t](\S+)/ ||

 $line =~ /(\S+)==(\S+)/) {

 $orig_def = $2;

 $check_def = get_def ($1, $defs);

 if ($check_def ne $orig_def && $ignore == 0) {

 $ignore = $ifdef_cnt;

 }

 } elsif ($line =~ /defined[\t]+\([\t]+(\S+)/) {

 $orig_def = $1;

 $check_def = get_def ($1, $defs);

 if ($check_def eq $orig_def && $ignore == 0) {

 $ignore = $ifdef_cnt;

 44

 }

 }

#print "IGNORE --> $line, $check_def, $orig_def\n";

 # don't process if/ifdef

 next;

 } elsif ($line =~ /#endif/) {

#print "IGNORE --> #endif\n";

 if ($ifdef_cnt == $ignore) {

 $ignore = 0;

 }

 $ifdef_cnt = $ifdef_cnt - 1;

 # don't process endif

 next;

 }

#if ($ignore !=0) {

#print "$ignore - $line\n";

#}

 next if ($ignore != 0);

 # multi-line macro define - ignore since we already pre-processed it

 if ($line =~ /^\#define (.*)\(/ && $line =~ /\\/) {

 $multi_line = 1;

 next;

 # multi-line define

 } elsif ($multi_line) {

 if (!($line =~ /\\/)) {

 $multi_line = 0;

 }

 next;

 # found standard define

 } elsif ($line =~ /^#define (\S+)([\t]+)(.*)/ || $line =~ /^define (\S+)([\t]+)(.*)/) {

 $def = $1;

 $val = $3;

 $val =~ s/;//;

 # check if multi-line define

 if (!($val =~ /\\$/)) {

 my $g_def = get_def ($val, $defs);

 if ($g_def =~ /[\+\-*\\]/) {

 $g_def = eval ($g_def);

 }

 $defs->{$def} = $g_def;

 if ($debug) {

 print "$def, $val, $g_def\n";

 }

 $def = "";

 $val = "";

 }

 # multi-line define

 } elsif ($val ne "") {

 $val =~ s/\\//;

 $val =~ s/;//;

 $val .= $line;

 # check if multi-line define

 if (!($val =~ /\\$/)) {

 my $g_def = get_def ($val, $defs);

 if ($g_def =~ /[\+\-*\\]/) {

 $g_def = eval ($g_def);

 }

 $defs->{$def} = $g_def;

 if ($debug) {

 print "$def, $val, $g_def\n";

 }

 $def = "";

 $val = "";

 }

 45

 # read in the register info

 } elsif ($line =~ /^reg[]+(\S+)([\t]+)(.*)/) {

 $last_addr = sprintf "%x", $addr;

 $reg_name = get_def ($1, $defs);

 # check if we're trying to increment the address

 if (get_def ($3, $defs) =~ /incr1/) {

 $addr = $addr + 1;

 }

 $num_instances = 1;

 # check if there are multiple instances

 if ($reg_name =~ /(\S+)\[(\S+)\]/) {

 $reg_name = $1;

 #if ($class_name eq "ISP_HIST") {

 #$class->{INSTANCES} = get_def ($2, $defs);

 #} else {

 $num_instances = get_def ($2, $defs);

 #}

 }

 $addr = $addr + $num_instances - 1;

 # read in the register filename

 } elsif ($reg_name ne "") {

 if ($line =~ /;/) {

 $reg_name = "";

 } else {

 my $max;

 my $min;

 my $rws;

 my $fld;

 my $init;

 # ignore the enumerations

 if ($line =~ /enum/ || $enum eq 1) {

 if ($line =~ /\)/) {

 $enum = 0;

 next;

 } else {

 $enum = 1;

 next;

 }

 }

 # found a range [max:min]

 if ($line =~ /\s*(.*):(\d+|.*)([\t]+)(\S+)([\t]+)(\S+)/) {

 next if ($1 eq "");

 if ($debug) {

 print "$1, $2, $4, $6\n";

 }

 $max = $1;

 $min = $2;

 $rws = $4;

 $fld = $6;

 if($line =~ /init=([\d]+)\b/) {

 $init = $1;

 }

 elsif ($line =~ /init=0x([\d]+)\b/s){

 $init = hex($1);

 }

 else {

 $init = undef;

 }

 # just single bit instead of range

 } elsif ($line =~ /[\t]+(\S+)[\t]+(\S+)([\t]+)(\S+)/) {

 next if ($1 eq "");

 if ($debug) {

 print "$1, $2, $4\n";

 }

 46

 $max = $1;

 $min = $1;

 $rws = $2;

 $fld = $4;

 if($line =~ /init=([\d]+)\b/) {

 $init = $1;

 }

 elsif ($line =~ /init=0x([\d]+)\b/s){

 $init = hex($1);

 }

 else {

 $init = undef;

 }

 } else {

 next;

 }

 # add some spaces to parse easier

 $max =~ s/\(/ (/g;

 $max =~ s/\)/) /g;

 $max =~ s/\-/ - /g;

 $max =~ s/\+/ + /g;

 $max =~ s/*/ * /g;

 $min =~ s/\(/ (/g;

 $min =~ s/\)/) /g;

 $min =~ s/\-/ - /g;

 $min =~ s/\+/ + /g;

 $min =~ s/*/ * /g;

 # Check for duplicate entries

 if ($class->{$reg_name} && $class->{$reg_name}->{ADDR} != $last_addr) {

 print "ERROR - Duplicate register found! ($reg_name)\n";

 exit 1;

 }

 $class->{$reg_name}->{ADDR} = $last_addr;

 $class->{$reg_name}->{$fld}->{MAX} = eval (get_def ($max, $defs));

 $class->{$reg_name}->{$fld}->{MIN} = eval (get_def ($min, $defs));

 $class->{$reg_name}->{$fld}->{RWS} = $rws;

 $class->{$reg_name}->{INSTANCES} = $num_instances;

 if(defined($init)) {

 my $mask = 0;

 foreach my $bit (int($min)..int($max)) {

 $mask |= (1 << $bit);

 }

 if(!exists($class->{$reg_name}->{INIT_MASK})) {

 $class->{$reg_name}->{INIT_MASK} = 0; # bits in reg that has initial value in HEX

 }

 if(!exists($class->{$reg_name}->{INIT_DATA})) {

 $class->{$reg_name}->{INIT_DATA} = 0; # initial value of bits in register in HEX

 }

 $class->{$reg_name}->{INIT_MASK} |= $mask;

 $class->{$reg_name}->{INIT_DATA} |= ($init & $mask) << $min;

 }

 if ($debug) {

 print eval (get_def ($max, $defs)).":".eval (get_def ($min, $defs)).", $rws, $fld\n";

 }

 }

 }

 }

 $class->{NUM_REGS} = $addr - hex ($base_address);

 if ($class->{NUM_REGS} != $expected_regs) {

print "Parsed regs and expected number of regs mismatch! (found=".$class->{NUM_REGS}.",

exp=$expected_regs)\n";

exit 0;

 }

 $class;

} # sub parse_spec_file

 47

APPENDIX B REGISTER INITIAL VALUE TEST RESULT

 Testing ISP_OP_LS_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 188465.50ns:

 Reg initial value mismatch (act=0x00000001, exp=0x00000000, mask=0x00000001)

--

 Testing ISP_CG_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 273725.50ns:

 Reg initial value mismatch (act=0x00000001, exp=0x00000000, mask=0x00000001)

--

 Testing ISP_SM_CFG_MR_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 273865.50ns:

 Reg initial value mismatch (act=0x00000020, exp=0x00000000, mask=0x00000020)

--

 Testing ISP_CAPABILITIES_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 274555.50ns:

 Reg initial value mismatch (act=0x240cb07b, exp=0x00000001, mask=0xfc1eb07b)

--

 Testing ISP_STATUS_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 274690.50ns:

 Reg initial value mismatch (act=0x003bad37, exp=0x00000001, mask=0x003bad37)

--

 Testing ISP_INTERRUPT_MASK_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 274830.50ns:

 Reg initial value mismatch (act=0x00000007, exp=0x00000000, mask=0x00000007)

--

 Testing ISP_AT0_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 275290.50ns:

 Reg initial value mismatch (act=0x00000005, exp=0x00000000, mask=0x00000007)

--

 Testing ISP_OP_AP_EE_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 676350.50ns:

 Reg initial value mismatch (act=0x00023201, exp=0x00000000, mask=0x00000001)

--

 Testing ISP_OP_AP_DM_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 686030.50ns:

 Reg initial value mismatch (act=0x00000011, exp=0x00000000, mask=0x00000003)

--

 Testing ISP_OP_AP_APO_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 767465.50ns:

 Reg initial value mismatch (act=0x00000003, exp=0x00000000, mask=0x00000003)

--

 Testing ISP_OP_AP_AP_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 776695.50ns:

 Reg initial value mismatch (act=0x00000002, exp=0x00000000, mask=0x00000003)

--

 Testing ISP_OP_FX_EMB_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 840140.50ns:

 Reg initial value mismatch (act=0x00070060, exp=0x00000000, mask=0x00070073)

--

 Testing ISP_OP_LS_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 188465.50ns:

 Reg initial value mismatch (act=0x00000001, exp=0x00000000, mask=0x00000001)

--

 Testing ISP_CG_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 273725.50ns:

 Reg initial value mismatch (act=0x00000001, exp=0x00000000, mask=0x00000001)

--

 Testing ISP_SM_CFG_MR_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 273865.50ns:

 Reg initial value mismatch (act=0x00000020, exp=0x00000000, mask=0x00000020)

--

 Testing ISP_CAPABILITIES_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 274555.50ns:

 Reg initial value mismatch (act=0x240cb07b, exp=0x00000001, mask=0xfc1eb07b)

--

 Testing ISP_STATUS_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 274690.50ns:

 Reg initial value mismatch (act=0x003bad37, exp=0x00000001, mask=0x003bad37)

 48

--

 Testing ISP_INTERRUPT_MASK_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 274830.50ns:

 Reg initial value mismatch (act=0x00000007, exp=0x00000000, mask=0x00000007)

--

 Testing ISP_AT0_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 275290.50ns:

 Reg initial value mismatch (act=0x00000005, exp=0x00000000, mask=0x00000007)

--

 Testing ISP_OP_AP_EE_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 676350.50ns:

 Reg initial value mismatch (act=0x00023201, exp=0x00000000, mask=0x00000001)

--

 Testing ISP_OP_AP_DM_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 686030.50ns:

 Reg initial value mismatch (act=0x00000011, exp=0x00000000, mask=0x00000003)

--

 Testing ISP_OP_AP_APO_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 767465.50ns:

 Reg initial value mismatch (act=0x00000003, exp=0x00000000, mask=0x00000003)

--

 Testing ISP_OP_AP_AP_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 776695.50ns:

 Reg initial value mismatch (act=0x00000002, exp=0x00000000, mask=0x00000003)

--

 Testing ISP_OP_FX_EMB_CTRL_0

Normal[NOTE] on ISP Environment(NvIspEnv) at 840140.50ns:

 Reg initial value mismatch (act=0x00070060, exp=0x00000000, mask=0x00070073)

 49

APPENDIX C POWER_BASIC TEST

#include "basic_isp_template.cpp"

// Code By Yunqing Chen (modified version of other NVIDIA tests)

#define QUOTEME(x) #x

#define MKSTR(macro) QUOTEME(macro)

#ifndef IMAGE_PATH

 #ERROR IMAGE_PATH must be given

#endif

#define STR_IMAGE_PATH MKSTR(IMAGE_PATH)

#ifndef PAR_PATH

 #ERROR PAR_PATH must be given

#endif

#define STR_PAR_PATH MKSTR(PAR_PATH)

#if 0

static int image_width = 128;

static int image_height = 128;

static int stride = 128;//in pixels

#else

static int image_width = 256;

static int image_height = 80;

static int stride = 256;//in pixels

#endif

static int bpp_dst = 4; //dst format Bpp

static int bpp_src = 2;

static int surf_align_log2 = 9; //512B aligned

static Surface *pSrc;

static Surface *pDst;

void testPreProcess(void)

{

 Plane::StructureType planeTypeSrc = Plane::BL16BX2_BH2;

 Plane::StructureType planeTypeDst = Plane::BL16BX2_BH2;

 pSrc = new Surface(FormatId::BAYER_3D, planeTypeSrc, image_width, image_height,

stride*bpp_src, surf_align_log2);

 pDst = new Surface(FormatId::R8G8B8A8, planeTypeDst, image_width,

image_height,stride*bpp_dst, surf_align_log2);

#if 1

 //program the crossbar config states to get MR0->GPP0->AP->GPP1->GPP2->MW0

 configure_crossbar(NV_ISP2_CROSSBAR_A, "MR0 LS AP");

 configure_crossbar(NV_ISP2_CROSSBAR_B, "AP GPP0 MW0");

 // FIX ME : Adding GPP1 breaks the test:

 // configure_crossbar(NV_ISP2_CROSSBAR_B, "AP GPP1 GPP2 MW0");

#else

 configure_crossbar(NV_ISP2_CROSSBAR_A, "MR0 AP");

 configure_crossbar(NV_ISP2_CROSSBAR_B, "AP MW0");

#endif

 setupGPPs(); // FIX ME !!! This needs to go eventually.

}

void testFunctionProcess(void)

{

 char src_filename[1024]="/home/wyoung/playpen/nokia.raw";

 //sprintf(src_filename, "%s/macbeth128.raw", STR_IMAGE_PATH);

 load_src_image(*pSrc, src_filename, image_width, image_height);

 //program MR0

 memoryRead.pars.baseAddress = (*pSrc)[0].base();

 memoryRead.pars.widthPixels = image_width;

 memoryRead.pars.heightLines = image_height;

 memoryRead.pars.stridePixels = stride;

 memoryRead.pars.format = ISP_SM_IMAGE_DEF_MR_0_FORMAT_T_R16_I;

 memoryRead.pars.op_ctrl = ISP_SM_IMAGE_DEF_MR_0_OP_CTRL_QUAD;

 memoryRead.package();

 50

 sprintf(src_filename, "%s/API_blackLevel.par", STR_PAR_PATH);

 blackLevel.parse_pars(src_filename);

 blackLevel.package();

 sprintf(src_filename, "%s/API_whiteBalanceGain.par", STR_PAR_PATH);

 whiteBalance.parse_pars(src_filename);

 whiteBalance.package();

 sprintf(src_filename, "%s/API_lensShading.par", STR_PAR_PATH);

 lensShading.parse_pars(src_filename);

 lensShading.package();

 // *** FIX ME!! *** "hard-code" HQ Y DM for now:

 setupHighQualityYDM();

 sprintf(src_filename, "%s/API_edgeEnhancement.par", STR_PAR_PATH);

 edgeEnhancement.parse_pars(src_filename);

 edgeEnhancement.package();

 sprintf(src_filename, "%s/API_colorCorrectionMatrix.par", STR_PAR_PATH);

 colorCorrection.parse_pars(src_filename);

 colorCorrection.package();

 sprintf(src_filename, "%s/API_transferFunction.par", STR_PAR_PATH);

 toneCorrection.parse_pars(src_filename);

 toneCorrection.package();

 //program MW0

 memoryWrite.pars.baseAddress = (*pDst)[0].base();

 memoryWrite.pars.stridePixels = stride;

 memoryWrite.pars.format = ISP_SM_IMAGE_DEF_MR_0_FORMAT_T_A8B8G8R8;

 memoryWrite.pars.hCropStart = 0;

 memoryWrite.pars.hCropEnd = image_width - 1;

 memoryWrite.pars.vCropStart = 0;

 memoryWrite.pars.vCropEnd = image_height - 1;

 memoryWrite.package();

}

void testPostProcess(void)

{

 RTPrint("------SyncPt finished!\n");

 write_dst_image(*pDst, "nokia_surf_dst.rgba", image_width, image_height);

}

 51

BIBLIOGRAPHY

[1] Nvidia Corporation, "Corporate Milestones," 2011. [Online]. Available:
http://www.nvidia.com/page/corporate_timeline.html. [Accessed 8 Nov 2011].

[2] Nvidia Corporation, "CFO Commentary on Second Quarter 2012 Results," 2011. [Online]. Available:
http://phx.corporate-
ir.net/External.File?item=UGFyZW50SUQ9MTAzNzQxfENoaWxkSUQ9LTF8VHlwZT0z&t=1. [Accessed
09 11 2011].

[3] N. Corporation, "Tegra Roadmap," February 2011. [Online]. Available:
http://blogs.nvidia.com/2011/02/tegra-roadmap-revealed-next-chip-worlds-first-quadcore-mobile-
processor/. [Accessed 15 November 2011].

[4] NVIDIA Corporation, "NVIDIA Tegra APX Series," [Online]. Available:
http://www.nvidia.com/object/product_tegra_apx_us.html. [Accessed 15 November 2011].

[5] R. Cheng, "NVIDIA CEO Sees Tenfold Growth In Mobile-Chip Biz," CNET, 6 September 2011. [Online].
Available: http://news.cnet.com/8301-1035_3-20102167-94/nvidia-ceo-sees-tenfold-growth-in-
mobile-chip-biz/. [Accessed 15 November 2011].

[6] NVIDIA Corporation, "New NVIDIA Tegra Processor Powers The Tablet Revolution," [Online]. Available:
http://www.nvidia.com/object/io_1262837617533.html. [Accessed 15 November 2011].

[7] NVIDIA Corporation, "NVIDIA Tegra FAQ," [Online]. Available:
http://www.nvidia.com/docs/IO/55043/NVIDIA_Tegra_FAQ_External.pdf. [Accessed 15 November
2011].

[8] NVIDIA Corporation, "NVIDIA Tegra: Tiny Computer Packs Massive Punch!," [Online]. Available:
http://phx.corporate-ir.net/phoenix.zhtml?c=116466&p=irol-newsArticle&ID=1161234&highlight=.
[Accessed 15 November 2011].

[9] NVIDIA Corporation, "NVIDIA Tegra 2," [Online]. Available: http://www.nvidia.com/object/tegra-2.html.
[Accessed 15 November 2011].

[10] MIPI Alliance, "Camera Interface Specification," 2010. [Online]. Available:
http://www.mipi.org/specifications/camera-interface. [Accessed 7 February 2010].

[11] B. Aldrich, J. Gupta and W. Young, "T124 Camera Serial Interface Internal Architecture Specification,"
2012.

[12] W. Young, T124 Internal Architecture Specification, 2011.

[13] J. Kim, "WMP Verification/ RunTest API," NVIDIA, 2009. [Online]. Available:
https://wiki.nvidia.com/wmpwiki/index.php/WMP_Verification/RunTest_API. [Accessed 5 March
2012].

[14] J. Reiley, "GPU Power/Power Regression Flow," 2011. [Online]. Available:
https://wiki.nvidia.com/gpuhwdept/index.php/GPU_Power/Power_Regression_Flow. [Accessed 13
February 2012].

[15] S. Cornett, "Minimum Acceptable Code Coverage," Bullseye Testing Technology, 2011. [Online].
Available: http://www.bullseye.com/minimum.html. [Accessed 15 February 2012].

[16] P. Johnson, "Testing and Code Coverage," [Online]. Available:
http://www.pjcj.net/testing_and_code_coverage/paper.html. [Accessed 15 February 2012].

