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Abstract 
 

Small diameter vascular grafts comprised entirely from cells and cell-derived extracellular matrix (ECM) 
have shown promise in clinical trials and may have potential advantages as in vitro vascular tissue 
models.  A challenge with current cell-derived tissue engineering approaches is the length of time 

required to generate strong, robust tissue.  There is a lack of alternative methods to rapidly assemble cells 
into a 3D format without the support of a scaffold.  Toward the goal of engineering a new approach to 
rapidly synthesizing vascular tissue constructs entirely from cells, we have developed and characterized a 
strategy for creating cell-derived tissue rings by cellular self-assembly.  The focus of this thesis was to 
develop the system to rapidly generate engineered tissue rings, and to evaluate their structural and 
functional properties.   

To generate tissue rings, rat smooth muscle cells (SMCs) were seeded into round-bottomed, ring-shaped 
agarose wells with varying inner post diameters (2, 4, and 6 mm). Within 24 hours of seeding, cells 
aggregated, contracted, and formed robust tissue that could be removed from their wells and handled.  If 
kept in culture, the thickness of these tissue rings increased with time.  Mechanical analysis of the tissue 

showed that it was stronger after only 8 days in culture than engineered tissues generated by other 
approaches (such as seeding cells in biopolymer gels) cultured and tested at similar time points.  
Histological staining of the tissue rings revealed high cell densities throughout, along with the presence of 
glycosaminoglycans and some collagen.  We also found that we could use the tissue rings as building 
blocks to generate larger tubular structures.  Briefly, tissue rings were removed from the agarose wells 
and transferred onto silicone tubing mandrels. Once the rings were placed in contact with each other on 
the mandrel, they were cultured to allow the rings to fuse together.  We found that the ability of tissue 

rings to fuse decreased with increasing ring “pre-culture” duration, and that we were able to generate fully 
fused tissue tubes in as little as 8 days (with only one day of ring pre-culture and seven days of fusion).   

In the last section of this thesis, we established the feasibility of using primary human SMCs to generate 

self-assembled tissue rings, similar to the self-assembled rings generated with rat SMCs.  Compared to 
the rat SMC rings, human SMC rings were stronger, stiffer and appeared to contain increased levels of 
collagen.  These data showed that human SMCs are capable of self-assembling into tissue rings similar to 
rat SMCs, and may therefore be used to create engineered human vascular tissue.   

Overall, we have developed a platform technology that can be used to screen the effects of culture 
parameters on the structure, mechanics, and function of vascular tissue.  We anticipate that through the 
use of this technology, we can further improve vascular grafts by better understanding factors which 
promote ECM synthesis and SMC contraction.  We can use these results directly toward the generation of 
vascular grafts by fusing self-assembled cell rings together to form tissue tubes.  These novel 
bioengineered vascular tissues may also serve as a method to produce in vitro models to help further our 

understanding of vascular diseases, as well as facilitate pre-clinical screening of vascular tissue responses 
to pharmacologic therapies. 
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Chapter 1: Overview 

 

1.1 Introduction 

 

Cardiovascular disease is one of the leading causes of morbidity and mortality in the United States.  

According to American Heart Association statistics, 16 million Americans have been diagnosed with 

coronary heart disease and over 8 million of these people have had a myocardial infarction.1  In 2004, 

408,000 coronary artery bypass grafting (CABG) procedures were performed to restore blood flow to 

myocardial tissue where blood flow had been compromised by occluded or partially occluded coronary 

arteries.1  The standard of care in CABG is to use the patients’ own (autologous) vessels, most commonly 

the internal mammary artery, radial artery, or saphenous vein, as the donor vessel for the bypass 

procedure.2,3  However, in approximately one third of these patients, such as those with advanced 

peripheral vascular disease or those undergoing a second CABG procedure, there  is insufficient 

availability of autologous vessel material.  As the number of patients needing CABG procedures rises due 

to the increasing age of the U.S. population and prevalence of obesity, there is a need to develop 

alternative grafting materials.  Synthetic grafts have been used widely for vascular surgery to replace 

large vessels (> 6 mm diameter) such as the abdominal aorta, but small diameter synthetic grafts (< 5 mm 

diameter) fail due to thrombosis or intimal hyperplasia.4-7  Alternative graft materials include allogeneic 

or xenogeneic grafts, but the use of these materials requires life-long immunosuppression therapy, and 

they will eventually fail.8-10  As such, there is a great need for strong vascular grafts that can remain patent 

as small diameter vessel replacements without the need for immunosuppressive or anticoagulant therapy.  

To meet this need, tissue engineering has been explored as a promising approach to generating vascular 

grafts that have similar mechanical and biological properties to those of native arteries.   

 

The concept of creating tissue engineered blood vessels was first explored in the 1980’s with the 

innovative approach of encapsulating vascular cells in tubular collagen gels and allowing the cells to 

remodel the gel during culture in vitro.11  While the field has advanced considerably since then, the basic 

principle of adding cells to either natural biopolymer12-14 or synthetic polymer15,16 scaffolds remains the 

primary method for generating tissue-engineered vascular grafts.  In fact, a co-polymer of lactic acid and 

ε-caprolactone seeded with autologous bone marrow cells has been used clinically for pediatric 

cardiovascular surgery.17-19  More recently, clinical trials have been conducted with vascular grafts made 
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entirely out of autologous patient cells and the extracellular matrix (ECM) the cells produce (without 

exogenous scaffold material).20  With all approaches to vascular graft development, researchers have 

improved on many aspects, including increased burst pressure strengths,21,22 increased ECM synthesis,23,24 

and improved biocompatibility and patency.25-27  Together, the combination of these improved 

characteristics has progressed the field considerably; giving rise to many promising approaches toward 

solving the clinical need for small-diameter vascular conduits.   

 

Despite the advances in the field of vascular tissue engineering over the past three decades, many 

challenges still remain.  For example, most vascular tissue engineering approaches have yielded grafts 

with low cell densities,15,28 low compliance,29 and limited physiological contraction when compared to 

native arteries.15  The use of scaffold materials as the structural foundation of most tissue engineered 

grafts may be partially responsible for these limitations.  Scaffold materials dominate graft mechanical 

properties and have been shown to limit cell-seeding densities,15,28 which can lead to limited vascular 

contraction.  To address these shortcomings, cell-derived approaches to vascular tissue engineering have 

been developed.20,21,30-34  Cell-derived tissues have much higher cell densities and improved 

compliance.31,35 

 

However, two challenges of cell-derived vascular tissue engineering are the quantity of cells and the long 

culture times required to generate tissue constructs.  The production options are either to expand cells in 

culture in advance and use high initial cell seeding densities to generate tissues, or to seed lower initial 

densities and allow the cells to proliferate and generate ECM to build the tissue over time.  In either 

approach, there are a variety of culture parameters which need optimization (such as culture duration, cell 

source, media supplementation, etc.) to produce functional vascular grafts.  Due to the large quantity of 

cells and the long culture times required for cell-derived vascular graft generation, evaluating and 

optimizing culture conditions on full-sized tubular constructs would be an expensive, reagent-, and time-

consuming process.  Therefore, there is a need for a method to rapidly generate 3D tissue constructs, 

which would use fewer cells, require less culture time, and could be used to “screen” the effects of a 

variety of culture conditions on the mechanical, functional, and structural properties of vascular tissue.  

The information obtained throughout this screening process could then be applied to the generation of 

transplantable vascular grafts from cells and cell-derived ECM.   
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1.2 Summary of thesis objectives 

 

To address some of the current challenges in vascular graft tissue engineering, the overall objective of this 

project was to develop a system to rapidly generate cell-derived, scaffold-free vascular tissue constructs 

from self-assembled cells.  To do this, we placed smooth muscle cells into round-bottomed, annular wells 

and allowed them to aggregate and generate ring-shaped tissues.  We utilized these tissue rings to assess 

the structural and functional properties of cell-based engineered tissues.  In addition, we showed that cell-

derived tissue rings can be stacked together in culture, and that the rings remodeled and fused to form 

tissue tubes.  Based on this observation, we then investigated parameters such as the length of time rings 

were “pre-cultured” prior to being stacked together as a means of controlling their fusion into tissue tubes.  

Finally, we evaluated whether this system of tissue self-assembly, which we developed and assessed 

using rat smooth muscle cells (SMCs), could be translated to generate tissue constructs from primary 

human SMCs, which proliferate at a much lower rate in culture.  

 

Objective 1:  Create and validate a novel scaffold-free 3D vascular tissue model system based on 

cellular self-assembly.   

 

To address the need for rapid generation of vascular tissue, the first objective of this thesis was to develop 

a scaffold-free, cell-derived ring model system which we used to evaluate the function and structure of 

tissue formed using this technique.  To do this, a mold was developed that contained non-adhesive, round-

bottomed, annular agarose wells which allowed cell aggregation, thus self-assembly into ring-shaped 

tissues.  Tissue rings were made with different diameters (2, 4, and 6 mm inner diameter) and cultured for 

various lengths of time (7 – 14 days).  We utilized uniaxial tensile testing combined with histology and 

light microscopy to examine how these different culture parameters affected tissue biomechanics and 

morphology.  Our results indicated that cell-derived, self-assembled tissue rings were significantly 

stronger than tissues formed using the SMCs in gels approach, cultured over a similar time period.36,37  

Additionally, we demonstrated that generating tissue rings through the use of SMC  self-assembly yields 

tissue constructs with a high cell density and evidence of ECM deposition compared to the same “SMCs 

in gels” tissues.  Finally, to demonstrate that the tissue ring system can be translated into fabricating 

tubular tissues of clinically useful sizes, tissue rings cultured for seven days were stacked together on 

silicone mandrels and investigated for their ability to form cell-derived tissue tubes by fusion of 

individual rings.  Together, these studies suggest that this self-assembled ring system can be used to 

assess structure and function of vascular tissue, and that the information gained from manipulation of this 

system can then be directly applied to the fabrication of tissue engineered vascular grafts.  Gwyther, T.A., 
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Hu, J.Z., Christakis A.G., Skorinko J.K., Shaw S.M., Billiar K.L., Rolle M.W. “Engineered vascular tissue 

fabricated from aggregated smooth muscle cells.”  Cells Tissue Organs, 194(1):13-24, 2011.38 

 

Objective 2: Identify culture parameters that lead to enhanced fusion of aggregated cell rings to 

create vascular tissue tubes.   
 

Above, we explore the potential use of self-assembled cell rings as building blocks with which to generate 

tube-shaped tissue constructs.  Although some degree of fusion between stacked rings was observed, 

complete fusion to a morphologically homogeneous tissue tube was not observed in our studies.  In this 

second thesis objective, we evaluated whether the duration of ring culture affects remodeling and fusion 

of tissue rings into viable, cohesive tissue tubes.  To do this, rat SMC rings were pre-cultured for various 

lengths of time before they were stacked together to form tissue tubes, and tissue ring fusion kinetics were 

measured.  We found that the fusion of the rings into tubes was improved by removing the tissue rings 

from culture at earlier time points before stacking together, which ultimately resulted in fully fused tissue 

tubes in as short a time as 8 days.  We utilized a custom burst pressure testing device to evaluate the 

mechanical strength of the resulting fused ring-derived tissue tubes.  Finally, we explored the spatial 

retention of cell position within the tissue tubes after ring fusion, as well as application of the fused ring 

method to create more complex structures, such as branched vessels.  To complete the structural analysis 

of these studies, a combination of fluorescent cell tracking, histology, light and fluorescent microscopy 

were used.  These results suggest that the fused ring method offers an alternative approach to generating 

completely cell-derived vascular tissue constructs more rapidly than previously described and allows for 

the generation of branched vessels which may be useful for modeling areas of the vasculature which are 

susceptible to disease.  Gwyther, T.A., Rolle, M.W.  Fabrication of cell-derived vascular tissue tubes 

using a modular tissue engineering approach. Manuscript in preparation.   

 

Objective 3:  Evaluate the translation of cellular self-assembly and tissue fusion to primary human 

smooth muscle cells for the generation of human vascular tissue constructs. 

 

The goal of this section of the thesis was to demonstrate that cellular self-assembly is not unique to rat 

SMCs, but can be applied for use with primary human SMCs.  Human SMCs were seeded into our 

custom agarose molds and allowed to aggregate to form tissue rings.  Human tissue rings were then 

cultured for 14 days prior to mechanical and histological analysis.  The ultimate tensile strength, as 

determined by uniaxial tensile testing, was found to be higher than similarly cultured rings generated from 

rat SMCs.  Similar to our previous observations with rat SMC rings, human SMC rings contained a high 
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cell density but exhibited greater amounts of collagen deposition.  Also, similar to rat SMCs, we found 

that human SMC rings were able to fuse and remodel into tissue tubes.   

 

Due to the lower proliferation rate of the human SMCs (doubling time ~ 6 days compared to <1 day for 

rat SMCs), obtaining large quantities of cells to perform experiments takes a long time.  Therefore, we 

investigated the feasibility of reducing the critical cell number required for aggregation and tissue ring 

formation by modifying our original agarose mold design to decrease the dimensions of the seeding wells.  

This design change resulted in a decrease in the number of human SMCs required to create tissue rings 

from 750,000 to 300,000 cells per ring.  This modification makes the method of creating cell-derived 

rings more “high-throughput”, which is particularly important when studying tissue generated from 

primary cells with low proliferative indices and limited replicative life-spans.  In all, we demonstrated 

that primary human SMCs are capable of self-assembling into strong, scaffold-free tissue in a short 

amount of time.  Further, primary human SMC tissue rings are capable of remodeling and fusing to form 

tissue tubes.  Finally, we improved the overall utility of the aggregated cell ring system by reducing the 

critical number of cells required to make tissue rings, which will ultimately reduce the amount of time 

required to fabricate cell-derived tissue tubes.  Gwyther, T.A., Rolle, M.W.  Spontaneous aggregation and 

self-assembly of human smooth muscle cells to create engineered vascular tissues.  Manuscript in 

preparation.   

 

1.3 Conclusions 

 

This thesis describes the development and validation of a system in which we can rapidly generate 3D 

vascular tissue constructs in a format which is conducive to quantitative structural, mechanical, and 

functional analysis.  We demonstrated that cell-derived tissue rings can be used to evaluate culture 

parameters to optimize tissue growth, and can also be fused together to generate tissue tubes.  This 

suggests that any information we obtain about culture parameters from ring studies may directly translate 

to tissue tube generation.   Further, the tissues rings are derived entirely from cells and the ECM that they 

produce, which enables  direct quantitative assessment of the contributions of cells and/or the ECM to 

vascular structure and function (without the confounding effects of exogenous scaffold materials).  

Finally, we demonstrated that this system can be translated to primary human smooth muscle cells, 

allowing us to more directly model native human vessels.  This cell-aggregated ring system can therefore 

serve as a platform technology to study vascular tissue engineering and regenerative biology.  
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Chapter 2: Background 
 

 

Cardiovascular disease is the leading cause of death in the United States.  Therefore, much research is 

being done to better understand the mechanisms by which vascular disease progresses, to improve disease 

detection, and to discover new treatments to help patients with such diseases.  This chapter discusses 

current work in this field and how it pertains to this thesis.   

 

2.1 Clinical need for vascular grafts 

 

In a healthy adult, the three layers of the vessel wall work together and generate functioning blood vessels 

which contract and relax to maintain proper blood pressure and flow throughout the body.  However, 16 

million Americans have some form of cardiovascular disease where their blood vessels do not behave 

normally.1  No matter the specific event to trigger disease onset, the vascular structure changes as the 

disease progresses.2  For example, in patients with atherosclerosis, lipid- and cholesterol-rich plaques 

build up on the vascular walls, slowly occluding the vessel and generating a less compliant, stiffer 

extracellular matrix (ECM) which ultimately alters blood flow.3-5  In patients with intimal hyperplasia, 

smooth muscle cells (SMCs) directly below the internal elastic lamina begin to proliferate abnormally, 

leading to a thickening of the intima and stenosis or occlusion of the vessel.2  In patients with blood clots, 

injury to the endothelial lining of the blood vessel reveals a “sticky” thrombogenic surface onto which 

platelets adhere, leading to formation of a clot.6  In large vessels, this blood clot, or thrombus, can impede 

blood flow, whereas it can completely block the flow in smaller vessels.3,7  In each of these diseases, the 

end result is the same: a severe decrease in blood flow due to vessel occlusion.   

 

When a vascular disease has progressed to the point where blood flow is severely impeded or completely 

blocked, an intervention is needed.  Percutaneous coronary interventions (PCI, also known as angioplasty) 

combined with stenting are generally the first course of treatment.1  Each year, there are over one million 

PCI procedures performed and 560,000 of those combine PCI with stents.1  However, some patients do 

not respond well to this treatment and have increased intimal thickening which can lead to blockage again 

after surgery.8-10  In cases such as this, open heart surgery is a last resort.  To perform these operations, a 

surgeon uses a donor vessel to bypass around the blockage to restore blood flow downstream.  While any 
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vessel is susceptible to disease, certain vessels, such as those exposed to high flow rates and high 

pressures, as well as branched vessels, are more likely to become diseased.11  One example of a vessel 

prone to disease is the coronary arteries.  Each year, hundreds of thousands of patients undergo coronary 

artery bypass surgery in the United States.12  The most common approach to bypassing blockages in the 

coronary arteries is to utilize an autologous blood vessel as a donor vascular graft.  Common blood 

vessels used as donor grafts are the internal mammary arteries, the radial arteries, or the saphenous 

veins.13,14  However, approximately one third of these patients do not have suitable autologous donor 

vessels due to the extent of vascular disease or previous harvest.  In such patients, surgeons must look to 

alternatives such as allografts (transplants from another human vessel) or xenografts (transplants from 

another species).15,16  Yet, these alternatives are associated with the need for life-long immunosuppressive 

drugs and/or low patency; which often requires follow up surgeries.16,17  Recently, tissue engineering has 

emerged as a promising new approach to generating vascular graft alternatives.18,19  Several different 

methods for engineering tissues have been explored, including seeding cells on natural polymer 

scaffolds,20-24 synthetic polymer scaffolds,25,26 decellularized tissue,27 or creating tissues from cells and 

cell-derived ECM.18,28-33   

 

Each of these approaches is associated with advantages and disadvantages.  For example, synthetic 

polymer scaffolds are an appealing approach because their mechanical properties and degradation 

parameters are easily modified with material choice and manufacturing processes.  Further, these 

materials are consistent from batch to batch.  However, these materials are not normally found in the 

body, and they can elicit unwanted inflammatory responses from the cells because their degradation 

byproducts.34  Natural polymers, such as collagen or fibrin, are able to be rapidly fabricated.  Through 

injection of these polymers with cells, various shapes can be formed quickly.  Further, these proteins are 

found naturally in the body so the cells are able to interact with them.  While some recent studies have 

shown that strong vascular grafts can be generated and successfully implanted using this approach, the 

fabrication of these vessels takes long culture periods, extensive mechanical conditioning and media 

supplementation.35-37   

 

Decellularized tissues are another alternative to engineering vascular grafts.  The cells are removed from 

native vessels and used as a scaffold on which to repopulate with autologous cells.  With this approach, 

the scaffold contains native proteins; however, some of the native structure is washed away with the harsh 

detergents required for decellularization.38  More recently this decellularization approach has been utilized 

in combination with other tissue engineering approaches.39  For example vascular grafts generated from 

human SMCs seeded onto PGA scaffolds which were cultured for 8 weeks then decellularized with 
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detergents prior to implantation in a rat model.40  Finally, another approach has been to generate vascular 

grafts completely from cells and the matrix they produce.29,41  While this approach is appealing because 

the resulting vessels are composed only of cells and their ECM (no exogenous material), the current 

methods require very long culture times or specialized equipment to manufacture.18,41,42  

 

No matter the approach used, all vascular grafts aim to mimic the structural and functional properties of 

native vasculature. 

 

2.2 Vascular structure and function 

 

The cardiovascular system is one of the most important organ systems in the body because it delivers 

blood containing nutrients to all other tissues.  The vasculature is a network of tubes which carries 

oxygenated blood away from the heart and lungs (through arteries) and carries oxygen-deficient blood 

back to the heart and lungs (through veins) for re-oxygenation.  Blood leaves the heart through a large 

muscular artery called the aorta after which it splits into smaller arteries, then arterioles, and continues to 

branch into smaller vessels, which eventually become single cell capillaries.  At this point the surrounding 

tissues have depleted the blood of all nutrients and it begins to flow back to the heart through a series of 

successively larger veins.  Both the arteries and veins vary in size and structural characteristics with 

successive branching throughout the body, but consist of the same three main layers, the tunica adventitia, 

the tunica media, and the tunica intima. The composition and abundance of the individual components 

that make up the layers vary among different vessels according to size and type.  Figure 2.1 shows a 

schematic to demonstrate this concept (modified from Burton et al. 43).   
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Figure 2.1 – Composition of blood vessels.  This schematic shows the major components of the blood vessels 

throughout the circulatory system.  Vessels that have different functions contain different quantities of these primary 
components.  (Modified from 

43
) 

 

2.2.1 Tunica Adventitia 

The tunica adventitia is the outermost layer of connective tissue around the blood vessel and is composed 

primarily of fibroblasts, collagen, and elastin.44,45  This layer provides structure, anchors the vessels to 

nearby tissues, and is partly responsible for vascular tensile strength and stiffness.46  In large arteries, this 

layer contains a vasa vasorum, which is a capillary network that supplies nutrients to the muscular wall of 

the vessel itself.47  While mainly responsible for the structure of the vessel, this layer has also been 

implicated in cell trafficking into and out of the vascular wall, growth and repair of the vessel, as well as 

mediating communication between other vascular cells and their surrounding tissues.48-50   

 

2.2.2 Tunica Media 

The tunica media is the central layer of the blood vessel, which is located between the tunica adventitia 

and the tunica intima.  The media consists of layers of smooth muscle cells (Figure 2.2A, green 

fluorescent cells) separated by elastic lamellae (Figure 2.2B, black stain).51  In general, arteries have a 

much thicker medial layer than veins due to the higher blood pressures in the arterial system.43  Large 

muscular arteries (such as the aorta or the coronary arteries) contain more layers of smooth muscle cells 

and elastic fibers than smaller arteries because these vessels must withstand the highest pressures.43,52  In 

addition to providing structure to the vessel, the medial layer is responsible for the compliance and the 

contraction performed by the blood vessels.53  The layers of elastin found throughout the medial wall 

directly contribute to the compliance and elasticity of the vessel, allowing it to stretch with each increase 

in pressure then recoil back to its initial shape and size.51  The smooth muscle cells in the media are 
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responsible for the contraction and relaxation of the vessel to maintain proper blood flow throughout the 

body.54 

 

 

Figure 2.2 – Structure of the medial layer of a blood vessel.  Rat aorta stained with various smooth muscle cell or 

extracellular matrix stains.  (A) An image to show smooth muscle cells (green = marker for smooth muscle, smooth 

muscle alpha actin), (B) Verhoeff van Gieson staining to show elastic fibers (black stain) within the media layer, (C) 

Masson’s Trichrome to show collagen (blue) and muscle (red), and (D) Alcian Blue to show glycosaminoglycans 

(blue).  Letters indicate the location of the three vascular layers; I=intima, M=media, A=adventitia. Scale=50μm. 

 

2.2.3 Tunica Intima 

The innermost layer of the vessel, the tunica intima, is composed of a monolayer of endothelial cells 

(ECs) adhered to a basement membrane.  The basement membrane is a thin layer of ECM rich in laminin 

and fibronectin, which is deposited by both the endothelial cells and the smooth muscle cells.55,56  The 

ECs are polarized in that they are anchored to the membrane on one side and exposed directly to blood 

flow on the other side.57  ECs have antithrombogenic properties which inhibit platelet adhesion and clot 

formation.58  Because ECs are exposed to blood flow, they are very sensitive to changes in shear stress.  

In response to changes in shear stress ECs can release factors which regulate the contraction and 

relaxation of smooth muscle cells to help maintain constant blood flow.59   

 

2.3 Vascular tissue engineering 

 

From the first published report of blood vessel tissue engineering in the late 1980s,20 engineers have 

looked to native blood vessel structure and function as a model for vascular graft synthesis.  An ideal 

vessel needs to be strong enough to withstand arterial pressures while maintaining compliance.  It also 

needs to be physiologically responsive to vasodilatory and contractile stimulants.  And finally, it needs an 
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antithrombogenic surface to resist platelet adhesion.  While achievement of strength, compliance, 

vasoactivity, and antithrombogenicity requires a harmonious interaction of all three vascular layers, tissue 

engineers most often focus on recapitulating the medial layer due to its more significant contribution to 

vascular mechanical strength and vasoregulatory function than other layers.60,61 Further, the addition of an 

intimal layer in vascular grafts has been a lower priority because grafts without endothelial cells 

combined with immunosuppressive drugs remain patent during in vivo studies.39  Therefore, most 

engineered vascular tissues consist of a media mimetic.   

 

2.3.1 Challenges in engineering the vascular tunica media 

For an engineered vascular media to truly mimic native tissue, it needs to have 1) a high fractional content 

of contractile smooth muscle cells and 2) sufficient tensile strength to withstand arterial pressure while 

maintaining adequate compliance to address pressure fluctuations and sustain normal blood flow. To 

address these criteria, vascular grafts need high cell densities (similar to native tissues) of functionally 

contractile SMCs combined with an ECM rich in collagen and elastic fibers. The abundance of collagen 

within the tissue will aid in providing strength while the elastic fibers will contribute to overall tissue 

compliance.  To date, few engineered vascular grafts have sufficiently achieved these criteria.  

 

2.3.2 Approaches to vascular tissue engineering (scaffold-based vs. cell-derived) 

Among the challenges in building a physiologically functional vascular construct are low cell density,25,62 

low compliance,63 and low contractility.25  These limitations remain, in part, due to the use of scaffolds as 

the structural framework of many grafts.  Scaffolds can dominate graft mechanical properties and limit 

initial cell-seeding densities.25,62 Additionally, rapid scaffold degradation prior to the synthesis of 

sufficiently strong structural ECM can jeopardize graft structural integrity (Figure 2.3A,C).53   

 

Cell-derived tissues are an attractive alternative because they address some of the scaffold-based 

limitations.31,42,64,65  Given that such tissues are created entirely from cells and the matrix they produce, 

they inherently have much higher cell densities which lead to vessels with higher fractional content of 

cells.66  Cell-derived tissues are also able to attain substantial mechanical strength without the need for 

exogenous scaffolds and have even been shown to be stronger than cells in natural polymer scaffolds.66,67  

In traditional scaffold-based approaches, cells need to proliferate to populate the scaffold, degrade and 

remodel the scaffold so that they can migrate throughout, and build up their own ECM (Figure 2.3A).  

However, cell-derived tissue does not need to go through those first two steps of proliferating and 

degrading the scaffold.  Instead, the cells can begin to generate their own ECM immediately (Figure 



Chapter 2- Background Page 22 

 

2.3B).  This can allow cell-derived tissue to generate a strong matrix faster than scaffold-based 

approaches.  Cell-derived tissues have higher mechanical strength,66,67 greater amount of total protein,66 

and greater amount of collagen than tissues generated from cells in biopolymer gels.66  As such, cell-

derived tissues attained burst pressures (3400 mmHg) which exceed that of the human saphenous vein 

(1600 mmHg).65   

 

The culture environment plays an important role in the final characteristics of vascular tissue.  Controlling 

the mechanical and chemical cues that cells are exposed to will enhance their ability to produce ECM and 

ultimately affect cell-derived tissue material properties.  For example, mechanical conditioning, or cyclic 

distension, of vascular grafts has been shown to increase tissue strength and burst pressures to levels 

sufficient for implantation without failure due to bursting.37  Additionally, researchers have capitalized on 

the use of media supplementation with or without mechanical stimulation to increase type I collagen 

content within vascular tissues, resulting in grafts with mechanical properties similar to that of native 

vein.29,37,65  Adding these environmental cues to the culture of cell-derived engineered grafts can enhance 

ECM production and increase the material strength more rapidly (Figure 2.3D), leading to overall shorter 

production times. 
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Figure 2.3 – Material properties depend on matrix synthesis.  In scaffold-based engineering approaches (A), cells 

proliferate to populate the scaffold, degrade the existing matrix (blue) so they can migrate throughout, and begin to 

synthesize their own extracellular matrix (red).   The cell-derived approach starts with a higher cell density (B) 

which allows the cells to begin to generate their own extracellular matrix (red) more rapidly.  A representative graph 

illustrates the need for cells to generate their own extracellular matrix prior to degradation of the scaffold or their 

strength will drop below critical levels (C).  With the alteration of culture conditions (to include media 

supplementation or mechanical conditioning) the rate at which ECM is produced can be increased (D).   
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2.3.3 Limitations of cell-based approaches 

Although cell-derived tissues offer an attractive engineering approach because they inherently have 

increased cell densities and no exogenous material, they are also associated with limitations.  Some 

reasons that cell-derived approaches are not widely used are the large quantity of cells required to 

fabricate tissue and the long culture times required to develop the tissues. 

 

Another challenge limiting the utility of cell-derived tissue is the lack of methods available to easily 

fabricate 3D tissue without the use of scaffolds.  To date, the current approaches include “cell-sheet 

engineering”,18,28,29 “bioprinting”,42,68-70 and the aggregation and fusion of cells-based spheroids.31,71  Cell-

sheet engineering, more recently referred to as tissue engineering by self-assembly (TESA),72,73 has 

become an established approach to generating cell-derived tissue.  This technique involves growing cells 

on tissue culture plastic until they from multiple cell layers and synthesize sufficient ECM so that they are 

robust enough for removal from their culture dishes as intact sheets.  In addition to vascular tissue 

engineering, this approach has other applications such as engineering cornea,74 peridontal 

reconstruction,75 skin substitutes,76 skeletal muscle,77 adipose tissue,78 and connective tissue.78  For 

vascular engineering, fibroblast-derived sheets are wrapped around a central mandrel into a tube-

shape.18,29,41  These wrapped layers are then allowed to fuse together in culture before endothelialization 

and implantation.  The resulting tissues have been met with clinical success, 18 however, there are 

limitations to this method.  The cell sheets take approximately 6-8 weeks before they are removed from 

the flasks.  Then the layers fuse together for 12 additional weeks to mature.  The entire process thus 

requires 3 months production time.  Further, there is manual manipulation required to wrap the sheets into 

tubes, which may lead to difficulties in replicating this method.   

 

Another approach to scaffold-free tissue engineering is the formation (and fusion) of cell spheres.31  With 

this approach, individual cell suspensions are pipetted into droplets which are inverted to create “hanging-

drops”.  The cells then aggregate by gravity in the base of the drop to form a sphere.  These spheres have 

been used as a platform to study cell-derived vascular tissue contraction.71,79  For example, SMC spheroid 

micro-tissues cultured in the presence of vascular endothelial cell growth factor (VEGF) were found to 

express high levels of SMA and MHC and even demonstrate contraction in response to potassium 

chloride, although the force of this contraction was not measured directly due to the spherical geometry of 

the tissues.71  This method of generating cell-derived tissue spheres is not conducive to quantitative 

assessment of tissue mechanics due to its geometry and size.  More recently, these spheres have been used 

for tissue engineering applications where they are fused together to form tubes.31  However, there is a lot 

of manual manipulation required to transfer the quantity of spheres needed to fuse into tissue tubes.      
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In an effort to make cell spheres easier to manipulate, another technique known as “bio-printing” has been 

established.  With this method, a specialized printer is loaded with “bio-ink” or cell aggregates, and the 

bio-ink is literally printed onto a surface to generate the tissue structure of interest.42,68-70   The “ink” can 

be in the form of small cell spheres, or cell-aggregated rods generated from fused spheres.42,69  Similar to 

the cell aggregate approaches, the small sub-units are not conducive to mechanical or functional analysis.  

Most labs do not have access to a “bio-printer” and therefore cannot readily use this method. 

 

As such, a need exists for a method to easily assemble cells into 3D cell-derived tissues.  Further, due to 

the large quantity of cells and the long culture times required for cell-derived vascular tissue fabrication, 

evaluating and optimizing culture conditions for vascular tissue growth on tubular constructs would be an 

expensive, reagent-, and time- consuming endeavor.  Therefore, there is a need for a straight-forward 

method to rapidly generate 3D tissue with fewer cells, which can be used to “screen” the effects of culture 

conditions on the mechanics, structure, and function of vascular tissue.   

 

2.4 Goal of this thesis 

 

To address this need, this thesis describes the development of a new method to generate 3D cell-derived 

tissue rings from aggregated smooth muscle cells and cell-derived ECM.   The ring shape was chosen 

because of its precedent in vascular biomechanics and contraction studies.65,80  Ring segments are often 

removed from vessels to analyze mechanical properties or contractile properties of vascular tissue.25,65  

These engineered ring-shaped structures are ideal for testing the effects of culture parameters on the 

overall tissue composition, biomechanics, and contractile properties.  Further, to demonstrate direct 

translation of the tissue rings to vascular tissue tubes, we show tissue rings can be fused together to form 

tube-shaped constructs. 

 

Overall, engineered vascular tissue offers a valuable alternative to current blood vessel graft materials, but 

may also serve as an in vitro model system to evaluate culture conditions which promote optimal vascular 

tissue growth.  The current tissue engineering systems available are limited by their lack of appropriate 

cell densities, mechanical strength, or contractility.  We believe that by fabricating vascular tissue entirely 

from cells and cell-derived ECM, we will be able to better recapitulate native tissue by increasing cell 

densities and ECM production leading to increased contractility and strength.  The following chapters 

discuss the system we have developed to generate cell-derived vascular tissue rings, and its potential 

utility and impact on the field of vascular engineering.   
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3.1 Introduction 

Over the past three decades, tissue engineering has emerged as a promising approach to create blood 

vessel substitutes for clinical transplantation, as well as model systems to study vascular tissue function in 

vitro.  To date, the majority of strategies for tissue engineered blood vessel (TEBV) synthesis have 

involved seeding cells within scaffolds made from synthetic 1-5 or natural polymers.6-11   Alternatively, 

“scaffold-free” tissue engineering approaches have been explored in which TEBV are fabricated entirely 

from self-assembled cells and cell-derived extracellular matrix (ECM), such as rolling cultured cell sheets 

12,13, organ printing 14,15 or assembly and fusion of clustered cells.16  Autologous vascular grafts produced 

by the cell sheet-based engineering method exhibit comparable tensile strength to human saphenous veins 

17 although graft fabrication and maturation requires 2-3 months.18  However, vascular grafts created with 

this method have already shown clinical promise as arteriovenous fistulas.19    

Despite the promise and increasing number of reports using cell-based approaches to tissue engineering, 

few studies to date have examined the mechanical strength or other functional properties of engineered 

tissue constructs created entirely from cells and cell-derived ECM.  Safe and successful in vivo 

application of TEBV made entirely from cells will depend on achieving adequate strength and mechanical 

stability.  The aim of this study was therefore to develop a simple system to generate strong 3-D tissue 

constructs from aggregated cells within an experimentally useful time frame (1-2 weeks) in a format that 

is conducive to mechanical and physiological testing.  To achieve this aim, we chose to create ring-shaped 

constructs due to their simple geometry and the precedent for using vascular tissue rings for mechanical 

and physiological analysis of blood vessel function.  We predict that this model system will enable 

systematic assessment of the roles of cell source and culture parameters on cell-derived tissue structure 

and function. 
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To create ring-shaped tissue constructs, rat aortic smooth muscle cells (SMCs) were seeded into custom 

round-bottomed, annular wells cast in agarose, with post sizes of 2, 4, or 6 mm (to produce rings with 2, 4 

or 6 mm inner diameters).  Tissue rings were cultured for 8 or 14 days prior to thickness measurements 

and analysis of handling and mechanical properties.  Uniaxial tensile testing was performed to measure 

ultimate tensile strength, stiffness and failure strain, and tissue structure and ECM composition were 

examined by histology.  Finally, we assessed the feasibility of using tissue rings as subunits to generate 

larger, tube-shaped constructs. 

 

3.2 Materials and Methods 

3.2.1 Custom cell culture well fabrication 

A custom polycarbonate mold was created by machining annular wells with inner post diameters of 2, 4, 

and 6 mm (Small Parts, Inc., Miramar, FL).  The wells were machined with round bottoms to facilitate 

cell settling and self-aggregation to form rings.  Polydimethylsiloxane (PDMS; Sylgard 184, Dow 

Corning, Midland, MI) was mixed at a 10:1 ratio (w/w) of base to curing agent, degassed for 2 hours, and 

poured onto the polycarbonate mold.  After curing at 60°C for 4 hours, the PDMS was peeled from the 

mold and used as a template.  Two percent agarose (w/v; Lonza, Rockland, ME) was dissolved in 

Dulbecco’s Modified Eagle Medium (DMEM; Mediatech, Herndon, VA), autoclaved, and poured onto 

the PDMS template to form the wells for cell seeding.  Individual agarose wells were cut away from the 

PDMS template and placed into 6-well plates.  The agarose wells were incubated in DMEM 

supplemented with 10% fetal bovine serum (FBS; PAA, Ontario, Canada) and 1% penicillin/streptomycin 

(Mediatech) and equilibrated in an incubator for 1 hour prior to cell seeding at 37°C and 5% CO2.  A 

schematic of this process is shown in Figure 3.1. 
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Figure 3.1 – Tissue ring production process.  Schematic of tissue ring mold formation (A). PDMS was poured into 

a polycarbonate mold which then served as a template for casting 2% agarose wells.  The agarose was separated into 

individual wells prior to cell seeding and culture.  A cell suspension was then pipetted into agarose wells as shown 

schematically in (B) and (E) from the side and top, respectively (black dots represent individual cells).  The cells 

were allowed to aggregate undisturbed for 48 hours, which resulted in aggregation, contraction and tissue ring 

formation (C) and (F); black bands represent aggregated cells contracted around the post.  Photographs of the side 

view (D) and the top view (G) of a 4 mm ID tissue ring in an agarose well after 8 days in culture.  Scale bars = 4 

mm. 

 

3.2.2 Smooth muscle cell culture and seeding 

Rat aortic SMCs (WKY 3M-22; a cell line derived from smooth muscle cells isolated from 3 month old 

adult male Wistar-Kyoto rat aortas by enzymatic digestion;20,21 generously provided by Dr. Thomas 

Wight) were cultured in DMEM (Mediatech) supplemented with 10% FBS (PAA) and 1% 

penicillin/streptomycin (Mediatech).  At 90% confluence, SMCs were trypsinized and re-suspended in 

culture medium.  The number of SMCs seeded into each well was scaled to the size of the channel (0.66, 

1.3 and 2.0 x 106 cells per well seeded into 2, 4 and 6 mm inner diameter wells, respectively).  Plates were 
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left undisturbed in the incubator for the first 48 hours after seeding, after which the culture medium was 

changed every 48 hours for the duration of the 8 or 14 day culture period.  Four batches of 2, 4 and 6 mm 

rings were produced for mechanical testing studies (two batches harvested at 8 days and 2 batches 

harvested at 14 days) as described below.  An additional two batches (one at each time point) of 4 mm 

rings were created for histological evaluation of tissue rings not subjected to mechanical testing (n=3 

rings per time point).   

3.2.3 Tissue ring thickness measurements 

On the final day of each study, the tissue rings were removed from the agarose wells and transferred to 60 

mm Petri dishes filled with phosphate buffered saline (PBS) at room temperature. The rings were centered 

under a machine vision system (DVT Model 630; DVT Corporation, Atlanta, GA) and thickness 

measurements were acquired in three separate positions along the circumference of the ring using edge 

detection software (Framework 2.4.6, DVT). Three measurements were averaged to yield a mean 

thickness value for each sample.   

3.2.4 Mechanical testing 

Mechanical properties of tissue rings were measured using a uniaxial testing machine (ElectroPuls E1000; 

Instron, Norwood, MA).  The tissue rings were mounted between two small stainless steel pins (referred 

to as “grips”) and submerged in PBS. One grip was connected to an electromagnetic actuator and the 

other to a 1 N (± 1 mN) load cell.  Force (F) and displacement (∆l) were recorded continuously 

throughout the test at a frequency of 10 Hz.  The measured thickness value described above was used to 

calculate the initial cross-sectional area, A, for each ring sample assuming a circular cross-section. A tare 

load of 5 mN was applied to the mounted ring and the gauge length (lg) was recorded. The rings were then 

preconditioned (to eliminate plastic deformation) for 8 cycles from the initial (tare) load to 50 kPa 

engineering stress (F/A) and then pulled to failure at a rate of 10 mm/min.   

Engineering stress and grip-to-grip strain (Δl/lg) data were analyzed using MATLAB (The MathWorks, 

Inc., Natick, MA) to obtain the ultimate tensile strength (UTS), failure strain, maximum tangent modulus 

(MTM, the maximum slope of the stress-strain curve) and toughness (area under the curve).  The MTM is 

the maximum slope of the linear region of the curve and was used in these studies because it 

approximates the failure properties of the material to allow sample to sample comparisons, and compare 

our results to tissue constructs analyzed in other published studies in the Discussion section.  The force at 

failure and the functional stiffness of the rings were also calculated as structural mechanical properties. 
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The force at failure was recorded from the raw force data as a measure of the overall tissue strength. The 

product of the structural stiffness (k, the maximum slope of the force-displacement curve; F/Δl) and the 

gauge length, lg, was calculated as a measure of the functional stiffness of the rings.  This calculation was 

performed to normalize structural stiffness (k) to the initial length of the sample in order to allow a fair 

comparison between samples with different inner diameters (lg~½πdi). This metric, k·lg, can simply be 

obtained by multiplying the MTM of each sample by its initial cross-sectional area i.e., (F/A)/(Δl/lg)·A = 

(F/Δl)·lg = k·lg.   

3.2.5 Histology 

Tissue rings were fixed in 10% neutral buffered formalin and embedded in paraffin. Five micrometer 

sections were cut and adhered to Superfrost Plus slides (VWR, West Chester, PA).  The sections were 

stained with hematoxylin and eosin (H&E; reagents from Richard Allan Scientific, Kalamazoo, MI), 

Movat’s pentachrome (reagents from Sigma, St. Louis, MO), Alcian Blue (American MasterTech 

Scientific, Inc., Lodi, CA), and Fast Green/Picrosirius Red (reagents from Sigma; 0.1% each of Fast 

Green FCF and Direct Red 80 in Picric Acid) and images were acquired on an upright microscope (Leica 

DMLB2) equipped with a digital camera (Leica DFC 480).  Polarized light images of samples stained 

with Picrosirius Red alone were acquired with an inverted microscope (Olympus, IX81) with a digital 

camera (Olympus, Q-Color 5).  A linear polarizer was placed between the light source and the specimen, 

while the analyzer was installed in the light path between the specimen and the camera. The analyzer was 

rotated until maximum light diminishment was obtained prior to image acquisition from tissue samples.  

Under polarized light, small collagen I fibers and collagen III fibers appear green, whereas larger collagen 

I fibers appear yellow 22.   

To visualize nuclei, deparaffinized, rehydrated histological sections were stained with Hoechst 33342 dye 

(10μg/ml; Invitrogen, Eugene, OR) for 3 minutes, rinsed with PBS and coverslipped with aqueous 

mounting medium (Prolong Gold, Invitrogen). 

3.2.6 Tissue ring fusion for cell-derived tube fabrication 

Cell-derived rings were created with 2 mm inner diameters and 500,000 cells per ring using the process 

described above.  The rings were cultured for seven days in agarose molds and then transferred onto 1.9 

mm OD silicone tubes (SMI, Saginaw, MI).  The rings were pushed into tight contact, the silicone was 

clamped into custom polycarbonate holders, and the rings were cultured horizontally for an additional 

seven days.  After a total of 14 days in culture (seven days as individual rings in agarose wells, seven days 
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grouped on silicone tubes) the aggregated tube-shaped samples were removed from the mandrels, fixed, 

and processed for histology. 

3.2.7  Statistics 

Samples from four different batches of rings (two for each time point) were analyzed to obtain sample 

sizes of 5-11 tissue rings per group for mechanical testing (8 day groups included n = 6, 8 and 5 tissue 

ring samples of 2, 4 or 6 mm inner diameter respectively; 14 day groups included n = 6, 9, and 11 

samples per 2, 4 or 6 mm tissue ring group).  The data are reported as mean ± SEM for the tissue ring 

thickness values (3 measurements were obtained per ring sample) and as mean ± SD for mechanical 

properties.  A two-way ANOVA was used to analyze the effects of culture duration and ring inner 

diameter on tissue ring thickness and mechanical properties.  SigmaPlot software (Version 11.0 Systat 

Software, Inc.) was used to perform the ANOVA with Holm-Sidak post hoc analysis to identify 

significant differences (p <0.05) between parameter values. 

 

3.3 Results  

3.3.1 Cells aggregated and formed tissue rings after seeding into agarose wells   

Representative photographs of tissue rings derived from aggregated SMCs are shown in Figure 3.1.  

Within 48 hours after seeding into agarose wells (the earliest time point examined), SMCs spontaneously 

aggregated to form rings that contracted around the center posts of non-adhesive, round-bottomed agarose 

wells.  This aggregation was consistently observed for all rings generated, regardless of inner (post) 

diameter.   

3.3.2 Tissue ring thickness increased with culture time   

Tissue ring thickness increased significantly with culture duration for rings of all sizes, from an average 

of 0.76 mm at 8 days to 0.94 mm at 14 days (19%, 33%, and 22% increase between 8 and 14 days for 2, 

4, and 6 mm rings, respectively; Figure 3.2).  At each time point examined, there were no statistically 

significant differences in thickness between rings of different inner diameters (Figure 3.2).  
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Figure 3.2 – Tissue ring thickness increased with culture time.  Three thickness measurements were obtained for 

each ring sample (values are expressed as mean ± S.E.M., *p<0.05; n = 5-11 per group) cultured for 8 days (white 

bars) or 14 days (black bars). 

 

3.3.3 Tissue rings were mechanically robust after only 8 days of culture   

Stress-strain plots were generated from each of the tissue rings tested and used to calculate mechanical 

properties of tissue rings (a representative plot is shown in Figure 3.3).  Eight days after cell seeding, 

larger tissue rings exhibited greater ultimate tensile strength values (UTS) than smaller rings (169±45 

kPa, 339±131 kPa, and 503±76 kPa for 2, 4 and 6 mm rings, respectively; p<0.05 for all comparisons, 

Figure 3.4A).  Compared to 8 days of culture, the UTS was lower after 14 days (97±30 kPa, 201±63 kPa, 

and 302±42 kPa, a decrease of 43% (n.s.), 41% (p<0.05), and 40% (p<0.05) for 2, 4 and 6 mm rings, 

respectively, Figure 3.4A).  Tissue ring stiffness (MTM) was similarly greatest in the largest rings after 8 

days in culture (0.81±0.28 MPa, 1.21±0.46 MPa, and 1.98±0.4 MPa, respectively, for 2, 4 and 6 mm 

rings; Figure 3.4B).  Similar to the UTS, the MTM values increased with post size by 33% and 59% for 4 

and 6 mm rings compared to the 2 mm rings (p<0.05 for all comparisons between ring diameters, Figure 

3.4B).  Further, the MTM decreased as a function of time in culture to 0.50±0.09 MPa, 0.71±0.20 MPa, 

and 1.08±0.14 MPa for 2, 4 and 6 mm rings at 14 days (a decrease of 39% (n.s.), 41% (p<0.05), and 45% 
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(p<0.05) for 2, 4 and 6 mm rings, respectively, Figure 3.4B).  The toughness, or the ability of the tissue to 

absorb energy before rupture, decreased with culture time and increased with ring diameter in similar 

proportion to the changes in UTS (Figure 3.4C).  

 

Figure 3.3 – Representative stress-strain data. A sample stress-strain curve obtained from a 4 mm tissue ring 
cultured for 8 days is shown with definitions of ultimate tensile strength (UTS), maximum tensile modulus (MTM), 

failure strain and toughness. 

 

The structural properties also varied as a function of ring size.  More force was required for failure of 

large rings (6 mm) than small rings (2 mm) at both time points (Figure 3.4D), and statistically significant 

increases in the functional stiffness metric (k·lg) were observed with increasing ring size (Figure 3.4E). 

However, despite the observed changes in intrinsic properties (UTS and MTM) with culture duration, the 

structural properties were not significantly different at 8 and 14 days.  Further, the failure strain averaged 

0.46 mm/mm for all samples with no statistical differences between sample groups of different size or 

culture duration (Figure 3.4F).  Combined, these results indicated that the rings became thicker at 14 days 

but their structural properties did not change significantly between 8 and 14 days in culture.    
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Figure 3.4 – Mechanical properties of cell-derived vascular tissue rings. Uniaxial tensile test results as a function 

of tissue ring inner diameter: (A) ultimate tensile strength (UTS), (B) modulus (maximum tangent modulus; MTM), 

(C) toughness, (D) force at failure, (E) k*lg (functional stiffness), and (F) failure strain.  All values are reported as 

mean ± S.D.; n = 5-11 per group.  The asterisks indicate statistical differences between sample groups cultured for 

different times (p<0.05).  Numbers above the bars refer to the inner diameters of the sample groups cultured for the 

same time for which values are statistically different (p<0.05). 

 

3.3.4 Structure and cellular morphology of tissue rings   

Representative micrographs of untested 4 mm rings are shown in Figure 3.5.  In tissue rings cultured for 8 

or 14 days, cell density appeared highest along the edges of the rings (in direct contact with cell culture 

medium; Figure 3.5B, E), whereas the number of cells per area appeared to decrease at the centers of the 

rings (Figure 3.5C, F).  In many regions along the circumference of the tissue rings, cells along both the 

inner and outer edges of the rings contained circumferentially aligned cells (Figure 3.5B, E) whereas cells 

at the centers of the tissue rings did not appear aligned (Figure 3.5C, F).  Additionally, the cells at the 
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center of the thickest rings (cultured for 14 days) contained fragmented nuclei, which may indicate tissue 

necrosis (14 day samples; Figure 3.5F).   

 

Figure 3.5 – Tissue ring morphology.  Representative photomicrographs of 4-mm inner diameter tissue rings 

cultured for 8 (A-C) and 14 days (D-F). Low magnification views of the rings stained with H&E (A, D; scale bars= 

100μm) show the overall morphology of the rings.  The boxes indicate the regions of interest magnified in B, E 

(solid boxes) and C, F (dashed boxes).  Scale bars = 50 μm (B, C, E, F). 
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To more closely examine the composition of the tissue rings, histochemical stains were utilized to assess 

the composition of the tissue ring ECM (Figure 3.6).  Movat’s pentachrome and Alcian Blue staining 

showed that the predominant ECM components in the tissue rings after 8 or 14 days in culture are 

glycosaminoglycans (GAGs; indicated by the blue stain, Figure 3.6A, B, E, F).  Collagen deposition was 

also detected and appeared to increase in quantity with culture time (red stain; Figure 3.6C, G).  

Examination of samples stained with Picrosirius Red by polarized light microscopy revealed that collagen 

quantity, circumferential alignment, and fiber size (Figure 3.6D, H) increased with culture duration.   

 

Figure 3.6 – Histochemical assessment of tissue ring ECM composition. Movat’s pentachrome (A, E) and Alcian 

Blue (B, F) staining indicated an abundance of sulfated glycosaminoglycans (blue) at 8 and 14 days of culture.  Fast 
Green/Picrosirius Red staining (C, G) demonstrated the presence of collagen (red) at 8 days and 14 days.  Picrosirius 

Red staining alone observed under polarized light highlights yellow bands of collagen fibers (D, H).  Scale bars = 50 

µm. 

 

3.3.5 Translation of rings to tubes   

To assess the feasibility of using tissue rings as building blocks to create tissue tubes, 2 mm rings cultured 

for 7 days were removed from agarose wells, transferred to silicone tube mandrels (Figure 3.7A) and 
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cultured in close contact (Figure 3.7B).  Similar to 8 and 14 day rings tested in mechanical studies, 7 day 

rings were easy to handle and transfer.  Individual rings become less distinct after 7 days in culture 

(Figure 3.7C), at which time cohesive tube constructs were successfully harvested from the silicone 

mandrels (Figure 3.7D).  Tissue tubes remained intact during subsequent handling and processing for 

histological analysis.  The original ring margins were still clearly visible by histology after 7 days of ring 

fusion (Figure 3.8A) with evidence of tissue reorganization and closure of “gaps” between rings.  Upon 

closer examination of the fusion junctions, the cells along the outer edge of the tube appear to form a 

healthy, contiguous cell layer (Figure 3.8B, C) whereas there are some fragmented nuclei at the centers of 

the tissue and along the central region of the fusion junction (Figure 3.8D, E).  The nuclei on the inner 

edge (adjacent to the silicone mandrel, Figure 3.8F, G) also appear to form a contiguous layer that spans 

adjacent rings.   

 

Figure 3.7 – Tissue ring fusion to form a tube. Tissue rings were cultured for 7 days before transfer onto a 1.9 mm 

OD silicone mandrel (A) where they are placed in close contact (B).  The tubes were then cultured for 7 days (C) 

before removal of the silicone mandrel to harvest the tissue tube (D).  Scale bars = 2 mm 
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Figure 3.8 – Tissue tube morphology. Representative photomicrographs of tissue tubes cultured for a total of 14 

days (7 days as rings, 7 days on silicone mandrels).  The tube appears completely fused, although ring margins are 

visible by H&E staining (A; scale bar = 0.5 mm).  Higher magnification views of the junction between the first two 
rings are highlighted in three parts corresponding to the boxes in panel A; the outer junction (B, C), the middle 

junction (D, E), and the inner junction closest to the silicone tube (F, G) stained with H&E (B, D, F) and Hoechst 

nuclear dye (C, E, G).  Scale bars for B-G = 50 µm. 
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3.4 Discussion  

We have developed and validated a method for fabricating ring-shaped tissue constructs entirely from 

aggregated smooth muscle cells that are strong enough to withstand handling and mechanical testing 

within 8 days of cell seeding.  To our knowledge, this is the first study to report biomechanical evaluation 

of tissue constructs generated in a one-step process from aggregated cells and cell-derived ECM in static 

culture in this time frame.  Our results demonstrate that facilitated cell aggregation can be used to create 

strong 3-D tissue constructs within the diameter range of clinically useful vascular grafts (2 – 6 mm).  

Although the focus of the current study was to characterize the strength and structure of ring-shaped 

constructs as a function of ring size and culture duration, however, we believe that this system will be 

useful for screening the effects of cell source and culture conditions on material properties of cell-derived 

tissues.  Finally, we have provided evidence that these ring constructs can be used as building blocks to 

generate cell-derived tissue tubes, suggesting that information gained from functional ring studies may be 

directly translated to the design and construction of tubular structures such as vascular grafts.    

Overall, cell-derived tissue rings were stronger than ring segments from engineered vascular tissue 

equivalents cultured for similar time periods.  For example, the average UTS (100–500 kPa) far exceeded 

that reported for engineered tissues made with smooth muscle cells cultured statically within collagen (16 

kPa at 8 days11) and collagen/fibrin mixtures (28 kPa at 7 days23). Without growth factor supplementation, 

the strength of our rings at 8 days approached that reported for SMC-populated fibrin gels cultured for 3 

weeks with TGF-β1 and insulin (476 kPa6).  The MTM (0.5-2 MPa) of the cell-derived tissue rings also 

compared favorably to other engineered tissue rings (0.07-5.35 MPa11,24) and tissue ring toughness values 

(12-71 kJ/m3) were also high relative to what has been observed for collagen gel-based model vessels (0.5 

kJ/m3,24).  However, all of these values are low compared to native arteries (e.g., porcine carotid artery 

UTS ~ 6.6 MPa25).  In future studies, optimization of culture conditions to increase ECM synthesis and 

tissue strength may be performed, such as treatment with soluble factors (e.g. sodium ascorbate,26 TGF-

β1,27 and insulin27) or mechanical conditioning3,28 to further strengthen cell-derived tissue rings.    

Previous studies in which the strength and composition of planar cell-derived tissues were compared to 

constructs comprised of an equal number of cells seeded within fibrin or collagen gels demonstrated that 

cell-derived constructs exhibit greater tensile strength and ECM synthesis 26.  Similarly, robust synthesis 

of ECM, comprised primarily of glycosaminoglycans and collagen, may be the basis for the observed 

strength and stiffness of the cell-derived tissue rings.  Quantitative biochemical analysis of ECM 

composition, organization and cross-linking will be performed in future studies to evaluate the molecular 

basis of tissue ring structure and material properties.  
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Ring size had a significant effect on tissue mechanical properties, with lower force at failure, UTS, and 

MTM recorded for the smallest (2 mm rings) at all time points.  Ring wall thickness was consistent across 

samples of different dimensions (cultured for the same duration; Figure 3.2), therefore the length-to-

cross-sectional-area ratio of the constructs at the initial gauge length differed as a function of ring ID.  We 

attempted to account for the effects of ring ID by defining and reporting the functional stiffness (data 

shown in Figure 3.4E).  As stated in the Methods section, this calculation was performed to normalize 

samples with different inner diameters (lg~½πdi).  As a result of the high thickness to ID ratio in smaller 

(2 mm) compared to larger (6 mm) rings, there may be greater bending stiffness associated with the 

smaller rings, therefore a greater load would be applied to the smaller rings to straighten them prior to 

pre-cycling.  Consequently, the smaller rings may be subjected to higher stresses prior to the pull-to-

failure test, which could result in lower recorded UTS and force at failure values in the 2 mm rings.  

However, regardless of the lower strength and modulus compared to larger rings, the 2 mm rings in this 

study were mechanically robust compared to those reported in other studies of engineered vascular tissue, 

as detailed above, and tissue ring fusion studies demonstrated that 2 mm rings cultured for 7 days were 

strong enough to withstand transfer and manipulation on silicone tubes.  Histologically, the tissue rings 

were indistinguishable on the basis of size at a given time point (data not shown), and thickness and 

failure strain values were not statistically different.      

Tissue ring wall thicknesses were greater (up to 0.94 mm after 14 days in culture) than those reported for 

other cell-derived tissue constructs.  This may be partially explained by the high density of cell seeding 

used to form rings and greater proliferation rate of the rat cell line used in this study compared to primary 

human cells.  By comparison, cell-derived tissue sheets generated from human dermal fibroblasts seeded 

at 10,000 cells/cm2 and cultured for 6 weeks were 43 µm thick (more than 20-fold thinner), which 

increased by 5 µm per week thereafter (up to 15 weeks 18).  Thicker constructs (125-395 µm) were created 

from human dermal fibroblasts within 3 weeks by seeding at a higher density (2 million cells seeded in a 

4.5 cm2 well) and cultured in chemically-defined medium 26.  In our tissues, high thicknesses may have 

contributed to necrosis observed at the tissue centers.  This necrosis may have contributed to a reduction 

in structural integrity due to a loss of cells, which may partially explain the observed decrease in UTS 

despite an increase in ring thickness between days 8 and 14.  The polarized light microscopy data 

suggested that collagen synthesis and remodeling increased in the tissue rings between days 8 and 14, 

although this did not coincide with an increase in tissue strength or stiffness.  Interestingly, preliminary 

studies suggest that culturing tissue rings in culture medium supplemented with sodium ascorbate and 

amino caproic acid, conditions that have been shown to increase collagen synthesis and cross-linking, also 

improved tissue ring strength and stiffness (data not shown).  It may be possible to optimize culture 
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conditions (by decreasing or eliminating serum, adding growth factors or mechanical stimulation, as 

described above) to make tissue rings stronger without increasing thickness. 

Given the large number of cells needed to generate four batches of tissue rings in three different sizes to 

establish the basic parameters (e.g., initial cell seeding number per well, culture duration, mechanical 

testing protocol, etc.) for creating and analyzing cell-derived tissue rings, we chose to use the WKY 3M-

22 rat smooth muscle cell line for the experiments reported in this study.  However, we recently applied 

the same techniques to successfully assemble primary human coronary artery SMCs into cell-derived 

tissue rings, which were then cultured for 14 days. Despite their slower doubling time, in preliminary 

experiments the human SMC rings exhibited greater mechanical strength than the rat SMCs reported here 

(data not shown), thereby demonstrating that this cell aggregation system can be applied to create tissue 

rings from primary cells.  Ongoing studies are focused on histological and biochemical analysis of the 

human SMC tissue constructs. 

An important difference between the tissue ring constructs and vascular ring segments from native 

arteries is the lack of an endothelium or adventitia.  Like most in vitro reports of TEBV construction, our 

study focused on a single cell type, smooth muscle cells, to mimic the vascular media.  Recent studies 

have shown that cell sheet-based vascular grafts comprised of both smooth muscle cells and fibroblasts 

exhibit greater ECM synthesis and higher burst pressures compared to constructs made from smooth 

muscle cells alone 13.  Furthermore, microtissue aggregation studies have shown that endothelial cells can 

co-aggregate with fibroblasts to form spheroids 16,29,30.  It may therefore be possible to add fibroblasts and 

endothelial cells to smooth muscle cells to increase strength and more closely mimic blood vessel 

structure and function in cell-derived tissue rings. 

Upon successful fabrication and handling of cell-based ring constructs, it became evident that cell-derived 

tissue rings could be used as building blocks to form tissue tubes.  Here we report proof-of-concept that 

tissue rings cultured in close proximity fuse to form a cohesive tissue tube within 14 days (7 days for ring 

fabrication and 7 days for fusion).  Culturing the tubes for an extended period may result in further fusion 

and elimination of ring boundaries.  A recent study by Livoti and Morgan showed that toroid microtissues 

(600 µm inner diameter) self-assembled from H35 hepatocytes cultured for 48 hours could be stacked and 

cultured, with fusion of adjacent toroids within 72 hours 31.  The ease with which 2 mm smooth muscle 

cell rings could be handled after 7 days in our study suggests that it may be possible to harvest our rings 

even earlier to accelerate the process of graft fabrication.  Finally, histological evaluation demonstrated 

that individual rings had fused to form a contiguous tissue mass within 7 days.  However, burst pressure 
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analysis will be a critical benchmark to determine the feasibility of transplanting vascular grafts created 

with this method.   

In conclusion, we have shown that tissue constructs that are suitable for manipulation and functional 

testing can be created from aggregated smooth muscle cells within a few days.  Although these rings are 

not as strong as ring segments of native blood vessels or tissue engineered blood vessels generated from 

cultured cell sheets for 2-3 months, their strength compares favorably to other engineered tissue 

constructs reported to date.  Given the short time frame and simplicity of this system (which relies on 

commercially available materials and methods), it may enable systematic assessment of a variety of 

parameters on tissue structure and function (e.g., cell source, culture medium composition, dynamic 

culture regimens).  The ring-shaped geometry of these constructs is useful for mechanical testing, and 

based on the ease with which they could be mounted onto wire grips, may also be used in a myograph 

system to measure tissue responses to pharmacologic agents.  This system has potential as a new 3-D in 

vitro model of vascular tissue function, and a versatile tool to advance development of cell-derived 

vascular grafts.  
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Chapter 4: Fabrication of cell-derived vascular tissue 

tubes using a modular tissue engineering approach 

 

4.1 Introduction 

 

In previous studies, we demonstrated that cell-aggregated tissue rings can be generated in as little as 8 

days and are strong enough for handling and subsequent uniaxial tensile testing.1  We showed that these 

rings are easy to create, and when pressed end to end and cultured for up to 7 days, they fuse to form 

tissue tubes.  Although cohesive tubes were observed (indicated by their ability to remain intact 

throughout handling), ring margins remained visible by histology which suggested that tissue fusion was 

incomplete.   

 

In an effort to improve ring fusion, we explored self-assembled cell ring culture parameters that could be 

manipulated in order to enhance the cell rings’ ability to fuse together.  Published studies have suggested 

that “less mature” cell aggregates fuse together more rapidly than “more mature” tissues.2  For example, 

fusion of small cell spheroid aggregates (~100-300 μm in diameter) into rods occurred within 24 hours 

when spheroids were cultured for only one day prior to fusion, whereas spheroids cultured for seven days 

exhibited minimal fusion at the 24 hour time point.2  One of the motivations for the current study was to 

explore this concept toward the goal of enhancing tissue ring fusion, decreasing the required culture 

duration, and ultimately building a more cohesive cell-derived vascular tissue construct from self-

assembled cell ring building blocks. Therefore, the first goal of the current work was to investigate the 

effect of ring culture duration on fusion of the tissue rings into tubes.  To do this, we cultured tissue rings 

for 1, 3, 5, or 7 days prior to fusion, and measured how quickly the rings remodeled to form tubes.1  We 

hypothesized that decreasing the ring culture duration prior to stacking would decrease the length of time 

required to generate tissue tubes, and enhance cell ring fusion.  

 

Additionally, we explored another unique attribute of this modular system, which is the ability to spatially 

control cell placement within the tubes and generate complex chimeric tissue structures.  Many vascular 

diseases (including aneurysm and plaque formation) affect certain regions of blood vessels with greater 

frequency. Within these regions, the SMC phenotype and ECM may be altered by either synthesis of 

unwanted molecules such as lipids and collagen, or degradation of the existing matrix molecules such as 
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elastin.3,4  Using the modular stacking approach enabled by the ring system, we hypothesized that (in 

principle) we can introduce and retain spatially distinct regions within the tissue tubes, derived from 

different cellular origins along the tube length.   

 

Finally, atherosclerosis and intimal thickening has been shown to occur more frequently at branching 

points within vessels.5,6  However, these regions remain largely unstudied due to the complexity in their 

structure and the difficulty involved in fabricating and modeling living branched tissues in vitro.  The 

generation of branched structures has proven especially challenging to model with cell-derived 

approaches because of the difficulty in getting cells to self-assemble into complex geometries.  Recent 

studies have demonstrated that bio-printing can be used to generate branched vessel networks,7,8 but this 

requires custom, specialized equipment not readily available to all researchers.  Due to the modular 

characteristics of our ring-based system, one of the goals of this study was to build structures with 

complicated geometries by assembling the ring subunits into different shapes, such as “Y”-shaped tubes.  

These branched vessels have potential applications as implantable vascular networks or as in vitro models 

to study disease progression at vessel bifurcations.   

 

In the present study, we describe a method for generating fully biological small-diameter vascular tissue 

constructs completely from cells and the matrix they produce in a short amount of time (8 - 14 days).  We 

show that fusion of self-assembled cell ring building blocks is enhanced by decreasing their initial culture 

length, and that we can capitalize on the “modular” aspects of the system by controlling spatial location 

and building complex “Y”-shaped tubes.   

 

4.2 Methods 

4.2.1 Cell culture 

Rat aortic SMCs (WKY 3M-22; a cell line derived from SMCs isolated from 3-month-old adult male 

Wistar-Kyoto rat aortas by enzymatic digestion,9,10 generously provided by Dr. Thomas Wight, referred to 

as rat SMCs) were cultured in Dulbecco’s modified Eagle medium (DMEM, Mediatech) supplemented 

with 10% FBS (PAA) and 1% penicillin/streptomycin (Mediatech).  All cells were passaged at 90% 

confluence prior to tissue ring formation.   
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4.2.2 Tissue ring fabrication 

Cell-derived tissue rings were formed as described in Gwyther et al.1,11  Briefly, polycarbonate molds 

were custom machined with round-bottomed annular wells with inner post diameters of 2 mm.  

Polydimethylsiloxane (PDMS) was then poured over the mold to form a negative template.  Two percent 

agarose dissolved in DMEM was autoclaved and poured onto the PDMS template to form the seeding 

wells.  The wells were cut apart and placed in each well of a 12 well plate.  Media was added around the 

outside of the well to equilibrate.  To each well, 100 µL of cell suspension was added (at a concentration 

of 5x106 cells/ml).  Wells were left undisturbed for one day to allow the cells to settle and aggregate.  

After one day, medium was exchanged, and complete medium exchange was performed every two days 

for the duration of culture.   

 

4.2.3 Tissue tube fusion 

Tissue rings were removed from their agarose molds after 1, 3, 5, or 7 days in culture.  The rings were 

then transferred onto silicone tubing mandrels (SMI, Saginaw, MI – O.D. 1.9 mm).  In initial studies, the 

silicone mandrel was made by gluing the tip of a 20G needle (Becton Dickinson, NJ) into the end of the 

tube using sterile silicone adhesive ((Silastic, Dow Corning, MI).  We found that a pointed tip, rather than 

a blunt end, made it easier to transfer the rings onto the silicone mandrels.  In subsequent studies, we 

found that cutting the silicone tubes at an angle to create beveled ends resulted in a sufficiently narrow 

point to facilitate ring mounting more simply and consistently.11  Regardless of the silicone tube mounting 

method, the rings were placed in contact with one another by pushing the stacked rings back and forth as 

a group, and the silicone mandrels were secured into custom polycarbonate holders.  All tubes were then 

allowed to fuse for 7 additional days (referred to as “fusion culture”).  All sample groups were labeled 

according to the number of days in ring culture, followed by the number of days the rings were in fusion 

culture (ex. group 3-7 means the sample was cultured for 3 days as rings followed by 7 days in fusion 

culture, see Figure 4.1).   
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Figure 4.1 – Schematic indicating tissue tube culture groups.  Rings were cultured for 1, 3, 5, or 7 days (“ring 

culture”), followed by an additional 7 days in fusion culture for all groups.  Groups are named as: days in ring 

culture – days in fusion culture (ex. Group 1-7 = 1 day in ring culture followed by 7 days in fusion culture). 

 

4.2.4 Tube fusion on porous mandrels 

In a follow up study, the same procedure was used with a different mandrel material.  The mandrel 

material used was an electrospun blended co-polymer of 7% polyurethane (PU) and 3% polyethylene 

terephthalate (PET); electrospun onto a 1mm-thick cylindrical mandrel (final O.D. ~2mm), generously 

donated by BioSurfaces, Inc.  Twelve rings were harvested at one day and stacked onto an electrospun 

blended co-polymer mandrel cut with a beveled end.  The tubes were clamped into custom polycarbonate 

tube holding devices and cultured for 7 days.11 

 

4.2.5 Fusion angle measurements 

To measure the rate of fusion between tissue rings, three rings were placed in contact on silicone 

mandrels.  A Leica upright microscope (model DMLB2) with a digital camera (Leica DFC 480) was used 

to take low magnification (5X) phase contrast images each day for one week.  Image J software (NIH) 

was used to measure the angle between rings (described as fusion angle),12 the thickness of the tube, and 

the length of the tube (measurements indicated in Figure 4.3).  All four angle measurements were 

averaged together to yield a fusion angle measurement for each tube sample per time point.  Similarly, 

two thickness measurements were averaged to yield a mean thickness value for each tube per time point, 

and two length measurements were averaged to yield a single mean length value per tube per time point.   
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4.2.6 Burst pressure testing 

Tissue tubes were harvested after a total of 8 days in culture (1 day in ring culture, followed by 7 days in 

fusion culture).  The tubes were removed from the silicone mandrel and mounted onto 22 gauge blunt end 

needles (Small Parts).  These needles were secured into a custom burst pressure device.13  The tissue tube 

was then filled with saline at a constant rate of 0.5 ml/min and the pressure inside the tube was monitored 

by a pressure transducer (PX26-100, Omega) and displayed on a panel meter (PX300-15GV, Omega).  

The peak pressure at failure was recorded as the burst pressure.   

 

4.2.7 Histology and immunohistochemistry 

Tissue samples were fixed in 10% neutral buffered formalin, processed, and embedded in paraffin.  Five 

micron sections were cut and adhered to positively charged slides (Superfrost Plus, VWR).  The slides 

were then stained with H&E (Newcomers Supply), Fast Green/Picrosirius Red (0.1% each of Fast Green 

and Direct Red 80 in picric acid, Sigma), and Alcian Blue (Newcomers Supply).  For 

immunohistochemical analysis of the tissues, the slides were deparaffinized and rehydrated prior to heat-

induced epitope retrieval (heated in pressure cooker for 5 minutes in Tris/EDTA buffer, pH 9.0) and 

blocking in serum for 1 hour.  The slides were then exposed to a primary antibody against proliferating 

cell nuclear antigen (PCNA, Abcam, 1:3000 dilution) for 1 hour.  This was followed by green fluorescent 

labeling with secondary antibodies conjugated to AlexaFluor 488 (Invitrogen, 1:400 dilution).  All slides 

were counterstained with Hoechst (Invitrogen) and mounted with Prolong Gold (Invitrogen).  Images 

were acquired using an upright microscope (Leica DMLB2) with a digital camera (Leica DFC 480).   

 

For quantification of the relative nuclear density throughout the thickness of the tubes, 40x magnification 

images were acquired of Hoechst-stained samples, at the outer and inner edges of the fused tube samples.  

Eight images were taken from each tube, four on the outer edge and four along the inner edge.  These 

images were then binarized in ImageJ software (NIH), and the percent area occupied by nuclei was 

calculated.  There were 28-40 images analyzed and averaged for each the inner and outer edges.   

 

The images were taken as close to the edge of the tube as possible.  In some samples there were small 

gaps of non-tissue area (example in the top edge of Figure 4.6B).  These areas were not accounted for in 

the analysis.  These results were averaged together to yield a nuclear density for the outer and the inner 

edges as a mean ± SD of percent nuclei coverage.   

 



Chapter 4 - Fabrication of cell-derived vascular tissue tubes using a modular tissue engineering approach Page 53 

 

For quantification of the PCNA-positive region, fluorescent images were taken in the green channel 

(PCNA staining) and the blue channel (Hoechst counterstain).  The images were merged together in 

Image J software.  The depth of the PCNA-positive region was measured as well as the overall thickness 

of the tissue tube.  Measurements were taken for each side of the tube (two measurements per tube) and 

averaged together.  The data is represented as both the average depth of PCNA-positive cells per 

experimental group ± S.D. and also normalized to the percent thickness of the PCNA-positive region (i.e. 

depth of PCNA-positive region divided by the total thickness) ± S.D.   

 

4.2.8 Cell tracking 

Rat SMCs were pre-labeled with Vybrant® CFDA SE (Invitrogen) prior to ring formation to track the 

distribution of cells in the fused rings.  Vybrant was added to a plate of rat SMCs at a concentration of 10 

µM for 15 minutes (dye was added 45 minutes prior to rat SMC trypsinization and seeding to form rings).  

One day after ring formation, the rings were removed from the agarose molds and transferred onto 

silicone mandrels such that one unlabeled ring contacted one Vybrant-labeled ring.  Two samples were 

generated per experiment and this experiment was performed twice.  The rings were then allowed to 

culture for an additional 1 or 3 days before both phase and fluorescent images were acquired with a Leica 

DMLB2 equipped with a digital camera (Leica DFC 480).      

 

4.2.9 Generation of branched vessels 

To generate branched vessels, custom Y-shaped mandrels were made from three pieces of silicone tubing 

(Specialty Manufacturing, Inc., Saginaw, MI).  The base portion was 4 mm OD (beveled on one end), and 

the two branches were 2 mm OD (beveled on both ends).  One beveled end of each 2 mm OD piece of 

silicone tubing was placed facing each other and inserted into the flat end of the 4 mm OD tube.  The 

branched mandrel was then cleaned and autoclaved before use.  To create the branched vessels, four-eight 

2 mm rings were transferred onto each of the small branches of the mandrel.  Four-eight 4 mm rings were 

then transferred onto the 4 mm OD branch of the y-shaped mandrel.  All rings were moved in contact 

with one another and allowed to fuse in culture for 7 days prior to removal of the silicone tubing 

mandrels.  Low magnification images of the branched tubes were obtained with a Leica EZ4D 

stereomicroscope.  A schematic of the branched tube generation process is shown in Figure 4.2 below. 
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Figure 4.2 – Schematic of branched vessel generation by self-assembled cell ring fusion.  The Y-shaped silicone 

mandrel was generated from two 2 mm OD tubes placed in the end of one 4mm OD tube.  One-day-old rings of 

corresponding sizes were placed on the three branches of the mandrel, stacked together, and allowed to culture for 7 

days for ring fusion and branched tissue tube formation. 

 

4.2.10 Statistics 

For fusion studies, samples from two different experiments were pooled and analyzed to obtain sample 

sizes of seven to ten tissue tubes per group (3-7 group included seven tubes, 5-7 group included seven 

tubes, and 7-7 group included ten tubes).  In the follow-up study comparing 1-7 tubes to 3-7 tubes, four 

tubes of each type were measured and analyzed.  Data is reported as mean ± SEM for the fusion angle 

studies.  A two-way ANOVA with Holm-Sidak post hoc analysis was used to analyze differences in 

fusion parameters as a function of experimental group (3-7, 5-7, or 7-7, n=7-10) and day in culture.   A 

two-way ANOVA was also used to analyze the differences in the relative percent nuclei coverage as a 

function of tissue tube wall position and experimental group (3-7, 5-7, and 7-7, n=7-10).  Finally, a one-

way ANOVA was used to evaluate significant differences in PCNA staining as a function of experimental 

group (3-7, 5-7, and 7-7, n=7-10).  SigmaPlot software (version 11.0, Systat Software Inc., Chicago, IL) 

was used to perform the ANOVA with Holm-Sidak post hoc analysis to identify significant differences 

(p<0.05) between parameter values.   

 

4.3 Results 

4.3.1 Increased rate of fusion with decreased ring culture duration  

The goal of the first part of this study was to determine the effect of tissue ring culture duration on ring 

fusion kinetics.  To do this, rings were removed from culture after 3, 5, or 7 days, transferred to silicone 

mandrel supports, and cultured in close contact for 7 days to allow fusion and tube formation.  Fusion was 

measured as the angle between adjacent rings.  All tissue rings were easily removed from their agarose 
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wells at every time point and for transfer onto the silicone mandrels.  The fusion angle increased each day 

of culture for each group (3-7, 5-7, and 7-7, Figure 4.3A).  The fusion angle of the 7-7 group was 

statistically lower than either the 3-7 or 5-7 groups until day 7 of fusion culture (p<0.05).  The 3-7 group 

and the 5-7 group were not statistically different from each other at any time point during the study.   

 

Throughout this experiment, the thickness and the length of the tubes were also monitored (Figure 4.3B, 

C).  The thickness of each tube increased with time; with the 7-7 group exhibiting the greatest average 

thickness of the three groups.  The starting thickness of rings cultured for 7 days were thicker than rings 

cultured for 3 days, consistent with our previous observation that thickness of the tissue rings increases 

with culture time.1  The length of the tubes remained fairly constant throughout culture; however, tissue 

tubes in the 7-7 group were statistically longer than the tissue tubes in the 3-7 and 5-7 sample groups at 

all time points (this may have been due to the greater initial thickness of the 7 day rings).   

  

Figure 4.3 – Measurement of tissue tube fusion as a function of culture duration. Three rings were removed at 3, 
5, or 7 days in culture and placed in contact on a silicone tube (A).  The angle between rings (ө), length (L), and 

thickness (T) were obtained for each sample for each day of culture. The image (A) shows 7-day-old rings stacked 

onto a silicone tube. Scale bar=0.5mm.  Graphs of fusion angle (B), length (C), and thickness (D) are reported as a 
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function of time in culture.  All values are reported as mean ± SEM, n=7-10 tube samples per group.  * indicates 

statistical differences between 3-7 and 7-7 groups and ** between 5-7 and 7-7 groups, ∆ indicates statistical 

significance between all groups.   

 

4.3.2 Structure and morphology of fused tissue tubes 

To further investigate the ability of self-assembled cell rings to fuse into seamless tissue tubes, histology 

was performed.  Representative photomicrographs of the fused tissue tubes are shown in Figure 4.4.  

Hematoxylin and eosin (H&E) staining indicated that all groups showed evidence of fusion between cell 

rings; however, the individual ring margins remained visible in all samples.  Each of the tissues contained 

a high cell density throughout.  To more closely examine the structure and composition of the tubes, 

additional histochemical stains were performed.  All fused tube samples stained positively for 

glycosaminoglycans, visible by the blue color in Alcian Blue staining (Figure 4.5A, D, G).  Further, Fast 

Green/ Picrosirius Red staining showed some noticeable collagen deposition within the tissues (red stain 

in Figure 4.5B, E, H).  The collagen appeared to be primarily located within the centers of the original 

rings (and less prominent at the border regions between rings), and closer to the silicone mandrel than to 

the outside of the tissue (Figure 4.5B, E, H). 
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Figure 4.4 – Representative tissue tube morphology of 3-7, 5-7, and 7-7 tubes.  Low magnification longitudinal 

cross-sectional views of H&E-stained tissue tubes show fusion of three tissue rings after 7 days in fusion culture (A, 

D, G).  All tubes are oriented such that the bottom edge of the tissue tube wall was adjacent to the silicone mandrel, 

and the top edge was directly in contact with the culture medium.  Higher magnification views show one fusion 

point at the outer surfaces (B, E, H) and the inner surfaces (C, F, I) of the tissue tubes.  The solid boxes correspond 

to regions magnified in B, E, and H, whereas the dotted boxes correspond to regions magnified in C, F, and I.  

Images are representative of n=7-10 samples per group. Scale bars = 250 μm (A, D, G) and 100 μm (B, C, E, F, H, I) 
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Figure 4.5 – Histochemical assessment of fused tissue tube extracellular matrix.  Representative 

photomicrographs of 3-7, 5-7, and 7-7 tubes.  Sections stained with Alcian Blue (A, C, E, 

blue=glycosaminoglycans) and Fast Green/Picrosirius Red (B, D, F, red=collagen). All tubes are oriented such that 

the bottom edge is adjacent to the silicone mandrel and the top edge is directly in contact with the culture medium.   
For all groups n= 7-10 samples, Scale bars = 250 μm 

 

4.3.3 Proliferating cells located along the outer edge of fused tubes 

Although there was a high cell density throughout the tissue tube, there appeared to be an increase in the 

number of cells per area along the outer edge and also at the ring borders where the individual rings have 

fused together.  To quantify this, images of Hoechst-stained slides were acquired from four different 

locations along the inner (adjacent to the silicone tube) and outer edges of each tube sample.  We then 

calculated the percent nuclei coverage (amount of Hoechst signal) per image area in the different regions.  

The results suggest that there is an increase in Hoechst signal along the outer edge of the tubes compared 

to the inner edge (Figure 4.6A), suggesting that more cells are located along the outer edges of the tubes.  
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Additionally, the nuclei appeared rounded and intact along the outer edge, compared to the inner edge 

where the nuclei appeared fragmented (Figure 4.6B and C). 

   

 

Figure 4.6 – Quantification of relative Hoechst signal per image area.  Relative Hoechst signal was compared in 

regions along the inner and outer edge of the tubes.   Percent area coverage of nuclei in images acquired from along 

the inner edge and along the outer edge in 3-7, 5-7, and 7-7 tubes, A.  (data represented as mean±S.D., n=7-10, four 

measurements per sample)  Representative images are shown in B and C of Hoechst-stained cells at the outer edge 
and the inner edge of a 7-7 tube.  Scale = 50μm. 

 

 

To further investigate whether the outer layers of the tubes contained proliferating cells, we stained the 

samples with PCNA.   The staining showed that the outer edges and ends of the tissue tubes where the 

cells were in direct contact with the media contained PCNA-positive cells in all tubes (Figure 4.7 B, C, 

and D).  To compare the groups, the distance from the outer edge of the tissue tube wall to the “deepest” 

PCNA-positive cells was measured.  These values are displayed in Figure 4.7A.  To normalize these 

tissue “depths”, we divided by the total wall thickness of the tissue tube (Figure 4.7B).  This provided a 

comparison of the thickness of the proliferative band of cells between the groups.  There were no 

statistical differences found between experimental groups when analyzed either as PCNA-positive depth 

(Figure 4.7A) or when normalized to thickness (Figure 4.7B).  The proliferating cells occupied between 

10-15% of the total thickness of the tissue tubes in all groups (Figure 4.7B) 
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Figure 4.7 – PCNA-positive cell region displayed as a depth and a percentage of tube thickness. The distance of 

PCNA-positive cellular region expressed as a depth (A) and also normalized to tube thickness (B).  No statistical 

differences were observed (n=7-10, mean±SD).  Sample images are shown in B-H of a 3-7, 5-7, and 7-7 tube.  

Example measurements are shown in B with the green line indicating the thickness of the PCNA-positive cells and 
the blue indicating the tube thickness. Scale= 0.5mm.  Higher magnification images of the PCNA-positive region 

are shown in F, G, and H.  Scale = 50 μm. 

 

4.3.4 Tissue tubes form in as little as 8 days 

Based on the observation that the 3 day-old rings showed improved fusion compared to 5 or 7 day-old 

rings, we aimed to see if we could remove rings from culture as early as one day after cell seeding.  Rings 

harvested after only one day after cell seeding were sufficiently robust for removal from the agarose 

wells, and could be transferred onto silicone mandrels.  Fusion angle data showed that there were no 

statistical differences in the rate at which the 1-7 tubes fused compared to the 3-7 tubes (Figure 4.8A).  

However, H&E-stained sections showed that 1-day-old rings fused into near seamless tubes after 7 days 
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in fusion culture.  Whereas the ring margins were still visible in the 3-7 tubes, they are barely 

distinguishable in the 1-7 tubes (Figure 4.8B).   

 

 

Figure 4.8 – Fusion angle measurements in 1-7 and 3-7 tubes.  Graph of fusion angle measurements as a function 

of the number of days in culture (A).  Data is represented as mean ± SEM, n=3, no statistically significant 

differences were found between groups.  Representative photomicrographs of 1-7 and 3-7 tubes stained with H&E 

(B).  Scale = 0.5mm 

 

4.3.5 Smooth muscle cells retain their spatial position within rings with fusion 

Based on our observations of tissue ring fusion, we were interested in determining whether cell position 

was retained within fused tubes.  This would indicate the feasibility of creating tubes with distinct tissue 

regions along the tube length.  To test this hypothesis, one-day-old tissue rings were created from green 

fluorescent, pre-labeled cells (as described in Methods section) and cultured in contact with one-day-old 

tissue rings formed from unlabeled cells.  These rings were allowed to fuse, and monitored by microscopy 

over time.  Fluorescent imaging of the stacked rings after one day of fusion culture (1-1 indicates one day 

old rings after one day in fusion culture) showed a strong green fluorescence signal in the ring that was 

formed from pre-labeled cells and no signal from the unlabeled ring.  The margin between the rings 

became blurred, indicating some possible mixing of the cells at the junction.  Although the fluorescent 

signal was not as bright overall, the pattern was retained in the fused rings even after 3 days of fusion 

culture (Figure 4.9). 
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Figure 4.9 – Spatial retention of cell position throughout ring fusion.  Photomicrographs of fusion between 
unlabeled and fluorescently pre-labeled tissue rings.  Phase contrast (A) and fluorescent (C) images of a 1-1 tissue 

tube.  Images of a different 1-3 tissue tube acquired by phase contrast (B) and fluorescence (D).  Cell-aggregated 

rings pre-labeled with a green cell labeling dye (Vybrant CFDA green fluorescent dye) are on the right adjacent to 

unlabeled rings on the left in each image.  Scale = 100μm. 

 

4.3.6 Assessment of fused tissue tube strength 

To test whether ring fusion resulted in strong tissue tubes, we conducted burst pressure testing of fused 

tissue tubes.  Our previous fused tubes consisted of three tissue rings, however, tubes must be at least 

approximately 5-7mm in length for mounting on the burst pressure testing device.  Therefore, twelve, 

one-day-old rings were stacked on silicone mandrels and cultured as tubes for 7 days (n=5 tissue tubes).  

These tubes were then removed from the mandrels, mounted onto blunt end needles, and pressurized with 

saline until failure (Figure 4.10A).  Only one out of three samples was successfully tested to failure, 

which reached a maximum pressure of 48 mmHg.  Complete tests could not be performed on the other 

samples due to difficulties with tube mounting and attachment.  The mode of tube failure for the 

successful test was via longitudinal splitting rather than tearing or separation between rings (Figure 

4.10D).   
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Figure 4.10 – Burst pressure testing process.  (A) Twelve one-day old rings were stacked together, allowed to fuse 

for 7 days, and pressurized with saline until failure.  Photos of a twelve ring 1-7 tube on silicone mandrel (B), a 1-7 

tube mounted on blunt needles for burst pressure testing (C), and a burst-tested tube that failed longitudinally down 

the length (D).  Scale = 1cm. 

 

4.3.7 Histology of the tissue tube and new alternative to mandrel material 

Histology was performed on all tested (n=3) and untested (n=2) 1-7 tissue tube samples to evaluate tissue 

morphology.  Hematoxylin and eosin staining indicated that complete fusion of the tubes was achieved; 

however, the long tubes appeared to have an altered morphology in the area adjacent to the silicone 

mandrel (Figure 4.11).  The tissue appeared less stable and pulled apart during the cutting and staining in 

histology.  The nuclei of the cells appeared rounded and smaller than the nuclei in the outer region.  This 

observation was in contrast to the short (3 stacked rings) 1-7 tubes grown for the fusion angle studies 

(section 4.3.4) in which the tubes appeared fully fused, healthy and viable throughout the tissue (1-7 tube 

from Figure 4.8B).  The necrosis observed along the inner edge adjacent to the silicone mandrel in the 

tubes may have been a result of the increase in tube length from three rings to 12 rings.   We wanted to 

determine if we could increase the overall tissue health if we replaced the silicone mandrel with a porous 

mandrel through which media diffusion would occur.   
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Figure 4.11 – Tissue morphology of 12-ring long, 1-7 tissue tube.  Hematoxylin and Eosin staining showed tissue 

tube structure of a long, 12-ring tube (A).  A change in morphology was observed along the inner edge adjacent to 

the silicone tube (bottom of the image) of a long 1-7 tube.  A low magnification image is shown in A to visualize a 

longer portion of the tube (scale=0.5mm).  Higher magnification images are shown in the regions marked by the 

solid box (B) and the dashed box (C) along the outer and inner edges. Scale = 250 μm (A) and 50μm (B,C).  

 

In an effort to reduce the observed cell necrosis, we elected to use a porous mandrel (in contrast to the 

solid silicone tubing mandrel) that may be permeable to culture medium on the luminal side of the tube.   

We obtained a porous electrospun co-polymer tube (generously provided by BioSurfaces, Inc.) which was 

used as a mandrel material in these studies. To do this, 1.5cm lengths of the electrospun tube were cut 

with beveled ends.  Rings were transferred onto the electrospun tube mandrel similarly to transfer onto 

the silicone tubes (described in Methods 4.2.3).  For this proof-of-concept study, three tubes (twelve rings 

each) were created by ring fusion on the porous mandrels.  We had planned to remove these tubes from 

the porous mandrel; however it became evident that the tubes could not be removed as easily without 

ripping the tissues.  One of the tube samples was removed successfully from the porous mandrel after 7 
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days in fusion culture, but one tube ripped during removal, which suggested that the tissue tubes may be 

more strongly adhered to the porous polymer mandrel than they were to the silicone tube mandrels. The 

third tube was processed on the porous mandrel.  Histological evaluation revealed evidence of cellular 

infiltration into the porous polymer mandrel (Figure 4.12).  In addition, it appeared that tubes cultured on 

porous polymer mandrels were fully fused and lacked necrosis (indicated by rounded nuclei). This new 

porous mandrel material may be an alternative to silicone, allowing us to generate longer, viable tubes. 

(Figure 4.12) 

 

 

Figure 4.12 – Tissue tubes on a porous mandrel.  Hematoxylin and eosin staining of fused tissue rings on a porous 

mandrel.  Low magnification image is shown in (A) to visualize a longer portion of the tube.  Higher magnification 

images are shown in the regions marked by the solid box (B) and the dashed box (C), corresponding to the outer and 

inner tube regions, respectively. The porous polymer mandrel is marked by (M) and the arrows (▲) indicate 

infiltrating cells. Scale=250 μm (A) and 50 μm (B,C)   
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4.3.8 Generation of branched tube structures 

To test the feasibility of using the fused ring method to generate branched tube structures, we created “Y-

shaped” silicone mandrels as described in the Methods section.  We then transferred one-day-old cell 

rings of the corresponding size onto the mandrels.  Phase contrast images showed evidence that the 1-day-

old tissue rings fused into a branched structure (Figure 4.13).  The rings located at the bends in the “Y” 

fused with one another, which appeared to create seamless junctions of the edges of the three branches.   

However, on the opposite face of the construct, the bifurcation point did not fully fuse, and we observed a 

triangular hole at the center of the junction.  This data suggests that fusing rings into branched tubes is 

possible and that we may utilize different sized rings to model variations in vessel diameter at branching 

junctions.   
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Figure 4.13 – Branched tube fusion.  Brightfield microscope images of the branched tube fusion process, one-day- 
old rings stacked onto the silicone “Y-shaped” mandrel (A).  The base of the mandrel is made from 4 mm rings and 

the branches of the vessel are made from 2 mm rings.  Rings fused together to form a branched tube after 3 days in 

culture (B), or 7 days in culture (C).  The bottom side of the branch had a small hole at the junction, indicated by the 

asterisk (D).  The tube was removed from the mandrel (E) and the lumen remained intact (F,G).  Scale = 1mm 

 

 

4.4 Discussion 

Here we describe the development of a method to rapidly generate vascular tissue tubes entirely from 

cells and the ECM they produce.  In this study, we investigated how the “pre-culture” duration of the self-
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assembled cell rings can be manipulated, resulting in the generation of seamless cell-derived tissue tubes 

in as little as 8 days of culture.  We previously described how these rings can be used to evaluate the 

structural, morphological, and mechanical properties of cell-derived tissue.1  Here, we further expand on 

this idea to show that the same tissue rings can fuse to form tissue tubes.  As described previously, we can 

use the tissue rings as a platform to systematically evaluate culture parameters which lead to optimal 

tissue growth.  We can then generate tissue tubes by fusing rings cultured with these different parameters.  

For example, one such culture parameter is ring size.  In our previously studies we showed that we can 

culture SMC rings that are 2, 4, or 6 mm in diameter.1  In this study, we were then able to fuse the 

different sized rings together and form branched vessels.  Therefore, this method of generating tubes from 

aggregated cell rings holds advantages over alternative methods in that information obtained from ring 

studies can then directly apply to generation of tissue tubes made from fused self-assembled SMC rings.   

 

In the first part of this study we examined the effect of tissue ring culture duration on ring fusion into 

tissue tubes. In our studies, fusion is defined as a combination of an increase in fusion angle (angle 

between adjacent rings) and seamless integration where ring margins are undetectable upon histological 

analysis.  We found that rings cultured for less time prior to fusion (one, three or five days old) fused 

more rapidly and more completely into tissue tubes than rings cultured for longer durations prior to fusion 

(seven days old), which is consistent with other reported studies.2,14,15  For example, Rago et al. showed 

that fibroblast spheroids removed from culture after one day fused together more rapidly than spheroids 

cultured for 7 days prior to fusion.2  A different study showed that aggregated cell spheroids composed of 

co-cultured fibroblasts and endothelial cells harvested after 5 days demonstrated only moderate levels of 

fusion when cultured statically for an additional 14 days.14  By comparison, spheres composed of 

fibroblasts alone cultured for only one day prior to fusion appeared to fuse together after only 3 days of 

fusion culture.15   These fusion studies were carried out using different cell types (fibroblasts, SMCs, ECs, 

etc.) which may also impact the tissue’s ability to fuse.  However, the results of these studies are 

consistent with our findings; namely that self-assembled tissues cultured for shorter durations have the 

ability to remodel into larger tissue constructs with seamless fusion more rapidly and completely than 

cell-derived tissues cultured for longer durations prior to fusion.   

 

When characterizing the fusion of our tissue tubes, we monitored length, thickness, and fusion angle of 

the constructs.  The experiments described in this paper were controlled in length by the number of rings 

per tube, but due to the differences in thickness of the starting tissue rings (350 μm for 3-day-old rings vs. 

550 μm for 7-day-old rings), resulted in tubes of different starting lengths and thicknesses.  Interestingly, 

we did not observe a change in tube length with fusion of ring-based subunits, unlike the fusion of 
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spheroids into rods reported by others.2,16  This may be due to differences in the size scale or geometry of 

the building block tissues (relatively large rings, compared to smaller spheroids).  For example, in one 

study, fusion of large and small fibroblast microspheroids (300 μm vs. 100 μm) was compared.  Small 

spheroids fused more completely within 7 days compared to the large spheres, although the differences 

were not statistically significant.2   

 

To measure the degree of tissue fusion, we monitored the angle between tissue rings as a function of time, 

using a method described previously.12  Other studies in which tissue fusion was analyzed have used 

different methods of assessing the extent of fusion.  For example, the extent of fusion with fibroblast 

microspheres was not measured by the angle between spheres, but was measured by the length of the 

tissue rod resulting from fused spheroids positioned within an oblong trough.2  The authors observed that 

rod length did not change over time with the fusion of large spheres, compared to fusion of small spheres.  

However, the representative photos of the fibroblast spheroids suggest that the fusion between the 

aggregates may be enhanced in the smaller spheroids compared to the larger spheroids, based on the 

observed fusion angle between spheroids from the images in the study. This could indicate that larger 

tissue subunits may remain discrete entities for longer periods of time (consistent with our observations of 

slower fusion times compared to other published reports).2,12  In our studies, we fused SMC tissue rings 

which were approximately 350-550 µm in thickness, which are much larger than in other published 

reports.  Therefore, generating thinner rings in future studies may also ultimately enhance tissue fusion.   

 

In addition to the size of the subunit tissues used in our study, the geometry of these tissues may also play 

a role in their rate of fusion.  Spheres, the most common building block shape used to date, are the lowest 

energy state of a tissue and most cell types will spontaneously re-orient into spheroids,17 unless given 

some external stimulus to maintain an alternative structure.  Generally, such stimuli are mechanical cues 

such as a physical barrier12,16,18,19 (agarose post or silicone mandrel in our case) or dynamic culture14 (such 

as fluid flow through a lumen).  Remodeling occurs in such tissues by thinning in directions of tension to 

compensate for forces placed on them.18  This process of cell-mediated tension occurs as the cells are self-

assembling and contracting to form tissue.   

 

Tissue fusion and cellular self-assembly may be partially driven by mechanisms of cellular adhesion.  

Various cell-adhesion molecules including connexins and cadherins have been implicated in the self-

assembly process as well as in cell mediated tension.20-22   While all cells that have adhesion molecules 

seem to aggregate, cell types without cadherin molecules (such as L cells) do not aggregate well.20   

Further, it has been observed that the more adhesion molecules cells have, the faster they aggregate into 
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tissues.21  This suggests that the presence of adhesion molecules on the cell surface is a major factor 

dictating their ability to aggregate and assemble into tissues.  Another interesting behavior to note is that 

the longer the tissue has been cultured within a mold (such as agarose ring molds), the slower it contracts 

to close the lumen upon removal, which may be due to an increase in ECM deposition within the tissue.18  

The rate and extent of lumen closure differs by tissue geometry and cell type, but occurs with predictable 

kinetics.23  Cell types that rapidly self-assemble into tissues also rapidly contract to close their lumens, 

suggesting that some cell types have an increased ability to remodel tissue.18,21    

 

Successful tissue engineering relies on cells to synthesize and remodel ECM to generate tissue structure.  

Recently it has been shown that 3D tissue culture leads to enhanced extracellular matrix (ECM) 

production compared to 2D culture.14  For example, gene expression of ECM molecules (collagens I, III 

and tropoelastin) and ECM binding integrins (α1, β1, and β3) was up-regulated in smooth muscle cells 

cultured in 3D collagen and fibrin gels compared to on 2D gel films.24  Further, in applying these findings 

to cell-based, “scaffold-less” tissue engineering, Kelm et al. found that ECM related genes (such as 

collagens, fibronectins, laminins, MMPs, etc.) were significantly upregulated in 3D fibroblast spheroids 

compared with fibroblasts cultured on 2D tissue culture plastic.14  Future work on this project should 

focus on whether ECM content increases in the self-assembled rings with time and if that plays a role in 

lowering their ability to fuse together into tissue tubes.   

 

While scaffold-less tissue engineering is an appealing approach to creating living tissue equivalents, one 

challenge is the length of time it takes for cells to synthesize, accumulate and organize ECM in culture.  

For example, we have observed increased amounts of collagen deposition in aggregated cell rings 

cultured for 14 days compared to 8 days.1    Other studies have found similar results.  For example, Hajdu 

et al 25 examined the fusion of spheroids grown with or without “maturogenic” treatments (TGF-β1 and 

seratonin), toward the goal of developing a system to screen optimal methods for accelerated tissue 

remodeling and maturation.25  Two spheroids were placed in contact and monitored to determine which 

spheroid “enveloped” the other.  The spheroid that was enveloped by the other was the more “cohesive” 

or “mature” tissue.  In their study, the treatment of cardiac valve interstitial cells with either TGF-β1 or 

serotonin led to increased collagen deposition, and ultimately to a more cohesive tissue.25  This suggests 

that tissues with increased ECM (such as collagen) are generally more cohesive and more difficult to 

remodel.  We have found that tissue rings cultured for longer durations (7 days) fuse together less 

completely than rings harvested at earlier time points (1, 3, or 5 days).  We hypothesize that one reason 

“older” rings do not fuse as readily is due to an increase in ECM production, leading to more cohesive 

tissues.  To confirm that the decrease in fusion ability may in part be due to an increase in ECM 
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production, further analysis of tissue ECM needs to be conducted.  In all, this suggests that the observed 

changes in the fusion kinetics may be partially due to changes in the ECM composition and that the more 

ECM the tissues produce, the less likely they are to fuse.   

 

Ultimately, the desired goal would be to create a tissue tube rich in ECM components such as collagen 

and elastin.  While too much ECM deposition prior to ring fusion may be detrimental, after fusion of the 

ring sub-units it will be important to increase the rate of ECM synthesis to obtain tissue tubes strong 

enough for implantation.  ECM synthesis can take weeks;26,27 however, synthesis and deposition in culture 

can be manipulated by supplementing the cell culture environment with various factors.  The tubes in this 

study were cultured in a basic growth medium (10% serum) without any additional supplementation.  

While the presence of serum allowed the cells to proliferate, we did not include factors known to enhance 

synthesis of collagen or other ECM molecules.  In future studies, we may need to add factors such as 

ascorbic acid, TGF-β1, EGF, or insulin-transferrin-selenium, which are implicated in increasing ECM 

deposition and tissue strength.26,28-30  For example, fibroblasts cultured in chemically-defined medium 

with epidermal growth factor (EGF) supplementation exhibited increased strength, thickness, total 

protein, and total collagen compared to fibroblasts grown in medium with serum.28,29   

 

Building tissue tubes with a modular approach as described in this chapter has benefits in that we could 

potentially spatially control cell location along the tissue tube length leading to a vessel with distinct 

tissue regions.  Further, by using different cell types or genetically-modified cells for ring self-assembly, 

we could feasibly generate vessels with regions of cells that are compositionally different from adjacent 

regions (such as elastin-deficient regions as would be found in aneurysm or lipid-rich regions as would be 

found in plaque formation).  As a first step toward developing such models, we found that at relatively 

short time points (1 and 3 days of fusion culture) the cells from one ring retain their spatial position, a 

finding consistent with what others have observed.12,15,31,32  The ring margins became blurred after one or 

three days of fusion, suggesting there may be some amount of migration between the rings.  To further 

assess this, studies should be carried out with double labeling of adjacent rings (e.g., one green and one 

red) to see how much migration occurs between rings.  For example, fused tissues generated from a single 

cell type (rat hepatocytes)12 or from multiple cell types (human SMCs and fibroblasts)15 have been 

observed to remain segregated.  However, some studies suggest that the degree of cell separation or cell 

sorting is dependent on the cell types used.  In this study we only used one cell type, SMCs, to generate 

self-assembled tissue and for our tissue fusion studies.  However, different cell types have different 

surface adhesion proteins and different cytoskeletal tension which both contribute to their ability to self-

sort.2,21,33,34  This could become critical in future studies when examining the tissue self-assembly 
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properties of rings fabricated from multiple cell types or tubes generated from rings of different cell types.  

In all, our preliminary data suggest that we may be able to retain spatial retention of cells within rings, 

and that cell ring fusion may be achieved by a combination of local migration and proliferation.   

 

Further, while vascular disease often occurs at the site of branched vessels,5,6 due to the complexity 

involved in building these branches, such vascular junctions remain largely unstudied.  Recently, 

bioprinting has been used to show proof-of-concept of generating branched vessel networks.8,15,31  In our 

study, we showed that our modular ring system can be used to generate branched tube structures.  We 

demonstrate versatility in this model system by using different sized rings to generate different branches 

of the vessels.  Four millimeter rings were used to build the trunk of the vessels whereas 2 millimeter 

rings were used to fuse into the two branches.  The rings are able to fuse at the junction of the branches.  

This gives rise to another useful in vitro modeling tool.   

 

In conclusion, we have shown that self-assembled rings generated from SMCs alone can be fused together 

to form tissue tubes.  We found that the earlier rings are removed from culture, the more completely they 

fuse into contiguous tubes. Finally, we demonstrated that even after fusion occurred, the cells remained 

within the original ring tissues, thereby demonstrating spatial retention of cells, potentially allowing us to 

generate tubes with different regional properties.  Ultimately, one of the advantages of this method over 

other existing methods to generate vascular grafts is the direct translation of cell-derived rings to tissue 

tubes.  We can screen the effects of culture parameters to determine the optimal combination of 

conditions that promotes vascular tissue growth, then use those parameters to generate vascular tissue 

tubes by fusing rings.   
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Chapter 5: Spontaneous aggregation and self-

assembly of human smooth muscle cells to create 

engineered vascular tissues 

5.1 Introduction 

We have previously described a new method to generate 3D, scaffold-free, cell-derived tissue rings based 

on facilitated cellular self-assembly.1  This method allows us to aggregate cells from a cell suspension 

into tissue rings which can be used to study vascular tissue function, or can be fused together to generate 

tube-shaped vascular constructs.   

 

All of our initial studies utilized rat smooth muscle cells (SMCs) to generate self-assembled cell ring 

constructs.  The rat SMCs used in these studies are a stable cell line (not immortalized) that was created 

as described in Lemire et al.2,3  The rationale for using these cells was that they are relatively easy to 

maintain and have a shorter doubling time than primary SMCs.  This was especially important given the 

large number of cells we needed to generate many batches of tissue rings to create and analyze the tissue 

ring fabrication system.  While non-human cell types are often used to generate tissue engineered vascular 

constructs, they are not an ideal cell source to use when building vascular grafts for human patients.  In 

order to generate transplantable vascular grafts, vascular tissue constructs need to be generated only from 

human cells.4-6  Both human fibroblasts and human bone marrow cells have already been used to generate 

clinically transplantable grafts.5,6  However, to recapitulate human vascular physiology in vitro, SMCs are 

the cell type of choice.   

 

The goal of this chapter of the thesis is to determine whether or not self-assembled cell ring generation 

can be achieved using primary human SMCs.  For the tissue ring system to be a more physiologically 

relevant model of human vasculature, the successful use of human SMCs to create tissue rings is 

essential.  However, one of the challenges associated with human SMC culture is the difficulty in 

obtaining large quantities of these cells from patients.  Also, their slow proliferative rates make them a 

more difficult cell type to work with for both experimental and clinical use.7,8  One benefit of the self-

assembled cell ring system is the ability to generate tissue with fewer cells and less time than would be 

required for culture and assessment of vascular tissue tubes.  The ring model can thus serve as a “high-

throughput” method to generate vascular tissue and test the effect of various culture conditions on tissue 

structure and function.9,10  However, the current method of generating cell rings still requires 500,000 



Chapter 5 – Spontaneous aggregation and self-assembly of human smooth muscle cells  
to create engineered vascular tissue Page 76 

 

cells or more for each tissue ring sample.1,10  In order to decrease this cell seeding number and make the 

tissue ring model an even more efficient tool, we also aimed to decrease the seeding well dimensions in 

order to decrease the initial cell seeding number needed for cell ring self-assembly, as demonstrated in 

other studies.11  Decreasing the initial cell seeding number would make the ring system a more useful tool 

to study vascular structure and function in vitro.   

 

In this chapter, we determined that, similar to our findings with rat SMCs, human SMCs are capable of 

self-assembling into ring-shaped structures and can remodel and fuse together to form tissue tubes.  We 

also showed that we can decrease the number of cells required for cellular self-assembly into rings by 

reducing the trough width in the ring-shaped agarose cell seeding wells.  This makes the ring system more 

“high-throughput” by reducing the amount of cells, reagents, and other resources required to generate 

these cell-derived tissue constructs.   

 

5.2 Materials and Methods 

5.2.1 Human and rat smooth muscle cell culture 

Rat aortic smooth muscle cells (rat SMCs; WKY-3M22) were cultured in growth medium (DMEM, 10% 

fetal bovine serum, and 1% penicillin-streptomycin) as described previously.  Human coronary artery 

smooth muscle cells (human SMCs; purchased from Lonza, Lot# 2F1320 – 20 year old male donor) were 

cultured and maintained in smooth muscle cell growth medium (SmGM-2; Lonza).  All cells were 

maintained at 37°C and 5% CO2 and passaged at 90% confluence.   

5.2.2 Cell-derived tissue ring generation 

Agarose cell seeding wells (2 mm inner diameter) were prepared as described previously (See Chapter 

3).1  The agarose was released from the PDMS, agarose was separated into wells, and each agarose well 

was placed into a well of a 12-well plate.10  Rat SMC rings were seeded at 500,000 cells/well and human 

SMCs were seeded at 750,000 cells/well.  The SMC-seeded agarose wells were left in the incubator for 

one day to allow cell aggregation prior to the first media exchange.  Media was then exchanged every 48 

hours thereafter throughout the culture duration.   

5.2.3 Digital imaging for non-contact thickness measurements of tissue rings 

The tissue rings were removed from the agarose wells and transferred to a PBS bath at room temperature.  

Each tissue ring was centered and focused under the high resolution image acquisition camera (DVT 

series 600-Model 630).  Four measurements were taken at four distinct positions along the circumference 
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of the ring using Framework 2.4.6 software (DVT Corporation).10  These values were averaged to yield a 

mean thickness value for each sample.  Ring thickness values are expressed as the mean ± S.D. 

5.2.4 Uniaxial tensile testing 

Mechanical properties of rings were tested by using a uniaxial tensile testing machine (ElectroPuls 

E1000; Instron, Norwood, MA) as previously described (see Chapter 3).1  The test ran 8 precycles from 

5mN to 50kPa stress and then the sample was pulled to failure at a rate of 10 mm/min (n=3).  Engineering 

stress and grip-to-grip strain were analyzed using MATLAB (The MathWorks, Inc., Natick, MA) to yield 

ultimate tensile stress (UTS), maximum tangent modulus (MTM), and failure strain.  For each parameter, 

the data was averaged and represented as mean ± SD.  This data was then compared to the mechanical 

parameters calculated for 14 day-old 2mm rat SMC rings in Chapter 3.   

5.2.5 Histological analysis of tissue ring structure and morphology 

Four untested human SMC tissue ring samples were fixed in a 10% neutral buffered formalin solution for 

2 hours, embedded in paraffin, and sectioned at 5 µm thickness.  The sections were stained with 

hematoxylin and eosin (Newcomers Supply), Fast Green / Picrosirius Red (Sigma), Masson’s Trichrome 

(Newcomers Supply), and Movat’s Pentachrome (Newcomers Supply).  All samples were viewed with an 

upright microscope (Leica DMLB2) and images were acquired with a digital camera (Leica DFC 480).   

5.2.6 Tissue tube generation 

Tissue tubes were generated by removing tissue rings from their agarose wells and transferring them onto 

silicone tubing mandrels.10  All tissue rings (either rat SMC rings or human SMC rings) were cultured for 

one day prior to removal from the agarose well.  Three rings were placed in contact on the silicone 

mandrel and allowed to fuse together for 7 days.  Each day throughout culture, the angle between rings, 

tissue tube thickness, and the length of the tubes was measured.  Two-four fusion angle measurements, 

two thickness measurements, and two length measurements were obtained for each tube sample at each 

time point as described in Section 4.2.5.  The values obtained from four tube samples for each group 

(human SMC vs. rat SMC) were averaged together to yield a mean ± SD.   

5.2.7 Mold re-design to reduce seeding well dimensions 

A new cell-seeding well was designed in CAD; modified from the original mold to alter seeding well 

dimensions (illustrated in Figure 5.1).  The new design was then milled into polycarbonate using CNC 

machining.  The resulting polycarbonate mold was used to generate multiple PDMS templates which 

were used to make agarose cell seeding wells.  The primary change was that the width of the new seeding 

well trough was narrowed from 3.75mm (in the original mold design1) to 2 mm in the new mold.  The 

rounded bottom was conserved in the new, narrow mold.  Also a 45° chamfer was added to the top of 
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each of the wells to increase the ease of pipetting the cell suspension into the wells (Figure 5.1).  Further, 

the seeding wells were placed closer together so that 5 wells could fit into one well of a 6-well plate 

(shown in Results, Figure 5.4).  This change also allowed for uniform agarose volume with each set of 

wells compared to the inexact method of hand-cutting used in the original mold.10   

 

 

Figure 5.1 – Changes to agarose well seeding dimensions.  The original mold has a trough width of 3.75 mm, 

whereas the re-designed, narrow channel mold has a trough width of 2 mm.  With the decrease in trough width, we 

are able to seed fewer cells to yield a ring.   

 

5.2.8 Measurement of critical cell seeding number for cell ring self-assembly  

To determine the minimum critical number of seeded cells required to form self-assembled cell rings in 

the re-designed agarose wells, rat SMCs were seeded in agarose wells at varying concentrations (100,000, 

200,000, 300,000 and 500,000 rat SMCs/well) into the narrow molds for the rat SMC study or the narrow 

and wide molds for the human SMC study.  We also seeded the newly re-designed molds with human 

SMCs (seeding concentrations; 300,000, 400,000, 500,000, and 750,000).  Wells were left undisturbed for 

one day after which the number of rings that formed at each cell concentration was counted.  The data are 

presented as a percentage of the number of rings formed relative to the number of wells seeded (n=5 rings 

seeded per group) at each cell seeding concentration.   

5.2.9 Statistical methods and analysis 

A t-test was used to analyze the effect of differences in SMC source on thickness and the mechanical 

properties (n=3 for human SMC rings, n=6 for rat SMC rings).  A two-way analysis of variance 

(ANOVA) with Holm-Sidak post hoc analysis was used compare fusion angle, thickness, and length of 

tissue tubes from each group as a function of time.  SigmaPlot software (Version 11.0 Systat Software, 

Inc.) was used to perform the statistical tests and to identify significant differences (p < 0.05 considered 

significant).   
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5.3 Results 

5.3.1 Rings form from human SMCs 

Similar to observations with the rat SMCs, human SMCs consistently self-assembled and formed rings 

within 24 hours of cell seeding in agarose wells.  The rings contracted around the center posts and 

appeared uniform in thickness around their circumference.  Human SMC rings were removed from their 

wells after 14 days in culture.  Upon removal, the thickness was measured and uniaxial tensile testing was 

performed (Table 5.1).  The average thickness of the human SMC rings was 520±60 µm (significantly 

lower than rat SMC rings at 940±120 µm; p<0.05).  The ultimate tensile strength of the human SMC rings 

was significantly higher (160±30 kPa; p<0.05) than rat SMC rings cultured from the same duration with 

the same post diameter (97±30 kPa).  The MTM of the rings generated from human SMCs was lower than 

that of rat SMCs (270 kPa compared to 497 kPa), but the failure strain was greater (0.92 mm/mm 

compared to 0.5 mm/mm).   

 

Mechanical Properties of human SMC rings 

 

n 

Cell number 

(cells/ring) 

Thickness 

(µm) UTS (kPa) MTM (kPa) 

Strain 

(mm/mm) 

Human SMC rings 3 750,000 520±60 160±30* 270±20* 0.92±0.08* 

Rat SMC rings 6 660,000 940±120 97±30 497±91 0.50±0.08 

Table 5.1 – Mechanical properties of human SMC rings compared to rat SMC rings.  All rings were 2 mm in 

diameter and cultured for 14 days.
10

  The rat SMC ring data was reported in Chapter 3 and ref. 1.  * indicates 

statistical significance (p<0.05) between the human SMC ring data and the rat SMC data.   

 

5.3.2 Histology of human SMC rings 

Representative photomicrographs of 2 mm human SMC rings are shown in Figure 5.2.  All samples had a 

high cell density with rounded nuclei and an even distribution of cells throughout the tissue.  There does 

not appear to be circumferential alignment of the cells, based on the rounded nuclei observed throughout 

the tissue (however, this was not quantified).  To more closely examine the composition of the tissues, 

histochemical stains were used to analyze ECM components (Figure 5.2).  Masson’s trichrome and Fast 

Green/Picrosirius Red staining indicated collagen deposition (which qualitatively appeared higher than 

previously observed in rat SMC rings).1  Movat’s pentachrome staining also showed high levels of 

glycosaminoglycans throughout the tissue (blue stain, Figure 5.2D,H).   
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Figure 5.2 – Human smooth muscle cell tissue ring morphology.  H&E-stained section (A,E); Trichrome (B,F, 

blue=collagen), Fast Green/Picrosirius Red (C,G, red=collagen), and Movat’s Pentachrome (D,H, 

blue=glycosaminoglycans, yellow=collagen) show ECM present in the 2 mm human SMC tissue rings (cultured for 

14 days, representative of 4 histological samples).  Scale = 200 μm (A-D) or 50 μm (E-H) 

 

5.3.3 Human SMC rings fuse to make tissue tubes 

To assess the ability of human SMC rings to fuse into tubes relative to rat SMC rings, rings made from 

both sources of SMCs were cultured for one day prior to removal of aggregated rings from the agarose 

seeding wells. Tissue rings were then transferred onto silicone tubing, and placed in fusion culture for 7 

days.  After one day of culture, human SMC rings were less tightly contracted around the center post than 

we observed for one day-old rat SMC rings, but could still be removed from the posts and transferred 

onto the silicone mandrels without breaking.  The individual ring margins of the fused rings became less 

apparent with time in culture as evidenced by an increase in fusion angle (Figure 5.3).   Fusion occurred 

rapidly over the first 4 days of culture with human SMC tubes, but slowed thereafter compared to the rat 

SMC tubes. The fusion angle at the rat SMC ring margins continued to increase between days 5 and 7, at 
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which points the fusion angles were statistically higher than in the human SMC tubes (Figure 5.3). The 

thickness of the human SMC tubes was greater at day 0, but decreased throughout the fusion culture.  The 

thickness of the rat SMC tubes increased over time.  The length of the human SMC tubes was statistically 

greater than the thickness of rat SMC tubes at days 0-4 and at day 6.  Histological analysis of the human 

SMC tubes showed evidence of tissue fusion in all samples, although the ring margins were still visible 

(Figure 5.3D).   
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Figure 5.3 – Fusion measurement of human SMC tissue tubes compared to rat SMC tissue tubes.  Comparison of 

rat SMC ring fusion (●) with human SMC ring fusion (□).  Graphs of fusion angle (A), tube thickness (B), and tube 

length (C) as a function of days in culture.  Asterisks indicate statistical difference between groups, p<0.05, n=4.  

Representative photomicrographs stained with H&E are shown in (D).  Images show morphology along the outer 
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edge of the tube (in direct contact with culture media) and along the inner edge (in contact with the silicone tube).  

All tubes were cultured as rings for 1 day followed by 7 days of fusion culture.  Scale = 200 µm. 

 

5.3.4 Re-design of polycarbonate mold to lower the initial cell seeding concentration 

In an effort to reduce the number of cells required to generate human SMC tissue rings, we modified the 

mold to decrease the seeding channel width in the agarose wells.  The seeding trough width of each 

individual cell seeding well was decreased from 3.75 mm (wide channel) to 2 mm (narrow channel) to 

help minimize the cell number required for cellular self-assembly and ring fabrication.  In addition, we 

also changed the design so that each agarose cast contained five seeding wells, and fit into 1 well of a 6-

well plate. Images of the wide channel (original) and narrow channel (re-designed) molds are shown in 

Figure 5.4.  Another consequence of making these modifications to the mold design was that we 

decreased the amount of material (PDMS, agarose, culture medium) required to create the cell seeding 

wells.  Table 5.2 gives an overview of the total material savings with the new mold design.   
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Figure 5.4 – Re-design of the mold with narrower seeding well channel width and less material.   The milled 

polycarbonate mold of both the original, wide channel mold and the re-designed, narrow channel mold are shown in 

(A) along with the PDMS templates (B), the agarose cast in the PDMS templates (C), the removed agarose (D), 

individual wells in well-plates (E), and a close-up of the original seeding well (F) and the modified agarose wells 

(G).  Note that individual original agarose wells fit into one well of a 12 well plate, whereas the new modified wells 

fit into a 6-well plate (F).  Scales = 1cm 
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Material reduction with modified mold design 

 

Rings/
well 

Media/
well 
(mL) 

PDMS/
mold  
(g) 

PDMS/ 
well   
(g) 

Agarose/ 
PDMS mold 

(mL) 

Agarose/
well    
(mL) 

Wide channel mold 1 6 120 8 50 3.3 

Narrow channel mold 5 3 14 2.8 2.8 0.6 

% Decrease 
 

50% 88% 65% 94% 81% 
 
Table 5.2 – Total material required for agarose well fabrication with the re-designed mold vs. the original mold.  

The re-designed mold decreased the amount of material required at each step of the agarose well fabrication process.   

 

 

We predicted, based on previous reports, that narrower seeding channels would allow us to lower the 

critical cell number required for self-assembly and ring formation.11  To test this, we seeded agarose wells 

with decreasing amounts of rat SMCs than we previously reported (100,000-500,000 cells/ring) and 

counted the number of rings that successfully formed at each cell seeding amount.  We found that we 

could decrease the number of rat SMCs from 500,000 cells to 200,000 cells per ring in the re-designed 

mold (Figure 5.5A).  Seeding agarose wells with 100,000 cells per well did not yield any rings, and we 

therefore concluded that this was not a sufficient starting quantity for cellular self-assembly.  This 

experiment was completed twice and the mean percentage of rings formed between the two experiments 

is reported in Figure 5.5A.  Of note, the number of rings that formed in the second experiment increased 

for all groups (except 100,000 cells/ring), possibly due to increased user familiarity with the new seeding 

mold.   

 

Assessment of minimum cell seeding number was repeated with human SMCs.  The initial cell seeding 

numbers ranged from 300,000 cell/ring to 750,000 cells/ring, which was previously the lowest seeding 

concentration we used for human SMC ring aggregation.10  We compared this range of seeding densities 

using both the original wide channel mold and the modifier-designed narrow channel mold, and found 

that human SMCs formed rings in the new, narrow mold at starting seeding concentrations as low as 

300,000 cells/ring (Figure 5.5B).   

 

 

 

 

 



Chapter 5 – Spontaneous aggregation and self-assembly of human smooth muscle cells  
to create engineered vascular tissue Page 86 

 

 

  

Figure 5.5 – Percentage of rings formed in original and re-designed agarose cell seeding wells.  Varied 

concentrations of rat SMCs were seeded in re-designed, narrow trough wells (A).  Human SMCs were seeded in re-
designed, narrow trough wells and compared to the original, wider channel wells (B).  The rat SMC study was 

performed twice.  The average percentage of rings formed is graphed as a function of number of cell seeded (n=7 

rings per group per experiment).  The experiment with human SMCs was only completed once with n=3-5 rings per 

group.   

 

5.4 Discussion 

 

In this study, we found that the self-assembled cell ring system can be applied to the generation of 

primary human SMC rings, as well as rat SMC rings.  We have demonstrated that primary human cells 

are capable of self-assembling into tissue rings and that these rings are strong compared to rat SMC rings 

we have generated previously9 and vascular tissue generated by other tissue engineering approaches.9,12,13  

Self-assembly of human SMCs has been demonstrated in spheroids before,14-16 but not in such large 
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tissues.  Here we have generated tissue rings of clinically relevant size (2 mm inner diameter) which can 

be used to evaluate the strength and composition of human SMC-derived tissue constructs.  Further, we 

found that human SMC rings can be stacked together and fused to generate vascular tissue tubes entirely 

from human cells (without exogenous scaffolds), which has been achieved by only a few other groups.4,17  

The application of cellular self-assembly to form rings and fused tubes may ultimately transform our 

system into a more useful tool for building transplantable grafts.   

 

In comparing this study to our previous work, we found that similar to the self-assembled rat SMC rings, 

human SMC rings also fuse together to form tissue tubes.  The rate at which they fuse is slower than that 

with rat SMC rings; however at the end of 7 days in fusion culture the human SMC rings had fused into 

cohesive tissue tubes.  Interestingly, the thickness and the length of the human SMC tubes decreased over 

time (something not observed with the rat SMC rings).  This could indicate that the tissues assemble and 

compact at a slower rate than corresponding rat SMC rings.  Further studies are required to investigate the 

changes in mechanical properties, overall morphology, and ECM composition of the human SMC rings 

over time.   

 

Given the difficulty in obtaining large quantities of human SMCs for cell self-assembly and ring 

formation studies, we modified the agarose seeding well dimensions to generate rings from the fewest 

possible number of cells.  The original mold design required a relatively high critical mass of cells to 

achieve cellular self-assembly and ring formation.  The seeding channel width of the original mold was 

3.75 mm and required 500,000 rat SMCs or 750,000 human SMCs per ring.  This high cell number led to 

thick tissue rings (0.94 mm for rat SMC rings and 0.52 mm for human SMC rings) which, according to 

the published literature, exceeded diffusion limitations (~150-200 µm)18 and may have contributed to 

apparent cell death observed at the centers of the tissue rings.  In our re-designed mold, we decreased the 

seeding trough width from 3.75 mm wide to 2 mm wide while maintaining a 2 mm post.  This led to a 

30% decrease in the cell seeding circumference, which allowed us to seed fewer cells, and still achieve 

cell aggregation and complete ring formation.  In a similar cell seeding system, Livoti et al. estimated the 

minimal number of cells required to form a toroid is approximately 5-10 cells/µm of circumference of the 

post diameter, based on their mold dimensions (although their trough width was only 400 µm, the 

calculated number of cells/µm is normalized to the size of the post diameter).11  Translating to our 

system’s dimensions, this would suggest a minimum cell seeding density of our rings at 31,000-63,000 

cells/ring.  This is below the range of cell densities we tested, but we did not observe any ring formation 

with our 100,000 cells/ring group.  The minimum cell number required for cellular self-assembly may 
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also depend on cell type.  We seeded SMCs in these wells to form tissue rings whereas the above 

mentioned study used rat hepatocytes.   

 

In addition to decreasing the initial cell seeding number, the new mold design decreased the amount of 

material (polycarbonate, PDMS, and agarose) required to generate each well. This improvement reduced 

time and costs, allowing for more efficient generation of cell-derived tissue rings.   

 

Cell source is a critical consideration in designing vascular grafts.  Human smooth muscle cells are an 

obvious choice as they are the cells that populate the medial layer of native human arteries and veins; 

however, due to the relative difficulty of obtaining human SMCs, their slow doubling time, and short 

proliferative life-span, they are not the most attractive cell source for implantable grafts.7,8  Also studies 

utilizing adult human SMCs to generate vascular grafts have found that the grafts do not attain sufficient 

mechanical strength for implantation.19  Tissue engineered vascular grafts have been used successfully in 

clinical applications when generated from other cell sources (e.g., dermal fibroblasts and bone marrow 

mononuclear cells).5,6  For example, fibroblast-derived cell-sheet engineered grafts have been used for 

low flow applications for arteriovenous fistulas.5  Although this approach did not use vascular SMCs, the 

resulting graft functioned properly in vivo.  In another example, bone marrow mononuclear cells seeded 

directly onto synthetic polymer scaffold were used successfully in pediatric applications (even without the 

pre-culture of the graft with cells on it).20  These studies suggest that vascular smooth muscle cells are not 

the only cell type that is capable of generating clinically useful vascular grafts. 

 

Observations have led researchers to believe that cells will remodel grafts in vivo; therefore, the exact 

structure of the desired tissue does not need to be intact prior to implantation.21-23   In fact, starting cell 

source (or even the presence of cells) may not be critical design criteria at all when developing 

implantable grafts because host cells have been found to re-populate tissues in vivo.20,21,24  Recently 

decellularized approaches to vascular engineering have emerged as promising alternatives to living 

tissues.  For example, a frozen, decellularized vascular graft generated from autologous fibroblasts and 

endothelial cells was successfully implanted into humans.25  After eight weeks in vivo, the graft still 

functioned properly, which suggested that this method can be used to generate “off-the-shelf” autologous 

vessels.25  In another example, allogeneic vascular SMCs were cultured on a PGA scaffold for 10 weeks 

in a bioreactor prior to decellularization.26  The grafts were then endothelialized and implanted in a 

porcine model and remained patent for 30 days.26  The decellularized approach is clinically appealing in 

that it decreases the long wait times required for living vessels to reach substantial strength for 
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implantation.25,26  Rather, decellularized vessels can be removed from storage and implanted almost 

immediately lending this method to clinical promise.   

 

Although human SMCs are associated with limitations and have not been used clinically in vascular 

grafts, there is precedent for using them for tissue engineering applications.8,16,27  SMCs contribute to the 

ECM synthesis and the vasoactivity of the vascular media.  SMC contribution to vascular physiology 

makes these cells a critical component when building tissues to serve as in vitro models of vascular tissue, 

as they need to closely mimic vascular structure and function.  Therefore, the studies outlined in this 

chapter focused on translating the ring-based model system for use with human SMCs.   

 

In summary, we have demonstrated that primary human SMCs can aggregate and spontaneously contract 

to form self-assembled tissue rings similar to our earlier reports of rat SMCs.9,10  The cells within these 

rings are capable of remodeling the tissue to fuse into tube-shaped structures.  These findings, combined 

with our additional modifications to the cell-seeding wells, will allow us to use this platform technology 

as a means of generating primary human SMC-derived tissue to be used as both an in vitro research tool 

as well as a novel method for developing vascular grafts.   
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Chapter 6: Preliminary studies to optimize cell source, 

contraction, and ECM synthesis in cell-derived 

vascular tissue 

 

6.1 Introduction 

This thesis focused on the development of a new model system to generate 3D cell-derived tissues by 

cellular self-assembly, and to study their biomechanics and ECM composition.  With this method, we are 

able to take cells in suspension and directly generate 3D tissue constructs by simply placing cells into 

non-adhesive wells.  The resulting tissues more closely resemble native tissue in that they are derived 

entirely from cells and the ECM they produce.  However, our engineered vascular constructs lack 

important elements (such as elastin-rich ECM and contractile SMCs) required for true recapitulation of 

native vascular structure and function.  

 

Recently there have been several reports of grafts with substantial mechanical properties and burst 

pressures which exceed 2000 mmHg (saphenous vein).1,2  However, few reports include information 

about compliance of the vessels.  Those who do address compliance, find their values below that of native 

vessels.3-5  For example, upon implantation, cell-sheet based vascular grafts have a compliance of only 

1/3 that of native controls (11.5% /100mmHg), but after 6 months in vivo, remodeling of the graft occurs 

which results in compliance measurements comparable to those values of native arteries (8.8% 

/100mmHg).3  The medial layer of blood vessels consists of layers of elastic fibers which help lead to 

compliant tissue.  Elastin has proven to be a difficult protein to incorporate into engineered tissue because 

adult SMCs do not readily synthesize the protein.  However, there are many researchers attempting to 

generate more compliant grafts by increasing elastin synthesis and elastic fiber assembly through the use 

of alternative cell types or soluble factor addition.6,7  As of yet, there have been few reports of engineered 

vascular grafts with levels of elastic fibers similar to native arteries.  The incorporation of elastin will be 

critical, however, because controlling compliance prior to implantation is critically important because a 

mis-match in mechanical properties at the anastomosis site can lead to occlusion and a decrease in 

patency.8  
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Another factor limiting the use of tissue engineered vascular grafts is their low contractility compared to 

native blood vessels. One approach to analyzing the contractile properties of grafts is by immunostaining 

for specific contractile proteins within SMCs (such as smooth muscle alpha actin, SMA; calponin, CALP; 

or myosin heavy chain, MHC).  While many researchers probe to see if these contractile proteins are 

present, only a subset of studies have examined the functional effects of their presence on vascular 

contractility.1,7,9-11  For example, Peng et al. demonstrated that sub-intestinal submucosal vascular grafts 

populated with hair follicle-derived smooth muscle cells produce contractile forces) in response to 

potassium chloride treatment, but only at 7.5% of the force generated by native vessels (17.5 kPa.7  SMCs 

seeded onto PGA scaffolds contract in response to prostaglandin (a mediator of SMC contraction), but 

only reach 5% of the response of control vessels after 8 weeks in culture.1  Although there has been some 

success in generating vascular tissues which express contractile SMC proteins, the correlation of protein 

expression to functional contractility of the tissues is largely unknown or if tested, falls short of that 

present in native vasculature.   

 

Finding the proper culture parameters that give rise to these missing elements (such as elastin and 

contractile proteins) remains a challenge.  We propose that through the use of this system we can better 

screen combinations and concentrations of factors which promote ECM synthesis and SMC contraction in 

engineered cell-derived tissue.  Further, with this system we can explore the use of alternative cell sources 

for vascular tissue engineering.  Below is a description of how the ring system may be utilized to explore 

each of these features.   

  

6.2 Plasticity of SMC phenotype (Quiescent vs. Synthetic) 

Smooth muscle plays a role in a variety of systems in vivo.  To perform their diverse functions throughout 

development and in stable adult tissues, SMC phenotype spans a continuum from contractile and 

quiescent to proliferative and synthetic.12  “Quiescent” SMCs are able to respond by contracting and 

relaxing to small molecule signals (such as acetylcholine and norepinepherine) because they contain a 

fully functional contractile apparatus.13  Unlike other muscle cells, their contractile network is multi-

directional throughout the cells allowing them to contract simultaneously in both the circumferential and 

longitudinal directions to help propagate the contraction and blood flow down the vasculature.  The 

contractile apparatus consists of a network of fibrillar cytoplasmic proteins including smooth muscle α-

actin (SMA), calponin (CALP), SM-22α, caldesmon, smoothelin, and myosin heavy chain (MHC).14  

Quiescent SMCs also contain little connective tissue and ECM, and, in culture, adopt a fusiform or 

“spindle-like” morphology.15 The opposite end of the continuum contains “synthetic” SMCs.  These cells 
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contain very little contractile machinery and as such, are unable to produce much contraction.  These 

synthetic SMCs have been found to express caldesmon, vimentin, and non-muscle myosin heavy 

chain.16,17  In culture, these cells adopt a “hill-and-valley” morphology where they are more spread out 

and can grow on top of each other into multi-layers.15  Synthetic SMCs are also associated with high 

levels of proliferation and ECM synthesis (rich in glycosaminoglycans and sulfated proteoglycans).18  

Figure 6.1 shows a schematic of the spectrum of SMC phenotypes.  (Further description of phenotype 

characteristics reviewed in14).   

 

 

 

 
Figure 6.1 – SMC phenotype continuum.  This diagram summarizes the characteristics of both the quiescent and 

the synthetic SMC phenotypes.  The quiescent phenotype is characterized mainly by expression of SMC contractile 

protein markers (SMA, CALP, and MHC).  The synthetic phenotype is characterized mainly by proliferation, loss of 
contractile protein expression, and synthesis of glycosaminoglycans and sulfated proteoglycans.  SMCs can exist 

anywhere along the continuum with varying relative expression of these identifying markers. 

 

 

Healthy adult vascular SMCs generally maintain a quiescent phenotype.  However, cultured SMCs adopt 

a synthetic phenotype, similar to that found in vascular pathologies such as restenosis and 

atherosclerosis.19,20  In this pathological state, SMCs lose expression of contractile proteins, become 

highly proliferative, and synthesize ECM molecules such as versican and hyaluronan.15,20,21  Several 
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external stimuli including soluble factors (detailed below), ECM cues, and mechanical stimulation have 

all been found to help switch cultured SMCs from the synthetic phenotype to a quiescent phenotype (an 

event called “phenotype switching”, reviewed in14,22).  

 

Soluble signaling factors can be potent mediators of SMC phenotype.  Several factors have been 

implicated in shifting SMCs toward the proliferative synthetic phenotype such as platelet derived growth 

factor (PDGF), fibroblast growth factor (FGF-2), insulin-like growth factor (IGF), epidermal growth 

factor (EGF), angiotensin II (Ang-II), and thrombin.23-26  However, other soluble factors have been 

implicated in shifting cultured SMCs back toward a contractile phenotype; TGFβ-1, heparin, IGF-1, and 

Ang II.23,24,27-32  This suggests that SMCs are a plastic cell type, and that with proper environmental cues, 

can be manipulated both into and out of a contractile phenotype.   

 

Mechanical stimulation has also been found to play a major role in determining the phenotypic fate of 

SMCs.  As SMCs are exposed to constant cyclic loading in vivo, several researchers have attempted to 

recapitulate that behavior in vitro.  Cyclic mechanical strain has increased the content of SMA positive 

cells observed within the engineered vessel wall.33  In addition to affecting the phenotype of SMCs, 

mechanical strain has also been shown to stimulate production of ECM molecules such as collagen or 

elastin in vitro.34,35  As a result many researchers utilize biomechanical loading as part of their culture 

regime for tissue engineered vascular grafts.1,9,36-40   

 

Finally, extracellular matrix molecules also help control the phenotype of cultured SMCs.  Fibronectin, 

for example, has been implicated in the loss of SMC contractile phenotype,41 although laminin plays a 

critical role in maintaining contractile protein expression, or at least delaying the switch to a synthetic 

phenotype in cultured cells.41,42  Factors implicated in phenotypic switching are outlined in a schematic 

shown in Figure 6.2.   
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Figure 6.2 – Factors implicated in switching SMC phenotype.  Several factors including soluble additives, ECM 

molecules, and mechanical loading can switch SMCs between quiescent and synthetic phenotypes.   

 

 

Smooth muscle cell phenotype is of critical importance when developing engineered tissue to be used as 

vascular tissue models in vitro.  In order to obtain sufficient quantities of cells to populate engineered 

tissues, SMCs must be capable of proliferating.  However, for engineered vascular tissue to achieve 

physiological contraction, the SMCs must exist in a quiescent phenotype where SMCs need to express 

SMA, CALP, MHC, etc. to help aide in the vascular contraction.  This paradigm forces engineers to 

understand and control factors which shift cells between phenotypes as needed.39  If engineers understand 

these conditions, culture environment can be exploited through the use of a biphasic approach where first 

cell are cultured under growing conditions followed by a differentiation period into contractile SMCs.  In 

all, there are many factors that contribute to the phenotypic state of SMCs, and we believe that the ring 

system described in this thesis is capable of screening through these factors to determine which 

combinations and concentrations lead to optimal tissue growth for building ideal vascular tissue.   

 

6.2.1 Quiescent, contractile SMCs in engineered vascular tissue 

 

Although smooth muscle cell phenotype is a critical parameter to consider when generating vascular 

tissue, we have not observed the presence of smooth muscle cell markers in our cell-derived tissue rings.   

To demonstrate this, Figure 6.3 shows smooth muscle alpha actin (SMA) staining of human SMC tissue 

rings cultured for 14 days in two different media formulations (Figure 6.3 A, B; SmGM-2, Lonza; or 

“base medium”, 1:1 DMEM:Ham’s F12, 10% Fetal Clone III, 1% penicillin-streptomycin).  The rings 

cultured in SmGM-2 are the same rings that were discussed in Chapter 5 of this thesis.  For comparison in 

this experiment there were three 2 mm rings (750,000 cells/ring) grown in each of the different types of 
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medium (SmGM-2 and base medium).  The immunostaining was compared to positively marked blood 

vessels found in a human skin control (Figure 6.3D).  As seen in the photomicrographs, there was no 

SMA expression found in human SMC rings cultured in either media formulation.  In fact, throughout 

this work we did not observe SMA expression in any of our tissue rings generated from either human 

SMCs or rat SMCs (data not shown). This suggests that the cells we have in our self-assembled rings may 

be in their synthetic phenotype rather than a contractile phenotype.  This hypothesis is in agreement with 

our earlier histology staining where we observed abundant GAG deposition within our rings.  The lack of 

SMA expression coupled with the abundant GAGs lead us to believe that our tissue rings are full of 

SMCs in their synthetic state.  Therefore, we believe that we will need to add additional media 

supplements to increase SMC contractile protein expression and change the cells into quiescent cells.  

  

 

Figure 6.3 – Photomicrographs of SMA-stained human SMC rings.  Tissue rings cultured in base medium (1:1 

DMEM:Ham’s F12, 10% Fetal Clone III, 1% penicillin-streptomycin, A) or SmGM-2 (Lonza SMC growth media, 

B) compared to human skin control (negative, C; positive, D).  Green: SMA, Blue: nuclei.  Scale = 50 µm.   
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The human SMCs used to generate human SMC rings are commercially available from Lonza.  

According to the manufacturer, these cells are only guaranteed to grow and maintain their smooth muscle 

cell phenotype in their proprietary smooth muscle cell growth medium (SmGM-2).  Ultimately, we would 

like to move away from culturing these cells in proprietary medium and into a chemically defined 

medium of which we know exact component concentration and composition.  Although we have not yet 

reached this goal, we have tried growing these cells in other media formulations.  The most basic 

formulation we have used is base medium (consisting of 1:1 DMEM:Ham’s F12, 10% Fetal Clone III, 1% 

penicillin-streptomycin).  We have also added growth factors to this base media to try to encourage better 

cell growth.  For example, we have supplemented this base media with 4 ng/ml FGF-2 to enhance cell 

proliferation (this media is called +FGF media).   

 

To test the effect of these media formulations on the human SMC growth and, we began by culturing cells 

on coverslips in the three different media (base media, SmGM-2, and +FGF media).  To test this, 10,000 

human SMCs were seeded onto glass coverslips placed into each well of a 24-well plate.  The cells were 

seeded in the different media formulation and cultured for 7 days before fixing and immunostaining for 

smooth muscle alpha actin (SMA), and Hoechst to visualize nuclei.  Five to ten images were taken per 

coverslip (3-7 coverslips per media condition), and the number of nuclei and the number of SMA positive 

cells were counted.   

 

We found that when cultured in SmGM-2, human SMCs proliferate faster (higher cell counts) than when 

cultured in the base medium (data not shown).  However, we have found that by supplementing the base 

media with 4 ng/ml FGF-2 (+FGF media), we increased human SMC proliferation compared to the base 

medium (data not shown).  These findings are in agreement with other published reports which also 

suggest that FGF-2 promotes SMC proliferation.43-45  We also observed differences in SMA expression 

between human SMCs cultured in the three different media formulations (base media, +FGF, or SmGM-

2).  For example, human SMCs cultured in base media have a higher percentage of SMA positive cells 

(Figure 6. 4A,B) than human SMCs cultured in +FGF medium (Figure 6.4A,C).  Further, human SMCs 

cultured in SmGM-2 have a higher percentage of SMA-positive cells than cells cultured in +FGF media, 

but fewer positively stained cells than SMCs cultured in base media (data not shown).  Therefore, it 

seems that the SmGM-2 media is not particularly effective at expanding human SMCs or switching them 

into a contractile phenotype.   
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Figure 6.4 – SMA expression in human SMCs cultured with or without FGF-2.  Human SMCs cultured on glass 

coverslips for 7 days in medium with or without FGF-2. The number of smooth muscle alpha actin (SMA)-positive 

cells was counted in each condition.  Quantification of the percentage of positive cells is shown in the graph (A) 

SMA labeling is shown in green in human SMCs cultured in base medium (B) or FGF-2 media (4 ng/ml) (C).  Blue 

= nuclei, Scale = 50μm.  (mean±SD, n=3, p<0.05) 

 

These results are interesting because the “base medium” which resulted in elevated levels of SMA 

staining on coverslips, did not result in any SMA-positive staining in human SMC tissue rings (“base 

medium”, Figure 6.3A).  This suggests that while SMC phenotype modulation can be achieved by a 

single growth factor addition in 2D, the same results are not realized with 3D tissue.  This provides an 

argument for moving forward in a 3D screening system like the self-assembled rings for future studies on 
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smooth muscle cell phenotype.  We anticipate that through the use of the ring model we can 

systematically evaluate the effects of various combinations and concentrations of factors leading to 

increased SMC contractile protein expression.  Further, we can also use these rings to evaluate the 

contractile forces generated by SMC-derived tissues.  

 

Regardless of the lack of contractile expression to date, we have developed this ring-based system with 

the intention of conducting functional myography to test the contractile potential of the rings.  To 

determine whether contractility tests are feasible with this system, we have cultured rat SMC rings for 7 

days and then mounted them on a wire myograph system (DMT, Model 610M).  Figure 6.5 shows force 

traces produced by both a ring segment from a mouse aorta and one of our rat SMC tissue rings.  The 

vessels and rings were both stimulated with potassium-rich physiological salt solution (KPSS) to induce 

contraction.  The mouse aorta displays a normal force trace in which the vessel contracts upon exposure 

to the KPSS, whereas the rat SMC rings don’t appear to produce any force.   

 

 

Figure 6.5 – Contraction force measured by myography.  Force traces generated by myography of a mouse aorta 

and a 2 mm, 7-day-old rat SMC ring.  Rings were stimulated with potassium-rich physiological salt solution 

(KPSS), Phenylephrine (PE), or Angiotensin II (ANG II) to stimulate contraction.  (*Note the scale of the y-axis 

differs in the two traces) 
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Although we have not yet fabricated tissue rings that generate force or express smooth muscle contractile 

proteins, we have shown that with our system we can fabricate cell-derived ring constructs which are size 

and shape appropriate for contraction studies.  Future studies can further examine the affects of various 

factors on the ability of tissue rings to generate contractile proteins and ultimately contractile function.  

For example, L’Heureux et al. showed that cell-derived tissue tubes generated from vascular SMCs 

cultured in 50 μg/ml of ascorbic acid and 0.5% serum can produce contractile force in response to 

vasoconstrictor agonists.11  Although these vessel segments were cultured for >3 months, we may be able 

to use the same culture media composition with SMCs in out self-assembled rings to produce contractile 

forces.   We can also perform protein analysis to determine where along the phenotype spectrum our cells 

are located.  For example, we can examine not only the above mentioned contractile proteins (SMA, 

CALP, MHC) but also look at ion channel expression to determine if proteins that aide in vascular 

responsiveness are present in our cells.  In all, we can use these self-assembled rings to analyze 

contractile potential of cell-derived vascular constructs.   

 

 

6.3 Extracellular matrix found in the vascular media (Elastin) 

 

Another critical component to building engineered vascular tissue is the extracellular matrix (ECM).  

Native vascular medial layers are rich in both collagen and elastin.  Collagen helps to provide the strength 

and structure to the vessels whereas elastin provides compliance and elastic recoil to the vessels.  While 

researchers have made great strides in building grafts with substantial collagen content and high burst 

pressures, sufficient elastin production remains elusive.46-48  Elastin is the most abundant protein found in 

muscular arteries and not only plays an important role in compliance,49 but also in the structure50 and 

elastic recoil51 of the blood vessel and helps control smooth muscle cell phenotype and limit 

proliferation.52   

 

Elastin is formed when its soluble precursor, tropoelastin, is cross-linked with fibrillins, fibulins, and 

other micro-fibril associated glycoproteins to form elastic fibers.53  These fibers are found concentrated in 

lamellae throughout the medial layer in between layers of smooth muscle cells.  Elastin is primarily 

produced throughout development where it is cross-linked into the elastic fibers.  Elastin is a very stable 

protein with a half-life that approaches the age of the animal.54  Therefore, there is very little elastin turn-

over and little elastin synthesis in adult vessels. This generates a problem when engineers look to use 

adult SMCs as a cell source for their vascular grafts because of the lack of elastin synthesis.  Therefore, 

most tissue engineered grafts that lack elastic fibers have low patency rates due to thrombosis,55,56 intimal 
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hyperplasia,57 and aneurysm47.  Many attempts to engineer grafts with SMCs have generated small levels 

of elastin synthesis,58 but not the levels found in native artery.49  Neonatal SMCs have been shown to 

produce elastic fibers more readily than adult SMC cells, but may not be a clinically useful cell type for 

adult vascular grafts due to lack of availability.58,59  Recently, there have been multiple reports of tissue 

engineered vascular grafts with elastin production,6,7,60,61 but characterization of the contribution of elastin 

to their mechanical properties remains unknown.   

 

6.3.1 Cell derived elastin-rich rings 

One possible application of our cell-based system is to study the biomechanics of elastin-rich tissue.  We 

can monitor how elastin production, secretion, and cross-linking in to the ECM affect the compliance of 

self-assembled tissues.  As described above, inducing adult cells to generate elastin in culture has proven 

difficult, therefore in preliminary studies (to show proof-of-concept) we chose to use neonatal elastogenic 

cells to generate elastin-rich tissue rings.  We could then determine if our ring system is capable of 

differentiating changes in mechanical properties due to increased elastic fiber content.  Further, we could 

use this cell-derived approach as a means of “tuning” the mechanical properties by altering proportions of 

elastin-producing cells with another cell type.  If successful, that would yield increased compliance with 

increased elastic fiber content due to a higher proportion of elastin producing cells.   

 

As preliminary work, we generated tissue rings from neo-natal rat lung fibroblasts (RFL-6 cells, ATCC, 

CCL-192), a cell type well known for producing abundant amounts of elastin.62,63  In our study, we tried 

to modulate the mechanical properties of the tissue rings by changing the amount of elastin.  To do this, 

we attempted to create tissue rings by co-seeding various proportions of RFL-6 cells with rat SMCs (0%, 

50%, 75%, or 100% RFL-6 cells).  By increasing the percentage of RFL-6 cells, we were hoping to 

generate constructs that contained more elastin and ultimately greater compliance.  Five tissue rings were 

produced for each proportion as described in Chapter 4 with 500,000 cells per 2 mm ring, cultured for 7 

days.  All proportions of cells aggregated to form rings, but the rings generated entirely from RFL-6 cells 

only loosely contracted around the center post and appeared “lumpy” with thick and thin regions around 

the circumference.  Upon removal from the wells the rings made entirely from RFL-6 cells were 

extremely fragile and did not remain intact.  Histological staining for elastin showed that co-cultured rings 

did not express the protein, no matter the ratio of cell types (see Figure 6.6).  Conversely, the rings 

completely generated from RFL-6 cells produced an over-abundance of elastin which, we believe, led to 

our inability to manipulate the rings and perform mechanical analysis.   
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Figure 6.6 – Histomorphometry of tissue rings co-cultured from rat SMCs and RFL-6 cells.  Co-seeded 2mm 

rings were cultured for 7 days.   The percentage above the images indicated the percentage of RFL-6 cells seeded in 

the ring.  Paraffin-embedded sections were stained with H&E, Orcein (dark purple=elastin), and Verhoeff van 

Geison (black=elastin).  Scale = 50µm 

 

While the 100% RFL-6 group was too fragile to test, the 0%, 25% and 50% RFL-6 groups were removed 

from their wells and uniaxially tested to obtain mechanical data (similar to as described in Chapter 3).  

Interestingly, the ultimate tensile strength and stiffness of the rings with RFL-6 cells were greater than 

those composed solely of smooth muscle cells (0% RFL-6, Figure 6.7B, C).  This could in part be due to 

an increase fibroblast population within these tissues as fibroblasts are known to produce abundant ECM 

and generate strong cell-derived structures.3,64-66  Further supporting this idea is the increase in thickness 

observed in the rings co-cultured with fibroblasts compared to SMC-only rings (Figure 6.7A).   
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Figure 6.7 – Mechanical analysis of rings co-cultured with rat SMCs and RFL-6 cells.  Mechanical testing 

parameters as a function of percent RFL-6 cells in the co-culture.  The data is represented as mean ± SD, n=3.  *= 

p<0.05 

 

Although not successful in achieving our goal of creating tissue rings with elevated elastin content, this 

study demonstrates that we are able to utilize the tissue ring system to alter the ECM composition of our 

tissues and measure changes in the biomechanical and histological properties.   

 

Throughout the course of these studies, however, we did observe some limitations to the current system.  

We currently use a 1N load cell for uniaxial tensile testing.  This may not be sufficient to cover the range 

of loads necessary for stronger tissues.  Because one future goal is to increase collagen content and 
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overall tissue strength, some modifications to current testing protocols such as changing the load cell and 

pre-cycling regimen may be necessary to accommodate stronger tissues.  Additionally, the current method 

for testing our tissues monitors force and displacement of the grips on which we mount the rings.  We 

then take these measurements and calculate failure properties of our tissues.  To do this, we calculate 

engineering stress based on measured initial thickness, and engineering strain based globally on the 

displacement of the grips.  However, we are interested in understanding how our tissues behave under 

physiological loads, therefore in future studies we need to examine their sub-failure properties.  The 

current method of obtaining global failure mechanical data is not ideal for assessing sub-failure properties 

of the tissue rings.  Therefore, we may need to modify the testing protocol to include local tracking of the 

tissue which will help us calculate local strain and sub-failure compliance.  One method to achieve this is 

to attach dots on the surface of the tissue ring and video record displacement of the markers.  This will 

give us information about the local strain in certain regions of the tissue and yield a more accurate 

representation of tissue sub-failure mechanics.    

 

6.4 Sources of cells suitable for vascular tissue engineering 

 

Finally, the source of cells used to generate tissue-engineered blood vessels is also an important design 

parameter.  Most in vivo studies have used autologous cells or have implanted allogeneic or xenogeneic 

cells into immuno-compromised animals. Vascular smooth muscle cells harvested from autologous 

vessels are an obvious option because they are the cells found in the medial layer of native vessels. While 

they have been the widely used cell source for experimental vascular tissue engineering studies, obtaining 

human SMCs requires a tissue biopsy from a patient’s vein or artery, which causes pain and morbidity at 

the donor site.  Further, patients who are candidates for vessel grafts are typically older and have more 

cardiovascular disease risk factors than the young, healthy donors from which cells are obtained for most 

experimental studies. SMCs from older patients were shown to have a limited proliferative capacity, and a 

decreased ability to synthesize collagen and elastin.48,67  The limited life span of adult SMCs has proven 

to be a major stumbling block in their use in regenerative medicine.   

 

The engineering of cells to overexpress human telomerase reverse transcriptase (hTERT) has 

considerably lengthened the lifespan of many cell types.   hTERT is an enzyme that couples with an RNA 

primer inside the cell to provide a telomere-extending capability, to reverse the natural telomere 

shortening that occurs upon cell replication.  Interestingly, SMC life span could be extended for several 

passages by overexpressing human telomerase reverse transcriptase (hTERT),67 but this approach 

introduces concerns of the use of genetic manipulation and the potential for malignancy.  Recently, a 
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chimeric fusion between TERT and a DNA binding protein (pot1) has been described giving rise to the 

hope of transiently expressing hTERT in adult cells without the need for retro- or lenti- viral expression.68  

While this fusion protein has increased the lifespan of SMCs in vitro, its potential for vascular tissue 

engineering is unrealized.68   

 

Alternatively, other vascular cells such as fibroblasts and endothelial cells are more readily obtained in 

clinically useful quantities from autologous tissues such as skin biopsies. A single dermal biopsy can 

provide sufficient numbers of cells to create cell-sheet-based vascular grafts, regardless of patient age, 

cardiovascular disease status, and other risk factors.3,69,70  Multiple sources of endothelial cells have been 

investigated for the intimal lining of vascular grafts, including microvascular endothelial cells from 

autologous adipose tissue;71 however, a patient-matched, expandable source of vascular SMCs has not yet 

been established. 

 

This challenge has led to the investigation of alternative cell sources, including stem cells. Over the past 

decade, cells from bone marrow,39,72-78 adipose tissue,79,80  muscle,81,82 and hair follicles83,84 have been 

isolated and seeded onto scaffolds to create vascular grafts. Many of these stem cell sources have been 

shown to differentiate along a SMC lineage. Cells isolated from the bone marrow, including freshly 

purified mononuclear cells,85 multipotent adult progenitor cells,75 and adherent mesenchymal cells,39,72 are 

the predominant stem cell sources that have been studied to date. Bone-marrow-derived mesenchymal 

stem cells (MSCs) have been used after a period of cell culture to differentiate them into SMCs, although 

they have also been used fresh, without ex vivo culture, which is advantageous for clinical use.85 

Additionally, these cells have proven to be a valuable model cell type for animal studies because they can 

be isolated from many species.  Most strategies for selection and differentiation rely on evidence of 

expression of genes that are characteristic of differentiated, contractile SMCs. The most common early 

marker used to identify SMCs is smooth muscle a-actin (SMA); however, it is also expressed in 

myofibroblasts and therefore is not specific.86  More stringent criteria include expression of another early 

contractile protein, calponin (CALP), which is restricted to SMCs, transcription factors such as SM22a, 

and proteins expressed at later stages of differentiation, including smooth muscle myosin heavy chain. 

Most studies rely on a combination of gene expression, contractile protein synthesis, and functional 

contraction assays as evidence of SMC differentiation from progenitor cells. 

 

6.4.1 Human mesenchymal stem cells for use in vascular tissue engineering 

Because others have demonstrated that bone marrow-derived MSCs are able to differentiate into SMCs, 

we chose to explore their differentiation potential and utility as a starting cell source for our vascular 
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tissue engineering studies.  There does not appear to be a single protocol for differentiating stem cells into 

SMCs, as different groups use different methods.39,76,87,88  We began by culturing human bone-marrow 

derived mesenchymal stem cells (hMSCs, Lonza, passage 5-9, donor: male 21 years old) on glass 

coverslips for 7 days in mesenchymal stem cell growth media (MSCGM, Lonza).  At the conclusion of 

culture the cells were stained for SMA and CALP (mouse monoclonal antibodies from Dako).  Figure 6.8 

shows positively stained MSCs cultured on glass coverslips.  While not 100% of the cells expressed SMC 

contractile proteins, there are many in which the organized, filamentous protein staining was observed.   

 

 

Figure 6.8 – MSCs can differentiate and express SMA and CALP.  MSCs cultured on glass coverslips in MSCGM 

for 7 days express smooth muscle alpha actin (SMA) and calponin (CALP.)  

 

Our immunostaining results indicated that there were some SMA-positive MSCs in our cultures; therefore 

we went on to quantify the percentage of SMA-positive cells.  Additionally, in an effort to increase the 

number of cells expressing SMA, we treated the MSCs with varying doses of TGF-β1 (0-10 ng/ml), a 

factor which has been implicated in promoting SMC contractile protein expression either by itself or in 

combination with other cytokines.39,74,75  To do this, MSCs were cultured on glass coverslips for 7 days in 

medium (MSCGM or 1:1 Ham’s F12 and DMEM, 10% Fetal Clone III (HyClone), 1% Penecillin-

Streptomycin (Mediatech)) with varying concentrations of TGF-β1 or FGF-2).  The coverslips (3-7 per 

group) were then stained for SMA and five images per coverslip were acquired.  The number of SMA-

positive cells and the total number of cells were counted and averaged between the five images.  Then 

number of SMA-positive cells was divided by the total number of cells in the field of view to yield the 

percentage of positive cells in each treatment group.  Figure 6.9 shows a graph of the percentage of SMA-

positive MSCs expressed as mean ± SD.  The addition of 1 ng/ml TGF-β1 increased levels of SMA 

staining to approximately 70% compared to the 30% baseline of culture in MSCGM media.   
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Figure 6.9 – MSCs express SMA in media with TGF-β1.  MSCs were seeded on glass coverslips and cultured for 7 

days in MSCGM or in base media (1:1 DMEM:Ham’s F12, 10% Fetal Clone III, 1% penicillin-streptomycin ) 

supplemented with either TGF-β1 or FGF-2.  The percentage of cells expressing smooth muscle alpha actin (SMA) 

was calculated and compared between conditions.  Data expressed as mean ±SD. n=3-7 per group. 

 

To further understand if MSCs could generate cell-derived 3D vascular tissues, we decided to see if they 

would self-assemble into rings in our system.89  Rings were seeded as described in Chapter 5 for human 

SMCs, with 750,000 MSCs seeded per 2 mm ring.  Within 2 days of seeding, MSCs aggregated to form 

rings, although they were not as tightly contracted around the center posts as we have observed with 

SMCs.  The rings were fragile after 2 weeks of culture and although we were able to mount the rings on 

the tensile testing device, we could not obtain mechanical data.  The rings were unable to register 

readable forces on the current 1N load cell, however, were extremely extensible and stretched over 3 

times their original length before failure.  Histological analysis did not indicate much expression of 

collagen, GAGs, or SMA throughout the tissue.   

 

Together, these data suggests that MSCs (or potentially other stem cells) are a possible cell source for 

vascular engineering.  Studying factors which promote stem cell differentiation, however, may be best 

carried out in a 3D environment, which our tissue ring system provides. Although rings generated from 

human MSCs were not strong enough for mechanical studies when cultured the way we did (14 days in 
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MSCGM), we may be able to alter the culture conditions by supplementing the media or by adding 

mechanical conditioning to increase the ring strength and allow for mechanical analysis.   

 

 

6.5 Conclusions 

In all, we have developed a system in which we utilize cellular self-assembly to generate 3D tissues.  We 

have shown ways in which we may be able to use this system to evaluate contractile SMC phenotype and 

function, ECM and elastin composition and biomechanics of rings, as well as alternative smooth muscle 

cell sources.  Although we have not identified the culture conditions that lead to a quiescent phenotype 

switch or elastin synthesis in SMCs, we have developed a tool which can be used to systematically 

measure the effects of culture parameters on tissue structure and function.   We believe that by changing 

the way we culture these rings by adding supplements to the media or combining mechanical stimulation 

throughout culture we may better be able to achieve proper cell phenotype and ECM deposition.   
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Chapter 7:  Conclusions and Future Work 

 

7.1 Overview 

The work in this thesis describes the development of a new system to generate self-assembled vascular 

tissue that more closely recapitulates the native vascular environment.  Analogous to current trends in 

vascular engineering, our system generates 3D tissues entirely from cells and the ECM they produce.1-8 

However, in addition to tissue structure, we can also use our tissues to evaluate biomechanics, and 

contractile function.  Similar to native vessels, our tissue rings are composed of vascular smooth muscle 

cells, have high cell densities, and have comparable size and geometries. We believe that this is a simple, 

straight-forward method of generating cell-derived tissue constructs that any lab could adopt without 

purchasing specialized equipment.  The method yields robust 3D constructs in as short of a time as one 

week and can be used to examine the structure and function of vascular tissue (overview in Figure 7.1).   

 

 

Figure 7.1 – Overview of the self-assembled cell ring system.  Rings are conducive for analysis of biomechanics, 

structure, physiological function, and for tissue tube formation.   
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7.2 Advantages to the ring-based system 

The cell self-assembly process illustrated here allowed for tissue generation using a straight-forward 

method.  One drawback to generating scaffold-free tissue has been the amount of handling required to 

form the tissue shapes of interest.7,9,10  However, the process described in this thesis allowed us to 

generate tissue in ring shapes with minimal manipulation.  In order to achieve this, we developed a three 

step process of generating agarose cell-seeding molds.11,12  While it takes a few steps and some time to 

generate the cell-seeding molds, the round-bottomed annular wells force the cells to aggregate due to 

gravity upon seeding.1,3  Therefore, we can generate self-assembled rings without the need for 

manipulating the tissues throughout culture.   

 

Another limitation of other scaffold-free approaches to tissue engineering is the long culture times (>3 

months) required to generate handleable tissue constructs.13-15  The method described in this thesis yields 

handleable tissue constructs in as little as one week of culture.  While we only performed mechanical 

analysis on the tissues after one week in culture, we were able to remove rings from their agarose wells 

after only 1 day, suggesting that the aggregated tissue was robust enough for manipulation at that time.  

Future studies may need to culture the tissue rings for longer periods of time in an effort to increase the 

ECM synthesis and incorporation, leading to stronger and more compliant tissues.  However, this method 

decreases the length of time required for the generation of handleable vascular grafts from months to 

weeks.   

 

Mechanical analysis revealed that the tissue ring strength and stiffness exceeded those of similarly 

cultured tissue constructs generated from other commonly utilized tissue engineering techniques such as 

cells in collagen or fibrin gels.16,17  This suggests that we may be better able to reach desired tissue 

strength faster in a cell-derived system compared to other “cell-in-gels” approaches.  Interestingly, the 

strength of the tissue rings decreased as the rings were cultured for 2 weeks compared to 1 week.  We did 

not observe a change in overall failure force, however due to the increase in ring thickness from 8 days to 

14 days, the failure stress of the tissue decreased.  This increase in thickness (outside of diffusion 

limitations) led to necrosis in the center of the rings by 2 weeks in culture.  Another possible reason for 

the decrease in strength is due to the ECM composition of the rings.  Glycosaminoglycans were abundant 

in rat SMC rings at all time points, and this matrix component does not contribute to the mechanical 

strength of the tissues.  While there did appear to be an increase in collagen content with 2 weeks in 

culture, this may have been counteracted by the necrosis in the centers of the thick tissues.  Future work 

should focus on increasing tissue strength as well as decreasing cell-seeding number and tissue thickness 

to alleviate the necrosis in the center of the tissue.   
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One approach to achieving the increase in strength and decrease in thickness could be to add a dynamic 

cyclic conditioning regimen to the culture of the tissue rings.  Dynamic cyclic loading has been shown to 

help decrease wall thickness, increase fractional cell content, contractile cell phenotype, cell alignment, 

and burst pressure in engineered vascular grafts.18-21  Further, under loading conditions, cells can 

synthesize greater amounts of collagen more rapidly than when cultured statically.  While some ECM 

molecules may take longer than one week to fully form, combining mechanical stimulation with growth 

factor supplementation may be able to increase the rate at which these molecules are deposited.  Because 

our tissue rings are conducive to both growth factor supplementation and to mechanical stimulation, with 

the addition of cyclic mechanical loading, we may be able to force the cells to synthesize ECM faster 

leading to shorter production times for strong vascular tissue.  Cell aggregated tissue rings are well suited 

for conditioning in a cyclic distension bioreactor.  Many bioreactor designs include the distension of a 

silicone tube inside the vascular graft, leading to cyclic strains being applied on the tissue.18,20,22  The 

tissue rings are conducive to mounting on silicone tubing (as early as one day in culture) as demonstrated 

throughout tube fusion.  Therefore, cyclic loading could be considered as part of the culture regimen, to 

decrease thickness and increase collagen synthesis and burst strength so our vascular tissue more closely 

relates to that of native arteries.   

 

Another means of increasing burst strength could be through the use of media supplements.  All of the 

ring studies described in this thesis were cultured in standard growth media (DMEM with 10% FBS) and 

no media supplementation was used to increase mechanical strength.  Work characterized by our lab 

suggests supplementation of our growth media with 50 µg/ml ascorbic acid appears to increase the 

ultimate tensile strength from 242 kPa to 402 kPa after 7 days in culture.23  This culture regimen also 

increased collagen content.23,24  Through increasing culture times and supplementing media with ascorbic 

acid, several groups developing tissue engineered blood vessels have shown that they can attain burst 

pressure strengths equal to saphenous vein.19,25,26  Uniquely, this ring system allows for the screening of 

factors which promote ECM synthesis and lead to changes in mechanical properties.  The rings can be 

cultured under various conditions and the structure and mechanics can be evaluated.  

 

In addition to ECM within the tissues, it is important to also have circumferential alignment of the cells 

and contractility.  Surprisingly, we did not observe alignment in any of our tissue rings.  This result was 

surprising given that the cells self-assemble and contract to form tissue around the center post.  In other 

cases of tissue remodeling around a central mandrel (such as cells in fibrin gels) the cells orient 

themselves circumferentially leading to an overall cellular alignment.27,28  One reason that we did not 
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observe alignment could in part be due to the low stiffness of the agarose or the silicone tube, however 

further investigation would be required to determine if this is the only cause.   

 

7.3 Benefits of tissue fusion 

The second part of the thesis was focused on transforming the self-assembled rings into tissue tubes.  We 

found that by culturing the rings in contact on silicone tube mandrels they fuse together to form tubes.  

Therefore, the rings can act as viable building blocks which can be used to generate larger tissues for 

further mechanical and functional analysis.11,29  The concept of cell-derived building blocks has been 

established in the field of bioprinting,7-9 where spheroid-shaped subunits were aggregated to fuse into 

larger tissues.30  However, mechanical and functional testing cannot be performed on spherical sub-units.  

With the ring system, we can test tissue mechanical function on the individual sub-units without needing 

to fuse them into a larger structure first.  This allows us to monitor how ring culture parameters affect 

tissue composition and function without the need to generate full sized tissue tubes, saving us time, 

materials, and reagents.  But, ultimately, when parameters are established so that the desired mechanical 

properties are achieved, the rings can be fused into tubes, leading to the generation of strong vascular 

tissue tubes and ultimately vascular grafts.   

 

Despite the clinical promise and increasing interest in cell-derived, scaffold-free tissue engineered 

vascular grafts; most existing approaches require long culture periods13,14 or specialized equipment.7,30  

Generating tubes from ring-shaped building blocks, as described in this thesis, required little time and no 

expensive equipment.  Currently, the method of stacking rings to fuse into tubes involves some manual 

manipulation of the tissue.  However, modifications to the mandrel design (as described in Chapter 4) 

increased our efficiency and ease of transferring the rings from agarose onto the mandrels.  Future work 

on this system may involve automation of ring stacking and tube generation to make this method more 

high throughput.   

 

In this thesis we also described testing methods to assess the strength of fused tissue tubes.  We 

demonstrated that tubes can be mounted onto a burst pressure testing device, filled with liquid and 

pressurized until failure.  While the overall strength (n=1) of the tissue was far below what is required for 

implantation, dynamic conditioning or media supplementation may be added to the culture regimen to 

enhance their mechanical properties.19,21,27,31-33   

We can compare the stresses we calculate through uniaxial tensile testing of ring-shaped structures to the 

burst pressure of tube-shaped tissues.  To do this we must know the ring radius (r) as well as the wall 
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thickness (t, measured using the DVT).   We also must follow the assumptions that the stresses in the tube 

wall are uniform, the external pressure is zero, and that the tube is thin-walled (wall thickness is 

approximately 1/10 that of the tube radius).  With these assumptions, the ultimate tensile strength 

measured from uniaxial testing approximates the hoop stress (σh, circumferential stress) in the tube.  

Therefore, burst pressure (P) could be estimated using the following equation:  

(Equation 1- hoop stress)                    

Because we conserved ring thickness by altering the initial cell seeding density based on the diameter of 

the ring (2, 4, or 6 mm), the thin-walled assumption did not hold true for all rings.  Thick-walled tubes do 

not have equal stresses across the wall of the tube and therefore do not fit this equation.  This could be 

one reason why the ultimate tensile strength decreased with smaller radius rings cultured for similar 

lengths.   

Another difference to consider is whether the tissue tubes are weakest at the ring junction points.  In this 

work we did not directly measure the strength of the ring junctions.  However, the burst pressure results 

showed the failure mode as a longitudinal tear, suggesting the tubes were weaker in the longitudinal 

direction than circumferentially along the ring junctions. Mathematically one would expect the tubes to 

split longitudinally as the hoop stress is twice as much as the longitudinal stress (σ l) in a cylinder.  

 

(Equation 2 – longitudinal stress)                              

(Equation 3 – comparison of stresses)                       

 

Another benefit to this modular ring fusion technique is our ability to maintain spatial retention of cell 

location within the tubes.  We showed that the rings can fuse together, but the cells from each ring remain 

in their original location.  Using genetic manipulation techniques or multiple cell types, we may now also 

be able to generate tubes with sections that differ in cellular origin, matrix composition, or mechanical 

properties from adjacent sections of the same tube.  We may be able to exploit this for use in generating 

vascular disease models such as aneurysm where ECM and elastin in a specific region in the vessel 

degrades, leading to a decrease in local mechanical properties, and results in ballooning of the vessel.34  If 

we can develop diseased tissues in vitro, we can then begin to study therapies which may help treat 

vascular diseases.   

 

In addition to controlling cell location within our tissue tubes, we demonstrated that we can generate 

complex branched structures which may be used to model sections of the vasculature that are prone to 
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disease such as areas where atherosclerosis occurs and plaque builds-up.35-37   By placing the tissue rings 

on “Y”-shaped silicone mandrel, they fused together in a branched type structure.  This may also offer a 

unique way to study the tissue remodeling at the site of anastomosis, another common location for graft 

failure.38,39  These regions are less studied due to the difficulty in building grafts with intricate structures 

even though they are some of the vascular region most prone to vessel diseases.  The stacked ring method 

could supply the vascular biology field a much needed tool to begin to model flow patterns, vascular wall 

remodeling, and disease progression throughout branched regions. 

 

 

7.4 Contribution to Science 

The model system described in this thesis offers a method of rapidly generating ring-shaped or tube 

shaped tissue constructs that have many potential applications in the field of vascular tissue engineering 

and regenerative medicine.  This platform technology can be used for more than just developing vascular 

grafts for in vivo use.  Future studies can use this platform technology to screen the effects of soluble 

media components on ECM composition, mechanical properties, cell phenotype, and physiological 

contraction.  Ultimately, we would like to be able to identify conditions that will enable us to “tune” the 

mechanical properties of cell-derived tissue for the generation of vascular grafts that are strong, stiff, and 

compliant, while maintaining ECM deposition rich in collagen and elastin and quiescent SMC phenotype.   

 

Evaluation of the effect of soluble factors on the fusion of cell-aggregated tissues may lead us into a better 

understanding of optimal culturing techniques for vascular graft generation.  Tissue tubes lend themselves 

nicely to culture with a combination of soluble factors and mechanical factors (such as cyclic distension, 

fluid flow, or both).  We hope the combination of these culturing techniques may provide us with an 

environment to maintain tissues in culture for long periods of time so that we may study extracellular 

matrix synthesis and tissue remodeling in response to changes in environmental factors.  Further, we 

could study the effect of changes in flow patterns at vascular branches and their contributions to vascular 

remodeling and disease progression. 

 

This ring-based platform technology can also be used to help further our understanding of vascular 

diseases as well as facilitate pre-clinical screenings of vascular tissue response to pharmacological 

therapies.  Most drug screening to date is developed through the use of animal studies where the findings 

do not necessarily correlate with drug effects on humans.  A recent shift in the field has put more 

emphasis on developing in vitro screening tools to evaluate the effects of pharmacological agents prior to 



Chapter 7 – Conclusions and Future Work Page 119 

 

pre-clinical animal studies.40-46   Although some progress has been made on this front, most screening 

tools lack the ability to quantitatively measure changes in mechanical or functional properties of the 

tissues.  The model tissue rings described in this thesis are ideally suited to the screening of 

pharmacological agents on tissue function (contraction or mechanics) and overall composition (ECM or 

cell phenotype).  This could provide an additional experimental level that would decrease the quantity of 

animal studies.    

 

Throughout this thesis we focused on the application of this system for vascular tissue engineering, 

however, this system could also be used to generate, screen growth conditions, and tune mechanical 

properties in a multitude of tissues types (such as cartilage, ligament, tendon, skeletal muscle, intestine, 

trachea, etc.).  In addition to mechanical testing, these rings are also conducive to other types of 

functional analysis such as myography to test contractile potential in tissues, which would be an 

important end point in any of the above mentioned contractile tissues.   

 

In summary, we have developed a versatile approach to generating scaffold-free tissue that has 

applications in tissue engineering, regenerative biology, and biomechanics research.  This model system 

can be utilized for not only tissue engineering applications, but also hypothesis-driven research aimed at 

discovering new mechanisms and soluble factors involved in controlling ECM synthesis, cell 

differentiation, and cell phenotype, and their effects on tissue remodeling and mechanical function.   
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