
An Adaptive Mixed Finite Element Method using the
Lagrange Multiplier Technique

by

Michael Gagnon

A Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Applied Mathematics

by

May 2009

APPROVED:

Professor Marcus Sarkis, Capstone Advisor

Professor Bogdan Vernescu, Department Head

Abstract

Adaptive methods in finite element analysis are essential tools in the efficient com-

putation and error control of problems that may exhibit singularities. In this paper,

we consider solving a boundary value problem which exhibits a singularity at the

origin due to both the structure of the domain and the regularity of the exact solu-

tion. We introduce a hybrid mixed finite element method using Lagrange Multipliers

to initially solve the partial differential equation for the both the flux and displace-

ment. An a posteriori error estimate is then applied both locally and globally to

approximate the error in the computed flux with that of the exact flux. Local esti-

mation is the key tool in identifying where the mesh should be refined so that the

error in the computed flux is controlled while maintaining efficiency in computation.

Finally, we introduce a simple refinement process in order to improve the accuracy

in the computed solutions. Numerical experiments are conducted to support the

advantages of mesh refinement over a fixed uniform mesh.

Acknowledgments

I would like to express my gratitude to my advisor, Professor Sarkis for all his

dedication, patience, and advice. Also, I would like to thank all my professors for

their motivation and guidance during the past two years at WPI. Of course, I can’t

forget to thank my family and friends for all their support.

i

Contents

1 Introduction 1

1.1 A Model Problem and its Weak Formulation 1

1.2 The Lagrange Multiplier Technique 3

2 An Example Problem on a Non-Convex Domain 6

2.1 The Problem . 6

2.2 An Error Analysis in the L2(Ω) Norm 9

3 A Posteriori Estimator for the Error in the Flux 10

4 An Adaptive Method 13

4.1 The Marking Strategy . 14

4.2 Conformity of the Triangulation and Elements 15

4.3 Mesh Refinement . 15

5 Numerical Experiments 18

A Matlab Code 23

A.1 An Error Analysis in the L2(Ω) Norm 23

A.2 The Adaptive Program used in Chapter 5 24

ii

List of Figures

1.1 Consider an edge, E such that E = ∂K+∩∂K−. Thus, the jump of a

function q across E is in the direction of the normal unit vector, vE.

If E is on the boundary, then vE = υ, where υ is the exterior unit

normal. 3

2.1 The discrete solution, uh to (2.1) with a uniform step size of h = 1/20 7

2.2 The discrete flux in the x direction for an uniform mesh size of h =

1/10. The figure shows that the flux, ph varies greatly for elements

close to the origin. This results from the singularity of the exact

solution around the origin and the non-convexity of the domain, Ω . . 8

4.1 An overview of the adaptive process 17

5.1 An initial mesh, T0 with the corresponding element numbers. The

data structure of each element and its corresponding vertices are

stored in the data file, element.dat 19

5.2 The computed solution of uh for an initial mesh, T0 of uniform size,

h = 1
2
. The global error estimate, η was equal to 0.4490 after solving

over T0. After one refinement, we now have four new triangles, two

new coordinates, and a global error, η = 0.3794 20

iii

5.3 The number of refinements necessary for η ≤ tol for an initial uniform

mesh, T0 of size, h. The marking parameter, θ is equal to 0.35. The

table compares the refinement process for T0 of size h and h
2

and given

tolerances, 0.1 and 0.05 . 20

5.4 This table demonstrates the effect of the marking parameter, θ on

the number of iterations and the total number of refined edges. Each

simulation was done with an initial mesh size of h = 1
2

and a given

tolerance, tol = 0.1 . 21

5.5 Computed flux in the x-direction for an initial mesh of uniform size,

h = 1/6 with θ = .35 and tol = 0.05. Note that in order to control

the error estimates, η2
K the majority of the refinement is done on

elements close to the origin. If we compare the results in this figure

with those of Figure 2.2, we see a drastic improvement in the solution

of ph without the addition of expensive computations. 22

iv

Chapter 1

Introduction

1.1 A Model Problem and its Weak Formulation

In this paper, we are interested in solving the following two dimensional boundary

value problem for u ∈ H1(Ω):

−∆u = f in Ω ⊂ R2

u = uD on ΓD (1.1)

∇u · υ = g on ΓN

where f ∈ L2(Ω), g ∈ L2(ΓN), and uD ∈ H1(Ω)∩C(Ω̄) are all known functions. We

consider both Neumann and Dirichlet boundary conditions, denoted respectively as

ΓN and ΓD, in all our numerical experiments. Here the polygonal boundary, Γ of Ω

is represented as the following disjoint union, Γ = ΓN ∪ ΓD. By defining p = ∇u,

i.e., setting p equal to the flux of u, we are able to develop the following mixed

formulation of (1.1):

−∇ · p = f and p = ∇u in Ω (1.2)

1

The problem now involves solving for two unknowns, the displacement u and

the flux, p. The flux, p lives in the space, L2(Ω)2, since u ∈ H1 implies that u and

it’s partial derivatives, ux and uy live in L2(Ω). We now introduce the following

function spaces,

H(div,Ω) = {q ∈ L2(Ω)2 : ∇ · q ∈ L2(Ω)}

Hg,N(div,Ω) = {q ∈ H(div,Ω) : q · υ = g on ΓN} (1.3)

In order to construct a weak formulation of (1.2), we consider for any test function

q ∈ H0,N(div,Ω) which is zero on the Neumann boundary,

∫
Ω
p · qdx =

∫
Ω
∇u · qdx = −

∫
Ω
u∇ · qdx+

∫
ΓD

uDq · υds (1.4)

Note that when integrating by parts, the Neumann boundary term,
∫

ΓN
gq · υds

is equal to zero, since q is zero on ΓN . Also, note that since the divergence of q,

denoted as∇·q, lives in L2(Ω), it is natural to now consider finding the displacement,

u such that u ∈ L2(Ω).

Thus, the variational formulation of the mixed problem (1.2) is to find the un-

knowns, p ∈ Hg,N(div,Ω) and u ∈ L2(Ω), such that for any q ∈ H0,N(div,Ω) and

v ∈ L2(Ω) ∫
Ω
p · qdx+

∫
Ω
u∇ · qdx =

∫
ΓD

uDq · υds (1.5)

−
∫

Ω
v∇ · pdx =

∫
Ω
vfdx (1.6)

with the same f ,g, and uD given as before. It is well known that the solution to

(1.5)-(1.6) exists, is unique, and also is equivalent to solving the BVP given by

(1.1)(cf., e.g.[3; Section 3.5]).

2

1.2 The Lagrange Multiplier Technique

An essential aspect in the discretization of a mixed finite element, is to find a

ph ∈ H(div,Ω). First, we introduce the following Raviart-Thomas functional space,

RT0(T) ={
q ∈ L2(T) : ∀K ∈ T,∃a ∈ <2,∃b ∈ <,∀x ∈ K, q(x) = a+ bx, and,∀E ∈ ΣΩ, [q]E · υE = 0

}
(1.7)

where T denotes the triangulation with elements, K and E denotes an edge in the

set of all interior edges, ΣΩ. For any two triangles, K+ and K− that share an interior

edge, E we define the jump of a piecewise continuous function, q across E in the

direction of υE (i.e., the unit normal vector of E), to be

[q]E · υE =
(
q|K+ − q|K−

)
· υE

We assume that υE always points from K+ to K− (See Figure 1.1) and υE equals

the exterior outward normal, υ when E is a boundary edge.

Figure 1.1: Consider an edge, E such that E = ∂K+ ∩ ∂K−. Thus, the jump of a
function q across E is in the direction of the normal unit vector, vE. If E is on the
boundary, then vE = υ, where υ is the exterior unit normal.

In order for RT0(T) ⊂ H(div,Ω), we need to satisfy the continuity condition of

the normal components on the boundaries, i.e., the edges of each element in T . One

3

method is to apply Lagrange multipliers on both the interior edges and Neumann

boundary edges. Since our task ahead is primarily a computational one, we refer

the interested reader to [2] for the discrete formulation of (1.2) using the Lagrange

Multiplier technique. The linear system that results from the discrete formulation

via the Lagrange Multiplier technique, is in the following form:

Ax =

B C D F

CT 0 0 0

DT 0 0 0

F T 0 0 0

xψ

xu

xλM

xλN

=

bD

bf

0

bg

(1.8)

Here we are given bD, bg, and bf which represent the Dirichlet and Neumann

boundary conditions and volume forces, respectively. The unknowns, xψ are the

components of ph in the direction of the unit normal vectors, υE. Since we are

seeking a uh ∈ L2(Ω), we are not guaranteed that the derivatives of uh are also

L2(Ω) functions. Hence, we consider the unknowns xu in (1.8) to be the T -piecewise

constant approximations to the exact solution, u.

As a result of applying the Lagrange multipliers to satisfy the continuity condi-

tion, we must now solve for the unknowns, xλM
and xλN

. By the construction of

RT0(T) ⊂ H(div,Ω), the jumps in the flux, ph across interior edges in the direction

of the normal components, υE are all equal to zero. The unknowns, xλM
found in

(1.8) are the Lagrange multipliers corresponding to the restrictions on each interior

edge. Finally, xλN
solves for the unknown Lagrange multipliers on the Neumann

boundary, with a given stress represented by the function, g. For the structures of

the matrices found in (1.8) we refer the reader to [2]. However, we conclude this

section with two important remarks on the computation of the linear system given

by the Lagrange Multiplier technique.

4

An obvious disadvantage of mixed finite element methods compared to the stan-

dard finite element method is that the linear system, Ax = b is larger and thus more

costly to solve. For instance, the matrix B in (1.8), is a square matrix of size three

times the number of elements in the triangulation.

Consider an alternative mixed finite element method, which satisfies the conti-

nuity condition of the normal components of ph by creating an edge basis of the

space, RT0(T) (cf., e.g.[2; Section 4]). The linear system of such a method is in the

form, B̃ C̃

C̃T 0

 xψ

xu

 =

 bD

bf

 (1.9)

An advantage of the Lagrange Multiplier technique compared to the above method,

is that although the linear system of (1.8) is larger than that of (1.9), the matrices

B and C consist of 3 × 3 block matrices. Computationally, it is more efficient to

solve systems with block matrices, especially when computing inverses.

5

Chapter 2

An Example Problem on a

Non-Convex Domain

2.1 The Problem

We now use the Lagrange multiplier technique and it’s Matlab realization, LMmfem.m,

both given in [2], to compute the approximate flux and displacement (ph, uh) in a

model problem of the form (1.1):

−∆u = 0 in Ω = (−1, 1)× (−1, 1) ∩ ([0, 1]× [−1, 0])C

u = 0 on ΓD = {0} × [−1, 0] ∩ [0, 1]× {0} (2.1)

∇u·υ = g(r, θ) on ΓN = (Γ ∩ ΓD)C

where g(r, θ) = 2
3
r−1/3(−sin(θ

3
), cos(θ

3
)) · n, in polar coordinates (r, θ). The exact

solution of (2.1) in polar coordinates is given by,

u(r, θ) = r
2
3 sin(

2

3
θ) (2.2)

6

The computed solution for uh over an uniform mesh size of h = 1
20

, using LMmfem.m

is given in Figure 2.

Figure 2.1: The discrete solution, uh to (2.1) with a uniform step size of h = 1/20

Note that ∂u
∂r

(r, θ) has a singularity at the origin, i.e., when r = 0. Since u = 0 on

ΓD, we can expect that the computed flux, ph will not be accurate for non-boundary

nodes close to the origin. Also, the L-shape of the domain, Ω forces a singularity

at the origin, since Ω is no longer convex. For instance, Figure 2.2 depicts the

instabilities of the computed flux, ph in the x-direction for elements close to the

origin.

The reader can clearly see that solving the linear system given in (1.8) can

be very costly when dealing with uniform mesh sizes. For instance, A in (1.8),

is a 3320 × 3320 matrix for a uniform mesh size of 1
10

. The size of the system

7

Figure 2.2: The discrete flux in the x direction for an uniform mesh size of h = 1/10.
The figure shows that the flux, ph varies greatly for elements close to the origin.
This results from the singularity of the exact solution around the origin and the
non-convexity of the domain, Ω

8

quickly becomes an issue and renders any analysis of step sizes greater than 1
20

as

an impractical task.

2.2 An Error Analysis in the L2(Ω) Norm

The L2(Ω) norm of the error between the discrete and exact solutions, uh and u is

given by,

‖u− uh‖2
L2(Ω) =

∫
Ω
|u− uh|2 dx =

∑
K∈T

∫
K
|u− uh|2 dx (2.3)

where K denotes an element (triangle) in the triangulation, T of Ω. Since uh is

piecewise constant on each triangle K, we approximate the exact solution, u over

the triangle by computing u at the barycenter of K. See the Appendix for the Matlab

realization of (2.3).

As a result of u /∈ H2(Ω), we expect that the error will no longer decrease by

a factor of four when halving the mesh size (cf., e.g.[8; Theorem 5.4]). That is, we

can expect the following ratio of errors,

(
E1

E2

)
=
‖u− uh‖L2(Ω)∥∥∥u− uh/2∥∥∥

L2(Ω)

(2.4)

to be less than four, due to the singularity of the exact solution u around the origin.

For instance, in our numerical experiments, we have for uniform step sizes, h = 1
10

and h = 1
20

,

‖u− uh‖L2(Ω)∥∥∥u− uh/2∥∥∥
L2(Ω)

=
(

0.01071900649988

0.00424245296767

)
≈ 2.52660585316389 (2.5)

9

Chapter 3

A Posteriori Estimator for the

Error in the Flux

We give a brief discussion of the a posteriori error control of the computed flux,

ph and the unknown, exact flux, p of problem (2.1) in the L2(Ω) norm. Since our

adaptive method, will hinge on the choice of the error estimator, the interested

reader should refer to [2] and [4] for an in-depth discussion.

We begin by introducing the following functional space, S1
D(T) = P1(T)∪C(Ω),

where T denotes the triangulation of Ω and P1(T) denotes the functional space

of all piecewise linear functions over T . Also, assume that functions in S1
D(T)

satisfy homogeneous Dirichlet boundary conditions. Hence, for any test function,

vh ∈ S1
D(T) we assume that the following Galerkin property holds,

∫
Ω
ph · ∇vhdx =

∫
Ω
fvhdx (3.1)

The problem of computing ‖p− ph‖L2(Ω) now becomes: Seek a qh ∈ S1
D(T)2 such

that qh is a smoother approximation to ph than the unknown, exact flux, p. Hence,

the goal is to approximate ‖p− ph‖L2(Ω) by constructing an operator, A that maps

10

the computed flux, ph to the test function, qh, i.e., Aph = qh. In the paper [2], the

authors defines the operator, A to be the composition of an averaging operator, Mz

and an operator, πz that computes the orthogonal projection of a vector in <2 onto

an affine subspace of <2.

Since ph ∈ P1(T)2, we have that for any node z in the mesh, the operator,

Mz : P1(T)2 → <2 computes the average of ph over the patch of z. The patch of a

node z, denoted as ωz, is defined to be the interior of the union of all triangles that

contain the node, z. Hence, Mz(ph) can be defined as,

Mz(ph) =
1

|ω|

∫
ωz

phdx (3.2)

where |ω| denotes the area of the patch, ωz. Once the average is computed for a

given node, z we then proceed to take the orthogonal projection, πz of Mz(ph) onto

an affine subspace, X of <2 such that,

Xz =

{a ∈ <2 : ∀E ∈ Ez ∩ EN , g(z) = a · υE and,∀E ∈ Ez ∩ ED,∇EuD(z) = (a)E}

where E denotes an edge in the mesh and ∇EuD(z) denotes the tangential derivative

along E. The role of πz is to satisfy the Neumann and Dirichlet boundary conditions

for the discrete flux, ph by mapping to the affine space, X. Hence, if we define the

functional space, S1(T) = span {φz : z ∈ N}, where N is the set of all nodes in the

triangulation and φz are nodal basis functions, we can represent any qh ∈ S1(T)2

as,

Aph =
∑
z∈N

Az(ph|ωz)φz (3.3)

Here we have that, for any node z in the mesh, Az = πz ◦Mz.

Now that we have constructed the operator, A which maps the computed flux,

ph to a piecewise continuous linear function, qh we can compute the global and local

11

error estimators given by,

η2 = ‖ph − Aph‖2
L2(Ω) and η2

K = ‖ph − Aph‖2
L2(K) (3.4)

Bahriawati and Carstensen showed that the error in the exact flux, ‖p− ph‖2
L2(Ω)

can be bounded by η = ‖ph − Aph‖L2(Ω) that is,

C̃η − h.o.t ≤ ‖p− ph‖2
L2(Ω) ≤ Cη + h.o.t (3.5)

where C̃ and C are constants that depend only on the triangulation, T and h.o.t

denotes higher order terms (cf., e.g.[2; Theorem 8.1]). This result is essential for

adaptivity in the sense that we can now control the error in the flux by estimating

locally as well as globally. Also, in practice the exact flux is usually unknown and

therefore one must use an a posteriori error estimator to approximate ‖p− ph‖2
L2(Ω).

In all our numerical experiments, we use the m-file, Aposteriori.m given in [2] to

compute the error estimators η2
K for all K ∈ T .

Using the software, Aposteriori.m to compute the global error estimate, η for

uniform mesh sizes h = 1
10

and h = 1
20

, we found the ratio of the error estimates is

approximately 3
2

that is,

(
η

η̃

)
=
‖ph − Aph‖L2(Ω)∥∥∥ph/2 − Aph/2∥∥∥

L2(Ω)

=
(

0.15376438745761

0.09726532431751

)
≈ 1.58087569785576 (3.6)

12

Chapter 4

An Adaptive Method

As discussed in the previous section, the example given in (2.1) involves a singularity

at the origin which affects the solutions of both the flux and displacement for nodes

located around the origin. Also, in order to avoid solving expensive linear systems,

such as the Lagrange Multiplier technique given in (1.8), one must consider utilizing

an adaptive mesh as opposed to a uniform mesh.

In the subsequent sections, we introduce a simple adaptive method to help control

the error in the computed flux, ph close to the origin. All numerical experiments

use the mfile, LMmfem.m given in [2], to solve for both ph and uh and also to

compute η2 and η2
K by calling Aposteriori.m as a function in Matlab. Depending

on the accuracy of the solution, we then use the m-files, bisection.m, label.m, and

getmesh.m provided in [6], to refine the mesh according to the given tolerance, tol

and marking parameter, θ. The interested reader should refer to [5],[6], and [7] for

a brief background in adaptivity, numerical demos, and adaptive software.

13

4.1 The Marking Strategy

In this section, we discuss a method to identify or mark certain elements, K in

the triangulation where the error in the computed flux, ph is significant. However,

before we can consider the marking process, we must first compute ph over a given

or initial triangulation of Ω. Once, we compute ph we then use the a posteriori error

estimator described in Chapter 3 to compute the global and local errors, denoted

respectively as η and ηK such that,

η2 = ‖ph − Aph‖2
L2(Ω) =

∑
K∈T

η2
K =

∑
K∈T
‖ph − Aph‖2

L2(K) (4.1)

Initially, the user must decide the desired accuracy or tolerance, denoted as tol,

of the computed flux. After solving the problem and estimating both the local and

global error estimates, we check to see if η > tol. If η ≤ tol, then we are done,

since the required accuracy in the computed solution has been achieved. However,

if η > tol then the problem becomes to select a subset of the triangulation, T which

contains the triangles where the error in the flux is relatively large. In the case of

(2.1), we expect the triangles close to the origin to be marked for refinement, since

this area is where the error in ph will be the most significant. We introduce the

following marking strategy provided by [5] and [6]: Given an initial parameter, θ

where 0 < θ < 1, find a subset M ⊂ T such that

∑
K∈M

η2
K ≥ θη2 (4.2)

14

4.2 Conformity of the Triangulation and Elements

A natural question arises from the previous discussion. How does one mark a triangle

for refinement and still maintain the overall data structure of the problem and,

more importantly, maintain the conformity of the triangulation? Note that in a

conforming finite element triangulation, the intersection of any two triangles, K1

and K2, is either empty, a node, or an edge.

A finite element, K in the triangulation has a non-conforming edge, E on its

boundary, ∂K, if E has a node between its endpoints. Such a node is referred to

as a hanging node. The question now becomes: How to ensure the non-existence

of hanging nodes during the refinement process and therefore preserve the overall

conformity of the triangulation? In order to answer this question, we must first

introduce a method for refining marked elements.

4.3 Mesh Refinement

In this section, we consider the refinement method, the newest vertex bisection

method, and it’s Matlab implementation, bisection.m given in [5] and [6]. First

we introduce an important aspect of the data structure, element.dat which stores

each element with it’s corresponding vertices (see [1] and [2] for details on data

structures). We must identify one of the vertices of each triangle as the peak of the

triangle. In [6], the authors identify the peak of K by labeling it as the first vertex

entry in the data file element.dat.

Once, we have identified the subset of marked elements we can now refine each

one by bisecting the edge opposite (also known as the base of K) and connecting

the segment to the peak. As a result, the triangle K is now split into two triangles

K1 and K2. Consequently, we now have an additional node z̃, i.e., the midpoint of

15

the base of K, which must be added to the data structure coordinate.dat. Also, we

must add one more element to the array element.dat and update the original vertex

entries for K with the new vertices of either K1 or K2. Note that in order to be

able to repeat the refinement stage, we must now reassign the peaks of K1 and K2

to be the new node, z̃.

Hence, we now return to the marking stage previously discussed in Section 4.1.

Now, not only do we consider marking elements where the error is significant, but

also marking elements with non-conforming edges. For instance, consider the trian-

gle(s) K where the error in the flux is the maximum over all triangles in the mesh.

Clearly, if the global error estimate, η is greater than the desired tolerance, element

K will be marked for refinement. Thus, the base of K will be bisected and the mid-

point of the base, z̃ will become an additional node in the triangulation. However,

if the neighboring element, K̃ which shares the base with K is not refined also, then

z̃ will become a hanging node. Hence, while marking elements and identifying their

base edges, we must also mark the neighboring element that shares the base edge

for refinement also. Note that the resolution of hanging nodes is addressed during

the marking process. Thus, the new triangulation is already conforming, prior to

the refinement stage.

16

Figure 4.1: An overview of the adaptive process

17

Chapter 5

Numerical Experiments

We now consider solving the model problem, given by (2.1) adaptively, using the

method previously discussed and as shown in Figure 4.1. See the Appendix for the

Matlab script, adaptfem which is used in the following analysis to compute the

solutions of (2.1) adaptively.

First, we begin our analysis by considering a very coarse initial mesh, T0 such

that the uniform mesh size, h is h = 1/2. After solving the initial problem and

computing the local error estimators, η2
K for all K ∈ T0, the two elements with

the largest errors in flux are identified to be triangles 7 and 13 (See Figure 5.1).

Both elements have a local error estimate of η2
K = 0.0540. If we choose a marking

parameter, θ such that θ = 0.3, elements K7 and K13 will be the only elements

marked for refinement based on error reduction. This follows from the fact that the

sum, η2
7 + η2

13 = 0.1080 is greater than θη2 = 0.0605. Hence, we have the minimum

number of marked elements necessary to reduce the global error of the solution over

the new mesh.

Also, as mentioned earlier in Sections 4.2 and 4.3 we must also mark the neigh-

boring elements that share the base edges of K7 and K13. Hence, by also marking

18

Figure 5.1: An initial mesh, T0 with the corresponding element numbers. The data
structure of each element and its corresponding vertices are stored in the data file,
element.dat

triangles 8 and 14 for refinement, we maintain the overall conformity of the trian-

gulation and prevent the occurance of hanging nodes. Note that the existence of a

hanging node will disrupt the data structures given in [2], which are necessary for

solving the discrete solution of (2.1). The computed solution, uh after one refine-

ment can be seen in Figure 5.2 along with the additional elements and nodes created

in the refinement process.

The ability of the adaptive method to control the local error estimates, η2
K of the

computed flux, ph is clearly evident from the numerical experiments. The table in

Figure 5.3 demonstrates just how significant adaptivity is in controlling large error

estimates. For instance, consider an initial uniform mesh of size, h such that h = 1
2
.

The initial global error, η is approximately 0.4490. Hence, if the desired tolerance

is 0.1, we must apply the adaptive refinement process thirteen times in order to

19

Figure 5.2: The computed solution of uh for an initial mesh, T0 of uniform size,
h = 1

2
. The global error estimate, η was equal to 0.4490 after solving over T0. After

one refinement, we now have four new triangles, two new coordinates, and a global
error, η = 0.3794

Figure 5.3: The number of refinements necessary for η ≤ tol for an initial uniform
mesh, T0 of size, h. The marking parameter, θ is equal to 0.35. The table compares
the refinement process for T0 of size h and h

2
and given tolerances, 0.1 and 0.05

20

control the error in the flux. After thirteen refinements, we now have a global error

of ph such that η ≈ 0.0936. However, in order to obtain the same given accuracy in

the computed solution of ph without using an adaptive model, one must consider a

mesh-size of h = 1
20

. Recall from Chapter 3 that the global error, η for a uniform

mesh of size, h = 1
20

is approximately 0.0973. Hence, we can achieve better accuracy

and avoid costly computations by starting with a coarse uniform mesh and refining

where the local error estimates of ph are significantly large. We conclude this section

with two important remarks.

Figure 5.4: This table demonstrates the effect of the marking parameter, θ on the
number of iterations and the total number of refined edges. Each simulation was
done with an initial mesh size of h = 1

2
and a given tolerance, tol = 0.1

Note that the total number of refinement iterations and marked edges depends

on the choice of the marking parameter, θ. The results given in Figure 8, show that

for smaller values of θ, fewer triangles are marked for refinement during a single loop.

Thus, smaller inputs for θ will imply more refinement loops in order to achieve the

given tolerance. However, a larger valued θ will produce fewer refinement loops

while simultaneously increasing the number of marked edges per loop. Since more

elements are being marked for refinement in a single step, we expect that the total

number of edges refined should be greater than the those of a more precise input,

i.e., for θ̃ < θ.

21

A natural question one may ask is the following: How to compare the global

error estimates, η = ‖ph − Aph‖L2(Ω) for two initial uniform meshes of size, h and

h
2
? Note that we can now consider the total cost in halving the step size of T0 in

terms of the total number of elements. For instance, Figure 5.3 shows that when

considering an initial mesh, T0 with h = 1/4, there are 3.9773 times more elements

in the final mesh than for the refined mesh of initial size h = 1/2. Also, the results

in Figure 5.3 demonstrate that starting with a finer mesh of size, h/2 requires an

extra iteration to achieve the desired tolerance when compared to beginning with a

coarser mesh of size h.

Figure 5.5: Computed flux in the x-direction for an initial mesh of uniform size,
h = 1/6 with θ = .35 and tol = 0.05. Note that in order to control the error
estimates, η2

K the majority of the refinement is done on elements close to the origin.
If we compare the results in this figure with those of Figure 2.2, we see a drastic
improvement in the solution of ph without the addition of expensive computations.

22

Appendix A

Matlab Code

A.1 An Error Analysis in the L2(Ω) Norm

The following Matlab script computes the error in the L2(Ω) norm,

U = size(element(:,1),1);

L2_norm = zeros(U,1);

for k = 1:U;

L2_norm(k) = (1/2)*det([1 1 1;coordinate(element(k,:),:)’])*...

(uexact(sum(coordinate(element(k,:),:))/3) - x(uinit(k)))^2;

end

R = sqrt(sum(L2_norm))

where the Matlab function, uexact calls the real solution given by (2.2) and x(uinit)

is the computed solution, uh provided by LMmfem.m.

23

A.2 The Adaptive Program used in Chapter 5

The main program, adaptfem given below, is used in all the numerical experiments

conducted in Chapter 5. The script requires the functions, biscection.m, label.m,

and getmesh.m, given in [5] and [6], to perform all the marking and refinement

steps. Also, the code calls the mixed finite element solver, LMmfem from [2], as

the function, solve(x) where x denotes the data files of the current mesh. The

outputs of solve(x) are the local and global error estimates, η2
K and η computed by

the script, Aposteriori.m which is also given in [2].

%Load initial mesh

load coordinate.dat; load element.dat;

load dirichlet.dat; load Neumann.dat;

%Initial solution of the problem via the LMmfem

[Eta_global, Eta_local] = solve(coordinate,element,dirichlet,Neumann);

%Displaying of the initial error

disp(’Initial Global Error Estimate for the Computed Flux’)

disp(Eta_global)

disp(Eta_local);

%User input

tol = input(’Input the desired tolerance, tol such that,0 < tol < 1?’);

theta = input(’Input the marking parameter theta such that,0 < theta < 1?’);

refinement = 0;

%Refinement process and updated solution

while Eta_global >= tol;

refinement = refinement + 1 %counter

current_mesh = getmesh(coordinate,element,dirichlet,Neumann);

24

new_mesh = bisection(current_mesh,Eta_local,theta);

coordinate = new_mesh.node; element = new_mesh.elem;

dirichlet = new_mesh.Dirichlet; Neumann = new_mesh.Neumann;

[Eta_global,Eta_local] = solve(coordinate,element,dirichlet,Neumann);

Eta_global

end

25

Bibliography

[1] Alberty, J., Carstensen, C., Funken, S.A., Remarks around 50 lines of Matlab:
short finite element implementation, Numerical Algorithms 20 (1999), no. 2-3,
pp. 117-137

[2] Bahriawati, C., Carstensen, C., Three Matlab Implementations of the Lowest-
Order Raviart-Thomas MFEM with A Posteriori Error Control, Computational
Methods in Applied Mathematics (2005), no. 4, pp. 333-361

[3] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid
Mechanics, Cambridge University Press, Cambridge, UK, 2nd edition, 2001

[4] Carstensen, C., All First-Order Averaging Techniques for A Posteriori Finite
Element Error Control on Unstructured Grids are Efficient and Reliable, Math-
ematics of Computation, (2003), Vol. 73, no. 247, pp. 1153-1165

[5] Chen, L., Short Bisection Implementation in Matlab, (Submitted to Interna-
tional Workshop on Computational Science and its Education), 2006

[6] Chen, L., Zhang, C-S., AFEM.at.matlab: A Matlab Package of Adaptive Finite
Element Methods, University of Maryland, 2006

[7] Chen, L., Zhang, C-S., A Coarsening Algorithm and Multilevel Methods on
Adaptive grids by Newest Vertex Bisection, (Submitted), 2007

[8] Larsson, S., Thomee, V., Partial Differential Equations with Numerical Meth-
ods, Springer-Verlag, Berlin Heidelberg, 2003, 259 pages

26

