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Abstract 

Plastics have become one of the most used materials in the manufacturing industry.  Ethylene is 

the main component of most commonly made plastics.  One of the most common ways of 

making ethylene is by a process called ethanol dehydration which is the process of producing 

ethylene from ethanol.  The purpose of this project was to study and compare the ethylene 

yield of ethanol dehydration in both the liquid and vapor phases.  This was done by studying the 

activity and crystallinity of a catalyst and the heat transferred in the reactor all while varying 

the flow rate and ethanol composition of the feed.  It was found that liquid phase ethanol 

dehydration does yield ethylene, however not as much as vapor phase.  This could be improved 

if the catalyst did not degrade as easily in hot liquid.  Liquid phase ethanol dehydration can 

compare economically to vapor phase because it has a lower reaction temperature, resulting in 

less energy used, thus it is cheaper to manufacture.  Not as much ethylene is produced but it is 

cheaper to manufacture.  If more ethylene could be created, liquid phase ethanol dehydration 

could become a viable candidate for the manufacture of ethylene.  
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Chapter 1: Introduction 

Plastics have become one of the most used materials in the manufacturing industry.  

The low cost, ease of manufacture, and versatility of this material makes it a great choice to use 

for almost anything.  As time goes on plastics are starting to replace a lot of other materials 

such a wood or steel.  Plastics are very durable and degrade slowly which makes them not very 

renewable which can be harmful to the environment when it is time to get rid of them.  There is 

strong encouragement currently to produce polymers that have lower impacts on the 

environment.  It is therefore important to make these polymers more renewable, one way to 

do that is to change the process in which polymers are made. 

Ethylene is the main component in most commonly made plastics.  The process begins 

with a renewable biological material, or biomass.  Glucose is extracted from this mass and 

fermented to end up with ethanol and water.  The most commonly used process to make 

ethylene from ethanol is primarily by steam-cracking of hydrocarbons.[1]  There is, however, an 

alternative option to make ethylene called ethanol dehydration.  Ethanol dehydration has been 

discovered to use less fossil fuel in the process and lower greenhouse gas production.  With 

increasing fuel prices and concerns for the environment, this could become a more cost 

effective option to steam-cracking of hydrocarbons.   

In the ethanol dehydration process, studies have indicated that an addition of a catalyst 

will increase ethylene yield and lower the reaction temperature.  Thus, using less energy and 

making the reaction more cost-efficient and pertinent in industry. [2]  Many researchers have 

investigated different catalysts to use in this process; some of the most common are zeolites.  

Zeolites are used widely in the oil refining and petrochemical industries due to their wide-

ranging features.  [3]   

Ethanol dehydration has been mostly commonly done in the vapor phase as that is 

where the zeolite is most stable.  However, liquid phase reactions of ethanol dehydration are 

run at high temperatures and lower pressures and promote an economically practical reaction 

speed.  Zeolites are an attractive choice to be catalysts in these reactions; a downside however, 

is that they have tendencies to lose their crystallinity when in the presence of liquid water in 
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temperatures above 150°C.  It is also observed that coking forms at the Bronsted acid sites 

where the zeolites are most reactive; therefore the zeolites become deactivated and lose the 

ability to catalyze. [4] 

  This study is aimed to study and compare the dehydration of ethanol to ethylene in 

both vapor and liquid phase using the zeolite catalyst, ZSM-5.  The process was carried out at 

different feed flowrates and compositions both in vapor and liquid phases and their 

corresponding conversions were compared.  Runs were also started in different phases to see if 

starting in the liquid or vapor phase had an effect on the outcome.  Moreover, the crystallinity 

and reactivity of the zeolite was studied by comparing the untreated catalyst to the catalyst 

after a run using X-ray diffraction (XRD).  The changes in heat transfer rates at different 

flowrates in both vapor and liquid phases were also studied. 
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Chapter 2: Background 

2.1 Biomass 

Biomass is biological material derived from living, or recently living organisms.  From biomass, 

come biofuels and biochemicals which are important products.  Some of the most common 

examples of biomass feedstock are grains and starch crop such as corn and sugarcane, food 

waste, animal byproducts, switch grass, and wood.  Biomass can be used as a substitute for 

fossil fuels in the manufacturing of energy and other products.  Living biomass takes in carbon 

as it grows and uses it for energy when it is released.  This results in a release of carbon into the 

atmosphere rather than a greenhouse gas that harms the environment. [6]   Biomass is an 

extremely important part in the plastic development process because it can get the same result 

as the use of fossil fuels but with much less harm to the environment.  However, there is a 

downside; the use of biomass with the current technology is not economically competitive 

enough with the use of fossil fuels.  It has been discovered that bio-oil is not suitable for 

thermal fractionation after it has been condensed from pyrolysis vapors.  This might be avoided 

with reactions in the liquid phase at moderate temperatures instead.  [7] 

Although biomass can come from a variety of different feedstocks, it is still composed of the 

same original components; hemicellulose, cellulose and lignin.  These components of biomass 

are carbon-based can generally have a composition of 20-40 wt. % hemicellulose, 40-60 wt. % 

cellulose, and 10-25 wt. % lignin in each feedstock.  [8]  The process of biomass to ethanol 

conversion can be seen in the figure below:   
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Figure 1: Biomass to ethanol Conversion [9] 

2.2 Catalysts 

A catalyst is a chemical substance, which is capable of increasing the rate of a chemical 

reaction known as catalysis. The catalysis can be realized as a cyclic process where reactants are 

bound to the catalysts, which lead to the formation of intermediate catalysts-reactant complex. 

This further leads to the formation of product where catalysts are regenerated to its initial state 

as shown in figure 2 below. [10] In the presence of a catalyst, the reaction requires less free 

energy to reach its transitional state. Therefore, the catalyzed reaction has a lower activation 

energy (Ea) than the corresponding uncatalyzed reaction, resulting in an increase of reaction 

rate or selectivity and enables the reaction to occur at lower temperatures as seen in figure 3. 

Catalysts work by increasing the number of successful collisions, which is required to reach the 

transition state.  
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Figure 2: The cyclic process of catalysis 

 

Catalysts are generally categorized in different types depending on their phases with 

substrate.  Heterogeneous catalysts are solid that act on liquid or gaseous subtracts. 

Heterogeneous catalysts have active sites where the reaction occurs. The activity of 

heterogeneous catalysts depends upon the strength of chemisorption and the reactant must be 

absorbed strongly on the catalyst to become active.  Homogeneous catalysts act in the same 

phase as the reactants. They are generally dissolved in a solvent with substrates. Catalysts are 

widely used in chemical industries in production of important chemicals. Moreover, it is used in 

automobiles as catalytic converting for converting toxic pollutants in exhaust gas to less toxic 

pollutants [11]. A number of catalysts such as alumina, silica, and various metal oxides are use 

in dehydration of ethanol to ethylene [11]. 
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Figure 3: Activation energy profile with and without a catalyst 

2.3 Zeolites 

           Zeolites are attractive catalyst for in the refining industries because of their physical and 

chemical properties. Zeolites have well defined pore structure, high activity per acid/active site 

and can be produced at reasonable price (1). Zeolites are microporous aluminosilicates with 

three-dimensional network of silicates in which some silicon atoms are replaced by aluminium 

atom giving Al-O-Si framework [12]. The structural formula of zeolite is given by M- where n is 

the valence of cation M, x+y the total number of tetrahedral per unit cell and y/x the atomic 

Si/Ai ratio.  It can selectively sort molecules based on a size exclusion process due to its porous 

nature. Thus, the reaction taking place in zeolites depends upon the size, shape and porosity of 

the zeolites. Zeolites are found naturally as well as synthesized by industries on large scale.  

Zeolites have a wide range of commercial uses. They are used in wastewater treatment for 

removal of ammonia in sludge and removal of heavy metals [13]. For industries application, 
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they are used as absorbents for oil and spills and gas separation [13]. Moreover, they are 

extensively used as catalysts in petrochemical industries for cracking of hydrocarbons and 

isomerization. ZSM-5 zeolite is also used in dehydration of alcohol into gasoline in petroleum 

industries.  

2.4 Ethanol Dehydration 

Ethylene is one of the most used raw materials in petrochemical companies. It is one of the 

largest chemical products being produced in the world (table 1). 

Company Location Ton/year 

Steam-Cracking plants   

Formsa Petrochemical Corporation Mailiao, Taiwan 2,935,000 

Nova Chemicals Corporation Joffre, Canada 2,811,792 

Arabian Petrochemical Company Jubail, Saudi Arabia 2,250,000 

ExxonMobile Chemical Company Baytown, TX, USA 2,197,000 

ChevronPhilips Chemical Company Sweeny, TX, USA 1,865,000 

Dow Chemical Company Ternuezen, Netherlands 1,800,000 

Ineous Olefins & Polymers Chocolate Bayou, TX, USA 1,752,000 

Equistar Chemical LP Channelview, TX, USA 1,750,000 

Table 1: Top ethylene production companies and their locations [22] 

About 75% of petrochemical products such as acetaldehyde, acetic acid, ethylene oxide, etc. 

are actively produced from ethylene. [23] At the present, the most widely used process to 

produce ethylene is cracking of hydrocarbon where fossil fuels are used as raw materials. 

However, ethylene is also produced from ethanol extracted from renewable sources like corn 

and sugarcane. Different petrochemical industries have developed their own ethanol 

dehydration technologies. Acid catalysts are used in catalytic dehydration of ethanol to 

ethylene. The reaction is highly endothermic and it requires temperature ranging from 180 C-

500 C. [24] The formation of diethyl ether or acetaldehyde are favored outside the temperature 

(180-500 C) required for the production of ethylene.[24] A number of research have studied 
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different modified catalysts to increase the ethylene yield and lower reaction temperature. 

According to catalyst studied by Zhang, SAPO-11-4 gave 98% ethylene selectivity at 250 C. [22] 

Modified catalyst such as HZSM-5 and MCM-41 were able to achieve over 99% selectivity. [22]  

2.4.1 Mechanism 

In the catalytic dehydration of ethanol, acid catalysts are used to form ethylene. An acid 

catalyst first protonates the hydroxyl group of the ethanol, which losses water molecule to form 

carbocation. This process is followed by removal of a hydrogen ion to form a double bonded 

hydrocarbon, ethylene.  

 

Figure 4: Mechanism of acid catalysts of ethanol dehydration [25] 

 

2.5 ZSM-5 in Ethanol Dehydration 

ZSM-5, Zeolite Socony Mobil #5, is a catalyst first made by Argauer and Landolt in 1972 

[16]. It is frequently used in petroleum industries in conversion of methanol feed to a 

hydrocarbon fraction containing aliphatic as well as aromatic compounds (<=C10) in the 

gasoline boiling range [16]. According to Phillips and Datta research on production of ethylene 

from ethanol, they studied the performance of H-ZSM-5 under mild acidic homogeneous 

solution [4]. Ethylene is assumed to be produced via direct formation of ethylene as well as 

consecutive reaction of forming diethyl ether.  At low temperature (<503 K), diethyl ether is 

produced in larger quantities. Ethylene is produced in significant quantities at higher 
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temperature (> 573 K).  These studies have reported that use of other catalysts give rise to 

concerns such as deactivation due to coke formation, thermal degradation and effected of 

water on reaction rates [4]. Thus for this study, H-ZSM-5 zeolite was chosen as the catalysts for 

this reaction. Here, H-ZSM-5 catalysts with Si/Ai of 25:1 and 37.5:1 were studied.  The study 

found that H-ZSM is an active and selective catalyst for the direction conversion of ethanol at 

temperature less than 473 K. A very sharp deactivation curve was observed under mild 

conditions where activity of catalyst started to decline more gradually due to the formation of 

reversibly adsorbed coke species [4].  Moreover, the formation of carbonaceous species was 

observed when Bronsted acid sites of untreated catalyst give rise to oligomerization of 

ethylene. This results in reduction of H-ZSM-5 activity.  However, water in the ethanol was 

found to enhance the steady state catalytic activity of H-ZSM-5 and selectivity for the formation 

of ethylene [4]. Water affects the acidity of the catalytic sites; result in moderate acidity of the 

catalytic sites, which decreases the deactivation due to coking.  

 

2.6 ZSM-5 Stability in Hot Liquid 

               The framework of the zeolites plays an important role for the stability of zeolite in hot 

liquid. Unlike other zeolites, ZSM-5 is more stable at 150 and 200 C despite change in its Si/Ai 

ratio. The structural change of Si-O-Al and Si-O-Si induced by water is not observed in ZSM-5. 

[21] In addition, ZSM-5 can maintain its crystallinity and micropore volume after sever 

dealumination [17] due to few structur0al defects produced during its synthesis. [18] The 

framework of aluminum atoms are removed from zeolite lattice in the presence of steam. The 

removed aluminum atoms lead to formation of extra framework aluminum (EFAI) species. [21] 

These extra framework aluminum species are observed to form a separate alumina phase 

outside the zeolite crystal. [19, 20]  The presence of this species was found to have improved 

hydrothermal stability, increased Lewis acidity, and enhanced catalytic activity for reaction that 

requires Bronsted acid sites.[19, 20]  According to Ryan M. Ravenelle, etc research, they 

investigated the stability of zeolites Y and ZSM-5 with different Si/Ai ratio in liquid water at 150 

and 200 C. The experiment was carried out by elucidating zeolites changes under atomic 
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absorption spectroscopy, X-ray diffraction, scanning electron microscopy, argon physiosorption, 

Al and Si MAS NMR spectroscopy, etc. They found out that there was no appreciable change in 

the signature peaks both in untreated and treated ZSM-5 at 150 and 200 (Figure 5).  

 

Figure 5: X-ray diffractograms of ZSM-5 at 150 and 200 C [21] 

This indicates that the crystallinity of the ZSM-5 remained undestroyed throughout the entire 

treatment. [21] Moreover under Argon Physisorption, ZSM-5 samples do not show significant 

changes in their micropore volume. However, increase in mesopore volume was observed for 

ZSM5-40 (Table 2).  

Zeoylyst ID Zeolite Type Si/Ai Na content/ wt% Sample Code pH 

CBV 712 Y (FAU) 5𝑎 0.04 Y5 4.4 

La exchange of CBV 712 Y (FAU) 5𝑎 0.04 LaY5 5.1 

CBV 720 Y (FAU) 14𝑎 0.02 Y14 5.1 

CBV 780 Y (FAU) 41𝑎 0.04 Y41 3.4 

CBV 3024E ZSM-5 (MFI) 15𝑏 0.04 ZSM-5-15 5.2 

CBV 5524G ZSM-5 (MFI) 25𝑏 0.04 ZSM-5-25 3.6 

CBV 8014 ZSM-(MFI) 40𝑏 0.04 ZSM-5-40 5.1 

Table 2: Material Specifications and Codes [21] 
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Zeolite Vmicropore untreated 

(
𝒄𝒎𝟑

𝒈
) 

Vmesopore 

untreated 

(
𝒄𝒎𝟑

𝒈
) 

Vmicropore 

6 h, 200 °C 

(
𝒄𝒎𝟑

𝒈
) 

Vmesopore 

6 h, 200 °C 

(
𝒄𝒎𝟑

𝒈
) 

Vmicropore 

6 h, 150 °C 

(
𝒄𝒎𝟑

𝒈
) 

Vmesopore 

6 h, 150 °C 

(
𝒄𝒎𝟑

𝒈
) 

Y41 0.32 0.13 0 0.18 0.04 0.23 

Y14 0.31 0.16 0.19 0.26 0.27 0.19 

Y5 0.34 0.13 0.22 0.15 0.29 0.13 

LaY5 0.32 0.1 0.27 0.09 0.29 0.1 

ZSM-5-

40 

0.24 0.03 0.22 0.07 0.23 0.06 

ZSM-5-

25 

0.21 0.03 0.19 0.04 0.22 0.04 

ZSM-5-

15 

0.21 0.04 0.21 0.04 0.21 0.05 

Table 3: Micropore and Mesopore volume measured by Ar. Physisorption for zeolite samples before and after 6 h of 

treatment at 150 and 200 C [21] 
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Chapter 3: Methodology 

Ethanol Dehydration has shown to be promising in the liquid phase.  However, not much is 

known about how to make it more effective at this time.  This chapter will describe the 

experimental methods used to develop a greater understanding of ethanol dehydration in the 

liquid phase and comparing it to the vapor phase.  The project focuses on the ethylene yield 

and the activity of the zeolite catalyst in the liquid and vapor phases.  Different feed flowrates 

as well as different feed compositions were used to study the differences.  Runs were started in 

the vapor phase as well as the liquid phase to study the effects it had on the effectiveness of 

the catalyst.  The zeolites were calcined and packed into the reactor.  The oven was turned on 

and at the maximum temperature the reaction would start.  The products were studied in a gas 

chromatograph.   

3.1 Process Description 

 

 

Figure 6: Process Flow Diagram 
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Figure 6 above shows the ethanol dehydration process to create ethylene from ethanol.  This 

process produces ethylene, diethyl ether and trace amounts of various other elements.  A feed 

is made up of a varying composition of a mixture of water and ethanol.  One pump pumps 

water from the water feed tank, while the other pump pumps ethanol from the ethanol from 

the ethanol feed tank.  These streams are combined into one line that goes through the 

pressure release valve that releases if the pressure in the line goes above 3000 psi.  The fluid 

mixture is sent into the oven and hits the heating coil so the fluid heats before reaching the 

reactor bed.   Once the fluid enters the reactor bed and the reaction begins.  The reactor is 

packed with sand and the calcined catalyst, ZSM-5, with quartz wool on either end to keep the 

bed from shifting and getting into the rest of the piping.   

After the reactor, the product is sent through a chiller to cool it from very high temperatures.  

After the chiller, the fluid is sent through a set of filters to filter out any remaining particles that 

the quartz wool did not catch.  The larger filter, 15 μm, is first for the larger particles in the 

stream and the smaller filter, 1 μm, is second to filter out the final particles in the in stream.  

The now clean stream is sent to the sight gauge which shows the amount of liquid building up 

from the stream sent to the gas chromatograph (GC). From the sight gauge the stream can 

either leave the system or go to the GC by the switch of a valve.  When the valve is open, the 

stream exits the system as a liquid sample.  This is the liquid analyzed to calculate the 

conversion of ethanol.  If the valve is open, the fluid is pushed by helium to the GC where a 

sample is taken every ten minutes.  A helium tank is set to a constant flowrate which pushes 

ethylene to the GC.  These samples are analyzed in the GC for the ethylene content.  

3.2 Calcination of ZSM-5  

Before starting and setting up the run, 10 grams of the zeolite, ZSM-5, were placed in crucibles 

and put in the oven overnight at 400 C for calcination. This is done to remove impurities in the 

zeolite.  The calcination was done such a way that powdered form of ZSM-5 was treated at 150 

C for an hour and half in order to prevent loss of crystallinity by instant heat flux.  After treating 

it at 150 C, the temperature was raised to 400 C and kept overnight. The purpose of calcination 
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was to bring thermal decomposition and removal of volatile impurities in the ZSM-5 such as 

water.  

3.3 Packing the Reactor Bed 

The reactor bed contains 0.17g of calcined ZSM-5 and 2g of sand.  The ZSM-5 was measured 

from the calcined ZSM-5 and 2g of sand was mixed with it. The sample was mixed well in an 

evaporating dish. Quartz wool was used to fill the reactor on either end to prevent loss of the 

sample. One side of the reactor was packed with quartz wool then the mixture was poured into 

reactor, shown in figure 7, using a funnel.   

 

Figure 7: Reactor 

At the other end more quartz wool and small filter were added; this would be the outlet of the 

reactor.  The pack reactor was then placed in the oven.  Both ends were tightened into the inlet 

and outlet of the oven with wrenches into position as shown in figure 8 below.    
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Figure 8: Inside the oven where the reactor is put in place 

 

3.4 Running the Reactor 

After placing the packed reactor in the oven and tightening either end in place, the oven 

(shown in Figure 9) was turned on and the temperature was set to 400 C.  Once the 

temperature of the oven reaches its set point of 400 C, the water pump was turned on to 

measure the pressure drop across the bed. 
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Figure 9: Oven 

For liquid phase reactions, at this point the system would be pressurized to about 2400 psi by 

turning on the nitrogen tank.  Once at the correct pressure the ethanol pump would be turned 

on to the desired flow rate to give the chosen composition.   

If the reaction was to take place in the gas phase, the ethanol pump would be turned on after 

the pressure drop of the system was measured.  The system would not be pressurized.   

3.4.1 Temperature recording 

Thermal couples placed at the inlet, outlet and the wall of the reactor recorded the 

temperatures of each location respectively.  These thermocouples are connected to a computer 

that takes the temperatures and makes a graph of temperature over time using the program 

TracerDAQ. 
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3.4.2 Mass Balance 

A mass balance was placed at the liquid outlet of the system.  It was turned on when the feed 

began flowing and took measurements every fifteen seconds.  Most of the time the valve was 

closed going to this outlet but there were two instances when it would be opened.  The first 

was to take a liquid sample and second was to empty the system.  Liquid samples were taken 

approximately every thirty minutes.  At this time the valve would be opened and the built-up 

liquid would drain onto the mass balance.  The balance measured the weight different of liquid 

over that time and a flowrate could be calculated.  Once the built-up liquid was drained the 

regular flow began and a sample was taken.  The system was drained whenever the liquid level 

on the sight gauge got too high and the system was at risk of flooding.  Any liquid coming out of 

the system was measured on the balance to compare the flowrate going in to the flowrate 

coming out. 

3.5 Gas Chromatography 

To be able to determine the amount of ethylene produced in the gas stream and the amount of 

ethanol left in the liquid sample, gas chromatography was used as well as respective calibration 

curves for ethylene and ethanol. The GC used is shown below in figure 10. 

 

Figure 10: Gas Chromatograph 

To make the calibration curves, known concentrations of ethanol and ethylene were injected 

and analyzed in the GC.  A linear correlation between the response of the area on the GC and 



25 
 

the concentrations of the solutions were found.  Graphs of this correlation were created and 

used to relate the peak response shown on the GC to their respective concentrations for the 

rest of the experiments.  

For the gas sample, the GC was set for continuous data collection for the entirety of the 

experiment, where the GC took data from the gas stream every ten minutes.  These samples 

were analyzed by the GC and the peak areas were compared to the ethylene calibration curve.  

This was the amount of ethylene found in the sample which was used to calculate ethylene 

yield.   

The liquid samples were done in a similar fashion, however instead of continuous data 

collection, each sample was run individually.  The GC injected one sample and analyzed it; the 

area of the peak was then compared to the ethanol calibration curve.  This process was 

repeated for all liquid samples.  This was the amount of ethanol found in the liquid sample 

which was the residual ethanol that had not reacted.  This amount could be compared to the 

amount of ethanol that entered the system to calculate the conversion of ethanol in the overall 

reaction. 

3.5.1 Liquid Sample Dilution 

Liquid samples were taken from the system approximately every thirty minutes.  These samples 

were collected in GC micro-vials as shown in the picture below: 

 

Figure 11: GC Micro-vials 
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These samples then needed to be injected into the GC for analyzing but first they needed to be 

diluted to about 1 wt% sample.  To do this, about 0.1 g of the sample was measured out and 

diluted with about 10 g of 1-butanol.  This mixture was injected to the GC to be analyzed for 

ethanol content.  The corresponding peak area from the GC was compared to the calibration 

curve described below for the amount of ethanol.  

3.5.2 Calibration Curve 

A calibration curve was created to compare the liquid sample peak areas to the curve and 

calculate the volume of ethanol in the sample.  The calibration curve for ethanol is shown 

below in figure 12. 

 

 

Figure 12: Ethanol Calibration Curve 

This curve was created the same way as the diluted samples explained above.  This only 

difference is that samples were made of pure ethanol and butanol.  A measured weight of 

ethanol was diluted with approximately 14 g of butanol to get 0.2 wt%, 0.7 wt%, 2 wt%, and 5 

wt%.  These points gave the trend line shown above.  The peak areas of the samples were 

plugged into the equation of this line to find the corresponding volume of ethanol. 

y = 1.21E+12x + 4.33E+05 
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3.6 X-Ray Diffraction 

After a run has been completed, the contents of the reactor bed are pushed out of the reactor 

and placed in a dish.  The dish then sits until all of the liquid has evaporated.  The remaining 

contents are then put into the x-ray diffraction machine or XRD.  The XRD is used to observe the 

crystallinity of the catalyst.  It measures the contact angle of the structure of the catalyst; the 

higher the contact angle, the greater the crystallinity in the structure.  A control experiment is 

done with a pure catalyst before anything has been done to it.  This way the catalyst can be 

compared before and after the run to see if the crystallinity has been compromised by the 

reaction.  

3.7 Heat Transfer  

The energy balance over the reactor was made in order to calculate heat supplied to the 

reactor. 

 𝑄. =  ε∆Hrx + Σ 𝑛.𝐻𝑜𝑢𝑡 − Σ 𝑛.𝐻𝑖𝑛 

The heat capacity of each component in the vapor phase is calculated using the heat capacity 

table in Introduction to Chemical Engineering Thermodynamics by Smith VanNess and Abbott. 

[25]  Enthalpies of each component were determined using the equation: 

∆𝐻 = ∆𝐻𝑓
𝑜 + ∫ 𝐶𝑝𝑑𝑇

𝑇𝑜𝑢

𝑇𝑖𝑛

  

The inlet and outlet enthalpy of mixture in liquid phase were determined using Aspen Plus. 

(Figure 13) In Aspen Plus, a stoichiometric reactor was used and pressure was set 2300 psig 

(operating pressure) and the temperature was set accordingly to the inlet temperature of the 

reactor.  
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Figure 13: Aspen Model 

 Extent of the reaction ( ε) was calculated using the equation: 

ε = |
𝑛𝑐2𝐻5

. 𝑜𝑢𝑡 − 𝑛𝑐2𝐻50
. 𝑖𝑛

𝜗𝑐2𝐻50
| 

The heat of reaction was calculated using standard enthalpy of formation of product and 

reactants: 

 𝐻𝑟
0 = Σ (𝜗𝑖𝐻𝑓

0)𝑝𝑟𝑜𝑑𝑢𝑐𝑡 − Σ (𝜗𝑖𝐻𝑓
0)𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡    
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Chapter 4: Results and Analysis 

The objective of this study was to study and compare the ethylene yield from ethanol 

dehydration in both vapor and liquid phases.  This was done by studying the crystallinity and 

reactivity of the zeolite catalyst, the heat transfer of the reaction, the conversion of ethanol and 

the starting phase.  The data was analyzed to determine which phase would be best to run 

ethanol dehydration in.   

4.1 Ethanol Conversion 

Ethanol conversion was one of the first things calculated.  This was done by analyzing the liquid 

samples in the GC.  The GC gave peaks for each separate component: 

 

 Figure 14: GC Liquid Data  

The figure above shows three different components: the reactant, ethanol, the diluent, butanol 

and the by-product, diethyl ether.  The area of the ethanol peak was used with the calibration 

curve to calculate the conversion.  Knowing the amount of ethanol that went into the system 

and the amount coming out, the percent difference was the conversion percent.   
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Ethanol conversion was compared to varying feed flowrates at a constant composition of 50 

vol% EtOH to find the optimal flowrate for this reaction.  The flowrates were varied from 

2ml/min to 10 ml/min and the following was our result. 

 

Figure 15: Conversion Vs. Flowrate at 50% EtOH Composition 

As you can see in figure 15, the vapor phase has a significantly higher conversion then the liquid 

phase.  This was expected due to background research.  The interesting part is that the 

conversion increases with increasing flowrate until a certain point then it decreases.  This is due 

to the varying residence times of the system.  When the flowrate is slow, like 2ml/min the 

residence time is large.  This causes the reaction to not happen very quickly causing the 

conversion not to be very high.  If the flowrate is too high, like 10ml/min the residence time is 

too short and it does not give enough time for the reaction to go to completion.   

In this graph the optimal flowrate is 4ml/min, but more runs would need to be done at more 

flowrates between 4ml/min and 10 ml/min to accurately say what flowrate would give the 

greatest ethanol conversion at 50 vol% Ethanol.  The lines connecting the data points are not 

data they are only there to guide the eye.  It is unknown what would happen between 4ml/min 
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and 10ml/min but it is predicted that the optimal flowrate is somewhere between 4ml/min and 

10 ml/min.   

4.2 Crystallinity and Reactivity of the Catalyst 

Crystallinity and reactivity of a catalyst plays a big part in the yield of ethylene which is the 

overall goal of the project.  The zeolite catalysts were tested for crystallinity in an XRD. The 

crystallinity of a catalyst correlates directly to its reactivity.  In the diffractogram below, figure 

16, two different catalysts are shown, unreacted ZSM-5 and ZSM-5 after the ethanol 

dehydration reaction.  

 

Figure 16: XRD Catalyst Crystallinity 

In a diffractogram, the higher the intensity counts, the greater the crystallinity, thus a greater 

reactivity.   As you can see the blue line above has a greater intensity counts overall.  This is the 

unreacted ZSM-5.  It was expected that the unreacted catalyst would have a greater crystallinity 

as it has not gone through the reaction yet.   

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80

In
te

n
si

ty
 C

o
u

n
ts

 

2 Theta 

XRD Catalyst Crystallinity 

Unreacted ZSM-5

ZSM-5 After Run



32 
 

The line in red is the zeolite that had been through one of our most successful runs.  This run 

had many different conditions both in liquid and vapor phase.  From this run it is 

indistinguishable whether or not the vapor or liquid phase made this catalyst lose its 

crystallinity.  A zeolite will lose crystallinity in both liquid phase and vapor phase reactions but it 

is predicted that liquid phase reactions will make the catalyst degrade more easily due to the 

fact that it is already unstable in hot liquids.   

  

4.3 Heat Transferred to the Reactor 

Water Feed 

(mL/min) 

Ethanol Feed 

(mL/min) 

Phase Ethanol 

Conversion % 

Heat Q (J/s) 

2.5 2.5 Liquid 12.15 -12.76 

1.5 1.5 Vapor 7.28 -5.64 

Table 4: Heat Transfer rates of ethanol dehydration 

As we can see in table 4 the heat transfer rates Q (J/s) were negative which was we expected 

because the dehydration of ethanol reaction is an endothermic reaction.  It requires 

temperature range of 150 °C to 400 °C to produce ethylene. Heat transfer rate (Q) was higher in 

liquid phase compared to vapor phase.  The heat transfer rate difference was within factor of 

2.3.  This was because the flowrates of both water and ethanol were higher in liquid phase than 

in vapor.  The conversion was also higher in run 1 which could result in higher transfer of heat 

because the liquid have better conduction and contact with zeolite inside the reactor.  

Moreover, conversion has significant contribution to the extent of reaction.  In later runs, 

similar trends were noticed. However, the heat transferred rates were significantly higher 

compared to this data.  This is because flowrates of both ethanol and water were lower (1 

ml/min each) in later runs than feed flowrates of these runs.  The lower flowrates of feed will 

provide more contact time with zeolite and eventually give more conversion.  The higher the 

conversion, more the heat is transferred. 
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Sample Water Feed 

(ml/min) 

Ethanol 

Feed 

(ml/min) 

Phase Ethanol 

Conversion 

% 

Heat Q (J/s) Operating 

Pressure 

(Psig) 

#1 2 2 V 22.1 -75.7 670 

#2 2 2 V 21.4 -73.5 670 

#3 2 2 V 25.1 -85.09 670 

#4 2 2 L 23.3 -94 2300 

#5 2 2 L 30.7 -120.96 2300 

#6 2 2 L 47.9 -178.23 2300 

#7 2 2 L 27.5 -109.74 2300 

#10 2 2 L 22.6 -92.2 2300 

#11 2 2 L 25 -90.83 2300 

#13 2.5 2.5 L 25.1 -113.04 2300 

#14 2.5 2.5 L 27.8 -111.13 2300 

#15 2.5 2.5 L 26.4 -112.11 2300 

#17 2.5 2.5 V 21.4 -91.29 670 

#18 2.5 2.5 V 28.4 -127.3 670 

Table 5: Heat Transfer rates of the most successful run 

The most successful run, (shown in table 5) was carried on flowrates of 2 ml/min and 2.5 

ml/min feed of ethanol and water.  Heat transfer rates (Q) were significantly higher in liquid 

phase than vapor for both flowrates of 2 and 2.5 ml/min.  For 2 ml/min of ethanol and water 

feed, the highest heat transfer rates were -178.23 (J/s) and -85.09 (J/s) in liquid and vapor 

phase.  The conversions were also highest for these heat transfer rates.  For the flowrate of 2.5 

ml/min of both ethanol and water, the highest heat transfer rate was higher in vapor phase 

than liquid phase.  Similarly, the corresponding conversion was also higher in vapor phase than 

liquid.  From these results, it is clear that heat transfer rate was higher in liquid than vapor 

providing same feed flowrates.  One factor that significantly affected the heat transfer rate was 

conversion.  The higher the conversion in either vapor or liquid, higher the heat transfer rate.  
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One factor that was noticed to affect the heat transfer rate was pressure drop.  Pressure drop 

affects the inlet and outlet enthalpies.   

4.4 Ethylene Yield 

In this project, several different runs were completed with varying conditions, some in the 

liquid phase, some in the vapor phase, and some with different feed flow rates and feed 

concentrations.  One of the main points that were studied was the way the run was started.  

Some runs were started in the liquid phase and some were started in the vapor phase.  Below 

in figure 17, two different run conditions are shown.  The black squares are the run started in 

the liquid phase and the gray diamonds are the run started in the vapor phase. 

 

Figure 17: Ethylene Yield versus Time 

As one can see, the vapor phase yield is significantly higher than the liquid phase yield.  The run 

that starts in the vapor phase has a high ethylene yield to start, around 155 million. This 

gradually decreases over time as the catalyst slowly degrades.  A large decrease is observed 

around 3.5 hours and this is when the run switched to the liquid phase causing the catalyst to 
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degrade at a much higher rate, thus producing a decreased ethylene yield. Around hour 4.5, the 

system is switched back to the vapor phase and the yield increases again but at a lower point 

than before because the hot liquid in the liquid phase degraded the catalyst, affecting its ability 

to react.   

The run that started in the liquid phase has a very low ethylene yield.  It starts very low and 

stays around 20 million for the entirety of the run.  At hour three, the system is switched to the 

vapor phase.  Switching to the vapor phase from the liquid phase does not show much   of a 

different in ethylene yield.  This is due to the hot liquid degrading the catalyst, as mentioned 

earlier.  Since, this run started in the liquid phase, the catalyst is almost immediately degraded 

causing less ethylene yield from the start of the reaction. 
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Chapter 5: Conclusions and Recommendations 

After a thorough analysis of the results, the following conclusions and recommendations were 

established.  Liquid phase ethanol dehydration does create a notable amount of ethylene.  

However, vapor phase ethanol dehydration generates a much larger amount of ethylene than 

liquid phase.  It is believed that this is due to the fact that the catalyst degrades so easily and 

loses its reactivity in hot liquids while the reaction is in the liquid phase.  This process could be 

improved if the catalyst did not degrade as easily.  This could be done by modifying the way the 

catalyst is made to make it less likely to degrade.  It is also possible to use a different catalyst in 

the process but recent studies have shown that ZSM-5 is very good for reactivity. 

The reaction is best run at an optimal flow rate between 4 mL/min and 10 mL/min.  This is to 

make sure the residence time is long enough for the reaction to go to completion but not too 

long where the reaction is not fast enough to produce a substantial amount of ethylene.  A feed 

composition of 50% seemed to be the most ideal to yield the most ethylene.  During the 

reaction, more heat is transferred in the liquid phase than in the vapor phase.  This is because 

liquid phase reactions often gave a higher conversion and higher conversions have a higher 

heat transfer rate. 

When making ethylene commercially, currently vapor phase is preferred to liquid phase solely 

for the fact that it produces more ethylene.  If liquid phase ethanol dehydration could produce 

as much or more ethylene then it would be much more likely to be used in industry simply 

because it would be cheaper to manufacture while producing the same, if not more ethylene 

than vapor phase ethanol dehydration.  In the liquid phase, this reaction is run at a much lower 

temperature than the liquid phase which results in the use of much less energy.  Heating the 

feed for the vapor phase requires a lot of energy since the reaction temperature needed is so 

high for the reaction to go to completion while remaining in the vapor phase.  Since the liquid 

phase reaction uses less energy it is automatically cheaper, thus making it an ideal candidate for 

ethanol dehydration.   

For future studies, it is recommended that the catalyst is studied further in this reaction in the 

liquid phase.  As stated above, it is believed that the liquid phase could produce more ethylene 
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if the catalyst did not degrade as easily in the presence of hot liquid.  In the future, zeolites 

could be studied to make them more stable so they don’t degrade and lose their reactivity as 

easily in the liquid phase.  This could be done by using a different catalyst that can withstand 

hot liquids more easily.  The difficulty there would be finding the proper catalyst that would still 

produce enough ethylene like ZSM-5 does.  Another thing to study is different coatings for the 

catalyst.  These coatings could make the zeolite more hydrophobic and make it less likely for 

the catalyst to degrade as quickly and easily in hot liquid.  A more intensive study could be to 

change the way the catalysts are made.  Modifying the overall structure of the zeolite could 

change the way it reacts to liquid at high temperatures. 

If a study is done using is similar reactor set up, it is recommended to create a way to pack the 

reactor.  The way it is done now causes a great deal of human error because there is no exact 

way to do it, thus causing it to be different every time.  The way the reactor is packed is very 

important because it affects the pressure drop across the bed, which affects how the feed run 

through it causing the reaction to be altered.   
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Appendices 

Appendix A – Conversion 

 
Ethanol Weight BuOH EtOH vol% Volume of EtOH 

Weight of 
EtOH 

  

5 wt% 0.75 14.250 0.051263 5.13E-05 4.04E-05 

3 wt% 0.45 14.550 0.030774 3.08E-05 2.43E-05 

2 wt% 0.3 14.700 0.020521 2.05E-05 1.62E-05 

1 wt% 0.15 14.850 0.010263 1.03E-05 8.10E-06 

0.7 wt% 0.105 14.895 0.007185 7.19E-06 5.67E-06 

0.5 wt% 0.075 14.925 0.005132 5.13E-06 4.05E-06 

0.2 wt% 0.03 14.970 0.002053 2.05E-06 1.62E-06 

0.1 wt% 0.01 14.985 0.001027 1.03E-06 8.10E-07 Peak Area 

0.002212 0.0332 14.975 0.002271 2.27E-06 1.79E-06 2935367.8 

0.007492 0.1124 14.89 0.007686 7.69E-06 6.06E-06 9926106.40 

0.020487 0.3074 14.6975 0.021020451 2.10E-05 1.66E-05 25986284.1 

0.050203 0.7532 14.25 0.051470041 5.15E-05 4.06E-05 6.26E+07 
 

Table 6: Calibration Curve Datae 

Sample mass buoh mass sample total mass check 
initial moles 
etoh 

initial 
moles 
water 

total 
sample 
moles 

1 14.6882 0.1535 0.153499113 0.001564503 0.005067 0.006632 

2 13.6985 0.1658 0.165799497 0.001686325 0.005462 0.007148 

3 12.8835 0.1265 0.126499966 0.001300615 0.004213 0.005513 

4 15.4155 0.1563 0.156299964 0.001598405 0.005177 0.006776 

5 14.8983 0.1036 0.103622157 0.001082808 0.003507 0.00459 

6 14.2575 0.1162 0.116219728 0.001278609 0.004141 0.00542 

7 13.0164 0.1348 0.134799962 0.001395272 0.004519 0.005915 

10 13.6772 0.1191 0.119099981 0.001215746 0.003938 0.005154 

11 14.9138 0.1066 0.106599972 0.001095471 0.003548 0.004644 

13 12.8604 0.1554 0.155399959 0.001597404 0.005174 0.006771 

14 14.8928 0.1645 0.164499954 0.001704557 0.005521 0.007226 

15 12.7843 0.1508 0.150799959 0.00155608 0.00504 0.006596 

17 11.943 0.1342 0.134199572 0.001365109 0.004422 0.005787 

18 12.719 0.1523 0.152299957 0.001580601 0.00512 0.0067 
Table 7: Conversion Calculation Run 8 Part 1 
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Sample 
mole 
etOH 

mole 
water 

volume 
etoh 

volume 
water 

volume 
buOH vol ethoh inj mol etoh 

1 0.001219 0.005413 0.091213 0.091213 18.13358 4.97997E-06 8.54E-08 

2 0.001326 0.005822 0.098316 0.098316 16.91173 5.74664E-06 9.86E-08 

3 0.000974 0.00454 0.075828 0.075828 15.90556 4.72236E-06 8.1E-08 

4 0.001226 0.005549 0.09319 0.09319 19.03148 4.84912E-06 8.32E-08 

5 0.00075 0.00384 0.063129 0.063129 18.39296 3.40886E-06 5.85E-08 

6 0.000666 0.004754 0.074545 0.074545 17.60185 4.1995E-06 7.2E-08 

7 0.001012 0.004902 0.081347 0.081347 16.06963 5.0114E-06 8.6E-08 

10 0.000941 0.004213 0.07088 0.07088 16.88543 4.16275E-06 7.14E-08 

11 0.000822 0.003822 0.063868 0.063868 18.4121 3.4449E-06 5.91E-08 

13 0.001197 0.005574 0.093131 0.093131 15.87704 5.79777E-06 9.94E-08 

14 0.00123 0.005996 0.099378 0.099378 18.38617 5.34726E-06 9.17E-08 

15 0.001145 0.005451 0.090722 0.090722 15.78309 5.68272E-06 9.75E-08 

17 0.001073 0.004714 0.079588 0.079588 14.74444 5.34019E-06 9.16E-08 

18 0.001132 0.005568 0.092152 0.092152 15.70247 5.80053E-06 9.95E-08 
Table 8: Conversion Calculation Run 8 Part 2 

peak area   
volume 
etoh mole etoh   conversion 

5127070   3.88E-06 6.65E-08   0.220999 

5900968   4.52E-06 7.75E-08   0.21363 

4710389   3.54E-06 6.06E-08   0.251427 

4934854   3.72E-06 6.38E-08   0.232738 

3311897   2.38E-06 4.08E-08   0.302039 

3095986   2.2E-06 3.77E-08   0.475934 

4831491   3.64E-06 6.24E-08   0.27463 

4329942   3.22E-06 5.52E-08   0.226326 

3560441   2.58E-06 4.43E-08   0.249713 

5689764   4.34E-06 7.45E-08   0.250671 

5101790   3.86E-06 6.62E-08   0.278415 

5493944   4.18E-06 7.17E-08   0.26398 

5511186   4.2E-06 7.2E-08   0.214101 

5459877   4.15E-06 7.13E-08   0.283781 
Table 9: Conversion Calculation Run 8 Part 3 
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Appendix B – Heat Transfer 
Water feed (ml/min) Ethanol feed (ml/min) Conversion % Heat Q (J/s) 

2.5 2.5 12.15 -12.76 

Table 10: Heat transfer rate of ethanol dehydration in liquid phase (Run 1) 

 

Water feed (ml/min) Ethanol feed (ml/min) Conversion % Heat Q (J/s) 

1.5 1.5 7.28 -5.64 

Table 11: Heat transfer rate of ethanol dehydration in vapor phase (Run 2) 

Sample 

 

Water feed 

(ml/min) 

Ethanol 

Feed 

(ml/min) 

Phase Conversion 

% 

Heat Q  Pressure 

(psig) 

#1 1 1 L 16.9 -40 2300 

#2 1 1 L 23.9 -65.8 2300 

#3 1 1 L 20.6 -58 2300 

#4 1 1 L 24.2 -66.54 2300 

#5 1 1 L 13.1 -40 2300 

#6 1 1 V 14.1 -29.32 500 

#7 1 1 V 16.2 -34.98 500 

Table 12: Heat transfer rates of collected samples (Run 6) 
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Heat Transferred in Tube ( RUN 1 Liquid Phase) 

Components n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.043 0.0377755 12.15   

Ethylene 0 0.0052245     

Water 0.139 0.000634777     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, K Hout of mixture(kJ/mol) 

  578 -227.199568 548 -246.738848 

  Σ ήHin (KJ/min) -9.769581424 

Σ ήHout 

(kJ/min) -10.76639455 

∆Hrx standard   

Substances 

Products 

(kJ/mol) Reactants (KJ/mol)     

Ethanol 0 -277.6     

Water -285.8 0     

ethylene 52.4 0     

Total -233.4 -277.6     

delta Hrx 

(kJ/mol) 44.2       

ξ (mol/min) 0.0052245       

ξΔHrx (KJ/min) 0.2309229       

Q(KJ/min) -0.765890224       

Q(J/s) -12.76483707       

Table 13: Calculation of heat transfer rates of collected samples in liquid phase 
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Heat Transferred in Tube ( RUN 2 Vapor Phase) 

Components n in (mol/min) nout (mol/min) Conversion %   

Ethanol 0.026 0.023608 7.28   

Ethylene 0 0.002392     

Water 0.0833 0.002392     

  inlet temp, K Hin of mixture (KJ/mol) outlet temp, K Hout of mixture(kJ/mol) 

  588 -228.4618808 523 -225.01552 

  Σ ήHin (KJ/min) -5.940008901 

Σ ήHout 

(kJ/min) -6.388640644 

∆ Hrx standard   

Substances Products  (KJ/mol) Reactants (KJ/mol)     

Ethanol 0 -235.3     

Water -241.82 0     

ethylene 52.4 0     

Total -189.42 -235.3     

delta Hrx (kJ/mol) 45.88       

ξ (mol/min) 0.002392       

ξΔHrx (KJ/min) 0.10974496       

Q(KJ/min) -0.338886783       

Q(J/s) -5.648113051       

Table 14: Calculation of heat transfer rates of collected samples in vapor phase 
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Heat Transferred in Tube ( RUN 5 Liquid Phase) 

Components n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0313845 8.5   

Ethylene 0 0.0029155     

Water 0 0.0029155     

  inlet temp, K Hin of mixture (KJ/mol) outlet temp, K Hout of mixture(kJ/mol) 

  578 -223.9942056 548 -206.3498592 

  Σ ήHin (kJ/min) -7.683001252 

Σ ήHout 

(kJ/min) -7.679413185 

Ethanol 0.0343 0.0318304 conversion %   

Ethylene 0 0.0024696 7.2   

Water 0 0.0024696     

  inlet temp, K Hin of mixture (KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -223.9942056 548 -209.0652752 

  Σ ήHin (KJ/min) -7.683001252 

Σ ήHout 

(KJ/min) -7.687246543 

Ethanol 0.0343 0.0311444 9.2   

Ethylene 0 0.0031556     

Water 0 0.0031556     

  inlet temp, k Hin of mixture (KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -223.9942056 548 -204.9147472 

  Σ ήHin (KJ/min) -7.683001252 

Σ ήHout 

(kJ/min) -7.675204805 

∆ Hrx standard    

  Substances Products (KJ/mol) Reactants (KJ/mol)     

Ethanol 
-277.6 

Water -285.8 0     

ethylene 18.5 0     

Total -267.3 -277.6     

delta Hrx (kJ/mol) 10.3       

ξ (mol/min) 0.0031556       

ξΔHrx (KJ/min) 0.03250268       

Q(KJ/min) 0.040299127       

Q(J/s) 0.671652114       

          

Sample Conversion (%) Phase  ξ (mol/min) Q(J/s) 

2 8.5 liquid 0.0029155 1.75 

3 7.2 Liquid 0.0024696 0.3531 

5 9.2 Liquid 0.003155 0.671 

6 7.9 Vapor 0.002709 2.7 

Table 15: Calculations of heat transfer rates of collected samples in liquid phase (Run 5) 
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Heat Transferred in Tube ( RUN 5 Vapor Phase) 

Components n in (mol/min) nout (mol/min)     

Ethanol 0.0343 0.0315903 conversion %   

Ethylene 0 0.0027097 7.9   

Water 0 0.0027097     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, K 

Hout of mixture 

(KJ/mol) 

  578 -213.367264 548 -196.7764488 

  Σ ήHin (KJ/min) -7.318497155 

Σ ήHout 

(KJ/min) -7.282637337 

∆ Hrx standard   

Substances 

Products 

(KJ/mol) Reactants (KJ/mol)     

Ethanol 0 -235.3     

Water -241.82 0     

ethylene 52.4 0     

Total -189.42 -235.3     

delta Hrx 

(kJ/mol) 45.88       

ξ (mol/min) 0.0027097       

ξΔHrx (KJ/min) 0.124321036       

Q(KJ/min) 0.160180854       

Q(J/s) 2.669680901       

Sample Conversion (%) Phase  ξ (mol/min) Q(J/s) 

2 8.5 Liquid 0.0029155 1.75 

3 7.2 Liquid 0.0024696 0.3531 

5 9.2 Liquid 0.0031556 0.671 

6 7.9 Vapor 0.0027097 2.7 

Table 16: Calculations of heat transfer rates of collected samples in vapor phase (Run 5) 
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Heat Transferred in Tube ( RUN 6 Liquid Phase) 

Components n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0172 0.0142932 16.9   

Ethylene 0 0.0029068     

Water 0.0556 0.0093964     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, K Hout of mixture(kJ/mol) 

  578 -258.8950416 538 -262.1058432 

  Σ ήHin (KJ/min) -4.452994716 

Σ ήHout 

(kJ/min) -6.971071848 

Ethanol 0.0172 0.0130892 conversion %   

Ethylene 0 0.0041108 23.9   

Water 0.0556 0.0132884     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -223.22 548 -261.5175728 

  Σ ήHin (KJ/min) -3.839384 

Σ ήHout 

(KJ/min) -7.973252367 

Ethanol 0.0172 0.0136568 conversion %   

Ethylene 0 0.0035432 20.6   

Water 0.0556 0.0114536     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -223.22 548 -261.7945536 

  Σ ήHin (KJ/min) -3.839384 

Σ ήHout 

(KJ/min) -7.501356421 

Ethanol 0.0172 0.0130376 conversion %   

Ethylene 0 0.0041624 24.2   

Water 0.0556 0.0134552     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -223.22 548 -261.4920504 

  Σ ήHin (KJ/min) -3.839384 

Σ ήHout 

(KJ/min) -8.016091103 

          

Ethanol 0.0172 0.0149468 conversion %   

Ethylene 0 0.0022532 13.1   

Water 0.0556 0.0072836     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -223.22 548 -262.4259192 

  Σ ήHin (KJ/min) -3.839384 

Σ ήHout 

(KJ/min) -6.425131235 
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∆ Hrx standard   

Substances 

Products 

(KJ/mol) Reactants (KJ/mol)     

Ethanol 0 -277.6     

Water -285.8 0     

ethylene 52.4 0     

Total -233.4 -277.6     

delta Hrx 

(kJ/mol) 44.2       

ξ (mol/min) 0.0041624       

ξΔHrx (KJ/min) 0.18397808       

Q(KJ/min) -2.401769155       

Q(J/s) -40.02948592       

Sample Conversion (%) Phase  ξ (mol/min) Q(J/s) 

1 16.9 liquid 0.0029068 -40 

2 23.9 liquid 0.0041108 -65.8 

3 20.6 liquid 0.0035432 -58 

4 24.2 liquid 0.0041624 -66.54 

5 13.1 liquid 0.0041624 -40 

Table 17: Calculations of heat transfer rates of collected samples in liquid phase (Run 6) 
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Heat Transferred in Tube ( RUN 6 Vapor Phase) 

Components n in (mol/min) nout (mol/min) Conversion %   

Ethanol 0.0172 0.0147232 14.4   

Ethylene 0 0.0024768     

Water 0.0556 0.0080064     

  inlet temp (K) 

Hin of mixture 

(KJ/mol) outlet temp (K) 

Hout of 

mixture(kJ/mol) 

  578 -232.4375176 548 -232.9031968 

  

Σ ήHin 

(KJ/min) -3.997925303 

Σ ήHout 

(kJ/min) -5.87065114 

  n in (mol/min) nout (mol/min) Conversion %   

Ethanol 0.0172 0.0144136 conversion %   

Ethylene 0 0.0027864 16.2   

Water 0.0556 0.0090072     

  inlet temp (K) 

Hin of mixture 

(KJ/mol) outlet temp (K) 

Hout of mixture 

(KJ/mol) 

  578 -232.4375176 548 -232.7525728 

  

Σ ήHin 

(KJ/min) -3.997925303 

Σ ήHout 

(KJ/min) -6.099793226 

∆Hrx standard   

Substances 

Products 

(KJ/mol) Reactants (KJ/mol)     

Ethanol 0 -235.3     

Water -241.82 0     

ethylene 52.4 0     

Total -189.42 -235.3     

delta Hrx 

(kJ/mol) 45.88       

ξ (mol/min) 0.0027864       

ξΔHrx (KJ/min) 0.127840032       

Q(KJ/min) -2.099081523       

Q(J/s) -34.98469205       

Sample Conversion (%) Phase  ξ (mol/min) Q(J/s) 

6 14.4 Vapor 0.0024764 -29.32 

7 16.2 Vapor 0.0027864 -34.98 

Table 18:  Calculations of heat transfer rates of collected samples  in vapor phase (Run 6) 
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Heat Transferred in Tube ( RUN 8 liquid Phase) 

Components n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0263081 23.3   

Ethylene 0 0.0079919     

Water 0.1111 0.0258863     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, k Hout of mixture(kJ/mol) 

  578 -245.3447392 548 -240.1327304 

  

Σ ήHin 

(KJ/min) -8.415324555 

Σ ήHout 

(kJ/min) -14.45270055 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0237699 30.7   

Ethylene 0 0.0105301     

Water 0.1111 0.0341077     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, k Hout of mixture (KJ/mol) 

  578 -245.3447392 548 -235.9223712 

  

Σ ήHin 

(KJ/min) -8.415324555 

Σ ήHout 

(KJ/min) -16.13890679 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0178703     

Ethylene 0 0.0164297 47.9   

Water 0.1111 0.0532169     

  inlet temp, K 

Hin of mixture 

(KJ/mol) outlet temp, k Hout of mixture (KJ/mol) 

  578 -245.3447392 548 -226.6481168 

  

Σ ήHin 

(KJ/min) -8.415324555 

Σ ήHout 

(KJ/min) -19.83554057 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0248675     

Ethylene 0 0.0094325 27.5   

Water 0.1111 0.0305525     

  inlet temp, k 

Hin of mixture 

(KJ/mol) outlet temp, k Hout of mixture (KJ/mol) 

  578 -245.3447392 548 -237.7260936 

  

Σ ήHin 

(KJ/min) -8.415324555 

Σ ήHout 

(KJ/min) -15.41713149 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0265482     

Ethylene 0 0.0077518 22.6   

Water 0.1111 0.0251086     
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  inlet temp, k 

Hin of mixture 

(KJ/mol) outlet temp, k Hout of mixture (KJ/mol) 

  578 -245.3447392 548 -240.5385784 

  

Σ ήHin 

(KJ/min) -8.415324555 

Σ ήHout 

(KJ/min) -14.29006019 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0265482     

Ethylene 0 0.0077518 25   

Water 0.1111 0.0251086     

  inlet temp, k 

Hin of mixture 

(KJ/mol) outlet temp, k Hout of mixture (KJ/mol) 

  578 -245.3447392 548 -239.153256 

  

Σ ήHin 

(KJ/min) -8.415324555 

Σ ήHout 

(KJ/min) -14.20776012 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.04288 0.03318912     

Ethylene 0 0.00969088 25.1   

Water 0.1388 0.0313688     

  inlet temp, k 

Hin of mixture 

(KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -245.8217152 548 -239.0825464 

  

Σ ήHin 

(KJ/min) -10.54083515 

Σ ήHout 

(KJ/min) -17.75159217 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.04288 0.03318912     

Ethylene 0 0.00969088 27.8   

Water 0.1388 0.0313688     

  inlet temp, k 

Hin of mixture 

(KJ/mol) outlet temp, k Hout of mixture (KJ/mol) 

  578 -245.8217152 548 -237.5419976 

  

Σ ήHin 

(KJ/min) -10.54083515 

Σ ήHout 

(KJ/min) -17.63720827 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.04288 0.03318912     

Ethylene 0 0.00969088 26.4   

Water 0.1388 0.0313688     

  inlet temp, k 

Hin of mixture 

(KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -245.8217152 548 -238.3386312 

  

Σ ήHin 

(KJ/min) -10.54083515 

Σ ήHout 

(KJ/min) -17.69635736 

Table 19: Calculations of inlet and outlet flowrates and their respective enthalpies in liquid phase (Run 8) 
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∆ Hrx standard   

Substances Products  (KJ/mol) Reactants (KJ/mol)     

Ethanol 0 -277.6     

Water -285.8 0     

ethylene 52.4 0     

Total -233.4 -277.6     

delta Hrx (kJ/mol) 44.2       

ξ (mol/min) 0.0164297       

ξΔHrx (KJ/min) 0.72619274       

Q(KJ/min) -10.69402328       

Q(J/s) -178.2337213       

Sample Conversion (%) Phase  

ξ 

(mol/min) Q(J/s) 

4 23.3 Liquid 0.00799 -94.7 

5 30.7 Liquid 0.0105 -120.96 

6 47.9 Liquid 0.0164 -178.23 

7 27.5 Liquid 0.0094 109.74 

8 22.6 Liquid 0.007751 -92.2 

11 25 Liquid 0.0077518 -90.83 

13 25.1 Liquid 0.00969 -113.04 

14 27.8 Liquid 0.0096908 -111.13 

15 26.4 Liquid 0.00969088 -112.11 

Table 20: Calculations of heat transfer rates of collected samples in liquid phase (Run 8) 
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Heat Transferred in Tube ( RUN 8 vapor Phase) 

Components n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0267197 22.1   

Ethylene 0 0.0075803     

Water 0.1111 0.0245531     

  inlet temp, K Hin of mixture (KJ/mol) outlet temp, K Hout of mixture(kJ/mol) 

  578 -228.4915872 548 -216.2328856 

  

Σ ήHin 

(KJ/min) -7.837261441 

Σ ήHout 

(kJ/min) -12.72597564 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0269598     

Ethylene 0 0.0073402 21.4   

Water 0.1111 0.0237754     

  inlet temp, K Hin of mixture (KJ/mol) outlet temp, k Hout of mixture (KJ/mol) 

  578 -228.4915872 548 -216.6450096 

  

Σ ήHin 

(KJ/min) -7.837261441 

Σ ήHout 

(KJ/min) -12.58174559 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.0343 0.0256907     

Ethylene 0 0.0086093 25.1   

Water 0.1111 0.0278861     

  inlet temp, K Hin of mixture (KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -228.4915872 548 -214.4810448 

  

Σ ήHin 

(KJ/min) -7.837261441 

Σ ήHout 

(KJ/min) -13.3377397 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.04288 0.03370368     

Ethylene 0 0.00917632 21.4   

Water 0.1388 0.0297032     

  inlet temp, k Hin of mixture (KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -228.9518272 548 -216.524092 

  

Σ ήHin 

(KJ/min) -9.81745435 

Σ ήHout 

(KJ/min) -15.71601147 

  n in (mol/min) nout (mol/min) conversion %   

Ethanol 0.04288 0.03070208     

Ethylene 0 0.01217792 28.4   

Water 0.1388 0.0394192     

  inlet temp, K Hin of mixture (KJ/mol) outlet temp, K Hout of mixture (KJ/mol) 

  578 -216.524092 548 -212.4338136 

  

Σ ήHin 

(KJ/min) -9.284553065 

Σ ήHout 

(KJ/min) -17.48313291 

Table 21: Calculations of inlet and outlet flowrates and their respective enthalpies in vapor phase (Run 8) 
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∆ Hrx standard   

Substances Products (kJ/mol) Reactants (kJ/mol)     

Ethanol 0 -235.3     

Water -241.82 0     

ethylene 52.4 0     

Total -189.42 -235.3     

delta Hrx 

(kJ/mol) 45.88       

ξ (mol/min) 0.01217792       

ξΔHrx (KJ/min) 0.55872297       

Q(KJ/min) -7.639856878       

Q(J/s) -127.330948       

Sample Conversion (%) Phase  

ξ 

(mol/min) Q(J/s) 

1 22.1 vapor 0.0075803 -75.7 

2 21.4 vapor 0.0073402 -73.5 

3 25.1 vapor 0.0086093 -85.09 

17 21.4 vapor 0.00917 -91.29 

18 28.4 vapor 0.01217 -127.3 

Table 22: Calculation of heat transfer rates of collected samples in vapor phase (Run 8) 
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