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Abstract

Data quality, which refers to correctness, uncertainty, completeness and other aspects of

data, has became more and more prevalent and has been addressed across multiple dis-

ciplines. Data quality could be introduced and presented in any of the data manipulation

processes such as data collection, transformation, and visualization.

Data visualization is a process of data mining and analysis using graphical presenta-

tion and interpretation. The correctness and completeness of the visualization discoveries

to a large extent depend on the quality of the original data. Without the integration of

quality information with data presentation, the analysis of data using visualization is in-

complete at best and can lead to inaccurate or incorrect conclusions at worst.

This thesis addresses the issue of data quality visualization. Incorporating data qual-

ity measures into the data displays is challenging in that the display is apt to be cluttered

when faced with multiple dimensions and data records. We investigate both the incor-

poration of data quality information in traditional multivariate data display techniques as

well as develop novel visualization and interaction tools that operate in data quality space.

We validate our results using several data sets that have variable quality associated with

dimensions, records, and data values.
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Chapter 1

Introduction

1.1 Motivation

Data Quality (DQ) problems are increasingly evident, particularly in organizational databases.

A data collector could neglect to collect some of the data; People who are surveyed could

be reluctant to answer a specific question; Errors could be introduced during the post data

processing. It was reported that 50% to 80% of computerized criminal records in the U.S.

were found to be inaccurate, incomplete, or ambiguous [1]. The social and economic

impact of poor-quality data is valued in the billions of dollars [2, 3].

In a broad sense, data quality can correspond to any form of data accuracy, complete-

ness, certainty, and consistency, or any combination of these. To date there has been no

uniform and rigorous definition of data quality. It can include statistical variations or

spread, errors and differences, minimum-maximum range values, noise, or missing data

[4]. All of these could be introduced in any phase during the data acquisition, transfor-

mation and visualization process. The data set acquired may show some or all of these

properties:

• Incompleteness: It is very common that values for some fields of the data set are
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missing.

• Inaccuracy: Errors can be introduced during data collecting. For example, the

collected data could deviate from actual values because of an inaccurate sensor.

• Inconsistency: the whole data set may be not consistent in terms of numeric values,

or units. For example, a text description may appear in a field where a numeric

value is expected.

In practice, data quality problems often arise from the process of collection and ex-

amination where human activities are involved. Generally, data quality issues are a result

of the instruments and procedures implemented during data acquisition and constraints

placed on the publication of data in certain situations, e.g. un-collected data because of

negligence of collectors, data source confidentiality, statistical sampling that itself is not

a reliable process, flawed experimentation, and estimated or aggregated data.

Data quality has been an important topic in many research communities. The nature

of data quality means different things to different groups. Database researchers and devel-

opers have focused on concurrency control and recovery techniques as well as enforcing

integrity constraints. More recently data quality has emerged as an independent discipline

related to (1) database management, security, real-time processing of data originating

from different sources; (2) tradeoffs between security, integrity and real-time processing

and (3) quality of service [5].

In Total Data Quality Management (TDQM), data quality, or information quality in

this context, is studied in the context of quality management [2]. Here data are treated

as a product and data quality is studied in terms of its definition and modeling in various

aspects [1]. For instance, completeness, consistence, accuracy and other aspects involving

data quality are defined. It is acquired by survey to the data administrator in the processes

to get the measurements for these quality aspects.
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For years many researchers in the Geographic Information System (GIS) community

have been engaged in investigating the topic of data quality and uncertainty in spatial

databases. Being listed as a key research initiative by both the National Center for Geo-

graphic Information and Analysis (NCGIA) in the late 1980s and the University Consor-

tium for Geographic Information Science (UCGIS) in the mid-1990s indicates the impor-

tance of data quality in this community. To date, the research has spanned a wide variety

of sub-topics ranging from uncertainty modeling and computation to data quality visual-

ization, and using these procedures to help deal with spatial data uncertainty in decision

making [6].

Information visualization is an increasingly important technique for the exploration

and analysis of the large, complex data sets. Visualization takes advantage of the im-

mense power, bandwidth, and pattern recognition capabilities of the human visual system.

However, such power is limited by the visualization itself, that is, the conclusions drawn

from the graphic representation are at best as accurate as the visualization. Therefore, to

maintain the integrity of data visual exploration it is highly important to design a visual-

ization so as to convey precisely the exact information represented by data itself. With

few exceptions, most current practices have ignored data quality issues and presume that

data have been filtered in previous procedures and are completely accurate.

The above mentioned assumption is incorrect, or inaccurate at least. Part of the reason

is that different data records, dimensions, or data values for a specific field may have dif-

ferent degrees of quality. By removing all imperfect data without consideration for their

quality, the conclusion drawn from the rendered visualization of filtered data is inaccurate.

This leads to the demand for visualization tools that incorporate data quality information

into data displays. With existing techniques such as level of detail, linking and brushing

and other user interactions, a user could be made aware of data quality measures when

he(she) explores the data both in data space and quality space.
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Visualization and communication of potentially large and complex amounts of data

quality information presents a challenge. The data quality could be multidimensional

and complex. It varies from data set to data set and the need for such information will

vary by application. If we assume that data has been processed and checked sufficiently

so that gross errors have been removed, we still face the problem of presenting to users

the appropriate data for their needs. The volume of information required to adequately

describe data quality is thus potentially quite large.

1.2 Data Quality

Data quality is a multi-faceted attribute of the data, whether from measurements and ob-

servations of some phenomenon, or the predictions made from them. It may include

several concepts, including error, accuracy, precision, validity, uncertainty, noise, com-

pleteness, confidence, and reliability. Although there is no consensus or universally rec-

ognized definition for data quality, several aspects of data quality that could be present in

data are discussed below.

1.2.1 Missing Data

Missing data is a ubiquitous problem in data collection. In a typical data set, information

may be missing for some variables for some records. In surveys that ask people to report

their income, for example, a sizable fraction of the respondents typically refuse to answer.

People often overlook or forget to answer some of the questions. Even trained interview-

ers occasionally may neglect to ask some questions. Sometimes respondents say that they

just do not know the answer or do not have the information available to them.

In data analysis, the simplest way to deal with missing data is called complete case

analysis [7], where if a case has any missing data for any of the variables in the analysis,
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the entire case is excluded from the analysis. The result is a data set that has no missing

data and can be analyzed by any conventional method. Complete case analysis is effective

in occasions where only a small portion of the data are missing, for example, less than

2%.

In many applications, complete case analysis can exclude a large fraction of the origi-

nal samples and thus can generate results that don’t represent all the data collected. Alter-

native algorithms have been developed to compute estimates for such missing data, such

as maximum liklihood, multiple imputation and nearest neighbor methods [8], which of-

fer substantial improvements over complete case analysis.

All these algorithms are developed based upon certain assumptions. For example,

Missing At Random is assumed for these algorithms. It is essential to keep in mind that

these methods, as well as others, cannot be used ubiquitously to treat all missing data

cases with good results. Their performance largely depends on certain easily violated

assumptions for their validity. Not only that, there is often no way to test whether or

not the most crucial assumptions are satisfied. Although some missing data methods are

clearly better than others, none of them can be described as perfect.

The above mentioned facts inspired us to examine and validate the correctness and

effectiveness of missing data algorithms using the power of information visualization.

This is one of the major motivations in this thesis, to visualize the data with derived

quality value by the above mentioned algorithms and to evaluate these algorithms by

visualization as well.

1.2.2 Uncertainty

Uncertainty is another aspect of data quality. It includes statistical variations or spread,

errors and differences, minimum-maximum range values, and noise. NIST classified un-

certainty into these categories [9]:
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• statistical - either given by the estimated mean and standard deviation, which can

be used to calculate a confidence interval, or an actual distribution of the data;

• error - a difference, or an absolute valued error among estimates of the data, or

between a known correct datum and an estimate; and

• range - an interval in which the data must exist, but which cannot be quantified into

either the statistical or error definition.

The major source of uncertainty of data is from data acquisition. It is clear that all

data sets, whether from instrument measurements or numerical models, have a statistical

variation. With instruments, there is an experimental variability, whether the measure-

ments are taken by a machine or by a scientist. The same is true for data from numerical

models and human observations or inputs.

Another source of data uncertainty is from data transformation. Raw data are some-

times not rendered directly but are subject to further transformations with or without the

knowledge of the person doing the visualization task. These transformations may be as

simple as conversion from one unit of measurement to another, or may involve some algo-

rithms to fuse several data sets into one, or to interpolate or smooth for certain purposes.

All of these transformations alter the data from its original form, and have the potential

of introducing some uncertainty.

1.2.3 Consistency, Completeness and Other Aspects

Data quality is a multi-dimensional concept in nature [10]. What type of metrics of data

quality or an aggregation of these metrics is subjective to the request set by the user.

Completeness is the extent to which data is not missing and is of sufficient breadth and

depth for the task at hand. One can define the concept of schema completeness, which is

the degree to which entities and attributes are not missing from the schema. Other cases
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of completeness could be, for example, that a column that should contain at least one

occurrence of each of the 50 states, but it only contains 43 states.

Consistency measures test if the data is presented in the same format. It can also be

viewed from a number of perspectives, one being consistency of the same data type values

across tables. Integrity checking [11] is an example of consistency measurement.

1.3 Information Visualization

Information visualization is a visual depiction or external representation of data that ex-

ploits human visual processing to reduce the cognitive loads of task [12]. Endeavors

that require understanding of global or local structure can be handled more easily when

that structure is interpreted by the visual processing centers of the brain, often without

conscious attention, than when that structure has to be cognitively inferred and kept in

working memory. “External representations change the nature of a task: an external

memory aid anchors and structures cognitive behavior by providing information that can

be directly perceived and used without being interpreted and formulated explicitly” [13].

The field of information visualization draws on ideas from several disciplines: com-

puter science, psychology, graphic design, cartography and art. It has gradually emerged

over the past fifteen years as a distinct field with its own research principles and practices.

In short, the principle of information visualization can be recapped as:

Visual encoding: In all visualization, graphical elements are used as a visual syntax

to represent semantic meaning [14]. For instance, color can be used to represent the

temperature of a place in a weather map where red represents hot and white or blue

represents cold, even though the blue color has the highest color temperature. We call

these mappings of information to display elements visual encodings, and the combination

of several encodings in a single display results in a complete visual metaphor.

7



Interactions: Interactivity is the great challenge and opportunity of information visu-

alization. The advent of computers sets the stage for designing interactive visualization

systems of unprecedented power and flexibility. Interactive operations include:

• Navigation: Interactive navigation consists of changing the viewpoint or the posi-

tion of an object in a scene.

• Brush and Linking: Viewers are provided with a powerful utility to focus on a

specific data area by highlighting the user specified area.

• Animation: Viewers have a much easier time retaining their mental model of an

object if changes to its structure or its position are shown as smooth transitions

instead of discrete jumps.

Evaluation: Evaluation plays a central part in information visualization. It not only

provides facts about whether a visualization tool is helpful or not to a viewer, but also

it can be used as clues to fine tune a visualization system by exposing the best choice

from among similar alternatives. Evaluation can be carried out by a quantitive measure

or a carefully designed user study. A visualization tool can be quantitatively evaluated

on whether it is faster or harder than other tools. User testings ranges from informal

usability observations in an iterative design cycle to full formal studies designed to gather

statistically significant results.

XmdvTool is a public domain multivariate data visualization tool developed at WPI[15].

XmdvTool was initially developed to explore data by the integration of four kinds of plots:

scatterplot matrix, parallel coordinates, glyphs and dimensional stacking. Techniques for

linking and brushing were also developed to enrich the user interaction [16]. Recently,

visual hierarchical clustering techniques [17] and InterRing [18] were developed to cope

with large data sets with high dimensionality. We have implemented our data quality vi-

sualizations on the current XmdvTool platform. In the development of visualizations for
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data quality, we followed the recognized techniques from the information visualization

community, such as multiple resolutions, linking and brushing, and other user interac-

tions.

1.4 Thesis Approach and Contributions

The primary contributions of this thesis include:

• Data quality definition for visualization: We give a quality definition frame work

that includes data record, dimension and value quality. We provide a model for data

quality estimation for data sets so that visualizations can be built that incorporate

them.

• Visual variable analysis: The expressiveness and representation capability and ef-

ficacity of visual variables are analyzed in the context of data quality visualization.

In a modest sense this effort is validated by our current prototypes for data quality

displays.

• Integrating visualization of data with quality information: data quality was incorpo-

rated into several multivariate data displays so as to inform the user of data quality

when he(she) explores the data.

• Visualization in data quality space: Displaying the data quality information in a

separate view has the potential to convey a clearer interpretation of data and its

quality attributes.

• User interactions: Different interactive tools are provided so as to enable users to

explore the data both in data space and quality space.
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1.5 Thesis Organization

This thesis begins with motivation for the visualization of data with variable quality and

background introduction on data quality and information visualization, followed by a

summary of our research approaches and contributions.

In Chapter 2, related work is discussed. Techniques for the visualization of missing

data, uncertainty and data quality visualization are reviewed.

The next five chapters discuss our approaches and case studies.

In Chapter 3 we investigate the mapping from quality measures to graphic variables.

The options for quality measures and graphics variables, the possible mappings between

them, and applicability for our displays are analyzed in this chapter.

In Chapter 4, we provide the data quality definition in this thesis, where the data qual-

ity is defined in terms of data records, dimensions and data values. Imputation algorithms

for missing data that are used are discussed. Quality measures derived from these algo-

rithms are stated.

Chapter 5 is dedicated to the discussion of our current approaches. Based on the

analysis of visual variables, we incorporate our data quality visualization into the existing

XmdvTool displays. The effectiveness of displays when incorporated with data quality

are discussed. The display in quality space, interaction between data and data quality and

animation are presented.

Chapter 6 discusses the implementation of the above approaches. Modules that are

implemented for data quality visualization and their implementation and relation with

existing system functions in XmdvTool are discussed.

Chapter 7 presents case studies. In this chapter the algorithms to tackle missing data,

the prevalent data type with quality problems, are reviewed. The effectiveness and effi-

ciency of visualization in lieu of checking the correctness of these algorithms are further
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discussed.

We conclude this thesis in Chapter 8 with discussions and possible future research

directions.
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Chapter 2

Related Work

As mentioned before, data quality issues have been studied by different research commu-

nities in a variety of aspects including missing data visualization, definition, modeling,

and computation of uncertainty, concurrency control for heterogeneous database fusion,

and analysis, control, and improvement of data quality in the context of global data tran-

sitions. Some of these are elaborated upon below.

2.1 Missing Data Visualization

Missing data has a direct impact on the quality of a data set. When data is collected, the

values for certain fields may be omitted for a variety of reasons, such as negligence of

data collectors and data source confidentiality. Visualization of data sets with missing

values is of interest to several research groups.

XGOBI [19] is a data visualization and analysis tool with the ability to handle miss-

ing data. It employs statistical analysis algorithms such as multiple imputation to esti-

mate values for missing fields, which are then used to represent missing data in displays.

XGOBI allows the user a choice of different ways to view the missing data. The user can
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plot the missing data with the rest of the data and then, on a graph next to that plot, just

the records missing data or just the records that are not missing data. Figure 2.1 shows a

view of the data with the missing values.

Figure 2.1: Missing data in XGobi. The missing fields were imputed and drawn with a
mark to differentiate them from regular data records. The data entry whose horizontal
field were missed were drawn with a vertical bar inside the data circles, while the data
items with vertical dimension value missing were drawn with a horizontal bar inside the
data circles [19].

MANET (Missing Are Now Equally Treated) [20, 21] is another visualization tool

that is specially designed to cope with missing data. MANET allows missing data to be

imputed and displayed in many different ways. The imputed values can be displayed as
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part of a bar chart, where the missing data are a different color than the rest of the bar.

MANET will also allow the data to be plotted on a 2-dimensional scatterplot. Imputed

values are plotted along the axis that corresponds to the value that is missing. Figure 2.2

shows such a plot.

Figure 2.2: Manet display. Missing data values were imputed and displayed by projecting
them onto the axes. In addition, there are three boxes in the lower left corner for user
selection. Users can view data items with only the x value missing, only the y value
missing, and both values missing. Bright points indicate where overlapping has occurred
[20].

Both Xgobi and Manet generate estimated values for the missing fields by the use

of statistical inference algorithms. Then they present graphic displays where the missing

fields are replaced by the estimated values with indicators attached to show that values for
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those fields are missing. While they present the integrated data displays and make users

informed that the values are missing and estimated values are used for certain fields, users

often have no idea whether the estimated values can be trusted or not.

2.2 Uncertainty Visualization

Data uncertainty is a facet of data quality that has been studied for spatio-temporal databases

in the GIS community. The NCGIA initiative on ”Visualizing the Quality of Spatial Infor-

mation” [6] discussed the components of data quality, representational issues, the devel-

opment and maintenance of data models and databases that support data quality informa-

tion, and evaluation of visualization solutions in the context of user needs and perceptual

and cognitive skills.

After the NCGIA initiative, a flurry of activities have focused on uncertainty defini-

tion, modeling, computation and visualization [22]. Especially for visualization, different

practices in terms of graphic variable mappings have been tested. Use of color, hue, tex-

ture, fog and focus in static rendering of uncertainty and use of animation, flashing alter-

natively of data and uncertainty in dynamic displays have been discussed in [6]. Several

case studies for handling spatial data quality have been reported in [22].

Pang [23, 4] addressed the problem of the visualization of both the data and rele-

vant uncertainty. He surveyed techniques for presenting data together with uncertainty.

These techniques include adding glyphs, adding geometry, modifying geometry, modify-

ing attributes, animation, sonification, and psycho-visual approaches. He presented the

research results in uncertainty visualization for environmental data visualization, surface

interpolation, global illumination with radiosity, flow visualization, and figure animation.

Figure 2.3 is an example of uncertainty visualization applied to ocean currents.

In [24], visualization of spatio-temporal data quality is studied under five dimensions
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Figure 2.3: Ocean currents are shown with arrow glyphes whose colors are mapped to the
magnitude of the uncertainty. The background field indicates angular uncertainty [23].

- quality, three coordinate positions and time. It provides a tool to encapsulate the data

readings and visualization so as to permit the easy transition from statistical analysis al-

gorithms to visual incorporation. In this paper, a quality measure and estimation methods

are presented. The resulting visualization system allows users to map five-dimensional

data to five graphical attributes, where each attribute may be displayed in one of three

modes: continuous, sampled, or constant.

These techniques are predominantly directed toward spatio-temporal data and do not

always extend readily to multivariate data. For example, in most displays for spatio-

temporal data, either 3D or 2D displays could be used where a sequence of displays

convey the temporal variations. When dealing with multivariate data, we face many more

challenges in that often limited resources (space and graphical variables) are available.
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2.3 Data Quality in the Database Community

Uncertainty, imprecision and tradeoffs between precision and efficiency are topics of re-

cent research in the database community [25, 26, 27, 28, 29, 30, 31]. [25, 26] studied

probabilistic query evaluation in sensor databases where uncertainty is inevitable, and

addressed the issue of measuring the quality of the answer to these queries. They also

provided algorithms for efficiently pulling data from relevant sensors or moving objects

in order to improve the quality of the excuting queries. Similarly, [30, 31] addressed the

problem of querying moving object databases, which capture the inherent uncertainty as-

sociated with the location of moving point objects by modeling, constructing and query-

ing a trajectories database. [27, 28, 29] focus on caching problems to achieve the best

possible performance by dynamically and adaptively setting approximate cached values

and synchronizing with source coorporation.

Uncertainty is another research aspect for temporal and spatio-temporal streaming

data [32, 33, 34, 35]. Both [32] and [33] investigated aggregation computing over con-

tinual data streams, where in [32] the authors take an approach of single-pass techniques

for approximate computation of correlated aggregates over both landmark and sliding

window views of a data stream of tuples, and in [33] the authors maintain aggreations

over data streams using multiple levels of temporal granularity. [34] addressed contin-

uous queries over streams by presenting a continuously adaptive, continuous query im-

plementation based on the query processing framework. [35] proposed an optimization

framework that aims at maximizing the output rate of query evaluation plans for query

optimization for streaming information sources.
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2.4 Data Quality in Information Management

Data quality research in the information management community focuses on the data

quality improvement through a cycle of data quality definition, evaluation and improve-

ment [2]. First an infrastructure is defined and prototyped, where data quality attributes

on various data granules are defined. Then these values are obtained using user surveys,

where the defined data quality measures are directly acquired from data managers by ask-

ing them questions. Finally quality attributes values are made available to systems and

people that use each data granule and track the impact of providing quality values on

decision-makers and decisions.

Since Wang [2] launched a framework for analysis of data quality, many people have

performed research on data quality, or information quality in this context. [11] addressed

data integrity issues. They merged data integrity theory with management theories about

quality improvement. [10, 36] discussed information quality assessment and improve-

ment. They developed a methodology and illustrated it through application to severalma-

jor organizations.

Researchers from both the database and information management commonly addressed

the data quality from different point of views. People from the database area are more con-

cerned with the analysis side of data quality such as query quality and quality of service,

while information managers are more focused on management of the quality and how to

improve the quality through practical approaches. We believe that data quality visual-

ization, as a tool to incorporate data display and data quality display, will benifit these

research group.
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Chapter 3

Visual Variable Analysis

The visual communication channel between a data source and a data analyst experiences

a process of information extraction, encoding, rendering and interpretation [37]. First the

relevant information is extracted from the data source. It then is encoded in a display

model, which is then rendered. The last step is the interpretation of the final display.

In each step the data source is refined, limited by the capabilities and efficiency of the

process. The resulting process may exhibit significant information loss. For example, the

quality of information extraction is limited to the efficiency of the extraction algorithm;

rendering is limited to the hardware capabilities; and interpretation is subject to the Gestalt

laws of organization, which are rules that describe what humans should perceive under

certain conditions.

The above mentioned visual communication channel can include a feedback loop for

an interactive visualization. For example, when the user perceives the visual display of

the data, he(she) can perform some operations either on the data or on the display to gain

further insight.
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3.1 Visual Encoding

The central part of the visual communication channel, encoding, which translates the ex-

tracted information in the data space into a display model in design space, is the task of

visual design. Visual design involves the data variable (dimension) properties analysis, vi-

sual variable (such as color, size and texture) analysis, deciding on the mapping from data

variables to visual variables, and determination of the visual metaphor (2D or 3D display,

trees, networks, or any other metaphors) [38]. In certain situations, the visual metaphor

is already decided, so the mapping from data variables to visual variables constitutes the

predominant task for the visual design.

In [39] it is stated that every data dimension has an abstract measurement associated

with it. These are nominal, ordinal, interval and ratio levels. The interval and ratio levels

are sometimes combined as one quantitative level [40]. The nominal level includes all

categorical information such as a product name, country code, or food type. The order of

the items in this level is arbitrary. The ordinal level groups information into categories in

a certain order so that the items in this level can be judged by relationships such as greater

than or smaller than. In the quantitative level, the item is quantified and is represented

by a numeric value. Quantified items not only could be grouped into categories and be

compared and judged, but also could convey further detailed information such as ”how

long ago A happened before B” and ”to what extent is A bigger than B”.

We notice that the levels of classification for dimensions have different properties and

have different representational capacity or expressiveness. The quantitative level has the

most power of expressiveness, followed in order by ordinal and nominal levels. More

information can be expressed with a level of classification with greater representational

capacity.

Bertin’s [41, 42] retinal variables semiology has been widely referenced. He desig-
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nates the level of visual variable representation capability into four categories. They are

associative, where any object can be isolated as belonging to the same category, selective,

where each object can be grouped into a category differenced by this variable, ordered,

which allows each element to be grouped into an order of scale, and quantitative, where

each element can be compared to be greater or less than another element. He identified

properties of graphical systems, along with the six retinal variables and two position vari-

ables (for two-dimensional displays) that are perceived by the user. The retinal variables

are size (length and area), shape, texture, color, orientation (or slope), and value. Each

variable can be classified using points, lines and areas. Figure 3.1 shows properties of the

six retinal variables. Moreover, color may be described by hue, saturation and brightness,

and attributes such as transparency and animation may be added. The level of organiza-

tion can be compared with the retinal variables in the classification of points, lines and

areas.

Figure 3.1: Retinal Variables

The critical insight of Cleveland was that not all perceptual channels are created equal:

some have provably more representational power than others because of the constraints of

the human perceptual system [43]. Mackinlay extended Cleveland’s analysis with another

key insight that the efficacy of a perceptual channel depends on the characteristics of the

data [44].
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The efficacy of a retinal variable depends on the data type: for instance, hue coding is

highly salient for nominal data but much less effective for quantitative data. Size or length

coding is highly effective for quantitative data, but less useful for ordinal or nominal data.

Shape coding is ill-suited for quantitative or ordinal data, but somewhat more appropriate

for nominal data.

Spatial position is the most effective way to encode any kind of data: quantitative,

ordinal, or nominal. The power and flexibility of spatial position makes it the most fun-

damental factor in the choice of a visual metaphor for information visualization.

Another issue in visual variable selection is interaction between them, namely, integral

or separable dimensions. Perceptual dimensions fall on a continuum ranging from almost

completely separable to highly integrated. Separable dimensions are the most desirable

for visualization, since we can treat them as orthogonal and combine them without any

visual or perceptual “cross-talk”. For example, position is highly separable from color. In

contrast, red and green hue perceptions tend to interfere with each other because they are

integrated into a holistic perception of yellow light.

3.2 Algebraic Formalizational Analysis

We seem to be able to target the corresponding visual variable for each data variable

(dimension) by comparing their levels. That’s often not sufficient. Part of the reason is

that data quality is multi-dimensional, where each dimension has a different measure on a

certain aspect. Even though all these dimension values are quantitative, we cannot simply

map quality to a visual variable that has quantitative expressive capability. For example,

additional uncertainty is different from additional weight even though both of them are

quantitative.

An alternative is based on the mathematical concepts of algebra and morphism to
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assess the potential for communication of a specific message through a visual channel

[45, 46]. Under this concept, both the data variables (dimensions) and visual variables

could be represented by an algebra, which includes a value set and a set of operations

that can be applicable on them. For example, the operation of comparison (order) can be

applicable to a quantitative precision measure. Communication of meaning is achieved

by a correspondence between the behavior of the data and visual variables. This means

that the same operations with the same properties should be available.

Under the assumption that data quality can only be effectively communicated using

visual variables that have a similar behavior (operations) to the quality measure to be

visualized, the task of visual mapping becomes one of searching for the visual variable

that has as many of the same operations as possible as the data variable itself.

Taking into account four types of displays being considered - parallel coordinates,

scatterplot matrix, glyphs and dimensional stacking, we choose six visual variables to

investigate for communicating quality information. They are color, opacity, the third

dimension, line width, point size and line style. Color and opacity are from the same

type of visual variable and are often chosen because of easy implementation without

additional space. The third dimension is chosen because all of our current displays are

two dimensional, and using the third dimension to convey the data quality measure is

a plausible approach. Line width and point size have similar properties but are only

applicable to certain displays. Line style could be regarded as an alternative to texture

and also is only applicable to certain displays.

Those chosen visual variables and the operations that can be applied on them are

shown in Figure 3.2. Noticed that human Gestalt capabilities on addition and subtraction

of color space is limited even though those operations are applicable to them. The third

dimension, line width and point size, are from the same category where operations of

comparison, linear production, addition and subtraction can be applied. Line style can
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usually only be used to represent nominal data, except when combined with other visual

variables, in that no operation can be applied to it.

Figure 3.2: Visual Variables for Data Quality Display

The data variables in our context are data quality measures. As discussed above, data

quality measures are complicated and can correspond to multiple aspects of the data.

Quality measures on different aspects of data could have different applicable operations.

In this thesis we assume that the data quality measure is quantitative and scalar. Also we

assume that operations of comparison, addition and subtraction could be applied to it.

According to the principle that the visual variable should have as many operations

that can be applicable to it as the corresponding data variable, the best visual variables

will be the third dimension, line width and point size. Although color also has similar

operations to the data quality measure, it is limited to Gestalt interpretation even with the

help of color scales. Taking a further look at the best visual variables, it is not difficult

to conclude that in our situation the third dimension is the best visual variable for data

quality measure in that line width and point size are only applicable to certain displays in

the visualization methods being extended to incorporate data quality.
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3.3 Pre-attentive Processing

Another fundamental cognitive principle is whether processing of information is done

deliberately or pre-consciously. Some low-level visual information is processed automat-

ically by the human perceptual system without the conscious focus of attention. This type

of processing is called automatic, pre-attentive, or selective. An example of pre-attentive

processing is the visual pop-out effect that occurs when a single yellow object is instantly

distinguishable from a sea of grey objects, or a single large object catches one’s eye.

Exploiting pre-cognitive processing is desirable in a visualization system so that cogni-

tive resources can be freed up for other tasks. Many features can be pre-attentively pro-

cessed, including length, orientation, contrast, curvature, shape, and hue [47]. However,

pre-attentive processing will work for only a single feature in all but a few exceptional

cases. Thus most searches involving a conjunction of more than one feature are not pre-

cognitive. For instance, a red square among red circles and green squares will not pop

out, and can be discovered only by a much slower conscious search process.

3.4 Metrics for Visual Displays

Metrics for visual displays are measures of how effective an information visualization is.

Several efforts have focused on building metrics for visual displays. [48, 49, 50] gave

guidelines for good graphic design practices and provided some basic metrics for 2D and

3D representations. Bertin [42, 41] classified and characterized some 3D information

graphic types. [51] proposed four metrics for evaluating 3D visualizations: number of

data points and data density; number of dimensions and cognitive overhead; occlusion

percentage; and reference context and percentage of identifiable points. Card [38] inves-

tigated the mappings between data and visual presentations and facilitated comparisons of

visualizations by categorizing the visual data types present in the display and presenting
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this information in morphological tables. Recent work on metrics for visual displays is

presented in [52, 53], where metrics are developed based on a theoretical framework that

incorporates task requirements, characteristics of representational elements, and correct

mappings between task and representation. Information content measures based on math-

ematical communication theory or information theory is used to quantify the information

content of a display.

26



Chapter 4

Data Quality Metrics

As discussed in the previous chapters, data quality has multiple aspects and has a differ-

ent definition and measure depending on the disciplines and applications for which it is

applied. In information visualization, a dominant issue involving data quality is missing

data. We take this problem as an opportunity to examine our data quality visualization

methods and as a start to address data quality visualization.

Data may come with quality information implied in the data set itself. Some are

explicitly defined, such as the missing values. Others are hidden and may need some

statistical analysis to uncover them, e.g., data inconsistency, where data records did not

follow patterns that are intrinsic to the data set. In addition, data quality information

could be associated with data records, data dimensions, or a data value within a data

record. All of this data quality information needs to be identified for effective evaluation

and visualization.

Our focus was incomplete data, where values for some fields are missing. Statistical

analytical methods (e.g., multiple imputation and maximum liklihood algorithms) were

employed to estimate the missing fields, and simultaneously the quality information is

acquired from these algorithms. A future goal for this analysis could be to incorporate

more algorithms from other communities.

In this chapter, we first examine some algorithms for imputing values for missing
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fields, namely nearest neighbor and multiple imputation approaches. Then we give the

quality measure definition and algorithm used in this thesis.

4.1 Imputing Algorithms

In this section we intend to discuss two imputation algorithms that are implemented as

part of this thesis, namely, nearest neighbor and multiple imputation.

4.1.1 Nearest Neighbor

Nearest Neighbor estimation is a process by which missing values in a dataset are filled

in with estimated values based on similarity between a record with a missing value and

those not missing the corresponding value [7].

To estimate a missing value in a data set, the k data items with the closest profile

(smallest distance) to the data item containing the missing value are determined. The

missing value is then computed as a weighted average of the k values in that group of

neighbors. The k nearest neighbors can be computed only on complete records. Missing

values have to be filled in with an initial approximation. The distance between two data

items is computed using Euclidean distance in a n-dimensional space.

The input to this algorithm is an incomplete dataset; the output is a complete dataset.

K is an integer representing the number of nearest neighbors to be taken into considera-

tion.

The Nearest Neighbor algorithm used in this thesis has these steps.

• Step 1: All missing values in the selected dataset are initially approximated with

the mean of the corresponding dimension from the complete data.

• Step 2: For each data item, the distances to all other data items in a n-dimensional
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space are computed.

• Step 3: For each data item, select the k data items with the smallest distance to it.

• Step 4: Replace each value that was missing in the data item with the average of the

k values belonging to the k nearest data items for the same dimension.

4.1.2 Multiple Imputation

Multiple Imputation is to repeat the imputation process more than once, producing mul-

tiple ”completed” data sets [7]. Multiple random imputation is used in this thesis, where

for each imputation, a random number is drawn from the residual distribution of each

imputed variable and those random numbers are added to the imputed values. Because of

the random component, the estimates of the parameters of interest will be slightly differ-

ent for each imputed data set. The Expectation Maximization (EM) algorithm is used to

estimate the missing fields for each single imputation in this thesis.

EM Algorithm

The Expectation Maximization (EM) algorithm is a very general method for obtaining

Maximum Liklihood (ML) estimates when some of the data are missing [7, 8]. It is called

EM because it consists of two steps: an expectation step and a maximization step. These

two steps are repeated multiple times in an iterative process that eventually converges to

the ML estimates.

The E step essentially reduces to regression imputation of the missing values. Suppose

our data set contains four variables, X1 through X4, and there are some missing data on

each variable, in no particular pattern. We begin by choosing starting values for the

unknown parameters, that is, the means and the covariance matrix. These starting values

can be obtained by the standard formulas for sample means and covariances, using data
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items that are complete. Based on the starting values of the parameters, we can compute

coefficients for the regression of any one the Xs on any subset of the other three.

After all the missing data has been imputed, the M step consists of calculating new

values for the means and the covariances matrix, using the imputed data along with the

non-missing data. For means, we just use the usual formulae. For variances and covari-

ances, modified formulas must be used for any terms that involve missing data. Specifi-

cally, terms must be added that correspond to the residual variances and residual covari-

ances, based on the regression equations used in the imputation process. The addition of

the residual terms corrects for the usual underestimation of variances that occurs in more

conventional imputation schemes.

Once we have gotten new estimates for the means and covariance matrix, we start over

with the E step. That is, we use the new estimates to produce new regression imputations

for the missing values. We keep cycling through the E and M steps until the estimates

converge, that is, they hardly change from one iteration to the next.

4.2 Quality Measure Definition

Three types of data quality are defined, namely, quality measures in terms of data dimen-

sions, data records and data values. Often the data set to be conveyed using information

visualization is tabular in nature. We associate a quality measure for each data record

and each dimension. In addition, each data field for a specific dimension and record can

have an associated quality value. These quality values, for data records, dimensions and

data fields, are assumed to be quantitative. How these quality values are acquired is not

our focus. They could be the uncertainty, confidence level, or estimated value from some

statistical analysis algorithm, such as multiple imputation.

In our work, where we have been looking at data sets with missing values, a nearest
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neighbor or multiple imputation algorithm was used for imputation. Statistical numbers,

fraction of standard deviation and the mean from multiple imputed values, were used to

quantify the quality. The quality measures for data records and dimensions are estimated

using the average for the quality of the data fields for that data record or dimension as in

Figure 4.1.

Void DataQualityDerivation(double ∗ ∗ ∗imputed data,
double ∗ ∗ data quality,
double ∗dimension qua,
double record qua,
int N , int M , int K)
/*
N - number of records;
M - number of dimensions;
K - number of imputations;
/
Begin
For (int i = 0; i < N ; i + +)
Begin
For (int j = 0; j < M ; j + +)
Begin
data quality[i][j] = standard deviation(imputed data[i][j])

mean of(imputed data[i][j])

End
rec qua[i] = average of(data quality[i][j])
End
For (int j = 0; j < M ; j + +)
Begin
dimension qua[j] = average of(data quality[i][j])
End
End

Figure 4.1: Data Quality Definitions and Derivations

In the case study chapter, where the missing data are created from complete data to

examine imputation algorithms using visualization, the data value quality computation

is slightly different from the above. It is computed using the fraction of the difference

between the actual value and imputed value to the actual value, as in Figure 4.2.
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Void ComputeQualityForCreatedMissingData(double ∗ ∗ actual data,
double ∗ ∗ ∗imputed data,
double ∗ ∗ data quality,
double ∗dimension qua,
double record qua,
int N , int M , int K)
/*
actual data - original data;
imputed data - imputed data from simulated missing data;
/
Begin
For (int i = 0; i < N ; i + +)
Begin
For (int j = 0; j < M ; j + +)
Begin
data quality[i][j] = abs(actual data[i][j]−mean of(imputed data[i][j]))

actual data[i][j]

End
rec qua[i] = average of(data quality[i][j])
End
For (int j = 0; j < M ; j + +)
Begin
dimension qua[j] = average of(data quality[i][j])
End
End

Figure 4.2: Data Quality Computation for Simulated Missing Data

4.3 Data Quality Store

Taking into account data value quality, there is a quality measure for each data value.

If the majority of the data values have quality problems, it seems to be reasonable to

allocate a memory slot to the quality measure for each data value. However, the reality

is that usually only a small part of data values have quality problems, while the rest are

perfect in term of data quality.

Since this is a proof of concept study on data quality visualization, temporarily we

do not need to worry about the scalability of these approaches. We can assume that the

dataset is moderate or small in size. Under such an assumption, we can make the similar
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quality dataset from imputation and derivation methods mentioned earlier. For the sake

of consistency, we format the quality information in a manner similar to the raw data.
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Chapter 5

Methodologies

High dimensionality can have multiple meanings in our context. One is associated with

the multi-variate data set being visualized. The other applies to the multiple facets of data

quality. Even if we assume that only one aspect of data quality needs to be visualized, we

still are confronted with the high dimensional data set. Existing techniques for visualizing

uncertainty and quality of spatio-temporal data cannot be applied because spatio-temporal

data is low dimensional in nature.

In this section we discuss our current approaches to the visualization of data sets with

quality attributes, namely, incorporating visualization of data with quality information,

visualization in data quality space, and user interactions between data space and data

quality space.

5.1 Incorporation of Visualization of Data
with Quality Information in 2D Displays

Even though the richness of information when data quality is incorporated into data dis-

plays has the potential to enable more informed decision making, the large number of

choices possible for mapping data quality onto graphical attributes makes the incorpora-

tion of data quality into data displays difficult. If we chose six visual variables and three

quality measures as discussed earlier, we have P 6
3 = 120 choices of mapping quality mea-

34



sures onto visual variables, assuming we set a constraint that different quality measures

cannot be mapped to the same visual variable in the same display. Otherwise we have a

larger number of choices.

Data quality visualization must present data in such a manner that users are made

aware of the locations and degrees of data quality in their data so as to make more in-

formed analysis and decisions. The ways to present the data quality information, in a

separate plot, in the same plot, or both, each could lead to improved interpretation or

increased confusion. We have investigated several distinct classes of mapping methods

from data quality to graphical entities or attributes, including:

• third dimension: transforming 2-D displays to 3-D displays by the introduction of

the third dimension, where the value of the third dimension is used to represent data

quality information.

• animation: data with quality information are displayed in a 3-D space with moving

animation. The moving range and speed are determined by the user.

• opacity: for a 2-D display, the opacity is used to map the corresponding data quality

information for a given data record.

• color: where the data quality is mapped onto the color for a specific data record or

item.

• point size: in displays where geometric points are used to represent data, the size of

point could be used to convey data quality information.

Each of the above mentioned methods have their strengths and weaknesses as to the

applicability to different displays (e.g., mapping data quality onto point size is only ap-

plicable to scatterplot matrix displays, while the method of animation might be best for

parallel coordinates displays) and visualization effectiveness (e.g., for a relatively large
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data set, introducing the third dimension to convey data quality may not be effective in

that it could make the case worse when the display is already cluttered). We explored

these seemingly contradictory characteristics of visualization - on the one side, we hope

to convey as much information content as possible to the user in a limited display space.

On the other side, we need to prevent clutter where too much information is presented

and users cannot discern any information from the displays.

If we follow the principle that line width, point size and the third dimension have the

highest priority, color and opacity are the second choice, and the last choice is line style,

the possible visualization methods for quality measures becomes more manageable.

Methods for data quality visualization have been implemented on three types of mul-

tivariate displays, namely, parallel coordinates, scatterplot matrix and glyphs. In the fol-

lowing sections, we first discuss the color scales we used for incorporation of data quality

into the data display. Then the mapping methods from data quality measures to visual

variables are discussed. Finally we examine the advantage and disadvantage of those

displays when data quality information is incorporated into data displays.

5.1.1 Color Scale Selection

A color scale is a color metric definition and implementation in a certain situation. The

RGB color scale, where R stands for Red, G stands for Green and B stands for Blue, is

widely used in computer graphics. A carefully chosen color scale for visualization can

dramatically decrease the visual processing load. It can effectively help a viewer discover

the undiscovered, discern hidden patterns or outliers, mine a new rule and any other in-

formation visualization target desired [54]. In [55, 56] the authors tried to optimize the

color scales under different applications and scenarios.

The RGB color scale is good for implementation and has been a standard for almost

all graphics utilities. Unfortunately, the RGB color scale has been proven not to be an
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intuitive representation for human beings. People have difficulty to interpret what the

color of 26R+30G+16B, or 55B-24G-60B is in situations where there are 256 levels for

each color.

The HLS (H, L and S stand for Hue, Lightness and Saturation, respectively) color

scale had long been used by human beings [57]. It is an intuitive representation of color

and easier to interprete than RGB colors. Artists use HLS color scale to describe col-

ors. To be more intuitive and easier to interprete, we chose the HLS color scale in our

data quality visualization. Each time data quality needs to be mapped onto color, we

interpolate the H and S values based on the quality measures.

Since XmdvTool uses the RGB color scale as the default interface color specification,

we implemented an algorithm to accomplish the transformation between RGB and HLS

color scales. Figure 5.1 shows the definition of class HLS and its interface with RGB

color scales.

class HLScolor {
public:
double hue, sat, lum;
double max of(double, double, double);
double min of(double, double, double);
double rgb func(double, double, double);
public:
HLScolor () {hue = 0.0; sat = 0.0; lum = 0.0;}
HLScolor (double, double, double);
HLScolor (unsigned long );
void toRGB(RGBt &);
void toUnsignedLong(unsigned long &);
void fromRGB (const RGBt &);
}

Figure 5.1: Definition of Class HLS and Its Interface with RGB Color Scales
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5.1.2 Mapping Interpolation

Three types of data quality measures are discussed in this thesis; dimension quality, record

quality and data value quality, all consist of numeric values. When presenting those qual-

ity types with data displays, we use the uniform interpolation equation to map the data

quality measures onto visual variables such as the color, line width, dot size and all other

visual variables used in this thesis.

Figure 5.2 shows the mapping process from data quality measures onto visual vari-

ables. All these values are acquired by interpolating on the range of visual variable values

in terms of data quality measures. Note that V V base and V V range stand for the base

value and range that the current visual variable could be assigned. For instance, if the cur-

rent visual variable is color, its base value is from user initial specification and its range

could be computed by its maximum or minimum values in the defined color spaces.

5.1.3 Parallel Coordinates

In parallel coordinates displays, each poly-line represents a data record and an explicit

axis is used to represent a dimension. An intuitive insight into the parallel coordinates

display is that the most challenging task is to incorporate data value quality into the dis-

play, since the display is easily cluttered. We can use visual variables associated with

poly-lines or axes to convey record quality or dimension quality. For each data value

quality, the information content is overwhelming, since there is a quality measure corre-

sponding to each data value.

The first visual variable set we tested was line width, color and line style as in Table

5.1, where the dimension quality is mapped onto line width, record quality is mapped

onto color, and data value quality is mapped onto line style. Notice that the line style itself

cannot express a quality measure. It only has the representative capability of two category
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Void MapQualityToVisualVariable(double ∗ ∗ data quality,
double ∗dimension qua,
double record qua, int N , int M )

Begin
double V V rec[N ];
double V V dim[M ];
double V V data[N ][M ];
double V V range; double V V base; For (int i = 0; i < N ; i + +)

Begin
V V rec[i] = record qua[i]−min(record qua)

max(record qua)−min(record qua)
∗ V V range + V V base

For (int j = 0; j < M ; j + +)
Begin

V V data[i][j] = data quality[i][j]−min(data quality)
max(data quality)−min(data quality)

∗ V V range +
V V base

End
End

For (int j = 0; i < M ; j + +)
Begin

V V dim[j] = dimension qua[j]−min(dimension qua)
max(dimension qua)−min(dimension qua)

∗ V V range +
V V base

End
End

Figure 5.2: Mapping Data Quality Measures onto Visual Variables

data. It can convey the extent of quality in combination with other features. In this case,

the length of each dash in the dotted line is used to represent the quality measures for data

values. The dotted line could maximally extend to the midpoint between a data value and

its neighbor.

Without visualization efficiency and expressive capability consideration, this is a rather

reasonable choice for 2D parallel coordinates, where due to the nature of the parallel co-

ordinates display, there are not many visualization resources that could be used for extra

information other than data itself. As we discussed before, color is not the best visual

variable to represent numeric values. A Gestalt study shows that people tend to differenti-

ate the geometric size more easily than color (section 3.2). People usually cannot discern
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Data quality measures Record quality Dimension quality Value quality
Visual variables Color Line width Line style

Table 5.1: Mapping of Data Quality Measures onto Visual Variables in 2D Parallel Coor-
dinates

the distance from dark blue to light blue. However, color is still well used to represent

data quality through this thesis, since, in many situations, we have no other visualization

resources available.

Figure 5.3 is a parallel coordinates display incorporating data quality information by

the mapping method described in Table 5.1. For dimension quality, the thicker the dimen-

sion axes, the worse the quality. We can instantly judge that dimensions 2 and 4 have the

worst quality among other dimensions. Dimension 1, 3, 6, 8 and 9 have better quality and

the rest of dimensions have moderate quality.

The color for each record polyline represents the record quality. the darker the color,

the worse that data record’s quality. In other words, the lighter, the better. We may

not easily find the lightest poly-lines, but the six darker data records are not difficult to

differentiate.

The most challenging and difficult type of quality, the data value quality, is represented

by the length of dotted lines around the data points. The dotted lines that reside on each

side of the data point represent a quality issue for that point. The longer the dotted line,

the lower the quality is for that point. A solid line represents that the data point is of the

highest quality.

By a careful examination, it is not difficult to find that the dimension quality, record

quality and data value quality are associated with each other. Dimension 2 and 4 have

the worst quality among dimensions. The data points located in these two axes also have

longer dotted lines that represent worse data value quality. In the mean time, several data

values on the six darker record poly-lines show signs of worse quality.
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Figure 5.3: Parallel coordinates with data quality display, where the record quality is
mapped onto the color of a ployline, the dimension quality is mapped onto the width of
an axis and the data value quality is mapped onto the length of a dotted line.

We can ascertain the pros and cons for this mapping method by examining the dis-

play. An advantage is that it conveys an amazing information content by a simple mapping

mechanism for data value quality. In a parallel coordinates display with a moderate num-

ber of records and dimensions, we can expect that the dimension quality, record quality

and data value quality can be displayed in an expressive manner and all can be discern-

able.

In information visualization, the efficient use of space is critical and it often deter-

mines the success of a display to a large extent. A number of information visualization

packages focus on efficient space use algorithm design [12] since displays are apt to be

cluttered for an average data set. The mapping method described in Table 5.1 satisfies the

rule that space is used efficiently. It saves space by mapping data value quality onto line

style and conveys the quality measure by the line length.

What are the disadvantages? One is that the mappings do not follow human beings’
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Data quality measures Record quality Dimension quality Value quality
Visual variables Color Line width Transparent band

Table 5.2: Map Data Value Quality onto Transparent Band in 2D Parallel Coordinates

Gestalt rules well. Aside from the fact that people cannot easily judge good or bad from

light green to dark green, they maybe feel a little bit strange interpreting the line style

and its length as a data value quality measure. In addition, when the data set becomes

large, for instance, over one thousand data records, which is very common for information

visualization, the display could be cluttered. In this case it seems like we have problems

in discerning whether it is a dotted line or a solid line, let alone to discern the length for a

dotted line.

To investigate the expressive capability and effectiviness of visual variables for incor-

porating data quality measures into data displays, an alternative visual variable mapping

method was investigated. As described in Table 5.2, the only difference from the mapping

method in Table 5.1 is that the data value quality is mapped onto a translucent band rather

than a dotted line.

The objective of this mapping method is pretty clear. The critical problem in our data

quality visualization is how to map the data value quality, the dominant information part

among the three types of data quality measure. There is an already assumed data quality

for each data point. The information content is at least doubled for data with quality

measures than pure data without extra information.

Figure 5.4 shows data value quality using an opacity band around the data poly-line

in a parallel coordinates display. Two symmetric points around a data point are defined

in terms of the quality measure for this point, where the offset from the data point corre-

sponds to quality measures. The quality band is formed by painting two band areas along

the upper and lower sides of a data line connecting two data points, where the opacity is
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gradually changed along the offset to the data line.

Figure 5.4: Quality band in parallel coordinate, where the record quality is mapped onto
the color, the dimension quality is mapped onto the width of an axis and the data value
quality is mapped onto the width of a transparent band.

This mapping method is the same as the semantics described in Table 5.1, except the

transparent band stands for data value quality. The wider the transparent band, the worse

the data value quality at that point. A data line through a point without a band means it

has perfect quality in that dimension.

A geometric entity, a transparent band, and its size are used to convey data value

quality measures. It results in a better display with easy-to-differentiate data value quality

measures. The display efficiency is improved in terms of presenting data quality with

data displays. Unfortunately, this mapping method is only effective when the data set is

limited to a small number of data records. Especially when a large number of imperfect

data are presented, the clutter of the display is a serious problem that cannot be overcome.

The above mentioned results are in agreement with the rule that the efficient use of

display space is critical. The wider the transparent band, the easier it is for viewer to
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differentiate the data value quality. In the meantime, the number of imperfect data points

that could be displayed discriminatedly at the same time is limited.

5.1.4 Glyphs

The nature of the glyph display is similar to parallel coordinates; thus we apply the same

mapping methods as used for parallel coordinates to incorporate data quality information

into glyph displays.

Figure 5.5 is a glyph display extended with data quality information by the mapping

method described in Table 5.1. In glyph displays, the individuals are emphasized while

the dimensions are displayed with each individual. The quality for each data record is

more easily judged than the other types of data quality measures.

Figure 5.5: Glyph with data quality display, where the record quality is mapped onto the
color a glyph, the dimension quality is mapped onto the width of a ray axis and the data
value quality is mapped onto the length of a dotted line.
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Data quality measures Record quality Dimension quality Value quality
Visual variables Color Line width Point size

Table 5.3: Map Data Quality Information onto Visual Variables in a 2D Scatterplot Matrix
Display

5.1.5 Scatterplot Matrix

In a scatterplot matrix, the visual emphasis is focused on the relations between two di-

mensions. The data values are plotted as geometrical points along each two dimensions.

Every two dimensions generate a single plot. It results in a symmetrical plot arrangement

where the diagonal plots show the distribution of data within a single dimension. This

provides an opportunity to convey dimension quality in these diagonal plots instead of

the distribution.

After dimension quality have been represented by diagonal plots, the other two types

of quality information need to be mapped. The point size is definitely a good visual

variable for our purpose. But it only can convey one type of quality measure, either the

record quality or data value quality. In such a situation, the data value quality seems to

be better to be conveyed by point size. Again, the remaining quality measure, the record

quality, can be represented by the color. These mapping methods are listed in Table 5.3.

Figure 5.6 is such a display, where the data quality information is incorporated into a

2D scatterplot matrix by the mapping method described in Table 5.3. The advantage of

this display is that the data value quality, which is conveyed by the point size, is apparent

and discernable. We still have some difficulty to associate the quality of the whole data

record; this is due to the nature of the scatterplot matrix, where the visualization cue is

focused on the relation in each single plot.

The dimension quality, which is represented by the line width of the diagonal plot

border, is discernable. The wider line for a diagonal plot box stands for a quality problem

for that dimension. We use consistent semantics to ease the interpretation of the quality
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information.

The color in this display is used to convey data record quality. Compared with the

display of parallel coordinates, where the same mapping and interpretation semantics are

chosen, it provides a worse visualization in conveying the data record quality. This is

due to the different nature of the two displays, where in the parallel coordinates display,

a connected poly-line has a better representative capability for emphasizing the integrity

than a scatterplot matrix display.

Figure 5.6: Scatterplot Matrix with data quality incorporated, where the record quality is
mapped onto color, the data value quality is mapped onto point size and dimension quality
is mapped onto line width around the diagonal plots.

To better use the diagonal plot space in the scatterplot matrix display, an alternative

mapping method was considered. As in Table 5.4, the only difference is that color is

used to convey dimension quality by painting the diagonal box with an appropriate color

setting.
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Data quality measures Record quality Dimension quality Value quality
Visual variables Color Color Point size

Table 5.4: An Alternative Method for Mapping Data Quality Information onto Visual
Variables in 2D Scatterplot Matrix Display

Figure 5.7 is a scatterplot matrix display where the diagonal plots are painted with

a background color. The diagonal plot background color is decided by interpolating the

corresponding dimension quality based on the color for the dimension axes. We keep the

same semantics as to how to interpret the color: the lighter, the better quality; the darker,

the worse quality. Obviously the dimension quality become more apparent and easy to

differentiate, even though we still do not have a precise differentiation between two close

diagonal background colors.

Figure 5.7: Scatterplot matrix with data quality incorporated, where the record quality is
mapped onto color, the data value quality is mapped onto point size and dimension quality
is mapped onto the background color.
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So far it conforms with our principle that the geometrical entities, such as the line

width, transparent band and point size, are reasonable choices to represent quality mea-

sures as to the viewer’s Gestalt understanding and interpretation. The expressive capa-

bility and efficiency of these visual variables to convey data quality in 2D displays is

reasonably good. In the case of the scatterplot matrix, due to the introduction of point

size to represent data field quality, it seems to be better than the other two displays in

terms of display readability and interpretability.

The most attractive geometrical feature, the third dimension, which is good to convey

any information as analyzed in Chapter 3, needed to be investigated. The next section is

dedicated to incorporating data quality information into data displays in 3D space.

5.2 Incorporation Visualization of Data
with Quality Information in 3D Displays

The third dimension is one of the visual variables that may be effective for data quality

visualization, based on the analysis in section 3. The direct implementation in this context

is to visualize the data with quality measures in 3D views, where two dimensions are used

to map the multivariate data and the third dimension is the direct indicator of data quality.

To investigate the visual effectiveness and expressive capability of the third dimen-

sion, we focused on the 3D displays incorporated with data value quality information.

We temporarily ignore the other two types of quality information.

5.2.1 Parallel Coordinates

In parallel coordinates displays, the third dimension is directly used to convey data value

quality measures, which results in a 3D parallel coordinates. Figure 5.8 shows such a

display. To obtain a 3D appearance, cylindrical geometric entities are used to draw data

records instead of the poly-lines in the 2D parallel coordinates display.
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Figure 5.8: 3D parallel coordinates with incorporated data quality information.

From the 3D parallel coordinates display we find that the third dimension can be

a reasonable representation for conveying data quality measures, especially when these

measures take on a small number of distinct values. It gives a plausible global view in

terms of data with quality measures. For more detailed views, user interactions such as

rotation, linking and brushing techniques could be used to enhance data interpretation and

decision making when faced with data quality problems.

In the meantime, the disadvantage of 3D parallel coordinates display is apparent. The

display is easily cluttered. Viewers still have difficulties in judging the third dimension

values. In addition, a 3D display poses an inconvenience for user interactions, where the

user cannot precisely locate a position in the depth of view just using the mouse. This is

a critical disadvantage for information visualization.
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5.2.2 Scatterplot Matrix

In a 3D scatterplot matrix, a 3D cylindrical entity is used to represent each data point,

where the start and end position for each cylinder are used to convey two data value

quality measures for that point. Figure 5.9 shows a 3D scatterplot matrix where the data

value quality is mapped onto the third dimension.

Figure 5.9: 3D scatterplot matrix with data quality information incorporated.

From the 3D scatterplot matrix display, we feel that it has similar advantages and

disadvantages as described in the 3D parallel coordinates display. It provides a global

view for data value quality measures. Unfortunately, the display is easily cluttered. It is

not convenient for the viewer to differentiate each matrix plot due to the introduction of

the third dimension. It is not intuitive for the user to interactively specify a data point or

a matrix plot for the same reason.
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5.2.3 Star Glyphs

In the 2D star glyph display, each glyph represents a singe data record. It is formed by a

number of rays issued from the center that represent dimensions and a polygon around the

center that represent data points. The distance from the center to the polygon edge points

along that ray conveys the data value for the corresponding dimension. The resulting

appearance of a glyph is composed of multiple triangles that share the same center. A 3D

star glyph is achieved by extruding each triangle along the third dimension with a distance

that represents a data value quality for that point. Figure 5.10 shows a 3D glyph display

with the third dimension representing data value quality measures.

Figure 5.10: 3D star glyph with data quality information incorporated.

From this 3D glyph display we find that it is more difficult to control the display. It

tends to be hard to discern since all the glyphs are solid entities.
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5.3 Visualization in Data Quality Space

Incorporation of data quality into data displays provides rich information and can lead

to more informed analysis. In some situations, rendering the data quality information in

a separate display is required. Part of the reason is that the user could expect a view in

quality space where it could be better displayed only with quality information and lead

to a clear visualization (compared to incorporation of data quality with data displays).

The other reason is that displaying the data quality in a separate display makes it possible

for the user to navigate between data space and quality space and perform an interactive

analysis using existing techniques such as linking and brushing.

Two spaces are discussed here: data space, which is associated with multivariate data

records, and data quality space, which is associated with data quality values, including

record, dimension, and data field quality. The two spaces are not necessarily required

to be independent. In fact, they could have relationships, e.g., the lower values in data

space may directly lead to the high data quality in quality space for a specific variable.

To discover and exploit such associations would be possible by the visualization methods

developed in this thesis.

5.3.1 Displays in Data Quality Space

Two types of plots are used to display data quality in quality space. One is a tabular plot

as in Figure 5.11, where a rectangular area is segmented into n (number of tuples) by m

(number of dimensions) small blocks. Each small block is painted by a color correspond-

ing to its corresponding quality value. Alternatively each block could be partially filled

with a single color, similar to the Table Lens technique [58, 59]. Color is employed here

to convey data value quality because the area required for each quality value is relatively

small.
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Another type of plot is a histogram slider [60, 61, 62], which shows distributions for

a scalar value. The histogram slider provides the viewer a global picture in terms of the

scalar value displayed. Combined with a dynamic slider, it facilitates rapid exploration of

information by real-time visual display of both the query formulation and results.

In this thesis three histogram sliders were developed to display quality measures for

data records, dimensions and data values respectively (Figure 5.11). Along each slider,

It is divided uniformly into a certain number of bins. Each bin consists of a rectangular

painting with the color that is decided by the quality value of that bin. The height of a bin

stands for the number of data points that fall into this bin’s range.

5.3.2 Operations on Data Quality Displays

Ordering can enhance visualization and possibly make underlying data patterns, associa-

tions and outliers more apparent in certain conditions. We see the potential of ordering in

our data quality display. It not only improves visualization efficiency, but also can provide

a powerful auxiliary operation to help users find interesting data items. The ordering op-

erations are provided for data value quality displays. Figure 5.12 shows an ordered data

quality display of Figure 5.11, where the data located in the upper left area in the quality

display have worse quality and those in the lower right area have better quality.

The primary objective of displays in data quality space is to provide users the ability

to interactively explore data. Users can query an interesting subset of data and get instant

display on specified subsets. The next section discusses the developed functions for user

interactions.

53



Figure 5.11: Visualization in data quality space.

Figure 5.12: Ordering on data quality display.

5.4 User Interactions

User interactions are an important aspect of information visualization. One advantage of

visualization is that it can combine automatic algorithms with the perceptual capabilities
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and intelligent judgment of human beings. Visualization, especially for exploratory or

confirmatory purposes, is often ineffective without interaction. It is not sufficient to only

display pictures of the data; the user needs to interactively explore the data. The ability

to select and manipulate subsets of the data and change viewing parameters interactively

supports the user in reaching the goal of gaining insights into the characteristics of the

data. User interactions can be as simple as setting display features, changing viewing pa-

rameters, and removing data entries. It can also be more complicated, such as navigating

in multiple views.

Linking and brushing, which is used to target the viewer’s interest in a subset of the

data, is applied to displays in data space and data quality space. To provide the user

with a better view of data with quality information, we developed view changes such as

transformations, rotations and zooming.

5.4.1 Linking and Brushing
in Data Space and Quality Space

Linking and brushing are established techniques in multivariate data visualization for

exploring patterns of data with high dimensionality in the same view or multiple views

[15]. It begins with brushing, where an interesting subset of data is selected in one view.

The brushed data subset is then dynamically highlighted in other displays, which is termed

linking.

The techniques of brushing and linking can be applied in both data space and quality

space. Brushed data subsets in data space can be highlighted in quality space; similarly,

the quality data can be brushed and the data falling into the brushed region can be high-

lighted in the data space. Four types of brushes in quality space are introduced. As shown

in Figure 5.11, brushes are applied to the tabular value quality plot, the record quality

histogram slider, the dimension quality histogram slider, and data field quality histogram
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slider.

Brushing the Data Value Quality

In the tabular data quality display, the brush is defined by a rectangular area that covers

a certain number of contiguous dimensions and data records. The brushed area is indi-

cated by a transparent painting with the current defined brush color. Users can arbitrarily

specify the position and size for this brush. Figure 5.14 shows a brushed area in the data

quality display and corresponding data subset in data display is shown in Figure 5.13.

Figure 5.13: Brush data value quality -
brushed data in data display.

Figure 5.14: Brush data value quality -
brush in data quality display.

The semantics of brushing deserves discussion in this context. In a tabular data quality

display with data tuples as rows and dimensions as columns, a specific rectangular area

includes a certain number of data tuples and dimensions. As a brush, it could be inter-

preted in three ways and results in three different brush definitions. They are, specified

data tuples with all dimensions, specified data dimensions with all data tuples, and spec-

ified data tuples with specified data dimensions. The third option, specified data tuples

with specified data dimensions, is intuitive and consistent when the specified brush is a
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rectangular area with continuous extents both for rows and columns. It is possible that the

user selects arbitrary boxes in the tabular quality display. This is equivalent to the brush

where the user operates on the quality histogram slider for all data fields. In this case, the

tabular quality display can be reordered to correspond to the user selections. Figure 5.12

shows an ordered display in quality space.

To enrich the interactive operations between users and quality displays, we leave the

semantics of the brush up to the user’s preference.

Combined with operations on displays in data quality space, the defined brushes can

help a user target his selections.

Brushing the Dimension Quality Slider

A dimension quality slider is defined by a certain number of contiguous bins along the

dimension histogram plot. The slider is transparently painted with the current brush color.

The position and size of a slider are decided by the starting and ending bin’s position along

the dimension histogram plot. Figure 5.16 shows a dimension slider and corresponding

data subset in the data display are shown in Figure 5.15.

Notice that only those dimensions that fall in the dimension slider’s covered area are

drawn. Other dimensions are hidden. The dimension slider has no effect on the data

records.

Brushing the Data Record Quality Slider

Similar to the dimension quality slider, the data record quality slider is applied on the data

record quality histogram plot. Users brush this slider by sliding the start or end or both

positions. Figure 5.18 shows such a slider and the brushed data in data display are shown

in Figure 5.17.

The data record quality slider only works on data records. It does not affect the di-

57



Figure 5.15: Brush dimension quality
slider - brushed data in data display.

Figure 5.16: Brush dimension quality
slider.

mensions displayed.

Brushing the Data Value Quality Slider

The data value quality slider is applied in the data value quality domain. It provides an

alternative brush method to the tabular data value quality display. In the data value quality

slider display, the histogram displays quality measures for all data points, which include

all data records along all dimensions. The histogram provides a global view of how the

data value quality is distributed. The slider facilitates users in focusing on a specific range

of quality measures for data points.

Figure 5.20 shows a data value quality slider and the brushed data is shown in the data

display in Figure 5.19. Compared with brushes in the tabular quality display, brushed data

points in the data value quality slider don’t necessarily fall into continuous dimensions or

records. In most cases, they are scattered within the tabular data quality display.

These four different brushes or sliders work on data sets in quality space. They could

be independent or depend on each other. Dimension and record sliders work on data
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Figure 5.17: Brush data record quality
slider - brushed data in data display.

Figure 5.18: Brush data record quality
slider.

dimensions and records separately; they are independent. Brushes in the tabular quality

display and data value quality sliders work on the whole data set. They are dependent.

Brush operations can be complicated and other research groups have focused on this

issue. In this thesis we have not intended to address the problems of interacting brushes.

In the meantime, the other brushes or sliders are not updated after a brush or slider oper-

ation has finished.

5.4.2 Viewing Transformations

In 3D visualization, the viewing transformation is a powerful and essential function for

users to navigate and explore the data set. A change in the angle of view can be used

to uncover a particular part of a 3D display. In this thesis, we implemented a camera

utility to facilitate such functions. Users can translate, rotate and zoom views by simple

interactions in the 3D view.

The interactive viewing transformations were implemented by responding to a key

user typed. The detail description is as Table 5.5.
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Figure 5.19: Brush data value quality
slider - brushed data in data display.

Figure 5.20: Brush data value quality
slider.

Keys typed Operations
z(Z) Transform on z (-z) direction
y(Y) Transform on y (-y) direction
x(X) Transform on x (-x) direction
j(J) Yaw a positive (negative) angle
k(K) Roll a positive (negative) angle
l(L) Pitcj a positive (negative) angle

Table 5.5: Key Definitions for Viewing Transformations

5.5 Animations

The use of three dimensional representations and animation could potentially enable users

to visualize more relationships within the data set. These representations can provide

more insight than flat, static two dimensional visualizations. In this thesis we imple-

mented a simple animation function. User can move between different views in the 3D

display by controlling rotation orientation and speed.

The animation starting, rotation orientation and speed and stopping were controlled

by operating on mouse.
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Chapter 6

Implementation

6.1 System Architecture

As shown in Figure 6.1, several modules were developed based on the existing XmdvTool

system for the purpose of data quality visualization:

• Data Quality Imputation. This is an independent module to impute data values for

missing fields and thereafter to derive a complete dataset and corresponding data

quality values. To examine the visualization methodologies for data quality that

we present in this thesis, we create cases of datasets with varying quality from the

dataset with missing values. The nearest neighbor method is used to impute values

for the missing fields. We define data formats and provide a way to have other

imputation methods incorporated in the future.

• Incorporation of Data Quality into Data Display. This module is implemented based

on the existing visualization modules. For 2D displays, the data quality measures

are rendered as selected visual variables. For 3D displays, the data value quality is

mapped onto the third dimension.

• Visualization in Data Quality Space. An independent module that is dedicated to

the visualization for data quality.
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• Interactions. This is a separate module that provides user interactive functions.

Queries in the form of data quality specification are instantly resolved in the data

display.

• Animation. This module generates 3D consecutive views in a user specified manner

so that users may get a better understanding about the data and potentially discover

relations and features undiscovered by other type of views.

Figure 6.1: Structural Diagram of XmdvTool with Data Quality Visualization
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6.2 Implementation

This project is implemented as extensions to the XmdvTool system 6.0 alpha version.

We followed the existing system design, style, and methodology to make XmdvTool con-

sistent. All the existing functions and features were left untouched. The data quality

visualization and interactive activities were implemented as new modules to the existing

system.

Similar to previous XmdvTool versions, modules were implemented using C++ as the

developing language. To make the system work across different platforms, the OpenGL

graphics library was used. Its interface was generated using Tcl/Tk. The software will

execute on both Windows and Unix/Linux platforms.
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Chapter 7

Case Studies

Evaluation is essential for effective information visualization. The discipline of informa-

tion visualization has experienced more then ten years of research and development and

has resulted in a variety of visualization tools with different capabilities. A problem arises

that not only are users overwhelmed by many visualization capabilities, but also develop-

ers, researchers and promoters have difficulties in terms of which visualization technique

to employ.

Evaluation is one of the plausible approaches to solving these problems. Evaluation

may provide metrics, evidence, and examples of why a particular technique is useful or

not. By evaluation, we may discover and quantify how and when a visualization technique

or application works. This can directly or indirectly support and validate results. Another

benefit is that findings from evaluations will likely point us to new directions and new

ideas for interesting and useful research.

7.1 Objectives

The first objective is to examine the visual efficiency and representative capability for the

data quality visualization approaches presented in this thesis. The second objective is to

assess the utility of quality visualization by examining the effectiveness and correctness
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of imputation algorithms. There is no imputation algorithm that can be applied ubiquitu-

ously, since certain assumptions are assumed for almost all algorithms. The effectiveness

and correctness of these algorithms needs to be examined. However, there is no efficient

way to achieve this purpose except theoretical analysis. We see this is an opportunity for

visualization to perform such a task.

7.2 Imputation Algorithm Comparative Study

7.2.1 Methodology

We created missing data from complete data by designing artificial missing patterns. The

correctness and effectiveness of algorithms are examined visually by comparing displays

for missing data and complete data side by side. Imputation algorithms are used to impute

values for missing fields and data quality measures are derived from imputed values. In

more detail, this is fullfiled by these steps:

• Create missing data: A dataset with missing values was created from a complete

dataset by designed missing patterns. For example, data for a specific dimension

were randomly missed.

• Imputation: The algorithms were used to impute values for the missing fields. Data

quality was also derived by the algorithms proposed in Chapter 4.

• Visualization: The complete data and missing data with imputed values were dis-

played side by side.

• Comparative study: By visually comparing two displays, the correctness and effec-

tiveness of these algorithms were examined.

During the process of visual examination, we considered these factors:
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• Missing patterns: When creating missing data, two designed patterns were applied.

They are random missing, where the data are randomly missed for a specified di-

mension, and, uniform missing, where the data are missing at an uniform frequency.

• Imputation algorithms: Multiple imputation and nearest neighbor algorithms were

used to impute the missing data.

7.2.2 Results

Iris data set with 20% missing, complete data and imputed data are as Figure 7.3, 7.2 and

7.4.

Figure 7.1: Complete Iris Dataset. Figure 7.2: 20% Missing Iris Data, Im-
puted by Nearest Neighbor.

By comparing the Figure 7.2 and 7.4, we see that both the nearest neighbor and EM

algorithms have very close performance as to the imputation correctness. Both displays

have data itmes that are significantly different from the actual ones. By a careful investi-

gation we can find that the nearest neighbor algorithm is slightly closer to the actual data

than the EM algorithm, since Figure 7.2 is closer to the Figure 7.3 than Figure 7.4.

The cars data set with 40% missing, complete data and imputed data are shown in

Figure 7.7, 7.6 and 7.8.
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Figure 7.3: Complete Iris Dataset. Figure 7.4: 20% Missing Iris Data, Im-
puted by Multiple Imputation.

Figure 7.5: Complete Cars Dataset. Figure 7.6: 40% Missing Cars Data, Im-
puted by Nearest Neighbor.

If we claimed that the performance in term of imputation correctness is very close for

both the nearest neighbor and EM algorithms for the iris dataset, the difference between

these two algorithms is apparent for the cars dataset. Looking at all the dimensions,

especially the second and the second to last dimensions, the data items imputed from the

nearest neighbor algorithm are much closer to the actual value than those imputed from

the EM algorithm (see Figure 7.7, 7.6 and 7.8).

The consquent conclusion we can draw from this case study is that the visualization
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Figure 7.7: Complete Cars Dataset. Figure 7.8: 40% Missing Cars Data, Im-
puted by Multiple Imputation.

is a helpful tool to validate and assess the correctness and efficiency for imputation algo-

rithms.

7.3 Quality Visualization Efficiency

Our next assessment was a case study on the expressive capability and efficiency of data

quality mappings when incorporated with the data display. In this case study we only

considered three different data quality mappings in the parallel coordinates display, rather

than consider all data quality mappings in all types of displays such as scatterplot matrix

and glyph displays. Part of the reason is that different displays, even when presenting

data without quality information, have their own advantages and disadvantages. This

thesis didn’t focus on such differences of expressive capability among different displays.

Another reason is that the mapping methods for data quality measures often can’t be

consistent across different displays since some visual attributes can’t be applied to all

displays consistently.

To achieve our purpose of evaluation and to have a comparative study on the expres-

sive capability and efficiency of data quality mappings, we chose the parallel coordinates
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Data quality measures Record quality Dimension quality Value quality
Mapping method 1 Color Line width Transparent band
Mapping method 2 Color Line width Dotted line
Mapping method 3 N/A N/A 3rd dimension

Table 7.1: Three Mappings of Data Quality Measures onto Visual Variables in Parallel
Coordinates Display

display as the display type for the case study. As shown in Table 7.1, there are three dif-

ferent mappings for data quality measures incorporated with the data display. All of these

were discussed in Chapter 5.

7.3.1 Methodology

We chose four data sets, each with a different number of quality problems in terms of

record quality, dimension quality and data value quality. Each of these four datasets with

quality information was visualized by the mapping methods listed in Table 7.1. Figure

7.9, 7.10 and 7.11 show dataset A, Figure 7.12, 7.13 and 7.14 show dataset B, Figure

7.15, 7.16 and 7.17 show dataset C, and Figure 7.18, 7.19 and 7.20 show dataset D under

mapping method 1, 2 and 3.

A user study was performed as follows. We chose graduate students in the WPI com-

puter science department as subjects. Before conducting the user study, we gave a short

explanation of these three different displays. For each display, we asked the same ques-

tions, as follows.

• How many data points you can discern with a quality issue?

• How many dimensions you can discern with a quality problem?

• How many records you can discern with a quality problem?

• Roughly how long did you spend to count these numbers?
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Figure 7.9: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
A, Mapping Method 1).

Figure 7.10: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
A, Mapping Method 2).

• Do you like this display? any comments?

We summarize our results and findings in the next section.

7.3.2 Results and Findings

We collected the feedback from twelve subjects. Statistics such as the average of number

of data points with quality problem a subject found (# data points(avg)), standard devia-

tion of this number (std dev) and average time used to perform such task (avg time(sec))

are shown in Table 7.2.

In summary, we can conclude from user feedback the following:

• When the dataset is small in terms of the number of data points with data quality

problems (dataset A and B), all three mapping methods work well in conveying

the data point quality measures. Mapping method 3 (3rd dimension) had a worse

performance than the other two mapping methods in terms of the number of data

points the subjects could discerned. As for mapping methods 1 and 2, method
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Figure 7.11: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
A, Mapping Method 3).

1 (transparent band) was better than method 2 (dotted line) in terms of standard

deviations of the number of data points with quality problem discerned.

• As the dataset size is increased (dataset C and D), the difference between mapping

methods 1 and 2 become apparent. Mapping method 1 (transparent band) takes less

time to count the number of points with quality problems, but the counted number

is less than the actual number. Also it produced a bigger standard variation among

the subjects. On the other hand, mapping method 2 (dotted line), although it took

more time to count the number of points with quality problems, it resulted in a more

precise number compared to the actual number of such data points. It also comes

with a smaller standard deviation for the counted numbers among the users.

• As the dataset size is increased (dataset C and D), mapping method 3 (3rd di-

mension) performs poorly since there is a significant difference between the user

counted and the actual number of data points with quality problem.
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Figure 7.12: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
B, Mapping Method 1).

Figure 7.13: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
B, Mapping Method 2).

Figure 7.14: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
B, Mapping Method 3).
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Figure 7.15: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
C, Mapping Method 1).

Figure 7.16: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
C, Mapping Method 2).

Figure 7.17: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
C, Mapping Method 3).
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Figure 7.18: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
D, Mapping Method 1).

Figure 7.19: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
D, Mapping Method 2).

Figure 7.20: Parallel Coordinates Display
with Data Quality Incorporated (Dataset
D, Mapping Method 3).
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Datasets and mapping method # data points(avg) std dev avg time(sec)
Dataset A, mapping method 1 9 2 5
Dataset A, mapping method 2 9 1.5 5
Dataset A, mapping method 3 6 2 5
Dataset B, mapping method 1 8 1.8 3
Dataset B, mapping method 2 4 1 3
Dataset B, mapping method 3 5 2 3
Dataset C, mapping method 1 33 5.5 12
Dataset C, mapping method 2 40 4.2 18
Dataset C, mapping method 3 10 6.5 15
Dataset D, mapping method 1 30 4.6 20
Dataset D, mapping method 2 35 3.8 25
Dataset D, mapping method 3 12 8 22

Table 7.2: Number of Data Points with Quality Problems Users Found, Standard Devia-
tion and Average Time Used for Different Dataset and Mapping Methods
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Chapter 8

Conclusions

In this thesis we presented efforts at visualizing data sets with data quality problems.

We analyzed the expressiveness and representation efficiency of visual variables for con-

veying different aspects of data quality information. Incorporating data quality into data

displays, visualization in data quality space, and user interactions were discussed. Our

examples show advantages and disadvantages of our approaches for exploring data sets

both in data space and quality space.

8.1 Summary

More specifically, the results of this thesis are summarized as follows.

8.1.1 Data Quality Measures

We discussed data quality and its multi-dimensional characteristics. We started from

the datasets with missing values, a typical data in information visualization. We then

developed methods for data quality definition and quantification. Nearest neighbor and

EM algorithms were used to impute the data values for missing fields. Thereafter we

derived the data quality measures from the imputation processes.
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8.1.2 Visual Variable Analysis

A successful visual display largely depends on how the visualization resources are used.

The efficiency and expressive capability are a critical point for a display design. Chal-

lenged with two-fold information needed to be presented, we analyzed the properties of

data, data quality and visual variables. Algebraic mappings were used to investigate the

visual variable choices for our data quality visualization purpose.

8.1.3 Data Visualization with Variable Quality

By the analysis of visual variables, efforts were made to incorporate data quality into

tradition data displays, which included parallel coordinates, scatterplot matrix and glyphs.

The advantages and disadvantages were discussed. The dimensional stacking display was

not included since we see more challenges exist for data quality incorporation in this

display.

Then we moved on to incorporate data quality information into data displays using the

third dimension. Different 3D displays were examined to achieve the best visual effects.

A set of interaction and animation tools were provided to help users acquire a desired

view.

To facilitate navigation, exploration and discovery activities for users, the display in

data quality space was designed and implemented as a separate display. Brushed subsets

of data are displayed in linked displays implemented in data space. The definition and

semantics of brushes were discussed.

8.1.4 Evaluations

Computational techniques and visualization are two different aspects in the process of

analyzing data. Both could potentially contribute to better analysis results. In addition,
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they could be mutually beneficial - algorithm computations help to improve efficiency for

visualization and vise versa, visualization helps to validate the correctness of algorithms.

We developed such a case study by creating a dataset with missing values, deriving data

quality measures and presenting them in a visual display.

To help evaluate the effectiveness of data quality displays, a case study was performed

to examine the approaches presented in this thesis.

Our approaches had several purposes: to justify our particular design choices in the

context of the problem, to help us distill or further elucidate design principles, and to serve

as a model for subsequent work by relating new visualization techniques to a conceptual

framework as an integral part of the presentation. Our methodology is relevant not only to

the particular problem domain, data quality visualization, but to the field of information

visualization as a whole.

8.2 Future Directions

Efforts to incorporate data quality information into traditional visualization displays is

of growing interest. A variety of work needs to be performed to improve visualization

of data and data quality. One of these is data quality definition and quantification. The

nearest neighbor algorithm as a method to estimate quality measures in this thesis may

be far from sufficient quantification of data quality. A number of techniques for general

or specific modeling of data quality at a variety of granularities are necessary for gaining

insights into the data set.

The challenges of data quality storage is that usually only a very small part of a data set

has quality problems, while the majority of the data are often one hundred percent perfect.

Allocating a chunk of space for all data records for corresponding quality information is

not reasonable since the same quality values for perfect data will be stored. This problem

78



needs to be addressed by designing a meta structure so that only the data with quality

problems are allocated space for quality information.

An immediate need for data quality visualization is formal user evaluations. We have

potentially a large number of mapping possibilities from data quality information to vi-

sual variables. Using evaluation, we may discover and quantify how and when a specific

mapping works. This can directly or indirectly support and validate our approaches. An-

other benefit is that findings from evaluations will likely point us to new directions and

new ideas for interesting and useful research.

Another potential area of work is in data format definition. The XML/DTD structure

could be used to define types of data quality information. This may allow algorithm

incorporation from other domains, e.g, statistical data augmentation algorithms.

Dealing with other aspects of data quality is challenging. For example, uncertainty,

where the quality measure may be non-scalar, is required in some instances. In certain

cases, to indicate the presence of data quality issues is sufficient, while in other contexts

quantitative displays for data quality are necessary. This can obviously affect the number

of options available for effectively communicating quality information.

We also notice that data sets in many domains have attributes analogous to data qual-

ity. Approaches proposed in this thesis could be easily extended into these domains. For

example, some data could be more private than other data. In this sense, data security

visualization could take advantage of the techniques proposed in this thesis.
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