
Interactive Media and Game Development Master’s

Project

Drizzle: Design and Implementation of a Lightweight Cloud Game

Engine with Latency Compensation

Jiawei Sun

December 2017

Thesis Advisor: Professor Mark Claypool

Committee members: Professor Lane Harrison

 Professor Jeffrey P Kesselman

Abstract:

 With the rapid development of the Internet, cloud gaming has increasingly gained

attention. Cloud gaming is a new type of cloud service that allows a game to run on the cloud

servers, and players interact with the game remotely on their own light-weight clients. There are

many potential benefits for both players and game developers to deploy a game on a cloud

server, such as reducing the need for clients to update the game, easing development of cross-

device games and helping prevent software piracy. In this work, I developed a cloud game

engine, Drizzle, with a time warp algorithm for latency compensation, and implemented a new

transmission method that reduces the network bandwidth. Using Drizzle, I also developed a

simple cloud game to evaluate the functionality and performance. Experiments with this game in

a controlled laboratory environment provide objective measurements of game performance and

subjective measurements of user performance. Analysis of the results shows Drizzle with time

warp did not reduce noticeable latency but helped players get higher game scores compared to

Drizzle without time warp. Moreover, Drizzle reduced network bitrates compared to some

conventional cloud transmission methods.

Keywords: Drizzle; cloud; game engine; time warp; drawing commands

Table of Contents
1. Introduction .. 1

2. Background & Related work .. 3

3. Methodology ... 8

3.1 Dragonfly Implementation .. 8

3.2 Network Implementation .. 9

3.2.1 Network Architecture... 9

3.2.2 Network Packet Structure .. 10

3.2.3 Server Implementation ... 12

3.2.4 Client Implementation ... 13

3.3 Time Warp .. 13

3.3.1 Time Warp Algorithm.. 13

3.3.2 Time Warp Implementation ... 14

3.4 Cloud Saucer Shoot Game Implementation .. 17

3.4.1 Game Object Design & Implementation.. 18

3.4.2 Score System .. 19

4. Evaluation ... 22

4.1 Subjective .. 22

4.1.1 Survey design ... 22

4.1.2 Set up environment .. 24

4.1.3 Hardware environment... 26

4.1.4 Survey procedure ... 26

4.1.5 Survey result .. 27

4.2 Objective ... 31

5. Conclusion .. 36

6. References ... 38

1

1. Introduction

With the rapid development of the Internet, online games have become increasingly popular.

Graphics-intensive online games often have onerous hardware requirements for players, such as

high-end CPUs and GPUs and considerable memory capacity. To minimize equipment

requirements for players, cloud gaming has been proposed. Cloud gaming is a new type of cloud

service that allows a game to run on the cloud servers, and players play the game remotely on

their own light-weight clients [1]. The basic idea is to distribute the heaviest work to the server

while the client only needs relatively less powerful hardware.

Cloud gaming can bring additional benefits to the players [2]. First, players do not need to

download the potentially large game to their personal computers. Some game clients are several

gigabytes. For example, Blizzard’s World of Warcraft client needs a 40 GB download. If World

of Warcraft were a cloud game, the player could play the game as soon as the computer was

connected since the game is on the server. Second, players can play games from any platform

without having game specific hardware. Third, since the game images are rendered on the server,

players experience high quality graphics even with a low power computer. For game developers,

cloud games also have advantages. When game developers update a cloud game, they only need

to update the server. Game developers only need to develop one version of a game for the cloud

server, which allows them to focus on the gameplay, content and reduce the development costs.

Plus, cloud games can help protect developers’ copyrights since game does not run on the

players local machine.

While cloud gaming is promising, it is still in its infancy with several challenges to address [1].

2

For example, conventional cloud games need high network bandwidth because they need to

download game images as video from the game server in real-time. If there are interruptions in

the network, the game video quality may decrease and thus degrade the player experience.

Another problem is network latency. Due to the physical distance between game server and

client, latency cannot be avoided, and for some fast-paced games, e.g. First Person Shooter (FPS)

games, latencies over 200ms may be unbearable for the player [3].

Time warp is a technique which is designed to mitigate the effects of latency in network games

[8]. The idea with time warp is to roll back and then revise the game state according to the

network latency when the player provided input.

In this project, I extended the Dragonfly game engine to a cloud game engine (Drizzle) with two

main differences [4]. I added time warp latency compensation that saves checkpoints of each

game state on the game server. After receiving the player’s command, the server rolls the game

world back to the time when the player sent the command and adjusts the game world. To reduce

the bandwidth requirement of traditional cloud gaming, the server sends basic graphics

commands (the characters to draw) to the thin client.

For evaluation, I induced network latency and evaluated the user experience, memory usage and

CPU load comparing Drizzle with time warp and Drizzle without time warp. I also analyzed the

network bandwidth, comparing sending graphics commands, sending JPEG images and sending

compressed video.

The rest of this thesis is organized as follows: Chapter 2 provides background and related work;

Chapter 3 describes our methodology to design and implement Drizzle; Chapter 4 evaluates

Drizzle; and Chapter 5 summarizes our conclusions and present possible future work.

3

2. Background & Related work

Mark Claypool designed and developed the text-based Dragonfly game engine [4]. Dragonfly is

mainly designed to teach students how to make a game engine. It uses Simple and Fast

Multimedia Library (SFML) as the graphics output library to draw game objects and user

interfaces on the screen. Although Dragonfly is a text- based game engine and does not support

full graphics, it does have core functions for supporting a whole game. I implemented the Drizzle

cloud game engine by extending the Dragonfly engine.

There are already some cloud game engines available for use, such as GamingAnywhere (GA)

[5], and GeForce Now [6]. GA is an open source cloud game engine platform. GA currently

supports Windows, Linux, OS X and Android. My project implements latency compensation

(time warp) technology in a cloud game engine while there is no latency compensation

technology in GA. NVIDIA released GeForce Now, which is a cloud-based streaming service

exclusively for owners of NVIDIA’s Shield family of Android-based gaming devices, which

includes the Shield Portable, Shield Tablet, and Shield Android TV. After becoming a member

of GeForce Now, players can play streaming games on their own TVs without any installation or

configuration. GeForce Now can run games at 1080p game and 60 fps. While promising,

GeForce Now is not open source so we cannot extend its functions to evaluate latency

compensation technologies.

To improve the quality of the user experience, research papers and technologies have attempt to

address current problems with cloud games.

There are primary three ways to do latency compensation [1]: movement prediction, time warp

and action priorities.

4

There are two types of movement prediction: player prediction and opponent prediction [7].

Player prediction is a way that the client can predict the server response, allowing the game

client to respond to user input and render actions before getting authorized responses from the

server. For example, if a player is flying a plane at a certain velocity and orientation, the client

can calculate its path without information from the server. Once the authorized responses from

the server are received, the client can re-compute any needed changes. Another kind of

prediction is opponent prediction. The client predicts and renders the opponents’ movements and

every client calculates the difference between the opponents’ actual movements and the

predicted movements. If the difference is greater than a certain threshold, then the client receives

the opponents’ new movement from the server. That also reduces the network load but requires

clients to do more calculations. Prediction is not suitable for cloud games since the client does

not have game state.

Another way to reduce the effect of latency is to provide priority transmissions for the player’s

actions [8]. The basic idea is to pre-determine the action priority and send the action to the server

according to a pre-set priority. In a game, some actions do not need to be sent as soon as they are

created, while others need to be sent immediately. For example, if a player is shooting an enemy,

the shoot command could be sent first to mitigate the effect of latency while the movement

changes may not be as important. Actions are taxonomized along three axes: deadline, precision

and impact. For example, if the action’s transmission’s deadline is soon plus needs a high

precision and has high impact on the game, then this transmission would be sent to the server

with a high priority. This technique requires mediation from the game. Game developers need to

consider the effects of all actions and then set up the priority. Thus, this solution does not

generalize to an engine alone, requiring client support, making it difficult in a cloud system.

5

Another technique to reduce the effect of latency is time warp [7]. Basically, the idea is to “roll

back” game time on the server and make the corresponding updates to the game world according

to when the actions occurred on the client. As an example, assume a client makes an action at t1

and the network latency is t2. When this action has been transmitted to the server, the current

time on the server will be t3 (t1+t2). Then, the server rolls back time by t2 to t1 (which is exactly

the time that player made the action), executes the command at t1, then updates game world to

t3, sending the latest game state to the client.

Figure 1 shows a time warp algorithm flow chart. After the server receives packets from the

client, it extracts the user input information and then calculates the time difference. Then the

server rolls back all events to the elapsed time and executes the player action. After this, the

server updates the game world and sends the latest game state back to the client.

Time warp can improve the accuracy of players’ commands with latency. For example, in a

First-Person Shooter (FPS) game, if the player shoots right at the target, the server can resolve

the shot no matter how much latency there is between the server and client. This method has the

potential to make players feel as if they are playing a local game, but it may lead to some

inconsistencies. Suppose a player places the crosshairs of a gun on an opponent and fires. The

server, using time warp, will ultimately determine this is a “hit”. However, in the meantime,

because of client-server latency, the opponent may have moved, perhaps even around a corner

and out of sight. When the server warps time back to when the shot was fired and determines the

opponent was shot, it will seem to the opponent that the bullets “bent” around the corner. In

addition, time warp also requires the server to store the previous game states and actions which

have happened before.

6

Figure 1. The time warp algorithm flow chart (server side)

To reduce bandwidth in a cloud game, de Winter put forward a new hybrid architecture model

for a cloud game engine [9]. Their architecture sends graphics commands instead of full video

frames. When the client is not able to deal with the graphics commands in real time, then the

server sends the video frames directly to the client, and in this situation, the client decodes the

video frames and shows them on the screen. When the client has the ability to process with the

graphics, the server sends the graphics commands to the client, and the client uses these

commands to draw and render locally. This hybrid architecture can save network bandwidth and

utilize the client’s ability of graphic processing. The classic X-Window system adopts a similar

architecture. However, since X-Window was designed to run a whole desktop on the thin client,

it emphasizes switching context between multiple tasks and windows, making game performance

suffer [13].

Thus, Drizzle implements time warp in a single thread game engine. Drizzle also reduces

Receive packet from client

Extract information(user input)

Calculate elapsed time = current time -
latency

Roll back all events to elapsed time

Execute user command

Repeat all events in order, updating
any cliented affected

7

bandwidth by sending the text drawing commands to the client allowing the client to decode

these commands to construct and then display the game frames.

8

3. Methodology

This section describes the methods used to implement Drizzle, a cloud game engine with

time warp.

Section 3.1 describes the core game engine based on Dragonfly.

Section 3.2 demonstrates how I extended Dragonfly with network.

Section 3.3 describes how I designed and implemented time warp.

Section 3.4 introduces the design and implementation of a cloud saucer shoot game used

for evaluation.

3.1 Dragonfly Implementation

The Dragonfly game engine is mainly designed to teach students how to make a game

engine [4]. It uses the Simple and Fast Multimedia Library (SFML) as the graphics output library

to draw game objects and the user interfaces on the screen. I followed the design by professor

Claypool and implemented the base version of the Dragonfly game engine. In this base version, I

implemented the Log Manager, Resource Manager, Game Manager, Graphics Manager, Input

Manager and World Manager using C++ and SFML.

• The Game Manager is responsible for running the whole game loop. I set up the frame

rate (frames per second) to 30, so the game loop will run every 33ms.

• The World Manager is responsible for storing and managing all game objects and events.

• The Log Manager is responsible for recording the game status and outputting the debug

information into a log file.

• The Resource Manager is responsible for loading the sprites into the game.

9

• The Graphics Manager is responsible for drawing characters, drawing strings and sprite

frames.

• The Input Manager is responsible for taking player keyboard and mouse input and

generating an event to the World Manager for player input.

3.2 Network Implementation

 To extend the base version of Dragonfly to the Drizzle, network functions are needed to

communicate between client and server. This section describes the design and implementation of

the network architecture for Dragonfly.

3.2.1 Network Architecture

 The network architecture follows a traditional Client-Server model for cloud games. All

computations are in the server and the client is only responsible for receiving and showing the

frames to the player. Thus, it requires a reliable network connection which can guarantee that the

client will correctively receive all the packets in order from the server. I used TCP which has a

built-in algorithm to handle packet loss and out of order delivery. Figure 3.1 shows a basic

TCP/IP connection [12]:

1 The server creates the listener socket that is waiting for remote clients to connect.

2 The client issues the connect() socket function to start the TCP handshake (SYN,

SYN/ACK, ACK). The server issues the accept() socket function to accept the connection

request.

3 The client and server issue the receive() and the send() socket functions to exchange data

over the socket.

10

4 Either the server or the client decides to close the socket. This causes the TCP closure

sequence (FINs and ACKs) to occur.

When the network condition degrades and leads to some loss or disorder, TCP retransmits lost

packets.

Figure 3.1. A Typical TCP Client-Server Connection

3.2.2 Network Packet Structure

 In a cloud game engine, the server is required to send the frames to the client while the

client is required to gather the player’s input and the send them back to the server. To reduce the

network bandwidth when transferring data, Drizzle sends the drawing commands instead of a

whole image from the server to client. Because all drawing strings and drawing frame functions

can be divided into different drawing characters, the client only needs to receive the frame

characters. Thus, the drawing command packet structures consist of the parameters of the

11

drawCh(). The client is able to draw the corresponding character after receiving these packets.

Figure 3.2 shows the structure of the drawing packet. Len is for recording the length of the

packet. Type decides whether this packet contains a character or a string. X and y are for locating

the character. Content is the character to be drawn. Color is the character’s color, Time counter is

an unsigned integer which will be used in the time warp algorithm.

Figure 3.2. Drawing Packet Structure Figure 3.3. Event Packet

 The client packs the player’s inputs and sends them back to the server. The client event

packet consists of what an input event needs: the keyboard actions (whether the player is clicking

on a key, holding down a key or has just released the key) and the keyboard values. Figure 3.3

shows the structure of the event packet. Len is the packet length, keyboard_value is the key,

keyboard_action is whether player presses holds or releases the keyboard, and time counter is

used in the time warp algorithm.

12

3.2.3 Server Implementation

 To support all network connection functions, I designed and implemented a network

manager in Drizzle. The network manager on the server side is responsible for listening to all the

connections, sending and receiving data.

 The network manager was implemented with Winsock in C++. It has startup(), accept(),

send(), and receive() functions. The startup() is responsible for starting the manager super class

and initializing the member attributes. After calling startup(), the accept()must be called before

all other network functions. In the accept(), the network manager binds the server IP address and

a specific port number with the socket. Then, it sets the socket to non-blocking mode which

means receive() returns a value immediately even if there is no data in the socket buffer. In the

send(), the drawing commands structure is sent together with its size, so that when a client

receives a packet, it can check its size to know whether the entire packet has arrived. In the

receive(), the server gets the player’s input packet and its size from the client.

 In addition to implementing a network manager, I modified the draw function on the

server. In the base version of Dragonfly, when the game manager calls update(), all objects in the

game world call their draw() functions. In Drizzle, the drawing packets are instead sent to the

client. I modified the drawCh() instead of calling SFML functions, I packed all the parameters

that drawCh() needs into one struct, and sent it to the client by calling the network manger’s

send() function.

 The final step of implementing the server is to add a function that supports receiving the

player’s input data from the client, pack it an event and then pass it to the game manger to handle

it. I created a function called checkCommand() in the network manager. It first calls ioctl() to

return how many bytes of data are in the socket buffer. If the return value is greater than the size

13

of the input packet, then the server tries to receive the packet and check whether packet size is as

same as the input packet or not. According to the result, it decides whether to call receive() or

not.

3.2.4 Client Implementation

The client implementation is quite similar to the server. However, the client network

manager does not use the accept(), instead using a connect(). The connect() calls connect() of

Winsock with the server IP address and the specific port number and then sets the socket into

non-blocking mode. Send() and receive() are similar to the server side.

I modified the client input manager so that every time the player presses a key it produces

an event packet and then calls the send() of the network manager on the server. I also added a

new function named checkGraphics() to receive the graphics packet from the server. The work

flow of this function is similar to checkCommand() in the server. It verifies that the socket buffer

size is equal to the packet size and then calls receive() to extract the drawCh() parameters, finally

calling drawCh() with the corresponding parameters to draw the frame for the player.

3.3 Time Warp

 I designed and implemented a time warp algorithm into Drizzle. This section introduces,

analyzes and demonstrates how.

3.3.1 Time Warp Algorithm

 The Time warp algorithm tries to mitigate the effect of latency. Figure 3.4 shows a

comparison of traditional client-server communication and one with time warp: Assume the

player currently has latency L. When the player presses a key on the client at time T1, it takes L

to send it to the server, so the server receives the message at time (T1+L). Instead of just

14

applying the event at time (T1+L), the time warp algorithm has the server roll the game world

back to T1 then apply the event. The game world is then rolled forward to the current time. So,

when the player at the client receives feedback after pressing a key, the response happens at the

previous game time.

3.3.2 Time Warp Implementation

 According to the description about time warp above, it is important to measure the

network latency is so that the server can roll back the game world time. So I added a time

counter to record the time stamp of the game loop. When the server’s game loop starts, the time

Without time warp

 Receive player’s

 input at (T1+L) and apply it

 Receive game frame receive (T1+L)’s

at T1 and press response at

a key (T1+2L)

Server

Client

 Receive player’s

 input at (T1+L) and apply it on T1

 T1

Server

Client

With Time Warp

 Receive game frame receive T1’s

at T1 and press a key response at (T1+2L)

Figure 3.4. Comparison of responsiveness with and without time warp

15

counter is set to 0. After that, every game loop, the time counter increases by 1. This time

counter is sent as an attribute with the graphics packet, so the client can know the current time

counter and associate it with the event packet sent back to server. In this way, the server can

calculate the difference between the time counter in the event packet and the current time counter

in the game manager to know how long the game needs to roll back.

 Since the server needs to roll back the game world, saving previous game world states is

essential on the server. In the base version of Dragonfly, all game objects are stored into an

object list in the world manager. However, in Drizzle, simply copying the object list will not

work. That is because the elements in the object list are only the pointers to the actual objects, so

copying the list will only copy the pointer values. When we change objects by using these

pointers, the change will be applied to all the objects in the previous game world. To solve this

problem, Drizzle uses a deep copy which allocates new memory and copies every object

attributes rather than just its pointer. Considering the object class as the base class of the game

object, game programmers need to write their own object class inherited from it, using a virtual

copy() added into the object class. Every object which is inherited from the base object is

required to override this function. Within this new copy(), the game object needs to return its

own type of constructor. When Drizzle iterates through the object list, it calls every element’s

copy() to make the deep copy.

 After the above preparations, I implemented a time warp manager which is able to store

up to 300 previous game worlds. This list was implemented by a loop array, so the server could

automatically overwrite the game world without worrying about the memory leak. This list was

responsible for fetching the previous game world according to the time counter. For example,

when the server is required to fetch the previous game world with a time counter of 483, it will

16

mod this time counter by 300, so it will get 483%300 = 183. The server can simply fetch the

previous game world by using index 183.

The Drizzle time warp manager also offers functions to deal with setting and getting the

game world associated with the time counter. When the server detects the time difference

between the client and itself, the time warp manager fetches the corresponding previous game

world, re-applies the event into this previous game world, and then fast-forwards until the

applied world has the same time counter as the current time counter in the game manager. Figure

3.5 shows how it works.

17

Figure 3.5. Time warp algorithm flow

3.4 Cloud Saucer Shoot Game Implementation

 After implementing Drizzle, I also implemented a simple saucer shoot game using this

game engine. The main goals for doing this: 1) Test whether this game engine is functional. I

need to design a basic game using Drizzle to check all the managers and network functions

18

function properly. 2) Provide a game suitable for the user survey. I need a cloud game using

Drizzle to evaluate whether time warp mitigates latency or not.

3.4.1 Game Object Design & Implementation

 In this basic Saucer Shoot game, there are three different types of objects: The Ship, the

Saucer and the Bullet. The Ship is the Hero in this game, and the player can use up, down, left

and right arrows to control its movements. The Ship also has health which is reduced when

hitting a Saucer. The Saucer is the enemy in this game. When the Saucer hits the Ship, it is

destroyed. The Bullet is produced by the Ship when player press the space bar. When the Bullet

hits the Saucer, both Saucer and Bullet are destroyed and the score for the player increases by 1.

 The Ship class is inherited from the base Object class, and it needs to define two

functions: copy() and eventHandler(). For copy(), as stated before, the Ship class needs to return

a Ship type constructor so that we can use it for the deep copy. For the eventHandler(), it is

important for the user to control the Ship. In this function, the parameter is an event pointer that

is passed from the World Manager. The event pointer has a string attribute called type that I used

to distinguish the type of the event and then according to the type to execute code to respond to

keyboard input.

 The Bullet class and Saucer class are similar to the Ship class. They all need to overwrite

the copy() and eventHandler(). The main difference is in the eventHandler(). In the Bullet class,

when there is a collision event, I iterate through the collision list to find if there any collisions

related to the Bullet. If there are, it destroys the Bullet instance and increase the final score. In

the Saucer’s eventHandler(), besides the collision event, I implemented an enemy random

generation algorithm. When the Saucer is hit or goes out of the screen, Saucer Shoot generates

19

1~3 enemies with random locations (locations are guaranteed to have no collision with other

Saucers).

3.4.2 Score System

 The conventional way of implementing the scoring system used to add a static variable in

the Saucer class. When a Saucer instance is destroyed by a Bullet, the score is incremented.

However, with the time warp algorithm, this method does not work so well. Because the server

rolls back everything to process the time warp algorithm, one Saucer instance may be destroyed

and re-generated many times. Figure 3.6 shows how this happens. When the Bullet approaches

near to the Saucer, it will hit the Saucer in the next few frames, at that time a player press the up

key which will move the Ship up. The server will not receive the up movement command before

the Bullet hit the Saucer because of the latency. When it receives the command the collision has

happened, the server rolls back the game world to the one in which collision has not happened

yet and re-runs the game world. During the re-run period, the collision happens again. This

scenario leads to the wrong score if we use the conventional static variable method.

20

 Figure 3.6: Demonstrate why static score is inaccurate with time warp

Client at T1: Bullet is about to

hit the Saucer, player presses a

left button

Server at (T1+L): Bullet is

about to hit the Saucer, player

presses a left button

Client takes L latency to

the server

Server rolls the game world

back, but the score does not

change.

Server re-applies the game

world, detects another collision

and added score by 1.

21

 To solve this problem, Saucer Shoot implements the score as an Object that is managed

by time warp. In this way, no matter how many times the server rolls back, it has the ability to

keep track of the score. In the above situation, when the server rolled the game world back to

before the collision, the score is rolled back to the value before the collision.

22

4. Evaluation

 After implementing Drizzle and a cloud saucer shoot game, I proceeded to evaluate the

performance. The evaluation was from two aspects, subjective and objective. For subjective, I

designed a user study and invited approximately 30 people to play the game. A survey provides

the basic demographics with thoughts on how the time warp algorithm performed. I will discuss

the detailed survey in the following section. For objective, I measured the bandwidth of

transmitting drawing commands instead of the image or video. I also analyzed the accuracy and

consistence of using time warp. In addition, I analyzed the memory and process overhead of

Drizzle with time warp.

4.1 Subjective

 I designed a user study to evaluate time warp performance. I will describe the study

content, survey environment and procedure in the following subsections.

4.1.1 Survey design

 To evaluate how time warp performs with latency, I designed a survey. The survey was

implemented on Qualtrics [https://wpi.qualtrics.com]. In the first part, I asked people about their

age, gender and the frequency of playing online games. Figure 4.1 shows the demographics

questions.

People would then play 10 game sessions. After playing each session, he or she was

required to rate the responsiveness and graphics consistency from 0 to 5. Figure 4.2 shows the

23

second part of the survey content. Responsiveness refers to how well the game responds to the

player’s input. Graphics consistency refers to how well the graphics perform.

Figure 4.1 Demographics survey questions

24

Figure 4.2. Responsiveness and consistency survey questions

4.1.2 Set up environment

 As for 10 similar game sessions, the differences between them are. 1) they are under

different latencies. The latencies are 0, 100, 200, 400, and 800ms. Clumsy

[https://jagt.github.io/clumsy/] is used to simulate the different latencies. 2) 5 sessions are with

time warp on, while the other 5 game sessions are with time warp off. I set up a batch file to help

me easily control these configurations (see Figure 4.3). I manually shuffled the order so that

when playing with the game session, players did not know the latency of the game session or

whether time warp is on or off. Figure 4.4 shows a screenshot of one game session. First, I

described the game play to the respondent. In detail, I introduced a 15 seconds game play and

25

then told users how to move the Hero and how to shoot a Bullet . I also told them to try to hit all

Saucers to get a higher score.

Figure 4.3. Screenshot of the configuration batch file

26

Figure 4.4. Screenshot of the cloud saucer shoot game

4.1.3 Hardware environment

I set up the server and the client both on my laptop and put it into Zoo Lab. My laptop is

equipped with a 14”display, a Core i7 CPU, 8GB memory and the Windows 10 Pro operating

system. I invited people to play the game session and answer the survey. I did not engage in the

study except to provide the basic introduction and instruction for the survey.

4.1.4 Survey procedure

Pre-test: Setup environment in Zoo lab.

27

Step 1: User provides demographics information.

Step 2: Batch file started which configures network latency with Clumsy, starts server,

and configures time warp on/off.

Step 3: User starts client and plays game session.

Step 4: User responds to survey of responsiveness and consistency.

Repeat steps 2-3 for 10 game sessions.

Repeat steps 1-4 for 30 users.

4.1.5 Survey result

 I had 30 users to participate the survey. Their age gender and frequency of playing online

games are shown in the Figure 4.5. 25 are males and 5 are females, and all respondents are

between 20 to 30 years old. Almost half of the respondents play online games every day.

28

Figure 4.5. Demographics result.

Age

<20 20~30 >30

29

 Figure 4.6 shows the relation of player’s score with latency. The x-axis is the different

added latencies and the y-axis is the player’s score. The points in the figure are the average

scores of all 30 players with standard error bars. The red trend line is the game sessions with the

time warp algorithm on and the blue trend line is the game sessions with time warp algorithm

off. As we can see from the figure, players performed worse when the latency became higher.

When the latency was in the range of 100ms and 400ms, players had higher scores with the time

warp algorithm than without time warp.

Figure 4.6. Relation of player’s score with latency

Figure 4.7 shows the relation of responsiveness and consistency with latency. The x axis

is the different network latencies and each point is the average responsiveness or consistency

0

20

40

60

80

100

120

0 100 200 400 800

Sc
o

re

Added Latency (milliseconds)

Time warp off

Time warp on

30

with standard error bars. The blue trend line is with time warp algorithm off and the red trend

line is with time warp algorithm on.

Figure 4.7. Result of survey on responsive and consistent with different latencies and time warp

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800

R
es

p
o

n
si

ve
n

es
s(

0
~

5
)

Added Latency(milliseconds)

No time warp

Time warp

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800

C
o

n
si

st
en

cy
(0

~
5

)

Added Latency(milliseconds)

No time warp

Time warp

31

 As we can see from the Figures, players did not feel much difference in responsiveness

with time warp on or off, while they feel significantly less consistency with time warp on. This

survey also suggests setting up a threshold for turning on the time warp. For example, if the

network condition is really good, latency is lower than 50ms, it is unnecessary to use time warp

because it will affect the graphics consistency which may lead to player confusion. While if the

network condition is bad and the latency is greater than 800ms, it is unnecessary to use time

warp, either, because under high latency, time warp algorithm cannot improve performance

much but will lead to more inconsistency.

4.2 Objective

 This section analyzes the performance of time warp with respect to memory usage, then

performance for sending drawing commands with the respect to network bandwidth.

 For the time warp algorithm, the server is required to store every game world in memory.

In Drizzle, I set the max size of the storing list to 300, which means if the game runs at 30 frames

per second, Drizzle can store up to 300/30 = 10s of previous game worlds. As the number of

objects become larger, it takes more time to deep copy every game world and store it in memory.

For example, assuming every object has 10 attributes, every game world has 100 objects, then

for the deep copy, it needs to copy least 10*100 = 1000 attributes and allocates new space 1000

times for these attributes. This copy overhead has to happen each frame. From a memory aspect,

assuming the server stores 300 game worlds, 10000 objects per game world, each object has 10

attributes, and each attribute needs to take up 4 bytes of space. Then, the server needs at least

300*10000*10*4 bytes= 120MB of RAM for the game world alone.

32

 For sending drawing commands to replace sending images or compressed video, I

compared the network bandwidth needed per frame with the same saucer shoot game. The result

is shown in Figure 4.8:

Figure 4.8. Network bandwidth comparison for three game screen transmitting methods

First, I considered transmitting images between the server and the client. I used SFML

capture() to save the game scene as a JPEG image. Every frame would produce an image from

12KB to 59KB. I run a full-length game session and got the average size of the images as

33.58KB. So, it would transmit 33.58*30 = 1007.4KB per second. For transmitting with

compressed video, I used FFmpeg to convert one game session to a compressed video [10]. After

compressing a video for a whole game session, the average 30 frames per second video is 6.7KB.

Thus, the data rate of this method would be 6.7*30 = 201KB per second. As for Drizzle’s current

0

200

400

600

800

1000

1200

Compressed
Image (JPEG)

Video Drawing
commands
(current)

Drawing
commands
(possible)

D
at

a
ra

te
 (

K
B

/s
ec

o
n

d
)

33

sending drawing commands, every draw command packet size is 28 bytes, every object has

around 10 draw commands, and the average number of objects in the game session is 20. Thus,

the total size for 1 second of game play is 20 * 10* 28*30bytes= 164.1KB. The transmission

packet can be reduced from 28 bytes to 10 bytes, by sending only X, Y location (8 bytes),

character (1 byte) and color (1 byte). In this situation, the total data rate for the same game

session would be 20*10*10*30 bytes = 58.6KB per second. Compared with sending images,

transmitting drawing commands can significantly reduce the network bandwidth.

I also evaluated the relationship between network bandwidth of different sending

methods and number of objects. Figure 4.9 shows the result: The x-axis is the number of objects

and the y-axis is the data rate in KB per frame. There are four trend lines in the figure: blue is the

method of sending JPEG images, the red is the method of sending compressed video, grey is

Drizzle’s current sending drawing command method and yellow is a proposed sending drawing

command method. From the figure, all methods increase linearly with the increasing number of

objects. From the trend of these lines, we can see if the number of objects keep increasing,

Drizzle’s current sending method will require more network bandwidth than the method of

sending compressed video, but it will always be much lower than the method of sending JPEG

images. However, the improved sending drawing method would have a lower network

bandwidth than either JPEG images or compressed video.

34

Figure 4.9. Network bandwidth for different sending methods and number of objects

I evaluated the CPU load on the server side for different game actions. The whole game

loop consists mainly of 4 parts: Sending drawing commands, deep-copying the previous game

world, re-applying the game world fast-forward and doing an update. As I increased the number

of objects, I calculated the CPU time for each part. Figure 4.10 shows the result.

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

D
at

a
ra

te
 (

K
B

/f
ra

m
e)

Number of Objects

JPEG video

drawing commands (current) drawing commands (proposed)

35

Figure 4.10. CPU loads distribution as the objects increase.

The experiment had 200ms latency. When the number of objects become over 300,

drawing objects (sending all characters) and re-apply took up most of the CPU time. The reason

for this is that each object has around 10 characters to draw, so the server needed to iterate and

call 10*number of objects times send(). In the re-apply period, because there was 200ms latency,

the server needed to re-apply and deep copy at least 200/30 = 6 previous game worlds. Updating

each game world needed almost the same time as an independent update phase.

36

5. Conclusion

With the rapid development of the Internet, cloud gaming has increasingly gained

attention. While cloud gaming is promising for the distribution of games, it is still in its infancy

with several performance challenges to address [1]. Conventional cloud games need high

network bandwidth [7]. Network latency is also a serious factor affecting the cloud game

experience [3]. Trying to address these challenges, I implemented a cloud game engine called

Drizzle. Drizzle uses a new method of transmitting drawing commands rather than sending

images from the server to the client, and implements a time warp algorithm for latency

compensation.

To evaluate Drizzle, I designed and implemented a cloud saucer shoot game. Then I set

up a survey, invited people to play the game under different latencies and time warp conditions,

and asked them to fill in the survey. Besides the survey, I analyzed time warp performance with

respect to memory and CPU load. In addition, I compared three transmission methods with

respect to network bandwidth: sending images, sending compress video and sending drawing

commands.

Based on the evaluation, sending drawing commands did reduce the network bandwidth,

and reduced the workload on the server so that the server could run the game more smoothly.

From the survey results, time warp could make the game feel more responsive to players.

Beyond this thesis, there are still many ways to improve the method and algorithm.

Explorations may reduce the network bandwidth by optimizing the transmitting packets. For

example, Drizzle could send the object drawing commands instead of character drawing

37

commands. To improve the time warp algorithm, I could survey the best-working range for time

warp and only enable it when the latency is in this range to get a better user experience.

38

6. References

[1] C. Huang, C. Hsu, Y. Chang, and K. Chen. “GamingAnywhere: An Open Cloud Gaming System,” in Proceedings

of the ACM Multimedia Systems Conference (MMSys’13), Oslo, Norway, February 2013.

[2] Meng Luo. Uniquitous: Implementation and Evaluation of a Cloud Gaming System in Unity3d, Master Thesis,

Worcester Polytechnic Institute, May 2014.

[3] K.-T. Chen, P. Huang, and C.-L. Lei. How Sensitive are Online Gamers to Network Quality? Commun.ACM,

49(11):34–38, Nov. 2006.

[4] Mark Claypool. Dragonfly Program a Game Engine from Scratch. 2015 <http://dragonfly.wpi.edu/>

[5] "GamingAnywhere - An Open Source Cloud Gaming System." GamingAnywhere - An Open Source Cloud

Gaming System. N.p., n.d. Web. 20 Nov. 2016. <http://gaminganywhere.org/>.

[6] Daniel, Chris. “Get Your Game on with SHIELD TV.” The Official NVIDIA Blog, 5 Jan. 2017,

<blogs.nvidia.com/blog/2017/01/04/shield-tv-gaming-ces/>

[7] Grenville Armitage, Mark Claypool, and Philip Branch. Networking and Online Games: Understanding and

Engineering Multiplayer Internet Games, John Wiley and Sons, Ltd., June 2006. ISBN 0470018577.

[8] Claypool, Mark, Tianhe Wang, and McIntyre Watts. "A Taxonomy for Player Actions with Latency in Network

Games." Proceedings of the 25th ACM Workshop on Network and Operating Systems Support for Digital Audio and

Video. Portland, OR, March 18 - 20, 2015.

[9] De Winter, Davy, et al. "A Hybrid Thin-client Protocol for Multimedia Streaming and Interactive Gaming

Applications." Proceedings of the International Workshop on Network and Operating Systems Support for Digital

Audio and Video, Newport, Rhode Island, May 22-23, 2006.

 [10] "FFmpeg." FFmpeg. N.p., n.d. Web. 20 Nov. 2016. <https://www.ffmpeg.org/>.

[11] "Simple and Fast Multimedia Library." SFML. N.p., n.d. Web. 20 Nov. 2016. <http://www.sfml-dev.org/>.

[12] "TCP Connection Flow." IBM Knowledge Center. N.p., n.d. Web. 29 May 2017.

[13] "The X-Windows Disaster". Art.Net. Retrieved 10 November 2009.

http://www.art.net/~hopkins/Don/unix-haters/x-windows/disaster.html
https://en.wikipedia.org/wiki/Art.Net

