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Abstract 

Conventional optimization solvers provide a single optimal solution to an optimization model, which in 

some cases is undesirable to the decision maker because of the large discrepancy between the optimal 

solution and the existing conditions, or status quo, of the real-world situation the model represents. This 

project focuses on developing an algorithm and computational program to generate solutions to binary 

integer optimization problems that can simultaneously improve the objective function value and yet 

control disruption from the current condition. The program uses Dinkelbach’s algorithm to determine 

such a solution, and is implemented in Microsoft Excel utilizing Visual Basic for Applications (VBA) in 

conjunction with OpenSolver, an open source Excel add-in that can solve optimization problems. Detailed 

instructions are included to guide users through the entire process. 
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Nomenclature 

BIP Binary Integer Program 
VBA Visual Basic for Application 
𝒙𝒙 Solution to the binary integer programming problem 
𝒚𝒚 Current condition to the binary integer programming problem 

𝑵𝑵(𝒙𝒙) Quality difference 
 𝑁𝑁(𝑥𝑥) = 𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦 

𝑫𝑫(𝒙𝒙) 
Solution difference for binary integer programs 

 

𝐷𝐷(𝑥𝑥) = ‖𝑥𝑥 − 𝑦𝑦‖1 = � 𝑥𝑥𝑖𝑖 + � (1 − 𝑥𝑥𝑖𝑖)
𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

 

𝑫𝑫(𝒙𝒙)𝒘𝒘 
Solution difference including variable preferences for binary integer programs 

 

𝐷𝐷(𝑥𝑥) = � 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + � 𝑤𝑤𝑖𝑖(1 − 𝑥𝑥𝑖𝑖)
𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

 

𝑵𝑵 
Normalization factor 

𝑁𝑁 =
∆𝑠𝑠(𝑥𝑥)
∆𝑞𝑞(𝑥𝑥)

 

∆𝒔𝒔(𝒙𝒙) Interval measuring largest improving deviation of 𝑥𝑥 from 𝑦𝑦 
Δ𝑠𝑠(𝑥𝑥) = max𝐷𝐷(𝑥𝑥) 

∆𝒒𝒒(𝒙𝒙) Interval measuring largest quality improvement of 𝑥𝑥 from current condition 𝑦𝑦 
∆𝑞𝑞(𝑥𝑥) = max (𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦) 

𝓡𝓡(𝒙𝒙) 
Ratio of solution quality improvement to solution difference 

ℛ(𝑥𝑥)  =
𝑁𝑁 × ∆𝑞𝑞(𝑥𝑥)

𝑠𝑠(𝑥𝑥)
 

𝝀𝝀(𝒙𝒙) 
𝑁𝑁 × 𝑁𝑁(𝑥𝑥)
𝐷𝐷(𝑥𝑥)

 

 𝝀𝝀∗ Optimal solution for 𝐹𝐹(𝜆𝜆) 
𝑭𝑭(𝝀𝝀)  𝑁𝑁 × 𝑁𝑁(𝑥𝑥) − 𝜆𝜆(𝑥𝑥)𝐷𝐷(𝑥𝑥) 
𝒍𝒍 Number of desired changes (user input) 

𝜺𝜺 
Numerical imprecision that naturally occurs with computer representation of small 

numbers; typically 𝜀𝜀 is set to 10−6 
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Executive Summary 

Background 

Optimization is the process of implementing an existing situation (also referred to as current condition, 

or status quo), device, or system. Different optimization models can be categorized by the characteristics 

of the objective function, constraints, or variables they contain. The type of optimization problem that is 

addressed in this report, binary integer programs (BIPs), are very flexible. They can be used to model the 

selection or rejection of an option, a yes/no answer, and many other situations, such as planning and 

scheduling, distribution network, and capital budgeting. Optimization solvers typically provide a single 

optimal solution, which could be undesirable to the decision maker due to the large discrepancy between 

the provided optimal solution and the existing condition (status quo) of the modeled system. It may be 

beneficial to have an automated mechanism capable of generating solutions that can simultaneously 

improve the objective function value and control disruption from the current condition.  

Project Objectives and Goals 

The objectives of this project were: (1) develop an algorithmic method to generate such solutions, and (2) 

build an open-source computational program, integrated with a binary integer program solver, to 

implement this algorithmic method. 

To achieve the project objective, the following goals were established: 

1) Investigate solution diversity and related metrics in the context of binary integer programs (BIP);  

2) Devise a methodology to find solutions similar to the status quo, but with improved objective 

function values; 

3) Build a computational program to solve the problems above; 

4) Test the proposed methodology on known problem instances. 
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Methodology 

In Table 1 we propose a method of modifying a general binary integer programming model to address 

both quality improvement and disruption minimization, as well as accommodation for users to provide 

preferences concerning which choices should be given higher or lower disruption priority.  

Table 1: Modified BIP Problem 

Objective function: max
𝑁𝑁 × (𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦)

∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + ∑ 𝑤𝑤𝑖𝑖(1 − 𝑥𝑥𝑖𝑖)𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0
= max

𝑁𝑁 ×𝑁𝑁(𝑥𝑥)
𝐷𝐷(𝑥𝑥)𝑤𝑤

 

Variables 𝑆𝑆 = {𝑥𝑥 ∈ {0,1}𝑛𝑛:𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏} 

Constraints 
 

𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦 ≥ 𝜀𝜀 

𝑙𝑙 ≤ � 𝑥𝑥𝑖𝑖 + � (1 − 𝑥𝑥𝑖𝑖)
𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

 

 

In Table 1, 𝑥𝑥 is the solution to the BIP problem, 𝑦𝑦 is the current condition, 𝑐𝑐 is the objective coefficient, 𝑁𝑁 

is the normalization factor, 𝑁𝑁(𝑥𝑥) is the improvement in solution quality, 𝐷𝐷(𝑥𝑥)𝑤𝑤 is the solution difference 

that includes possible user-specified variable preferences, and 𝑙𝑙 is the lower bound of the number of 

changes of 𝑥𝑥 from 𝑦𝑦, respectively. 

Algorithm and Program Development 

As the modified objective function is not linear, one way to solve such problems is to use Dinkelbach’s 

algorithm, which solves a sequence of simplified linearized optimization problems, iteratively converging 

to the optimal solution 𝑥𝑥∗. 

To execute the proposed algorithm automatically, a computational program in the Microsoft Excel 

environment was developed by utilizing Visual Basic for Applications (VBA) to call OpenSolver, an open 

source Excel add-in that can solve optimization problems. A step-by-step instruction through a 

straightforward user-interface is presented to the user when using the program, and a trouble-shooting 

section was also included to assist error handling. The program requires different inputs including: current 

condition 𝑦𝑦, objective coefficient vector 𝑐𝑐, and variable preferences vector 𝑤𝑤. In addition, the user is able 
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to select a preferred number of changes of 𝑥𝑥 from 𝑦𝑦 within the range provided by the program. The 

program then works toward generating the solution to the BIP problem corresponding to the user’s input. 

Results 

The computational program offers different tools to help users customize their binary optimization 

problems by adding variable preferences and setting minimum number of changes of 𝑥𝑥 from 𝑦𝑦. Thus, the 

program can provide better choices for decision makers as they seek to find an optimal implementation 

of a solution to a real world problem. To test the functionality of the computational program, different 

examples of BIP problems were utilized, in particular the General Assignment Problem. Different scenarios 

to the problem were proposed based on distinct sets of variable preferences. Plots of objective values 

versus number of changes of solution 𝑥𝑥 from current condition 𝑦𝑦 were created to illustrate the trend of 

solution quality with respect to minimum number of changes, which is defined by the user. In addition, 

suggestions for future work include improving the program capability to solve the BIP minimization case, 

as well as making the program compatible with different solvers. 
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 Introduction 

Many decisions are made with the goal of optimizing a desirable goal, for example profit, cost, or personal 

satisfaction. Searching for an optimal solution is a common and crucial process in a wide variety of 

engineering and business activities. Most engineering design involves some form of optimization in which 

design variables must be selected in order to achieve some sort of objective while faced with budget or 

functionality constraints. A simple example of a chemical engineering optimization problem is the 

evaluation of the optimal heat exchanger used to heat a stream (Turton, et al., 2012). Similarly, many 

business decisions are optimization decisions as well, where decision variables are frequently selected to 

maximize profit or minimize cost. 

Mathematical optimization, also known as mathematical programming, is the process of finding an 

optimal solution from a set of feasible solutions, assuming such a solution exists. The set of feasible 

solutions is typically represented implicitly through specific constraints on combinations of variable 

values. An optimal solution is one that both satisfies these constraints and is optimal with respect to an 

objective function. Optimization is a powerful tool that can be used to help decision makers in 

circumstances relating to the allocation of scarce resources, such as investment portfolio creation, 

production, determining inventory levels, and many other situations. 

Optimization models can be categorized by the type objective function, constraints, or variables they 

contain. Figure 1 provides a convenient way to classify one branch of optimization models known as 

mixed-integer linear programs. A mixed-integer programming problem arises when some of the variables 

in the model are real-valued and others are integer. Mixed-integer linear programs feature a linear 

objective function and linear constraints. As illustrated in Figure 1, mixed-integer linear programs with 

only real-valued variables are known as pure linear programs, or LPs. Pure integer linear programs (IPs) 

are mathematical models in which all the variables are constrained to take integer values, and are widely 
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used in planning and control problems such 

as production planning, scheduling, 

telecommunication networks, and cellular 

networks (Borndörfer & Grötschel, 2012). 

Integer variables that are further restricted 

to values of 0 or 1 are classified as binary 

integer variables (BIP). The binary choice enables modeling the selection or rejection of an option, a 

yes/no answer, and many other situations (Chinneck, 2004). The BIP optimization problem is an important 

class of mathematical programs and contains well-known problems such as knapsack, assignment, bin-

packing, and traveling salesman (Nemhauser & Wolsey, 1998). As the focus of this project involves 

solutions to BIP problems, more details on BIP will be presented in Sections 2.1 and 3.1.  

Traditionally, optimization solvers provide a single optimal solution; however, in certain cases, 

implementing the optimal solution may not be practical. For example, a Quality Control manager wishes 

to consolidate and redesign the lab space in a building, but is subject to a limited budget and time. If the 

optimal solution is too disruptive to implement, it may be better to consider an alternative that improves 

the objective somewhat but is easier to deploy.  A second example is a project manager in a manufacturing 

plant wanting to increase production. However, this increase is subject to limited time, workforce, and 

changes in pipelines.  In such an example perhaps  the current production setup for workers and products 

have been used for several years, and shifting employees and rescheduling production according the 

recommendation  optimal solution(s), is likely to interrupt manufacturing output and incur high costs. 

Hence, the project manager may wish to examine an alternative solution that produces less disruption to 

the current setup. In each of these examples, finding a solution that is similar to the current condition 

while greatly improving the objective function value may be valuable. 

Figure 1: Hierarchy of Mixed-integer Linear Programming 

Mixed-integer 
linear (MILP)

Pure Linear (LP) Pure Integer Linear 
(ILP)

Binary Integer Linear (BIP) ...
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This project generates solutions to binary integer programs that simultaneously improve the objective 

function value while controlling disruption from the current condition. The objectives of this project were: 

(1) develop an algorithmic method to generate such solutions, and (2) build an open-source 

computational program, integrated with a binary integer program solver, to implement this algorithmic 

method. If successful, the technique could be applied to real world problems to provide better choices for 

decision makers. 

To achieve the objectives, the following goals were established: 

1. Investigate solution diversity in the context of binary integer programs (BIP);  

2. Devise a methodology to find solutions not overly diverse from the status quo, but with improved 

objective function values; 

3. Build a computational program correlated with different solvers to solve the problems above; 

4. Test the proposed methodology and solver program on some known problem instances. 

This project report is divided into multiple chapters that detail the developmental stages and approach of 

this project. This Chapter presented the problem statement, goals, and objectives of the project. Chapter 

2 reviews the literature to provide a background of relevant topics. Chapter 3 discusses the methodology 

including techniques employed. Chapter 4 involves the algorithm and model development, and consists 

of four sections: (1) presenting customization and decision support options in the tool; (2) presenting 

Dinkelbach’s algorithm to motivate solving the proposed optimization problem; (3) describing the use of 

VBA and OpenSolver in an Excel-based environment, together with a discussion of the overall process flow 

of the approach, and (4) testing the proposed approach on a known problem instance and demonstrating 

the results. Overall conclusions and future work are provided in Chapter 5 to review the impact of the 

project, while Chapter 6 presents the Industrial Engineering (IE) Reflection component. 
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 Background and Literature Review 

2.1 Binary Integer Programming  

Many optimization problems feature a combinatorial structure that can be modeled using binary integer 

variables. Examples include problems involving sequencing and selection decisions, such as distribution 

networks, transportation scheduling, capital budgeting, and telecommunications. These types of 

problems can be modeled as Binary Integer Programs (BIP). As a subset of Integer Programming [IP] 

(Nemhauser & Wolsey, 1998), solving BIP problems has long been an important research area, partially 

because of the intricacies in solution methods (Huang & Wang, 2011). In general, BIPs are NP-hard to 

solve, which means they are in a difficult class of computational programs (Karp, 2010). Until recently, the 

solution to many BIPs were beyond the capability of state-of-the-art solvers, and many still remain so. We 

next discuss three common approaches to solve binary integer programs. 

2.1.1 Exact Approach  

Exact approaches include exhaustive search, which enumerates all potential solutions from a given set 

and selects the best one (Boswell, 2012). This enumeration can be completed explicitly or implicitly. The 

branch-and-bound algorithm represents the latter, systematically enumerating all possible solutions, and 

discarding potentially large subsets of unqualified candidates altogether based on the upper and lower 

estimated bounds of the optimized value (Nemhauser & Wolsey, 1998). Dynamic programming is another 

form of exhaustive search that precludes unnecessary re-computation by storing the solutions of sub-

problems. This technique utilizes the solution process as a recursion (Bellman, 2003). 

2.1.2 Approximation Algorithms 

Many important computational problems are challenging to solve to optimality. These include those that 

are NP-hard, such as the Traveling Salesman Problem (TSP), Vertex Cover, Max Clique, and many more 

(Chakrabarti, 2005; Gomes & Williams, 2005). Instead of using exhaustive search, which may be 
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prohibitive due to the consideration of all possible solutions, approximation algorithms are a useful 

approach to help find estimated solutions to such difficult problems. 

An approximation algorithm generally has two properties:  

1. Provides a method for obtaining a feasible solution (if one exists) in polynomial time;  

2. Assures the objective quality of the solution, by providing a bound on the maximum “distance” 

between the approximate solution and an optimal solution. 

By considering all possible instances of an optimization problem, approximation algorithms solve an 

optimization problem approximately, within a factor bounded by a constant or by a slowly growing 

function of the input size (Gomes & Williams, 2005). Three common techniques for this algorithm are 

witnesses, and coarsening and relaxation, (Klein & Young, 1999). The witness method encrypts a short, 

simple-to-verify proof that the optimal value is approximately a certain value, providing a dual role to 

possible solutions to a problem. In the case of a maximization problem, relaxation is an alternative way to 

obtain an upper bound on the maximum value. Coarsening represents a relatively broad category of 

algorithms that replace the original problem with a less complex one, while ensuring a rough 

correspondence between the feasible solutions of the two (Klein & Young, 1999). 

Relaxation is an alternative way to obtain bounds for the objective value. For instance, in the case of a 

binary integer program, linear relaxation methods replace the original restriction that each variable must 

be 0 or 1 by a weaker constraint in which each variable belongs to the interval [0, 1]. This technique can 

convert an NP-hard binary integer programming problem into a linear program, which is solvable in 

(pseudo-)polynomial time. Solutions to the relaxed linear program can be used to understand more about 

the solutions to the original binary integer program (Matoušek & Gärtner, 2007) and bounds the integer 

program's optimal objective function value (Hochbaum, 2008). This relaxation may be solved using 

standard linear programming techniques such as the simplex algorithm of Dantzig (Dantzig, 1951), interior 

point methods, Criss-cross algorithm (Fukuda & Terlaky, 1997), and the conic sampling algorithm of 
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(Serang, 2012), among others. Linear programming relaxation is a standard technique for designing 

approximation algorithms for hard optimization problems. 

Still other approximation algorithm methods include the small-additive-error algorithm (Roditty & 

Shapira, 2011), randomized rounding (Thai, 2013), polynomial approximation schemes, the constant-time 

algorithm (Nguyen & Onak, 2008), among others. 

2.1.3 Heuristic Algorithms 

Even though exact approaches are quite efficient, there are several drawbacks with each method. For 

example, branch-and-bound and dynamic programming methods are often time-consuming (Kokash, 

2005). Heuristic algorithms, on the other hand, can often find good solutions quickly, at the expense of a 

guarantee on optimality. Generally speaking, heuristics can produce adequate solutions but do not offer 

a guarantee on the quality of their solutions. This is in contrast to approximation algorithms, which may 

produce a solution that is assured to be within some factor of optimal. One type of heuristic is the greedy 

algorithm, which is based on the principle of taking the best local values with the hopes of finding a global 

optimum to the objective function (Cormen , et al., 2009). Another popular heuristic is local search, which 

focuses on a subset of the solution domain. Local searches can be categorized in different ways, such as 

the hill-climbing technique, which considers neighboring solutions and replaces the current condition if 

the neighbor has a superior objective value (Stutzle, 1998). Similar to the hill-climbing approach, the 

simulated annealing algorithm occasionally accepts solutions that are worse than the current condition 

as its acceptance probability get decreased over time (Aydin & Fogarty, 2004). However, it provides more 

variability at the beginning of search, and the probability of picking move is related to how good it is. 

Likewsie, the Tabu Search avoids local optima by using memory structures to forbid the recurrence of 

moves that have been executed recently (Battini, 1996). In a similar vein, swarm intelligence methods are 

recognized as an artificial intelligence technique which can be impressively resistant to the problem of 

local optima (Eberhart, et al., 2001). 
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2.1.4 Binary Integer Problem Solvers 

Multiple exact solvers exist that can solve general binary integer programs, including CPLEX Optimizer 

(IBM, 2014), Gurobi (Gurobi, 2014), OpenSolver/ CBC (Lougee-Heimer, 2010), the Excel Solver (Fylstra, et 

al., 1998), MATLAB (Mathworks, 2014), and many more. The solvers most relevant to this study are: 

OpenSolver: 

OpenSolver is an open-source linear and integer optimization add-in for Microsoft Excel. Separate cells 

are used to represent decision variables, while formulas are placed in user-designated cells to represent 

the objective function, and constraints. OpenSolver uses high-powered COIN-OR/CBC algorithms to solve 

linear and integer programming problems. It provides some enhanced capabilities over the standard Excel 

Solver, including a visualizer that highlights the model’s decision variables, objective and constraints 

directly on one’s spreadsheet (Lougee-Heimer, 2010). In particular, there are no restrictions to the 

number of variables or constraints in a given model. 

Excel Solver: 

As mentioned above, Microsoft Excel has an add-In optimization tool, Solver, which solves linear, integer, 

and nonlinear programming problems. Like OpenSolver, separate cells are used to represent decision 

variables, while formulas are placed in user-designated cells to represent the objective function and 

constraints. Once the model is entered in a spreadsheet and declared via the Solver window, Solver can 

be called to find the solution (Fylstra, et al., 1998). 

Furthermore, other common solvers include the following:  

CPLEX Optimizer:  

CPLEX, free for academic use, is recognized as a popular solver with an API for several programming 

languages. This solver utilizes robust algorithms to solve problems with up to millions of constraints and 

variables, and parallelizes robustly. CPLEX provides flexible, high-performance mathematical 

programming solvers for optimization problem classes that include linear programming, mixed-integer 

18 
 



programming, quadratic programming, and quadratically constrained programming problems, among 

others (IBM, 2014). 

Gurobi: 

Gurobi is a more recent addition to the optimization solver playing field, founded in 2008. It is also free 

for academic use, supports parallel processing, and can solve the following types of problems: large-scale 

linear programs (LP), quadratic programs (QP), quadratically constrained programs (QCP), mixed-integer 

linear programs (MILP), mixed-integer quadratic programs (MIQP), and mixed-integer quadratically 

constrained programs (MIQCP) (Gurobi, 2014). 

MATLAB Optimization Toolbox: 

Optimization Toolbox offers standard algorithms to solve constrained and unconstrained continuous and 

discrete optimization problems. Some of the mathematical optimization problems it can solve are linear 

programs, quadratic programs, and other nonlinear programs. It also is capable of parallel computing 

through a supplemental toolbox (Mathworks, 2014). 

2.1.5 Utilizing OpenSolver 

As the focus of this project is solving BIPs in Excel, a solver that is compatible with Excel should be chosen. 

In light of OpenSolver’s ability to solve large optimization models using COIN-OR/CBC software, together 

with the lack of any restriction on the number of model variables and constraints, we elected to use 

OpenSolver for this project. In addition OpenSolver supports Visual Basic for Applications (VBA) 

functionalities, which enable customization for a computational program. 

2.2 Solving Binary Integer Programs with More than One Objective 

Exact solvers typically generate a single optimal solution that optimizes the objective function value while 

satisfying the given constraints. However, sometimes such an optimal solution is undesirable to the 

decision maker as it is too diverse from the status quo. For instance, a hospital director would like to 
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change the work schedule for nurses and doctors to best meet the needs of the patients, while satisfying 

staff preferences and minimizing operating costs. However, an optimal solution to the scheduling problem 

may require such an enormous upheaval that could render the optimal solution unlikely to be 

implemented. In such a situation, the hospital director might instead like to know whether there are any 

alternatives that are sufficiently similar to the status quo, and yet yield a solid improvement in terms of 

meeting patient, staffing preferences and costs. Thus, in certain circumstances, solutions that do not 

overly disrupt t the status quo but improve the objective function value, could be beneficial to decision 

makers. 

Many studies have focused on the importance of multiple diversity and high-quality solutions including 

mixed-integer programming (Murthy, et al., 1999; Glover , et al., 2000; Danna & Woodruff, 2009), and 

binary integer programming (Trapp & Konrad, 2013). Some studies discuss the benefit of high-quality 

solutions generated in a short amount of time (Boland , et al., 2013), while other studies include a focus 

on solution diversity (Murthy, et al., 1999; Danna & Woodruff, 2009) . Although a number of efficient 

approaches are available to provide high-quality and/or diverse solutions for optimization problems, very 

few studies focus on controlling deviation from a current condition while improving the objective function 

value. As highlighted above, this type of tool may prove very valuable to practical problems faced in 

industry. 
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2.3 Pareto Optimization 

At times the decision maker may be 

interested in the trade-off between two 

objectives such as improving the BIP 

objective while minimizing the disruption 

from current condition. Optimization 

problems that consider more than one 

objective, such as minimizing solution 

disruption and maximizing objective 

function quality, are often referred to as a 

multi-objective optimization (also known as Pareto optimization). Solutions to multi-objective problems 

rarely meet all objectives simultaneously. A possible compromise is through the concept of Pareto 

optimality. Pareto optimal solutions cannot be improved in any of the objectives without reducing the 

value of at least one of the other objectives. Multi-objective problems typically have numerous Pareto 

optimal solutions; various approaches have been devised to translate the multiple objectives into a single 

objective to locate such solutions. For instance, Figure 2 presents the set of Pareto optimal solutions 

denoted in a bold line, where the largest value in one objective occurs in either point 

�𝑓𝑓2(𝑥𝑥)�,𝑓𝑓1(𝑥𝑥)�� or (𝑓𝑓2(𝑥𝑥�,𝑓𝑓1(𝑥𝑥�)). Some methods to solve such problems include scalarizing multi-objective 

optimization (Hwang & Masud, 1979), genetic algorithms (Konak, et al., 2006), and other metaheuristic 

approaches (Fonseca & Fleming, 1993). In our project, a new binary integer programming model is 

introduced to provide solutions that can simultaneously improve the current condition’s objective value 

and control the number of changes from the current condition. 

Figure 2: Example of Pareto curve (Caramia & Dell'Olmo, 2008) 
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 Methodology 

In this section, a detailed mathematical description is introduced to generate solutions to a specific binary 

integer program that is formulated with respect to another reference binary integer program. This new 

binary integer program has the property of controlling deviation from the current condition to the 

reference BIP while at the same time balancing the competing goal of improving its objective function. 

3.1 Problem Description 

A binary integer linear program is comprised of a vector 𝑐𝑐 ∈ ℝ𝑛𝑛, a right hand side vector 𝑏𝑏 ∈ ℝ𝑚𝑚, and a 

matrix 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛. The general BIP is stated as in (1)-(2); where without loss of generality we assume the 

maximization case: 

 max  {𝑐𝑐𝑇𝑇𝑥𝑥|𝑥𝑥 ∈ 𝑆𝑆} (1) 

 where 𝑆𝑆 = {𝑥𝑥 ∈ {0,1}𝑛𝑛:𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏} (2) 

The feasibility set 𝑆𝑆 is bounded and for convenience of describing the methodology, it is assumed to be 

nonempty, i.e., 𝑆𝑆 ≠ ∅. Let 𝑦𝑦 be a current condition to the problem that represents status quo, and 𝑐𝑐𝑇𝑇𝑦𝑦 

be its objective function value. To make the discussion on finding solutions closest to 𝑥𝑥 relevant, we 

assume that at least one alternate feasible solution in addition to 𝑦𝑦 in 𝑆𝑆 exists, that is, 𝑆𝑆\{𝑦𝑦} ≠ ∅. 

3.2 Modified Binary Integer Programming Model 

To address different objective functions including solution quality and solution similarity at the same time, 

a general BIP is modified as shown in the sections below. 

3.2.1 Addressing Solution Similarity 

Measuring the difference between two binary vectors 𝑥𝑥 and 𝑦𝑦 can be accomplished through a variety of 

methods, such as 𝐿𝐿1 (taxicab) norm or the 𝐿𝐿2 (Euclidean) norm. For example, the 𝐿𝐿1 norm measures the 

solution similarity between 𝑥𝑥 and 𝑦𝑦 in (3) using absolute values: 
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 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝐷𝐷(𝑥𝑥) = ‖𝑥𝑥 − 𝑦𝑦‖1 = �|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑛𝑛

𝑖𝑖

. (3) 

It turns out that, for binary vectors, the 𝐿𝐿1 norm can be equivalently represented as (Balas & Jeroslow, 

1972): 

 𝐷𝐷(𝑥𝑥) = ‖𝑥𝑥 − 𝑦𝑦‖1 = � 𝑥𝑥𝑖𝑖 + � (1 − 𝑥𝑥𝑖𝑖)
𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

 (4) 

3.2.2 Addressing Solution Quality 

For any 𝑥𝑥 ∈ 𝑆𝑆, the objective function 𝑐𝑐𝑇𝑇𝑥𝑥 expresses its quality. For any 𝑥𝑥 ∈ 𝑆𝑆, the difference in solution 

quality with respect to 𝑥𝑥 can be expressed as:  

 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑁𝑁(𝑥𝑥) = 𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦 (5) 

If the difference in (5) is positive, then the objective function value is improved and therefore is of higher 

quality. 

3.2.3 Addressing Both Solution Similarity and Quality  

One way to handle the competing objectives of maintaining similarity between 𝑥𝑥 and 𝑦𝑦 while improving 

the quality of 𝑥𝑥 is via a ratio measure: 

 ℛ(𝑥𝑥) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦

 
(6) 

With 

 

𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
∆𝑠𝑠(𝑥𝑥)
∆𝑞𝑞(𝑥𝑥)

=
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑥𝑥 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑥𝑥 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦

 (7) 
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To calculate Δ𝑞𝑞(𝑥𝑥), we only consider improvement in the objective 

function. For example, if there is a large difference in 𝑐𝑐𝑇𝑇𝑥𝑥 and 𝑐𝑐𝑇𝑇𝑦𝑦, 

but the value of the objective is lower, 𝑐𝑐𝑇𝑇𝑥𝑥 < 𝑐𝑐𝑇𝑇𝑦𝑦, 𝑥𝑥 will not be 

considered as a solution in the calculation of Δ𝑞𝑞(𝑥𝑥). This is further 

illustrated in Figure 3, which contains a three-dimensional cube with 

current condition 𝑦𝑦 = (1,0,1). Assume the corresponding objective 

function is: 

max(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3) 

Feasible solutions to the problem are found at (1,1,1), which strictly improves the objective function, 

while the solution (0,0,0) strictly decreases the objective function. To ensure the objective function value 

improves, (0,0,0) will not be considered even though it has greater diversity from 𝑦𝑦 than (1,1,1). 

Thus, quality improvement interval, ∆𝑞𝑞(𝑥𝑥), can be presented as  

 ∆𝑞𝑞(𝑥𝑥) = max𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − min𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , (8) 

Or equivalently, 

 ∆𝑞𝑞(𝑥𝑥) = max𝑁𝑁(𝑥𝑥) − min𝑁𝑁(𝑥𝑥). (9) 

Because 

 min𝑁𝑁(𝑥𝑥) = 0 (10) 

represents no improvement in quality, hence,  

 ∆𝑞𝑞(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦) (11) 

In addition, the largest improving deviation of 𝑥𝑥 from 𝑦𝑦,∆𝑠𝑠(𝑥𝑥) can be calculated as 

  ∆𝑠𝑠(𝑥𝑥) = max 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − min 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (12) 

Or equivalently, 

 ∆𝑠𝑠(𝑥𝑥) = max𝐷𝐷(𝑥𝑥) −min𝐷𝐷(𝑥𝑥). (13) 

By definition, 

Figure 3: Diversity of Solution from the 
Current Condition 𝒚𝒚 
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 min𝐷𝐷(𝑥𝑥) = 0 (𝑒𝑒.𝑔𝑔. ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒  𝑥𝑥 = 𝑦𝑦), (14) 

Thus this gives  

 Δ𝑠𝑠(𝑥𝑥) = max𝐷𝐷(𝑥𝑥). (15) 

From equations (3),(4), and (15), the solution difference can be expressed as: 

 ∆𝑠𝑠(𝑥𝑥) = max𝐷𝐷(𝑥𝑥) = max � � 𝑥𝑥𝑖𝑖 + � (1 − 𝑥𝑥𝑖𝑖)
𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

� 
(16) 

Putting together (11) and (16), we now have: 

 𝑁𝑁 =
∆𝑠𝑠(𝑥𝑥)
∆𝑞𝑞(𝑥𝑥)

=
max∑ 𝑥𝑥𝑖𝑖 +∑ (1 − 𝑥𝑥𝑖𝑖)𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

max (𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦)
. 

(17) 

From (4), (5), (6), and (17), we can now formulate the objective function as: 

 maxℛ(𝑥𝑥) = max
𝑁𝑁 × (𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦)

∑ 𝑥𝑥𝑖𝑖 + ∑ (1 − 𝑥𝑥𝑖𝑖)𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0
= max

𝑁𝑁 × 𝑁𝑁(𝑥𝑥)
𝐷𝐷(𝑥𝑥)

 
(18) 

Again, the intent was to find solutions to a BIP problem instance that control the deviation from a status 

quo solution 𝑦𝑦 while improving the objective function value. Accordingly, constraints were added to the 

model to ensure the improvement in quality (19)  and at least one change from 𝑦𝑦 was made (20). 

 𝑐𝑐𝑇𝑇𝑥𝑥 ≥ 𝑐𝑐𝑇𝑇𝑦𝑦 (19) 

 � 𝑥𝑥𝑖𝑖 + � (1 − 𝑥𝑥𝑖𝑖)
𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

≥ 1 (20) 

Table 2 summarizes the modifications to a given binary integer program. 

Table 2: Modified Binary Integer Problem for Multiple Objective Functions 

Objective function: max
𝑁𝑁 × (𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦)

∑ 𝑥𝑥𝑖𝑖 + ∑ (1 − 𝑥𝑥𝑖𝑖)𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0
= max

𝑁𝑁 × 𝑁𝑁(𝑥𝑥)
𝐷𝐷(𝑥𝑥)

 

Variables 𝑆𝑆 = {𝑥𝑥 ∈ {0,1}𝑛𝑛:𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏} 

Constraints 
 

𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦 ≥ 0 

� 𝑥𝑥𝑖𝑖 + � (1 − 𝑥𝑥𝑖𝑖)
𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

≥ 1 
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 Model Development and Algorithm 

Given a binary integer program and a feasible solution 𝑦𝑦, and incorporating the modifications detailed in 

Table 2, we now discuss about the customization to the modified BIP problem based on user preferences 

(Table 2), as well as a method to solve this optimization problem.  

4.1 Customization Option and Decision Support  

To extend the flexibility of the program, several modifications to the model were proposed. Initially we 

considered only that the number of changes from status quo, 𝑦𝑦, to the BIP solution, 𝑥𝑥, must be greater 

than or equal to 1. However, as the model tended to minimize number of changes from 𝑦𝑦 to 𝑥𝑥 to trade 

off with an increase in objective function value, sometimes the computational program would provide 

solutions that were not much different from the status quo, which may not be desirable to the decision 

maker. Thus, we propose an option allowing the user to choose a preferred lower bound number of 

changes from 𝑦𝑦 to 𝑥𝑥, which modify constraint (20) to 

 

 � 𝑥𝑥𝑖𝑖 + � (1 − 𝑥𝑥𝑖𝑖)
𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

≥ 𝑙𝑙 (21) 

A second option was to weigh the importance of particular decision variables. In reality, one decision 

variable might not necessarily carry the same level of importance as another to the decision maker. For 

example, in a healthcare scheduling problem it is often the case that changing a physician’s assignment is 

more difficult to implement than a nurse’s assignment. In such cases changing 𝑥𝑥𝑖𝑖 (a physician’s 

assignment) may have a greater impact than changing 𝑥𝑥𝑗𝑗 (a nurse’s assignment). Therefore, the weighting 

of the variable vector 𝑥𝑥 should be considered in evaluating the solution deviation to improve the 

practicality of the model. This could be done by adding weights 𝑤𝑤𝑖𝑖, for all variables 𝑥𝑥𝑖𝑖 to account for the 

difficulty of changing 𝑥𝑥𝑖𝑖 from 𝑦𝑦𝑖𝑖. Thus, this modification defined the new objective function as: 
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 max
𝑁𝑁 × (𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦)

∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + ∑ 𝑤𝑤𝑖𝑖(1 − 𝑥𝑥𝑖𝑖)𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0
= max

𝑁𝑁×𝑁𝑁(𝑥𝑥)
𝐷𝐷(𝑥𝑥)𝑤𝑤

 
(23) 

where 𝑤𝑤 is the vector of variable preferences and 𝐷𝐷(𝑥𝑥)𝑤𝑤 is a modified solution difference with variable 

preferences. For instance, if all variables are considered to have the same weighting (or same 

preferences), the 𝑤𝑤 vector can be presented to be all 1’s. 

Furthermore, to ensure the functionality of the proposed model, feasibility of the current condition 𝑦𝑦 was 

examined before solving the model by checking if it satisfies the model constraints, that is, 

 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏. (24) 

Also, 𝜀𝜀 was also added to the quality improvement constraint to help with the numerical imprecision that 

naturally occurs with computer representation of these small numbers, where 𝜀𝜀 = 10−6. These proposed 

modifications to the model and computational program improved the usefulness of the tool. The 

customized model is summarized as in Table 3. 

Table 3: Modified BIP Problem 

Objective function: max
𝑁𝑁 × (𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦)

∑ 𝑤𝑤𝑤𝑤𝑖𝑖 + ∑ 𝑤𝑤(1 − 𝑥𝑥𝑖𝑖)𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0
= max

𝑁𝑁 ×𝑁𝑁(𝑥𝑥)
𝐷𝐷(𝑥𝑥)𝑤𝑤

 

Variables 𝑆𝑆 = {𝑥𝑥 ∈ {0,1}𝑛𝑛:𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏} 

Constraints 
 

𝑐𝑐𝑇𝑇𝑥𝑥 − 𝑐𝑐𝑇𝑇𝑦𝑦 ≥ 𝜀𝜀 

𝑙𝑙 ≤ � 𝑥𝑥𝑖𝑖 + � (1 − 𝑥𝑥𝑖𝑖)
𝑖𝑖:𝑦𝑦𝑖𝑖=1𝑖𝑖:𝑦𝑦𝑖𝑖=0

 

 

4.2 Dinkelbach’s Algorithm 

The proposed objective function for BIP, as in (23), is a fractional, or hyperbolic, binary integer program. 

To find a single optimal solution for this objective function, Dinkelbach’s algorithm can be used to solve 

the fractional binary program in (23) (Trapp & Konrad, 2013). Details of Dinkelbach’s algorithm can be 

found in (Dinkelbach, 1967; Schaible, 1976). 

For the BIP model proposed for this project in Table 3, consider the objective function as:  

27 
 



 max �𝜆𝜆(𝑥𝑥) = 𝑁𝑁×𝑁𝑁(𝑥𝑥)
𝐷𝐷(𝑥𝑥)𝑤𝑤

|𝑥𝑥 ∈ 𝑆𝑆�, (25) 

which maximizes function 𝜆𝜆(𝑥𝑥) by balancing the competing goals of maximization in quality improvement 

and minimization in solution deviation of 𝑥𝑥 from 𝑦𝑦. 𝑁𝑁 is the normalization factor from (17), 𝑁𝑁(𝑥𝑥) is the 

difference in solution quality as in (5) , and 𝐷𝐷(𝑥𝑥) is the solution difference in (4). 

From the related theory (Dinkelbach, 1967), 𝜆𝜆(𝑥𝑥) is maximized if and only if  

 max{𝑁𝑁 ×𝑁𝑁(𝑥𝑥) − 𝜆𝜆𝐷𝐷(𝑥𝑥)𝑤𝑤|𝑥𝑥 ∈ 𝑆𝑆} = 0 (26) 

For an optimal value 𝜆𝜆∗. 

Dinkelbach’s algorithm solves a sequence of linearized problems that are related to the original nonlinear 

fractional programming problem to find the optimal solution  𝑥𝑥∗ and corresponding optimal value 𝜆𝜆∗. 

Building on this foundation, Dinkelbach’s algorithm for the BIP problem is as follows: 

Input: Feasibility set of current condition 𝑦𝑦 ∈ 𝑆𝑆, variable preferences 𝑤𝑤, normalization factor 𝑁𝑁, solution 

difference 𝐷𝐷(𝑥𝑥), and solution quality improvement 𝑁𝑁(𝑥𝑥). 

Output: Optimal solution 𝑥𝑥∗. 

Step 1: Set 𝑘𝑘 = 0, and choose initial starting value for 𝜆𝜆0 (e.g., 𝜆𝜆0 = 0). 

Step 2: Solve optimization problem (26), which is max {𝑁𝑁 ×𝑁𝑁(𝑥𝑥) − 𝜆𝜆𝑘𝑘𝐷𝐷(𝑥𝑥)𝑤𝑤|𝑥𝑥 ∈ 𝑆𝑆}, and denote 

optimal solution as 𝑥𝑥𝑘𝑘. 

Step 3: If �𝑁𝑁 × 𝑁𝑁�𝑥𝑥𝑘𝑘� − 𝜆𝜆𝑘𝑘𝐷𝐷�𝑥𝑥𝑘𝑘�� ≤ 𝜀𝜀, set 𝑥𝑥∗ = 𝑥𝑥𝑘𝑘, and STOP. Otherwise, compute  𝜆𝜆𝑘𝑘+1 = 𝑁𝑁×𝑁𝑁(𝑥𝑥𝑘𝑘)

𝐷𝐷(𝑥𝑥𝑘𝑘)𝑤𝑤
 , let 

𝑘𝑘 = 𝑘𝑘 + 1, and go back to step 2. 

The algorithm exits when �𝑁𝑁 × 𝑁𝑁�𝑥𝑥𝑘𝑘� − 𝜆𝜆𝑘𝑘+𝑛𝑛𝐷𝐷�𝑥𝑥𝑘𝑘�� ≤ 𝜀𝜀 with 𝑥𝑥∗ as the optimal solution that maximizes 

(25). 

4.3 VBA and Solvers in the Excel Environment 

Dinkelbach’s algorithm proposed in Section 4.2 typically requires multiple iterations to find an optimal 

solution. Thus, to solve the proposed BIP problem summarized in Table 3, we developed a computational 
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program in Microsoft Excel to automate the algorithm. Our approach used Visual Basic for Applications 

(VBA) (Microsoft, 2013) to call OpenSolver (Lougee-Heimer, 2010) to optimize all sub-problems occurring 

in the algorithm outlined in Section 4.1 and 4.2. 

The user interface of the program is shown in Figure 4. It includes detailed instructions on each step that 

the user can easily follow to conduct our approach on their own binary integer program. 

 

Figure 4: User Interface of Program in Excel 

There is also a troubleshooting section provided as shown in Figure 5, which includes all the 

interpretations of all common error messages and suggested resolutions. Finally, there is a hard Reset 

button to help users retrieve their original model whenever desired. 
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Figure 5: Troubleshooting Section 

Overall, the user will follow the sequence of steps as shown in Figure 6. 

Copy all 
worksheet(s) 
relevant to 

model into BIP 
workbook

Rename 
worksheet 
to “Model” 

Input current 
condition, 
objective 
function 

coefficients, 
and variable 
preferences 

Click 
Initialize 
button

Select 
number of 
changes 

from current 
condition

Click Solve 
button

Receive 
outputs

 

Figure 6: Overall User Experience Flowchart 

First, the user is required to copy all worksheet(s) relevant to the user’s model into the BIP workbook and 

instructions are provided. The user will then need to rename the worksheet containing the model in Solver 

or OpenSolver into “Model”. After that, the user will be instructed to input the status quo 𝑦𝑦, the variable 
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preferences 𝑤𝑤, and the objective function coefficients 𝑐𝑐 into the program. After the user clicks Initialize 

button, user will be able to choose the lower bound number of changes of solution 𝑥𝑥 from current 

condition 𝑦𝑦. By clicking the Solve button, the program will run the algorithm, calling OpenSolver to 

optimize the model, and retrieving the results from the BIP program. The functionality of the Initialize and 

Solve buttons, as well as troubleshooting error messages, are further discussed in Sections 4.3.1 - 4.3.3. 

4.3.1 Initialize Button 

The process map of the Initialize button is illustrated in Figure 7. After the user clicks on the Initialize 

button, the program will first check for the existence of the “Model” sheet through the first two steps as 

illustrated in Figure 6. If the “Model” sheet is available, the program will then determine whether the 

worksheet contains the BIP model in Solver or OpenSolver. If the model is available, a copy will be stored 

to be loaded back into Solver through the Reset button. Then, the program will read three types of user 

input from the input files and validate their compatibility with each other and with the model variables. If 

all conditions required for a BIP model and inputs are satisfied, the maximum and minimum differences 

between the solution and the status quo to increase objective value from its current condition will be 

calculated internally, and subsequently displayed on the slider control for the user to select. 
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Model in Solver 
exists?

Start

Inputs are 
compatible to 

model

Initialize for 
number of 
changes on 

sliding control

End

“Model”  worksheet 
exists? Yes

Error 
Message
displayed

No

Error 
Message
displayed

No
Yes

Save Model to Main 
worksheet

Error 
Message
displayed

No

Solve for maximum 
number of changes 

allowed

Input initial 
condition, weights 

of variables, 
objective 

coefficient

Yes

Current 
condition is 

feasible?

Error 
Message
displayed

No
Yes

Output 
possible 

number of 
changes on 

slider control
 

Figure 7: Process Map of the Initialize Button in VBA 
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4.3.2 Solve Button 

Once the model is initialized, the user will be able to select the desired minimum number of changes of 

the solution 𝑥𝑥 from the status quo 𝑦𝑦 through the slider control bar. By clicking the Solve button, the BIP 

problem in Table 3 will be solved by applying our implementation of Dinkelbach’s algorithm which calls 

OpenSolver, as shown in Figure 8. After termination, the solutions to the problem including the current 

(original) objective function value, objective function value improvement, number of changes, and 

number of iterations in Dinkelbach’s algorithm will be outputted in a pop up window. The VBA code is 

included in Appendix A. 

Start

Run 
Dinkelbach’s 
Algorithm to 

solve modified 
BIP algorithm 
from Table 3

Appropriate 
input number 
of changes?

Yes

Error 
Message 
displayed

No

Output new 
objective 

value, 
objective 

improvement
, number of 

changes, 
number of 
iteration

Number of 
iteration 

required is less 
than max 

number of 
iteration

Yes

Error 
Message 
displayed

No

End

 

Figure 8: Process Map of Solve Button in VBA 

4.3.3 Error Messages and Troubleshooting 

As mentioned in Sections 4.3.1 and 4.3.2, to ensure the functionality and the quality of the computational 

program, different tests on the inputs are conducted. Table 4 lists possible user-generated errors and 

troubleshooting messages which will be displayed to the user.  

33 
 



 

 

 

Table 4:  Input Errors and Associated Troubleshooting Tips  

Events Errors Troubleshooting 
Initialize Button/ 

Solve Button 
Model worksheet doesn't exist 

Make sure to rename the worksheet containing 
the optimization model to “Model” 

Initialize Button/ 
Solve Button 

Solver has not been used on the 
active sheet 

Make sure to build the optimization model in 
Solver/OpenSolver before using this program 
Make sure to rename the worksheet containing 
optimization model to “Model” 

Initialize Button 
Numbers of inputs do not have 

consistent dimension 

Ensure that the number of inputs for initial 
condition, objective coefficient, and weight 
have consistent dimension with one another 

Initialize Button 
Initial solution is already optimal. Any 
changes to the solution may decrease 

the objective value 

Current condition is already optimal . Any 
changes to the solution may decrease the 
objective value 

Initialize Button Infeasible initial condition 
Current condition is infeasible. Please enter 
another value for the current condition 

Initialize Button 
Input file user_initial.csv has an 

incorrect data type 
Make sure the input for the current condition is 
binary 

Initialize Button 
Input file user_weight.csv has an 

incorrect data type 
Make sure the input for variable preferences is 
positive  

Initialize Button 
Input file user_objective.csv has an 

incorrect data type 
Make sure the input of objective coefficient has 
a numeric input  

 Solve Button There must be at least ONE change 
Please select number of changes on the slider 
control. If the number of changes equals to 
zero, the current condition is already optimal 

Solve Button Click Initialize first 
Please click on the Initialize button first (as 
indicated in the Instructions) 

Solve Button 
Number of iterations exceeds the 

allowed amount 

The number of iterations exceeds the 
predetermined limit of 100. Change the 
number of iteration to higher value in yellow 
cell, where the default number of iteration was 
specified to be 100. 
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4.4 Examples and Discussion 

 

To demonstrate the functionality and features of the program, a sample binary integer program from the 

literature, known as a Generalized Assignment Problem [GAP], is presented in this section (Cattrysse, et 

al., 2003). The mathematical formula, results and discussion of the program performance are provided 

below. 

4.4.1 Mathematic Formulation 

The objective of a general assignment problem objective is to assign 𝑚𝑚 tasks to 𝑛𝑛 machines typically to 

maximize profit such that each task is scheduled to only one machine and machine can generally handle 

more than one tasks. The conventional formulation for the general assignment problem is: 

 Max 𝑧𝑧 = ��𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 
(27) 

Subject to 

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 = 1𝑛𝑛
𝑗𝑗=1  with 𝑖𝑖 = 1,2, … ,𝑚𝑚 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) (28) 

 ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑𝑗𝑗𝑚𝑚
𝑖𝑖=1  where 𝑗𝑗 = 1,2, … ,𝑛𝑛 (𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (29) 

 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1}𝑚𝑚×𝑛𝑛 (30) 

Where 𝑐𝑐𝑖𝑖𝑖𝑖 is the profit obtained if task 𝑖𝑖 is assigned to machine 𝑗𝑗, 𝑑𝑑𝑗𝑗  is the capacity of machine 𝑗𝑗, and 𝑧𝑧𝑖𝑖𝑖𝑖  is 

the amount of resource required of machine 𝑗𝑗 required to complete task 𝑖𝑖. Note that 𝑧𝑧 represents the 

objective function to be maximized. 
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4.4.2 Input 

As discussed in Section 4.3, the solution process requires the user to input his or her model, the current 

condition 𝑦𝑦𝑖𝑖𝑖𝑖, the objective coefficients 𝑐𝑐𝑖𝑖𝑖𝑖, and the variable preferences 𝑤𝑤𝑖𝑖𝑖𝑖. The model used in this 

example is shown in Figure 9 below and described in the following text. 

User’s Model: Screen shots of the input from the user’s GAP model are shown in Figure 9. In total, the 

problem has 75 decision variables and is subject to 20 constraints. The top matrix in Figure 9 corresponds 

to objective function coefficients, the second matrix corresponds to the amount of resource of each 

machine required to complete each different task, and the third matrix presents the decision variables, 

which are binary and restricted by constraints (28) and (29). The objective function cell seeks to 

maximize profit. 
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Figure 9:  Example of Sample General Assignment Problem Model Inputted into the Computational Program 
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Current Condition 

The current condition to the problem is inputted and displayed in the csv file as shown in Figure 10. The 

user can enter the current condition as a matrix, a single row, or a single column as long as the association 

of the variable order in the solution as well as the current condition are identical. For instance, with 

respect to the variables range, the current condition 𝑦𝑦𝑖𝑖𝑖𝑖  must be entered from left to right, and then from 

top to bottom. Thus, the user can choose to have the current condition entered with the same layout as 

the variable range. 

1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 
0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 

Figure 10: Current Condition to the Sample GAP Problem 

Objective Function Coefficients 

Similar to the input method for the current condition, the objective function coefficients can be entered 

as a matrix, a single row, or a single column. Additionally, if the objective coefficient is already displayed 

in the “Model” sheet, the user can simply copy the data right into the csv input file. In this case, the user 

chose to copy the objective coefficient from the original model to the input file, and shown in Figure 11. 

17 21 22 18 24 15 20 18 19 18 16 22 24 24 16 
23 16 21 16 17 16 19 25 18 21 17 15 25 17 24 
16 20 16 25 24 16 17 19 19 18 20 16 17 21 24 
19 19 22 22 20 16 19 17 21 19 25 23 25 25 25 
18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 

Figure 11: Objective Function Coefficients for the Sample GAP Problem 

Variable Preferences 

The user has an option to input variable preferences to prioritize which decision variables should change. 

By default, all preferences are set to a value of one. Two variable preference scenarios w illustrate the 

impact of this option on the solution. 
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Scenario 1: The assignment of tasks to machines had equal preferences. Each decision variable 𝑥𝑥𝑖𝑖𝑖𝑖  had a 

default preference of one, i.e., 𝑤𝑤𝑖𝑖𝑖𝑖 = 1. 

Scenario 2: It was assumed that the assignment of certain tasks 𝑖𝑖 to particular machines 𝑗𝑗 were particularly 

disruptive to the status quo and thus undesirable. In such a case, the variable preferences for these 

particular assignments had a user-inputted value greater than one as illustrated in Figure 12 (for example 

𝑥𝑥21 has a preference 𝑤𝑤𝑖𝑖𝑖𝑖 = 3). The user can select the scale of preferences; however in all cases a higher 

value relative to others indicates that changing the value of the current decision variable from 𝑦𝑦𝑖𝑖𝑖𝑖  is less 

desirable. In the example a value of three corresponds to the most disruptive (least desirable) change, 

while a value of one corresponds to a change that is less undesired. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 
1 1 2 1 1 1 1 1 1 1 3 1 1 2 1 
1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 

Figure 12: Variable Preferences for Sample GAP Problem 

4.4.3 Solution to the Binary Integer Programming Problem 

Once the user enters all required inputs into the model, the Initialize button is then clicked. At this point 

the absence of error messages shown indicates that the BIP model was correctly saved into the Main 

worksheet. The error-checking process also confirms that the current condition is feasible and satisfies all 

model constraints. Next, OpenSolver determines the maximum number of changes and the optimal 

objective function value to the BIP problem. In this example 20 changes from the current condition are 

permitted and the optimal objective function value is 336 (compared to the current condition’s objective 

value of 289). This value of 20 changes is displayed on the slider control to indicate the maximum numbers 

of changes of 𝑥𝑥 from current condition 𝑦𝑦, and the users can select their preferred minimum number of 

changes of 𝑥𝑥 from 𝑦𝑦. Results for the two scenarios outlined here are further discussed below. 
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Scenario 1: Equal variable preferences 

Under this scenario, the range of objective function value corresponding to different user-specified 

number of changes is displayed in Figure 13. Generally, the objective function value increases as the 

number of changes of solution 𝑥𝑥 from the current condition 𝑦𝑦 increases. However, as the user only 

specifies the lower bound on the number of changes required to the BIP problem, at times the actual 

number of changes from current condition 𝑦𝑦 to the solution 𝑥𝑥 do not equal the number of changes 

specified by the user. For instance, as seen in Figure 13, when the user specifies the number of changes 

to be in the range of five to seven, the objective function value is the same as that with user-specified 

number of changes of 8, that is, at 𝑧𝑧 = 316. In other words, if the lower bound on the number of changes 

is specified to be a lower number than what is obtained, it may be due to ensure the feasibility of the 

solution to the model. In contrast, when the minimum number of changes is specified as five, it was not 

attractive for the model to increase the number of changes to nine although higher objective function 

value corresponding to nine changes was expected, which later can be explained further in Figure 14. 

 Another interesting insight gained from Figure 13 can be seen in the objective function value when 

comparing the difference between user-specified number of changes of (i) 17 and 18, and (ii) 15 and 16. 

In this case, as the number of changes increases there is a slight decrease in objective function value. This 

decrease can be interpreted as that it is not necessarily favorable to undergo the maximum number of 

changes (in this case 20), as the gain in objective value is not significant and the cost of changes may not 

offset the gain in the objective function value. 
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Figure 13: Objective Function Value Corresponding to User-specified Minimum Number of Changes of 𝒙𝒙𝒊𝒊𝒊𝒊 from 𝒚𝒚𝒊𝒊𝒊𝒊  

Figure 14 plots the 𝜆𝜆(𝑥𝑥) value versus minimum number of changes of x from y defined by the user, where 

𝜆𝜆(𝑥𝑥) is defined as in equation (25). This figure illustrates that the incremental gain in the objective 

function value decreases as the number of changes increases. Additionally, Figure 14 explains the 

behavior in Figure 13. For instance, in Figure 13 the objective function value did not appear to increase 

when the user specified the number of changes to be five to eight.  However,   the modified objective 

function is to maximize ratio between solution quality and solution difference, which is max 𝜆𝜆(𝑥𝑥).  

Accordingly, in Figure 14,  the decrease in the value of 𝜆𝜆(𝑥𝑥)   in the range of five to eight changes  is a 

result of  changes from the current condition (solution difference) only (the denominator ratio). Thus, our 

modified BIP is behaving as expected.  
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Figure 14: 𝝀𝝀(𝒙𝒙) Value Corresponding to User-Define Minimum Number of Changes of 𝒙𝒙𝒊𝒊𝒊𝒊 from 𝒚𝒚𝒊𝒊𝒊𝒊 

Scenario 2: User-Specified Variable Preferences 

In this scenario the user specifies variable preferences. Figure 15 illustrates the relationship between 

objective function values and user-specified number of changes. When the user- specified number of 

changes ranged from 2 to 10, the actual number of changes of the solution 𝑥𝑥 from current condition 𝑦𝑦 

was always equal to 10, which produced the objective function value of 𝑧𝑧 = 316. Similar to the first 

scenario, there was a decrease in the objective function value at a greater number of changes (14 to 15), 

indicating indicated that the increase in number of changes of 𝑥𝑥 toward maximum number of changes 

was not favorable. The optimal objective function with 20 changes of 𝑥𝑥 from 𝑦𝑦 was found to be 𝑧𝑧 = 335.  
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Figure 15: Objective Function Value Corresponding to User-specified Number of Changes of 𝒙𝒙𝒊𝒊𝒊𝒊 from 𝒚𝒚𝒊𝒊𝒊𝒊 with Variable 
Preference  

 

Furthermore, the plot showing the value of 𝜆𝜆�𝑥𝑥𝑖𝑖𝑖𝑖� is displayed in Figure 16. Similar to the first scenario, it 

can be seen that as number of changes incrementally increases, 𝜆𝜆�𝑥𝑥𝑖𝑖𝑖𝑖� decreased as expected. 
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Figure 16: 𝝀𝝀(𝒙𝒙) Value Corresponding to User-specified Minimum Number of Changes of 𝒙𝒙𝒊𝒊𝒊𝒊 from 𝒚𝒚𝒊𝒊𝒊𝒊 with Variable Preference  

 

Comparison of the two variable preference scenarios 

Although in both scenarios, the maximum number of changes from the current condition was set to 20, 

the optimal objective function value in the second scenario was less than that of the first scenario. This 

could be explained by the differences in variable preferences between the two scenarios. With a user-

specified number of changes set to 20, Figure 17 and Figure 18 display the respective solutions to the 

user’s BIP problem for both scenarios. It can be seen that different scenarios provide different outputs. 

For instance, 𝑥𝑥12 was equal to 1 in the first scenario, but equal to 0 in the second scenario. This can be 

explained by the assignment of a variable preference of 𝑥𝑥12, which was set to three (Figure 12). Thus, it 

was not favorable for the model to change 𝑥𝑥12 from current condition, where 𝑥𝑥12 = 0, to 1 in the second 

scenario. 
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Machine\ 
Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 
2 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
4 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 
5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

Figure 17: Optimal Solution to the BIP Problem without Variable Preferences (Scenario 1) 

Machine\ 
Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 
2 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
4 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 
5 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

Figure 18: Optimal Solution to the BIP Problem with Variable Preferences (Scenario 2) 
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 Conclusion and Recommendations 

Solving optimization problems has long been a crucial research area for many disciplines, and many 

optimization problems featuring combinatorial structures can be modeled using binary integer variables. 

While there are rich practical applications of BIP models, existing exact solvers typically produce a single 

optimal solution to the BIP problems, which might be undesirable to the decision maker if it is too 

disruptive from the current condition. Thus, this project focused on developing an algorithm and a 

computational program capable of producing solutions that do not overly disrupt from the status quo, 

while still providing an improved objective function value to the BIP problems. Implemented with VBA 

and OpenSolver in an Excel environment, the program includes the following features: 

(1) Provides step-by-step instructions; 

(2) Reads in an existing model; 

(3) Imports and validates user-specified input including current condition, objective coefficients, and 

variable preferences to the BIP problem; 

(4) Allows the user to select desirable number of changes of solution from current condition;  

(5) Solves  the modified BIP model using Dinkelbach’s algorithm based on user’s preferences; 

(6) Includes troubleshooting capabilities. 

The user-interface guides the user through all aspects of the program from importing their models, to 

customizing the methods and receiving the desirable solutions.  

For future work, it is recommended to enhance the program capability by allowing the solution of BIP 

models with a minimization objective. That said, it is possible for users to use the existing program by 

converting a minimization objective to maximization by simply multiplying through by -1. Furthermore, 

adapting the program to different solvers such as CPLEX and Gurobi would appeal to a larger audience.  
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 Industrial Engineering Reflection 

To satisfy Accreditation Board for Engineering and Technology (ABET) related requirements, the Major 

Qualifying Project (MQP) in Industrial Engineering must represent certain capstone design experiences. 

According to ABET, the fundamental components of the design process should include the establishment 

of objectives and criteria, synthesis, analysis, construction, testing, and evaluation, which were fulfilled in 

this MQP. The objective of this project was to develop an algorithm and design a computational program 

to generate solution to BIP problem that not only improves the objective function value but also controls 

disruption from the current condition. First, we developed the model through literature review by 

understanding similar type of models and the approaches that were studied. From that, we proposed a 

detailed mathematical description that represents multiple objective functions including maximization in 

solution quality and minimization in disruption from the current condition. Then, we employed 

Dinkelbach’s algorithm to solve for the desired solution through multiple iterations. Next, we synthesized 

the whole process into the Excel environment using VBA and OpenSolver and designed user-interface 

including detail instructions to assist users. Finally, we debugged and evaluated the program using several 

examples of BIP problems. 

Furthermore, unlike other MQP groups, this was a single-student project with a disjointed project time 

frame. The MQP project had to be completed in two disjointed terms (i.e., 2/3 units in A term, 1/3 unit in 

C term); and as a result we experienced the discontinuity in the project progress. Most of the work was 

condensed at the beginning of the project, in A term. After the gap of B term, time was required to catch 

up with the previous progress, accelerate and finish the project. Additionally, with limited background in 

VBA, we had to familiarize ourselves with the environment, syntax, and debugging process. Another 

challenge is the limitation of OpenSolver documentation; most of our codes were leveraged from several 

online instructions and tutorials. Towards the end of the project, we had to test our program with several 

binary optimization problems, which helped us validate the functionality of our program. 
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As a result, the design process produced a relatively fast, accurate and functioning program. However, 

there were alternatives and constraints that were considered when designing the program. The time 

frame for the project only allowed for the program to account for the maximization cases in BIP problems. 

Moreover, as the program was created in Excel environment, there were limitations to the data set and 

models that it can solved. Thus future enhancements to the program would be to adapt the program to 

solve BIP minimization cases and extend the program to environments other than Excel. 

Overall, the project was quite a process in learning and practice, when we had opportunities to experience 

a new programming environment relevant to binary optimization within an industrial discipline. The 

developing and debugging process enhanced our critical thinking and judgment skills. As we understood 

more about the users’ needs, we developed a user-friendly interface to assist the decision makers in the 

optimizing process. 
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Appendix A 

Initialize Button 

Private Sub Initialize_Click() 
    'Check existence 
    Dim ws As Worksheet 
    On Error Resume Next 
        Set ws = Sheets("Model") 
    On Error GoTo 0 
    If ws Is Nothing Then 
        MsgBox "Warning: Model worksheet doesn't exist" 
        Exit Sub 
    End If 
     
    Sheets("Model").Activate 
    lastrow = ws.UsedRange.rows.Count   'last row of data 
    a = lastrow + 100 ' end of file 
     
    'Open csv file 
    temp1 = OpenFile(ActiveWorkbook.Path & "\user_initial.csv", a + 1, 1) 
    temp2 = OpenFile(ActiveWorkbook.Path & "\user_weight.csv", a + 2, 2) 
    temp3 = OpenFile(ActiveWorkbook.Path & "\user_objective.csv", a + 3, 3) 
     
    If temp1 = -1 Or temp2 = -1 Or temp3 = -1 Then 
        ws.Range(ws.Cells(a + 1, 1), ws.Cells(a + 12, 1)).EntireRow.ClearContents 
        Exit Sub 
    End If 
     
    If temp1 = 0 Or temp3 = 0 Then 
        MsgBox "Warning: Missing input files" 
        ws.Range(ws.Cells(a + 1, 1), ws.Cells(a + 12, 1)).EntireRow.ClearContents 
        Sheets("Main").Activate 
        Exit Sub 
    End If 
     
    'No weight specified 
    If temp2 = 0 Then 
        temp2 = temp1 
        ws.Cells(a + 2, 1).Resize(1, temp1) = 1 
    End If 
     
    'Cell locations 
    Initial = ws.Cells(a + 1, 1).Resize(1, temp1).Address() 
    Variable = ws.Cells(a + 5, 1).Resize(1, temp1).Address() 
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    'Solver 
    typ = 1   '1: OpenSolver, other: Built-in Solver 
    State = SolverGet(TypeNum:=1) 'Check solver 
    If IsError(State) Then 
        MsgBox "Warning: You have not used Solver on the active sheet" 
        ws.Range(ws.Cells(a + 1, 1), ws.Cells(a + 12, 1)).EntireRow.ClearContents 
        Sheets("Main").Activate 
        Exit Sub 
    End If 
     
    SolverSave ("Main!P600:P1000") 
     
    'Variable cell location 
    orgVariable = SolverGet(TypeNum:=4) 'Get variable location as string 
    vRow = ws.Range(orgVariable).rows.Count 
    vCol = ws.Range(orgVariable).Columns.Count 
    ltemp = vRow * vCol 
     
    If temp1 <> ltemp Or temp2 <> ltemp Or temp3 <> ltemp Then 
        MsgBox "Warning: Numbers of inputs are not consistent" & vbNewLine & "Exit to main worksheet" 
        ws.Range(ws.Cells(a + 1, 1), ws.Cells(a + 12, 1)).EntireRow.ClearContents 
        Sheets("Main").Activate 
        Exit Sub 
    End If 
     
    'Variable to new cell 
    For ii = 1 To vRow 
        ws.Range(ws.Cells(a + 5, 1 + vCol * (ii - 1)), ws.Cells(a + 5, vCol * ii)).FormulaArray = "=" & 
ws.Range(orgVariable).rows(ii).Address() 
    Next ii 
      
    'Optimize 
    RunSolver (typ) 
    dx_cell = Cells(a + 12, 6).Address() 
    ws.Range(dx_cell).Formula = "=SUMIF(" & Initial & ",0," & Variable & ")-SUMIF(" & Initial & ",1," & 
Variable & ")+SUM(" & Initial & ")" 
     
    'Set scrollbar 
    If ws.Range(dx_cell) = 0 Then   'when max changes = 0, initial solution is already optimal 
        MsgBox "Your initial solution is already optimal. Any changes to the solution may decrease the 
objective value" 
        ScrollBar1.Min = 0 
        ScrollBar1.Max = 0 
        Label1.Caption = ScrollBar1.Value 
    Else 
        ScrollBar1.Min = 1 
        ScrollBar1.Max = ws.Range(dx_cell) 
        Label1.Caption = ScrollBar1.Value 
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    End If 
     
    'Feasibility 
    SolverAdd CellRef:=orgVariable, relation:=2, FormulaText:=Initial 
    ic = SolverSolve(True) 
    SolverDelete CellRef:=orgVariable, relation:=2 
    If ic > 2 Then 
        MsgBox "Warning: Infeasible initial condition" 
        ws.Range(ws.Cells(a + 1, 1), ws.Cells(a + 12, 1)).EntireRow.ClearContents 
        Sheets("Main").Activate 
        Exit Sub 
    End If 
     
    ''' 
    ws.Range(ws.Cells(a + 1, 1), ws.Cells(a + 12, 1)).EntireRow.ClearContents 
    ws.Range("A1").Select 
    Sheets("Main").Activate 
End Sub 
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Solve Button 

Private Sub Solve_Click() 
    'Changes 
    changes = ScrollBar1.Value 
    If changes = 0 Then 
        MsgBox "Warning: There must be at least ONE change" 
        Exit Sub 
    End If 
     
    'Last row 
    If a = 0 Then 
        MsgBox "Warning: Click Initialize first" 
        Exit Sub 
    End If 
       
    'Maxloop 
    maxloop = Range("P48") 
    If Not IsNumeric(maxloop) Then 
        Range("P48") = 100 
    ElseIf CInt(maxloop) < 1 Then 
        Range("P48") = 100 
    End If 
    maxloop = Range("P48") 
 
    'Check existence 
    Dim ws As Worksheet 
    On Error Resume Next 
        Set ws = Sheets("Model") 
    On Error GoTo 0 
    If ws Is Nothing Then 
        MsgBox "Warning: Model worksheet doesn't exist" 
        Exit Sub 
    End If 
     
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Sheets("Model ").Activate 
        
    'Solver 
    typ = 1   '1: OpenSolver, other: Built-in Solver 
    State = SolverGet(TypeNum:=1) 'Check solver 
    If IsError(State) Then 
        MsgBox "Warning: You have not used Solver on the active sheet" & vbNewLine & "Exit to main 
worksheet" 
        Sheets("Main").Activate 
        Exit Sub 
    End If 
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    'Open csv file 
    temp1 = OpenFile(ActiveWorkbook.Path & "\user_initial.csv", a + 1, 1) 
    temp2 = OpenFile(ActiveWorkbook.Path & "\user_weight.csv", a + 2, 2) 
    temp3 = OpenFile(ActiveWorkbook.Path & "\user_objective.csv", a + 3, 3) 
     
    'No weight specified 
    If temp2 = 0 Then 
        temp2 = temp1 
        ws.Cells(a + 2, 1).Resize(1, temp1) = 1 
    End If 
        
    'Cell locations 
    Initial = ws.Cells(a + 1, 1).Resize(1, temp1).Address() 
    weight = ws.Cells(a + 2, 1).Resize(1, temp1).Address() 
    Objective = ws.Cells(a + 3, 1).Resize(1, temp1).Address() 
    wVariable = ws.Cells(a + 4, 1).Resize(1, temp1).Address() 
    Variable = ws.Cells(a + 5, 1).Resize(1, temp1).Address() 
             
    'Variable cell location 
    orgVariable = SolverGet(TypeNum:=4) 'Get variable location as string 
    vRow = ws.Range(orgVariable).rows.Count 
    vCol = ws.Range(orgVariable).Columns.Count 
    
    'Variable to new cell 
    For ii = 1 To vRow 
        ws.Range(ws.Cells(a + 5, 1 + vCol * (ii - 1)), ws.Cells(a + 5, vCol * ii)).FormulaArray = "=" & 
ws.Range(orgVariable).rows(ii).Address() 
    Next ii 
 
    ws.Range(wVariable).FormulaArray = "=" & Variable & "*" & weight 
     
   'Initialize Dinkelbach 1 
    nx_cell = ws.Cells(a + 12, 3).Address() 
    ws.Range(nx_cell).Formula = "= SUMPRODUCT(" & Objective & "," & Variable & ")-SUMPRODUCT(" & 
Objective & "," & Initial & ")" 
    dxw_cell = ws.Cells(a + 12, 4).Address() 
    ws.Range(dxw_cell).Formula = "=SUMIF(" & Initial & ",0," & wVariable & ")-SUMIF(" & Initial & ",1," & 
wVariable & ")+SUMPRODUCT(" & weight & "," & Initial & ")" 
 
    'Find q(x) 
    temp_cell = ws.Cells(a + 11, 1).Address() 
    ws.Range(temp_cell).Formula = "=SUMPRODUCT(" & Objective & "," & Variable & ")-SUMPRODUCT(" 
& Objective & "," & Initial & ")" 
    SolverOK setCell:=temp_cell, MaxMinVal:=1, ByChange:=orgVariable 'Objective function to find max 
q(x)for normalization factor 
    SolverAdd CellRef:=temp_cell, relation:=3, FormulaText:="1e-6" 'Constraint q(x)>=0 to have cx-
cy>=1e-6 
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    RunSolver (typ) 
 
    'Save and clear 
    qx = ws.Range(temp_cell).Value 
    Q1 = ws.Range(nx_cell) / ws.Range(dxw_cell) 
    SolverDelete CellRef:=temp_cell, relation:=3 
    ws.Range(temp_cell).ClearContents 
 
    'Find s(x) 
    ws.Range(temp_cell).Formula = "=SUMIF(" & Initial & ",0," & wVariable & ")-SUMIF(" & Initial & ",1," 
& wVariable & ")+SUMPRODUCT(" & weight & "," & Initial & ")" 
    SolverOK setCell:=temp_cell, MaxMinVal:=1, ByChange:=orgVariable 'Find max of s(x)for 
normalization factor 
    SolverAdd CellRef:=temp_cell, relation:=3, FormulaText:="1" 'Constraint s(x)>=1 
    RunSolver (typ) 
 
    'Save and clear 
    sx = ws.Range(temp_cell).Value 
    Q2 = ws.Range(nx_cell) / ws.Range(dxw_cell) 
    SolverDelete CellRef:=temp_cell, relation:=3 
    ws.Range(temp_cell).ClearContents 
 
    'Normalize factor 
    norm_cell = ws.Cells(a + 12, 1).Address() 
    ws.Range(norm_cell) = sx / qx 
 
    'Initialize Dinkelbach 2 
    lambda_cell = ws.Cells(a + 12, 2).Address() 
    'ws.Range(lambda_cell) = 0 
    ws.Range(lambda_cell) = Application.Max(Q1, Q2, 0) 
    nxqdx_cell = ws.Cells(a + 12, 5).Address() 
    ws.Range(nxqdx_cell).Formula = "=" & norm_cell & "*" & nx_cell & "-" & lambda_cell & "*" & 
dxw_cell 
    dx_cell = Cells(a + 12, 6).Address() 
    ws.Range(dx_cell).Formula = "=SUMIF(" & Initial & ",0," & Variable & ")-SUMIF(" & Initial & ",1," & 
Variable & ")+SUM(" & Initial & ")" 
 
    'Dinkelbach 
    SolverOK setCell:=nxqdx_cell, MaxMinVal:=1, ByChange:=orgVariable 'Define objective function: max 
    SolverAdd CellRef:=nx_cell, relation:=3, FormulaText:="0" 'constraint N(x)>=0 
    SolverAdd CellRef:=dx_cell, relation:=3, FormulaText:=CStr(changes)  'constraint D(x)>=user_define?? 
 
    'Loop until zero 
    cnt = 0 
    While Abs(ws.Range(nxqdx_cell)) > 0.000001 
        cnt = cnt + 1 
        If cnt > maxloop Then 
            SolverDelete CellRef:=nx_cell, relation:=3 
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            SolverDelete CellRef:=dx_cell, relation:=3 
            SolverOK setCell:=State, MaxMinVal:=1, ByChange:=orgVariable 
            ws.Range(ws.Cells(a + 1, 1), ws.Cells(a + 12, 1)).EntireRow.ClearContents 
            ws.Range("A1").Select 
            MsgBox "Warning: Number of iterations exceeds the allowed" 
            Sheets("Main").Activate 
            Exit Sub 
        End If 
        RunSolver (typ) 
 
        'Update q 
        ws.Range(lambda_cell) = ws.Range(norm_cell) * ws.Range(nx_cell) / ws.Range(dxw_cell) 
    Wend 
     
    'Old Objective 
    old_cell = ws.Cells(a + 12, 7).Address() 
    ws.Range(old_cell).Formula = "=SUMPRODUCT(" & Objective & "," & Initial & ")" 
    oldobj = ws.Range(old_cell) 
     
    'Save 
    achanges = ws.Range(dx_cell) 
    newobj = ws.Range(State) 
 
    'Clear 
    SolverDelete CellRef:=nx_cell, relation:=3 
    SolverDelete CellRef:=dx_cell, relation:=3 
    SolverOK setCell:=State, MaxMinVal:=1, ByChange:=orgVariable 
    ws.Range(ws.Cells(a + 1, 1), ws.Cells(a + 12, 1)).EntireRow.ClearContents 
    ws.Range("A1").Select 
 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    MsgBox "Solution found!" & vbNewLine & _ 
    "Objective value is " & CStr(newobj) & vbNewLine & _ 
    "New objective value improves over the initial objective value of " & _ 
    CStr(oldobj) & " by " & CStr(newobj - oldobj) & vbNewLine & _ 
    "Number of changes is " & CStr(achanges) & vbNewLine & _ 
    "Number of iterations is " & CStr(cnt) 
End Sub 
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Reset Button 

Private Sub Reset_Click() 
    ScrollBar1.Min = 0 
    ScrollBar1.Max = 0 
     
    'Check existence 
    Dim ws As Worksheet 
    On Error Resume Next 
        Set ws = Sheets("Model ") 
    On Error GoTo 0 
    If ws Is Nothing Then 
        MsgBox "Warning: Model worksheet doesn't exist" 
        Exit Sub 
    End If 
 
    Sheets("Model ").Activate 
     
    SolverReset 
    SolverLoad ("Main!P600:P1000") 
 
        Sheets("Main").Activate 
     
End Sub 
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Miscellaneous 

Private Function OpenFile(filepath, rows, inputfile) 
    'Open file and split cells 
    Open filepath For Input As #1 
    Dim LineFromFile As String 
    Do Until EOF(1) 
        Line Input #1, temp 
        LineFromFile = LineFromFile & "," & temp 
    Loop 
    Close #1 
    LineItems = Split(LineFromFile, ",") 
      
    'Check input data and Remove null element 
    Dim i, j As Integer 
    ReDim newArr(LBound(LineItems) To UBound(LineItems)) 
    For i = LBound(LineItems) To UBound(LineItems) 
        If LineItems(i) <> "" Then 
            Select Case inputfile 
                Case 1 
                    If LineItems(i) = 0 Or LineItems(i) = 1 Then 
                        newArr(j) = CInt(LineItems(i)) 
                        j = j + 1 
                    Else 
                        MsgBox "Warning: Input file user_initial.csv has wrong data type." 
                        OpenFile = -1 
                        Exit Function 
                    End If 
                Case 2 
                    If IsNumeric(LineItems(i)) And CInt(LineItems(i)) >= 0 Then 
                        newArr(j) = CInt(LineItems(i)) 
                        j = j + 1 
                    Else 
                        MsgBox "Warning: Input file user_weight.csv has wrong data type." 
                        OpenFile = -1 
                        Exit Function 
                    End If 
                Case 3 
                    If IsNumeric(LineItems(i)) Then 
                        newArr(j) = CInt(LineItems(i)) 
                        j = j + 1 
                    Else 
                        MsgBox "Warning: Input file user_objective.csv has wrong data type." 
                        OpenFile = -1 
                        Exit Function 
                    End If 
                End Select 
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        End If 
    Next 
    ReDim Preserve newArr(LBound(LineItems) To j) 
     
    'Return 
    Sheets("Model ").Cells(rows, 1).Resize(1, UBound(newArr) - LBound(newArr)) = newArr  'store array in 
specified row 
    OpenFile = UBound(newArr) - LBound(newArr)   'return length of array 
End Function 
 
Private Sub RunSolver(typ) 
    If typ = 1 Then 
        RunOpenSolver False 
    Else 
        SolverSolve True 
    End If 
End Sub 
 

Private Sub ScrollBar1_Change() 
    Label1.Caption = ScrollBar1.Value 
End Sub 
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